Chapter 1
Towards a Coarse-Grained Model for Unfolded
Proteins

Ali Ghavami, Erik Van der Giessen, and Patrick R. Onck

Abstract It is widely accepted that many biological systems benefit from the spe-
cific and unique properties of unfolded proteins. In order to study the conformational
dynamics of these proteins, we propose an implicit solvent one-bead per amino-acid
coarse-grained (CG) model. For the local backbone interactions, experimentally-
obtained Ramachandran plots for the coil regions of proteins are converted into dis-
tributions of pseudo-bond and pseudo-dihedral angles between neighboring alpha-
carbons in the CG chain. The obtained density plots are then used to derive bending
and torsion potentials, which are residue- and sequence-specific. Our results show
that the local interactions can be captured by specifically accounting for the pres-
ence of Proline and Glycine in the amino-acid sequence. An upper and lower bound
is suggested for the radius of gyration of denatured proteins based on their specific
sequence composition.

1.1 Introduction

In spite of the well-established relation between the biological function of proteins
and their specific folded structure, the important role of unfolded proteins in many
vital biological processes can not be ignored (Fink, 2005; Tompa, 2009). Rapid
increase of our knowledge on the structure of proteins has revealed that many pro-
teins and protein domains are intrinsically unstructured. The absence of a stable
secondary structure in their polypeptide chain is the main reason behind the basic
functions of unfolded proteins, which can be classified into four functional groups,
namely molecular recognition, molecular assembly, protein modification and en-
tropic chain activities (Dunker et al., 2002; Radivojac et al., 2007; Tompa, 2009).
Atomic-level molecular dynamics simulations provide detailed insight of the
interactions and dynamics present in protein structures. However, because of the
limitations in computational resources it is still not possible to reach biologically-
interesting time and length scales. Unfolded proteins are even more dynamic and
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therefore even longer simulations are required in order to obtain statistically-
meaningful results. The necessity to achieve biologically interesting time and length
scales, have drawn the interest of researchers towards the development of coarse-
grained (CG) models.

There is a limited set of available CG models that account for the disordered state
of proteins. Simple models such as the elastic network and Go-models (Tirion, 1996)
have been developed but their force fields are completely biased to a unique refer-
ence structure. In the more complex CG models like the MARTINI model (Monti-
celli et al., 2008), the Head-Gordon model (Yap et al., 2007) and the model devel-
oped by Korkut and Hendrickson (2009), a priori knowledge of the local secondary
structure of the protein is required to perform the simulations. The CG models with
more predictive power (Tozzini et al., 2006, 2007; Bereau and Deserno, 2009) are
parametrized using databases of folded protein structures and therefore cannot be
expected to reproduce the correct conformational dynamics of unfolded proteins.

In the present work, a one bead per amino-acid, implicit solvent model for un-
folded proteins is proposed. Local interaction potentials are obtained by converting
experimentally-obtained Ramachandran plots for the coil regions of proteins into
distributions of pseudo-bond and pseudo-dihedral angles between neighboring a-
carbons in the CG chain. These distributions are used to derive bending and torsion
potentials, which are residue- and sequence-specific. As an example, the model is
used to study the ensemble average gyration radius of denatured proteins as a func-
tion of the amino acid sequence.

1.2 Extraction Method to Obtain Coarse-Grained Potentials

In the following sections, the general methodology for extracting the CG potential
functions from the Ramachandran data of coiled regions of proteins is summarized;
more details can be found in (Ghavami et al., 2012).

1.2.1 Mapping Backbone Internal Degrees of Freedom (¢, ¥) to
Pseudo Bending and Torsion Angles (0, o)

A geometrical representation of the coarse-grained polypeptide chain together with
the CG degrees of freedom are shown in Fig. 1.1. In the all-atom representation
of the backbone (Fig. 1.1(a)), the bond lengths and bond angles display only a
small variation from their average value so they are assumed to remain fixed in the
present work (Finkelstein and Ptitsyn, 2002). The average bond lengths of Cy—N,
C,—C and C-N are 0.145 nm, 0.152 nm, 0.133 nm, respectively, with the average
bond angles C,—C-N = 116°, C-N-C,, = 122° and N-C,—C =7 = 111°. A Trans-
conformation is presumed for the peptide bond (w = 180°) and the rare possibility
of Cis-conformation is neglected. With the stated assumptions, it could be implied
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Fig. 1.1 All atom schematic of a polypeptide chain (a) and coarse-grained representation (b) of
the backbone with pseudo-bending and torsion angles. Side chains are not shown in (a). In (b) the
dashed lines represent the polypeptide chain and the bond angle 6 and dihedral angle « represent
the pseudo-bonds in the coarse-grained geometry

that ¢ and v dihedral angles are the only degrees of freedom of the all-atom back-
bone.

Figure 1.1(b) demonstrates the CG chain by connecting the «-carbons through
pseudo-bonds. Since the all-atom bond lengths, bond angles and dihedral angle w
are not supposed to change, the pseudo-bond lengths between subsequent C,’s re-
main fixed at a distance of 0.38 nm. Also, the pseudo-bending angle 8 and pseudo-
dihedral angles « for the CG chain are defined between three and four consecutive
C,’s, respectively. A geometrical expression can be established for the relation-
ship between the CG (0, «) and all-atom (¢, ¥) degrees of freedom as suggested by
(Levitt, 1976; Tozzini et al., 2006). The pseudo-bending angle for the coarse-grained
chain is given by

cos 6; = cos T(cos y1 cos 2 — sin y1 sin y» cos ¢; cos ;)
4+ sin T (cos ¥; sin y1 cos y» + cos ¢; cos ¥ sin y»)
+ sin 1 sin y; sin ¢; sin ¥;, (1.1)

where y; = 20.7°, and y», = 14.7° are constant angles (see Fig. 1.1(b)). The exact
formula for the pseudo-torsion angle is very complex, but the following approximate
formula has been suggested by Tozzini et al. (2006):

a; =180+ ¢; + Yiy1 + yisinyiy1 + y2sing;. (1.2)

It can be inferred from these equations that the pseudo-bending angle 6; de-
pends only on one set of backbone dihedral angles (¢;, v¥;), but the pseudo-
torsion angle ¢; is a function of two consecutive sets of backbone dihedral angles
(¢i, Vi, dit+1, Yit1). It is worth noting that, in the force-fields developed specif-
ically for well-defined secondary structures, the simplifying assumptions (¢; =
Pi+1, ¥i = V¥iy1) are made for mapping o (Levitt, 1976; Tozzini et al., 2006). How-
ever, this assumption does not hold for proteins without any regular structure.
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1.2.2 Coil Library

The ¢ and ¢ dihedral angles of the backbone of protein structures are often
presented in two-dimensional density plots, called Ramachandran plots. The Ra-
machandran space [—180°, 180°) — [—180°, 180°) is divided into several regions,
each one referring to a specific secondary structure. The empty regions refer to
the disfavored conformations which are mainly caused by the steric clash between
neighboring side chains or steric hindrance to the formation of hydrogen bonds be-
tween peptide groups and water molecules (Avbelj et al., 2006). Here, these density
plots are used to generate the mean force potentials for local interactions in the
unfolded state. For this purpose, we adopt the Boltzmann inversion method

U(q) = —ksT In[P(q)]. (13)

where ¢ is any desired degree of freedom, P(g) is the probability distribution for ¢,
T is the temperature and kp is the Boltzmann constant.

In order to obtain meaningful potentials for unfolded proteins, appropriate Ra-
machandran data must be extracted from the protein data bank. The required density
plots should not be biased towards any secondary structure, while long-range effects
(hydrophobic or electrostatic interactions) must be absent or have a negligible im-
pact on the density plots. The data that satisfy these conditions best are for the coil
regions of proteins. The coil regions are those parts of proteins that cannot be clas-
sified in any kind of known secondary structure. This implies that their backbone
conformations are not biased to any regular structure. Also it has been shown that
the intrinsic backbone preferences of di-peptides are strikingly similar to the back-
bone conformations of coil regions of proteins (Avbelj et al., 2006), confirming the
assumption that long range hydrophobic or electrostatic interactions are negligible
for this class of residues.

The DASSD library is used to extract Ramachandran plots of the coiled regions
of proteins (Dayalan et al., 2006). This database contains dihedral angles of cen-
tral residues of short amino-acid fragments (of length 1, 3 and 5), which gives the
possibility to extract meaningful potentials by considering the effect of neighbor-
ing residues on the obtained potentials. The database is extracted from 5,227 non-
redundant high resolution (less than 2 A) protein structures and a secondary struc-
ture assignment is carried out using the STRIDE algorithm (Frishman and Argos,
1995).

1.2.3 Three-Letter Amino Acid Model

The current size of the coil library is not large enough to extract CG bending and
torsion potentials for all 20 amino-acids accounting for all possible neighbors. Since
the Ramachandran plots are the main input for the extraction of the CG potentials,
they provide the best reference to compare different amino-acids and to categorize
them into several sub-groups based on the similarities in their Ramachandran data.



1 Towards a Coarse-Grained Model for Unfolded Proteins 7

0.05 30 T T
! . Boltzmann inverted

0.041- . i a5k ° probabilities i
’ . ~ *  — Fitted curve

2]

. 0.03 ° B £ 20t i
= . =
& S

0.02 . . 1 & Ist .
~180 0 180 =
.... D

0.01F ¢ (deg) . 10 .

0 . -'\.." | : 5 | | | |
0 45 90 135 180 60 80 100 120 140
(@) 8 (deg) (b) 6 (deg)

Fig. 1.2 Extraction procedure for the bending potential of X—X—P combinations. (a) Normalized
distribution of the bending angle 6, which is obtained by mapping all the Ramachandran data (in-
set) to the pseudo-bending angle 6 through Eq. (1.1). Inset: Ramachandran data for the central
residue of X—X—P combinations extracted form the coil library. (b) Obtained bending potential,
U (0) after applying the Boltzmann-inversion method on the probability distribution P(0) pre-
sented in (a)

Four basic types of Ramachandran plots have been reported in the literature depend-
ing on the stereo-chemistry of the amino-acids: Glycine, Proline, ‘Generic’ (which
refers to the remaining 18 amino acids), and ‘Pre-Proline’ (which refers to residues
preceding a Proline) (Ho and Brasseur, 2005). As a result, different potential func-
tions are expected for Glycine (G), Proline (P), and the rest of the amino acids (X)
depending on their neighboring residues.

1.2.4 Extraction of Potential Functions

Bending potentials for the pseudo-bond angles are obtained by Boltzmann-inversion
of the 6 probability distribution. Initially, ¢ and ¢ dihedral angles for the central
residue of different triple combinations of P, G and X are extracted from the 3-
residue-fragments in the coil library. The extraction procedure is depicted schemat-
ically in Fig. 1.2 for X—X-P combinations. In Fig. 1.2(a-inset) the ¢ and i values
are plotted for all X amino acids (i.e. those amino acids that are not P or G) that have
an X preceding it and a P following it. In the next step, each datapoint in the Ra-
machandran space is mapped to 6 using Eq. (1.1). Collecting all datapoints in data
bins gives the 6 probability distribution (Fig. 1.2(a)) which is then directly converted
to the bending potential by Eq. (1.3) (see Fig. 1.2(b)).

In order to develop the bending potentials, one can consider different levels of ac-
curacy. This could range from developing 27 bending potentials for all combinations
of G, P and X to just three sets of potentials for our three letter amino-acid alpha-
bet ignoring any neighbor dependence. Studying proteins with different amino-acid
contents shows that including the neighbor-residue effect is important only if the
considered residue is preceding a Proline residue. Therefore, 6 sets of bending po-
tentials are suggested in which we distinguish those central residues that do and do
not precede a Proline.
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The same methodology is also applied to derive the pseudo-torsion potentials.
The main difference with the bending procedure is that in Eq. (1.2) two separate
sets of Ramachandran data (e.g., ¢;, Vi, ¢i+1 and v;41) are required to convert the
all-atom dihedral angles ¢ and  to the coarse-grained dihedral angle «. Studying
different levels of accuracy resulted in torsion potentials for all possible double-
combinations of X, P and G amino-acids, giving 9 different torsion potentials. The
reader is referred to (Ghavami et al., 2012) for more background information.

1.3 Application to Denatured Proteins

High temperature, pressure or the presence of a chemical denaturing agent can break
down the native structure of folded proteins. As a result, it will turn to a dynamic
set of complex conformations which is called the denatured state of a protein (Rose,
2002). The addition of denaturants disrupts the native hydrogen bonds and weakens
the hydrophobic forces in the protein (Das and Mukhopadhyay, 2008; Lim et al.,
2009; Zangi et al., 2009). After denaturation, only local interactions that restrict the
polypeptide backbone to limited regions of the conformational space are retained
(Creamer, 2008). Experimental studies have revealed that the ensemble-average ra-
dius of gyration of denatured proteins follows a power-law scaling:

Ry = RoN", (1.4)

where N is the number of residues, Ry is a constant related to the persistence length
of the polymer and v is a scaling exponent.

The obtained potentials are used to study the effect of the composition of the
protein sequence on the Ry of denatured proteins, with special emphasis on the
role of Proline in enlarging and that of Glycine in reducing the conformational ra-
dius. A survey of protein sequences of folded and unfolded proteins shows that
the amount of Proline and Glycine residues never exceeds 15 percent. In order to
study the effect of sequence and composition on the R, of unfolded proteins, a
series of simulations has been performed on protein chains with different lengths,
containing 15 percent of Glycine and Proline residues randomly distributed along
the chain. As expected, the sequences rich in Proline residues lead to a higher R,
compared to the chains rich in Glycine, producing an upper and lower bound for
the R, of denatured proteins (see Fig. 1.3). Any chain with less than 15 percent
Proline or 15 percent Glycine falls within this band. The experimental results of
low-charge crosslink-free chemically unfolded proteins with sizes ranging from 16
to 549 residues, shows that R, can be well fitted by the power-law relationship in
Eq. (1.4) with Ry =0.202 £ 0.041 nm and v = 0.588 =+ 0.037 (Kohn et al., 2004),
which indeed falls in between the computed bounds in Fig. 1.3.

Recently, many studies have been conducted on poly-Proline proteins showing
that these proteins form elongated left-handed helices with a very stiff backbone
structure (Adzhubei and Sternberg, 1993). The current model is able to capture the
helix conformation of poly-Proline proteins with a rise of 2.97 A per Proline, which
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is comparable to the 3.0 A rise per Proline from atomistic simulations and 3.1 A
per Proline from experimental data (Dolghih et al., 2009). The dependence of the
radius of gyration of poly-Proline proteins on the sequence length is also studied in
Fig. 1.3. It clearly shows the higher dimensions of these synthetic proteins compared
to natural proteins. It should be noticed that since Proline is considered a hydropho-
bic amino acid and the influence of solvent is not included in the present model,
the predicted gyration radius is overestimating the Ry of poly-Proline proteins in
aqueous solution.

1.4 Conclusion

In this paper, we have presented an implicit solvent, one-bead per amino-acid
coarse-grained model to study the unfolded state of proteins. To ensure that the
CG bending and torsion potential functions for bonded interactions are not biased
to any specific secondary structure, the obtained potentials were extracted from Ra-
machandran data of the coil regions of proteins. The potential functions have been
developed by accounting for the effect of neighboring residues, rendering the model
to be residue- and sequence-specific. The model has been used to study the correla-
tion between sequence composition and dimension of denatured proteins. Based on
the Proline and Glycine content of the protein sequence, an upper and lower bound
is constructed for the ensemble average R, of denatured proteins, which is in agree-
ment with the available experimental data. The developed model sets the stage for
further developments towards the inclusion of electrostatic and hydrophobic inter-
actions to study the characteristics of natively unfolded proteins under physiological
conditions.
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