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Preface

This book contains a collection of papers that were presented at the IUTAM Sympo-
sium on Computer Models in Biomechanics: From Nano to Macro, which was held
at Stanford University, California, USA, from August 29 to September 2, 2011. The
setting of Stanford University in Palo Alto and the San Francisco Bay Area of Cali-
fornia is a rich melting-pot of culture, and an area with probably the highest density
of stimulating experts and pioneers in the world, hence it is a magical place which
has a lot to offer and which was very appropriate for the symposium. For example,
in the 120 years since its founding, Stanford University has been home to 26 Nobel
Laureates, 16 of whom are still alive. Palo Alto is also home to a number of high-
tech Silicon Valley companies including Hewlett-Packard, founded by two Stanford
graduates in a one-car garage in Palo Alto, and the biggest social-networking site,
Facebook.

The IUTAM Symposium brought together 68 participants from universities, re-
search centers and clinics in 14 countries. There were 35 invited oral presentations,
including 5 keynote lectures to open the morning sessions throughout the week,
and 33 young researchers to give poster presentations on the second afternoon of
the meeting. The keynote lectures were given by P. Fratzl (Max Planck Institute,
Potsdam, Germany), P. Hunter (University of Auckland, New Zealand), L. Taber
(Washington University, St. Louis, USA), and A. Yoganathan (Georgia Institute of
Technology, USA), while K. Parker (Harvard University, USA) could not come to
give his keynote lecture due to the Hurricane Irene.

The computational modeling of biomechanics and mechanobiology is one of the
most exciting multidisciplinary areas of this century. It is a rapidly expanding re-
search area which involves researchers in engineering, physics, biology, medicine,
applied mathematics and mechanics. Biomechanical modeling and computational
simulations in biology hold promise to provide new insight into the complex mul-
tiscale and multiphysics phenomena of living tissue: the quantitative analysis of
biomechanical processes on the molecular, cellular, tissue, and organ levels might
enable reliable predictions of the progression of various types of disease. This may
allow us to perform real-time, patient-specific simulations and to guide the design
of optimal treatment strategies. The IUTAM Symposium aimed to bring together
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vi Preface

young researchers and the world’s leading experts working in the field, to provide a
forum for discussion and to stimulate the study of challenging new topics in com-
putational biomechanics.

One important aim was to provide computer algorithms, and the skill for im-
plementations of biomechanical models in numerical codes; and this is essential
because of the complexity of the materials and the geometries encountered in ap-
plications. Efficient computer models at the molecular, cellular, tissue and organ
levels are key to better understand inter-relations between coupled processes such
as growth, remodeling, and repair, and how mechanical information is processed
and programmed by the cells (mechanobiology). Efficient computer models are one
of the prerequisites for effective design and development of soft and hard tissue
prostheses. Thematically, the IUTAM Symposium revealed a number of exciting
new trends; several new aspects have been discussed in detail, which distinguish
living biological materials from standard engineering materials such as adaptive re-
sponses (growth, remodeling) and active responses (force generation due to muscle
contraction).

This volume includes topics on:

• Protein and Cell Mechanics
One of the most promising trends to accurately characterize biomechanical

phenomena is to explore their responses on the cellular level and to generate re-
lated computer models. Observations on the microscopic scale provide additional
information, and, ideally, these observations feed back to macroscopic models
that help to explain the biomechanical response of the overall tissue or organ.
In the present volume this area is covered by the suggestion of a coarse-grained
model for unfolded proteins, a collagen-proteoglycan model to capture the struc-
tural interaction in the human cornea, and a model to predict the values of forces
generated by cells adhered on flat gels and on beds of micro-posts of variegated
stiffness.

• Muscle Mechanics
Computational models for smooth, cardiac and skeletal muscles are presented.

In particular, a mathematical approach for studying Ca2+-regulated smooth mus-
cle contraction is reviewed and the chemomechanical model is implemented into
a finite element (FE) program; 3D boundary-value problems are solved and the
model is validated by experiments on porcine smooth muscle tissue strips. Finally,
in regard to smooth muscle contraction, a homogeneous model is illustrated by
using a continuum thermodynamical framework. An actomyosin model is studied
to capture the mechanical contraction and energy consumption by the cardiomy-
ocytes. Finally, two skeletal muscle models are presented; one is on the basis
of electromechanics and the other combines principles of multi-body dynamics
with continuum mechanics and the FE method to achieve a 3D forward-dynamics
model of the musculoskeletal system.

• Cardiovascular Mechanics
This topic is of major interest and is the most extensive area covered in this vol-

ume. It includes a review of continuum level models of arterial adaptations, their
validations, and suggests an approach to incorporate molecular level information
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within such models. The next chapter presents an experimental and computational
framework to define and predict damage due to mechanical loading with an ap-
plication to arterial clamping. Two chapters are devoted to aneurysms, in particu-
lar to the evaluation of dissection properties of human ascending thoracic aortas
and to a computational methodology to remove an intracranial aneurysm and re-
construct the geometry of the healthy artery; a fluid-solid-growth framework for
modeling aneurysm evolution is also outlined and its application to clinical cases
illustrated. Two chapters focus on the mathematical modeling and computation of
electromechanical mechanisms in the heart by considering the anisotropy of my-
ocardial tissue. A computational fluid-solid-interaction model investigates possi-
ble effects on the hemodynamics within thoracic aorta and coronary, carotid and
cerebral arteries due to a distal aortic coarctation. The last chapter within this
topic shows the importance of combining medical imaging, computer graphics
and computational fluid simulations to better guide surgical interventions such as
the Fontan procedure.

• Multiphasic Models
The next key topic deals with computational models required to analyze bi-

ological mixtures consisting of a porous (neutral and charged) deformable solid
matrix and interstitial solvent and solutes. It starts by describing some features
of the open source finite element program FEBio and continues with the presen-
tation of an alternative approach to mixture theory-based poroelasticity in order
to establish a basis for the development of constitutive equations for growth of
tissues. A multiphasic modeling approach is used to analyze brain tissues consid-
ered as an elastic solid skeleton which is perfused by two liquids, the blood and
the interstitial fluid. Special attention is focused on tumor therapies carried out
by convection-enhanced delivery processes; 2D and 3D examples are discussed.
A 3D computational model for remodeling of microperfusion is also presented.
The biphasic model is based on the theory of porous media; application is shown
by covering microcirculation in liver lobes. Next, the effectiveness of mechano-
transport coupling in simulating biological growth, in particular tumor growth
dynamics, is demonstrated. Thereby, the effectiveness of tools such as adaptive
mesh refinement and automatic differentiation is also demonstrated. Finally, crack
growth in a swelling porous medium such as the intervertebral disc is numerically
analyzed and two options are discussed to account for the sharp pressure gradient
around the crack.

• Morphogenesis, Biological Tissues and Organs
Another challenging and trend-setting topic is the computational biomechanics

of morphogenesis and development of various morphogenetic processes. Here,
recent advances of the physical mechanisms of morphogenesis during brain de-
velopment, in particular the formation of the primary brain vesicles and fold-
ing of the cerebral cortex, is discussed. Finally, mechanical characterization and
predictive computer models of native and engineered anterior cruciate ligaments
(ACLs), human liver, bone and lung are presented. In particular, a microme-
chanical constitutive model is reviewed to capture the inhomogeneous, nonlinear
viscoelastic properties of native ACLs and of tissue engineered ligament grafts
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upon explantation. Characterization of the in vivo mechanical behavior of human
liver is conducted during open surgery using an aspiration device, and related
histopathology is identified with biopsies taken at the measurement locations.
Next, an in vivo validation framework for tissue level models such as bone re-
modeling and mechanobiology, based on true geometries, is analyzed. Finally,
different types of overall lung models are reviewed concluding with an approach
that couples 3D and lumped airway models.

The IUTAM Symposium provided scientific impetus, a good basis for generat-
ing new ideas for future research directions and some cultural impressions. It has
also provided a unique forum to discuss mathematical equations that characterize
(sub)cellular responses, specific biological tissues and computational tools that can
be used to simulate their complex spatial and temporal responses. It created excit-
ing new synergies and initiated new collaborations across disciplines and between
young researchers and the world’s leading experts in molecular, cellular, tissue, and
organ biomechanics to shape pathways for the future multiscale and multiphysics
modeling of biomechanical phenomena.

The organizers would like to thank the members of the Scientific Committee for
their help in making the IUTAM Symposium such a success. They are J. Engel-
brecht (Tallinn, Estonia), K. Garikipati (Ann Arbor, USA), P. Hunter (Auckland,
New Zealand), A. Quarteroni (Lausanne, Switzerland), and Y. Ventikos (Oxford,
UK). This volume has been made possible by the considerable efforts of all the au-
thors; we are very grateful for their contributions. Special thanks also go to Jianhua
Tong from the Institute of Biomechanics, Graz University of Technology, for his
help in editing this volume using the document preparation system LaTeX. Finan-
cial support for the Symposium, in particular for the young researchers, was gener-
ously provided by IUTAM, Springer, and the National Science Foundation. Finally,
we would like to thank Nathalie Jacobs, Senior Publishing Editor (Engineering) of
Springer, for her encouragement to publish this volume.

Gerhard A. Holzapfel
Ellen Kuhl

Graz, Austria/Stockholm, Sweden
Stanford, USA
June, 2012
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Chapter 1
Towards a Coarse-Grained Model for Unfolded
Proteins

Ali Ghavami, Erik Van der Giessen, and Patrick R. Onck

Abstract It is widely accepted that many biological systems benefit from the spe-
cific and unique properties of unfolded proteins. In order to study the conformational
dynamics of these proteins, we propose an implicit solvent one-bead per amino-acid
coarse-grained (CG) model. For the local backbone interactions, experimentally-
obtained Ramachandran plots for the coil regions of proteins are converted into dis-
tributions of pseudo-bond and pseudo-dihedral angles between neighboring alpha-
carbons in the CG chain. The obtained density plots are then used to derive bending
and torsion potentials, which are residue- and sequence-specific. Our results show
that the local interactions can be captured by specifically accounting for the pres-
ence of Proline and Glycine in the amino-acid sequence. An upper and lower bound
is suggested for the radius of gyration of denatured proteins based on their specific
sequence composition.

1.1 Introduction

In spite of the well-established relation between the biological function of proteins
and their specific folded structure, the important role of unfolded proteins in many
vital biological processes can not be ignored (Fink, 2005; Tompa, 2009). Rapid
increase of our knowledge on the structure of proteins has revealed that many pro-
teins and protein domains are intrinsically unstructured. The absence of a stable
secondary structure in their polypeptide chain is the main reason behind the basic
functions of unfolded proteins, which can be classified into four functional groups,
namely molecular recognition, molecular assembly, protein modification and en-
tropic chain activities (Dunker et al., 2002; Radivojac et al., 2007; Tompa, 2009).

Atomic-level molecular dynamics simulations provide detailed insight of the
interactions and dynamics present in protein structures. However, because of the
limitations in computational resources it is still not possible to reach biologically-
interesting time and length scales. Unfolded proteins are even more dynamic and

A. Ghavami · E. Van der Giessen · P.R. Onck (�)
Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
e-mail: p.r.onck@rug.nl

G.A. Holzapfel, E. Kuhl (eds.), Computer Models in Biomechanics,
DOI 10.1007/978-94-007-5464-5_1, © Springer Science+Business Media Dordrecht 2013
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therefore even longer simulations are required in order to obtain statistically-
meaningful results. The necessity to achieve biologically interesting time and length
scales, have drawn the interest of researchers towards the development of coarse-
grained (CG) models.

There is a limited set of available CG models that account for the disordered state
of proteins. Simple models such as the elastic network and Go-models (Tirion, 1996)
have been developed but their force fields are completely biased to a unique refer-
ence structure. In the more complex CG models like the MARTINI model (Monti-
celli et al., 2008), the Head-Gordon model (Yap et al., 2007) and the model devel-
oped by Korkut and Hendrickson (2009), a priori knowledge of the local secondary
structure of the protein is required to perform the simulations. The CG models with
more predictive power (Tozzini et al., 2006, 2007; Bereau and Deserno, 2009) are
parametrized using databases of folded protein structures and therefore cannot be
expected to reproduce the correct conformational dynamics of unfolded proteins.

In the present work, a one bead per amino-acid, implicit solvent model for un-
folded proteins is proposed. Local interaction potentials are obtained by converting
experimentally-obtained Ramachandran plots for the coil regions of proteins into
distributions of pseudo-bond and pseudo-dihedral angles between neighboring α-
carbons in the CG chain. These distributions are used to derive bending and torsion
potentials, which are residue- and sequence-specific. As an example, the model is
used to study the ensemble average gyration radius of denatured proteins as a func-
tion of the amino acid sequence.

1.2 Extraction Method to Obtain Coarse-Grained Potentials

In the following sections, the general methodology for extracting the CG potential
functions from the Ramachandran data of coiled regions of proteins is summarized;
more details can be found in (Ghavami et al., 2012).

1.2.1 Mapping Backbone Internal Degrees of Freedom (φ,ψ) to
Pseudo Bending and Torsion Angles (θ,α)

A geometrical representation of the coarse-grained polypeptide chain together with
the CG degrees of freedom are shown in Fig. 1.1. In the all-atom representation
of the backbone (Fig. 1.1(a)), the bond lengths and bond angles display only a
small variation from their average value so they are assumed to remain fixed in the
present work (Finkelstein and Ptitsyn, 2002). The average bond lengths of Cα–N,
Cα–C and C–N are 0.145 nm, 0.152 nm, 0.133 nm, respectively, with the average
bond angles Cα–C–N = 116◦, C–N–Cα = 122◦ and N–Cα–C = τ = 111◦. A Trans-
conformation is presumed for the peptide bond (ω = 180◦) and the rare possibility
of Cis-conformation is neglected. With the stated assumptions, it could be implied
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Fig. 1.1 All atom schematic of a polypeptide chain (a) and coarse-grained representation (b) of
the backbone with pseudo-bending and torsion angles. Side chains are not shown in (a). In (b) the
dashed lines represent the polypeptide chain and the bond angle θ and dihedral angle α represent
the pseudo-bonds in the coarse-grained geometry

that φ and ψ dihedral angles are the only degrees of freedom of the all-atom back-
bone.

Figure 1.1(b) demonstrates the CG chain by connecting the α-carbons through
pseudo-bonds. Since the all-atom bond lengths, bond angles and dihedral angle ω
are not supposed to change, the pseudo-bond lengths between subsequent Cα’s re-
main fixed at a distance of 0.38 nm. Also, the pseudo-bending angle θ and pseudo-
dihedral angles α for the CG chain are defined between three and four consecutive
Cα’s, respectively. A geometrical expression can be established for the relation-
ship between the CG (θ,α) and all-atom (φ,ψ) degrees of freedom as suggested by
(Levitt, 1976; Tozzini et al., 2006). The pseudo-bending angle for the coarse-grained
chain is given by

cos θi = cos τ(cosγ1 cosγ2 − sinγ1 sinγ2 cosφi cosψi)

+ sin τ(cosψi sinγ1 cosγ2 + cosφi cosγ1 sinγ2)

+ sinγ1 sinγ2 sinφi sinψi, (1.1)

where γ1 = 20.7◦, and γ2 = 14.7◦ are constant angles (see Fig. 1.1(b)). The exact
formula for the pseudo-torsion angle is very complex, but the following approximate
formula has been suggested by Tozzini et al. (2006):

αi = 180 + φi +ψi+1 + γ1 sinψi+1 + γ2 sinφi. (1.2)

It can be inferred from these equations that the pseudo-bending angle θi de-
pends only on one set of backbone dihedral angles (φi,ψi), but the pseudo-
torsion angle αi is a function of two consecutive sets of backbone dihedral angles
(φi,ψi,φi+1,ψi+1). It is worth noting that, in the force-fields developed specif-
ically for well-defined secondary structures, the simplifying assumptions (φi =
φi+1,ψi =ψi+1) are made for mapping α (Levitt, 1976; Tozzini et al., 2006). How-
ever, this assumption does not hold for proteins without any regular structure.
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1.2.2 Coil Library

The φ and ψ dihedral angles of the backbone of protein structures are often
presented in two-dimensional density plots, called Ramachandran plots. The Ra-
machandran space [−180◦,180◦)→ [−180◦,180◦) is divided into several regions,
each one referring to a specific secondary structure. The empty regions refer to
the disfavored conformations which are mainly caused by the steric clash between
neighboring side chains or steric hindrance to the formation of hydrogen bonds be-
tween peptide groups and water molecules (Avbelj et al., 2006). Here, these density
plots are used to generate the mean force potentials for local interactions in the
unfolded state. For this purpose, we adopt the Boltzmann inversion method

U(q)= −kBT ln
[
P(q)

]
, (1.3)

where q is any desired degree of freedom, P(q) is the probability distribution for q ,
T is the temperature and kB is the Boltzmann constant.

In order to obtain meaningful potentials for unfolded proteins, appropriate Ra-
machandran data must be extracted from the protein data bank. The required density
plots should not be biased towards any secondary structure, while long-range effects
(hydrophobic or electrostatic interactions) must be absent or have a negligible im-
pact on the density plots. The data that satisfy these conditions best are for the coil
regions of proteins. The coil regions are those parts of proteins that cannot be clas-
sified in any kind of known secondary structure. This implies that their backbone
conformations are not biased to any regular structure. Also it has been shown that
the intrinsic backbone preferences of di-peptides are strikingly similar to the back-
bone conformations of coil regions of proteins (Avbelj et al., 2006), confirming the
assumption that long range hydrophobic or electrostatic interactions are negligible
for this class of residues.

The DASSD library is used to extract Ramachandran plots of the coiled regions
of proteins (Dayalan et al., 2006). This database contains dihedral angles of cen-
tral residues of short amino-acid fragments (of length 1, 3 and 5), which gives the
possibility to extract meaningful potentials by considering the effect of neighbor-
ing residues on the obtained potentials. The database is extracted from 5,227 non-
redundant high resolution (less than 2 Å) protein structures and a secondary struc-
ture assignment is carried out using the STRIDE algorithm (Frishman and Argos,
1995).

1.2.3 Three-Letter Amino Acid Model

The current size of the coil library is not large enough to extract CG bending and
torsion potentials for all 20 amino-acids accounting for all possible neighbors. Since
the Ramachandran plots are the main input for the extraction of the CG potentials,
they provide the best reference to compare different amino-acids and to categorize
them into several sub-groups based on the similarities in their Ramachandran data.
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Fig. 1.2 Extraction procedure for the bending potential of X–X–P combinations. (a) Normalized
distribution of the bending angle θ , which is obtained by mapping all the Ramachandran data (in-
set) to the pseudo-bending angle θ through Eq. (1.1). Inset: Ramachandran data for the central
residue of X–X–P combinations extracted form the coil library. (b) Obtained bending potential,
U(θ) after applying the Boltzmann-inversion method on the probability distribution P (θ) pre-
sented in (a)

Four basic types of Ramachandran plots have been reported in the literature depend-
ing on the stereo-chemistry of the amino-acids: Glycine, Proline, ‘Generic’ (which
refers to the remaining 18 amino acids), and ‘Pre-Proline’ (which refers to residues
preceding a Proline) (Ho and Brasseur, 2005). As a result, different potential func-
tions are expected for Glycine (G), Proline (P), and the rest of the amino acids (X)
depending on their neighboring residues.

1.2.4 Extraction of Potential Functions

Bending potentials for the pseudo-bond angles are obtained by Boltzmann-inversion
of the θ probability distribution. Initially, φ and ψ dihedral angles for the central
residue of different triple combinations of P, G and X are extracted from the 3-
residue-fragments in the coil library. The extraction procedure is depicted schemat-
ically in Fig. 1.2 for X–X–P combinations. In Fig. 1.2(a-inset) the φ and ψ values
are plotted for all X amino acids (i.e. those amino acids that are not P or G) that have
an X preceding it and a P following it. In the next step, each datapoint in the Ra-
machandran space is mapped to θ using Eq. (1.1). Collecting all datapoints in data
bins gives the θ probability distribution (Fig. 1.2(a)) which is then directly converted
to the bending potential by Eq. (1.3) (see Fig. 1.2(b)).

In order to develop the bending potentials, one can consider different levels of ac-
curacy. This could range from developing 27 bending potentials for all combinations
of G, P and X to just three sets of potentials for our three letter amino-acid alpha-
bet ignoring any neighbor dependence. Studying proteins with different amino-acid
contents shows that including the neighbor-residue effect is important only if the
considered residue is preceding a Proline residue. Therefore, 6 sets of bending po-
tentials are suggested in which we distinguish those central residues that do and do
not precede a Proline.
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The same methodology is also applied to derive the pseudo-torsion potentials.
The main difference with the bending procedure is that in Eq. (1.2) two separate
sets of Ramachandran data (e.g., φi , ψi , φi+1 and ψi+1) are required to convert the
all-atom dihedral angles φ and ψ to the coarse-grained dihedral angle α. Studying
different levels of accuracy resulted in torsion potentials for all possible double-
combinations of X, P and G amino-acids, giving 9 different torsion potentials. The
reader is referred to (Ghavami et al., 2012) for more background information.

1.3 Application to Denatured Proteins

High temperature, pressure or the presence of a chemical denaturing agent can break
down the native structure of folded proteins. As a result, it will turn to a dynamic
set of complex conformations which is called the denatured state of a protein (Rose,
2002). The addition of denaturants disrupts the native hydrogen bonds and weakens
the hydrophobic forces in the protein (Das and Mukhopadhyay, 2008; Lim et al.,
2009; Zangi et al., 2009). After denaturation, only local interactions that restrict the
polypeptide backbone to limited regions of the conformational space are retained
(Creamer, 2008). Experimental studies have revealed that the ensemble-average ra-
dius of gyration of denatured proteins follows a power-law scaling:

Rg =R0N
ν, (1.4)

where N is the number of residues, R0 is a constant related to the persistence length
of the polymer and ν is a scaling exponent.

The obtained potentials are used to study the effect of the composition of the
protein sequence on the Rg of denatured proteins, with special emphasis on the
role of Proline in enlarging and that of Glycine in reducing the conformational ra-
dius. A survey of protein sequences of folded and unfolded proteins shows that
the amount of Proline and Glycine residues never exceeds 15 percent. In order to
study the effect of sequence and composition on the Rg of unfolded proteins, a
series of simulations has been performed on protein chains with different lengths,
containing 15 percent of Glycine and Proline residues randomly distributed along
the chain. As expected, the sequences rich in Proline residues lead to a higher Rg
compared to the chains rich in Glycine, producing an upper and lower bound for
the Rg of denatured proteins (see Fig. 1.3). Any chain with less than 15 percent
Proline or 15 percent Glycine falls within this band. The experimental results of
low-charge crosslink-free chemically unfolded proteins with sizes ranging from 16
to 549 residues, shows that Rg can be well fitted by the power-law relationship in
Eq. (1.4) with R0 = 0.202 ± 0.041 nm and ν = 0.588 ± 0.037 (Kohn et al., 2004),
which indeed falls in between the computed bounds in Fig. 1.3.

Recently, many studies have been conducted on poly-Proline proteins showing
that these proteins form elongated left-handed helices with a very stiff backbone
structure (Adzhubei and Sternberg, 1993). The current model is able to capture the
helix conformation of poly-Proline proteins with a rise of 2.97 Å per Proline, which
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Fig. 1.3 Simulation results
for chains rich in Proline and
Glycine residues

is comparable to the 3.0 Å rise per Proline from atomistic simulations and 3.1 Å
per Proline from experimental data (Dolghih et al., 2009). The dependence of the
radius of gyration of poly-Proline proteins on the sequence length is also studied in
Fig. 1.3. It clearly shows the higher dimensions of these synthetic proteins compared
to natural proteins. It should be noticed that since Proline is considered a hydropho-
bic amino acid and the influence of solvent is not included in the present model,
the predicted gyration radius is overestimating the Rg of poly-Proline proteins in
aqueous solution.

1.4 Conclusion

In this paper, we have presented an implicit solvent, one-bead per amino-acid
coarse-grained model to study the unfolded state of proteins. To ensure that the
CG bending and torsion potential functions for bonded interactions are not biased
to any specific secondary structure, the obtained potentials were extracted from Ra-
machandran data of the coil regions of proteins. The potential functions have been
developed by accounting for the effect of neighboring residues, rendering the model
to be residue- and sequence-specific. The model has been used to study the correla-
tion between sequence composition and dimension of denatured proteins. Based on
the Proline and Glycine content of the protein sequence, an upper and lower bound
is constructed for the ensemble average Rg of denatured proteins, which is in agree-
ment with the available experimental data. The developed model sets the stage for
further developments towards the inclusion of electrostatic and hydrophobic inter-
actions to study the characteristics of natively unfolded proteins under physiological
conditions.
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Chapter 2
Modeling Collagen-Proteoglycan Structural
Interactions in the Human Cornea

Xi Cheng, Hamed Hatami-Marbini, and Peter M. Pinsky

Abstract The cornea is a supremely organized connective tissue making it ideal
for modeling and probing possible roles of collagen-PG interactions in the extra-
cellular matrix. The cornea can be viewed as a reinforced electrolyte gel involving
molecular-scale interactions between collagen fibrils, proteoglycans (PGs) and the
mobile ions in the interfibrillar space. The swelling property of the tissue cannot
be adequately predicted by Donnan theory for osmotic pressure. We propose an
alternative unit cell approach based on a thermodynamic framework that employs
a mean-field approximation for the electrostatic free energy and which accounts
for a non-uniform electrostatic potential. The model is used to show that the equi-
librium swelling pressure can be explained when the geometrical effect of elec-
trolyte exclusion due to collagen fibril volume is considered. The model is further
refined by dividing the PGs into collagen fibril coating and volumetric partitions.
The model suggests that the PG coatings overlap at low hydration and set up re-
pulsive forces that may act to maintain the collagen lattice order. Finally, we intro-
duce a molecular-level unit cell in which volumetric domains within the unit cell
are associated with the macromolecular GAGs and results from the continuum and
molecular-level models are compared.
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Fig. 2.1 Collagen-PG
arrangement in the corneal
stroma; some of the GAG
chains may bridge fibrils by
antiparallel duplexing (Scott,
1992)

2.1 Introduction

The extracellular matrix of the cornea is composed of two principal molecular com-
ponents: type I collagen in the form of 25 nm diameter fibrils and small leucine-rich
repeat proteoglycans (PGs). The corneal stroma is organized into approximately 500
lamellae (or fibers) through its thickness and within each lamella the collagen fib-
rils are maintained in almost perfect parallel arrays with a quasi-regular hexagonal
packing arrangement. The collagen is responsible for carrying the tensile forces that
are produced by the intraocular pressure. The corneal PGs consist of linear chains
of disaccharide units covalently bound to a core protein. Predominant corneal gly-
cosaminoglycan (GAG) components are dermatan sulfate (DS), chondroitin sulfate
(CS) and keratan sulfate (KS). Scott (1992) proposed that some GAGs form inter-
fibrillar bridges by duplexing and this has been supported by some evidence from
imaging (Muller et al., 2004; Lewis et al., 2010). These arrangements are illustrated
in Fig. 2.1. The DS, CS and KS disaccharide units are ionized at physiological
pH and carry two negative charges per unit. The electrostatic interaction of these
charges with ionic species gives rise to strong intermolecular forces that are respon-
sible for the tissue osmotic pressure.

The transparency of the cornea requires that the collagen fibrils be maintained in
their lattice-like arrangement. Modeling the forces of interaction between the colla-
gen fibrils and GAGs may provide insights into the mechanisms underlying corneal
transparency and is a primary goal of this work. The polyelectrolyte nature of the
corneal stroma is well illustrated by its remarkable capacity for swelling when im-
mersed in water or dilute salt solution. The tendency of the corneal stroma to swell
can be characterized by the equilibrium swelling pressure. The equilibrium swelling
pressure may be measured by compressing a piece of isolated corneal stroma in an
ionic bath solution between permeable plates until equilibrium is reached (Hedbys
and Dohlman, 1963). During the past several decades, the swelling pressure on var-
ious species have been measured experimentally (Hedbys and Dohlman, 1963; Fatt,
1968; Olsen and Sperling, 1987), and it has been observed that the swelling pressure
is highly dependent on the tissue hydration.

Several previous investigations have aimed to create theoretical models for
corneal swelling (Hart and Farrell, 1971; Hodson, 1971; Olsen and Sperling, 1987).
It has been demonstrated that Donnan theory for osmotic pressure is incapable of
fully explaining swelling pressure (Olsen and Sperling, 1987). In this work we pro-
pose a swelling pressure theory that is derived from a molecular-level description of



2 Collagen-Proteoglycan Interactions in the Cornea 13

the polyelectrolyte system that recognizes the spatial heterogeneity of charge den-
sity that exists in the tissue. A similar thermodynamic approach was employed by
Hart and Farrell (1971), but the present work uses an entirely different description
of the electrostatic free energy. The electrostatic free energy of a polyelectrolyte
found through a mean-field approximation can be expressed as a functional of the
electrostatic potential, fixed charge density and local ionic concentrations (Che et
al., 2008). The electrostatic potential is determined from solution of the Poisson-
Boltzmann equation over a unit cell and the swelling pressure is found as the gra-
dient of the free energy with respect to the swelling volume. By considering the
volumetric domains of polyelectrolyte excluded by the collagen fibrils, the model
finds excellent agreement with the experimental swelling pressure data.

In order to improve the model for low levels of hydration, we were lead by ex-
perimental observations to postulate that the stromal PGs are partitioned into two
sets. One set is associated with PGs that bridge (perhaps by duplexing of the longer
DS and CS GAGs) between neighboring collagen fibrils; these supply the charge
density responsible for the osmotic pressure at physiological hydration. A second
set produces a charge-rich coating around the collagen fibrils (perhaps formed pri-
marily by the shorter KS GAGs). At physiological hydration, the coatings do not
interact and add very little to the osmotic pressure. As hydration is reduced, the col-
lagen fibrils come into closer proximity and the coatings will overlap producing a
significant increase in local charge density and a concomitant increase in swelling
pressure and electrostatic repulsion. We conclude that the PG-coatings may rep-
resent a mechanism to order the collagen fibril lattice as required in order for the
cornea to be a good transmitter of light.

2.2 Comparison of Donnan and Poisson-Boltzmann Theories
Applied to the Cornea

2.2.1 Donnan Theory

If a polyelectrolyte phase is in equilibrium with an external bath ionic solution, os-
motic pressure will result from the polyelectrolyte fixed charges and the disparity of
ionic concentrations in the two phases. Donnan theory may be employed to model
the osmotic pressure under the assumption that the fixed charge density is spatially
invariant. Consider a sample of isolated corneal stroma placed in a NaCl bath. As-
suming ideal Donnan equilibrium, the distribution of mobile ions satisfies

C̄Na+C̄Cl− = C2
0 , (2.1)

where C̄Na+ and C̄Cl− are the mobile ion concentrations in the stroma and C0 the
ionic concentration in the bath. The GAG disaccharide units provide a fixed (non-
mobile) negative charge density ρf and electroneutrality within the polyelectrolyte
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phase requires,

C̄Na+ − C̄Cl− + ρf

F
= 0, (2.2)

where F is the Faraday constant. Equations (2.1) and (2.2) can be solved for the
equilibrium mobile ion concentration (Buschmann and Grodzinsky, 1995) giving

C̄Na+/Cl− = ∓ ρf

2F
+
√
ρ2

f

4F 2
+C2

0 . (2.3)

The osmotic pressure in the two phases is given by

Ppoly =RT (C̄Na+ − C̄Cl−), Pbath = 2RTC0, (2.4)

where R is the gas constant and T is the absolute temperature. The osmotic pressure
difference Pos between the two phases is then computed as

Pos = Ppoly − Pbath = 2RTC0

(√
ρ2

f

4F 2C2
0

+ 1 − 1

)
. (2.5)

In Fig. 2.2 we depict experimental measurements and fitting curves for the equi-
librium swelling pressure of human corneal stroma with a bath concentration of
C0 = 0.15 M as reported by Hedbys and Dohlman (1963) and Olsen and Sper-
ling (1987). Letting ρ0 represent the fixed charge density at physiological sample
thickness t0 = 0.5 mm, and letting ρf represent the charge density at tissue sample
thickness t , we find by conservation of fixed charge that ρf = ρ0(t0/t). Using this
result in Eq. (2.5), the osmotic pressure difference at thickness t may be estimated
in terms of the physiological fixed charge density ρ0. It has been shown that ρ0 de-
pends on the salt concentration in the bath through a process of ion binding. Hodson
(1971) has estimated ρ0/F for human stroma at physiological hydration and bath
ionic concentration C0 = 0.15 M to be approximately 48 mM. Values of ρ0/F for
bovine cornea have been measured at around 36 mM; see Elliott and Hodson (1998)
for a review. The osmotic pressure difference Pos based on Donnan theory Eq. (2.5)
with ρ0/F = 48 mM is shown in Fig. 2.2. The prediction agrees well with the ex-
perimental data at physiological thickness t = 0.5 mm but deviates significantly for
all other values, particularly for t < 0.5 mm. We conclude that Donnan theory is
incapable of predicting swelling pressure accurately for lower thicknesses, which
correspond to hydration levels lower than physiological.

2.2.2 Poisson-Boltzmann Theory

We now consider a thermodynamic framework for describing the swelling pressure
experiment on corneal stroma. Consider a sample of isolated corneal stroma of area
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Fig. 2.2 Swelling pressure vs. thickness by Hedbys and Dohlman (1963) and Olsen and Sper-
ling (1987), the Donnan model and the Poisson-Boltzmann (PB) model. Data plotted on the
normal axis (a) and a log-log axis (b). Fitting curve by Olsen: Ps = 7.56 × t−3.48 mmHg and
the fitting curve based on Hedbys’ data (Fatt, 1968) Ps = 1810 × exp(−H) mmHg. The hydra-
tion data from Hedbys and Dohlman (1963) is transformed to thickness by the linear relation
H = 7.00t − 0.64 (Hedbys and Mishima, 1966). Charge density for Donnan model and the PB
model is ρ0/F = 48 mM

As immersed in an ionic solution and constrained by a porous piston to a thickness t .
The total Gibbs free energy of the system is defined as

G = F + PV + PsAst, (2.6)

where F is the Helmholtz free energy, P and V are the atmosphere pressure and
total system volume, respectively, and Ps is the pressure exerted by the piston on the
sample (Katchalsky and Michaeli, 1955; Hart and Farrell, 1971). At equilibrium we
require

Ps = − 1

As

∂

∂t
(F + PV ). (2.7)

At fixed temperature T and atmosphere pressure P , the PV term may be dropped
and the swelling pressure is then expressed as

Ps = − 1

As

∂F

∂t

∣∣∣∣
T ,P

= −∂F
∂Vt

∣∣∣∣
T ,P

, (2.8)

which is simply the derivative of the Helmholtz free energy with respect to the tissue
volume Vt .

In general, the Helmholtz free energy F will have electrostatic Fel and chemo-
mechanical components Fcm (Jin and Grodzinsky, 2001). The effective electrostatic
free energy of a polyelectrolyte solution in a mean-field approximation can be ex-
pressed as a functional of the electrostatic potential ϕ and local ionic concentrations
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C1, . . . ,CM (Che et al., 2008)

Fel[ϕ,C1, . . . ,CM ] =
∫

Ω

{

−ε
2
|∇ϕ|2 + ρ(r)ϕ +RT

M∑

i=1

C∞
i

+RT
M∑

i=1

Ci
[
ln
(
Λ3NACi

)− 1
]−

M∑

i=1

μiNACi

}

dΩ,

(2.9)

where ε is the dielectric permittivity of the solution, NA is the Avogadro constant,
C∞
i andμi are the bath concentration and chemical potential of the ith ionic species,

respectively, and Λ is the thermal de Broglie wavelength. The local charge density
ρ(r) is given by

ρ(r)= ρf(r)+
M∑

i=1

FziCi(r), (2.10)

where ρf is the fixed charge density from the GAG disaccharide units and zi is the
valence number for the ith ionic species. In Eq. (2.9), the first two terms are the
internal electrostatic energy, the third term is the osmotic pressure from the mobile
ions, the fourth term constitutes the ideal gas entropy and the last term accounts for
the chemical potential. Setting the first variation of the free energy G with respect
to the concentration Ci to zero leads to

Ci(r)= C∞
i exp

(
−zi Fϕ(r)

RT

)
, (2.11)

which is the Boltzmann distribution for the concentrations at equilibrium. The vari-
ation of Fel with respect to the potential ϕ yields the Poisson equation

∇ · ε∇ϕ(r)= −ρ(r). (2.12)

The Poisson-Boltzmann equation (PBE) is obtained by combining Eqs. (2.10)–
(2.12),

−ε∇2ϕ(r)= ρf(r)+
M∑

i=1

FziC
∞
i exp

(
−zi Fϕ(r)

RT

)
. (2.13)

Substituting Eqs. (2.10), (2.11) into (2.9), the free energy at equilibrium is obtained
as

Fel[ϕ] =
∫

Ω

{

−ε
2
|∇ϕ|2 + ρfϕ −RT

M∑

j=1

C∞
j

[
exp

(
−zj Fϕ(r)

RT

)
− 1

]}

dΩ.

(2.14)
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It is remarked that this expression defines a concave functional; it has a unique
equilibrium potential ϕ at which the functional is maximized (Fogolari and Briggs,
1997).

Specializing (2.13) and (2.14) to a binary electrolyte we find:

−∇2ϕ = ρf

ε
− 2FC0

ε
sinh

(
Fϕ(r)

RT

)
, (2.15)

and

Fel =
∫

Ω

{
−ε

2
|∇ϕ|2 + ρfϕ − 2RTC0

[
cosh

(
Fϕ

RT

)
− 1

]}
dΩ. (2.16)

Returning to the equilibrium swelling pressure problem and taking (as in the Don-
nan solution) a uniform fixed charge density of ρf/F = 48 mM and bath ionic con-
centration of C0 = 0.15 M, the swelling pressure was computed using Eq. (2.8)
and the results are shown for varying sample thickness t in Fig. 2.2. The deriva-
tive of the free energy Fel with respect to t was computed using central differ-
ence. As expected for this case of uniform charge density, the results are consistent
with the Donnan prediction and confirm the thermodynamic framework provided by
Eqs. (2.8) and (2.16).

2.2.3 An Unit Cell Model Based on Collagen Fibril Volume
Exclusion

Both the Donnan and Poisson-Boltzmann (PB) theories confirm that the assumption
of a spatially uniform charge distribution results in an unsatisfactory prediction of
stromal swelling, especially for low levels of hydration. However, it is observed that
the collagen fibrils occupy approximately 30 % of the stroma by volume (Meek and
Leonard, 1993). As the tissue is compressed during the swelling pressure experi-
ment, we argue that (i) the volume occupied of the collagen fibrils is unaffected by
the change in stromal thickness, and (ii) the collagen fibrils maintain very few net
ionized groups and contribute little or nothing to the electric balance within the tis-
sue (Elliott and Hodson, 1998). Therefore, the GAG charges, which are conserved,
must be restricted to the volumetric region between the collagen fibrils. Clearly, as
the tissue is compressed, there will be a nonlinear increase in charge density due to
the geometric effect of the collagen fibril volume exclusion.

Experimental estimation of the interfibrillar spacing lc and radius of collagen
fibril rf in the human cornea suggest they lie in the ranges of 45 ∼ 60 nm and
11.5 ∼ 15.0 nm, respectively (Fratzl and Daxer, 1993; Elliott and Hodson, 1998;
Muller et al., 2004). Consider a perfect hexagonal collagen lattice with lc = 53.0 nm
and rf = 12.5 nm as shown in Fig. 2.3(a). Charge is now assumed to be uniformly
distributed in the interfibrillar regionΩs ∈R

3 only and is zero in the fibril domains.
The PB equation (2.13) was solved on a sequence of unit domains {Ωif } in which
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Fig. 2.3 (a) 2D illustration of the unit cell, charge distribution is uniform over the interstitial region
Ωs. The tissue is deformed by pressing the porous piston and the deformed unit cell is calculated
from affine mapping; (b) Swelling pressure computed by PB-unit cell model based on collagen
volume exclusion. The charge density is calibrated to be ρeff/F = 42 ∼ 55 mM. The lower and
upper bound of the ρeff are determined by fitting the result at physiological situation (t = 0.5 mm)
and the low hydration situation (t = 0.2 mm) respectively. The interfibril spacing lc = 53 nm and
the collagen radius rf = 12.5 nm

the total fixed charge Qf is conserved and the charge density computed from ρif =
Qf/V

i
f , where V if is the volume of Ωif . The results are shown in Fig. 2.3(b) and

labeled in terms of effective charge density ρeff defined by

ρeff = ρfVf

V0
, (2.17)

where V0 is the total volume of the unit cell including the fibril volume at physiolog-
ical thickness. Values of ρeff/F = 42 mM and 55 mM give best fits at physiological
and low hydration, respectively, and produce predictions that are dramatically better
than those of Donnan theory.

2.3 The Case for a PG-Coating of the Collagen Fibrils

Fratzl and Daxer (1993) describe X-ray scattering studies to measure the structural
transformation of collagen fibrils under varying hydration produced by drying the
tissue. The data strongly suggests that stromal PGs are heterogeneously distributed
in the interfibrillar space. They appear in relatively high density in the vicinity of
the fibrils where they may form a charge-rich effective PG coating surrounding each
fibril. Hodson (1971) and Twersky (1975) have, much earlier, speculated on the ex-
istence of a such a fibril coating. Fratzl and Daxer (1993) estimated the radius of
the coating as rc = 18 nm. Interestingly, they showed that the coating radius rc is
insensitive to hydration over a wide range and this suggests that the charge density
associated with the coating PGs will not change with variations in hydration. How-
ever, at low levels of hydration the coatings may overlap and interact, as described
below.



2 Collagen-Proteoglycan Interactions in the Cornea 19

Fig. 2.4 (a) 2D illustration of the coating unit cell. Charges are distributed into the coating region
Ωc and the non-coating region Ωi\Ωc. (b) Swelling pressure computed by the coating model
under overall charge density ρeff/F = 55 mM. The coating radius is set to be 18 nm, and the charge
fraction λ for the bridging GAGs varies from 0.0 to 0.6. The optimal fitting occurs at λ= 0.6

We propose a coating model in which the total unit cell charge Q is partitioned
into two GAG-based classes: one based on charge derived from long interfibrillar
bridging GAGs and one based on charge derived from short GAGs that form the
coating. As in the previous model, we exclude the volume of the collagen fibrils in
our analysis. A sequence of unit cell domains is defined by symmetry of the lattice
and is denoted Ωi with volume V i . Here i is a configuration index corresponding
to tissue thickness (and thus hydration). The coating subregion of the unit cell is
denoted Ωc and has volume Vc, which is independent of V i in accordance with
the findings of Fratzl and Daxer (1993). The setup is shown in Fig. 2.4(a). Letting
λ ∈ [0,1] denote the charge fraction parameter, the unit cell has two charge densities
computed as follows

ρis = λ Q
V i

(2.18)

over Ωi , and

ρc = (1 − λ)Q
Vc

(2.19)

over Ωc. Clearly, the total charge in the unit cell Ωi is conserved. Further, the coat-
ing charge density ρc is invariant with respect to hydration (i.e. index i). If the
coating subdomains overlap at low thickness values, we assume that the charge den-
sity is additive in the overlap region in order to conserve total charge. The boundary
value problem to be solved on each unit cell domain Ωi is then

−∇2ϕ = ρ

ε
− 2FC0

ε
sinh

(
Fϕ

RT

)
, in Ωi, (2.20)
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with the boundary conditions:
[|ϕ|]= 0,

[|∇ϕ · n|]= 0, on Γinner, (2.21)

∇ϕ · n = 0, on Γouter, (2.22)

and where Γinner and Γouter denote the inner and outer boundaries of the unit cell,
respectively. The electrostatic free energy takes the form

Fel =
∫

Ωi

[
−ε

2
|∇ϕ|2 + ρϕ − 2RTC0

(
cosh

(
Fϕ

RT

)
− 1

)]
dΩi, (2.23)

where the charge density distribution ρ in Eqs. (2.20) and (2.23) is given by

ρ(i) =

⎧
⎪⎨

⎪⎩

ρis, in Ωi\Ωc,

ρis + ρc, on Ωc,

2(ρis + ρc), on Ωc-c.

(2.24)

Here Ωc-c refers to the subdomain of Ωc resulting from the possible geometric
intersection of coating domains as Ωi is mapped to correspond to lower thickness
values with increasing index i.

In this model, the coating radius is taken to be rc = 18.0 nm. The effective charge
density is again defined by ρeff =Q/V0 and used for reporting results. The influ-
ence of the charge fraction λ on the swelling pressure is shown in Fig. 2.4 at the
physiologically plausible ρeff/F = 55 nm. At λ = 0, all charge is concentrated in
the coatings and the swelling pressure is zero until the coatings begin to interact at
around t = 0.3 mm. As λ is increased the swelling pressure increases monotonically
toward the experimental curve. At a value of λ= 0.6, the computed swelling pres-
sure finds excellent agreement with the experimental curve and further improves on
the result of the previous section.

2.4 Molecular-Level Unit Cell Model

Here we present a molecular-level unit cell model which explicitly considers the
GAG chains that are bridging neighboring collagen fibrils. In this model, the bridg-
ing GAGs domains are approximated by an effective cylindrical volume (Hart and
Farrell, 1971; Jin and Grodzinsky, 2001). The non-bridging GAGs that constitute the
collagen fibril coating are modeled, as above, with a continuum description of the
charge density. The charge density within the cylindrical GAG domain is denoted
ρg and is determined by three parameters: the half length of the GAG disaccharide
unit b= 0.64 nm (Jin and Grodzinsky, 2001), the cylinder radius rg and a molecular
ratio factor α = Lc/Ld, where Lc is the contour length of the GAG chains and Ld
is end-to-end distance. Then ρg may be computed from

ρg = αe

πbr2
g
, (2.25)
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Fig. 2.5 Illustration of the molecular-level unit cell. The collagen fibrils are connected by the
GAGs via next-nearest neighbor connectivity. The subdomains are:Ωc ∩Ωg—the overlapping do-
main of the coating and interconnecting GAGs; Ωg—the region occupied only by interconnecting
GAGs; Ωc—the region occupied only by the coating GAGs

where e is the unit charge supplied by the disaccharide unit. The uniform charge
density for the coating GAGs is

ρc = (1 − λ)ρeffAh

Vc
, (2.26)

where h is the length and Ah the volume of the unit cell, respectively. The bridg-
ing GAGs repeat along the axis of collagen fibrils with period h, which may be
determined using the conservation of total charge

ρeffAhλ=
∑Ngag
i=1 l

i
gαe

b
, (2.27)

where λ is the charge fraction for the bridging GAGs and
∑Ngag
i=1 l

i
g is the total length

of the GAG rods over the unit cell. As an example, we employ a next-nearest neigh-
bor topology for the interconnecting GAGs proposed by Muller et al. (2004). The
3-D unit cell model has uniform charge density ρc in the coating domain and ρg in
the bridging GAG cylinders (Fig. 2.5).

The Poisson-Boltzmann equation is solved for the electrostatic potential ϕ over
the cell subdomains with boundary conditions as described by Eqs. (2.21) and (2.22)
and with fixed charge density ρf prescribed as,

ρf =

⎧
⎪⎨

⎪⎩

ρc on Ωc,

ρg on Ωg,

ρc + ρg on Ωc ∩Ωg,

(2.28)

and ρf = 0 elsewhere. Charge conservation is applied to the bridging and coatings
GAGs domains independently. As the unit cell is deformed, the charge density ρg

changes due to the cylinder length change. The coating charge density ρc will not
change, as discussed above. For simplicity, the GAG radius rg is invariant during
cell deformation.



22 X. Cheng et al.

Fig. 2.6 Swelling pressure
vs. corneal thickness around
the physiological condition
(t = 0.5 mm) by the
molecular-level unit cell
model. The average charge
density ρeff/F = 48 mM and
the radius of the GAGs rod
varies from 3 to 5 nm, the
ratio α = 4.0 and charge
fraction λ= 0.5

Figure 2.6 shows the computed swelling pressure versus the tissue thickness.
The cell effective charge density is taken to be ρeff/F = 48 mM. The interfibrillar
spacing lc = 53 nm, radius of the collagen fibril rc = 12.5 nm, and the coating radius
rc = 18 nm have the same values used in the previous models. The molecular length
ratio is taken to be α = 4.0, and the charge partition fraction λ = 0.5. We have
studied the model under GAGs radii varying from 3 to 5 nm. The sensitivity of the
results with respect to rg is presented in Fig. 2.6. An increase in the effective GAG
radius leads to a decrease in the computed swelling pressure, as expected, because
the charge density ρg in the GAG cylinders drops. From Fig. 2.6, we observe that
rg = 3 ∼ 4 nm gives a result that matches the experimental curve well.

2.5 Discussion

In this work we have compared predictions for equilibrium swelling pressure of the
human stroma using three models. Each model provides a representation of the elec-
trostatic forces arising from the charges associated with the linear GAG chains of
the tissue PGs and with the mobile ions in the polyelectrolyte phase. The first to be
considered was a continuum model based on Donnan equilibrium which requires
the electrostatic potential to be spatially invariant. This allows no representation of
molecular-level or microstructural-level information. This model was based on a
uniform fixed charge density that has been reported from independent experimental
measurement. The model equates the Donnan osmotic pressure difference between
the polyelectrolyte phase and bath with the swelling pressure. The prediction for
equilibrium swelling pressure at physiological hydration is reasonable but the ap-
proach severely underestimates swelling pressure at lower hydration levels.

The second model is also a continuum model. It is a unit cell approach and based
on a thermodynamic derivation for the swelling pressure in which the swelling pres-
sure emerges as the derivative of the electrostatic free energy with respect to the
swelling volume. In this model, the electrostatic potential is found from the Poisson-
Boltzmann equation. This model contains no molecular-level information but does
describe the microstructure of the tissue. In particular, it accounts for the polyelec-
trolyte phase being excluded from the volume occupied by collagen fibrils. As the
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hydration reduces, the volume containing the fixed charges decreases due to a geo-
metrical effect. This model provides an accurate swelling pressure prediction over
all ranges of hydration. The model is further improved by partitioning the charge
into two GAG-based groups: one associated with a charge-dense coating of the
collagen fibrils, in accordance with experimental evidence, and one dispersed over
the interfibrillar volume and associated with GAGs which bridge fibrils, possibly
by duplexing. This refinement gives a surprisingly accurate prediction for swelling
pressure at λ = 0.6, when 40 % of the charge is in the coating region. This result
implies that around physiological hydration (t = 0.5 mm), the swelling pressure pri-
marily results from the bridging GAGs in the interfibrillar region. As the tissue is
compressed toward t ∼ 0.25 nm, the coatings start to play a role by mutually inter-
acting and producing a local increase in charge density and a concomitant increase
in swelling pressure.

The third model employs a molecular-level unit cell in which volumetric do-
mains within the unit cell are associated with the macromolecular GAGs. The model
is a hybrid approach in that it represents the fibril coating as a charge-dense re-
gion around the fibrils using a continuum description. The approach accounts for
the spatially varying electrostatic potential between the explicit GAG domains and
the mobile ions, again using the Poisson-Boltzmann equation. The results of this
model applied to the case of next-nearest neighbor GAG connectivity, as proposed
by Muller et al. (2004), are also quite accurate. This approach does introduce ad-
ditional variables that are not readily estimated, including the GAG length ratio α,
which describes the waviness of the GAG chains, and the radius of the effective
GAG cylinder rg. However, the length ratio α for the bridging GAGs is also a rel-
evant parameter for estimating the entropic elasticity of the polymer chain using a
theory such as the wormlike chain model.

In the present study, we have addressed the swelling problem in terms of the
electrostatic component of the free energy alone. However, the chemomechanical
free energy, which includes the entropic elasticity of the GAGs and the molecular
mixing energy, will certainly have some influence on the swelling pressure (Hart
and Farrell, 1971; Jin and Grodzinsky, 2001). Indeed, the GAG entropic elasticity
will produce expansion-resisting forces that will contribute a ‘negative’ swelling
pressure component (Hart and Farrell, 1971). These non-electrostatic components
will be the subject of a future study.
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Chapter 3
Simulations of Cell Behavior on Substrates
of Variegated Stiffness and Architecture

Amit Pathak, Vikram S. Deshpande, Anthony G. Evans,
and Robert M. McMeeking

Abstract Several experimental studies have shown that cells adhered to stiffer sub-
strates exert higher traction forces and simultaneously form more prominent focal
adhesions and stress fibers. We employ a biochemomechanical model implemented
in a finite element framework to simulate cell response on substrates of variegated
stiffness and architecture. We perform simulations to generate stress fiber and focal
adhesion distributions, and predict the values of forces generated by cells adhered on
flat gels and on beds of micro-posts of variegated stiffness. We also demonstrate that
our predictions agree well with the available experimental measurements obtained
with the same cell-substrate setting. For a given, calibrated set of model parame-
ters, our traction force predictions for cells adhered to post-beds of varying stiffness
match with measurements from Saez et al. (Biophys. J. 89:L52–L54, 2005). Actin
and focal adhesion distributions obtained from our simulations agree well with the
patterns observed in the results of various visualization experiments available in the
literature. Taken together, these findings suggest that our model captures well the
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intricate coupling mechanisms arising from cell-substrate interaction and intracel-
lular machinery.

3.1 Introduction

Living cells interact with their environments over a wide range of stiffness, from
soft skin through stiffer muscle to harder bone substrates. In such cellular inter-
actions, adhesion of cells to substrates or to an extracellular matrix (ECM) is a
critical feature in many cellular functions, ranging from migration and proliferation
to apoptosis (Boudreau and Bissell, 1998; Schwartz and Ginsberg, 2002). Exper-
imental studies have now shown that the mechanical compliance of the ECM or
the substrate influences cell viability, differentiation and motility (Lo et al., 2000;
Discher et al., 2005; Yeung et al., 2005). It is now widely accepted that cells ex-
ert a higher force, form larger focal adhesions and develop thicker stress fibers on
stiffer substrates (Saez et al., 2005; Yeung et al., 2005). The relationship between
stiffness and intracellular machinery regulates many important functions such as
non-viral gene delivery (Kong et al., 2005) and growth of cancer cells (Paszek et
al., 2005). Evidence suggests that increased rigidity may trigger malignant transfor-
mation (Paszek et al., 2005), attributable to increased cytoskeletal tension, integrin
clustering and focal adhesion formation.

The experimental studies by Saez et al. (2005) and Yeung et al. (2005) clearly
demonstrate a direct dependence of cell behavior on substrate stiffness. In these
studies, cellular activity, measured in terms of the average force exerted by the cell
on the substrate, the size of focal adhesions, and the concentration of stress fibers,
rose to greater levels on stiffer substrates. In addition, the experimental studies of
Tan et al. (2003) and Chen et al. (2003) provide further data regarding the shape and
size of cell-substrate adhesions and the scaling of forces relative to the spread area
of the cell.

A recently developed biochemomechanical model by Deshpande et al. (2006,
2007, 2008) characterizes the dynamically contractile stress fiber machinery made
of actin-myosin filaments, giving rise to intracellular force generation, as well as
focal adhesion assembly, the latter based on thermodynamic equilibrium between
integrins in their low and high affinity states. This model has been successfully
employed in simulations of experiments, including cell adhesion on V, T, Y and U-
shaped patterned substrates (Pathak et al., 2008), and the formation of stress fibers
upon cyclic stretching (Wei et al., 2008). We utilize a similar approach to simulate
cell behavior on flat gel substrates, and on post-beds of variegated stiffness. While
post-beds offer direct and readily quantifiable insights into the shapes and sizes of
adhesions and the forces applied by a contractile cell, a flat substrate is relevant
due to its presence in living organisms and its use for in vitro studies. Here, we
present simulations for both flat substrates and post-beds, and predict trends in focal
adhesion distribution, tractions and stress fiber distribution common to both types
of substrate architecture.
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3.2 A Biochemomechanical Model for the Cell

We envisage a well-spread, approximately two-dimensional cell, thickness b, lying
on a substrate in the x1–x2 plane. The cell model comprises two major elements:
(i) a constitutive model for the formation of stress fibers, their contractility and their
spontaneous attachment to cell adhesion complexes; (ii) a cell adhesion model caus-
ing the cell to adhere to a substrate. In (i), following an activation signal, the model
predicts the development of contractile, actin-myosin stress fibers by polymeriza-
tion, subject to their spontaneous connection to transmembrane adhesions, and con-
sistent with traction or displacement conditions imposed by these adhesions at the
interface between the cell and its substrate. The outputs of this feature of the model
are the spatial (position xi ) and temporal (time t) distributions of the stress fiber con-
centration, η(xi, φ, t) and the Cauchy stresses Σij (xi, t) generated by the resulting
stress fiber contractility, where φ is the angle of orientation of a given family of
stress fibers. In (ii), the stresses generated by the stress fiber model apply tractions
to the focal adhesions to which the stress fibers are attached, and, thereby, control
the spatial and temporal development of such adhesions, as parameterized through
the high affinity integrin concentration on the cell membrane at the interface with
the substrate. Such high affinity integrins are the transmembrane proteins, bound to
stress fibers in the cell and substrate ligands outside it, that are the most important
molecules forming the adhesion between the cell cytoskeleton and the substrate to
which it is attached. Note that there are two main sources of mechano-sensitivity
in the model as described below; tension in the stress fibers tends to inhibit their
depolymerization, and tractions transmitted through adhesion complexes stabilizes
them, encouraging formation of transmembrane integrins bound to ligands on the
substrate.

The mechanical equilibrium equations for the cell are written as

b

(
∂Σ11

∂x1
+ ∂Σ12

∂x2

)
= ξHF1, b

(
∂Σ12

∂x1
+ ∂Σ22

∂x2

)
= ξHF2, (3.1)

where ξH (xi, t), the concentration of high affinity, bound integrins, is their number
per unit current area of the cell membrane, and Fi is the force per high affinity
integrin applied by the cell to the substrate.

3.2.1 Stress Fiber Formation and Contractility

Stress fiber formation is initiated by a nervous impulse or a biochemical or mechan-
ical perturbation that triggers a signaling cascade within the cell. We model this
signal, C (which may be thought of as the concentration of Ca2+) as a sudden rise
to unity followed by an exponential decay, given by

C = exp(−ti/θ), (3.2)
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where θ is the decay constant and ti is the time after the onset of the most recent
activation signal. We treat the signal as uniform throughout the cell, on the basis
that diffusion of the signaling ions and proteins in the cytosol is fast enough to be
non-rate limiting, as determined by Pathak et al. (2011).

The formation of stress fibers is parameterized by an activation level, desig-
nated η (0 ≤ η ≤ 1), defined as the ratio of the concentration of the polymerized
actin and phosphorylated myosin within a stress fiber bundle to the maximum con-
centrations permitted by the bio-chemistry. The evolution of the stress fibers at an
angle φ to the x1 axis is characterized by a first-order kinetic equation

η̇(φ)= [1 − η(φ)]Ckf
θ

−
(

1 − σ(φ)

σ0(φ)

)
η(φ)

kb

θ
, (3.3)

where the overdot denotes time-differentiation at a fixed material point in the cell. In
this formula, σ(φ) is the tension in the fiber bundle at orientation φ, while σ0(φ)=
ησmax is the corresponding isometric stress at activation level η, with σmax being
the isometric stress at full activation (η = 1). The dimensionless constants kf and
kb govern the rates of stress fiber formation and dissociation, respectively. Note that
mechano-sensitivity is present in the depolymerization term in (1), since a tensile
stress σ will reduce the rate of dissociation of stress fibers; furthermore, a stress σ
equal to σ0 eliminates stress fiber depolymerization completely.

The stress σ in stress fibers is related to the fiber contraction/extension rate ε̇
(positive during extension) by the cross-bridge cycling between the actin and
myosin filaments. The simplified (but adequate) version of the Hill-like equation
employed to model these dynamics is specified as

σ

σ0
=

⎧
⎪⎪⎨

⎪⎪⎩

0 ε̇
ε̇0
<− η

kv
,

1 + kv
η
( ε̇
ε̇0
) − η

kv
≤ ε̇
ε̇0

≤ 0,

1 ε̇
ε̇0
> 0,

(3.4)

where the rate sensitivity coefficient kv is the fractional reduction in fiber stress
upon increasing the shortening rate by ε̇. A 2D constitutive description for the stress
fiber assembly uses the axial fiber strain rate ε̇ at angle φ related to the strain rate
ε̇ij by

ε̇ = ε̇11 cos2 φ + ε̇22 sin2 φ + ε̇12 sin 2φ. (3.5)

The average stress generated by the fibers follows from a homogenization analysis
as

(
S11 S12

S21 S22

)
= 1

π

∫ π/2

−π/2

(
σ(θ) cos2 φ

σ(θ)
2 sin 2φ

σ(θ)
2 sin 2φ σ(θ) sin2 φ

)

dφ. (3.6)

The constitutive description for the cell is completed by including contributions
from passive elasticity, attributed to intermediate filaments of the cytoskeleton at-
tached to the nuclear and plasma membranes. These act in parallel with the active
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elements, whereupon additive decomposition gives the total stress:

Σij = Sij +
[

Ecνc

(1 − 2νc)(1 + νc)εkkδij + Ec

(1 + νc)εij
]
, (3.7)

where δij is the Kronecker delta and (for a linear response) Ec is Young’s modulus
for the cell and νc the Poisson ratio. The above equations are valid in a small or
infinitesimal deformation setting; readers are referred to Deshpande et al. (2006,
2007) for the finite strain and three-dimensional generalization.

3.2.2 Focal Adhesion Model

A viable model for the formation and growth of focal adhesions must account for
the interaction between adhesions and cell contractility. The Deshpande et al. (2008)
model relies on the existence of two conformational states for the integrins: low
and high affinity. Only the high affinity integrins interact with ligand molecules on
the substrate to form adhesions. The low affinity integrins remain unbound, and
mobile on the membrane. The chemical potential of the low affinity integrins at
concentration ξL is dependent on their internal energy and configurational entropy
as (Gaskell, 1973)

χL = μL + kT ln(ξL/ξR), (3.8)

where μL is their reference chemical potential, ξR is a reference concentration, k is
the Boltzmann constant and T the absolute temperature.

For geometrical reasons, the ‘straight’ architecture of the high affinity integrins
permits the interaction of its receptor with ligand molecules on a substrate. Thus,
the high affinity integrins have additional contributions to their chemical potential,
involving the energy stored due to the stretching of the integrin-ligand complexes
and a term related to the mechanical work done by the stress fibers. The ensuing
potential is

χH = μH + kT ln(ξH /ξR)+Φ(Δi)− FiΔi, (3.9)

whereμH is the reference chemical potential for high affinity integrins andΦ(Δi) is
the stretch energy stored in the integrin-ligand complex. The ‘straight,’ high affinity
state of the integrins is less stable than the ‘bent’ or low affinity state (McCleverty
and Liddington, 2003) so that the high affinity state has the higher reference chem-
ical potential (μH > μL). The −FiΔi term in Eq. (3.9) is the mechanical work
representing the change in free energy due to the stretch Δi of the integrin-ligand
complex acted upon by the force Fi . In molecular terms this implies that the stretch
of the ligand-integrin complex can stabilize the adhesion by lowering the free en-
ergy ξH of bound integrins. The force Fi is related to the stretch Δi and the stored
energy Φ via the relation

Fi = ∂Φ/∂Δi. (3.10)
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The work term −FiΔi term in Eq. (3.9) has been identified previously by Shemesh
et al. (2005) as an important constituent of the thermodynamic state of focal adhe-
sions.

The kinetics governing the diffusion of low affinity integrins in the cell mem-
brane is typically fast compared to all other time-scales involved (Deshpande et al.,
2008; Pathak et al., 2011). Consequently, we neglect the diffusion of the low affinity
integrins and the kinetics between their low and high affinity states at any location
on the plasma membrane. These simplifying assumptions imply that the concentra-
tions are given by thermodynamic equilibrium between the low and high affinity
binders, i.e. by

χH = χL, (3.11)

which specifies that the integrin concentrations are related to the force Fi via

ξH = ξ0

exp(μH−μL+Φ−FiΔi
kT

)+ 1
, (3.12)

ξL = ξ0

exp(−μH−μL+Φ−FiΔi
kT

)+ 1
, (3.13)

respectively, where ξ0 = ξH + ξL is the fixed, total concentration of integrins. It
is evident that with decreasing Φ − FiΔi (which typically occurs when the tensile
force Fi increases), the concentration ξH of the high affinity integrins increases due
to the conversion of the low affinity integrins to their high affinity state.

To complete the thermodynamic representation it remains to specify the form of
the energyΦ(Δi) and the associated force Fi in the integrin-ligand complex. Rather
than employing a complex interaction, such as the Lennard-Jones (1931) potential,
we utilize the simplest functional form. This is a piecewise quadratic potential ex-
pressed as (Deshpande et al., 2008)

Φ =

⎧
⎪⎨

⎪⎩

(1/2)κsΔ2
e Δe ≤Δn,

−κsΔ2
n + 2κsΔnΔe − (1/2)κsΔ2

e Δn <Δe ≤ 2Δn,

κsΔ
2
n Δe > 2Δn,

(3.14)

where γ ≡Φ(Δi → ∞)= κsΔ2
n is the surface energy due to high affinity integrins,

the effective stretch Δ2
e = Δ2

1 + Δ2
2, and κs is the stiffness of the integrin-ligand

complex. The maximum force κsΔn occurs at a stretch Δe = Δn. We relate the
evolution of the stretch Δi to the displacement ui of the material point on the cell
membrane in contact with the ligand patch on the substrate as (Deshpande et al.,
2008)

Δ̇i =
{
u̇i , Δe ≤Δn or ( ∂Φ

∂Δe
Δ̇e < 0),

0, otherwise,
(3.15)
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where we assume a rigid substrate (see Deshpande et al., 2008, for the generalization
to a deformable substrate as used here).

Those integrins not in contact with the ligand patch are assumed to be isolated.
Namely, they are unable to interact with any ligand molecules. Accordingly, we
assume that these integrins are unbounded with Δi → ∞ such that the interaction
force Fi = 0 and energy Φ = γ . Their concentrations are then given by Eqs. (3.12)
and (3.13) with such values inserted.

3.2.3 Finite Element Framework

The contractility model for the cell behavior is implemented in the ABAQUS fi-
nite element model using a user UMAT subroutine that calculates the material re-
sponse of the cell in terms of actin polymerization and force generation. The in-
terfacial behavior between the cell and a substrate is implemented via the UIN-
TER subroutine, responsible for force equilibrium of the entire cell-substrate sys-
tem and focal adhesion development at the cell-substrate interface. Parameters for
the contractility and focal adhesion models are calibrated using the cell-on-posts
simulation presented in Sect. 3.4. Based on this calibration study the following ref-
erence material parameters are chosen, with T = 310 K. The modulus Ec = 0.9 kPa
and the Poisson ratio νc = 0.3. The reaction rate constants are kf = 10, kb = 1,
kv = 6 with ε̇0 = 3.0 × 10−3 s−1, while the maximum tension exerted by the stress
fibers is σmax = 15 kPa. For the focal adhesion model, the total concentration ξo is
taken to be 5000 integrins/µm2, and the difference in the reference chemical poten-
tials is taken as μH − μL = 5 kT. We choose an integrin-ligand complex stiffness
κs = 0.015 nNm−1, and the stretch at maximum force Δn = 130 nm, giving a bond
strength ∼2 pN. Throughout the simulations presented in this article these parame-
ters are kept constant and only the substrate properties are varied.

3.2.4 Correlation Between Model Parameters and Experimental
Results

Focal adhesions are imaged in experiments by staining for the protein vinculin,
which directly correlates to the concentration ξH of the high affinity integrins. The
corresponding characterizing parameter for the stress fiber distributions is not cho-
sen so straightforwardly. Most techniques only image the dominant stress fibers.
The very fine mesh-work of actin filaments is not visible when standard epifluores-
cence or confocal microscopes are used. Thus, to correlate the observations with the
predictions we define a circular variance Γ = 1 − (η̄/ηmax), used by Pathak et al.
(2008), that provides an estimate of how tightly the stress fibers are clustered around
a particular orientation. Here ηmax is the maximum polymerization level, which oc-
curs at orientation φs , while η̄ is an average value defined as η̄ ≡ 1/π

∫ π/2
−π/2 ηdφ.
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The value of Γ varies from 0 to 1, corresponding to perfectly uniform and totally
aligned distributions, respectively.

3.3 Modeling Cell Behavior on Flat Substrates of Variegated
Stiffness

We first investigate the cell-substrate interaction where a single cell is adhered to a
flat surface. In our simulations, we utilize isotropic material properties for the flat
substrate on which the cell attaches and forms focal adhesions. The stiffness of the
substrate is prescribed by its Young’s modulus.

3.3.1 Finite Element Implementation

The cell behavior is investigated in a finite strain setting (i.e. the effects of geometry
changes on the momentum balance and constitutive behavior through material rota-
tions are taken into account). We implement a 3D model of the gel using 8-noded
linear brick elements, and a cell composed of membrane elements of unit thickness.
We choose a circular cross-section for both the gel and the cell to obviate any geo-
metrical irregularities in the simulations. The diameter of the cell is 34 µm. The gel
diameter and thickness are taken to be approximately 350 µm to emulate the exper-
iments where a cell is laid on a relatively thick gel substrate. Simulations based on
the chosen geometry show that the reaction forces in the gel substrate are negligible
away from the cell; thus, the chosen setup behaves like a cell lying on an infinitely
thick gel substrate.

In each simulation, we start with a quiescent, stress free cell, having no stress
fibers and a negligible quantity of adhesions (there exist a few that keep the cell
located in place on the gel, consistent with Eqs. (3.12) and (3.13)). To commence
the simulation, we turn on the signal in Eq. (3.2) at time t = 0, which has the effect
of causing the formation of stress fibers and focal adhesions. Progressive polymer-
ization and depolymerization of stress fibers, the growth of focal adhesions, and the
generation of contractile stress take place within the cell. This process is continued
in the simulation until a steady state is reached, with a stable configuration of stress
fibers, mature focal adhesions, and a constant stress at any given location in the cell.

3.3.2 Simulation Results

We vary the stiffness of the gel, characterized by its Young’s modulus E from 2 to
200 kPa and record the cell behavior. We calculate the focal adhesion distribution as
the normalized concentration ξH /ξo of the high affinity integrins at each node, i.e. a
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Fig. 3.1 Steady state focal
adhesion distributions for a
circular cell adhered to a flat
gel substrate of Young’s
moduli varying from 2 to
200 kPa, where R is the
radius of the cell

focal adhesion is taken as a region where ξH /ξo is high. The results are presented in
Fig. 3.1, where axial symmetry permits the distributions to be plotted versus radial
position. We find that on a relatively soft gel of E = 2 kPa, the cell does not develop
prominent focal adhesions. However, on the stiffer gels focal adhesions develop to
a much higher degree with their highest concentration at the periphery. The plot in
Fig. 3.1 demonstrates that cells form larger focal adhesions on stiffer substrates, in
qualitative agreement with many experimental studies, including that by Saez et al.
(2005). To further elucidate this point we plot the cell total focal adhesion fraction
ξT in steady state versus the stiffness of the substrate E in Fig. 3.2(a). Here, the
cell total focal adhesion fraction ξT is calculated by integrating the concentration
ξH over the entire cell area and dividing the result by the total number of integrins
ξoA on the cell membrane, where A is the area of the cell. As a result, ξT is the
fraction of all integrins on the cell membrane that are in the high affinity state, and
thus in focal adhesions. As expected, ξT increases for stiffer substrates, but reaches
an asymptote at approximately E = 50 kPa. Any further rise in stiffness beyond this
level does not change the overall focal adhesion distribution, a trend also apparent
in Fig. 3.1.

We compute the magnitude of the cell traction applied to the substrate as
ξH (F

2
1 + F 2

2 )
1/2, and integrate this over the interface between the cell membrane

and the gel to obtain a total force magnitude FT applied by the cell to the substrate
(we note here to avoid confusion that the total force vector applied by the cell to the
gel is zero, but view the parameter FT as a useful gauge of the intensity of force gen-
eration associated with the contractile machinery of the cell). We find that the total
force FT increases as the substrate stiffness E is increased, as shown in Fig. 3.2(b),
but reaches an asymptote beyond E = 50 kPa. In addition, we also establish a linear
correlation between focal adhesion assembly and force generation by plotting FT
versus ξT (not shown).
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Fig. 3.2 (a) Cell total focal adhesion fraction FT and (b) total force FT exerted by a cell adhered
to a flat gel substrate in steady state, where Young’s modulus E of the gel is varied from 2 to
200 kPa

We note that the total force FT applied by the cell to the gel is also an indicator
of the degree of stress fiber development. Although we do not plot the results, we
can confirm that in our simulations, cells on stiffer gels have higher average concen-
trations of stress fibers compared to cells on more compliant gels. Consistent with
the trends in Figs. 3.1 and 3.2, the average concentration of stress fibers in a cell
reaches an asymptote at a gel modulus of approximately 50 kPa.

3.4 Models of Cell Behavior on Micro-Posts

The distribution of traction forces exerted by a cell on its adhered substrate has been
measured by seeding cells on a bed of micro-posts and determining the independent
deflections of the posts (Tan et al., 2003; Saez et al., 2005). The isolated islands
of cell-substrate interaction on post tops allow discrete measurement of tractions
forces, and the size and shape of focal adhesions. In the experiments of Saez et al.
(2005), the stiffness of the posts is varied and the average force per post Favg exerted
by the cell is recorded. This quantitative study demonstrates that the average force
per post increases as the post stiffness is increased regardless of post-bed geometry
or cell area. We use these measurements to test our model, and, as noted above, to
calibrate it.

On top of the posts, the cell forms adhesions; the studies by Tan et al. (2003) and
Chen et al. (2003) find that (a) focal adhesions, measured by vinculin staining, on
top of posts near the edge of the cell are the largest, (b) posts interior to the cell have
negligible focal adhesions, and (c) the focal adhesion distribution forms a horseshoe
shape around the top perimeter of the posts. In addition, Tan et al. (2003) found that
Favg increases with the size of a cell, a behavior that can be rationalized by recog-
nition that a larger cell pulls on more posts, so experiencing a stiffer environment.
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3.4.1 Finite Element Setup for Cells on Posts

We use square cells having various areas, and model the posts as rigid circular discs
of radius a = 1 µm constrained to move in the x1–x2 plane. The displacement di of
the discs is constrained by a spring of stiffness k (SPRING1 option in ABAQUS)
such that the force Pi applied by the cell is Pi = kdi . We implement the adhesion
between the cell and the disc surfaces by employing the user-defined interface (UIN-
TER) option in ABAQUS, as before. Adhesions are allowed to form only where the
cell is in contact with the discs. We keep the post area fraction, defined as the ratio
of total surface area of the post-tops in contact with the cell to the total cell area, at
approximately 25 % to match the characteristics of the post-bed used by Saez et al.
(2005).

As in the simulations for cells on flat gel substrates, we commence with stress
free, quiescent cells having neither stress fibers nor significant adhesions, and initi-
ate the computation with a single signal. After transient behavior, a steady state sets
in, with a constant stress state and stress fiber concentration and distribution at any
point in the cell, a constant focal adhesion concentration at any point on the top of a
post, and a constant deflection of the top of each post.

3.4.2 Simulation Results and Discussion

We first address simulations for a square cell of edge length L= 30 µm that covers
an 8 × 8 post array.

3.4.2.1 Focal Adhesion and Stress Fiber Distribution

We consider first highly compliant posts having a spring constant k = 2 nN/µm. As
shown in Fig. 3.3(a), a plot of the concentration of high affinity integrins in steady
state, focal adhesions form a circular ring on each post with little polarization, and
with relatively low densities of high affinity integrins. We interpret this to mean that
the size of focal adhesions on these posts is small, even though they completely
surround the tops of the posts. We implicate the very low stiffness of the posts
used in this case for this behavior. Such compliant posts offer little resistance to
stress fiber contractility, obviating the generation of tension in the stress fibers and
allowing much depolymerization. The resulting lack of intracellular machinery in
steady state is evident in the low stress fiber concentrations observed for this case,
and in the lack of curvature along the edge of the cell, as depicted in Fig. 3.3(a). In
Fig. 3.4(a) we show the distribution of stress fibers for this case, characterized by the
parameter Γ . A modest degree of alignment of stress fibers is evident in this figure,
but the significance of this is reduced by the fact that the stress fiber concentration
at each point in the cell is relatively low. We note that each post top is interacting
individually with the cell region that surrounds it, and there is little mechanical
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Fig. 3.3 Contour plots of focal adhesion concentration, defined by the quantity ξH /ξo , for a cell
adhered in steady state to a post-bed with post stiffness (a) k = 2 nN/µm, (b) k = 10 nN/µm,
(c) k = 100 nN/µm, and (d) k = 500 nN/µm. Only quarter segments of the square cells are shown.
(e) Focal adhesion distributions on post tops from the experiments of Chen et al. (2003) and Tan et
al. (2003)

communication among posts and between different locations in the cell. This feature
explains the lack of polarization of the focal adhesions into a horseshoe shape on
the post tops. The shape of the focal adhesion rings on the post tops and a lack
of overall contractility in these simulations matches the experimental observations
of Chen et al. (2003), where focal adhesions form uniformly in a ring shape on a
circular substrate upon pharmacological inhibition of actomyosin contractility.

We next consider posts having a stiffness k = 10 nN/µm. Such posts are suf-
ficiently stiff that the resistance they offer to cell contractility inhibits the rate of
depolymerization of stress fibers, and allows the generation of higher contractile
stress. As a result, the tractions applied to high affinity integrins are high enough to
stabilize them, and significant focal adhesion form, as shown in Fig. 3.3(b). Note
that the posts in the interior of the cell do not have significant focal adhesions, while
posts near the cell perimeter have larger focal adhesions in a horseshoe shape with
their open side directed towards the cell center, as in the experimental results of
Chen et al. (2003), shown in Fig. 3.3(e). In these experiments, chemically boosted
intracellular contractile activity causes significant stress in the cell, responsible for
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Fig. 3.4 Contour plots of the distribution of stress fiber orientations, characterized by the quan-
tity Γ , for a cell in steady state adhered to a post-bed with post stiffness (a) k = 2 nN/µm,
(b) k = 10 nN/µm, (c) k = 100 nN/µm, and (d) k = 500 nN/µm. Only quarter segments of the
square cells are shown

higher focal adhesion densities near the cell periphery and the polarized horseshoe
shape on individual posts. The fact that there is a significant density of contrac-
tile stress fibers is reflected in the curvature of the cell edge visible in Fig. 3.3(b).
The heterogeneous nature of the cell response is more pronounced in this case than
for the more compliant posts, evidenced by the degree of alignment of stress fibers
shown in Fig. 3.4(b). The distribution of stress fiber orientations is almost uniform
at the center of the cell, whereas they are highly aligned along the cell edge. This
and other features visible in Figs. 3.3(b) and 3.4(b) indicate that posts near the cell
perimeter are interacting with other perimeter posts to a significant degree via the
stress fibers, and are interacting with the cell as a whole. Furthermore, the stress at
the center of the cell is relatively high, only falling rapidly near the cell edges in a
shear lag phenomenon. The stress gradient there is what gives rise to the horseshoe
shape of the focal adhesions on posts near the cell perimeter, as the force applied
by the cell to an individual post has a net resultant acting towards the open side of
the horseshoe. A high, almost uniform stress at the cell center explains the relative
lack of focal adhesions on posts near the cell center (Fig. 3.3(b)), as the absence of
a stress gradient means that little force is being applied to the post tops in that area.

Next, we consider the simulations for posts with even higher stiffness, k =
10 nN/µm, with the focal adhesion distribution shown in Fig. 3.3(c). In this case,
spatial gradients of stress near the cell perimeter are steeper than for more compli-
ant posts. As a result, the concentration of focal adhesions on posts near the cell
periphery is even higher than for the more compliant posts, and the horseshoe shape
of the focal adhesion distribution on these posts is more distinct. Note also that
the concentration of focal adhesions on posts near the center of the cell is lower
than for the more compliant posts, indicating a more uniform stress there when the
posts are stiff. The contractile stress and the concentration of stress fibers in the cell
are greater than for the more compliant posts, as can be deduced from the higher
curvature of the cell edge visible in Fig. 3.3(c). The heterogeneous nature of the
response of the cell is apparent in the degree of alignment of the stress fibers, shown
in Fig. 3.4(c), with an almost uniform distribution of orientations in a large patch at
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Fig. 3.5 Average force per
post Favg exerted by a square
cell in steady state vs. post
stiffness k for cells of edge
lengths L

the center of the cell, and a high degree of alignment around the cell perimeter. This
reflects the larger gradient of stress and stress fiber concentration near the cell edge
in this case.

We find that increasing the post stiffness further to k = 500 nN/µm does not
cause appreciable changes in the focal adhesion and stress fiber distributions, as
shown in Figs. 3.3(d) and 3.4(d), respectively. Thus, the cellular response reaches
an asymptote at a post stiffness of approximately k = 100 nN/µm. Further increases
in the post stiffness above this level do not affect the cell response.

3.4.2.2 Average Force Versus Post Stiffness

We calculate the average force per post Favg as the sum of the magnitude of the force
exerted by the cell on each post in contact with the cell divided by the number of
posts. In Fig. 3.5 we plot Favg versus post stiffness k for square cells having various
edge lengths. To vary cell size, we utilize square cells of edge length L= 10,30 and
50 µm laid on 3 × 3, 8 × 8 and 14 × 14 post arrays, respectively. For each case, we
vary the post stiffness from k = 2 nN/µm to k = 500 nN/µm and plot the resulting
Favg values in Fig. 3.5. In all cell sizes, we find a common trend between average
force and post stiffness; namely, the average force per post Favg increases with post
stiffness, but reaches an asymptote. We also find that this trend prevails even if
the post-bed parameters, such as post diameter and post density, are varied, but
do not present these results here. The relationship between average force and post
stiffness observed in our simulations agrees qualitatively as well as quantitatively
with the experimental results of Saez et al. (2005), presented as a superimposed
line in Fig. 3.5. It is this quantitative agreement that is used to justify the parameter
calibration used throughout the simulations presented in this paper.
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Fig. 3.6 Average force per
post Favg exerted by a square
cell in steady state versus its
edge length L plotted for post
stiffness values k = 2, 10, 25
and 100 nN/µm

We note that the results of our simulations for cells on posts confirm that the
average force generated by the cell is higher on stiffer substrates, and reaches a
limit value beyond a critical value of substrate stiffness. This trend is consistent
with our findings in the simulations for cells adhered on flat substrates, as presented
in the previous section (Fig. 3.2(b)).

Tan et al. (2003) observed in experiments that the average force per post for a
given post stiffness increases with cell size, and therefore with the number of posts
to which the cell is adhered. Simulations by Deshpande et al. (2007) found the same
trend, and they attributed this feature to the fact that a cell contracting on many posts
senses a stiffer system than one contracting on a few posts. Deshpande et al. (2007)
pointed out that this trend occurs despite the fact that many of the posts under well-
spread cells engaging many posts are only lightly laden, due to the fact that these
posts are in the central region of the cell where the cell stress is relatively uniform
(see Fig. 3.4(c)). To further explore the effect of cell size on cellular contractility,
we study how the average force per post varies with cell edge length for four post
stiffnesses, with results shown in Fig. 3.6. We note that the cells engage 3×3, 4×4,
6 × 6, 8 × 8, 11 × 11 and 14 × 14 posts as they get larger. For each cell size the
average force per post increases with post stiffness. Furthermore, as the smallest cell
size is increased, the trend, the same for all post stiffnesses, is that the average force
per post increases. In the case of the cell on the most compliant posts, this trend
is monotonic. However, in all other cases, a peak in the average force per post is
reached at an intermediate cell size, beyond which the average force per post falls.

The trend in which the average force per post increases with cell size, also ob-
served by Deshpande et al. (2007), reflects the fact that a cell engaging more posts
is interacting with a stiffer system. Since a stiffer environment induces in the cell a
more robust cytoskeleton, and a higher level of contractile stress, the force per post
goes up as the cell size increases. The trend in which the force per post declines as
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the cell size increases reflects the fact that a cell engaging a larger number of posts
has a larger number that are lightly laden because they are near the center of the cell
in the region of uniform cell stress. Since an increasing number of posts has negli-
gible force applied to them, the force per post goes down as the cell size increases.
The results in Fig. 3.6 indicate that the former trend dominates for small cells en-
gaging a small number of posts, but as the cell size increases, the latter trend takes
over. The results in Fig. 3.6 also show that the transition point for these opposite
trends depends on the stiffness of the posts. In a stiff environment, the changeover
occurs at smaller cell size, whereas in a more compliant environment, a larger cell
size is required for the transition.

3.5 Concluding Remarks

A biochemomechanical model is employed for modeling cell behavior in complex
and diverse extracellular settings, and the effects of substrate stiffness, architecture
of the substrate, and cell area are studied. Both on flat gel and micro-post substrates,
cell contractility and focal adhesion assembly intensify as the stiffness of the envi-
ronment is increased. The results of our simulations match key experimental data
in the literature. We verify some well-established features regarding cell behavior
in response to substrate stiffness-namely, (a) the intracellular force generation ma-
chinery exerts higher forces on stiffer substrates, (b) cells form larger and stronger
focal adhesions on stiffer substrates, and (c) cells on stiffer substrates have more
pronounced cytoskeletons in the form of higher concentrations of stress fibers. The
response we have identified comes about because a stiff substrate presents resistance
to the cell as it tries to contract, an effect that stabilizes a high degree of stress fiber
polymerization and focal adhesion development. Such highly developed intracellu-
lar machinery then delivers a high level of traction to the substrate. We also find that
monotonic increase of the stiffness of the substrate does not cause a monotonic en-
hancement of the cellular contractile machinery; an asymptote is reached at a critical
value of substrate stiffness beyond which further enhancement of the cell contractile
system ceases. Such a behavior is hinted at in the results from several experimental
studies, such as that of Saez et al. (2005), but a conclusive dataset for a wide range
of substrate stiffness values is currently unavailable. Our results not only agree qual-
itatively with many experimental findings, but have been calibrated quantitatively to
the average force per post from Saez et al. (2005), where the stiffness of the posts
is varied. This step enables us to assert that the cell model parameters used in our
study are representative of the epithelial cells explored by Saez et al. (2005). The
horseshoe focal adhesions on the post tops that we obtain in our simulations match
the experimental images obtained by Tan et al. (2003) and Chen et al. (2003). Such
results give us encouragement to believe that our model captures many elements of
the contractile and adhesive behavior of cells, and may prove useful, eventually, in
a wider setting of cell biology, medicine and disease.
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Chapter 4
A Mathematical Approach for Studying
Ca2+-Regulated Smooth Muscle Contraction

Saeil C. Murtada and Gerhard A. Holzapfel

Abstract Smooth muscle is found in various organs. It has mutual purposes such
as providing mechanical stability and regulating organ size. To better understand
the physiology and the function of smooth muscle different experimental setups and
techniques are available. However, to interpret and analyze the experimental results
basic models of smooth muscle are necessary. Advanced mathematical models of
smooth muscle contraction further allow, to not, only investigate the experimental
behavior but also to simulate and predict behaviors in complex boundary conditions
that are not easy or even impossible to perform through in vitro experiments. In
this chapter the characteristic behaviors of vascular smooth muscle, specially those
relevant from a biomechanical point of view, and the mathematical models able to
simulate and mimic those behaviors are reviewed and studied.

4.1 Introduction

Smooth muscle has an important role in hollow organs where it determines the size
and the wall tension of the organ. In blood vessels the smooth muscle has a crit-
ical role in regulating the diameter and the flow resistance which affect the blood
pressure.

To increase the understanding of both basic and clinical/pathophysiological pro-
cesses of smooth muscle, well defined chemomechanical models which couple
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chemical activation with mechanical contraction and relaxation are needed. The
properties of the passive arterial wall have been thoroughly explored both in struc-
tural and mechanical behavior, and there are models available to capture these be-
haviors (Holzapfel et al., 2000; Holzapfel and Ogden, 2010; Schriefl et al., 2012).
The properties of the active tone, which mainly originate from the active smooth
muscle, have been less explored in both structure and contractile behavior, and there
is a pressing need for well-defined models of the smooth muscle to better understand
its mechanical properties.

In the following sections the characteristic smooth muscle behavior is described
and followed up with some approaches of modeling smooth muscle contraction and
active tension development. The main part of this chapter reviews and analyzes a
certain mechanochemical modeling approach for smooth muscle (Murtada et al.,
2010a, 2010b, 2012) which is based on structural observations and experimental
data. It is the single model found in the literature which is able to simulate a realistic
behavior of both smooth muscle active tension development at different stretches
and a realistic muscle length behavior during isotonic quick-releases.

4.2 Smooth Muscle Behavior

Smooth muscle behaves differently in both activation and contraction and has a
different underlying structure compared to skeletal and cardiac muscles. Therefore,
it is important, when modeling and studying smooth muscle behavior, to understand
and consider the characteristic behaviors and parameters relevant for smooth muscle
contraction.

4.2.1 Myosin Kinetics

Smooth muscle contraction is regulated through phosphorylation and dephosphory-
lation of the myosin regulatory light-chains (MRLC) which is governed by two main
enzyme activities, the myosin light-chain kinase (MLCK) and the myosin light-
chain phosphatase (MLCP). By changing the membrane potential through depolar-
ization, certain voltage-operated Ca2+ channels are opened, allowing an influx of
Ca2+ which increases the cytoplasmic calcium. When the cytoplasmic intracellular
calcium increases through an influx of Ca2+ from the extracellular matrix, the Ca2+
bind to the messenger protein calmodulin (CaM), which activates the MLCK. An al-
ternative way to increase the cytoplasmic intracellular Ca2+ is through agonist stim-
ulation, e.g., histamine which attaches to G protein coupled receptors (GPCR) that
activate phospholipase C (PLC) which in turn induces inositol 1,4,5-triphosphate
(InsP3) production and Ca2+ release from the sarcoplasmic reticulum (SR) (Som-
lyo and Somlyo, 2002), see also Fig. 4.1.

When the myosin is phosphorylated, it can attach to the smooth muscle actin fil-
aments through load-bearing cross-bridges that are able to perform power-strokes
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Fig. 4.1 Signaling pathways for Ca2+-regulated myosin phosphorylation. Myosin phosphoryla-
tion/dephosphorylation is regulated by myosin light-chain kinase (MLCK) and myosin light-chain
phosphatase (MLCP). MLCK is activated by a calmodulin (CaM)–Ca2+ complex which depen-
dents on the level of intracellular [Ca2+]. The intracellular Ca2+ may be influenced in differ-
ent ways. Membrane depolarization and agonist stimulation through G protein coupled receptors
(GPCR); during membrane depolarization certain channels on the cell membrane open resulting
in an influx of Ca2+. During agonist stimulation the GPCR activate phospholipase (PLC), which
induces inositol 1,4,5-triphosphate (InsP3) production and releases Ca2+ from the sarcoplasmic
reticulum (SR)

through ATP hydrolysis, similar as in skeletal muscle, causing muscle contraction.
The MLCP activity, which governs the dephosphorylation of the myosin regulatory
light-chains, has an effect on the Ca2+ sensitivity for the MRLC phosphorylation.
There are several pathways inhibiting the MLCP, such as Rho-Rho kinase and pro-
tein kinase C. However, here we are not considering variations in MLCP activity.
Smooth muscle is able to maintain active tension while the myosin phosphorylation
decreases. An explanation for this phenomenon was hypothesized by introducing an
attached, non-cycling (or slow-cycling), dephosphorylated cross-bridge (also known
as latch-bridge or latched cross-bridge), see Dillon et al. (1981). The introduction
of such as latched cross-bridge also explains the different contractile behaviors ob-
served for isotonic quick-releases performed at different time after isometric activa-
tion (Dillon et al., 1981).
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Fig. 4.2 A: length-tension behaviors of swine carotid media, where maximal steady-state active
tension is obtained at a certain optimal length L0. The bottom curve is the passive behavior, the
middle curve is the active behavior and the top curve is the total behavior (passive and active)
(Kamm et al., 1989). B and C: active stress development and stretch behavior during isomet-
ric stimulation and isotonic shortening for two different after-loads (Dillon et al., 1981). D: two
force-velocity curves for isotonic quick-releases measured at 1 min and 10 min after isometric
contraction at optimal length (Dillon et al., 1981)

4.2.2 Length-Tension Relationship

Smooth muscle is able to generate active tension over a broad range of muscle
lengths. The active length-tension relationship has a parabolic behavior with max-
imal active tension at an optimal muscle length larger than the slack length, see
Fig. 4.2A. In addition, Figs. 4.2B and C show the respective active stress develop-
ment and stretch behavior during isometric stimulation and isotonic shortening for
two different after-loads.

The origin of the active length-tension behavior, also found in skeletal muscle, is
still not clearly distinguished but there are some hypothesis. One hypothesis is that
the agonist sensitivity may be dependent on the stretch of the smooth muscle (Rem-
bold and Murphy, 1990b). When the [Ca2+] was measured for the same concen-
tration of agonist but at different muscle stretches, it was found that the magnitude
of initial behavior of [Ca2+] function was different for different muscle stretches.
Agonist stimulation (histamine, noradrenalin and so on) activates G protein-related
pathways which leads to an increase in intracellular [Ca2+] to be different from
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the direct membrane depolarizing stimulation (e.g., potassium) pathway, which also
leads to an increase in intracellular [Ca2+]. It should be noted that the length-tension
relationship in smooth muscle is obtained for both membrane depolarization and
agonist stimulation. A more plausible hypothesis is that the length-tension relation-
ship may originate from the structural rearrangements within the smooth muscle
contractile unit, when stretched. This would influence the filament overlap between
the actin and myosin filaments in a smooth muscle contractile unit which has a di-
rect relation to the number of attached cross-bridges, and hence the active tension
produced by the smooth muscle. A connection between the length of the contractile
unit (sarcomere) and the length-tension behavior in muscle has been hypothesized
for a long time (Gordon et al., 1966).

4.2.3 Force-Velocity Relationship

The importance of the chemical and mechanical model combination is demonstrated
when it comes to modeling the characteristic force-(shortening) velocity relation-
ship of muscle. When the isotonic shortening velocity is measured for different
forces (after-loads) a hyperbolic relationship of the force and the shortening velocity
is obtained (Woledge et al., 1985). When extracting the force-velocity relationship,
two certain times are of importance: (i) the time at which the quick-release is per-
formed, i.e. the amount of time of isometric contraction before the quick-release,
and (ii) the time at which the velocity is measured during the isotonic contraction.

When the force-velocity relationship is extracted at different time of isotonic
quick-release, the relationship changes. The shortening velocity is higher when the
quick-release is performed at an early stage of the isometric contraction rather than
at a later stage, see Fig. 4.2D. This behavior supports the hypothesis of non-cycling
latch cross-bridges which are dominant at a later stage of an isometric contraction.

4.2.4 Smooth Muscle Modeling

By assuming the well-established three-element Hill muscle characteristic, as de-
scribed by Fung (1970) for smooth muscle, the smooth muscle contractile unit is
represented by an elastic serial element and a contractile element. The active ten-
sion produced by the smooth muscle depends on two main principal parameters:
(i) the number of attached load-carrying cross-bridges, and (ii) the (average) elastic
elongation of the attached cross-bridges, both phosphorylated and dephosphorylated
(cf. Rachev and Hayashi, 1999; Yang et al., 2003; Stålhand et al., 2008; Murtada et
al., 2010a).

The kinetics of the smooth muscle myosin phosphorylation, which regulates the
activation of smooth muscle contraction, can be used to define the number of at-
tached load-carrying cross-bridges. The kinetics of myosin phosphorylation and
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the number of load-bearing cross-bridges have been modeled through different ap-
proaches, see, e.g., Peterson (1982); Kato et al. (1984); Hai and Murphy (1988). In
the myosin kinetics model by Hai and Murphy (1988) the latched cross-bridge was
incorporated, and the myosin is described in four different functional states: (M)
unattached and dephosphorylated, (Mp) unattached and phosphorylated, (AMp) at-
tached and phosphorylated, (AM) attached and dephosphorylated. The two states
where the myosin forms a cross-bride between the actin filament which can carry
load are the attached states, AMp and AM. These functional states are coupled
through different rate constants, where some can be related to the phosphorylating
MLCK activity and some to dephosphorylating MLCP activity.

The average elastic elongation of the attached cross-bridges in the smooth mus-
cle contractile unit is a key parameter to model the tension development in smooth
muscle. It corresponds to the elastic serial element in the Hill muscle model. The
average elastic elongation of the attached cross-bridges depends on the total defor-
mation applied on the smooth muscle contractile unit and the sliding of actin and
myosin filaments, which could be related to the contractile element in the Hill mus-
cle model. It is necessary to model both the filament sliding and the average elastic
elongation of the attached cross-bridges to simulate the length change and the ten-
sion development during muscle contraction. Among the smooth muscle models
available in the literature there are some that also considers the filament sliding be-
havior to describe the active tension development and the total deformation of the
smooth contractile unit (cf. Stålhand et al., 2008; Murtada et al., 2010a).

4.3 The Chemomechanical Response in Smooth Muscle—Results

In this section the modeling approach by Murtada et al. (2010a, 2010b, 2012) is
briefly reviewed. This is an approach that is able to simulate both the length-tension
and the force-velocity behavior of smooth muscle in addition to muscle contraction
and relaxation regulated by [Ca2+]i.

In the work by Murtada et al. (2010a, 2010b, 2012), the model by Hai and Mur-
phy (1988) was used to simulate the kinetics of the myosin functional states and the
fraction of attached cross-bridges.

4.3.1 Cross-Bridge Kinetics Model

The active force produced by the smooth muscle is dependent on the number of
attached cross-bridges in a smooth muscle contractile unit. The kinetics of attached
cross-bridges is regulated by the MLCK and MLCP activity, which can be described
by the cross-bridge kinetics model by Hai and Murphy (1988). Chemical kinetics
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Fig. 4.3 Left: fitting results with the model by Hai and Murphy (1988) where the active stress is
nAMp + nAM and the myosin phosphorylation is nMp + nAMp. The phosphorylating reaction rates
k1 and k6 were set to 0.35 s−1 for 5 s followed by 0.085 s−1. The other reaction rates were set to
k2 = k5 = 0.1 s−1, k4 = 0.11 s−1, k3 = 0.44 s−1 and k7 = 0.005 s−1. Right: steady-state values
of the sum of fractions nAMp + nAM and nMp + nAMp for different values of the phosphorylating
reaction rates k1 and k6 (Hai and Murphy, 1988)

can be summarized by the following system of differential equations, i.e.

d

dt

⎡

⎢⎢
⎣

nM
nMp
nAMp
nAM

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

−k1 k2 0 k7
k1 −(k2 + k3) k4 0
0 k3 −(k4 + k5) k6
0 0 k5 −(k6 + k7)

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

nM
nMp
nAMp
nAM

⎤

⎥⎥
⎦ ,

(4.1)
where nM, nMp, nAMp and nAM are fractions of the myosin functional states M, Mp,
AMp, AM, with the constraint nM + nMp + nAMp + nAM = 1, ni ≥ 0 and k1, . . . , k7
are reaction rates describing the transition between the different functional states.
Hence, the reaction rates k1 and k6 represents the phosphorylation of M to Mp and
AM to AMp by the MLCK activity and the reaction rates k2 and k5 represents
the dephosphorylation of Mp to M and AMp to AM by the MLCP activity. The
reaction rates k3 and k4 represents the attachment and detachment of the cycling
phosphorylated cross-bridges and the reaction rates k7 represents the detachment
of the latch-bridges. The phosphorylating reaction rates k1 and k6 can be coupled
to the internal and also the external [Ca2+]. Figure 4.3 shows the evolution of the
different fraction of the functional states with time using the model by Hai and
Murphy (1988).

When assuming maximal stimulated activation the phosphorylating MLCK ac-
tivity can be related and coupled to the extracellular [Ca2+]. In Murtada et al.
(2010a) a Michaelis–Menten kinetics characteristic of the MLCK activity was im-
plemented. The rate constants k1 and k6 are expressed as

k1 = k6 = [CaCaM]2

[CaCaM]2 +K2
CaCaM

, [CaCaM] = α[Ca2+]
e, (4.2)



52 S.C. Murtada and G.A. Holzapfel

where [CaCaM] is the concentration of the calcium-calmodulin complex, KCaCaM
is the half-activation constant, α is a positive constant and [Ca2+]e is the external
calcium concentration. In (4.2), [Ca2+]e is not a function of time and the MLCK
reaction rates are constant values.

The MLCK-activity can also be related to the intracellular [Ca2+] by using the
first and fourth equations from (4.1) and setting k1 = k6 and k2 = k5. Thus (Murtada
et al., 2010a),

k1 = k6 = k2(nMp + nAMp)− ( d
dt nM + d

dt nAM)

nM + nAM
, (4.3)

which in steady-state reduces to

k1 = k6 = k2 Phos

1 − Phos
, (4.4)

where Phos = (nMp + nAMp) is the fraction of phosphorylated cross-bridges (Rem-
bold and Murphy, 1990a). The relationship between intracellular [Ca2+] and Phos
was estimated in swine carotid SM by measuring aequorin light signal into a sig-
moidal function, i.e.

Phos = −0.04 + 0.686

1 + 10−[3.645(0.004[Ca2+]i−6.018)+18.92] , (4.5)

where [Ca2+]i is the intracellular calcium concentration (Rembold and Murphy,
1990a). In a similar approach as for the external calcium concentration [Ca2+]e in
(4.2), the MLCK-activity can be related to the intracellular calcium concentration
[Ca2+]i according to

k1 = k6 = ε [Ca2+]hi
[Ca2+]hi + (ED50)h

, (4.6)

where ε is a fitting parameter describing the maximal MLCK activity, h is a pa-
rameter related to the steepness of the relationship and ED50 is the half-activation
constant for [Ca2+]i to MLCK.

Through these approaches the external and intracellular calcium concentrations
can be coupled to the fraction of the attached cross-bridges nAMp + nAM by fitting
the chemical parameters against dose-response relationships (Murtada et al., 2010a)
or by comparing to myosin phosphorylation data (Murtada et al., 2010b, 2012).

4.3.2 Mechanical Model of the Smooth Muscle Contractile Unit

To introduce a description of the average elastic elongation of the attached cross-
bridges in a smooth muscle contractile unit, and a related framework of the filament
sliding evolution law to simulate filament sliding during contraction and relaxation,
a mechanical model is necessary.
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4.3.2.1 Mechanical Framework

In the recent works by Murtada et al. (2010a, 2010b, 2012) a description of a smooth
muscle contractile unit based on structural observations (Herrera et al., 2005) and
filament sliding theory was presented. The model of the smooth muscle contractile
unit consists of two thin actin filaments, each with a certain length, and one thick
myosin filament, with a certain length, which are overlapped. The actin filaments
are organized on each side of the myosin filament from which the filament overlap
Lo can be distinguished. Based on the Hill’s muscle model, the length-change in a
smooth muscle contractile unit is described by the relative actin and myosin filament
sliding ufs caused by the phosphorylated cycling cross-bridges or by an external
load/deformation, and the elastic elongation ue of the attached cross-bridges. Hence,
the stretch of a contractile unit with reference length LCU can be expressed as

λ= lCU

LCU
= LCU + ufs + ue

LCU
, (4.7)

where lCU is the deformed length of a contractile unit. Note that ufs is denoted
positive in extension. When looking at a half contractile unit, the average elastic
elongation of the attached cross-bridges can be described by the average force acting
on the contractile unit and the total elastic stiffness from all the attached cross-
bridges. Thus,

ue

2
=

Pa
NCU

(nAMp + nAM)
Lo
δ
Ecb

, (4.8)

where Pa is the measurable active (averaged) first Piola-Kirchhoff stress (engineer-
ing stress), NCU is the number of contractile units per unit area in the reference con-
figuration, δ is the average distance between the cross-bridges, (nAMp + nAM)Lo/δ

is the total number of the attached cross-bridges and Ecb is the elastic stiffness of a
single phosphorylated/dephosphorylated cross-bridge with the unit force per length.
Together with Eq. (4.7) the active stress Pa can be derived as a function of the fila-
ment sliding ufs and the stretch λ, i.e.

Pa = μaL̄o(nAMp + nAM)(λ− ūfs − 1), (4.9)

where μa = L2
CUEcbNCU/(2δ) is a stiffness constant, ūfs = ufs/LCU is the normal-

ized filament sliding and L̄o = Lo/LCU is the normalized filament overlap.

4.3.2.2 Evolution Law of Filament Sliding

The normalized filament sliding ūfs depends on the mechanical state (contraction
and relaxation) of the smooth muscle contractile unit. During muscle contraction,
ūfs is driven by the difference of the internal force of the cycling phosphorylated
cross-bridges (AMp) and any external force acting on the contractile unit. During
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Fig. 4.4 Left: fitting results of the active stress development (Pf = Pa) using the model of Mur-
tada et al. (2010a), with parameter values μaL̄o = 4.5 MPa, η = 60.0 MPa s, κ = 0.93 MPa and
μp = 0.90 MPa. Right: isotonic stretch behavior (λf = λ) for different isotonic after-loads. The plot
at the top right corner is an enlargement of the encircled region for a certain after-load (Murtada
et al., 2010a). Compare with the experimental results presented in Figs. 4.2B and 4.2C

muscle relaxation (extension), ūfs is driven by the resulting force of the external
force acting on the contractile unit, and the internal force from all the attached cross-
bridges (AMp, AM). The evolution law of ūfs is summarized as an active dashpot
where the normalized filament sliding velocity ˙̄ufs is proportional to the difference
of the internal force Pc and the external active force Pa such as

η ˙̄ufs = Pc − Pa, (4.10)

with

Pc =
⎧
⎨

⎩

κnAMp, for Pa < κnAMp,

Pa, for κnAMp ≤ Pa ≤ κ(nAMp + nAM),

κ(nAMp + nAM), for Pa > κ(nAMp + nAM),

(4.11)

where η is a positive material parameter and κ is a parameter related to the average
driving/resisting force of the attached cycling and non-cycling cross-bridges (AMp,
AM).

The material parameters were fitted to isometric and isotonic contraction data
performed on intact smooth muscle taenia coli (Arner, 1982), resulting to μaL̄o =
4.5 MPa, η = 60.0 MPa s, κ = 0.93 MPa and μp = 0.90 MPa (the parameter μp is
the shear modulus of the passive matrix material of the smooth muscle cells and the
intermixed fibrous components).

The model was able to predict the active tension development during isometric
contraction and a realistic behavior of the muscle length change during isotonic con-
traction for different after-loads, see Fig. 4.4. However, with the current description
of the ūfs evolution law and the constant filament overlap, the model is not able
to predict the nonlinear behavior of the length-tension and the force-(shortening)
velocity behavior.
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4.3.3 Length-Tension and Force-Velocity Relationships

The ability for smooth muscle to produce active tension over a broad range of mus-
cle lengths, with a maximal active tension development at an optimal muscle length,
is an important characteristic to capture when simulating active smooth muscle con-
traction under large deformation. We have worked out the modeling of the length-
tension behavior through two different approaches, briefly reviewed here. The model
of Murtada et al. (2010a) served as a basis.

In the first approach, the effect of the intracellular calcium concentration [Ca2+]i
and the dispersion of contractile fibers in smooth muscles was investigated (Murtada
et al., 2010b). In the second approach, the effect of filament overlap and filament
sliding behavior in the smooth muscle contractile unit was analyzed (Murtada et al.,
2012).

4.3.3.1 Agonist Sensitivity and Dispersion of Contractile Fibers

In the first approach of Murtada et al. (2010b), two experimental studies of smooth
muscle were used to analyze stretch-dependent agonist sensitivity and the dispersion
effects of contractile fibers in smooth muscles, see Fig. 4.5. This was then used as a
basis for studying the smooth muscle length-tension behavior.

The intracellular calcium measurements at different muscle lengths was coupled
with the Hai and Murphy reaction rates k1 through Eqs. (4.4) and (4.5). The smooth
muscle contractile units were modeled as in Murtada et al. (2010a) with an equiva-
lent evolution law for the filament sliding ūfs and a constant filament overlap. The
passive components in the surrounding matrix was modeled by elastin and one fam-
ily of collagen fibers aligned along the main direction of the contractile units. The
neo-Hookean material was used to model elastin and an anisotropic exponential
function was used to model the anisotropic response (Holzapfel et al., 2000). The
passive stress Pp of the surrounding matrix was derived as

Pp = μp

(
λ− 1

λ2

)
+ 2c1λ exp

[
c2
(
λ2 − 1

)2](
λ2 − 1

)
, (4.12)

where λ denotes the stretch in the loading direction and μp, c1 and c1 are material
parameters. The passive material parameters (μp, c1, c2) were estimated by com-
paring the simulated stress-stretch behavior Pp through Eq. (4.12) with the passive
length-tension experimental behavior of a carotid media (Kamm et al., 1989), with
the results of μp = 1680 Pa, c1 = 5040 Pa and c2 = 0.20 Pa.

The contractile unit orientation dispersion was modeled by introducing an orien-
tation density function ρ(θ, γ ) with rotational symmetry as a function of the angle
θ and the parameter γ which describes the shape of the density function. Hence, the
active stress Pa was expressed as

Pa = μaL̄o(nAMp + nAM)
λ� + ūfs − 1

λ�

[
χ

(
λ− 1

λ2

)
+ (1 − 3χ)λ

]
, (4.13)
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Fig. 4.5 According to Murtada et al. (2010b), smooth muscle cells are modeled through ‘represen-
tative micro-spheres’ which are divided into active and passive components. The active component
is defined by the contractile units that are oriented in different directions and with a certain orienta-
tion density. The passive component is modeled by elastin and collagen fibers aligned in the main
direction of the contractile units

where λ� = [λ2 + 2χ(λ−1 − λ2)]1/2, and χ ∈ [0,1/3] is a dispersion parameter of
the form

χ = π
∫ π/2

0
ρ(θ, γ ) sin3 θdθ, (4.14)

(cf. Gasser et al., 2006). For a detailed description of the choice and fitting of the
orientation density function ρ see Murtada et al. (2010b).

The material parameters were estimated to fit the experimental data of active
isometric tension development performed at two different muscle stretches, μaL̄o =
22.96 MPa, η= 2.215 GPa s, κ = 0.451 MPa and χ = 0.016. To study the effect of
different orientation density functions ρ, the simulation was repeated for different
values of γ , see Fig. 4.6.

When studying the length-tension behavior by modeling the stretch-dependent
agonist sensitivity and the contractile unit orientation density function in smooth
muscle, it was found that agonist sensitivity had a more significant effect on the
length-tension behavior than the dispersion of the contractile units. The stretch-
dependent agonist sensitivity could alone explain the length-tension behavior at the
two studied muscle stretches. However, the [Ca2+]i transient was only studied at two
muscle stretches and it would be more convincing to study the agonist-sensitivity in
smooth muscle with a more detailed set of experimental data of the [Ca2+]i transient
behavior for larger range muscle stretches. The length-tension behavior of smooth
muscle exists for both agonist stimulations and membrane depolarization. However,
studies show little significant change in the myosin phosphorylation behavior during
potassium depolarization at different muscle lengths (Wingard et al., 1995), which
contradicts a length-dependent sensitivity during membrane depolarization.
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Fig. 4.6 Left: fitting results of the active stress developments at λ = 1/0.6 and λ = 0.7/0.6 by
using the model of Murtada et al. (2010b). By repeating this for different orientation density func-
tions ρ(γ ), where γ is a parameter describing the shape of the orientation density function, dif-
ferent behaviors of the predicted stress development at λ = 0.7/0.6 are obtained. Right: passive
length-tension behavior (Murtada et al., 2010b). Compare with the passive length-tension behavior
presented in Fig. 4.2A

4.3.3.2 Filament Overlap and Sliding Behavior

One common explanation for the length-tension behavior is the variation in the fil-
ament overlap in a contractile unit. This hypothesis was studied by introducing a
filament overlap function L̄o which defines the actin and myosin filament overlap
and thereby the number of maximum possible attached cross-bridges in a contrac-
tile unit (Murtada et al., 2012). The filament overlap depends on the lengths of
the actin and myosin filaments, and how these filaments slide with respect to each
other, which was described by the normalized filament sliding ūfs. An initial fil-
ament overlap Lo(ufs = 0) = x0 and an average optimal filament sliding uopt

fs , for
which optimal filament overlap is reached (∂Lo/∂ufs|ufs=uopt

fs
= 0), were introduced.

Thus the optimal filament overlap Lopt
o was defined as

L
opt
o = Lo

(
ufs = uopt

fs

)= u
opt
fs

2
+ x0. (4.15)

Together with the boundary conditions, a continuous parabolic function of the fila-
ment overlap Lo was expressed as

Lo = ufs − u2
fs

2uopt
fs

+ x0 =
(
ūfs − ū2

fs

2ūopt
fs

+ x̄0

)
LCU, (4.16)

where x̄0 = x0/LCU and ūopt
fs = uopt

fs /LCU, see Fig. 4.7.

The initial filament overlap x̄0 and the optimal filament overlap ūopt
fs were defined

through two equations: the definition of the stretch of a contractile unit (4.7) at
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Fig. 4.7 Half contractile unit with the initial filament overlap x0 between the myosin and actin
filament. By introducing an optimal filament sliding distance uopt

fs in a contractile unit, the filament
overlap function Lo can be described by a parabolic function with an optimal filament overlap
u

opt
fs /2 + x0 (Murtada et al., 2012)

optimal muscle length, i.e.

λopt = 1 + ūopt
fs + ūopt

e , (4.17)

where ūopt
e = uopt

e /LCU, and by assuming that the fraction of the active stress at
reference length P0 and at the optimal length Popt is equal to the fraction of the
filament overlaps at the reference length and the optimal length, i.e.

P0

Popt
= x̄0

ū
opt
fs /2 + x̄0

. (4.18)

Hence, the active stress of a contractile unit with varying filament overlap was ex-
pressed as

Pa = μaL̄o(ūfs)(nAMp + nAM)(λ− ūfs − 1), (4.19)

where L̄o(ūfs)= Lo(ūfs)/LCU.
One common way of studying the contractile mechanism in smooth muscle is to

measure the shortening velocity during isotonic quick-release. The relationship be-
tween the shortening velocity and the after-load during isotonic quick-release can be
described through a hyperbolic function, also known as Hill’s equation (cf. Woledge
et al., 1985), i.e.

(F + a)(v + b)= (F0 + a)b, (4.20)

where F is the isotonic after-load, F0 is the isometric force at which the quick-
release is performed, v is the muscle shortening velocity and a, b are fitting param-
eters. Based on the assumption that the velocity v reflects somewhat the behavior of
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filament sliding ūfs, which was supported by Guilford and Warshaw (1998), a simi-
lar hyperbolic function was used to redefine the evolution law of the relative filament
sliding ūfs, thus

(Pa + α)(−˙̄ufs + β)= (Pc + α)β, (4.21)

which can be rewritten as

˙̄ufs = β Pa − Pc

Pa + α . (4.22)

When comparing the evolution law of the filament sliding ūfs, as presented in Mur-
tada et al. (2010a), with the updated evolution law (Murtada et al., 2012) it can be
seen that the two evolution laws do not differ that much from each other.

The evolution law for ūfs was further extended to also allow the simulation of
isotonic muscle extension such as

˙̄ufs = β1
Pa − Pc

Pa + α − β2
Pa − Pc

Pa − PLBC
, (4.23)

where PLBC is the maximal load-bearing capacity of the contractile units (yield
stress) (Dillon et al., 1981), and β1 and β2 are fitting parameters. The internal stress
Pc, which is governed by the number of attached cycling and non-cycling cross-
bridges (depending on the mechanical state of the smooth muscle) is dependent on
the varying filament overlap L̄o as well. Hence, based on Eq. (4.11), the internal
stress Pc during contraction was quantified as

Pc = κAMpL̄o(ūfs)nAMp, (4.24)

and during muscle relaxation (extension) as

Pc = κAMpL̄o(ūfs)nAMp + κAML̄o(ūfs)nAM, (4.25)

where κAMp is a parameter related to the force due to a power-stroke of a single
cross-bridge and κAM is related to the force-bearing capacity of a dephosphorylated
attached (latch) cross-bridge during muscle extension.

The material parameters in the mechanical model were fitted to isometric tension
development and to isotonic shortening velocities from swine carotid media (Dillon
et al., 1981; Murtada et al., 2012), resulting in μa = 5.3 MPa, α = 26.7 kPa, β =
β1 = 0.0083 s−1 and κAMp = 204 kPa. The material parameters β2 and κAM were
fitted to sudden extension experiments resulting to β2 = 0.0021 s−1 and κAM =
61.1 kPa. The parameters in the filament overlap function L̄o were fitted to ūopt

fs =
0.48 and x̄0 = 0.8544 by means of the conditions in Eqs. (4.17) and (4.18) together
with length-tension experimental data from swine carotid media (Murtada et al.,
2012). By using Eq. (4.19) together with a filament sliding evolution law and the
kinetic model by Hai and Murphy (1988), the active stress Pa was simulated for
different stretches λ, see Fig. 4.8. The simulated results show very good correlations
with experimental data obtained from swine carotid media.
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Fig. 4.8 Left: isometric active stress development for different muscle stretches λ activated
by a certain intracellular calcium transient using the filament overlap model of Murtada et al.
(2012); related material parameters are μa = 5.3 MPa, α = 26.7 kPa, β = β1 = 0.0083 s−1 and
κAMp = 204 kPa. Right: isotonic shortening and extension velocities for different after-loads (Mur-
tada et al., 2012). Compare with the shortening velocity presented in Fig. 4.2D

Through the updated evolution law based on Hill’s equation (4.22), the model
was able to simulate a (very) realistic nonlinear behavior of the isotonic force-
velocity relationship seen in smooth muscle. With the extended evolution law (4.23)
a realistic behavior of the force development during sudden muscle extension and
also the extension velocity were obtained. One of the advantages with the mathe-
matical form of the extended filament sliding evolution law is the convenience of
reducing it to its original form (4.22) when only simulating sudden muscle shorten-
ing.

4.4 Discussion and Concluding Remarks

In the present chapter, a review of a mathematical approach for studying smooth
muscle contraction and relaxation was presented. There are several different smooth
muscle models available in the literature and they have some characteristics in com-
mon, however the reviewed approach (Murtada et al. 2010a, 2010b, 2012) is one
of the few which is able to simulate a realistic mechanochemical behavior of iso-
metric contraction and relaxation at different muscle stretches and isotonic shorten-
ing/extension through one single model. The described approach models the active
tension development by considering the number of attached cross-bridges, the aver-
age elastic elongation of attached cross-bridges and the filament sliding theory.

With the implemented filament overlap function, the model is able to simulate
the well-known length-tension behavior which is very relevant for smooth muscle
organs functioning at a large range of deformations. The model couples intracel-
lular calcium [Ca2+] with muscle contraction and relaxation through the Hai and
Murphy myosin kinetics model (Hai and Murphy, 1988) and the smooth muscle
model of Murtada et al. (2012). The myosin kinetics model describes the myosin
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in four different functional states where two are load-bearings and coupled through
seven reaction rates. The behavior of the active stress is proportional to the sum of
the fractions of the load-bearing myosin functional states and is, therefore, very de-
pendent on the behavior of the myosin kinetics model. However, it is not so trivial
to define the reaction rates in the Hai and Murphy model and also to validate the
simulated fraction values of attached cross-bridges. The Hai and Murphy kinetics
model is rather old; it suggests the existence of a slower latch state myosin, where
the myosin is dephosphorylated and attached, which has not been shown experimen-
tally. In the last years several advances have been proposed in the understanding of
myosin-actin kinetics so that an update of the myosin kinetics model would be a
very valuable task.

The mechanical model presented in this chapter is based on structural observa-
tions and has a relatively low number of material parameters which can be related to
the physical properties of the smooth muscle. For example, the physical parameter
μa in the smooth muscle model (defined by the length of the contractile unit LCU,
the elastic stiffness of a single cross-bridge Ecb, the average distance between the
cross-bridges δ and the contractile unit densityNCU) was investigated by comparing
it with experimental data of LCU, Ecb, δ and NCU. It was found that it corresponds
very well with the experimental data of the physical measurable units (Murtada et
al., 2012) supporting the description and the fitted value of μa. However, there are
still several items that can be improved such as an improved myosin kinetics model,
which is not dependent on a latch state, and a further developed filament sliding
evolution law.

With a realistic chemomechanical model of smooth muscle activity it is possible
to study more complex boundary-value problems that are clinically and pathophys-
iologically relevant by implementing the coupled model into a three-dimensional
finite element code. An implementation of the model into a finite element code also
allows to study the effects of time-dependent changes in Ca2+ for different inter-
nal pressures of an intact artery that are relevant for both short-term and long-term
changes in the vascular wall.
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Chapter 5
A Coupled Chemomechanical Model for Smooth
Muscle Contraction

Markus Böl and Andre Schmitz

Abstract This manuscript presents a chemomechanically coupled three-
dimensional model, describing the contractile behavior of smooth muscles. It bases
on a strain-energy function, additively decomposed into passive parts and an ac-
tive calcium-driven part related to the chemical contraction of smooth muscle cells.
For the description of the calcium phase the four state cross-bridge model of Hai
and Murphy (Am. J. Physiol. 254:C99–106, 1988) has been used. Before the fea-
tures and applicability of the proposed approach are illustrated in terms of three-
dimensional boundary-value problems, the model is validated by experiments on
porcine smooth muscle tissue strips.

5.1 Introduction

Many internal organs such as stomach, intestine, bronchia, urinary bladder, uterus,
airways, or blood vessels are composed by multiple layers of spindle-shaped smooth
muscle cells (SMCs). Focusing on vessel mechanics, vascular smooth muscle cells
are the key component in the vascular system regulating the diameter of vessels,
triggered by various neural, chemical and mechanical signals. Human arteries are
comprised of three distinct layers, the intima, the media, and the adventitia, in which
the proportion and structure of each varies with size and function of the particular
artery.

From the mechanical perspective, the media is the most significant layer in hu-
man healthy arteries. It is the middle layer and is characterized by a complex three-
dimensional network of smooth muscle cells embedded in a matrix of elastin and
collagen fibers (Fritsch and Kuehnel, 2007). However, this architecture gives the
media high passive strength and the ability to resists loads in multiple directions.
Due to the existence of SMCs inside the media it is of particular interest related
to smooth muscle (SM) activation, too. Focusing at cell level, SM contraction is
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Fig. 5.1 Structural and geometrical characteristics of smooth muscles: (a) layers of smooth muscle
cells; (b) isolated smooth muscle cell; (c) single, relaxed unit (myosin heads in skew position);
(d) same contracted unit (myosin heads in vertical position)

rooted on one basic unit, the SMC, see Fig. 5.1(b). These spindle-shaped cells con-
tains a single centrally positioned elongated nucleus and vary notably in size, from
30 µm length in walls of small vessels to 200 µm length and 5 µm width in the intes-
tine, see Rhoades and Bell (2008). They are characterized by a fusiform shape. In
the mid-region they are thickest and tapered at each end. SMs are built up of layers
of cells (Fig. 5.1(a)) that are linked together by various junctional contacts that serve
as points of cell to cell communication and mechanical linkages (dense plaque). The
mechanical contraction is caused by contractile units which consist of two filaments:
actin and myosin, see Fig. 5.1(c). These filaments are present in large numbers and
roughly aligned with the long axis of the cell, see, e.g., Kuo and Seow (2004) and
Seow and Paré (2007). They are loosely associated into thin myofibrils. These my-
ofibrils consist of a centrally located myosin filament surrounded by multiple actin
filaments. In electron micrographs (e.g., Bond and Somlyo, 1982; Hodgkinson et
al., 1995; Herrera et al., 2005) numerous dense staining regions, known as dense
bodies (Fig. 5.1(d)), can be identified scattered throughout the cytoplasm of the cell.
In common with the Z-discs of skeletal muscles, these dense bodies contain the
actin-binding protein α-actinin and appear to serve as anchorage points for actin
filaments of myofibrils. Their association with the system of internal intermediate
filaments essential serve to integrate contractions over the entire cell and allow the
very high degree of shortening achieved by these cells. When actin filaments run
into the cell membrane, they connect the dense bodies and dense plaques. Based on
the coupling by pairs of opposed adjacent dense bodies located on neighboring cells
force transmission is accomplished across cell boundary. Thus, it appears that SMs
are composed on a huge number of contractile units in series as well as in parallel.

In comparison to experimental investigations there exist only a few approaches
describing parts of the biochemical-mechanical process in SM activation by means
of mathematical models. Looking at this type of models it stands out that a huge
number of these models is realized in a one-dimensional framework, see, e.g., Fay
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and Delise (1973), Gestrelius and Borgström (1986), Lee and Schmid-Schönbein
(1996a,b), Miftakhov and Abdusheva (1996), Rachev and Hayashi (1999), Yang et
al. (2003a,b), Zulliger et al. (2004), Herrera et al. (2005), Bates and Lauzon (2007),
Bursztyn et al. (2007), Stålhand et al. (2008) and Murtada et al. (2010). All these
models have the main restriction that they are implemented in form of so-called
stand-alone programmes. Hence, only limited estimations are possible as the chemo-
mechanical behaviors of smooth muscles significantly depend on their geometry
undergoing large deformations it is essential to take a three-dimensional modeling
approach into account. However, to the authors knowledge, there only exists one
three-dimensional coupled chemomechanical modeling approach presenting three-
dimensional boundary-value problems, see Schmitz and Böl (2011). Herein, steady
state characteristics of the calcium concentration are presented, only.

The present contribution concentrated on the development of a three-dimensional
chemomechanical SM model including dynamic behavior of the calcium concen-
tration. Section 5.2 introduces the governing equations of a coupled boundary-
value problem for SM chemomechanics. Before the manuscript is concluded with
Sect. 5.4, Sect. 5.3 shows illustrative numerical examples.

5.2 Field Equations of Smooth Muscle Chemomechanics

5.2.1 Kinematics

As this work focuses on the modeling of vascular smooth muscle tissue, an aniso-
tropic material with outstanding directions for collagen bundles and SMC layers has
to be considered. Collagen bundles as well as SMC layers are aligned tangentially
with the wall of the vessel (Herlihy and Murphy, 1973; Walmsley and Murphy,
1987; Dahl et al., 2007) accomplished by the angle Φ , see Fig. 1 in Schmitz and
Böl (2011). The in-wall dispersions Θc/s (c = collagen and s = SM layer) lead-
ing to arbitrary direction vectors which are able to describe the collagen and SMC
orientations in the reference configuration using so-called unit direction vectors

Mc/s =
⎛

⎝
cosΘc/s cosΦ
cosΘc/s sinΦ

sinΘc/s

⎞

⎠ . (5.1)

Consequently, the structural tensors

Zc/s = Mc/s ⊗ Mc/s (5.2)

can be constructed by means of the dyadic product including the directional infor-
mation of a certain SMC layer Ms or collagen fiber bundle Mc. This allows the
computation of corresponding stretches

λ2
c/s = I4,c/s = C : Zc/s, (5.3)
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where the fourth invariant I4,c/s can be expressed as scalar product of the right
Cauchy-Green tensor C and Zc/s.

5.2.2 Balance Equations

Using classical non-linear continuum mechanics, a coupled problem of chemo-
mechanical SM contraction is formulated in terms of two primary field variables,
namely the placement ϕ(X, t) and the calcium concentration c(X, t). Consequently,
a chemomechanical state S of a material point X at the time t is defined as

S (X, t)= {ϕ(X, t), c(X, t)}. (5.4)

Spatial as well as temporal evolution of the primary field variables are governed by
two basic field equations: the balance of linear momentum and the diffusion-type
equation of excitation through calcium.

The balance of linear momentum in spatial form

divσ + b̄ = 0 in B (5.5)

describes the quasi-static stress equilibrium. Herein b̄ is the given spatial body force
per unit reference volume. The operator div[•] indicates the divergence with respect
to the spatial coordinates x, and σ denotes the Cauchy stress tensor given as

σ = 2J−1F
∂Ψ (ϕ)

∂C
FT, (5.6)

depending on the deformation measures C and F as well as on a strain-energy func-
tion Ψ (ϕ), see Sect. 5.2.3. The mechanical problem is completed by essential and
natural boundary conditions,

ϕ = ϕ̄ on ∂Bϕ and t = t̄ on ∂Bσ . (5.7)

The surface stress traction vector t̄, defined on ∂Bσ , is related to the Cauchy stress
tensor σ via the Cauchy stress theorem t̄ := σn, where the outward surface normal
is specified as n.

The second field equation describes the calcium concentration inside the SM
tissue. The well-known Fick’s second law

ċ= −div q in B (5.8)

predicts how diffusion causes the concentration field c to change with time. Herein,
the diffusion flux vector

q = −d(ϕ)∇xc (5.9)
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relates to the calcium concentration gradient ∇xc via the deformation dependent,
anisotropic diffusion tensor d(ϕ). Based on the microstructure of SM tissue the
diffusion tensor

d(ϕ)= disoI + daniso

n

n∑

i=1

ZR
i (5.10)

is additively decomposed into an isotropic (related to the elastin and matrix mate-
rial) and an anisotropic part (related to the collagen fibers in SMCs) including the
appropriate diffusion coefficients diso and daniso, respectively. The number of con-
sidered directions inside the SM tissue is controlled by n and I denotes the identity
tensor. Further,

ZR
i = RZiRT = FMi

|FMi | ⊗ FMi

|FMi | (5.11)

are the rotated structural tensors without the stretch component U of the deformation
gradient F = RU, whereby R is the rotation tensor.

Analogously to the momentum balance, the calcium field equation also uses cor-
responding essential and natural boundary conditions

c= c̄ on ∂Bc and q = q̄ on ∂Bq . (5.12)

The diffusion surface flux term q̄ is related to the spatial flux vector through the
Cauchy-type formula q̄ := q · n.

5.2.3 An Active Artery Model

In this section we give a short review over the governing constitutive equations for
the active artery model. Thus, the used strain-energy function for the media layer

Ψ (ϕ)= Ψe +Ψc +Ψs (5.13)

is additively decomposed in the three components: the load-bearing proteins elastin
(Ψe) and collagen (Ψc) and the active, contractile SMCs (Ψs).

5.2.3.1 Elastin

The first component of the strain-energy function Ψe stays for elastin, a protein used
to build up load-bearing structures in creature tissue. As flexible elastin molecules
are randomly arranged in a three-dimensional network, the isotropic neo-Hookean
material model

Ψe = μe

2
(I1 − 3) (5.14)
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has been chosen to mirror such characteristics. Herein, the shear modulus μe as
single material parameter seems sufficient. Further, the first invariant I1 = tr C is
defined as the trace of C.

5.2.3.2 Collagen

The second main connective tissue component in arteries, collagen (Ψc), dominates
their mechanical behavior by a stress-stretch relation of exponential type along the
fiber direction. Experimental observations by, e.g., Dahl et al. (2007) indicate that
collagen fibers are preferably aligned with the vessels longitudinal axis, helically
and circumferentially. Thus, the dispersion of the collagen fibers by incorporation
angles Θc,i has been measured. In doing so, the relative frequency fc has been re-
garded to fulfill the relation

∑nc
i=1 fc,i = 1 with nc being the number of different

directions i. For the modeling of such material characteristics, the used strain en-
ergy is weighted in every incorporated direction with the corresponding, measured
collagen fraction fc,i and can be written as

Ψc =
nc∑

i=1

fc,iΨc,i . (5.15)

Herein, the strain-energy functions

Ψc,i =
{
c1

2c2
exp[c2(λ

2
c,i − 1)2] if λc,i ≥ 1,

0 else,
(5.16)

depend on two material constants, c1 and c2, see Holzapfel et al. (2000).

5.2.3.3 Smooth Muscle Cells

The third component in arteries are mainly circumferentially oriented SMCs. How-
ever, it stands out that there is a certain stretch at which the generated force reaches
a maximum value, see Schmitz and Böl (2011). Having those experimentally ob-
tained force-stretch characteristics in mind, the strain-energy function of a single
SMC or a layer of SMCs reads

Ψs =
ns∑

j=1

fs,jΨs,j . (5.17)

According to the findings of Walmsley and Murphy (1987) the active strain-energy
function has been weighted with the SMC volume fractions fs,j in every incorpo-
rated direction j . Further, ns denotes the number of considered directions and the
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direction dependent strain-energy functions

Ψs,j = s1

2
(nC + nD)

[(
2 + λs2max

)(
λmaxλ

2
s,j − 1

3
λ3

s,j − λ2
maxλs,j

)

+ λ
3+s2
s,j

3 + s2 − 2λmaxλ
2+s2
s,j

2 + s2 + λ2
maxλ

1+s2
s,j

1 + s2
]

+ Pmaxλs,j . (5.18)

Herein, s1 is a stress-like material parameter and s2 is a dimensionless constant. Fur-
ther, λs specifies the SMC stretch and λmax defines the stretch at which the generated
stress

Pmax = κ(nC + nD), (5.19)

depending on the parameter κ , reaches its maximum. The whole contraction process
is triggered by the chemical degree of activation (nC + nD) provided by Hai and
Murphy (1988), describing the time and calcium dependent contraction kinetics.
This model is described by the differential equation system

⎡

⎢⎢
⎣

ṅA
ṅB
ṅC
ṅD

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

−k1 k2 0 k7
k1 −(k2 + k3) k4 0
0 k3 −(k4 + k5) k6
0 0 k5 −(k6 + k7)

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

nA
nB
nC
nD

⎤

⎥⎥
⎦ , (5.20)

composed of four first order differential equations in time for four chemical states
nA, nB, nC, and nD. As these are fractions, nA + nB + nC + nD = 1 has to be hold.
The first two, nA and nB, represent non-force generating states whereas the last
two, nC and nD, are related to generated force and thus, be mechanically significant.
Further the rate constant have been used as published in Schmitz and Böl (2011),
in doing so k1 = k6 and k2 = k5. SMC contraction is triggered by an increase in
intracellular calcium which is controlled by the calcium-dependent rate constants
k1 and k6. Thus, a simple relation is given by

k1 = k6 = (α[Ca2+])2
(α[Ca2+])2 +K2

CaCaM

, (5.21)

where α > 0 is a positive constant, [Ca2+] characterizes the calcium concentra-
tion, and KCaCaM denotes the half-activation constant for the calcium-calmodium
complex [CaCaM]. In this approach the rate parameters ki have to be identified by
experimental data (Hai and Murphy, 1988; Yang et al., 2003a,b).

5.3 Numerical Examples

This section aims to study how the chemical excitation affects the mechanical be-
havior at muscle level. In doing so, we first validate the presented modeling ap-
proach with experiments by Herlihy and Murphy (1973) before in a second step the
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Table 5.1 Material parameters for porcine carotid artery tissue. As the media and the adventitia
exhibit a certain amount of elastin and collagen, the mechanical behavior of these two constituent
is described by Eqs. (5.14) and (5.16), respectively. In order to distinct between the appropriate
material parameters, upper indexes have been used, med = media and adv = adventitia

Parameter Value Unit Reference

Media

s1 1247.6 kPa Herlihy and Murphy (1973)

s2 2.0 – Herlihy and Murphy (1973)

κ 291.0 kPa Herlihy and Murphy (1973)

λmax 1.248 – Herlihy and Murphy (1973)

Θmed
s,1/2 ±4.5 ° Herlihy and Murphy (1973)

fmed
s,1/2 0.5 – Herlihy and Murphy (1973)

cmed
1 23.7 kPa Herlihy and Murphy (1973)

cmed
2 1.7 – Herlihy and Murphy (1973)

Θmed
c,i cp. Fig. 6 in ° Dahl et al. (2007)

fmed
c,i cp. Fig. 6 in – Dahl et al. (2007)

μmed
e 7.0 kPa Herlihy and Murphy (1973)

Adventitia

cadv
1 4.74 kPa Wang et al. (2006)

cadv
2 1.7 – Wang et al. (2006)

Θadv
c,1/2/3/4 0/−45/45/90 ° chosen

f adv
c,1/2/3/4 0.25/0.25/0.25/0.25 – chosen

μadv
e 0.7 kPa Wang et al. (2006)

Table 5.2 Material parameters needed for the calcium diffusion inside the SM tissue

Parameter Value Unit Reference

KCaCaM 178.0 nMol Yang et al. (2003a,b)

α 35 · 10−6 – Arner (1982)

diso 4.0 · 10−3 mm2/s chosen

daniso 0.0 mm2/s chosen

dependence of the chemical activation on the contraction characteristics has been
studied. If not otherwise specified, the material parameters listed in Tables 5.1 (me-
chanical parameters) and 5.2 (parameters for the calcium diffusion) are used for the
following simulations.
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Fig. 5.2 Model validation using experimental data by Herlihy and Murphy (1973) obtained from
medial strips (Θstrip = 85.5◦): (a) force-stretch response from experiment and model and (b) results
of the finite element simulation. Deformed shape and von Mises stress distribution at λstrip = 1.2

5.3.1 Model Validation

For the model validation active and passive tension experiment performed on
porcine medial strips (Herlihy and Murphy, 1973) have been used, see Fig. 5.2(a).
Following the experimental protocol, the porcine strips have been completely acti-
vated so that a temporally converged contraction process is existent. Two main ori-
entations (Θs,1/2 = ±4.5◦) of SMC layers with equal SMC fractions (fs,1/2 = 0.5)
have been measured. Strips with dimensions h/w/t = 8.0/1.3/1.0 mm have been
dissected along the SMCs alignment, namely Θstrip = 85.5°. According to the ex-
perimental boundary conditions in Herlihy and Murphy (1973) we approximate
them by fixing both ends of the strip in all directions. For the collagen dispersion of
porcine, medial tissue experimental data by Dahl et al. (2007) have been used. The
values for the rate constants of the chemical model have been taken from Hai and
Murphy (1988) as these are rooted on data obtained by Singer and Murphy (1987)
investigating swine tissue as well. Hence, a consistent parameter set is created, see
Table 5.1.

Figure 5.2(a) indicates that the proposed model accurately captures the force-
stretch behavior. As the tissue strip is aligned with the loading direction in the strips
long axis high stress values can be identified, see Fig. 5.2(b).

5.3.2 Muscle Tissue Strip

In order to show the ability of the model a three-dimensional tissues example, dis-
sected from vessels is used, see Fig. 5.3. The strip is characterized by two layers,
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Fig. 5.3 Porcine tissue strip
dissected from an artery. The
strip has the dimensions
l/w/ta/tm = 3.0/3.0/0.1/0.1 mm

the contractible media (tm = 0.1 mm, light grey) and the adventitia (ta = 0.1 mm,
dark grey). In the proposed example we are interested in the tissue response when a
completely deactivated strip with an extracellular calcium concentration being ini-
tially zero is exposed to an environment with an external calcium concentration of
[Ca2+] = 500 mMol. This example is closely related to the experimental work of
Arner (1982).

In order to analyze the contraction process the main variables, i.e. the calcium
concentration [Ca2+], the chemical concentrations (nC + nD), and the equivalent
von Mises stress σvM have been tracked during contraction. In doing so, Fig. 5.4
illustrated the results for four discrete time steps t = 10/30/80/250 s. Focusing on
the calcium concentration (first line) a converged state is achieved in dependence on
the choice of the diffusion coefficients, here this situation occurs at time t = 80 s.
The chemical states (nC + nD) in the second line display a small delay with respect
to the calcium concentration, see, e.g., at time t = 30 s. Also here, the converged
state arises after 80 seconds. In the third line the distribution of the equivalent von
Mises stress is illustrated. Small stresses can be detected for the first time step (10 s).
As the media differs from the adventitia by a higher stiffness also the stress values
a higher. This is impressively documented at time t = 30 s where the maximum
stress is achieved. The stress increases continuously until at 80 seconds a decrease
can be observed. During further activation the stress again increases. Focusing on
the overall deformation of the strip a clear bending deformation can be seen that
continuously increases. This bending arises from the fact that the layers are aligned
asymmetrical and that the media contracts, only.
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Fig. 5.4 Progress of the main variables [Ca2+], (nC +nD), and σvM during SM contraction. For the
sake of clarity the deformed strip has been cut virtually, so that the distribution of the appropriate
variables can be identified

5.4 Conclusion

In this work, a monolithic coupled two field approach for the chemomechanical pre-
diction of smooth muscle contraction has been developed and implemented into the
framework of the finite element method. The strain-energy function of the mechani-
cal model consists of three parts associated with the constituents inside a SM tissue.
The chemical part has been represented using the four state model by Hai and Mur-
phy (1988) triggered by the dynamic state of the calcium concentration inside the
muscle.

It has been shown that the model shows an excellent agreement with experimen-
tal data. As the model is implemented into the finite element method it is possible
to study the deformation behavior of SM contraction in a three-dimensional way.
In doing so, deactivated tissue strips have been virtually loaded by an external cal-
cium concentration, leading to a diffusion of the calcium trough the strip. As two
layers, the media and the adventitia, have been considered the strip’s deformation is
dominated by a bending mode what seems to be a reasonable result.

We conclude by noting that such class of models in combination with the realis-
tic three-dimensional SM geometries may provide significant contributions for the
understanding, identification and treatment of SM activation.
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Chapter 6
Modeling of Smooth Muscle Activation

Jonas Stålhand, Anders Klarbring, and Gerhard A. Holzapfel

Abstract Smooth muscle contraction is governed by a complex chain of events in-
cluding both mechanical and electrochemical stimuli such as stretch and calcium ion
concentration. A homogeneous model for smooth muscle contraction is derived in
this paper by using a continuum thermodynamical framework. The model is based
on an additive decomposition of the deformation, and balance laws for the mechan-
ical and electrochemical scales are obtained using the principle of virtual power.
Constitutive equations are derived by applying the dissipation inequality, and a first-
order kinetic model for the chemical state of myosin and standard linear or nonlin-
ear mechanical models for the tissue are introduced. The constitutive equations also
provide couplings between the scales. The model includes experimentally observed
features like stretch dependent active force generation and hyperbolic relation be-
tween shortening velocity and afterload. The model is applied to an experimentally
relevant example to illustrate its potential.

6.1 Introduction

Smooth muscle cells are abundant throughout the human body and are found in
hollow organs like the arteries, iris of the eye, gastrointestinal tract, and the urinary
bladder. The main task for smooth muscles is to provide structural integrity and to

J. Stålhand (�) · A. Klarbring
Division of Mechanics, Linköping Institute of Technology, 581 83 Linköping, Sweden
e-mail: jonas.stalhand@liu.se

A. Klarbring
e-mail: anders.klarbring@liu.se

G.A. Holzapfel
Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology,
Kronesgasse 5-I, 8010 Graz, Austria
e-mail: holzapfel@tugraz.at

G.A. Holzapfel
Department of Solid Mechanics, School of Engineering Sciences, Royal Institute of Technology
(KTH), Osquars Backe 1, 100 44 Stockholm, Sweden

G.A. Holzapfel, E. Kuhl (eds.), Computer Models in Biomechanics,
DOI 10.1007/978-94-007-5464-5_6, © Springer Science+Business Media Dordrecht 2013

77

mailto:jonas.stalhand@liu.se
mailto:anders.klarbring@liu.se
mailto:holzapfel@tugraz.at
http://dx.doi.org/10.1007/978-94-007-5464-5_6


78 J. Stålhand et al.

allow for active regulation of geometrical or mechanical properties. For example,
arterial smooth muscle is known to contract in connection with acutely lowered
blood pressure. This response is believed to work as a first line of defense restoring
the transmural strain distribution and flow-induced shear stress back towards their
homeostatic values (Rachev and Hayashi, 1999). Further, smooth muscle maintain
a constant contraction in arteries. This basal tone together with the residual stress
has been hypothesized to reduce the transmural stress gradient leading to a more
uniform stress distribution (Humphrey and Wilson, 2003).

The muscle contraction is controlled by a complex chain of electrochemical
events involving depolarization of the cell membrane, binding of calcium ions to
calmodulin, phosphorylation of light myosin chains and ultimately formation of
cross-bridges between actin and myosin filaments. Most of the myosin undergoes
a continuous cross-bridge cycling where phosphorylated myosin heads attach actin,
perform a force-related power stroke, and finally detach actin. It is the combined
effect of all these cross-bridge cycles that generates active force and contraction.
In addition to these electrochemical processes, mechanics also impact on the force
generation, e.g., stretching the cell increases the phosphorylation rate and causes
a sensitization with respect to the calcium ion concentration. This clearly shows
that a reasonably complete smooth muscle model must be multi-scale and include
properties from both the electrochemical and the mechanical scales.

Relatively few studies have modeled smooth muscle. Among the exceptions are
studies by Gestrelius and Borgström (1986), Rachev and Hayashi (1999), Humphrey
and Wilson (2003), and Yang et al. (2003). The models in these studies are based on
experimental evidence and many constitutive equations are stated intuitively. For ex-
ample, in Rachev and Hayashi (1999) and Humphrey and Wilson (2003), the effect
of smooth muscle contraction is modeled by adding an active stress to the constitu-
tive equation. This active stress has the form t0fλfCa2+ , where t0 is the maximum
isometric stress, fλ ∈ [0,1] describes the bell-shaped stretch dependence associated
with the filament overlap, and fCa2+ ∈ [0,1] is the calcium ion dependent activa-
tion level. Although this additive technique is both simple and flexible, it has some
issues associated with it. First, the absence of a detailed kinematic description for
smooth muscle contraction may lead us to believe that the stretch dependence ob-
served in experiments is associated with the total stretch. A more detailed kinematic
analysis, see, e.g., Stålhand et al. (2008) and Murtada et al. (2010), suggests that
the total stretch should be decomposed into two pars: a filament translation and a
stretching of myosin heads. With this decomposition it makes more sense to take
the stretch dependence to be a function of the filament translation rather than the
total stretch. Second, the coupling of the electrochemical and mechanical subprob-
lems is made ad hoc and non-intuitive terms are easily overlooked, see Stålhand
et al. (2008). By deriving the model in a continuum thermodynamic framework,
this risk is minimized since couplings are implicitly given in the model. In addi-
tion, the continuum thermodynamic framework also give constraints on the consti-
tutive equations which guarantee smooth muscle contraction to be dissipative. This
is not guaranteed when adding extra terms to the constitutive equation but must be
checked for each case. Third, to guarantee a physically reasonable behavior such as
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frame-indifference and stress monotonicity, the model must satisfy objectivity and
rank-one convexity. These condition may impose restrictions on the validity of the
model, see Ambrosi and Pezzuto (2011).

In the proceeding sections, we will show how models for smooth muscle contrac-
tion can be derived by applying fundamental laws from mechanics and thermody-
namics. The ideas presented herein are based on the works by Stålhand et al. (2008,
2011) and Murtada et al. (2010, 2012).

6.2 Continuum Model for Smooth Muscle Contraction

Contraction of smooth muscle is a coupled mechanical-chemical process. The con-
traction is intimately associated with two proteins: actin and myosin filaments. Un-
like striated muscles, actin and myosin filaments are more smoothly organized and
lacks the highly regular pattern evident in, e.g., skeletal muscles. Actin filaments
span between anchoring points in the cell, usually referred to as dense bodies, with
myosin filaments arranged along the actin (Alberts et al., 2008). Phosphorylated
myosin can interact with actin through the head region of the myosin molecule
which attaches to actin, forms strong bonds, or cross-bridges, and perform a power
stroke which translates the filaments relative to each other (Alberts et al., 2008).
After the power stroke, the myosin head can release actin and the cross-bridge cycle
starts over again.

The continuum mechanical model starts by defining a mechanical element for the
smooth muscle reflecting the physiological structure described above. The element
has two sub-elements: a contractile unit and a parallel spring. The contractile unit
comprises a friction clutch and a serial spring, see Fig. 6.1. The friction clutch rep-
resents the combined effect of all myosin heads exerting force on actin during the
power stroke while the serial spring represents the elasticity of the myosin heads.
There is evidence that filaments themselves may not be regarded as rigid structures
and should, therefore, be included in the serial spring (Edman, 2009). Notwithstand-
ing these evidence, we will assume the elastic deformation to be concentrated to the
cross-bridges for simplicity. The second sub-element is a parallel spring which rep-
resents passive structures inside or outside the muscle cell, e.g., the cytoskeleton or
connective tissue.

6.2.1 Myosin Kinetic Law

As indicated above, myosin must be both attached to actin and phosphorylated
for the muscle to generate active contraction. It is, therefore, necessary to know
the state of myosin. A simple but widely used model for this purpose was sug-
gested by Hai and Murphy (1988). Therein, four discrete myosin states are in-
troduced, namely, unphosphorylated and unattached myosin (A), phosphorylated
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Fig. 6.1 The mechanical
element for the smooth
muscle comprising a
contractile unit and a parallel
spring. The reference length
of the element is L (top). The
filaments are first translated a
distance −uft in the figure by
the friction clutch (middle)
followed by an extension of
the cross-bridges a distance
ucd (bottom)

and unattached myosin (B), phosphorylated and attached myosin (C), and dephos-
phorylated and attached myosin (D). Because myosin must be attached to actin to
generate force, only the states C and D are associated with force generation. The
difference is that the myosin heads in state C undergo the cross-bridge cycle and
generate force through the power stroke while myosin heads in state D are believed
to be non-cycling and work as passive springs resisting extension. The latter state is,
therefore, often referred to as the ‘latch state’. The transformation between the four
myosin states is given by a first-order kinetic model (Hai and Murphy, 1988),

d

dt

⎡

⎢⎢
⎣

nA
nB
nC
nD

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

−k1 k2 0 k7
k1 −k2 − k3 k4 0
0 k3 −k4 − k5 k6
0 0 k5 −k6 − k7

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

nA
nB
nC
nD

⎤

⎥⎥
⎦ , (6.1)

where nA, nB, nC, and nD are the fractions of myosin in the states A, B, C, and D,
respectively, and k1, . . . , k7 are reaction rates. Since the myosin states are given as
fractions, their sum must equal one, i.e.,

nA + nB + nC + nD = 1. (6.2)

The reaction rates k1 and k6 in Eq. (6.1) control the phosphorylation of myosin. The
phosphorylation is governed by a complex chain of events (Alberts et al., 2008) but
is ultimately dependent on the intracellular calcium ion concentration in a sigmoid-
shaped manner, see Arner (1982). This behavior can be modeled by taking the rate
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constants to be (Murtada et al., 2012)

k1 = k6 = η q4

q4 + q4
1/2

, (6.3)

where q is the intracellular calcium ion concentration, η > 0 is a constant and q1/2
is the half-activation concentration.

6.2.2 Kinematics

The model presented herein is confined to homogeneous deformations and the
smooth muscle contraction is, therefore, considered to be along a well-defined direc-
tion. For a fully three-dimensional smooth muscle contraction model, the interested
reader is referred to Stålhand et al. (2011).

The active contraction is modeled as an additive two-step process. The first step is
a filament translation uft where the friction clutch displaces actin along the myosin,
and the second step is an elastic deformation ucd of the cross-bridges. Note that the
filament translation introduces an incompatibility in the strain field, indicated by the
gap in the middle panel in Fig. 6.1. This incompatibility arises because it is assumed
that the filament translation occurs without deforming the elastic springs. This has
little significance here and compatibility is restored by stretching the cross-bridges.
For three-dimensional contraction, however, the incompatibility becomes essential,
see Stålhand et al. (2011).

If the reference length is taken to be L, the deformed length is given by l =
L+ uft + ucd and the total stretch can be obtained by dividing l by L giving

λ= 1 + εft + εcd, (6.4)

where εft = uft/L and εcd = ucd/L. Note that εft is defined to be negative in con-
traction. The time derivative of Eq. (6.4) gives the deformation rate

λ̇= ε̇ft + ε̇cd, (6.5)

where the superscribed dot denotes time derivative. Because of the side-polar ar-
rangement of myosin heads (Xu et al., 1996), the power stroke can only generate
contraction. Consequently, the friction clutch disc always rotates counter-clockwise
in Fig. 6.1 and the velocity at the perimeter must be negative. The absolute value of
the perimeter velocity ν must be non-negative, however.

6.2.3 Balance Laws

The balance laws are derived using the principle of virtual power as stated by Ger-
main (1973). The method is based on defining virtual velocity fields and assigning
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power conjugated thermodynamic forces to these fields. By requiring the internal
and external virtual powers to be equal and using the arbitrariness for the virtual
velocity fields, balance laws can be obtained for very general situations where a
classical free-body diagram will fail.

The virtual velocities in this model are taken to be δλ, δεft, δν, δn, and δq ,
where n = (nA, nB, nC, nD) and δ(·) denotes the virtual velocity of (·). Using these
velocities, we state the internal virtual power as

P̂int = Tpδλ+ Tcdδεcd + Tft(δεft + δν)+ Tqδq, (6.6)

where Tp is the stress in the parallel spring, Tcd is the elastic stress in the cross-
bridges, Tft is the stress associated with the friction clutch, and Tq is the internal
force power conjugate with the calcium ion flux. The virtual velocity term δεcd in
Eq. (6.6) is not an independent virtual velocity, as is clear from Eq. (6.5). It is merely
introduced for convenience since it describes the strain rate associated with cross-
bridge deformation. Furthermore, the term δεft + δν is the relative velocity between
the friction clutch disc and actin and is, therefore, the velocity power conjugate
with Tft. Next, we define the external virtual power to be

P̂ext = tδλ+ tftδν + tqδq, (6.7)

where t is the external force applied to the system, and tft and tq are the thermody-
namic forces power conjugate to δν and δq , respectively. The second term on the
right-hand side in (6.7) is the external power supplied to drive the friction clutch.

Setting Eqs. (6.6) and (6.7) equal and using the arbitrariness of the virtual veloc-
ity fields, we arrive at the force equilibrium equations

t = Tp + Tcd, Tcd = Tft, tft = Tft, (6.8)

and an auxiliary equation for the electrochemical equilibrium

tq = Tq. (6.9)

The result above demonstrates the advantage of the virtual power method over the
classical force equilibrium approach. Equations (6.8) can be obtained from a force
equilibrium, but (6.9) cannot be obtained that way; it requires the electrochemical
problem to be considered separately.

6.2.4 Constitutive Equations

With the kinematics and balance laws defined, it is time to focus on the constitutive
equations. These equations are derived by applying the dissipation inequality which
states that the free energy ψ must satisfy

ψ̇ ≤ Pint, (6.10)
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for all admissible evolutions of the state variables. The term Pint in Eq. (6.10) is the
internal power obtained by replacing the virtual velocities in Eq. (6.6) for their real
counterparts. Following Stålhand et al. (2008) we take the free energy to be given
by

ψ =ψp(λ)+ f (εft)ψ
cb(εcd,n)+ψq(q)+

D∑

i=A

ψn(ni), (6.11)

where ψp is the strain energy stored in the parallel spring, ψcb is the free energy
for the cross-bridges, ψq and ψn are the free energies associated with the calcium
ion concentration and myosin states, respectively, and f ∈ [0,1] describes the strain
dependence of the force generation due to filament overlap. Replacing the virtual ve-
locities in Eq. (6.6) for their true counterparts and substituting the result into (6.10)
together with Eqs. (6.5) and (6.11), gives, after some rearrangement of the terms,

(
Tp + Tcd − ∂ψp

∂λ
− f ∂ψ

cd

∂εcd

)
λ̇+

(
−Tcd − ∂f

∂εft
ψcb + f ∂ψ

cd

∂εcd

)
ε̇ft

+ Tft(ε̇ft + ν)+
(
Tq − ∂ψq

∂q

)
q̇ −

(
f
∂ψcb

∂n
+ ∂ψn

∂n

)
· ṅ ≥ 0, (6.12)

where the dot denotes a scalar product. Assuming the first and fourth terms in
Eq. (6.12) to be non-dissipative gives

t = ∂ψp

∂λ
− f ∂ψ

cd

∂εcd
, (6.13)

and

tq = ∂ψq

∂q
, (6.14)

where Eqs. (6.8) have been substituted. Back-substitution of Eqs. (6.13) and (6.14)
into (6.12) gives the reduced dissipation inequality

(
−Tcd − ∂f

∂εft
ψcb +f ∂ψ

cd

∂εcd

)
ε̇ft +Tft(ε̇ft +ν)+

(
f
∂ψcb

∂n
+ ∂ψ

n

∂n

)
· ṅ ≥ 0. (6.15)

To guarantee that energy dissipates during contraction, first assume the stronger
condition that each term in Eq. (6.15) satisfies the inequality, i.e., is greater than
zero. Second, take the friction clutch stress to be

Tft =
{
nCμf (ε̇ft + ν), if ε̇ft ≤ 0,

nCμf (ε̇ft + ν)+ nDμf ε̇ft, if ε̇ft > 0,
(6.16)

where μ> 0, and the factors nCμf and nDμf may be thought of as friction coeffi-
cients. Equation (6.16) is inspired by the contractile force in Murtada et al. (2010)
and it is assumed that only cycling cross-bridges contribute to the force generation,
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in contrast to extension, where both cycling and latched cross-bridges contribute to
the force generation. Third, substituting Eqs. (6.8)2 into (6.15) and taking the first
term to be linear in ε̇ft, gives

−Tft − ∂f

∂εft
ψcb + f ∂ψ

cd

∂εft
= gε̇ft, (6.17)

where g ≥ 0 is a function. Equation (6.17) constitutes an evolution law from which
εft can be computed. Finally, for the third term in Eq. (6.16), define

∂ψcb

∂n
+ ∂ψn

∂n
− r1 = Kṅ, (6.18)

where 1 = (1,1,1,1), r is an arbitrary Lagrangian multiplier introduced to satisfy
the constraint in Eq. (6.2), and K is a four-by-four positive definite matrix. Note that
the term −r1 disappears when Eq. (6.18) is substituted in (6.15) because 1 · ṅ = 0 by
Eq. (6.2). On closer inspection, the structure of Eq. (6.18) is reminicent of the kinetic
evolution law by Hai and Murphy in Eq. (6.1), although the former is nonlinear. It
is possible to recover Eq. (6.1) by linearizing the left-hand side of Eq. (6.18) around
the experimental stretch in Hai and Murphy (1988) and choosing ψcb to be linear
in n, see Stålhand et al. (2008). After some straightforward but non-trivial steps, the
result reads

d

dt

⎡

⎢⎢
⎣

nA
nB
nC
nD

⎤

⎥⎥
⎦= [k1 k2 k3 k4 ]

⎡

⎢⎢
⎣

nA
nB
nC
nD

⎤

⎥⎥
⎦ , (6.19)

where km (m= 1,2,3,4) are the column vectors

k1 = η1
[−k1, k1, 0, 0

]T
, k2 = η2

[
k2, −k2 − k3, k3, 0

]T
,

k3 = η3
[

0, k4, −k4 − k5, k5
]T
, k4 = η4

[
k7, 0, k6, −k6 − k7

]T
,

(6.20)
where a superscribed T denotes the transpose and ηm = am(λ− λHM)+ 1, where
λHM is the stretch at which the experiments in Hai and Murphy (1988) are per-
formed, see Stålhand et al. (2008). Note that the column vectors in Eq. (6.20) are
equal to the column vectors in Eq. (6.1) when λ= λHM.

In summary, the model presented is governed by Eq. (6.13) for the external stress,
Eq. (6.14) for the calcium ion concentration, Eqs. (6.16) and (6.17) for the evolu-
tion of εft, and (6.19) for the myosin transformation. The unknowns variables in the
model are λ, εft, n, t , and tq . In order to proceed, we must specify the model struc-
ture, i.e., what is considered as input and output. Further, we must also particularize
the free-energy functions, μ, ν, and g. This will be exemplified in the next section.
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6.3 A Numerical Example

In this section we describe a model tailored to simulate a type of smooth muscle
experiment described in Arner (1982). Briefly, strips of skinned smooth muscles
are stimulated in an open organ bath and contract isometrically at the optimal force
generating length. The contraction is elicited by adding chemicals to the bath and
the specimen is allowed to contract for three minutes after which it relaxes for seven
minutes in a normalizing bath. This process is repeated several times. For this ex-
periment, the model inputs are the isometric stretch and calcium ion concentration
while the output is the total stress. The isometric stretch is taken to be λ= 1.5 and
the calcium ion concentrations are taken to be 100 nM and 350 nM for the nor-
malizing and contracting baths, respectively, see Murtada et al. (2012). Further, we
assume λHM = 1.5 and am = 1 in Eq. (6.20) to be consistent with the model in the
same reference. All computations are summarized in Algorithm 6.1.

Algorithm 6.1 Given a stretch λ(t) and the calcium ion concentration q(t)

Step 1. Compute consistent initial conditions at isometric conditions

Step 1a. Set ṅ = 0, ε̇ft = 0 and f = 1
Step 1b. Compute n(0) from the null space of the matrix in Eq. (6.19)
Step 1c. Compute εft(0) from Eq. (6.17)
Step 1d. Set εft,0 = εft(0)

Step 2. For each time step k, compute

Step 2a. ṅ(k) from Eq. (6.18), and
Step 2b. ε̇ft(k) by using Eqs. (6.16) and (6.17)
Step 2c. Compute n(k + 1) and εft(k + 1) using a time-stepping

scheme
Step 2d. Compute the total stress t (k) from Eq. (6.13)

The passive free-energy function is taken from Murtada et al. (2012), i.e.

ψp = c0

2

(
λ2 + 2λ−1)+ c1

2c2

{
exp
[
c2
(
λ2 − 1

)2]− 1
}
, (6.21)

where c0, c1, c2 > 0 are constants. Equation (6.21) is derived by specializing the
three-dimensional strain energy proposed in Holzapfel et al. (2000) to a uniaxial
extension case. For cross-bridges, assume the free energy to be

ψcb = nC + nD

2
Eε2

cd, (6.22)

where E is the stiffness of the cross-bridges. The free energy in (6.22) gives a linear
stress response in εcd which has been observed for cross-bridges in striated muscles
using extremely small steps in quick-release experiments (McMahon, 1984).



86 J. Stålhand et al.

Table 6.1 Constants used in
the numerical example Constant Value Unit Reference

k2 9.76 s−1 Murtada et al. (2012)

k3 4.00 s−1 Murtada et al. (2012)

k4 0.05 s−1 Murtada et al. (2012)

k5 9.76 s−1 Murtada et al. (2012)

k7 0.002 s−1 Murtada et al. (2012)

η 21.55 s−1 Murtada et al. (2012)

q1/2 0.37 µM Murtada et al. (2012)

c0 0.84 kPa Murtada et al. (2012)

c1 3.15 kPa Murtada et al. (2012)

c2 0.035 Murtada et al. (2012)

E 5300 kPa Murtada et al. (2012)

σ 0.25 see text

μ 6800 kPa see text

ν 0.03 s−1 Murtada et al. (2012)

b 5.0 s−1 see text

The free energy for the calcium ion concentration is take to be the simplest
form which allows for direct control of the intracellular calcium ion concentration,
namely,

ψq = 1

2
q2. (6.23)

Note that the factor 1/2 is not dimensionless but takes on the appropriate unit for ψq

to be in Joule. The overlap function f must also be defined. It is generally reported
to be bell-shaped (Rachev and Hayashi, 1999) or parabolic (Murtada et al., 2012)
and, for simplicity, we take it to be the normal distribution

f = exp
[−(εft − εft,0)

2/
(
2σ 2)], (6.24)

where εft,0 is the strain at optimal force generation and σ > 0 is the width of the nor-
mal distribution taken to be 0.25. Finally, the constants ν and μ and the function g
in Eq. (6.17) remains to be specified. To that end, assume ν to be the maximal short-
ening velocity for the smooth muscle and take it to be 0.03, see Fig. 9 in Murtada et
al. (2012). This assumption is motivated by Eq. (6.16) since ε̇ft = −ν is the maximal
contraction velocity for which the friction clutch generates a contraction force. To
determine μ, note that ε̇ft = 0 in stationary isometric experiments and Eq. (6.16)1

becomes nCμνf . By comparing this result with Eq. (20) in Murtada et al. (2012)
and substituting ν, the value for μ can be computed to be 6800 kPa. Finally, take
the function g to be

g = f

b

∂ψcb

∂εcb
, (6.25)
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Fig. 6.2 Results from the
numerical example. Only two
pulses are shown in the
interest of space. Top panel:
calcium ion concentration
(solid line) and isometric
stretch (dashed line) inputs.
Second panel form top:
myosin fractions for states nC
(solid line) and nD (dashed
curve). Third panel form top:
active filament translation
strain εft. Bottom panel:
resulting stress t

where b = 5. This choice allows us to recover the same parabolic form for the evo-
lution of εft as for the shortening velocity in Hill’s equation, see Remark 6.1.

All constants used in this example are listed in Table 6.1 and the results are shown
in Fig. 6.2. The most notable result is the rapid transformation of myosin from state
C to state D when the muscle relaxes (second panel, 4–11 minutes). From an energy
point of view this is an efficient behavior. The majority of energy consumption is
associated with cycling cross-bridges, i.e., states B and C, and the transformation
allows the muscle to maintain a basal tone at low energy cost. Finally, εft in the
third panel undergoes a rapid shortening when the muscle is activated (at 1 and 11
minutes). The shortening takes about 10 s and has an exponential decay although
it is difficult to see in the graph. This is in qualitative agreement with experimental
studies, see, e.g., Arner (1982). If a better agreement is sought, a nonlinear parame-
ter identification can be used to tune the model to experiments, but it is outside the
scope of this paper. The interested reader is referred to Stålhand et al. (2008, 2011).

Remark 6.1 In quick-release experiments, smooth muscle show the same parabolic
relation between shortening velocity and afterload as skeletal muscle, see Arner
(1982). This parabolic relation is also known as Hill’s equation and is given by

V = bT
′ − T0

T ′ + a , (6.26)

where V is the shortening velocity, T ′ and T0 are the isometric stress and after-
load, respectively, and a and b are constants. Note that the order of the terms in the
nominator is shifted relative to the classical definition since contraction is defined
as negative herein. Since the model presented herein uses stress and strain rather
than force and velocity, V is replaced by λ̇ in Eq. (6.26). Following Murtada et al.
(2012), we choose to specialize the evolution law in Eq. (6.17) such that it has the
same functional form as Eq. (6.26) under the assumption of negligible stress con-
tribution from the parallel spring in Fig. 6.1. First, since Hill’s equation applies to
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contraction, substitute Eq. (6.16)1 in (6.17) and rearrange the terms to have

(g + nCμf )ε̇ft = f ∂ψ
cb

∂εft
− nCμf ν. (6.27)

The first term on the right-hand side can be interpreted as the stress measured in
isotonic experiments and is, hence, associated with the constant afterload. The sec-
ond term is the isometric force generated by the muscle which is obtained by setting
ε̇ft = 0 in Eq. (6.16)1. Second, introduce T0 = nCμf ν and T ′ = f ∂(ψcb)/∂εcb for
the isometric stress and afterload, respectively, and take a = nCμf/b and g = T ′/b.
Finally, if the deformation rate in the cross-bridges ε̇cd is assumed to be negligible
after the elastic recoil, an initial step-like contraction following the quick release,
Eq. (6.5) gives that ε̇ft can be replaced by λ̇ (McMahon, 1984). Equation (6.27),
therefore, has the same functional form as Hill’s equation.

6.4 Discussion

In this paper we have exemplified how a thermodynamically consistent model can be
derived using a very general continuum thermodynamic framework. Despite the in-
creased complexity, the model has several advantages compared to the models men-
tioned in Sect. 6.1. First, it has a clear kinematic description which is a cornerstone
in any mechanical model, and particularly so for active materials. By considering an
additive decomposition of the deformation, the model distinguishes between defor-
mations associated with filament translation and force generation, i.e., cross-bridge
deformation. This higher resolution allows for a model which is closer to the real
physiological situation inside the muscle cell. Second, it has derived couplings be-
tween the electrochemical and the mechanical scales as can be seen in Eq. (6.16) or
(6.20), for example. These coupling are still introduced intuitively to some extent in
the free energies, but the kinematic analysis and the dissipation inequality restricts
the number of appropriate choices for the free energies considerably.

The model presented in the previous sections is homogeneous and only accounts
for muscle contraction along one direction. This is not as restrictive as may ap-
pear at first glance, however. Even though contractile units are less organized in a
smooth muscle cell than in other muscle cells, they still have a preferred direction
and a certain dispersion around this direction, see Walmsley and Murphy (1987).
It is, therefore, possible to extend the smooth muscle model to three dimensions
by considering λ to be the stretch along the preferred direction and include a fiber
dispersion. The interested reader is referred to Murtada et al. (2010) for more infor-
mation.

To show the parabolic behavior of the evolution law for εft, it was assumed that
the stress in the parallel spring was negligible. For skeletal muscle this is an accept-
able assumption (McMahon, 1984) since passive structures are, generally, recruited
further down on the descending portion of the bell-shaped function f . For smooth
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muscle, this is not the case. Passive structures are recruited earlier and have a sig-
nificant contribution to the isometric stress, see, e.g., Dobrin (1973). Nevertheless,
smooth muscles still satisfy Hill’s equation, see Arner (1982), and it makes sense to
use Eq. (6.26) as an evolution law for εft. Note that the constants a and b in Hill’s
equation are not arbitrary, however. Only b can be chosen freely since a is defined
by a = nCμf/b.
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Chapter 7
A Cross-Bridge Model Describing
the Mechanoenergetics of Actomyosin
Interaction

Mari Kalda, Pearu Peterson, Jüri Engelbrecht, and Marko Vendelin

Abstract In order to study the mechanical contraction and energy consumption by
the cardiomyocytes we further developed an actomyosin model of Vendelin et al.
(Ann. Biomed. Eng. 28:629–640, 2000). The model is of a self-consistent Huxley-
type and is based on Hill formalism linking the free energy profile of reactions and
mechanical force. In several experimental studies it has been shown that the depen-
dency between oxygen consumption and stress-strain area is linear and is the same
for isometric and shortening contractions. We analyzed the free energy profiles of
actomyosin interaction by changing free energies of intermediate states and acti-
vation of different reactions. The model is able to replicate the linear dependence
between oxygen consumption and stress-strain area together with other important
mechanical properties of a cardiac muscle.

7.1 Introduction

The intracellular environment of heart muscle cells is extensively compartmental-
ized with the several diffusion obstacles possibly separating mitochondria, the main
source of ATP in mammalian heart, from ATPases (Kaasik et al., 2001; Vendelin and
Birkedal, 2008; Sepp et al., 2010; Jepihhina et al., 2011). The compartmentation of
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Fig. 7.1 A schematic
representation of regional
stress-strain trajectory loop.
Stress-strain area (SSA) is the
specific area in the
stress-strain (SS) diagram
surrounded by the
end-systolic SS line, the
end-diastolic SS line and the
systolic segment of the SS
trajectory for contraction
(Delhaas et al., 1994)

the intracellular environment induced by the diffusion obstacles can be changed due
to pathological conditions, such as ischemia or ischemia-reperfusion damage (Kay
et al., 1997; Boudina et al., 2002). The kinetics of actomyosin ATPase, a main con-
sumer of ATP in the cardiomyocytes (Suga, 1990), is also influenced by intracellular
compartmentation as evidenced by strong coupling between creatine kinase and ac-
tomyosin (Ventura-Clapier et al., 1987). Studies of intracellular compartmentation
has benefited from the development of several mathematical models that allowed
us to analyze intracellular diffusion using a 2D (Vendelin et al., 2004) or 3D (Ra-
may and Vendelin, 2009) description of the intracellular environment and suggest
the possible intracellular structures that can lead to compartmentalization of the
cell (Ramay and Vendelin, 2009). However, this analysis so far has been limited to
relaxed cardiomyocytes or fibers with the models taking into account only the en-
dogenous ATPase activity at low calcium concentrations (Saks et al., 2003; Vendelin
et al., 2004; Ramay and Vendelin, 2009; Sepp et al., 2010). To study intracellular
energy fluxes and how they are changed depending on the contraction of the heart,
the development of actomyosin models that are able to link ATPase activity of the
muscle and mechanical performance are vital. Using such models, the changes in
energy transfer pathways induced by variation in workload as demonstrated by 31P-
NMR inversion and saturation transfer experiments (Vendelin et al., 2010) can be
analyzed using mechanistic models.

As an important link between mechanical contraction and ATPase activity of ac-
tomyosin, a linear relationship between pressure-volume area (PVA) and oxygen
consumption of the heart during a single beat has been established experimentally
(Suga, 1990). On a fiber level, the linear relationship between an analog of PVA—
stress-strain area (SSA, see Fig. 7.1)—and oxygen consumption has been estab-
lished (Hisano and Cooper, 1987).

There are several published models that link mechanical contraction and ATPase
activity of actomyosin (Cooke and Pate, 1985; Taylor et al., 1993a,b; Landesberg
and Sideman, 2000; Vendelin et al., 2000; Månsson, 2010; Tran et al., 2010). Several
of these models are based on a Huxley description of the contraction and achieve
thermodynamic consistency by applying Hill formalism (Hill, 1974; Eisenberg et
al., 1980). That formalism involves describing the spatial dimension of cross-bridge
placing and for that partial differential equations (PDE) were used. Solving PDEs is
usually considered to be computationally expensive and for that many cross-bridge
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Fig. 7.2 Scheme of one possible set of free energy profiles and transition trajectory (black solid
line) from state where considered cross-bridge is in the weakly bound state with ATP attached to
myosin to weakly bound state without ATP attached to myosin. G1, G2, x and x1 are parameters,
that are describing the minimum points of free energy profiles for state S1 and S2. These parameters
were found by optimization

models have made the simplification and neglected microscopic details of cross-
bridge population distribution and instead describe it using average cross-bridge cy-
cling governed by ordinary differential equation (ODE) systems. However, we have
demonstrated that it is possible to use a Huxley-type model as a model describing
the contraction in the 3D finite element model of the left ventricle (Vendelin et al.,
2002). As a basis of actomyosin description in a 3D model, we used a model de-
veloped earlier on the basis Hill formalism (Vendelin et al., 2000). In that model,
a linear relationship between SSA and ATP consumption during one beat was repro-
duced together with several other properties of cardiac muscle. Actually, we used a
free energy profile of the actomyosin reaction that had two force producing states
of the cross-bridge at the same displacement configuration. Namely, the free energy
minimum was located at the same position relative to the binding site for the both
force producing states. However, the configuration of the cross-bridge is changed
during the stroke and to incorporate that into the model, the force producing states
should have different free energy minima locations (Eisenberg et al., 1980; Pate and
Cooke, 1989).

The aim of this work is to find the set of free energy profiles, with different
minimum positions for force producing states of the cross-bridge (Fig. 7.2) that
would allow one to replicate the linear dependence between oxygen consumption
and stress-strain area in cardiac muscle. First, we give a short description of the
theoretical formalism developed by Hill that allows us to link mechanical contrac-
tion and chemical energy consumption. Next, the model description and simulation
results are presented.
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7.2 Theoretical Background

According to the sliding filament theory, shortening in sarcomere length during con-
traction is caused by thick and thin filaments sliding along each other. Thick and thin
filaments consist primarily of the protein myosin and actin, respectively. To slide
along, the energy from ATP hydrolysis is used in the interaction between myosin
heads and actin sites. One possibility to connect the energetic and mechanical be-
havior for the contraction process is to use a Huxley-type model and the Hill for-
malism to describe the actin-myosin interaction in a thermodynamically consistent
way. Cross-bridges, as defined by Hill, represent the projection from thick filament,
despite if it is attached or not to actin site (Hill, 1974).

The initial Huxley model involves two biochemical states for cross-bridges: one
state where actin and myosin are not attached (W ) and one where they are attached
(S). The rate constants to describe the transition from one state to the other are func-
tions of the relative distance between the nearest cross-bridge equilibrium position
and actin binding site. In this formalism several assumptions have been made: the
cross-bridge is considered to have only one head and this head has ability to bind
to only one actin site with significant probability. Cross-bridge behavior is assumed
not to depend on other cross-bridge behavior and each cross-bridge can be in differ-
ent biochemical states. The force Fn produced by an attached cross-bridge in bound
state S is assumed to be elastic and depends linearly on the axial distance x along
the myosin and actin filaments between the equilibrium position of the myosin head
and the nearest actin binding site.

According to Hill (1974), the force produced by the cross-bridge at position x is
related to the free energy G in the corresponding state n: Fn = ∂Gn/∂x. Hence the
linear dependency of force on x, leads to a parabolic dependence of the free energy
on x. Such a relationship between mechanical force and free energy links the chem-
ical reactions with mechanics. Namely, the transition between states is described by
forward and reverse rate constants kforward and kreverse, respectively. The ratio be-
tween rate constants is determined by the difference in free energies of biochemical
states. If we consider a reaction between state W and S then the ratio between the
rate constants of the reaction is defined as

kforward

kreverse
= exp

[
−GS(x)−GW(x)

RT

]
, (7.1)

whereR and T are the universal gas constant and absolute temperature, respectively.
It is clear from this relationship that only one of the rate constants can be given at
each x with another one determined by the free energy difference. As there is no
force associated with state W , the free energy for it is not dependent on x. For
values of x, where GS < GW the strongly bound state is thermodynamically more
stable; otherwise the weakly bounded state is favorable.

To describe muscle contraction, we use a kinetic formalism developed by Hill
(1974). In short, it is possible to divide cross-bridges into subensembles according
to the distance x between cross-bridge and the closest actin binding site. The cross-
bridges are in the same subensemble, if the distance is between x and x + dx. For
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the same dx, the number of cross-bridges in subensembles is the same and constant
for any x due to the lack of register between myosin and actin. Assuming that the
cross-bridge can interact only with the closest actin binding site, the state of the
cross-bridges can be described by fractions nj (x, t) giving the fraction of cross-
bridges in state j (j is one ofW , or S for two state model) at time t in subensemble
at x to x + dx. Taking that the distance between actin binding sites is d , fractions
nj (x, t) are defined for x in the interval (−d/2, d/2). At any time t , all cross-
bridges are in one of the two states,

∑
j nj (x, t)= 1. Changes in cross-bridge states

are induced by chemical transition from one state to another or sliding of actin and
myosin filaments relative to each other with the velocity v of sarcomere lengthening.
For example, for state W , this would result in the following governing equation

∂nW

∂t
+ ∂nW

∂x
v(t)= kSWnS − kWSnW , (7.2)

where kWS and kSW are the first order kinetic rate constants for transition from state
W to state S.

The integral properties of the muscle, such as developed stress and ATPase rate
could be found from integration over subensembles (Hill, 1974). The Cauchy stress
σa developed by the cross-bridges in a half-sarcomere is, according to Zahalak and
Ma (1990)

σa = mls

d

[∫ d
2

− d
2

nW(x, t)FWdx +
∫ d

2

− d
2

nS(x, t)FS(x)dx

]
, (7.3)

wherem is the number of cross-bridges in the unit volume and ls is the length of the
half-sarcomere. According to our assumptions FW is zero because only the strong
binding state generates force. Assuming that FS is proportional to x with Hooke
constant K , the stress equation will have the following form

σa = mlsK

d

∫ d
2

− d
2

nS(x, t)xdx. (7.4)

The average cross-bridge ATP consumption rate is

VATP = 1

d

∫ d
2

− d
2

[
kSWnS(x, t)− kWSnW (x, t)

]
dx, (7.5)

leading to the total ATP consumption per cross-bridge during a beat

V beat
ATP = 1

d

∫ Tc

0

∫ d
2

− d
2

[
kSWnS(x, t)− kWSnW (x, t)

]
dxdt, (7.6)

where Tc is the period of a beat.
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Fig. 7.3 Kinetic scheme of
actin and myosin interaction
used in three-state
Huxley-type cross-bridge
model: W is a weakly bound
biochemical state, S1 and S2
are strongly bound states,
where myosin head is able to
generate force

7.3 Methods

7.3.1 Model Description

Our mathematical model of actomyosin interaction is a further development of the
cross-bridge model of Vendelin et al. (2000). This model consists of a three state
Huxley-type model with two strong binding states (S1, S2) and one weak bind-
ing state (W ) for cross-bridge interaction and a model of Ca2+ induced activation
(Fig. 7.3). According to Eq. (7.3), the Cauchy stress σa developed by the cross-
bridges in a half-sarcomere for the considered three state model is

σa = mlsK

d

[∫ d
2

− d
2

nS1(x, t)(x − x1)dx +
∫ d

2

− d
2

nS2(x, t)(x − x2)dx

]
, (7.7)

where x1 and x2 are the minimum positions of free energy profiles for biochemical
states S1 and S2. The cross-bridge attachment and detachment in the muscle fiber
are governed by the following system of equations

∂nS1

∂t
= kWS1nW + kS2S1nS2 − (kS1W + kS1S2)nS1 − v ∂nS1

∂x
, (7.8)

∂nS2

∂t
= ks1S2nS1 + kWS1nW − (kS2S1 + kS2W)nS2 − v ∂nS2

∂x
, (7.9)

nW = A− nS1 − nS2 , (7.10)

where nW , nS1 , nS2 are the fractions of the cross bridges in statesW , S1, S2, respec-
tively, A is the relative amount of activated cross bridges and v is the velocity of
half sarcomere lengthening

v = dls
dt
. (7.11)

The rate constants are constrained as follows:

kWS1

kS1W

= exp

[
−GS1(x)−GW(x)

RT

]
, (7.12)

kS1S2

kS2S1

= exp

[
−GS2(x)−GS1(x)

RT

]
, (7.13)
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kS2W

kWS2

= exp

[
−GW(x)−GS2(x)

RT

]
. (7.14)

To describe the activation of the cross-bridges we use a phenomenological model,
which is able to reproduce the main properties of heart muscle to generate the
stress during the heart beat, which depends on time and the length of the sarcomere
(Jewell, 1977). To activate the contraction, the concentration of Ca2+ changes. For
that we use in the activation model the intermediate state B for reactions between
tropomyosin C and Ca2+

dA

dt
= c1B(1 −A)− c2(ls)

A

Q+A, (7.15)

where c2 is a function of sarcomere length ls , i.e.

c2 = c2MX + c2F
lmax − ls
ls − lmin

, (7.16)

and normalized concentration B is a function of time, i.e.

B =
⎧
⎨

⎩

t ≤ Tp, exp[−( t−Tp
Ta
)2],

otherwise, exp[−( t−Tp
TD
)2].

(7.17)

The symbols c2, c2MX and c2F are rate constants for reactions between tropomyosin
and Ca2+, Q describes the cooperativity for Ca2+ to bind with tropomyosin C
(Tobacman and Sawyer, 1990) and lmax and lmin are the maximum and minimum
lengths of the half sarcomere, respectively. The constant Tp is the time that is needed
to develop maximal contraction and Ta is a time constant. The characteristic time
TD is dependent on the half sarcomere length and is defined as

TD = Td0

(
1 + Td1

ls − lmin

lmax − lmin

)
, (7.18)

where Td0 is a time constant and Td1 is a relative change of the time constant. The
ATP consumption rate during one beat is according to Eq. (7.6)

V beat
ATP = 1

d

∫ Tc

0

∫ d
2

− d
2

[
kS2WnS2(x, t)− kWS2nW(x, t)

]
dxdt. (7.19)

7.3.2 Optimization Strategy

The goal of the optimization process is to find the set of model parameters for a
cross-bridge model which allows us to replicate the experimentally measured linear
dependence of oxygen consumption on SSA. For that we divided the model pa-
rameters into two sets: (a) parameters describing free energy profiles (Fig. 7.2) and
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Fig. 7.4 (A), (B) cross-bridge cycling rates used in the model; (C) free energy profiles found by
optimization of the mathematical model

(b) parameters describing Ca2+—induced activation of the actomyosin complex and
rate constants of the actomyosin complex state transformation reactions.

As a first step in the optimization, (b) parameters were optimized at different sets
of parameters (a) by minimization of the different residual functions. After that, the
best fit was picked out and all (a) and (b) parameters were optimized again. For find-
ing the parameters for describing the rate constants between biochemical states we
predescribed the shape of these functions. The relationship between rate constants
pairs (Eq. (7.1)) declare that only one rate constants from the pair is independent.
The shapes of the functions are shown at the Figs. 7.4(A) and (B).

To obtain the optimal model parameters we considered three fitting protocols.
Simulation for isometric contraction were fitted against experimental data. The max-
imal total stress in isometric contraction was used for fitting the end-systolic points
for isotonic contraction. And the linear relationship between SSA and ATP con-
sumption was fitted against a pre-described linear line for all considered contraction
types.

7.4 Results and Discussion

We considered three different type of contractions: isometric, isotonic and phys-
iological. Under ‘physiologic’ contraction we mean the isotonic contraction until
the minimal half sarcomere length is reached and isometric contraction after that
moment.
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Fig. 7.5 Simulation results performed by mathematical model: (A) isometric contraction as a
function of time at different half sarcomere lengths from 0.95 to 1.1 µm (solid curves) compared
with experimental measurements (crosses) (Janssen and Hunter, 1995); (B) end-systolic curve for
the isometric contractions and the isotonic contraction traces (end of the trace is marked with
the symbol) at different afterloads from 10 to 80 kPa; (C) change in sarcomere length during
the isotonic contraction at different afterloads; (D) total amount of consumed ATP molecules per
myosin head during a cardiac cycle as a function of SSA for isometric (solid curve), isotonic
(dashed curve) and physiologic (dotted curve) contraction

In Fig. 7.5(A) simulation of isometric contraction at different half sarcomere
lengths from 0.95 to 1.1 µm (solid curve) is compared with experimental measure-
ments (crosses) (Janssen and Hunter, 1995). Similar to experimental data, simula-
tion results show that an increase in preload increases the maximal developed force
and the twitch duration.

End-systolic curve for the isometric contractions and the isotonic contraction
traces at different afterloads are compared in Fig. 7.5(B). End-systolic points for
isotonic contraction lie close to the end-systolic curve for isometric contraction,
which is in agreement with several experimental studies.

The isotonic contraction showed in Fig. 7.5(C) are simulated at afterloads from
10 to 80 kPa. To compare the contraction duration at isometric and isotonic con-
traction the duration is shorter in the isotonic case which is also in agreement with
experimental results (Brutsaert et al., 1978).

A linear relationship between ATP consumption and SSA was replicated by our
simulations for all considered contraction types (Fig. 7.5(D)). The linear fit for re-
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lationship between ATP and SSA for isometric contraction is

V beat
ATP = 0.103 + 0.140

(
SSA

m GATP

)
. (7.20)

Taking into account the myosin ATPase concentration of 0.18 mol/m3 (Velden et al.,
1998) and free energy change during ATP hydrolysis of 60 kJ/mol (Gibbs and Bar-
clay, 1995), the contraction efficiency calculated from the slope is 66 %. This value
is in good agreement with experimental data (Suga, 1990), which demonstrates that
the chemomechanical efficiency of cross-bridge cycling is in the range of 60–70 %.

The set of free energy profiles simulated are shown in Fig. 7.4(B). This set in-
volves a configuration chance for cross-bridges during the stroke by having different
free energy minimal location points for two strong binding biochemical states S1 and
S2. It is important to note that the set of parameters found by the optimization may
not be unique. In our work we tried to find cross-bridge rates with as simple shape
as possible to fit the desired data. It is possible to use different functional forms to
describe rate constants and still obtain good results.

7.5 Conclusion

Our mathematical model is able to replicate the classical measurements of SSA and
oxygen consumption dependency. As a result of optimization, the model solution
is in agreement with the behavior of cardiac muscle in isometric and shortening
contractions.
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Chapter 8
Multiscale Skeletal Muscle Modeling:
From Cellular Level to a Multi-segment Skeletal
Muscle Model of the Upper Limb

Oliver Röhrle, Michael Sprenger, Ellankavi Ramasamy, and Thomas Heidlauf

Abstract Modeling the biomechanical behavior of the musculoskeletal system re-
quires a multiscale modeling approach spanning several length and time scales.
Within this paper, two skeletal muscle models are presented. The first model is an
electromechanical skeletal muscle model that couples neurophysiological recruit-
ment principles and electrochemical processes of a sarcomere to the mechanical
behavior of a single skeletal muscle through a multiscale continuum-mechanical
constitutive law. The second model combines principles of multi-body dynamics
and principles of continuum mechanics and the finite element method to achieve the
first three-dimensional forward-dynamics model of a musculoskeletal system. Both
muscle models can be coupled together in future research to obtain an overall skele-
tal muscle model spanning from cellular processes to a musculoskeletal system.
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8.1 Introduction

Dynamic human motion is achieved via the controlled activation of skeletal mus-
cles. Activation of skeletal muscles is consciously initiated through neural impulses
originating by the central nervous system causing skeletal muscles to shorten and/or
to produce force in a controlled fashion. The muscle forces exerted through the
contraction subsequently move the joints to accomplish predetermined tasks. These
tasks are quite often required to take place against the action of external forces.
The outcome of this entire process largely depends on the force-generation proper-
ties of the muscles, the anatomical and physiological features of the skeletal system
and the underlying neuronal control system. To obtain a better understanding of the
principles leading to dynamic motion, mathematical models play a crucial role.

In general, modeling the dynamics of the musculoskeletal system can be cate-
gorized into two methodologies: (i) inverse dynamics and (ii) forward dynamics.
In inverse dynamics, the body motion and external forces are provided to compute
joint forces and moments that produce the observed motion. Information about the
level of activation of the involved muscles is typically not included in simulations
appealing to inverse dynamics. Hence, the motion-based nature of such simulations
provides limited information on the muscles’ (material) behavior (actively contract-
ing skeletal muscles are stiffer than non-activated ones). Without the knowledge of
muscle activity many predictions concerning the mechanical behavior of the muscu-
loskeletal system cannot be investigated. In forward dynamics, skeletal muscles are
selectively activated and the resultant movement is computed. The activation pattern
to achieve a specific target is either guided by a control algorithm, e.g., the λ-model
(equilibrium point hypothesis) by Feldman (1974), or determined by an optimiza-
tion procedure (e.g., Anderson and Pandy, 2001; Pandy, 2001; Erdemir et al., 2007).
The cost function of the optimization needs to be specified to obtain meaningful so-
lutions with respect to specific goals, e.g., energy minimization during walking or
joint stability through co-contraction. The choice of the cost function can be quite
subjective to the researcher’s preference.

The parameters within the cost function depend on the modeling parameters of
the musculoskeletal system, in particular the modeling parameters of the muscular
actuators. In state-of-the-art mechanical skeletal muscle models, the anatomical and
physiological complexity of the muscle is reduced to a few physiological parame-
ters such as the point of origin, the direction of force, the average muscle length and
the physiological cross-sectional area (PCSA). The point of origin, the direction of
force, and the muscle insertion define the line of action (maybe redirected through
via points) of such simplified skeletal muscle models. Hence, such models are often
referred to as one-dimensional (1D) skeletal muscle models. The line of action and
cross-sectional areas are typically obtained by means of magnetic resonance imag-
ing (MRI) or examining cadavers. The magnitude of the exerted muscle forces is
either linearly related to the PCSA (Barbenel, 1974) or obtained by 3-element Hill-
type models (Zajac, 1989; Anderson and Pandy, 2001). The Hill-type models are by
far the most commonly used skeletal muscle models for analyzing movement.

More recently, 3D continuum-mechanical models have been introduced to over-
come the crude simplifications of 1D lumped-parameter models. The advantage
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of continuum-mechanical models is their ability to represent structural aspects
of a muscle’s anatomy. Combined with macroscopic constitutive laws describ-
ing the stress-strain relationship of active and passive skeletal muscle tissue, the
governing equations of finite elasticity, and the Finite Element (FE) method, the
continuum-mechanical models provide new insights into stress and strain distribu-
tions (Blemker et al., 2005), predictions of a muscle’s shape (Johansson et al., 2000;
Oomens et al., 2003; Böl and Reese, 2007) or differences between 3D and 1D skele-
tal muscle models (Röhrle and Pullan, 2007).

Besides the Hill-type and continuum-mechanical models, there exist models that
represent sub-cellular processes. For example, Hodgkin-Huxley-like models (e.g.,
Hodgkin and Huxley, 1952; Shorten et al., 2007) describe the ionic currents and ki-
netics on the (sub-)cellular scale using ordinary differential equations (ODE). Such
models provide further insights into related processes or results of pathological con-
ditions. Bridging the scales between cellular and continuum-mechanical skeletal
muscle models opened recently a new field of modeling the skeletal muscle’s elec-
tromechanical behavior by driving a contraction through muscle recruitment prin-
ciples (Röhrle et al. 2008, 2012; Röhrle, 2010). The first and still only model that
describes the electromechanical behavior of skeletal muscles and accounts for the
unique manner in which skeletal muscles are activated, specifically the fact that
neighboring fibers are electrically isolated and act independently, has been proposed
by Röhrle et al. (2008, 2012) and Röhrle (2010).

However, all studies using state-of-the-art continuum-mechanical models instead
of lumped-parameter models focus on inverse dynamics. No framework that ap-
peals to forward dynamics and principles of continuum mechanics has been pro-
posed so far. The research community investigating the dynamics of the muscu-
loskeletal system is mainly focusing on analyzing motion (gait) and exhibits limited
interest in computationally more expensive but structurally and functionally more
accurate continuum-mechanical models. Considering the already significant com-
putational costs of forward-dynamics simulations with lumped-parameter models,
it is comprehensible that the lumped-parameter models cannot only be replaced by
continuum-mechanical models. Novel and computationally efficient methodologi-
cal approaches need to be developed.

For lumped-parameter models, alternative and cost effective strategies have been
sought to estimate muscle forces. One of these alternative strategies is to use EMG
recordings to predict muscle activity to be used as input in forward-dynamics sim-
ulations. Such EMG-driven forward-dynamics simulations (using rigid-body dy-
namics and lumped-parameter skeletal muscle models) have been proposed, among
other musculoskeletal systems, to investigate elbow motion (Koo and Mak, 2005).
While EMG data can reduce the computational cost and hence support the use of
inverse dynamics within a clinical setting, concerns remain about EMG-driven ap-
proaches, in particular about inaccuracies of linking EMG data to muscle parameters
of lumped-parameter models. The challenge of using EMG data in musculoskeletal
simulations is often related to measuring, processing, and quantifying EMG signals.

The aim of this publication is to present in more detail two different method-
ological approaches of modeling skeletal muscle mechanics spanning from the cel-
lular level, e.g., modeling the electrophysiological properties of a half-sarcomere,
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to movement of a musculoskeletal system. The first methodology focuses in par-
ticular on modeling principles of skeletal muscle motor-unit recruitment to form a
basis to further investigate the use of EMG signals in forward-dynamics simulations.
The second one describes a new methodology to achieve forward-dynamics simu-
lations, when the involved skeletal muscles are represented as three-dimensional
continuum-mechanical models.

8.2 Constitutive Modeling of Skeletal Muscles

The continuum-mechanical models considered in this work are based on solving the
governing equations of finite-elasticity theory using the FE method. Solving for the
mechanical deformation due to skeletal muscle activity or due to a change in the
muscle’s attachment location, i.e. movement of a connected bone, requires the eval-
uation of a stress tensor, e.g., the second Piola-Kirchhoff stress tensor. In continuum
mechanics, a relation between the applied strain and the corresponding stress has
to be provided, which characterizes the behavior of the underlying material. Such
a relation is commonly known as constitutive equation. In general, skeletal muscle
tissue is modeled as a transversely isotropic and incompressible hyperelastic ma-
terial. For hyperelastic materials, the constitutive equation can be derived from a
Helmholtz free-energy function.

Given the ability of skeletal muscles to contract upon an externally induced stim-
ulus, e.g., a nerve signal, the overall mechanical behavior of a skeletal muscle is
typically split into two parts: a passive part describing the mechanical behavior of
the so-called ground matrix of a skeletal muscle, Smatrix, and an active part describ-
ing the contractile behavior of the muscle, Sactive.

The second Piola-Kirchhoff stress tensor used within the theory of finite elasticity
is described herein by

Smuscle = 2
4∑

i=1

∂Ψmuscle(I1, I2, I3, I4, α)

∂Ii

∂Ii

∂C

= c1I + c2(I1I − C)− p√I3C−1
︸ ︷︷ ︸

=: Siso

+
[
σ
ff
pass

I4
f passive(I4)

]
(a0 ⊗ a0)

︸ ︷︷ ︸
=: Saniso

+ α
[
σ
ff
ten

I4
f active(I4)

]
(a0 ⊗ a0)

︸ ︷︷ ︸
=: Sactive

, (8.1)

where Ψmuscle is the Helmholtz free-energy, I1 − I4 are the standard invariants, a0
denotes the local direction of the skeletal muscle fibers, C is the right Cauchy-Green
tensor, I is the identity tensor, σffpass = σfften = 0.03 MPa are the maximal passive
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and active stiffnesses along the fiber direction, p is the hydrostatic pressure, and
α ∈ [0,1] is an internal variable that describes the level of activation. Further, λ=√

a0 · Ca0 is the fiber stretch, and f passive and f active are the normalized force-length
relationships describing, for the active part, the overlap of actin and myosin, and
hence the ability to generate tension through crossbridge dynamics. For the passive
part, f passive describes the nonlinear behavior of the skeletal muscle tissue due to
stretch. The normalized force-length relationships are a common tool to incorporate
the physiological behavior of the fiber stretch in the muscle’s constitutive equation
(e.g., Blemker et al., 2005; Röhrle and Pullan, 2007; Böl and Reese, 2007).

The second Piola-Kirchhoff stress tensor, as defined in Eq. (8.1), forms the basis
for all continuum-mechanical investigations of skeletal muscle mechanics discussed
in this work. In case of modeling the skeletal muscle as an electromechanical-active
tissue, the activation parameter α is replaced by cellular variables (cf. Sect. 8.4).

8.3 The Electromechanical Skeletal Muscle Model

The cellular parameters within the continuum-mechanical model are based on func-
tional and structural characteristics of skeletal muscles. Each skeletal muscle fiber
is connected to an α-motoneuron at the neuromuscular junction at the middle of
the fiber’s length. Each α-motoneuron connects to a number of fibers that are dis-
tributed over some part of a muscle and transfers electrical signals from the central
nervous system to these muscle fibers. Such an electrical signal induces a change in
the membrane potential of the skeletal muscle fibers at the neuromuscular junction
(stimulation). The potential change, referred to as action potential, spreads along the
length of the fiber towards its ends, and induces a number of biophysical processes
in the sarcomeres (basic units of a muscle fiber) eventually leading to a contraction.
Hereby it is important to note that individual muscle fibers are electrically isolated
from each other, i.e. a propagating action potential along one fiber does not induce
an electrical signal in neighboring fibers, but mechanically coupled. To allow such
a setting, in which electrical signals can independently propagate along the length
of specific muscle fibers, one-dimensional structures representing the muscle fibers
(the micro-structure) need to be embedded within the three-dimensional geometrical
representation of the entire skeletal muscle.

For this purpose, a three-dimensional FE model of the tibialis anterior muscle
(TA) has been generated based on the male Visible Human data set (Spitzer and
Whitlock, 1998). Based on a manual digitization process, a tri-quadratic Lagrange
FE representation of the superficial part and the deep part of the TA has been created
using a least-squares fitting process similar to the one described by Bradley et al.
(1997). Particular care was taken to align the ξ1-local coordinate direction of the
FE mesh with the anatomical muscle fiber direction of the TA’s muscle fibers. This
choice of aligning the muscle fibers with a local FE coordinate direction eased the
embedding of the 1D fiber meshes and, later on, the numerical solution of action-
potential propagation along the muscle fibers. The muscle-fiber distribution is based
on published data obtained from diffusion-tensor MRI (Lansdown et al., 2007).
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The smallest functional unit of a skeletal muscle is the motor unit (MU), which
contains all muscle fibers within a muscle that are innervated by the same α-
motoneuron. Therefore, to be able to model the physiological recruitment of MUs
in a muscle, it is necessary to enhance the geometrical TA model with functional
information of the MU distribution. As the fibers within one MU are distributed
throughout the muscle, a muscle fiber assignment algorithm based on physiological
properties has been developed by Röhrle et al. (2012). The key characteristics of the
functional grouping include an exponential distribution of muscle fibers per MU,
meaning that, in accordance with the work of Enoka and Fuglevand (2001), there
exist many small MUs composed of slow-twitch muscle fibers with slow fatiguing
properties and a few large MUs composed of fast-twitch fibers with fast fatiguing
properties. The distribution of single MUs can be obtained experimentally. The ex-
periments, however, are limited to determine the distribution of one/a few MUs per
muscle. A thorough description is not available (cf., Monti et al., 2001). Hence, as-
signing the muscle fibers to MUs has been done based on published information on
MU centers and MU territories. The reader is referred to Röhrle et al. (2012) for
more details about the algorithm to assign muscle fibers to MUs.

The functional aspects of the skeletal muscle model can be described by three
(sub-)models, which are coupled with each other. Firstly, the neuro-physiological
model describes motor unit recruitment and rate coding. Secondly, the electrophys-
iological model of a single muscle fiber describes the major biochemical processes
within a half-sarcomere, and, thirdly, the continuum-mechanical model links the
neuro-physiological and electrophysiological model to muscle force generation. An
overview on the key characteristics of each component and how the different com-
ponents are linked to each other can be found in Fig. 8.1.

As depicted in Fig. 8.1, the skeletal muscle model is driven by the MU-
recruitment model. As currently implemented, the recruitment model determines
the times when single MUs fire, i.e. determining the efferent input. The MU recruit-
ment model is currently only unidirectionally coupled to the electrophysiological
and mechanical model. While providing the signals to recruit single fibers of a MU,
it does not incorporate any feedback from the Golgi-tendon organ, muscle spindles,
or other receptors, i.e. afferent input. Therefore, the link between the mechanical
model and the motor recruitment model has been only indicated in Fig. 8.1 by a
dashed arrow. This, however, is work in progress.

8.4 The Multiscale Constitutive Equation

As described above, the electrophysiological behavior on the cellular level is
coupled to the continuum-mechanical model. Within this context, the coupling
is achieved through a multiscale constitutive equation. As already indicated in
Sect. 8.2, the ‘macroscopic’ α in Eq. (8.1) is replaced by an expression contain-
ing cellular parameters, specifically, the parameters A1 and A2, which describe the
concentration of myosin heads in the attached pre- and post-powerstroke states. In
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Neuro-Physiological Model of MU Recruitment

• Control of the exerted force through mechanisms of recruitment and rate coding
• Neuro-physiological model based on the size principle (Henneman et al., 1965)
• Determination of the firing times of each MU (Fuglevand et al., 1993)

Electrophysiology of a Single Muscle Fiber

Computes the electrophysiological changes within sarcomeres along an en-
tire skeletal muscle fiber due to a stimulus originating at the fiber midpoint
at the time determined by the recruitment model. The electrophysiological
changes are caused through the propagation of the action potential, which
is simulated by solving the

• Bidomain Equations
– Continuum representation of bio-electrical behavior of active tissue
– Describes the propagation of action potentials along a muscle fiber
– The diffusive behavior of the action potential propagation is coupled

with the (cellular) reactions stemming from the underlying electro-
physiological model

• Hodgkin-Huxley-Like Cellular Model (here, Shorten et al., 2007)
– Describes the electrophysiological behavior of a half-sarcomere
– Mathematically represented through a set of coupled nonlinear ODEs
– Different versions of the model for fast- and slow-twitch fibers
– The cell model includes cellular mechanisms of muscle fatigue
– Model parameters are validated against experimental work (mouse)

Continuum-Mechanical Skeletal Muscle Model

Computes the exerted muscle force based on the electrophysiological state of the fibers
(due to stimulation) and displacement boundary conditions.

• The second Piola-Kirchhoff stress tensor of Eq. (8.1) is modified to contain concen-
trations of attached myosin heads in the pre-/post-powerstroke state (A1, A2).

• The governing equations of finite elasticity are discretized using tri-quadratic La-
grange FE basis functions for the displacement and tri-linear ones for the pressure.

• A homogenization is performed to bridge the scales between the cellular level and the
organ level (whole muscle) → see also Sect. 8.4.

firing times

A1, A2 actual configuration

af
fe

re
nt

in
pu

t

Fig. 8.1 Overview on the computational model to link motor unit recruitment with the continu-
um-mechanical model of a whole skeletal muscle
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terms of cellular parameters, the second Piola-Kirchhoff stress tensor is given by:

Smuscle = Siso +
(
A1 +A2

ctrop

σ
ff
pass

I4
f pass(I4)+ A2

Amax
2

σ
ff
ten

I4
f active(I4)

)
a0 ⊗ a0, (8.2)

where ctrop is the amount of troponin present within a half-sarcomere andAmax
2 is the

maximal possible concentration of attached myosin heads in the post-powerstroke
state. Further, the expression A2/A

max
2 in Eq. (8.2) is comparable to the α-term and

presents a cellular-based activation variable that ranges between 0 and 1. The ad-
ditional term containing (A1 + A2)/ctrop can be interpreted as an additional pas-
sive stiffness that is induced by a specific contraction. The justification for this
term is based on the assumption that each attached myosin head, either in the pre-
or post-powerstroke state, adds additional passive stiffness to the system. Further-
more, the cellular parameters in the second Piola-Kirchhoff stress tensor (A1 and
A2) are still multiplied by a rather macroscopic force-length relationship f active(I4)

and f pass(I4), which are derived from experiments on whole muscles. The justifica-
tion for doing so is that the model of Shorten et al. (2007) in its current form is only
valid for isometric contractions. Therefore the pre- and post-powerstroke concentra-
tions (A1 and A2) have been multiplied by the normalized force-length relationship
for active contractions, i.e. f active(I4), to account for the probability by how much
the actin and myosin filaments overlap.

The cellular parameters A1 and A2 change from grid point to grid point along the
1D muscle fibers, and from 1D fiber to 1D fiber. A relative small grid spacing has to
be used for the propagation of the action potential along the skeletal muscle fibers
within the 1D grids, due to the sharp gradients occurring. Furthermore, a relative
large number of fibers within a skeletal muscle have to be considered to represent
physiological conditions. Due to the computational work involved, the second Piola-
Kirchhoff stress tensor as given in Eq. (8.1), cannot be evaluated at each grid point
of the 1D meshes. A FE discretization of the mechanical problem, in which each
1D grid point would coincide with a Gauss point of the 3D mesh, would lead to an
overly large mechanical problem. Therefore, the cellular variables are homogenized.
For all grid points of the 1D meshes, the closest Gauss point of the 3D mesh is
sought, where the respective cellular values are homogenized by averaging. A grid
convergence study justifying the proposed homogenization is presented in Röhrle et
al. (2008).

An output of the above described electromechanical framework is given in
Fig. 8.2. There, the stimulation times of every second motor unit are shown by ver-
tical strikes on the horizontal lines (each line represents one MU). The simulation
shows that, like in reality, the larger motor units (higher MU numbers) are activated
later than the smaller motor units (lower MU numbers) and that the average recruit-
ment frequency of all MUs increases, if a linear excitatory drive function as input
to the Fuglevand et al. (1993) motor unit recruitment model is chosen. The result-
ing force output behaves sigmoidal with a slow average change in curvature at the
beginning and end of the simulation and a relatively linear section in the middle.

The results in Fig. 8.2 essentially present the solution to a forward dynamics
problem. The recruitment of particular motor units serves as input while the model’s
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Fig. 8.2 The force output
profiles of the TA with 30
motor units and a linear
excitatory drive function as
input to the Fuglevand et al.
(1993) motor unit recruitment
model. Figure is taken from
Röhrle et al. (2012)

output is the resulting muscle force subject to zero-displacement boundary con-
ditions (isometric contraction). The advantage of the modular framework, as pre-
sented in Fig. 8.1, is its versatility. For example, it is straight forward to exchange
the MU recruitment model with a different neuro-physiological model of MU re-
cruitment. Further, the knowledge of the action potential within the interior of the
muscle can serve as source for the computation of a virtual EMG signal. Computing
such a virtual EMG signal allows to test and investigate specific MU recruitment
hypotheses—particularly in conjunction with experimental measurements. Further,
by generating artificial EMG signals of multiple muscles within a musculoskeletal
system, one can identify suitable EMG recording locations that minimize cross-talk.
Further, such a model can provide the basis for investigating complex EMG sig-
nals taken from a musculoskeletal system, e.g., EMG signals taken from the biceps
brachii and triceps brachii of the upper limb, which shall serve as input to forward-
dynamics simulations of three-dimensional (continuum-mechanical) models.

8.5 A Multiscale Forward-Dynamics Musculoskeletal Simulation
Framework

Without further investigating the ability to use EMG-signals in three-dimensional
forward-dynamics simulations, it is more essential to develop a new and com-
putationally efficient framework appealing to principles of forward dynamics and
continuum-mechanics. In a first step, as outlined in the following, only activation-
driven forward-dynamics simulations are considered. Full path-guided forward-
dynamics simulations are subject to future work.

An efficient three-dimensional continuum-mechanical forward-dynamics simu-
lation can be achieved by coupling the finite element method with rigid-body dy-
namics through nested iteration. The nested-iteration method is an efficient solution
technique that aims to obtain a good initial guess for a nonlinear problem and mesh
discretization by solving the problem on coarser meshes. Nested iteration builds on
the idea that solutions on coarser meshes provide, through interpolation, a good ini-
tial guess to a nonlinear problem on a finer mesh. This provides two advantages:
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Fig. 8.3 Overview on the coupling of multi-body and FE simulations to achieve efficient for-
ward-dynamics simulations within a continuum-mechanical framework. The coupling is achieved
through a multi-physics nested-iteration approach

If the initial guess is close to the solution, Newton’s method converges quadrati-
cally. Second, the initial guess for the nonlinear problem on the finest level is, if
compared with one linearization step at the finest mesh resolution, obtained in a
relative cheap manner as calculations on coarser meshes are much cheaper than on
the finest mesh resolution. This is particularly true for three-dimensional problems.
Such grid-continuation or nested-iteration methods have a great potential for reduc-
ing the number of necessary Newton iterations (Kim et al., 2006).

Within the context of modeling a musculoskeletal system, the nested-iteration al-
gorithm as a sequence of predictions on successively finer meshes is extended from
pure mesh refinement to a multi-physics approach. Now, the ‘cheapest’ solution of
the coarsest mesh is substituted by a different solution methodology, here the rigid-
body dynamics simulations. The key idea hereby is to predict the force and moment
equilibrium within a given musculoskeletal system, i.e. the number of muscles and
their respective levels of activation, using rigid-body dynamics. This procedure is
efficient and, from a computational point of view, relative cheap. The solution of
the multi-body problem serves within the nested-iteration algorithm as reasonable
initial guess for the muscle displacement boundary conditions (still assuming the
bony structures as rigid). Hence, the rigid-body model can be seen as a predictor for
the continuum-mechanical model, and the continuum-mechanical model as a cor-
rector. This way, model-inherent deficiencies of rigid-body dynamics simulations,
e.g., the complex muscle-fiber distributions, contact with other surrounding tissues,
or dynamically changing lines of action can be addressed in an appropriate way. On
the other hand, by predicting an initial guess close to the correct solution, the FE
method’s CPU cost can be reduced.

As indicated in Fig. 8.3, initial tests on integrating such a multi-physics nested-
iteration approach have been carried out on a two-muscle and one-degree of freedom
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Fig. 8.4 The detailed 3D FE model and the geometrically simplified upper limb model

(DOF) musculoskeletal system. The first musculoskeletal model consists of three-
dimensional continuum-mechanical models of the biceps brachii and triceps brachii
(including its tendons) as an antagonistic muscle pair, the humerus, radius and ulna
as three-dimensional rigid representations of the involved bones, and the elbow joint
as a one-DOF hinge joint. The prediction for the position of the radius and ulna
stems from the 1-DOF-model depicted in Fig. 8.4.

8.6 Discussion

The strength of the electromechanical model is certainly its modular composition
and flexibility. Any part of the model can be replaced by newly developed more
sophisticated models, which for example describe the electrophysiology on the cel-
lular level, the motor unit recruitment algorithm, or the continuum-mechanical con-
stitutive equation. Furthermore, the framework can be extended to include further
models, e.g., models of muscle spindles or Golgi tendon organs, or to incorporate
afferent input in the MU recruitment model. Further, different neuro-physiological
models, in particular models that are based on system-biological approaches like
Cisi and Kohn (2008) can be investigated in much more detail. Understanding the
recruitment principles of single muscles and within a musculoskeletal system en-
hances the applicability of the forward-dynamics simulations based on continuum-
mechanical models.

In its current form, however, the electromechanical model also contains a number
of weaknesses. Currently, some of the integrated models stem from models derived
for different species. For example, the geometrical model is based on the human
TA muscle while the electro-physiological model of Shorten et al. (2007) has been
validated on mouse muscles. Moreover, when coupling different models, the number
of parameters to be determined beforehand increases. The model of Shorten et al.
(2007) by itself contains more than 50 ODEs and even more parameters. For many
of these values and parameters of the other models, in particular on the motor unit
distribution, only few data are available from the literature.
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Considering the geometric model, the number of embedded 1D FE meshes within
the 3D FE geometry cannot reach a physiological-realistic muscle fiber number.
This is due to the computational load involved in solving the cellular model, which
is an integral part of modeling the action potential propagation by means of the
bidomain equations. Further, the assignment of muscle fibers to particular motor
units has been based on physiological data published in the literature. Although
much physiological information and knowledge has been included in constructing
the geometrical model, there is still a considerable amount of uncertainty present.
This stems mainly from the fact that muscle fibers associated with a motor unit can
only be experimentally determined for one motor unit per muscle. This is due to the
destructive nature of the experimental setup. Moreover, there exists a great inter-
subject variability in muscle fiber distribution. Nevertheless, the model can be used
to test different hypothesis and investigate the influence of different muscle fiber
types in different regions of the muscle.

From a continuum-mechanical material modeling point of view, the constitutive
equations presented in Eqs. (8.1), and (8.2) in case of modeling the electromechan-
ical behavior of skeletal muscle, have been designed to describe the characteristic
properties of skeletal muscle tissue in a phenomenological way. However, thorough
validation of the active and passive behavior in conjunction with experiments is still
missing. On the upside, the continuum-mechanical modeling framework of the mus-
culoskeletal system provides the ability to include further mechanical features that
cannot be included in multi-body dynamics simulations. For example, the mechan-
ical behavior of skeletal muscles can now be easily subjected to other constraints
and restrictions arising from the contact with neighboring structures such as adja-
cent muscles, bones, and skin. To realistically simulate the mechanical behavior of
skeletal muscle in vivo, the influence of these structures has to be considered.

Both described models, e.g., the electromechanical single muscle model and the
musculoskeletal system model of the upper arm, have not been validated against
experimental data yet. Like for most biomechanical models, developing suitable
experimental setups for validation is challenging. Here, however, there exist several
different possibilities to validate the musculoskeletal system model of the upper
arm through combined measurements of muscular activity (EMG) and motion (via
motion capture). Further, other measuring modalities can be added to EMG and
motion measurements. For example, pressure sensors or ultrasound devices, which
have recently been used to investigate muscular contractions through the change in
fiber angle, can significantly augment the EMG and motion measurements.

Although the electromechanical model is subject to restrictions, it provides a
new basis to study motor unit recruitment principles and to simulate EMG-driven
forward dynamics simulations of the musculoskeletal systems. By using multi-body
simulations to cheaply describe overall characteristics and FE simulations to take
into account local and structural information, the 3D forward-dynamics simulation
framework will give rise to many new opportunities in investigating the muscu-
loskeletal system and many biomechanical applications. For example, determining
the dynamic loading conditions of joints during normal movement will play a crucial
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role in the design process of new implants. The combination of multi-body simu-
lations and FE methods will have a significant impact on investigating the muscu-
loskeletal system as FE-only methodologies will remain a significant computational
challenge for complex musculoskeletal systems for some time.
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Part III
Cardiovascular Mechanics



Chapter 9
Multiscale Modeling of Arterial Adaptations:
Incorporating Molecular Mechanisms Within
Continuum Biomechanical Models

Jay D. Humphrey

Abstract Continuum level biomechanical models of arterial adaptations are prov-
ing themselves vital both for understanding better the progression of disease and
for improving the design of clinical interventions. Although these models are most
appropriate to the clinical scale of observation, the underlying mechanisms respon-
sible for such remodeling occur at the molecular scale. The goal of this chapter is
to review a validated continuum level model of arterial adaptations and to suggest
a straightforward approach to incorporate molecular level information within such
models. In particular, it is shown that continuum mixture models reveal naturally
a means to incorporate molecular information within fundamental constitutive re-
lations within the continuum theory. There is, therefore, significant motivation to
continue to formulate molecular level models that are necessary to inform models
at scales that address the Physiome.

9.1 Introduction

The past four decades have brought forth tremendous advances in the continuum
biomechanics of arteries (Humphrey, 2002). Nevertheless, three conspicuous short-
comings have persisted. First, most constitutive relations and stress analyses have
focused on conditions at a single instant, not how the arterial properties and stress
fields evolve due to normal development or in response to perturbed loads, disease,
injury, or clinical treatment. Second, biomechanical analyses have been based on
the assumption that arteries are materially uniform rather than consisting of many
different constituents that turnover at different rates and to different extents while
collectively defining the whole. Third, continuum biomechanical models have em-
ployed phenomenological constitutive relations that have not directly accounted for
the many classes of molecules that control arterial adaptations, including vasoac-
tive, mitogenic, proteolytic, and inflammatory molecules. The primary goal herein
is to encourage a new direction in arterial research whereby one develops multiscale
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models that can predict time-dependent changes in composition, structure, geom-
etry, and properties that occur in response to changes in the biochemomechanical
environment. Although much more data will be needed to model precisely many
of the underlying mechanisms that are responsible for such growth and remodeling
(G&R), expanding data bases provide sufficient guidance on salient aspects of de-
velopment, adaptation, and disease progression for us to begin to interpret these data
within mathematical frameworks. Toward this end, here we consider a constrained
mixture model of tissue-level arterial adaptations that can incorporate molecular in-
formation related to the underlying mechanisms. Areas requiring further research
are then highlighted to encourage continued development of these models.

9.2 Continuum Framework

By growth, we mean a change in mass; by remodeling, we mean a change in struc-
ture. Notwithstanding the many associated complexities at different spatial and tem-
poral scales, we begin by assuming that G&R occurs via quasi-static isothermal
processes, which focuses our attention on equations of mass balance and linear mo-
mentum balance. Moreover, let us assume that the arterial wall can be modeled
as a mixture consisting of N constituents, including α = 1,2, . . . , n insoluble but
structurally significant constituents and i = 1,2, . . . ,N − n soluble but structurally
insignificant constituents. Examples of the former are elastic fibers, fibrillar colla-
gens, muscle fibers, and proteoglycans; examples of the latter include vasoactive,
mitogenic, proteolytic, and inflammatory molecules. We have previously discussed
the utility of employing full mixture equations to describe mass balance for both
classes of constituents, but a rule-of-mixtures relation for the stress response that
can be used to satisfy overall linear momentum balance (Humphrey and Rajagopal,
2002).

Mass balance, in spatial form, can be written as

∂ρi

∂τ
+ div

(
ρivi

)= m̄i , i = 1,2, . . . ,N − n, (9.1)

∂ρα

∂τ
+ div

(
ραvα

)= m̄α, α = 1,2, . . . , n, (9.2)

where ρi and ρα are so-called apparent mass densities (constituent mass per mix-
ture volume) and m̄i and m̄α are the so-called net rates of mass density produc-
tion/removal (which can be positive, zero, or negative); τ ∈ [0, s] is the G&R time,
which is typically much greater than the cardiac cycle timescale t .

Focusing first on the N − n soluble constituents, i.e. Eq. (9.1), it is convenient
to introduce the mass flux j i = ρi(vi − v) where vi − v is sometimes called the
‘diffusion velocity.’ Regardless, Eq. (9.1) can be written at G&R time as

∂ρi

∂τ
+ div

(
ρiv
)= m̄i − div

(
j i
)
, (9.3)
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or if the mixture velocity v is negligible (consistent with a quasi-static assumption
that is used for the structurally significant constituents)

∂ρi

∂τ
= m̄i − div

(
j i
)
. (9.4)

Noting that we have N −n equations to determine N −n constituent mass densities
ρi , we clearly must introduce additional (constitutive) relations for m̄i and j i . For
dilute solutions, the mass flux for diverse molecular species is often approximated
by Fick’s law, which is typically written in terms of molar, not mass, densities. Note,
therefore, that the molar density Ci ≡ ρi/MWi whereMWi are molecular masses.
Hence, the mass balance equation for the soluble constituents can be written

∂Ci

∂τ
=Ri − div

(
J i
)
, (9.5)

where Ci are also called concentrations, Ri are reactions responsible for produc-
tion/removal, and by Fick’s law J i = −Di gradCi , where Di are the diffusivities.
Hence, we obtain the classical reaction-diffusion equation

∂Ci

∂τ
=Ri +Di∇2Ci, i = 1,2, . . . ,N − n (9.6)

for all soluble constituents at G&R times τ ∈ [0, s].
The situation is very different for the insoluble, structurally significant, con-

stituents, i.e. Eq. (9.2). We previously introduced an additional assumption that all
structural constituents are constrained to move with the mixture (Humphrey and
Rajagopal, 2002). This assumption coupled with the quasi-static assumption thus
requires that the motions xα = x = 0, whereby velocities are similarly constrained:
vα = v = 0. Equation (9.2) thus can be written

∂ρα

∂τ
= m̄α or

∫
∂ρα

∂τ
dτ =

∫
m̄αdτ. (9.7)

We thus have n equations to determine n mass densities, which again necessitates
the introduction of additional (constitutive) relations for the net production/removal
function. Yet, because m̄α = 0 during periods of tissue maintenance (i.e., balanced
production and removal in unchanging configurations), we have shown previously
that it is convenient to assume a separable representation m̄α(τ )=mα(τ)qα(s, τ ),
where mα(τ) > 0 is the true rate of mass density production and qα(s, τ ) ∈ [0,1]
is a survival function that accounts for the fact that all cells and proteins have a
finite half-life (Valentín et al., 2009). Hence, the survival function represents the
percentage of constituents produced at time τ that survives to current time s.

It can be shown that use of the separable form for the net production term allows
Eq. (9.7) to be written in a reduced form, namely

ρα(s)= ρα(0)Qα(s)+
∫ s

0
mα(τ)qα(s, τ )dτ, ∀α = 1,2, . . . , n, (9.8)
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which is to say that the current apparent mass density depends on its original value
ρα(0) and the kinetic loss of the original material via Qα(s) ∈ [0,1], as well as
both the subsequent true production mα(τ) and associated loss qα(s, τ ) ∈ [0,1] of
material after s = 0 (the time at which a perturbation initiates G&R). Because the
constituent mass densities are apparent, not true, densities, the total mass density is
computed easily via

ρ(s)=
∑
ρα(s)→ 1 =

∑
φα(s), (9.9)

where φα(s) = ρα(s)/ρ(s) are usual mass fractions. Of course, we must recover
ρα(0) at s = 0, which reveals that Qα(0)= 1 in Eq. (9.8).

Because we employ a rule-of-mixtures relation for the stress, linear momentum
for quasi-static G&R is simply the same as that in classical continuum mechan-
ics, namely div t = 0, where t is the Cauchy stress. As in most of biomechanics,
therefore, the significant challenges lie first in formulating appropriate constitutive
relations and second in solving initial-boundary value problems of interest.

Although it is natural to seek constitutive relations for stress directly (Humphrey
and Rajagopal, 2002), it proves useful to follow advances in nonlinear elasticity
and alternatively seek constitutive relations for the stored energyWα(s), whereby a
rule-of-mixtures approach can be written conceptually as

W(s)=
n∑

α=1

φα(s)Ŵα(s), (9.10)

noting of course that the stored energy depends on the (finite) deformation experi-
enced by the material, which is to say each of its load-bearing constituents. Prior
studies have suggested, however, that such an approach is limited in its ability to
capture contributions of individual constituents that may turnover continuously at
different rates and to different extents. Hence, following Baek et al. (2006), we let

W(s)=
n∑

α=1

Wα(s), (9.11)

where we postulated, constituent-specific, forms motivated by Eq. (9.8) (which was
derived directly), namely

Wα(s) = ρα(0)Qα(s)

ρ(s)
Ŵα
(
Cαn(0)(s)

)

+
∫ s

0

mα(τ)qα(s − τ)
ρ(s)

Ŵα
(
Cαn(τ)(s)

)
dτ,

(9.12)

where the energy stored in individual constituents is assumed to depend on de-
formations experienced by those constituents, which by the principle of material
frame indifference requires dependence on the deformation gradient through the
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right Cauchy-Green tensor: Cαn(τ)(s). In particular, n(τ) reminds us that this defor-
mation is referred to the natural configuration καn (τ ) for that individual constituent
at its time of deposition τ ∈ [0, s]. To appreciate the assumed form in Eq. (9.12),
note that if there is no G&R, then s = 0 and this equation reduces to

Wα(0)= ρα(0)Qα(0)

ρ(0)
Ŵ α
(
Cαn(0)(0)

)= φα(0)Ŵ α
(
Cαn(0)(0)

)
(9.13)

(recalling that Qα(0) ≡ 1 by definition), which recovers a simple rule-of-mixtures
relation as desired. It can be shown similarly that the simple rule-of-mixtures rela-
tion is recovered in the case of tissue maintenance, that is, balanced production and
removal in unchanging configurations (Valentín et al., 2009).

Most importantly, Eqs. (9.8) and (9.12) reveal the need to determine three ba-
sic types of constitutive relations for each structurally significant constituent α =
1,2, . . . , n, namely

mα(τ), qα(s − τ), Ŵ α
(
Cαn(τ)(s)

)
. (9.14)

In our prior implementations (e.g., Baek et al., 2006; Valentín et al., 2009), we have
used phenomenological constitutive relations motivated by tissue level observations
of mechanobiological responses by arteries in response to diverse mechanical loads
(Humphrey, 2008b). For example, we have modeled the energy stored in the elastin
dominated amorphous matrix using a classical neo-Hookean relation and the en-
ergy stored in collagen fibers and passive smooth muscle using classical Fung-type
exponential relations. For the present discussion, it is important to note that the
neo-Hookean relation was first derived based on micromechanical arguments and
exponential relations have been shown to capture well the net mechanical response
of collections of fibers having linear behaviors but a distribution of undulations. It is
suggested that increased attention should be given to the derivation of microstruc-
turally based constitutive relations for the energy stored in individual constituents
as well as interaction energies between constituents. Such relations would enable
better modeling of many disease processes wherein either particular constituents
are absence because of genetic mutations (e.g., fibrillin-1, which stabilizes elastic
fibers, or collagen III, as in Marfan and Ehlers–Danlos IV syndromes, respectively)
or chemomechanical injury (e.g., degradation or fatigue of elastic fibers in aging).
Below, however, let us focus on constitutive relations for mass production and re-
moval, which are unique to G&R theories.

9.3 Towards Multiscale Constitutive Relations

Two of the best studied arterial adaptations are responses to sustained alterations
in blood pressure and flow, the former of which is particularly relevant to hyper-
tension research. It is well accepted that large arteries tend to grow and remodel
so as to keep the mean circumferential stress σθ = Pa/h and the wall shear stress
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τw = 4μQ/πa3 each near target/homeostatic values (e.g., σhθ and τhw , respectively,
where P,a,h,μ and Q are blood pressure, luminal radius, wall thickness, blood
viscosity, and volumetric flow, respectively). As shown previously (Humphrey,
2008a), if we let parameterize the change in blood pressure from normal and pa-
rameterize the change in blood flow from normal (e.g., γ = 1.5 for a 50 % sustained
increase in pressure), then it is easy to show that a → ε1/3ah and h→ γ ε1/3hh
(where the subscripts h denote homeostatic values) to maintain/restore the stresses
to homeostatic targets in response to modest alterations in blood pressure or flow.
Whereas these simple relations describe the extent of the morphological adaptations,
they cannot describe the time-course of such changes or the associated changes in
structure or properties. In contrast, the G&R framework described by Eqs. (9.8) and
(9.12) can address both the extent and rate of each of these changes.

Fundamental to geometric and structural changes in arteries are changes in rates
of turnover of structurally significant constituents such as the smooth muscle and
fibrillar collagens. For example, we have shown that the following constitutive rela-
tions (cf. Eq. (9.14)) provide a good description of large artery adaptations to both
altered blood pressure and flow:

mα(τ) = mαB
(
1 +Kασ σ −Kατw τw

)
, (9.15)

qα(s − τ) = exp

[
−
∫ s

τ

Kαq
(
1 + σ(τ̃ )2)dτ̃

]
, (9.16)

where the stress differences are given by

 σ = σ − σh
σh

,  τw = τw − τhw
τhw

, (9.17)

with σ an appropriate scalar metric of intramural stress. Note, too, that the gain-
type parametersK in Eqs. (9.15) and (9.16) modulate the stress-mediated changes in
mass production and removal. Although these particular functional forms are among
the simplest possible, basal rates are recovered (mαB andKαq ) when the stresses equal
their homeostatic targets, as desired, and associated simulations have captured many
salient aspects of observed adaptations (Valentín and Humphrey, 2009a,b). Note,
too, that the survival function recovers first order kinetic decays as suggested by
much of the data (cf. Humphrey, 2008b).

At this juncture, it is important to recognize that these constitutive relations are
motivated by mechanobiological observations, yet they are phenomenological. For
example, it is well known that collagen synthesis is increased by increases in cyclic
stretch/stress of smooth muscle cells. It is also well known that increases in wall
shear stress increase endothelial cell production of the vasodilator nitric oxide (NO)
and decreases in wall shear stress increase endothelial cell production of the vaso-
constrictor endothelin-1 (ET-1); see Fig. 9.1 and Humphrey (2008b). Moreover, NO
decreases the production of collagen by smooth muscle cells whereas ET-1 increases
the production rate (hence the minus sign in Eq. (9.15) for the shear stress mediated
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Fig. 9.1 Schema of possible mechano-induced production of vasoactive molecules, nitric oxide
(NO) and endothelin-1 (ET-1), by endothelial cells (EC) in response to changes in cyclic wall shear
stress and circumferential wall stretch. Diffusion and consumption of the vasoactive molecules re-
sults in stimulation of smooth muscle cell (SMC) vasoactivity and proliferation as well as synthesis
of extracellular matrix proteins

term). It is also becoming increasingly clear that altered stress affects the produc-
tion, activation, and effectiveness of proteolytic enzymes (e.g., matrix metallopro-
teinases; Humphrey, 2008b).

Whereas phenomenological equations can be very useful for simulations, as we
learn more and more about the mechanobiology, there is an opportunity—indeed a
responsibility—to move toward more mechanistic modeling. For example, it is now
known that the increase in collagen synthesis by smooth muscle cells in response to
increased mechanical stress/stretch (cf. Fig. 9.1) is mediated by complex signaling
pathways that involve multiple vasoactive molecules and cytokines. For example, it
appears that increased cyclic stress (as in hypertension due to increased pulse pres-
sure) causes smooth muscle cells to increase their production of angiotensin-II and
possibly to change associated receptor-ligand binding, which in turn stimulates the
production of latent transforming growth factor beta (TGF-β) that can be activated
by mechanical stress and ultimately lead to collagen production. Hence, there is an
opportunity to use reaction-diffusion equations (9.6) to quantify local changes in
‘effector molecules’ that in turn influence directly the rates of mass production and
removal (cf. Fig. 9.1). For example, one could consider mass density production for
collagen (α = c) such as

mc(τ)=mcB
(
1 +KcTGF C

TGF +KcET1 C
ET1 −KcNO C

NO + · · · ). (9.18)

Similarly for smooth muscle (α = m), which depends in part on the concentration
of platelet-derived growth factor (PDGF), one could consider

mm(τ)=mmB
(
1 +KmPDGF C

PDGF +KmET1 C
ET −KmNO C

NO + · · · ). (9.19)
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In other words, rather than purely phenomenological forms represented by
Eq. (9.15), molecular level information could be used to inform the continuum level
analysis. Similar relations could be determined for the survival function, which
should include terms accounting for concentrations of active proteases. Moreover,
relations for changes in molecular production can be derived from appropriate ex-
periments, as, for example, studies of the effects of changing wall shear stress on
the production of NO, as, for example (Humphrey, 2008b)

CNO = CNO
B

{
ζ + β[1 − exp

(−δτ 2
w

)]}
, (9.20)

where (ζ,β, δ) are parameters required to fit the data (e.g., ζ,β, δ = 0.37,0.63, and
−8.89 as reported in Humphrey, 2008b). In this way, molecular level (mechanistic)
relations can be combined simply with continuum level models that have already
proven useful in modeling diverse aspects of arterial G&R.

9.4 Discussion

Bioengineers and clinicians must similarly address arterial adaptations at a macro-
scopic scale—including normal changes due to development or exercise as well as
disease progression, responses to treatment, and so forth. Classical examples include
quantification of wall thickening and stiffening in hypertension, changing caliber
in exercise or arterio-venous fistulas, stenoses in vein grafts, evolving atheroscle-
rotic plaques, aneurysms, and so forth (Taylor and Humphrey, 2009). Continuum
level biomechanical modeling has proven fundamental to studying such tissue-level
changes and will likely remain so for purposes of diagnosis, interventional plan-
ning, medical device design, and many other daily activities. Nevertheless, we must
also exploit our growing understanding of the molecular level mechanisms that dic-
tate macroscopic manifestations. We submit here that a consistent mixture theory
framework for growth and remodeling allows one to account naturally for spatial
and temporal changes in effector molecules via classical reaction-diffusion equa-
tions, which in turn can be used to inform improved constitutive relations for cell
and matrix turnover that are fundamental to the tissue-level analyses that are vi-
tal for so many aspects of research and clinical care. Indeed, we emphasize that the
present G&R framework, which focuses on changes to the arterial wall, is also easily
coupled to sophisticated computational fluid dynamics simulations of the hemody-
namics (Figueroa et al., 2009), thereby permitting both multiscale and multi-physics
studies. Moreover, we emphasize that the multiscale approach presented here (fo-
cused mainly on informing continuum level constitutive relations with molecular
level information) is but one possible multiscale approach. Hayenga et al. (2011),
recently showed that agent based models can similarly be integrated with continuum
level G&R models, hence providing yet another level of multiscale modeling.

In summary, there is a pressing need for continued research on the molecular
mechanisms responsible for arterial adaptations and disease progression, particu-
larly given the complex multifunctional capabilities of the large number of effector
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molecules, including vasoactive, mitogenic, proteolytic, and inflammatory. Discov-
ery of appropriate mechanobiological relations can and should be incorporated in
continuum level models.
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Chapter 10
Cardiovascular Tissue Damage:
An Experimental and Computational
Framework

Nele Famaey, Ellen Kuhl, Gerhard A. Holzapfel, and Jos Vander Sloten

Abstract Tissue overload during medical procedures can lead to severe complica-
tions. This chapter presents an experimental and computational framework to define
and predict damage due to mechanical loading and applies this framework to ar-
terial clamping. An extension of the Holzapfel-material model for arterial tissue is
presented, incorporating smooth muscle cell activation and damage to the different
constituents. It is implemented in a finite element framework and used to simulate
arterial clamping and subsequent damage evaluation through an isometric contrac-
tion test. These simulations are compared to actual experiments and repeated for a
different clamp design, thereby demonstrating the capability of the framework.

10.1 Introduction

In the USA in 2007, a 0.5 % chance existed to complications due to tissue overload
during a medical procedure and 7 % of these complications had fatal consequences
(Health Grades, 2012). In an effort to minimize this number, research has been di-
rected towards decreasing unnecessary intraoperative trauma, by shifting towards
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less invasive techniques and through the design of less traumatic instruments (Gupta
et al., 1997). Obviously, the effectiveness of these new designs and techniques de-
pends on how well damage mechanisms are understood and how accurately thresh-
olds for safe tissue loading can be defined.

The implementation of safety thresholds during surgery obviously requires a con-
sensus as to what these thresholds are. In current surgical practice, the amount of
load that can safely be applied on a certain tissue is highly subjective, i.e. depending
on the surgeon’s experience and judgement. Several steps are needed to make this
judgement more objective. This chapter describes an experimental and computa-
tional framework that allows a quantitative definition of damage to a certain tissue,
as well as a simulation tool to estimate the amount of damage to a tissue due to a
certain external load. Though generally applicable, we currently focus on the case
study of arterial clamping.

Four main steps can be defined in the framework. First, a quantitative method to
define damage for a certain tissue type is required. Next this quantitative damage
must be related to the amount of mechanical loading previously applied to the tis-
sue. This can be done experimentally for a specific loading situation, but to make
the relation generally applicable, a simulation of the damage process due to the
mechanical loading is needed. This requires a material model for cardiovascular
tissue, which is capable of capturing the typical damage processes to the different
constituents.

The first section of this chapter describes different damage quantification meth-
ods for arterial clamping. In the second section, one of these damage quantification
methods is combined with an in vivo arterial clamping experiment, resulting in an
experimental relation between damage and mechanical load. In the third section,
an extension of the Holzapfel-material model for arterial tissue (Holzapfel et al.,
2000) is described, incorporating smooth muscle cell activation according to Mur-
tada et al. (2010) and damage according to Balzani et al. (2006). The model is suit-
able to simulate the damage process during the clamping of an artery. It captures
the decrease of active force generation in smooth muscle cells due to the sustained
damage. The fourth section shows how, embedded in a finite element environment,
this new model provides a useful tool to simulate the amount of damage induced
by a certain amount of mechanical load. Ultimately, the entire framework serves
to define safe loading regimes for arterial tissue, which could be used to inform
computer-enhanced surgical systems to minimize tissue damage in robotic surgery
and to optimize surgical instrument design towards minimal trauma.

10.2 Damage Quantification

Damage is defined as ‘injury or harm that reduces value or usefulness’. A quantifi-
cation of damage can, therefore, be performed by assessing this reduction in value
or usefulness. First of all, biological tissue is an integral part of a larger mechanical
structure and, therefore, inherently has a (passive) mechanical function. Secondly,
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each tissue type has one or multiple biological functions, i.e. any activity that con-
tributes to the correct functioning of the organism. Damage to each of these func-
tions requires an objective and quantitative method for evaluation. In both cases this
can be done either directly, through functional assessment, or indirectly, through
morphological assessment.

Damage to the mechanical function manifests itself through rupture or degrada-
tion of the mechanical constituents of the tissue. One way to quantitatively assess
this form of damage is to perform mechanical tests of tissues before and after the
induction of damage. For example, biaxial tensile testing on a patch of cardiovascu-
lar tissue can provide information on its stiffness in different directions. Excessive
tension will cause the gradual rupture of more and more of the collagen fibers which
will induce a measurable decrease in stiffness in the directions in which the collagen
fibers contribute.

Another, indirect way to assess mechanical function is to assess the morpholog-
ical integrity of the tissue. Imaging can provide insight into the composition of a
tissue and expose fractures in the different constituents. A microscopic image of a
patch of cardiovascular tissue can be stained to specifically show, for example, the
collagen fiber component (Schriefl et al., 2012). If imaged when brought to exces-
sive tension, image processing can reveal the percentage of collagen fibers that are
still intact, providing a quantitative measure of the damage to this constituent.

Damage to the biological function manifests itself through malfunction, function
switch or apoptosis of the involved cells. Quantification of the biological function
before and after damaging the tissue provides a measure of the induced damage.
Sometimes it is possible to directly measure this function. In other situations an
indirect approach is taken, by measuring the concentration of certain products, or
the expression of certain genes, as a biological function is often the result of a cell-
biological cascade of events.

For the specific case of arterial tissue, functionality refers to the vasoregulating
capability of the tissue, i.e., the potential of the smooth muscle cells to contract or
relax in order to regulate the blood pressure. This vasoregulating capability can be
quantified in an experimental setup, known as a ‘myograph’. Schematically shown
in the top right image of Fig. 10.1, the myograph consists of a water-jacketed or-
gan chamber in which an excised cylindrical section of an artery can be mounted
such that isometric tension can be recorded. The sample is immersed in a Krebs
buffer at 37 °C and continuously gassed with a mixture of 95 % oxygen and 5 %
carbon dioxide. After stabilization at the optimal preload level, Phenylephrine (PE)
at 10−6 M is added to the solution to induce contraction. PE is a contracting agent
that acts directly on the smooth muscle cells. Sodium nitroprusside (SNP) (10−6 M)
induces an endothelium-independent relaxation. Consequently, an adequate level of
SNP-induced relaxation will indicate intactness of the smooth muscle cells (Callera
et al., 2000). Absolute values of relaxation as well as the percentage of relaxation
relative to the amount of contraction are recorded and provide a quantitative mea-
sure of the damage to the smooth muscle cells when comparing these values to those
of an intact sample. More details on the experimental setup can be found in Famaey
et al. (2010). A similar custom-designed device to test active force generation in
response to electrical stimulation is reported in Böl et al. (2012).
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Fig. 10.1 Schematic overview of the framework. Mechanical loading of the artery is performed
experimentally with a custom made clamp (top left image), and simulated with finite elements
(bottom left). After mechanical loading, the damage to the tissue is assessed experimentally in a
custom made functional testing device capable of recording isometric contraction (top right image).
This isometric contraction experiment is also simulated with finite elements (bottom right image).
Now, the simulation can be repeated for different loading situations, thereby predicting the amount
of damage that will be induced

Another way to assess biological function is to study the condition of the tissue
through morphological imaging. The spatial resolution of the imaging method de-
termines how location-specific the damage can be assessed. Damage to certain con-
stituents or processes can be imaged by applying specific stainings and visualizing
through the corresponding microscopic techniques. For example, in immunofluo-
rescence microscopy, specific antibodies can be labeled with a fluorophore, to visu-
alize endothelial morphology (e.g., with CD31), the smooth muscle cells (e.g., with
alpha-smooth muscle actin), elastin (e.g., with anti-elastin) and collagen (e.g., with
anti-collagen IV). Cell-proliferation and cell-death can also be visualized through
immunofluorescence microscopy, for example, with a TUNEL assay, or with a com-
bined PI (propidium iodide) and syto 13 staining. Propidium iodide (PI) stains all
cell nuclei red, whereas syto 13 stains only intact nuclei green. The combination of
these two stainings therefore yields a ‘live-dead’-staining, after which image pro-
cessing can reveal the percentage of cell death in different regions (Megens et al.,
2007, 2008).
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Fig. 10.2 Boxplots of the
total relaxation due to the
addition of SNP to the Krebs
solution, i.e. a measure for
the vasoregulating capability

10.3 Damage as a Function of the Mechanical Load

The previous section showed that damage can be evaluated quantitatively in multi-
ple ways. This can facilitate a consensus as to how much damage is acceptable for a
certain tissue. However, knowing this limit is only useful if the amount of mechan-
ical load needed to induce this damage is known along with it. Therefore, in the
experimental protocol for defining safety limits for tissue loading, there is a need
for controllable force application and subsequent damage evaluation. This way, an
unambiguous relation can be defined between mechanical loading and damage.

The mechanical load exerted during an experiment can be characterized with re-
spect to location, magnitude, displacement boundary conditions, rate, and duration.
These are all parameters that should be controlled or at least acquired during the
experimental process. Ideally, the load should be applied in vivo, so that the induced
damage can be solely attributed to the loading and not to non-physiological ex vivo
conditions. If subsequent damage quantification requires excision of tissue, undam-
aged control segments should also be excised and tested, to rule out damage due to
the excision process.

To clamp the artery in a controlled way, a hand-held mechanical device, shown in
the top left image of Fig. 10.1, was designed that allows clamping of a rat abdominal
artery in an in vivo setting to a known force (Famaey et al., 2010). By combining this
experimental setup with the previous one, data can be collected regarding the degree
of damage to the vasoregulating capability after different in vivo clamping forces.
This type of data was collected for rat abdominal arteries, as described in Famaey
et al. (2010). In total, 8 segments clamped at 0.5 N with the custom made clamping
device, 6 segments at 5 N, 6 segments clamped with a typical mosquito clamp and
14 zero load control segments were tested in the functional setup. Figure 10.2 shows
boxplots of the total relaxation due to the addition of SNP to the Krebs solution, i.e.
a measure for the vasoregulating capability. Total relaxation due to SNP is signif-
icantly lower for the mosquito-group and for the 5 N-group compared to the zero
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load control group (p = 0.005 and 0.003), but also significantly lower compared to
the group clamped at 0.5 N (p = 0.020 and 0.020). There was no significant differ-
ence between the zero load control group and the 0.5 N-group. When repeated for
more loading levels, these experiments will enable the definition of an unambiguous
relation between mechanical loading and experimental clamping force.

This section showed how the relation between ‘macroscopic’ mechanical loading
and ‘macroscopic’ damage can be found experimentally for a specific loading situ-
ation, but is not useful in general. When the boundary conditions of the mechanical
loading change, or when the force is applied in a different location or with a differ-
ent orientation, the connection between this new loading situation and the damage
is still unknown.

10.4 A Material Model for Arteries

Practical and ethical issues impede the purely experimental characterization of this
generalized relation between mechanical loading and damage and favor the use
of numerical simulations. To this end, a realistic material model for arteries is re-
quired, capable of capturing features such as vasoregulation and damage. This sec-
tion presents a material model suitable to simulate the damage process during the
clamping of an artery.

Through an additive decomposition of the strain energy, the following consti-
tutive model for active healthy and degraded arterial tissue characterizes the prop-
erties of (i) an isotropic matrix material constituent, (ii) an anisotropic constituent
attributed to the dispersed collagen fibers and (iii) an anisotropic smooth muscle
cell constituent. The first two constituents are motivated by the Holzapfel-material
model as proposed in Holzapfel et al. (2000), whereas the third component is mo-
tivated by the mechanical smooth muscle activation model described by Murtada
et al. (2010). The damage accumulating in the different constituents during mechan-
ical loading is characterized through a strain-energy-driven damage function for
each individual constituent, motivated by the formulation of Balzani et al. (2006).
In the remainder of this chapter, the material model will be referred to as the three-
constituent damage model.

10.4.1 Constitutive Equations

Since the tissue is assumed to be nearly incompressible, it is common to additively
decompose the strain-energy function Ψ , i.e.

Ψ = Ψ vol +Ψ dev = Ψ vol +Ψmat +Ψ fib1 +Ψ fib2 +Ψ smc, (10.1)

into a volumetric Ψ vol and a deviatoric Ψ dev part. The latter consists of an iso-
tropic contribution of the matrix material Ψmat, an anisotropic contribution of two
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families of collagen fibers Ψ fib1 and Ψ fib2 , and a contribution of the smooth muscle
cells Ψ smc. The individual contributions will be specified in detail in the following
section.

10.4.1.1 Volumetric Bulk Material

The volumetric free energy Ψ vol can, for example, be expressed as follows Arruda
and Boyce (1993):

Ψ vol =Λ
[

1

2

(
J 2 − 1

)− ln(J )

]
, (10.2)

where J is the determinant of the deformation gradient F. The penalty parameter
Λ corresponds to κ/2, with κ the bulk modulus (in MPa), and should be set high
enough to ensure a nearly incompressible response.

Since this term is handled separately in an incompressible finite element formu-
lation, we will now focus on the four contributions to the deviatoric energy Ψ dev,
which are the primary descriptors of the material behavior.

10.4.1.2 Damage to the Deviatoric Components

All deviatoric components are allowed to undergo degradation in the case of physio-
logical overload. Simo and Ju (1987), in general, and Balzani et al. (2006) for arter-
ies have described the approach of weighting the strain energy with a scalar-valued
damage variable (1 − d). This model builds upon the classical damage concept, and
introduces an independent damage variable for each individual constituent. Thus,

Ψ i = (1 − d i)Ψ̂ i. (10.3)

Here, Ψ̂ i denotes the elastic energy of one of the deviatoric constituents (mat, fib1,
fib2). The smooth muscle cells form an integral part of the matrix constituent, even
in their passive state. Therefore, their degradation is assumed to depend on both the
passive damage dsmc

pas in the surrounding matrix and the active damage dsmc
act in the

smooth muscle cells themselves:

Ψ smc = (1 − dsmc
pas

)(
1 − dsmc

act

)
Ψ̂ smc. (10.4)

The evolution of the damage variable of each constituent d i is driven by the undam-
aged elastic energy, as proposed by Balzani et al. (2006):

d i = γ i[1 − exp
(−β i/mi)] with i = mat,fib1,fib2,

smc
pas ,

smc
act . (10.5)

The weighting factor γ i (in kPa) can be used to tune the sensitivity to damage, γ i ∈
[0,1], and mi is a dimensionless parameter of the damage model. The variable β i is
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an internal variable keeping track of the maximum elastic strain energy experienced
so far, within the time interval 0 ≤ t ≤ τ (Balzani et al., 2006):

β i = max
0≤t≤τ

(
Ψ̂ i(t)−Ψ i

0

)
with i = mat,fib1,fib2,

smc
pas ,

smc
act . (10.6)

For the specific case of the smooth muscle cell contribution Ψ smc
pas = Ψmat and

Ψ smc
act = Ψ smc.

Since it can be assumed that no damage occurs in the physiological range, the
damage thresholdΨ i

0 is initialized with the strain energy in the respective constituent
at systolic pressure. For heterogeneous problems, Ψ i

0 may, therefore, differ for each
material point, and is thus not strictly a material property.

10.4.1.3 Elastic Energy of the Deviatoric Constituents

The elastic energy of the extracellular matrix is described by a neo-Hookean contri-
bution:

Ψ̂mat = 1

2
c(Ī1 − 3), (10.7)

where c > 0 characterizes the matrix stiffness (in kPa) and Ī1 is the first invariant of
the modified right Cauchy-Green tensor.

10.4.1.4 Collagen Fibers

Collagen fibers will only contribute when under tension, where the free energy con-
tributions of the two families of collagen fibers are formulated according to (Gasser
et al., 2006)

Ψ̂ fib1,2 = k1

2k2

{
exp
[
k2
(
Ifib�

4,6 − 1
)2]− 1

}
. (10.8)

Here, k1 > 0 characterizes the fiber stiffness (in kPa) and k2 > 0 is a dimension-
less parameter, while Ifib�

4,6 are pseudo-invariants for each of the two fiber families,
accounting for fiber dispersion:

Ifib�
4,6 = κ Ī1 + (1 − 3κ)Īfib

4,6, (10.9)

with I4 and I6 the anisotropic invariants characterizing the stretches along the fiber
directions:

Īfib
4,6 = λ2

θ cos2 αfib1,2 + λ2
z sin2 αfib1,2 . (10.10)

Here, λθ and λz are the stretches in the circumferential and axial directions, re-
spectively, and αfib1 and αfib2 denote the angles between the circumference and the
mean directions of the fiber families. In the case of arteries, two fiber families are
oriented symmetrically with respect to the cylinder axis, so that αfib1 = −αfib2 and,
consequently, Īfib

4 = Īfib
6 .
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10.4.1.5 Smooth Muscle Cells

In the undamaged state, the energy of the smooth muscle cells Ψ̂ smc can be ex-
pressed as follows (Murtada et al., 2010):

Ψ̂ smc = 1

2
μsmc(nIII + nIV)

(√
I smc

4 + urs − 1
)2
, (10.11)

where μsmc characterizes the stiffness of the actin-myosin filament apparatus (in
kPa). The kinetics of the actin-myosin powerstroke are modeled through a four-
state model described by Hai and Murphy (1988) and adopted by Murtada et al.
(2010) and Stålhand et al. (2011). This model describes the transitions between the
four states nI, nII, nIII and nIV of the myosin heads as a function of the calcium
concentration as follows:
⎡

⎢⎢
⎣

ṅI
ṅII
ṅIII
ṅIV

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

−κ1 κ2 0 κ7
κ1 −(κ2 + κ3) κ4 0
0 κ3 −(κ4 + κ5) κ6
0 0 κ5 −(κ6 + κ7)

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

nI
nII
nIII
nIV

⎤

⎥⎥
⎦ . (10.12)

Here, n are the fractions of the four states, which sum up to one,
∑
ni = 1. The κi

(in s−1) are the rate constants of the model, where κ1 and κ6 are a function of the cal-
cium concentration. In particular, nI and nII are the fractions of dephosphorylated
and phosphorylated myosin heads that are not attached to the actin filament, and
thus not mechanically contributing, while nIII and nIV are the fractions of phospho-
rylated and dephosphorylated myosin heads, or cross-bridges, attached to the actin
filaments, and thus contributing to the stiffness. The power-stroke occurs through a
conformational change in state III, after which the myosin heads transform back into
state II. As long as the myosin heads remain phosphorylated, they cycle back and
forth between states II and III, thus generating contraction. In state IV, the myosin
heads are still attached to the actin filament but dephosphorylated and thus unable
to perform a power stroke.

In Eq. (10.11), urs is the average normalized relative sliding between the myosin
and the actin filaments. It follows a viscous evolution law:

u̇rs = 1

η

(
P smc − Pmat), (10.13)

where η is a viscosity parameter (in MPa), P smc denotes the active stress exerted by
the attached myosin heads and Pmat denotes the stress from the surrounding matrix.
The active stress P smc can be approximated by the following step function

P smc =
⎧
⎨

⎩

κc nIII for Pmat < κcnIII,

Pmat else,
κc(nIII + nIV) for κc/(nIII + nIV) < P

mat,

(10.14)

where κc is a material parameter (in MPa) related to the driving force per myosin
head, see Murtada et al. (2010) for details.
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10.4.2 Implementation

The constitutive model is implemented in the Abaqus user subroutine UANISO-
HYPER_INV and VUANISOHYPER_INV, a family of subroutines designed for
anisotropic, hyperelastic material models, in which the strain-energy function Ψ
is formulated as a function of the strain invariants, written for Abaqus/Standard
and Abaqus/Explicit, respectively. This subroutine can handle and update solution-
dependent internal variables and requires that the derivatives of the strain-energy
function are defined with respect to the scalar invariants Ī1, Ī2, Ī3, Īfib

4 , Īfib
6 , Ī smc

4 ,
which are provided as input. It is called at each integration point during each load in-
crement to calculate the total strain energyΨ and its first and second derivatives with
respect to the invariants ∂Ψ/∂Īi and ∂2Ψ/∂Īi∂Īj for i, j = 1,2,3,4fib,6fib,4smc.

Through the input file, a local coordinate system must be set, containing the local
directions αfib for the collagen fibers and αsmc for the smooth muscle cells. When
defining the material, memory must be allocated for nine solution-dependent state
variables, namely the damage driving forces βmat, βfib1 , βfib2 , and βsmc, and the
damage thresholds Ψmat

0 , Ψ fib1
0 , Ψ fib2

0 , and Ψ smc
0 . The ninth state dependent variable

is the relative sliding urs in the actin-myosin complex, which needs to be stored
because of its viscous nature.

The anisotropic, hyperelastic, user-defined material model must be specified with
all the material parameters described above, choosing the options ‘formulation
= invariant’, ‘local directions = 3’ and ‘type = incompress-
ible’. A conceptual drawback of the UANISOHYPER_INV subroutine is that it
does not provide access to the time step of the solution process, which should
be known for correct programming of the viscous evolution law described in
Eq. (10.13). This implies that the exact time step is only known if a fixed time
increment is set, by adding the option ‘direct’ to the keyword ‘static’ in the
input file. Otherwise, only the minimum and maximum allowable time step can be
externally prescribed.

10.4.3 Parameter Selection

Table 10.1 gives an overview of all parameters of the material model. The first set of
parameters are related to the extracellular matrix with two embedded fiber families.
For the rat abdominal aorta, the main direction of the collagen fibers αfib is set to
±5◦, i.e., it is almost aligned with the circumferential direction, see O’Connell et al.
(2008). The four remaining parameters are set to κ = 0.16(−), k1 = 32.51 kPa, k2 =
3.05(−) and c = 23.63 kPa, by using experimental data from extension-inflation
tests, as described in Famaey et al. (2012a). Alternatively, a parameter set from
human arteries can be found in Stålhand (2009).

The next set of parameters are the rate constants of the chemical model defining
the fractions nIII and nIV in Eq. (10.12). They are chosen according to Hai and Mur-
phy (1988). These values led to the fractions of nIII = 0.164 and nIV = 0.547, which
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Table 10.1 Parameters used
in the finite element model Parameter Value Source

Matrix material

c 23.63 kPa Famaey et al. (2012a)

Collagen fibers

αfib ±5° O’Connell et al. (2008)

k1 32.51 kPa

k2 3.05(−) Famaey et al. (2012a)

κ 0.16(−)
Smooth muscle cells—chemical rate constants

κ1, κ6 0.14 s−1

Hai and Murphy (1988)
κ2, κ5 0.5 s−1

κ3,4κ4 0.44 s−1

κ7 0.01 s−1

Smooth muscle cells—mechanical constants

μsmc 0.25 MPa Famaey et al. (2012b)

κc 0.93 MPa Famaey et al. (2012b)

η 60 MPa s Murtada et al. (2010)

αsmc 0° O’Connell et al. (2008)

γ smc
pas 0.9(−) Famaey et al. (2012b)

msmc
pas 3.00 kPa Famaey et al. (2012b)

were used as fixed input values into the mechanical model. Additional parameters
are related to the mechanical model of the smooth muscle cell contribution. Accord-
ing to O’Connell et al. (2008), the smooth muscle cells of rat abdominal arteries
are oriented circumferentially with αsmc = 0°. The parameter μsmc depending on
the stiffness of the actin-myosin filament structure and the parameter κc related to
the driving force per cross-bridge were both tuned to fit the experimental contrac-
tion measured in the myograph due to addition of PE for a previously undamaged
segment, as described in Sect. 10.2. The viscous damping constant η was set to
60 MPa s, corresponding to the value used in Murtada et al. (2010).

To characterize damage progression appropriately, two parameters need to be cal-
ibrated for each constituent, plus two additional ones for the smooth muscle cells,
resulting to ten parameters. Since the myograph experiment only allows for damage
quantification in the smooth muscle cells, with the current setup, no reasonable dam-
age parameters can be defined for the extracellular matrix and the collagen fibers.
Additional complementary experiments will be needed for this task, as discussed in
Sect. 10.7. Accordingly, here, γmat and γ fib were set to zero, such that mmat and
mfib can take any arbitrary value. Secondly, the assumption was made that, during
clamping, the smooth muscle cells were completely passive, and thus not contribut-
ing to the stiffness. Consequently, no damage could accumulate here, so that γ smc

act
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could also be set to zero, and msmc
act to an arbitrary value. The two remaining param-

eters γ smc
pas and msmc

pas were then calibrated using the experimental data, as described
in Famaey et al. (2012b). For a systematic approach to calibrate damage material
parameters in a heterogeneous setting, the reader is referred to Mahnken and Kuhl
(1999).

10.5 Finite Element Simulation

10.5.1 Arterial Clamping

With the material model described in Sect. 10.4, it becomes possible to simulate
the experimental process described in Sect. 10.3. A three-dimensional finite ele-
ment model was built in Abaqus/Standard 6.10 − 2. Here, an idealized cylindrical
geometry was used with an outer radius of 0.58 mm, a wall thickness of 0.14 mm
and an initial length of 0.1 mm. These values were obtained from measurements
on rat abdominal arteries described in Famaey et al. (2012a). Hexahedral C3D8H
elements were used. Because of severe bending, six elements were taken across the
thickness, and seeding in other dimensions was chosen to ensure regular elements.
The numerical implementation of the arterial clamping is subdivided into two steps:
(i) the setting of the initial damage level, (ii) the clamping process itself. Figure 10.3
shows all steps of the clamping simulation.

In the first part, an opened cylindrical segment with an opening angle of 60◦ is
closed to account for the circumferential residual strains (Balzani et al., 2007). Next,
the segment is longitudinally stretched by 50 %, to account for residual strains in
the longitudinal direction. The values for the residual strains were obtained from
experiments described in Famaey et al. (2012a). In the third step, the segment is in-
flated to an internal pressure of 16 kPa, which corresponds to physiological systolic
blood pressure. The material model used in this step is the three-constituent damage
model, as described above, however, without accumulation of damage. At the end
of the third step, the undamaged elastic strain energy of each of the four constituents
is written into a matrix of internal or ‘solution dependent variables’ for each inte-
gration point, using Python scripting. These are the initial damage threshold levels
Ψ i0 , described in Eq. (10.6), which will be used in step 4.

Step 4 starts with a new input file, in which the state of the artery after the first
three steps is imported. By importing, the deformations are included as ‘initial val-
ues’ for the model. The solution dependent variables defined above contain the dam-
age threshold levels Ψ i0 specified as ‘initial conditions’ in the input file. The material
model is now updated to enable damage accumulation, γ i > 0, and four extra solu-
tion dependent variables, representing the βi described in Eq. (10.6) are added. In
addition, two extra parts are added to the assembly of the system, namely an upper
and lower clamp, which are gradually moved towards each other during step 4, until
a clamping force of 5 mN is reached. A friction coefficient of μclamp = 0.3 is used
between the clamp and the outer arterial surface. Finally, also the internal pressure
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Fig. 10.3 Schematic
overview of the seven steps in
the FE simulation
representing the loading
history of arterial clamping
(steps 1–4) and the functional
damage assessment
(steps 5–7)

boundary conditions are modified to a pulsating pressure between 10 and 16 kPa,
that gradually decays to zero when the vessel is completely closed. To keep track
of the maximum energy level reached for each constituent at every integration point
of the system, the four extra solution dependent variables are updated and stored at
each step as internal variables βi . At the end of the simulation, these solution de-
pendent variables are again written to a matrix using Python scripting to inform the
next step.

10.5.2 Functional Damage Assessment

After clamping, damage has accumulated in the different constituents. For the
smooth muscle cells, this amount of damage can be calibrated and validated in a
myograph, as explained in Sect. 10.2. The simulation starts from the same mesh
as in step 1 of Sect. 10.5.1. Initial conditions are specified for the solution depen-
dent variables taking into account the earlier loading history through the internal
variables βi . The material model is adapted such that damage due to the energy
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Fig. 10.4 Maximum principal stress in an arterial segment at systolic pressure (top left), when
clamped up to a clamping force of 5 mN with a smooth clamp (middle left) and when clamped up
to 5 mN with a mosquito clamp (bottom left). Damage variable dsmc

pas in the same segment, for the
smooth clamp design (top right) and for the wavy clamp design (bottom right)

accumulation of clamping is present, but no further damage is induced. Similar to
step 1 of Sect. 10.5.1, the segment is closed to form a half cylinder in step 5, thus
incorporating the circumferential residual stress. To reproduce the experimental sit-
uation, this time, no longitudinal stretch or internal pressure was added. Next, in
step 6, a rod is translated radially from inside the section, pulling it until it exerts
a certain load, corresponding to the experimentally measured value after complete
relaxation due to the addition of SNP. A friction coefficient of μrod = 0.3 is used
between the rod and the outer arterial surface. Up to the end of step 6, no smooth
muscle cell contribution is added in the material model. This is accomplished by
multiplying the fractions nIII and nIV with a switch function that is set to zero in
steps 5 and 6.

After reaching the relaxed state, in the final step, the switch function is smoothly
ramped to one, so that the smooth muscle cells reach the completely contracted
state. Physiologically, this corresponds to the transition between the state after addi-
tion of SNP (completely relaxed) and the state after the addition of PE (completely
contracted). In this step only, because of the time dependence of the evolution law
for the relative sliding urs, the time step of the implicit solution scheme is fixed to
 t = 10−5. Figure 10.3 gives a schematic overview of all seven steps of the simu-
lation.
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Fig. 10.5 Different stages of the myograph experiment, with the color code depicting the maxi-
mum principal stress. In stages a, b and c the rods are being pulled to the preload force (step 6 of
the numerical simulation). In stages d , e and f the rods remain in position and the smooth muscle
cells are activated (step 7 of the numerical simulation)

10.5.3 A Different Clamp Design

The power of the proposed framework is that damage assessment can be performed
for different loading situations without having to perform new experiments. As a
proof of concept, the simulations described above were repeated for the exact same
geometry, but with a wavy clamp design, similar to a typical mosquito clamp used in
surgery. Mesh density for this simulation was increased to nine elements through the
thickness as more severe bending was expected. Clamping was simulated up to the
same macroscopic clamping force as with the smooth clamp design. The clamping
simulation was performed in Abaqus/Explicit, as it has a better capability of dealing
with complex contact situations.

10.6 Results

The top left image in Fig. 10.4 shows the maximum principal stress in an arterial
segment in the systolic physiological state. This state defines the free energy thresh-
old above which damage is initiated. In the middle left image of the same figure,
the maximum principal stress is shown for the same arterial segment when clamped
up to a clamping force of 5 mN with a smooth clamp design. The bottom left image
shows the segment when it is clamped to the same clamping force with a mosquito
clamp. As shown in the right column of Fig. 10.4, the clamping induced an inhomo-
geneous damage pattern to the smooth muscle cells in both clamping cases.

Figure 10.5 shows snapshots of the myograph experiment, with the color code
depicting the maximum principal stress. The right graph of Fig. 10.6 shows the
force measured in the rods of the myograph as a function of time, for a previously
undamaged segment, solid line, and for a segment that was previously clamped at
5 mN with a smooth clamp, dashed line, and for a segment that was previously
clamped with a mosquito clamp, dotted line. The letters along the curve correspond
to the stages shown in Fig. 10.5. The first section of the graph corresponds to step
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Fig. 10.6 The left graph shows the force measured in the rod during an experiment, for a segment
that was previously clamped with the device described in Sect. 10.3 to a level of 5 mN and for
a segment that was undamaged, both normalized to the width of the numerical model. The right
graph shows the force in the rod of the myograph as a function of time calculated from the finite
element simulation, for a previously undamaged segment (solid line), for a segment that was pre-
viously clamped at 5 mN with a smooth clamp (dashed) and for a segment that was previously
clamped at 5 mN with a mosquito clamp (dotted). The letters along the curve correspond to the
snapshots shown in Fig. 10.5

6 of the simulation, i.e., the pulling of the rod to the passive state. After 2 seconds,
the smooth muscle cells are activated, corresponding to step 7.

The left graph of Fig. 10.6 shows the force measured in the rod for a segment
that was previously clamped with the device described in Sect. 10.3 to a level of
5 mN, normalized to the width of the numerical model, and for a segment that was
undamaged. The force in the rod was also normalized to the width of the numerical
model. Again, in the first section of the graph, the rod is gradually pulled to reach
the passive preload state. At the point indicated with the arrow, PE is added to the
Krebs solution, triggering the activation of the smooth muscle cells. Note that the
time scales in the two graphs do not agree. To calibrate the model appropriately, an
additional time parameter would have to be included into the model. Here, however,
we were only interested in the end result of the curve, rather than in calibrating the
model to real physical times.

10.7 Discussion

This chapter outlined a framework to experimentally quantify and numerically sim-
ulate damage to cardiovascular tissue due to mechanical loading. Different experi-
mental methods were described for the damage quantification of the different con-
stituents of the tissue and explicit attention was given to the myograph setup, a de-
vice to test the vasoregulating capability of the artery. Next, it was shown how in
vivo mechanical experiments can be performed to determine the experimental rela-
tion between a certain mechanical load and the induced damage.
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To enable the simulation of the amount of induced damage due to any mechanical
load without having to repeat a huge amount of experiments, a realistic material
model incorporating damage to each of the constituents of the arterial tissue was
introduced and incorporated into a finite element framework (Abaqus). It was used
to simulate the clamping experiment as well as the myograph test, as described in
the previous sections.

The material model described in Sect. 10.4 introduces a large set of parame-
ters, which need to be experimentally defined for each tissue type. Extensive ex-
perimental data from a range of different experiments is required to correctly cali-
brate all parameters. Section 10.4.3 comments on the rationale behind the parameter
selection for this study. The goal of this study was to demonstrate the feasibility
of the proposed model and to illustrate a conceptual methodology for the damage
characterization in smooth muscle cells. Accordingly, less emphasis was placed on
the exact parameter identification for the other model parameters. As explained in
Sect. 10.4.1, four damage processes can be captured by the model, one for each
constituent. Each damage process is assumed to be driven by the individual free en-
ergy of that constituent. For smooth muscle cells, passive damage is also affected
by the energy in the matrix constituent. Here, we focus in particular on this last pas-
sive part of damage, assuming that smooth muscle cells are inactive during the real
clamping process. The damage parameters were chosen to correspond to the results
of the ex vivo experiment. In the future, further experiments will be performed with
different clamping force levels to calibrate the model for a wider loading range.
To enable numerical comparison with higher clamping force levels, it will be neces-
sary to remesh the clamped segment to avoid excessive element distortion. However,
remeshing would require the mapping of the solution, both from the node points and
from the integration points, onto the new mesh, a feature still lacking for anisotropic
materials in Abaqus 6.10.

Aside from simulating with a smooth clamp similar to the experimental situa-
tion, a simulation was also performed with a wavy surface, as in a typical mosquito
clamp. Results show how for the same amount of clamping force, less damage is
induced in the tissue with the wavy clamp design and, consequently, a higher con-
tractile force is achieved in the simulated isometric contraction test. Though perhaps
counter-intuitive, the reason for this is that at the current clamping force, the tissue is
still able to relax into the concave parts of the clamp and therefore gets less stretched
towards the edges. One would expect the damage to become more severe as soon as
these concave parts are entirely filled up by the material.

In order to accurately identify the damage parameters for the different con-
stituents, different, ideally orthogonal, experiments are required that enable the ex-
traction of this specific information. Damage in the collagen fibers under tension
can possibly be studied using microscopic images of the tissue at different stages
in the stretching process and assessing the images for collagen rupture. In fact, the
extension-inflation tests that were used here to calibrate the undamaged baseline
parameters of the Holzapfel-model most probably already induced damage to both
collagen fibers and matrix in the higher pressure regimes. Damage in the collagen
fibers and matrix should therefore ideally be calibrated simultaneously, possibly
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through extension-inflation tests. Damage to the smooth muscle cells is assumed
to depend on both damage of the passive extracellular matrix and damage of the
active smooth muscle cells themselves. Damage in the passive regime has been ob-
served and characterized experimentally in Famaey et al. (2010), and calibrated in
this manuscript using these data. It results in a reduced activation capability, which
will only become apparent upon activation. Damage in the active regime is caused
by excessive tension in the direction of the contractile unit, which might cause rup-
tures in the myosin cross-bridges or rupture of the actin and myosin filaments. It is
included here merely theoretically for the sake of completeness, but has not been
calibrated yet. We are currently in the process of further investigating these phe-
nomena to characterize the mechanisms underlying active damage.

Note also that in the finite element model, the artery was modeled as a single
homogeneous layer, even though the wall consists of two solid mechanically rele-
vant layers, i.e. the media and the adventitia. However, in the case of a rat abdominal
artery, the complete wall thickness is only approximately 0.14 mm thick, and in con-
trast to human tissue, it is impossible to separate these two layers from each other.
Therefore, the most accurate approach was to model the wall as a single layer. The
assumption was also made that damage initiates once the energy level exceeds that
of the energy level at systolic blood pressure. This was motivated by the fact that the
morphology and properties of the arterial wall change due to chronic hypertension
(Matsumoto and Hayashi, 1994), but whether this actually justifies this assumption
for acute damage scenarios should still be experimentally validated.

Although the three-constituent damage model already captures a number of typ-
ical features of cardiovascular tissue, some characteristic aspects are still not in-
cluded, and a few limitations remain. When qualitatively comparing a simulated
homogeneous cyclic tension test performed on one element with the new material
model to the experimental results of a uniaxial tensile test on a sheep carotid artery,
shown in Fig. 10.7, it is clear that several features, e.g., tissue nonlinearity and dis-
continuous softening are accurately captured. However, in the tensile test on the
sheep carotid artery, cycling up to a certain strain level was performed five times be-
fore the next strain level was reached, and clearly softening does continue in these
cycles, even though the maximum energy level, the parameter β in our model, is
not increased. This continuous damage behavior was not captured with the damage
model used here. Moreover, the damage variables introduced in this model mainly
capture acute effects, while chronic effects such as repair and/or remodeling have
not been considered for the time being. These effects should be investigated, keep-
ing in mind the trade-off between realism of the model and its usability. The correct
identification of the material parameters obviously becomes more challenging as
more effects are incorporated in the model.

Predictive computational modeling of tolerable damage thresholds is clinically
relevant in two ways: on the one hand, in the short term, the proposed framework
can be used as a simulation tool to optimize surgical tools, for example, to im-
prove clamp design to minimize tissue damage. On the other hand, in the long term,
the proposed framework could enable the prediction of surgically-induced damage
evolution in real-time. This would allow loading thresholds to be imposed on sur-
gical instruments during an operation in a robotic teleoperation setting. The actual
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Fig. 10.7 Comparison of a simulated homogeneous cyclic tension test performed on one element
with the new material model to a uniaxial tensile test on a circumferentially oriented strip of a
sheep carotid artery. The experiment was performed on a tensile test bench (INSTRON 5567).
Cyclic loading at gradually increasing levels of elongation was applied at a crosshead speed of
1 mm/s. The tests were performed with continuous recording of tensile force, with a 1 kN load cell
and gauge length, based on crosshead displacement, at a sampling frequency of 10 Hz. Cycling up
to a certain strain level was performed five times before the next strain level was reached, for six
increasing levels of strain

value of these thresholds should be defined in close collaboration with surgeons and
biomedical researchers, experimentally assessing the level of damage due to loading
and defining which damage levels are still acceptable, taking into account long-term
effects of damage accumulation but also self healing. These critical damage levels
can then be correlated to the internal damage variables d . Once the damage variable
of a constituent has reached a certain level robotic loading should be stopped auto-
matically. Future research will therefore also be directed towards algorithm speed-
up, e.g., through parallelized implementation in the GPU with NVIDIA Compute
Unified Device Architecture.
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Chapter 11
Mechanical Properties of Ascending Thoracic
Aortic Aneurysm (ATAA): Association
with Valve Morphology

Salvatore Pasta, Julie A. Phillipi, Thomas G. Gleason, and David A. Vorp

Abstract Type A aortic dissection (AoD) of an ascending thoracic aortic aneurysm
(ATAA) is a life-threatening cardiovascular emergency with a high potential for
death. AoD represents a devastating separation of elastic aortic layers occurring
when the hemodynamic loads on the diseased wall exceed the adhesive strength
between layers. The goal of this study was to evaluate and compare the dissec-
tion properties of non-aneurysmal and aneurysmal human ascending thoracic aortas
from patients with bicuspid aortic valve (BAV) and normal tricuspid aortic valve
(TAV) morphologies using biomechanical delamination testing. Following complete
delamination of ATAA tissue samples, tensile tests were performed on each de-
laminated half for comparison of their tensile strengths. Results evinced that the
aneurysmal aortas with BAV and TAV have lower delamination properties than non-
aneurysmal aorta, and that ATAA with BAV has lower Sd than TAV, suggesting an
apparent propensity of AoD.

11.1 Introduction

One of the most common lethal complications of an ascending thoracic aortic
aneurysm (ATAA) is the aortic dissection (AoD), causing significant mortality
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despite advances in diagnostics and surgical management (Bonnichsen et al., 2011).
The exact prevalence of AoD is difficult to determine, and most estimates are based
on necropsy studies with evidence in 1–3 % of all cases. The incidence of AoD is be-
lieved to be 5–30 cases per 1 million people per year, typically presenting in elderly
patients, and in males more frequently than females (ratio 3 : 1). AoD occurs more
typically in elderly patients in the presence of a tricuspid aortic valve (TAV) and in
relatively younger patients if a bicuspid aortic valve (BAV) is present. During the
first 24 to 48 hours, the mortality in patients not treated surgically is as high as 74 %
(Knipp et al., 2007). Even among patients treated with emergent aortic reconstruc-
tion, operative mortality averages 24 % worldwide as reported by the International
Registry of Acute Aortic Dissection (Rampoldi et al., 2007).

Type A ascending aortic dissections originate with an intimal tear typically oc-
curring near the sinotubular junction where the wall stresses are believed to be el-
evated (Coady et al., 1999). The intimal tear allows blood to enter the aortic wall,
splitting the media and progressively separating the medial plane along the longi-
tudinal direction of the aorta. This creates a new ‘false lumen’ which runs paral-
lel to the true lumen. The false lumen can reenter the true lumen anywhere along
the course of the AoD or exit through the adventitia resulting in frank rupture. As
the dissection extends distally, its propagation and re-entry follows unpredictable
courses that can result in life threatening ischemia of the heart, brain, abdominal
viscera, spinal cord and extremities (Johansson, 1995). There are several risk fac-
tors predisposing patients to AoD. Among these are severe hypertension, connec-
tive tissue disorders such as the Marfan and Ehlers-Danlos syndromes, and bicuspid
aortic valve (BAV). The congenital malformation, bicuspid aortic valve is distinctly
associated with the development of ascending aortic dilatation imparting a marked
risk of AoD (Cripe et al., 2004) and occurs in 1 to 2 % of the population, mak-
ing it the most common congenital heart malformation (Bonderman et al., 1999;
Ward, 2000). In the clinical practice of ATAA reported by Gleason (2005), over
40 % of patients undergoing elective surgical replacement of the ascending aorta
indeed have BAV. Additionally, older necropsy studies shown a risk of fatal dissect-
ing aneurysm in BAV patients nine times higher than patients with tricuspid aortic
valve (TAV) (Edwards et al., 1978; Larson and Edwards, 1984). The histopathologic
analyses of AoD and aneurysms appear strikingly different from those of abdominal
aortic aneurysms (AAA). Thoracic aneurysms have distinct histopathologic charac-
teristics classified as cystic medial degeneration, which is non-inflammatory and
in stark contradistinction to AAAs showing inflammatory characteristics (Davies,
1998; El-Hamamsy and Yacoub, 2009).

From a biomechanical point-of-view, the AoD of ATAAs involves a separation
(i.e. a delamination) of the elastic layers of the degenerated aortic wall that oc-
curs when the hemodynamic loads exerted on the aneurysmal wall exceed adhesive
forces that normally hold the mural layers together.

The purpose of this work was therefore to quantify the biomechanical properties
of ATAA samples relative to non-aneurysmal human ascending aorta and to distin-
guish specific differences in the biomechanical properties of ATAAs from BAV and
TAV patients. This was achieved performing biomechanical delamination tests, fol-
lowed by tensile tests on the delaminated halves to show the distinct strengths of the
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outer and inner aortic walls of the artificially created ‘false lumen’ for evaluating the
propensity of either intimal flap propagation or frank disruption. SEM investigations
was also performed to examine the failure modality of AoD.

11.2 Material and Methods

11.2.1 Human Aortic Tissue Specimens

All human ascending thoracic aorta tissue specimens were obtained after informed
consent following guidelines of our Institutional Review Board and Center for Or-
gan Recovery and Education. Segments of non-aneurysmal aorta (control) were col-
lected from organ donor subjects whereas non-dissected ATAAs were collected from
patients undergoing elective ascending aortic replacement at the University of Pitts-
burgh Medical Center. A total of 31 aortic segments (7 controls and 24 ATAAs)
with age range of 41–79 yr, aortic diameter of 40–68 mm and gender comprised of
24 males and 7 females were analyzed. The aneurysmal groups were composed of
16 BAV and 8 TAV segments, respectively. All non-aneurysmal segments were col-
lected from individuals with TAV. The aortic samples were tested within 48 hours of
harvest after storing at 4 °C in a calcium-free and glucose-free 0.9 % physiological
saline solution (Raghavan et al., 1996).

11.2.2 Biomechanical Testing

The harvested aortic segments were cut into long, thin, rectangular (approximately
30 × 6 mm) strips with their long axis in either longitudinal (LONG) or circum-
ferential (CIRC) orientation with respect to that of the aorta. Generally, the same
aortic segment was used to obtain strips of both orientations for direct comparison.
To create an initial delamination plane, a delaminating incision was made with the
aid of a surgical scalpel between elastic lamellae of each specimen, parallel with the
plane of the aortic wall and 8–12 mm in length (Fig. 11.1).

Since the initial incision was made manually, there naturally was a moderate vari-
ation in terms of the exact location of the incision plane with respect to the center of
the media or to the external or internal elastic lamina. However, the artificial delam-
ination plane was reproducible. The dimension of each specimen (i.e., the width,
thickness and length) were measured at three different locations using a dial caliper
and then averaged and recorded before testing. The two free flaps of each delam-
inated half of the ATAA specimen were mounted between the grips of an Instron
tensile system (model 5542) with a 5 N load cell. To avoid slipping of the speci-
men in the pneumatic grips, surfalloy jaw faces with gritty, sandpaper-like surfaces
were used. During testing, the mounted specimens were submerged in 0.9 % phys-
iological saline solution in a BioPuls bath under controlled temperature of 37 °C.
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Fig. 11.1 Photography of a
representative specimen for a
delamination test showing the
through-thickness incision for
creating the initial dissection
plane. Taken from Pasta et al.
(2011)

A constant crosshead speed of 1 mm/min was used to pull apart the two free flaps
of the tissue specimen whereas the applied load and resulting displacement were
recorded continuously using the Instron-packaged software (Bluehill v.2). The two
delaminated halves resulting from each delamination test (i.e., the one between the
intimal surface and the delaminated plane (INT-DEL), and the one between the ad-
ventitial surface and the delaminated plane (ADV-DEL)) were stretched to failure
in the uniaxial tensile testing system to evaluate the tensile strength of each. None
of specimens failed for technical reason during biomechanical testing.

11.2.3 Data Analysis

‘Delamination curves’ were generated from each test, and consisted of a plot of the
‘peel tension’ (Tpeel, defined as the applied force normalized by the width of the
specimen) as function of the elongation (displacement). The mean value of Tpeel

after the initial peak was taken as the delamination strength Sd of the specimen. The
Sd values calculated for multiple LONG and CIRC specimens tested for a given
patient were taken as the overall Sd,LONG and Sd,CIRC for that specific patient. For
the tensile tests, we utilized the approach published previously by our laboratory
(Raghavan et al., 1996). In short, the Cauchy stress T was calculated as the applied
force normalized by the deformed cross-sectional area, and stretch was calculated
as the deformed length normalized by the original length of each specimen. The
tensile strength ST was taken as the peak value of stress attained prior to complete
specimen failure.

One-way ANOVA, followed by Holm-Sidak post-hoc test for all pair-wise
comparisons, was performed using SigmaPlot software (SYSTAT Software Inc.,
Chicago, Ill) to determine significance among groups. Level of statistical signifi-
cance was set as p = 0.05. Data are shown as mean ± SEM.
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11.2.4 SEM Imaging

Changes of tissue microstructure due to the propagation of the dissection were inves-
tigated observing the surfaces of delaminated halves of specimens from each group
at SEM. The aortic tissues were fixed in 2.5 % glutaraldehyde for one hour, dehy-
drated in a graded series of ethanol/water solutions, dried, and then sputter coated
with gold. The orientation of each specimen inside the microscope was aligned to
that of the dissection propagation before imaging.

11.3 Results

Figure 11.2 shows representative delamination curves for three separate LONG and
CIRC strips cut from an ATAA of a 56 yr old male patient with BAV and aortic
diameter of 46 mm. The initial ‘ramp’ phase of the loading curve corresponds to
stretching of the peel arms whereas the jagged plateau region shows the slow and
controlled propagation of the AoD. In delamination testing, the oscillation is typical
and is often referred in the rubber mechanics literature as unstable or ‘stick-slip’
tearing; i.e., the delamination does not propagate at a steady rate, but is arrested and
re-initiated at irregular intervals.

A comparison of Sd between non-aneurysmal and ATAA with BAV and TAV
in both LONG and CIRC directions was performed (Fig. 11.3). A significant dif-
ference was observed for the Sd (i.e. the resistance to AoD) in both LONG and
CIRC directions of the non-aneurysmal aorta (Sd,LONG = 149.0±7.6 and Sd,CIRC =
126.0 ± 6.6, n= 7) with respect to that of BAV ATAAs (Sd,LONG = 100.0 ± 4.1 and
Sd,CIRC = 88.4 ± 4.1, n= 16) and with respect to that of TAV ATAAs (Sd,LONG =
116.8 ± 6.1 and Sd,CIRC = 109.1 ± 5.2, n = 8). Furthermore, the significant dif-
ference between LONG and CIRC strengths for the non-aneurysmal group indi-
cates anisotropic (i.e., directionally-dependent) dissection properties of the human
ascending thoracic aorta. However, the aneurysmal aorta displays isotropic dissec-
tion properties since both BAV and TAV groups are not statistically difference in
LONG and CIRC orientations. The Sd of BAV ATAAs was significantly lower than
TAV ATAAs in both orientations.

Patient age or aneurysm diameter could affect the delamination strength of the
aneurysmal aorta. To determine if the difference in Sd between groups was age-
dependent, the Sd data for the non-aneurysmal and BAV groups as a function of the
patient age were fit by linear regression to calculate two new sets of extrapolated
Sd for non-aneurysmal (non-aneurysmalextr) and BAV (BAVextr, age), respectively, at
the ages of each of the TAV patients, see Fig. 11.4(A). To assess if the difference
in Sd between aneurysmal groups was diameter-dependent, the Sd data for the BAV
group as a function of the aneurysm diameter were fit by linear regression to obtain
a new set of extrapolated Sd for BAV (BAVextr, dia) at the aneurysm diameter of each
of the TAV patients, see Fig. 11.4(B). For the latter analysis, the comparison was
performed only between aneurysmal groups since the Sd can not be extrapolated for
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Fig. 11.2 Delamination
profiles for (A) three LONG
and (B) three CIRC strips cut
from the same BAV
aneurysm. The dashed lines
represent the average of the
mean values of Tpeel for all
LONG and CIRC strips and
were taken as the Sd in
LONG and CIRC directions
for the patient, respectively.
Taken from Pasta et al. (2011)

the non-aneurysmal aorta as a function of aortic diameter. Results suggest that even
with corrections of age or aneurysm diameter the Sd of TAV ATAAs still remains
higher than that of BAVext, see Figs. 11.4(A) and 11.4(B).

A comparison of ST of non-aneurysmal and aneurysmal tissues for both INT-
DEL and ADV-DEL halves following the delamination tests in LONG and CIRC
orientations was performed, see Figs. 11.5(A) and 11.5(B). In all cases, the ST of
the CIRC strips was found to be higher than that of LONG specimens, and the INT-
DEL half is significantly weaker than the ADV-DEL half. It should be also noted
that the ultimate tensile strength of BAV ATAAs is higher than that of TAV ATAAs,
though not significantly different. This trend is opposite of that observed for the
delamination testing.

SEM imaging of the dissected surfaces for the healthy aorta reveals that the de-
lamination in the LONG direction creates a remarkably ‘rougher’ surface compared
to the surfaces from CIRC specimens (Fig. 11.6(A)). Similar failure surfaces were
found for both BAV and TAV ATAAs; however, they appeared rougher than those of
normal aorta (Fig. 11.6(A)). At high magnification, a ‘fiber bridging’ failure modal-
ity, which occurs when the dissection switches from one fiber/matrix interface to
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Fig. 11.3 Delamination
strength in both LONG (�)
and CIRC (�) orientations.
� significantly different from
LONG non-aneurysmal aorta
(p < 0.05); �� significantly
different from CIRC
non-aneurysmal aorta
(p < 0.05); † significantly
different from CIRC
non-aneurysmal aorta
(p < 0.05). Taken from Pasta
et al. (2011)

another and leaves behind the unbroken fibers to bridge the delamination, was ob-
served for both non-diseased and aneurysmal aorta (Fig. 11.6(B)).

11.4 Discussion

The present investigation was performed to evaluate the delamination properties of
the human ascending aorta to improve our understanding of the mechanics under-
lying aortic dissection in patients with ATAAs, and to compare these properties in
patients with BAV and TAV. The mechanical integrity of the outer versus inner half
of the dissected aorta was also explored to assess the relative probability of exit
through the adventitia (frank disruption) versus propagation of the dissection flap,
respectively, after the onset of AoD. Finally, the failure mechanisms during dissec-
tion were optically investigated. Our findings suggest that the propensity of AoD is
greater in thoracic aneurysms compared to non-aneurysmal aorta, and is intrinsically
greater for BAV ATAAs than those of TAV ATAAs. To our knowledge, these results
have never been reported. Similar dissection properties for the human abdominal
aorta were reported by Sommer et al. (2008).

The delamination curves (see Fig. 11.2) show an oscillation of Tpeel about a
mean ‘plateau’ value similar to the results found for tearing tests of the pig de-
scending aorta (Purslow, 1983) and peeling tests of the human abdominal aorta
(Sommer et al., 2008). Therefore, AoDs do not propagate at steady rates but ar-
rest and re-initiate at somewhat regular intervals. The force necessary to drive the
AoD appears to vary widely from a minimum at delamination arrest to a maximum
at delamination initiation. This failure modality is mainly supported by the obser-
vation of a large amount of broken elastin fibers on the dissected tissue surfaces
(see Fig. 11.6(B)) and is consistent with a fiber bridging failure modality (Gre-
gory and Spearing, 2004). In this manner, the elastin fibers between halves may
experience high stretch values during delamination testing with a consequent in-
crease in the Tpeel magnitude. Their subsequent failure induces a rapid decrease
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Fig. 11.4 (A) Delamination strength of aneurysmal aorta with BAV (BAVextr, age) extrapolated
(calculated) at the ages of each of the TAV patients in both LONG (�) and CIRC (�) directions
for n = 8 specimens. � significantly different from LONG non-aneurysmal aorta (p < 0.05); ��

significantly different from CIRC non-aneurysmal aorta (p < 0.05); † significantly different from
CIRC non-aneurysmal aorta (p < 0.05); (B) delamination strength of aneurysmal aorta with BAV
(BAVext, dia) extrapolated at the aneurysm diameter of each of the TAV patients in both LONG (�)
and CIRC (�) directions for n = 8 specimens. � significantly different from LONG aneurysmal
aorta with BAVext (p < 0.05); �� significantly different from CIRC aneurysmal aorta with BAVext
(p < 0.05). Taken from Pasta et al. (2011)

in Tpeel due to the reduced resistance to delamination, and this process repeats in
intervals as the delamination propagates. Delamination was observed during the
testing to propagate entirely within the medial layer of the aortic tissue speci-
mens.

The significantly lower resistance to AoD of either type of aneurysm compared
to that of healthy aorta (see Fig. 11.3) evinces that patients with ATAAs are more
prone to AoD. Similar findings on the tensile strength of ATAAs were reported by
our group and suggest that the propensity of rupture in thoracic aneurysm is 30 %
higher than that of the non-aneurysmal ascending aorta (Vorp et al., 2003). Lower
LONG tensile strength with aneurysm enlargement was also reported. This work
suggests that a lower LONG tensile strength may be a cause of AoD in ATAAs (Il-
iopoulos et al., 2009). The fact that we found a Sd,CIRC significantly lower than the
Sd,LONG is consistent with the notion that the pathogenesis of AoD is initiated by
a transverse intimal tear on most of tear morphology seen clinically (Coady et al.,
1999). Anisotropic dissection properties of the non-aneurysmal human ascending
thoracic aorta are deduced by the significant difference of Sd in LONG and CIRC
orientations (see Fig. 11.3). In contrast, aneurysmal disease leads to isotropic behav-
ior of the aorta most likely due to a more disorganized microstructure, see Fig. 11.3.
The most relevant finding is the difference in delamination propensity among BAV
ATAAs compared to TAV ATAAs (Fig. 11.3), suggesting a greater propensity of
AoD among BAV individuals. Furthermore, our deduction that age and aneurysm
diameter are not key factors for AoD in patients with thoracic aneurysms (see
Figs. 11.4(A) and (B), respectively) suggests that the higher propensity of aortic
dissection in patients with BAV is related to lower delamination resistance that may
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Fig. 11.5 (A) Tensile strength in LONG and (B) CIRC directions for INT-DEL halves (�) and
ADV-DEL halves (�). � significantly different from INT-DEL LONG BAV ATAA (p < 0.001);
�� significantly different from INT-DEL LONG BAV ATAA (p = 0.016); † significantly different
from INT-DEL CIRC TAV ATAA (p = 0.024). Taken from Pasta et al. (2011)

be caused by predisposing structural disorders. A deficit in the smooth muscle cell
response to the oxidative stress could be responsible for example of the inherent
lower Sd in BAV tissues (Phillippi et al., 2009, 2010).

Our results demonstrate a weaker ST of the intimal half of the aortic wall (i.e.
the INT-DEL half; see Figs. 11.5(A) and (B)), imparting an apparent risk of the
propagation of AoD. Exit through the outer residual layer (i.e. the ADV-DEL half)
causing frank aortic disruption is less common than dissection propagation, and this
may be explained by the relatively stronger ST of the adventitial half of the aortic
wall in this study. These results are consistent to the disparate strengths of healthy
arterial layers found in the literature (Holzapfel et al., 2007).

Anisotropic dissection properties of the non-aneurysmal ascending aorta are con-
sistent with SEM imaging results. Indeed, the elastin and collagen fibers are ori-
ented mainly in the circumferential direction in the non-aneurysmal aortic wall
and, as a result, may provide a greater strength to AoD in LONG direction. For
the non-aneurysmal aorta, the creation of a rougher dissection surface may explain
both higher mean and variance in Sd of LONG strips compared to those oriented
in CIRC direction, see Fig. 11.2. The dissection in LONG direction frequently
crosses the elastic layers while that in CIRC strips propagate mainly between ad-
jacent elastic laminae (Fig. 11.6(A)) resulting in a ‘flat’ broken surface as found by
Sommer et al. (2008) for the non-aneurysmal human abdominal aorta. Moreover,
the fracture surfaces of both BAV and TAV ATAAs appear rougher than those for
normal aorta (see Fig. 11.6(A)), likely due to the more disorganized microstruc-
ture caused by the disease. Disorganization of elastin and collagen fibers due to
aneurysm appears to impact the mechanical properties of ATAAs. For the healthy
aorta, the formation of a rougher surface may clarify the non-significant difference
in Sd between the LONG and CIRC directions, suggesting isotropic dissection prop-
erties.

These results are limited by the fact that delamination testing does not accu-
rately model the spontaneous initiation of AoD that occurs in vivo. Other models



158 S. Pasta et al.

Fig. 11.6 (A) Representative SEM images of fracture surfaces of the non-aneurysmal and ATAA
with BAV and TAV in LONG and CIRC direction; (B) high magnification image of a CIRC TAV
ATAA for the INT-DEL half showing bundles of broken elastin fibers (F) existing between elas-
tic sheets (E). The fibers act like a ‘bridge’ between halves in a fracture modality called ‘fiber
bridging’ in delamination testing. Taken from Pasta et al. (2011)

of AoD have been described (Tiessen and Roach, 1993), but the onset of dissec-
tion was typically forced in these studies by injecting liquid with a syringe into the
media to separate the aortic lamellae. Additionally, the stresses that lead to AoD are
likely multi-factorial and could be composed of stresses due to blood pressure, shear
stresses due to the blood flow field, torsion due to heart motion or propagation of the
pressure pulse, etc. However, the purpose of this investigation was not to simulate
these forces, but rather to measure the resistance of the tissue to stresses induced by
delamination (i.e., bonding forces between the mural layers of the aortic wall, or the
delamination strength). Future work could be to investigate correlation not observed
in this investigation between tissue strength and aortic diseases as the aortic stenosis
and regurgitation.
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11.5 Conclusion

Thoracic aneurysms with BAV and TAV both have significantly altered biomechan-
ical properties compared to normal ascending aorta, thus imparting their propen-
sity of AoD. Moreover, BAV ATAAs have lower delamination strength than TAV
ATAAs, rendering an apparently greater risk of AoD for BAV than TAV patients.
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Chapter 12
Intracranial Aneurysms: Modeling Inception
and Enlargement

Paul N. Watton, Haoyu Chen, Alisa Selimovic, Harry Thompson,
and Yiannis Ventikos

Abstract Intracranial aneurysms (IAs) are abnormal dilatations of the cerebral vas-
culature. Computational modeling may shed light on the aetiology of the disease and
lead to improved criteria to assist diagnostic decisions. We briefly review the liter-
ature and present novel models on two topical areas of research activity: modeling
IA inception and modeling IA evolution. We present a novel computational method-
ology to remove an IA and reconstruct the geometry of the (unknown) healthy
artery. This approach is applied to 22 clinical cases (the largest study of its kind
to date) and we analyze whether spatial distributions of hemodynamic stimuli cor-
relate with locations aneurysms are known, a priori, to form. In this study, locations
of aneurysm formation are strongly correlated with regions of high wall shear stress
(WSS) (19/22 positive correlations); however low correlations are observed with
indices which characterize the oscillatory nature of the direction of the wall shear
stress vector, e.g., oscillatory shear index (OSI) (7/22). We subsequently outline
a fluid-solid-growth framework for modeling aneurysm evolution and illustrate its
application to 4 clinical cases depicting IAs. We conclude with a discussion for the
direction of future research in this field.

12.1 Introduction

Intracranial aneurysms (IAs) appear as sac-like outpouchings of the arterial wall in-
flated by the pressure of the blood. Prevalence rates in populations without comor-
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bidity are estimated to be 3.2 % (Vlak et al., 2011). Most remain asymptomatic;
however, there is a small but inherent risk of rupture: 0.1 to 1 % of detected
aneurysms rupture every year (Juvela, 2004). Subarachnoid haemorrhage (SAH)
due to IA rupture is associated with a 50 % chance of fatality (Greving et al., 2009)
and of those that survive, nearly half have long term physical and mental sequelae
(Huang et al., 2011). Preemptive treatment may prevent aneurysm SAH and thus
reduce the associated (large) financial burden, e.g., the total annual economic cost
of aneurysm SAH is £510 M in the UK (Rivero-Arias et al., 2010). However, man-
agement of unruptured IAs by interventional procedures, i.e. minimally invasive
endovascular approaches or surgical-clipping, is highly controversial and not with-
out risk (Komotar et al., 2008). Given the very low risk of IA rupture, there is both
a clinical and an economic need to identify those IAs which are actually in need of
intervention.

Investigating the complex interplay of physical forces and their biological se-
quelae will aid further understanding of the formation and rupture of IAs and their
management, and may lead to a cure (Krings et al., 2011). However, IAs may have
heterogeneous hemodynamic, morphologic, and vascular characteristics associated
with different mechanistic pathways (Sugiyama et al., 2011) and thus this is an
extremely challenging complex problem. Computational models may yield insight
into the aetiology of the disease and offer the potential to aid clinical decisions.
Consequently, research in this area has grown extensively; for recent review articles
see, e.g., Humphrey (2009); Sforza et al. (2011). In this article, we briefly review
computational models which investigate IA inception and IA evolution and present
our most recent models and findings on these topical areas of research.

12.2 IA Inception

IAs preferentially develop at specific locations in the Circle of Willis. Hence it
appears that the hemodynamic environment plays a role in the pathophysiologi-
cal processes that give rise to their formation. This has motivated the development
of methodologies to reconstruct the original healthy geometry of the vasculature
from a diseased geometry depicting an IA: computational fluid dynamic (CFD) an-
alyzes proceed to investigate if particular patterns of hemodynamic stimuli (on the
healthy vasculature) correlate with the location at which an IA is observed to de-
velop, e.g., see the recent studies by Mantha et al. (2006); Baek et al. (2009); Ford
et al. (2009); Shimogonya et al. (2009); Singh et al. (2010). Whilst all these studies
have considered a limited number of clinical cases, i.e. between 1 and 5, interesting
(although somewhat inconsistent) observations have been made (see Table 12.1).
It has been concluded that locations susceptible to aneurysm formation are associ-
ated with: oscillatory wall shear stress (WSS) indicated by a novel index referred to
as the aneurysm formation index (AFI) (Mantha et al., 2006); large temporal fluc-
tuations of the direction of the spatial WSS gradient vector (WSSG) indicated by
a novel index referred to as the gradient oscillatory number (GON) (Shimogonya
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Table 12.1 Summary of IA inception studies. The spatial distributions of various hemodynamic
indices have been compared with known locations of aneurysm formation. It can be seen that
strong correlations are always observed in such studies. However, inconsistencies in conclusions
are present and the study sizes are always small

Study CFD index Positive correlation

Mantha et al. (2006) Low WSS, AFI 3/3

Shimogonya et al. (2009) GON 1/1

Ford et al. (2009) GON 4/5

Baek et al. (2009) High WSS, High Pressure 2/2

Singh et al. (2010) High WSS, High OSI 2/2

et al., 2009); elevated WSS and pressure (Baek et al., 2009); elevated WSS and os-
cillatory shear index (OSI) (Singh et al., 2010); the interested reader is referred to
the relevant articles for specifics of how to calculate these hemodynamic indices.

Given the disparates in findings on CFD inception studies to date, there is clearly
the need for a more comprehensive study: we consider a selection of 22 sidewall
IAs, propose a novel method to reconstruct the hypothetical geometry of the artery
without IA and analyze spatial distributions of hemodynamic stimuli on the healthy
vasculature in the specific locations that the IAs are known, a priori, to develop.

12.2.1 Methodology

We have developed a novel approach to reconstruct the hypothetical geometry of
the healthy artery prior to IA formation. Here we briefly outline the methodol-
ogy (see Fig. 12.1 for graphical illustration). Clinical imaging data depicting an
IA is segmented with the software suite @neufuse (developed for the European
project @neurIST, www.aneurist.org ‘Integrated Biomedical Informatics for the
Management of Cerebral Aneurysms’, see Villa-Uriol et al., 2011). A skeleton
of the vasculature is created and the segment containing the IA is removed (see
Fig. 12.1(b)). Given the position vectors of the center points of the upstream and
downstream boundaries (neighboring the aneurysm section), c0 and c1, respectively,
and unit normal vectors to the boundaries n̂0 and n̂1 (see Fig. 12.1(c)), a cubic curve
c(t)= (a1j t

j , a2j t
j , a3j t

j ): i = 1,2,3; j = 0,1,2,3; t ∈ [0,1] is constructed such
that

c(t = 0)= c0, c(t = 1)= c1, c′(t = 0)= κn̂0, c′(t = 1)= κn̂1,

(12.1)

where ′ denotes differentiation with respect to t and κ = |c1 − c0|. The 12 unknown
coefficients aij ∈ R are uniquely determined by the 12 boundary conditions given
by Eq. (12.1). A Frenet-Frame is then defined along the curve c, i.e.

T(t)= c′(t)
|c′(t)| , N(t)= T′(t)

|T′(t)| , B(t)= T(t)× N(t). (12.2)

http://www.aneurist.org
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Fig. 12.1 Methodology to remove sidewall IA and reconstruct original healthy vessel: (a) seg-
mented clinical image of vasculature depicting IA; (b) removal of section containing IA;
(c) a Frenet-Frame is constructed along a curve c(s) between the upstream and downstream bound-
aries of the segment containing the IA that was removed; (d) methodology to smoothly morph the
inlet boundary into the outlet boundary along c; (e) reconstructed healthy vessel

The hypothetical healthy geometry is reconstructed by using the Frenet-Frame to
propagate a closed curve in the N–B plane along c such that the upstream boundary
smoothly morphs into the downstream boundary. This approach takes into account
the natural tortuosity of the artery. The vector equation of the reconstructed healthy
section of arterial surface r(t, θ), θ ∈ [0,2π) can be expressed as

r(t, θ)= c(t)+ l(t, θ), (12.3)

where l(t, θ) represents the position vectors of points on the boundary in the
N(t)–B(t) plane along c. l(0, θ) and l(1, θ) are determined from the known posi-
tion vectors of the upstream and downstream boundaries and we choose l(t, θ) to be
a linear combination of these:

l(t, θ)= ∣∣(1 − t)l(0, θ)+ t l(1, θ)∣∣(N cos θ + B sin θ). (12.4)

This novel reconstruction method is applied to 22 clinical cases depicting sidewall
IAs. Figure 12.2 illustrates the application of the approach to 20 (segmented) clinical
cases; the geometry of the IA is depicted in light blue whilst the geometry of the
reconstructed segment of healthy artery is in depicted in dark blue.

12.2.1.1 Computational Fluid Dynamics

The methodological approach to solve the hemodynamics proceeds as follows. The
geometry of the artery without IA is imported into ANSYS ICEM (ANSYS Inc.,
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Fig. 12.2 An illustration of 20 cases with/without IAs. The reconstructed section is depicted in
dark blue whilst the IA is depicted in light blue

Canonsburg, PA) and an unstructured tetrahedral mesh with prism layers lining
the boundary is generated for the fluid domain. Blood is modeled as an incom-
pressible Newtonian fluid with constant density ρ = 1069 kg m−3 and viscosity
η = 0.0035 Pa s. At the arterial wall, no slip, no-flux conditions are applied. Pul-
satile flow and pressure boundary conditions for the inlets and outlets of the fluid
domain are taken from a 1D model of the arterial tree (Reymond et al., 2009) which
has been integrated into the software suite @neufuse. It solves the 1D form of the
Navier-Stokes equation in a distributed model of the human systemic arteries, ac-
counting for the ventricular-vascular interaction and wall viscoelasticity; it was re-
cently validated through a comparison with in vivo flow measurements (Reymond
et al., 2011). The incompressible Navier-Stokes equations which govern the flow
are solved with ANSYS CFX (ANSYS Inc., Canonsburg, PA) using a finite volume
formulation.

12.2.2 Results

CFD simulations are performed on 22 clinical cases with IAs removed. Spatial dis-
tributions of several hemodynamic indices are analyzed and compared with respect
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Fig. 12.3 Examples of spatial distributions of (a) WSS, (b) WSSG, (c) OSI, (d) min(AFI) and
(e) GON (left to right, respectively) for reconstructed healthy vessels without IAs. The upper row
illustrates cases where a positive correlation between an index and the location an IA evolves
occurs whilst the lower row illustrates examples where no correlation is observed

to the known locations of aneurysm formation (LAF). Figure 12.3 illustrates ex-
amples of positive (upper row) and negative (lower row) correlations of the hemo-
dynamic indices WSS, WSSG, OSI, minimum(AFI) and GON with the LAF. We
observed that 19/22 IAs developed in regions that had locally elevated magnitudes
of WSS and GON. However, fewer positive correlations were observed for other
indices, i.e. 7/22 for elevated values of OSI, 7/22 for low values of min(AFI) and
8/22 for elevated values of WSSG.

Our study highlights that care should be taken when interpreting the conclusions
and findings of smaller CFD studies in the literature. For example, we observed
that low values of AFI were associated with 7/22 clinical cases whereas Mantha
et al. (2006) observed correlations in all cases (3/3). Singh et al. (2010) observed
a significant correlation with OSI (2/2) however we observed no such correlation.
Consistent with Baek et al. (2009) we observed a positive correlation with regions
subject to high WSS. Whilst we observed many positive correlations (19/22) with
elevated GON, as observed and remarked by Ford et al. (2009), this index is elevated
in many regions of the artery and thus the significance of this correlation is unclear
and may merit further investigation.

12.3 IA Enlargement

To further our understanding of the aetiology of IA we must further our understand-
ing of the physiological mechanisms that regulate the maintenance of arterial tis-
sue in physiological and pathophysiological conditions. The structure of the artery
is continually maintained by vascular cells. The morphology and functionality of
vascular cells is intimately linked to their mechanical environment. Hemodynamic
forces give rise to: cyclic stretching of the extra-cellular matrix (ECM); frictional



12 Intracranial Aneurysms: Modeling Inception and Enlargement 167

forces acting on the endothelial layer of the arterial wall; a normal hydrostatic
pressure and interstitial fluid forces due to movement of fluid through the ECM.
Mechanosensors convert the mechanical stimuli into chemical signals which lead to
activation of genes that regulate cell functionality. The physiological mechanisms
that give rise to the development of an aneurysm involve the complex interplay
between the local mechanical forces acting on the arterial wall and the biological
processes occurring at the cellular level. Consequently, models of aneurysm evolu-
tion must take into consideration: (i) the biomechanics of the arterial wall; (ii) the
biology of the arterial wall and (iii) the complex interplay between (i) and (ii), i.e.
the mechanobiology of the arterial wall. Humphrey and Taylor (2008) recently em-
phasized the need for a new class of fluid-solid-growth models to study aneurysm
evolution and proposed the terminology FSG models. These combine fluid and solid
mechanics analyzes of the vascular wall with descriptions of the kinetics of biolog-
ical growth and remodeling (G&R).

12.3.1 Methodology

In this section, we describe our FSG computational framework for modeling IA evo-
lution. It utilizes and extends the novel abdominal aortic aneurysm (AAA) evolution
model developed by Watton et al. (2004) and Watton and Hill (2009) which was later
adapted to model IA evolution (Watton et al., 2009b; Watton and Ventikos, 2009)
and extended to consider transmural variations in G&R (Schmid et al., 2010, 2011).
The aneurysm evolution model incorporates microstructural G&R variables into a
realistic structural model of the arterial wall (Holzapfel et al., 2000). These describe
the normalized mass-density and natural reference configurations of the load bear-
ing constituents, and enable the G&R of the tissue to be simulated as an aneurysm
evolves. More specifically, the natural reference configurations that collagen fibers
are recruited to load bearing remodels to simulates the mechanical consequences
of: (i) fiber deposition and degradation in altered configurations as the aneurysm
enlarges; (ii) fibroblasts configuring the collagen to achieve a maximum strain dur-
ing the cardiac cycle, denoted the attachment strain. The normalized mass-density
evolves to simulate growth/atrophy of the constituents (elastin and collagen). The
aneurysm evolution model has been integrated into a novel FSG framework (Watton
et al., 2009a) so that G&R can be explicitly linked to hemodynamic stimuli. More
recently, the G&R framework has been extended to link both growth and remodeling
to cyclic deformation of vascular cells (see Watton et al., 2012).

Figure 12.4 depicts the FSG methodology. The computational modeling cycle
begins with a structural analysis to solve the systolic and diastolic equilibrium defor-
mation fields (of the artery/aneurysm) for given pressure and boundary conditions.
The structural analysis quantifies the stress, stretch, and the cyclic deformation, of
the constituents and vascular cells (each of which may have different natural ref-
erence configurations). The geometry of the aneurysm is subsequently exported to
be prepared for hemodynamic analysis: first the geometry is integrated into a phys-
iological geometrical domain; the domain is automatically meshed; physiological
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Fig. 12.4 Fluid-solid-growth computational framework for modeling aneurysm evolution

flow rate and pressure boundary conditions are applied; the flow is solved assum-
ing rigid boundaries for the hemodynamic domain. The hemodynamic quantities
of interest, e.g., WSS, WSSG are then exported and interpolated onto the nodes of
the structural mesh: each node of the structural mesh contains information regard-
ing the mechanical stimuli obtained from the hemodynamic and structural analyzes.
G&R algorithms simulate cells responding to the mechanical stimuli and adapting
the tissue: the constitutive model of the aneurysmal tissue is updated. The structural
analysis is re-executed to calculate the new equilibrium deformation fields. The up-
dated geometry is exported for hemodynamic analysis. The cycle continues and as
the tissue adapts an aneurysm evolves.

Development of an IA is associated with apoptosis of vascular smooth muscle
(VSM) cells (Kondo et al., 1998), disrupted internal elastic laminae, the breakage
and elimination of elastin fibers (Frösen et al., 2004), a thinned medial layer and
G&R of the collagen fabric (Juvela, 2004). The site of origin is strongly related to
hemodynamic WSS (Kondo et al., 1997). It is postulated that high WSS is related
to the initiation of IA formation (Ahn et al., 2007); note that this hypothesis is con-
sistent with our observations in Sect. 12.2. However, whilst high WSS appears to
be associated with the inception of an IA, low WSS is thought to give rise to its
continued enlargement (Shojima et al., 2004).

To simulate IA inception, we prescribe a localized loss of elastin in a small cir-
cular patch of the arterial domain (the elastin is modeled with a neo-Hookean con-
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stitutive model Watton et al., 2009c). The collagen fabric adapts to restore home-
ostasis and a small perturbation to the geometry alters the spatial distribution of
hemodynamic stimuli that act on the lumenal layer of the artery. This enables sub-
sequent degradation of elastin to be linked to deviations of hemodynamic stimuli
from homeostatic levels via evolution equations. As the elastin degrades and the
collagen fabric adapts (via G&R) an IA evolves. Watton et al. (2009a) adopted this
approach to investigate the evolution of IAs assuming degradation of elastin was
linked to high WSS or high WSSG. Given that a region of elevated WSS occurs
downstream of the distal neck of the model IA and elevated spatial WSSGs occur
in the proximal/distal neck regions, this approach led to IAs that enlarged axially
along the arterial domain, i.e. it did not yield IA with characteristic ‘berry’ topolo-
gies. Consequently, Watton et al. (2011a) linked elastin degradation to low WSS and
restricted the degradation of elastin to a localized region of the arterial domain: this
yielded IAs of a characteristic saccular shape that enlarged and stabilized in size.
Although interesting insights were obtained in both studies, an inherent limitation
was that the IAs evolved on a cylindrical section of artery and consequently the spa-
tial distribution of hemodynamic stimuli is non-physiological. This motivated the
application of the FSG modeling framework to patient-specific vascular geometries.
For a detailed description of the model methodology, we refer the interested reader
to Watton et al. (2011b, 2012). Here we briefly illustrate the application of the FSG
modeling framework to 4 clinical cases.

12.3.2 Examples of FSG Models of IA Evolution

Figure 12.5 (upper row) illustrates 4 clinical cases depicting IAs. The IA is removed
(as in Fig. 12.1(b)) and replaced with a short cylindrical section on which IA evo-
lution is simulated. The cylindrical section is smoothly reconnected to the upstream
and downstream sections of the parent artery (middle row; see Selimovic et al.,
2010, for methodology). In all four cases, IA inception is prescribed, i.e. an initial
degradation of elastin is prescribed in a localized region of the domain, the collagen
fabric adapts to restore homeostasis and a small localized outpouching of the artery
develops. This perturbs the hemodynamic environment: subsequent degradation of
elastin is linked to low levels of WSS. It can be seen that the modeling framework
gives rise to IAs with different morphologies, i.e. IAs with: asymmetries in geome-
tries (a3,d3); well-defined necks (b3); no neck (c3). For an in depth analysis of
simulation results for case (a3), e.g., evolution of elastin strains, collagen strains,
concentrations of constituents and evolving diastolic/systolic geometries, the inter-
ested reader is referred to Watton et al. (2011b). Interestingly, for this particular
case, which depicts an IA at (perhaps) a relatively early stage of formation (crudely
inferred from its small size), the qualitative asymmetries of the simulated IA (see
(a3)) are in agreement with the patient aneurysm (a1) and thus (tentatively) support
the modeling hypotheses for elastin degradation (low WSS drives degradation) and
collagen adaption.
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Fig. 12.5 Segmented clinical imaging data depicting IAs (a1–d1). IAs are removed the geometry
of the healthy artery reconstructed (a2–d2). Computational models of IAs on patient specific ge-
ometries with degradation of elastin linked to low WSS (a2–d2). The color-map depicts WSS (Pa)

12.4 Discussion

In this chapter, we first (briefly) reviewed the application of CFD models to inves-
tigate IA inception and presented a novel methodology for reconstructing the ge-
ometry of the healthy artery prior to IA formation. We investigated the correlation
between IA inception and the spatial distribution of several hemodynamic indices
(WSS, WSSG, OSI, AFI and GON) for 22 clinical cases depicting sidewall IAs.
To our knowledge this is the largest (and most complete) CFD inception study, of
its kind, to date. Consistent with previous observations, we observed that locations
of aneurysm formation (LAF) occur in regions of the artery subject to high WSS.
However, correlation of LAF with indices that characterize the oscillatory nature of
the flow, i.e. OSI and min(AFI), do not seem as strong as (sometimes) previously
observed. Hence, we suggest care should be taken: (i) when interpreting conclusions
of studies which have been deduced from a small number of clinical cases; (ii) ar-
ticulating the significance of conclusions of CFD studies which involve relatively
few cases. Moreover, we point out that whilst CFD has a role to play in guiding our
understanding of vascular disease, it needs to be coupled with improved modeling
(and understanding) of the mechanobiology of the arterial wall to gain real insight
into the aetiology of vascular disease. This motivates the need for multi-scale mod-
els which integrate the biology and the (solid and fluid) biomechanics of the arterial



12 Intracranial Aneurysms: Modeling Inception and Enlargement 171

wall, i.e. FSG models, such as the one we presented. Such models provide the foun-
dations to model not only aneurysm evolution but other vascular diseases.

It is envisaged that models of IA and AAA evolution may ultimately lead to pre-
dictive models that have diagnostic application on a patient specific basis. Given that
this will yield very substantial healthcare and economic benefits, there is significant
growth of research in this area. However, whilst models of aneurysm evolution have
gained increasing sophistication over the past decade, many further improvements
are still required. For instance, there is a need to incorporate explicit representations
of vascular cells (endothelial cells, fibroblast cells and smooth muscle cells), their
interactions and the signaling networks (Schmid et al., 2011) that link the stim-
uli acting on them to their functionality in physiological, supra-physiological and
pathological conditions. There is also a need for implementation of more sophisti-
cated constitutive models to represent, e.g., the collagen fiber recruitment distribu-
tion (Hill et al., 2012) and dispersion and the active and passive response of vas-
cular smooth muscle cells (Murtada et al., 2010). Lastly, improved understanding
and modeling of how this complex micro-structure adapts in pathological condi-
tions is needed: the modeling framework needs to be validated and/or calibrated
against physiological data; animal models undoubtedly have a role to play in this
respect (Zeng et al., 2011). Such enhancements will offer the potential for patient-
specific predictive models of vascular disease evolution and intervention. They will
benefit patients immensely because the decision on whether to/how to intervene
will be founded upon a robust concentration of knowledge with respect to patient-
specific vascular physiology, biology and biomechanics. Of course, the challenging
and multi-disciplinary nature of such research implies collaborations are essential.
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Chapter 13
Micro-structurally Based Kinematic Approaches
to Electromechanics of the Heart

Serdar Göktepe, Andreas Menzel, and Ellen Kuhl

Abstract This contribution is concerned with a new kinematic approach to the
computational cardiac electromechanics. To this end, the deformation gradient is
multiplicatively decomposed into the active part and the passive part. The for-
mer is considered to be dependent on the transmembrane potential through a
micro-mechanically motivated evolution equation. Moreover, the proposed kine-
matic framework incorporates the inherently anisotropic, active architecture of car-
diac tissue. This kinematic setting is then embedded in the recently proposed, fully
implicit, entirely finite-element-based coupled framework. The implicit numerical
integration of the transient terms along with the internal variable formulation, and
the monolithic solution of the resultant coupled set of algebraic equations result in
an unconditionally stable, modular, and geometrically flexible structure. The capa-
bilities of the proposed approach are demonstrated by the fully coupled electrome-
chanical analysis of a generic heart model.

13.1 Introduction

Biological electro-active materials such as skeletal muscle and cardiac muscle
commonly undergo remarkable deformations in response to electric stimulation.
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Similarly, myocytes, for instance, are also capable of generating an electrical ac-
tivity as subjected to mechanical loading. Apart from these strong coupling ef-
fects, the polarized nature of the externally applied electric field and the intrinsi-
cally anisotropic, actively deforming micro-structure of the myocardium, results in
direction-dependent behavior (Nielsen et al., 1991; Rohmer et al., 2007). In the lit-
erature, the electromechanically coupled cardiac response is typically accounted for
at a constitutive level through an additional transmembrane potential-dependent ac-
tive stress term (Nash and Panfilov, 2004; Keldermann et al., 2007; Niederer and
Smith, 2008; Göktepe and Kuhl, 2010).

In contrast to the active stress-based approaches, mentioned above, in this con-
tribution, we propose a new, general kinematic approach to the computational mod-
eling of electro-active materials. Inspired from the recent works of Cherubini et al.
(2008), Ambrosi et al. (2011a), Stålhand et al. (2011), we decompose the total de-
formation gradient into the active and passive parts. The active part is considered to
be dependent upon the electrical potential through a micro-mechanically motivated
evolution equation. In addition, the proposed kinematic framework incorporates the
inherently anisotropic, active architecture of the material. As opposed to the above
mentioned works where merely the active-passive split of the deformation gradient
has been utilized, we further additively decompose the free-energy function into pas-
sive and active parts. This decomposition allows us to recover the additive structure
of the stress response. Therefore, the proposed formulation can be considered as the
generalization of the approaches that employ either additive stress decomposition
or multiplicative split of the deformation gradient to account for excitation-induced
contraction. Furthermore, this kinematic setting is embedded in the recently pro-
posed, fully implicit, entirely finite-element-based coupled framework, which has
been originally developed in Göktepe and Kuhl (2010). The performance of the pro-
posed formulation is demonstrated through the fully coupled finite element analyses
of the nonlinear excitation-contraction of a generic heart model.

13.2 Coupled Cardiac Electromechanics

A coupled initial boundary-value problem of cardiac electromechanics within the
mono-domain setting is formulated in terms of the two primary field variables,
namely the placement ϕ(X, t) and the transmembrane potential Φ(X, t). While
the latter refers to a potential difference between the intracellular medium and the
extracellular medium within the context of mono-domain formulations of cardiac
electrophysiology, see Keener and Sneyd (1998), the former is the nonlinear de-
formation map, depicted in Fig. 13.1. Evolution of the primary field variables is
governed by two basic field equations: the balance of linear momentum and the
reaction-diffusion-type equation of excitation, which are introduced in Sect. 13.2.2.
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Fig. 13.1 Motion of an excitable and deformable solid body in the Euclidean space R
3 through

the nonlinear deformation map ϕt (X) at time t . The deformation gradient F = ∇Xϕt (X) describes
the tangent map between the respective tangent spaces

13.2.1 Kinematics: Active-Passive Decomposition

Let B ⊂ R
3 be the reference configuration of an excitable and deformable solid

body that occupies the current configuration S ⊂ R
3 at time t ∈ R+ as shown

Fig. 13.1. Accordingly, material points X ∈ B are mapped onto their spatial posi-
tions x ∈ S through the nonlinear deformation map x = ϕt (X) : B → S at time t .
The deformation gradient F := ∇Xϕt (X) : TXB → TxS acts as the tangent map
between the tangent spaces of the respective configurations. The gradient operator
∇X[•] denotes the spatial derivative with respect to the reference coordinates X and
the Jacobian J := detF > 0 is the volume map.

Following the kinematics of finite plasticity (Kröner, 1960; Lee, 1969) and the
recent work by Cherubini et al. (2008), the deformation gradient is multiplicatively
decomposed into the passive part F e and the active part F a, i.e.

F = F eF a. (13.1)

In this multiplicative decomposition, the active part evolves with the transmembrane
potential Φ and reflects the underlying actively contracting anisotropic architecture
of cardiac tissue through its dependence upon the second-order structural tensors
Am,An, and Ak

F a = F̂ a(Φ,Am,An,Ak). (13.2)

For an orthotropic contractile material, the active part of the deformation gradient
can be expressed as

F a = 1 + (λa
m − 1

)
Am + (λa

n − 1
)
An + (λa

k − 1
)
Ak, (13.3)

where λa
α = λ̂a

α(Φ) for α = m,k,n. Undoubtedly, the passive and active parts of the
deformation gradient are not gradients of any nonlinear deformation map. Hence,
the compatibility condition cannot be fulfilled by the active deformation. This leads
to an incompatible fictitious intermediate configuration. The compatibility of the
overall deformation, on the other hand, is satisfied by the passive part of the defor-
mation gradient F e. This is evident from the fact that while F a is rotation-free with
respect to the material directions, F e embodies the rotational part.
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Fig. 13.2 Depiction of the
mechanical (left) and
electrophysiological (right)
natural and essential
boundary conditions

13.2.2 Governing Differential Equations

The balance of linear momentum with its following well-known local spatial form

J div
[
J−1τ̂

]+ B = 0 in B (13.4)

describes the quasi-static stress equilibrium in terms of the Eulerian Kirchhoff stress
tensor τ̂ and a given body force B per unit reference volume. The operator div[•]
denotes the divergence with respect to the spatial coordinates x. Note that the mo-
mentum balance depends on the primary field variables through the Kirchhoff stress
tensor τ̂ , whose particular form is elaborated in Sect. 13.2.3. The essential (Dirich-
let) and natural (Neumann) boundary conditions, see Fig. 13.2 (left),

ϕ = ϕ̄ on ∂Sϕ and t = t̄ on ∂St , (13.5)

complete the description of the mechanical problem. Clearly, the surface subdo-
mains ∂Sϕ and ∂St fulfill the conditions ∂S = ∂Sϕ ∪ ∂St and ∂Sϕ ∩ ∂St = ∅.
The surface stress traction vector t̄ , defined on ∂St , is related to the Cauchy stress
tensor through the Cauchy stress theorem t̄ := J−1τ · n where n is the outward
surface normal on ∂S .

The second field equation of the coupled problem, the excitation equation of the
following form

Φ̇ − J div
[
J−1q̂

]− Î φ = 0 in B (13.6)

describes the spatio-temporal evolution of the action potential fieldΦ(X, t) in terms
of the diffusion term div[J−1q̂] and the nonlinear current term Î φ . The notation
˙[•] := D[•]/Dt is utilized to express the material time derivative. Within the frame-

work of Fitzhugh-Nagumo-type models of electrophysiology (Fitzhugh, 1961), the
current source Î φ controls characteristics of the action potential regarding its shape,
duration, restitution, and hyperpolarization along with another variable, the so-
called recovery variable r whose evolution is governed by an additional ordinary
differential equation. Since the recovery variable r chiefly controls the local repo-
larization behavior of the action potential, we treat it as a local internal variable.
This will be more transparent as we introduce the explicit functional form of Î φ in
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Sect. 13.3. Akin to the momentum balance, the equation of excitation is also fur-
nished by the corresponding essential and natural boundary conditions, Fig. 13.2
(right),

Φ = Φ̄ on ∂Sφ and q = q̄ on ∂Sq, (13.7)

respectively. Evidently, the surface subdomains ∂Sφ and ∂Sq are disjoint, ∂Sφ ∩
∂Sq = ∅, and complementary, ∂S = ∂Sφ ∪∂St . The electrical surface flux term q̄
in (13.7)2 is related to the spatial flux vector through the Cauchy-type formula q̄ :=
J−1q̂ · n in terms of the spatial surface normal n. Owing to the transient term in the
excitation Eq. (13.6), its solution necessitates an initial condition for the potential
field at t = t0

Φ0(X)=Φ(X, t0) in B. (13.8)

Note that the ‘hat’ sign used along with the terms τ̂ , q̂ , and Î φ indicates that these
variables are dependent on the primary fields.

13.2.3 Constitutive Equations

The solution of the field equations requires the knowledge of constitutive equations
describing the Kirchhoff stress tensor τ̂ , the potential flux q̂ , and the current source
Î φ . In contrast to the constitutive approaches suggested in the literature (Cherubini
et al., 2008; Ambrosi et al., 2011a), we additively decompose the free-energy func-
tion into the passive part ψp and the active part ψa, Ask et al. (2012a, 2012b),

ψ = ψ̂p(g;F )+ ψ̂a(g;F e), (13.9)

where the former depends solely on the total deformation gradient, while the latter
depends on the elastic part of the deformation gradient, thus both on the deformation
and on the potential. This additive form results in the decoupled stress response

τ̂ = τ̂ p
(g;F )+ τ̂ a(g;F e), (13.10)

where the Kirchhoff stress tensor is obtained by the Doyle-Ericksen formula τ :=
2∂gψ and the elastic part of the deformation gradient is defined as F e = FF a−1

from Eq. (13.1). Since the formulation is laid out in the Eulerian setting, the current
metric g is explicitly included in the arguments of the constitutive functions.

The potential flux q̂ is assumed to depend linearly on the spatial potential gradi-
ent ∇xΦ

q̂ = D(g;F ) · ∇xΦ, (13.11)

through the deformation-dependent anisotropic spatial conduction tensor D(g;F )
that governs the conduction speed of the non-planar depolarization front in three-
dimensional anisotropic cardiac tissue.
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The last constitutive relation describing the electrical source term of the
Fitzhugh-Nagumo-type excitation Eq. (13.6) is additively decomposed into the
excitation-induced purely electrical part Î φe (Φ, r) and the stretch-induced mechano-
electrical part Î φm(g;F ,Φ), i.e.

Î φ = Î φe (Φ, r)+ Î φm(g;F ,Φ). (13.12)

The former describes the effective current generation due to the inward and outward
flow of ions across the cell membrane. This ionic flow is triggered by a perturbation
of the resting potential of an excitable cardiac muscle cell beyond some physical
threshold upon the arrival of the depolarization front. The latter, on the other hand,
incorporates the opening of ion channels under the action of deformation, see Kohl
et al. (1999).

Apart from the primary field variables, the recovery variable r , which describes
the repolarization response of the action potential, appears among the arguments of
Î
φ
e in Eq. (13.12). Evolution of the recovery variable r chiefly determines the shape

and duration of the action potential locally inherent to each cardiac cell and may
change throughout the heart. For this reason, evolution of the recovery variable r
is commonly modeled by a local ordinary differential equation ṙ = f̂ r(Φ, r). From
an algorithmic point of view, the local nature of this evolution equation allows us
to treat the recovery variable as an internal variable. This is one of the key features
of the proposed formulation that preserves the modular global structure of the field
equations as set out in our recent works (Göktepe and Kuhl, 2009, 2010; Göktepe et
al., 2010; Wong et al., 2011).

13.3 Model Problem of Cardiac Electromechanics

In this section, we present the specific constitutive equations that are utilized in
the analysis of the representative numerical example in Sect. 13.4. In particular, we
identify the specific expressions for the Kirchhoff stress τ̂ , the potential flux q̂ , and
the current source Î φ .

13.3.1 Active and Passive Stress Response

The ventricular myocardium can be conceived as a continuum with a hierarchi-
cal architecture where uni-directionally aligned muscle fibers are interconnected in
the form of sheets. Loosely connected by perimysial collagen, these approximately
four-cell-thick sheets can easily slide along each while being stiffest in the direction
of the large coiled perimysial fibers aligned with the long axes of the cardiomy-
ocytes, as depicted in Fig. 13.3. To model the passive response of myocardium,
we employ the orthotropic model of hyperelasticity recently proposed by Holzapfel
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Fig. 13.3 Orthotropic architecture of the myocardium. The orthogonal unit vectors f 0 and s0
designate the preferred fiber and sheet directions in the undeformed configuration, respectively.
The third direction n0 is orthogonal to the latter by its definition n0 := (f 0 × s0)/|f 0 × s0|

and Ogden (2009). The specific form of this model can be expressed through the
following free-energy function

Ψ p(g;F ,M,N ,K)=U(J )+ Ψ̃ (I1, I4m, I4n, I4k), (13.13)

where U(J ) is the purely volumetric part and the orthotropic part is denoted by
Ψ̃ (I1, I4m, I4n, I4k). The latter is defined as

Ψ̃ = a

2b
exp
[
b(I1 − 3)

]+
∑

i=m,n

ai

2bi

{
exp
[
bi(I4i − 1)2

]− 1
}

+ ak

2bk

[
exp
(
bkI

2
4k

)− 1
]
, (13.14)

in terms of the material parameters a, b, am, bm, an, bn, ak, bk and the invariants
I1, I4m, I4n, and I4k, with

I1 := g : b, I4m := g : m, I4n := g : n, I4k := g : k. (13.15)

The Eulerian structural tensors m,n, and k are defined as the push-forward of the
Lagrangian structural tensors

m := FMF T , n := FNF T , k := FKF T , (13.16)

and the Lagrangian structural tensors

M := f 0 ⊗ f 0, N := s0 ⊗ s0, K := sym(f 0 ⊗ s0) (13.17)

reflect the underlying orthotropic micro-structure of the myocardium through the
vectors f 0 and s0 that denote the preferred fiber and sheet directions of the material
micro-structure in the undeformed configuration as depicted in Fig. 13.3. For the
explicit form of the passive Kirchhoff stress tensor τ̂ p and the corresponding tangent
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moduli, which can be obtained through the Doyle-Ericksen formula, the reader is
referred to Göktepe et al. (2011).

For the active part of the free-energy function (13.9), we assume the following
transversely isotropic function

Ψ a(g;F e,M
)= 1

2
η
(
I e

4m − 1
)2
, (13.18)

in terms of the material parameter η and the invariant I e
4m := g : me with me :=

F eMF eT . This leads to us to the active part of the Kirchhoff stress tensor (13.10)

τ a(g;F e,M
)= 2η

(
I e

4m − 1
)
me. (13.19)

Calculation of the active stress tensor necessitates the knowledge of the elastic
part of the deformation gradient, which depends on the active part of the deformation
gradient. As introduced in Eq. (13.2), the latter is assumed to be function of the
transmembrane potential Φ through the following ansatz

F a = 1 + (λa − 1
)
M. (13.20)

The active fiber stretch λa is considered to be function of the normalized intracellular
calcium concentration c̄ through the following relationship

λa = ξ

1 + f (c̄)(ξ − 1)
λa

max, (13.21)

where the functions f and ξ of the normalized calcium concentration c̄ := c/cR are
defined as

f (c̄) := 1

2
+ 1

π
arctan(β ln c̄) and ξ := f (c̄0)− 1

f (c̄0)− λa
max
, (13.22)

respectively. The evolution of the normalized calcium concentration c̄ is modeled
by the following ordinary differential equation, Pelce et al. (1995),

˙̄c= q(Φ +Φ�)− kc̄ with c̄(t0)= c̄0. (13.23)

In the algorithmic setting, this evolution equation is integrated locally by using the
implicit Euler scheme. Having the active part of the deformation gradient at hand,
the elastic part of the deformation gradient can be obtained as F e = FF a−1 yielding
the following closed-form expression

F e = F − (1 − λa−1)Ff 0 ⊗ f 0. (13.24)

13.3.2 Spatial Potential Flux

We have already introduced the spatial potential flux q̂ in Eq. (13.11) as a function
of the conduction tensor D and the potential gradient ∇xΦ . For the model problem,
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the second-order conduction tensor is split into the isotropic and anisotropic parts

D = disog
−1 + danim, (13.25)

in terms of the scalar conduction coefficients diso and dani, where the latter accounts
for the faster conduction along the myofiber directions.

13.3.3 Current Source

In order to complete the description of the model problem, we need to specify the
constitutive equations for the electrical source term Î φ . In phenomenological elec-
trophysiology, it is common practice to set up the model equations and parameters
in the non-dimensional space. For this purpose, we introduce the non-dimensional
transmembrane potential φ and the non-dimensional time τ through the following
conversion formulas

Φ = βφφ − δφ and t = βtτ. (13.26)

The non-dimensional potential φ is related to the physical transmembrane potential
Φ through the factor βφ and the potential difference δφ , which are both in milli-
volt (mV). Likewise, the dimensionless time τ is converted to the physical time t
by multiplying it with the factor βt in millisecond (ms). Thus, the conversion for-
mulae in Eq. (13.26) imply the equality Î φ = (βφ/βt )îφ and the additive split of

Î φ , introduced in Eq. (13.12) Sect. 13.2.3, becomes îφ = îφe + îφm, which denote
the purely electrical current source îφe and the stretch-induced mechano-electrical
current source îφm in the non-dimensional setting.

In this model problem, we use the celebrated two-parameter model of Aliev and
Panfilov (1996), which favorably captures the characteristic shape of the action po-
tential in excitable ventricular cells,

îφe = cφ(φ − α)(1 − φ)− rφ, (13.27)

where c,α are material parameters. The evolution of the recovery variable r is
driven by the specific source term

îr =
(
γ + μ1r

μ2 + φ
)[−r − cφ(φ − b− 1)

]
. (13.28)

Analogous to the algorithmic update of c̄, we use the backward Euler integration to
calculate the current value of r . For the stretch-induced current generation f̂ φm , we
adopt the formula proposed by Panfilov et al. (2005) and Keldermann et al. (2007)

îφm = ϑGs(λ̄− 1)(φs − φ), (13.29)
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where Gs and φs denote the maximum conductance and the resting potential of the
stretch-activated channels, separately. This contribution to the current source term
is due to the opening of ion channels, and, therefore, exists only when myofibers are
under tension.

13.4 Numerical Example: Excitation-Contraction of the Heart

This section is devoted to the coupled electromechanical analysis of a biventricu-
lar generic heart model that favorably illustrates the main physiological features of
the overall response of the heart. For the material parameters that govern the pas-
sive stress response, we used the values given in Table 1 of Göktepe et al. (2011).
The parameters governing the potential flux and the current source, outlined in
Sects. 13.3.2 and 13.3.3, have been adopted from Table 4 of Göktepe and Kuhl
(2010). The material parameters governing the active part in Eqs. (13.18)–(13.23)
are taken as λa

max = 0.70, η= 0.05 MPa, β = 6, q = 2 (mVs)−1 and k = 3.5 s−1.
The solid model of a biventricular generic heart is constructed by means of two

truncated ellipsoids. The generic heart model whose dimensions and spatial dis-
cretization are depicted in Fig. 5 of Göktepe and Kuhl (2010) is meshed with 13 348
four-node coupled tetrahedral elements connected at 3 059 nodes. The unevenly dis-
tributed average orientation of contractile myocytes f 0 is depicted with yellow lines
in Fig. 13.4. This fiber organization is consistent with the myofiber orientation in
the human heart where the fiber angle ranges from approximately −70◦ in the epi-
cardium to +70◦ in the endocardium with respect to the longitudinal plane. Dis-
placement degrees of freedom on the top base surface are restrained and the whole
surface of the heart is assumed to be flux-free.

To initiate the excitation, the elevated initial value Φ0 = −10 mV of the trans-
membrane potential is assigned to the nodes located at the upper part of the septum
as indicated by the partially depolarized region in the first panel in Fig. 13.4. The
initial transmembrane potential at the remaining nodes is set to its resting value
Φ0 = −80 mV. The excitation at the top of the septum generates the depolarization
front traveling from the location of stimulation throughout the entire heart, thereby
resulting in the contraction of the myocytes, see the snapshots in Fig. 13.4 corre-
sponding to systole. At first glance, we observe that the contraction of myocytes
gives rise to the upward motion of the apex. More importantly, we also note that
the upward motion of the apex is accompanied by the physiologically observed wall
thickening and the overall twisting of the heart. To appreciate these phenomena bet-
ter, the two slices are presented in the complementary images shown in the lower
rows of Figs. 13.4 and 13.5. Undoubtedly, it is the heterogeneous distribution of
myocyte orientation that yields this physiological response through the non-uniform
contraction of myofibers. The panels in Fig. 13.5 illustrate the relaxation of the heart
during the course of repolarization.
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Fig. 13.4 Coupled excitation-induced contraction of generic heart model. Snapshots of the de-
formed model depict the action potential contours at different stages of depolarization. The yellow
lines denote the spatial orientation f of contractile myofibers. The two slices in the translucent
images in the lower row favorably depict the wall thickening and the twisting motion of the heart

13.5 Conclusion

In this contribution, we have proposed a new kinematic approach to the compu-
tational cardiac electromechanics. For this purpose, the deformation gradient has
been multiplicatively decomposed into the active and passive parts. The evolution
of the former has been considered to be function of the transmembrane potential.
In addition, the inherently anisotropic, active architecture of cardiac tissue has been
accounted for within the proposed kinematic framework. As opposed to the active-
strain formulations proposed in the literature, the proposed formulation results in
the additively decomposed stress response, which has been attributed to the active-
stress formulations only. The proposed micro-structurally based kinematic approach
to electro-active materials is believed to be advantageous over the entirely stress-
based formulations, since the active deformation is more readily accessible through
most experimental techniques at different scales. Therefore, the material parameters
governing the generation of the active straining upon electrical stimulation can be
favorably tuned to yield reliable, predictive simulations. The proposed kinematic
setting has then been embedded in the fully implicit, entirely finite-element-based
coupled framework. The implicit numerical integration of the transient terms and the
monolithic solution of the resultant coupled algebraic equations has led us to an un-
conditionally stable and modular structure. The performance of the proposed model
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Fig. 13.5 Coupled excitation-induced contraction of generic heart model. Snapshots of the de-
formed model depict the action potential contours at different stages of repolarization. The yellow
lines denote the spatial orientation f of contractile myofibers. The two slices in the translucent
images in the lower row favorably depict the wall thickening and the twisting motion of the heart

has been demonstrated by the fully coupled finite element analysis of a generic heart
model.
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Chapter 14
Activation Models for the Numerical Simulation
of Cardiac Electromechanical Interactions

Ricardo Ruiz-Baier, Davide Ambrosi, Simone Pezzuto, Simone Rossi,
and Alfio Quarteroni

Abstract This contribution addresses the mathematical modeling and numerical
approximation of the excitation-contraction coupling mechanisms in the heart.
The main physiological issues are preliminarily sketched along with an extended
overview to the relevant literature. Then we focus on the existing models for the
electromechanical interaction, paying special attention to the active strain formula-
tion that provides the link between mechanical response and electrophysiology. We
further provide some critical insight on the expected mathematical properties of the
model, the ability to provide physiological results, the accuracy and computational
cost of the numerical simulations. This chapter ends with a numerical experiment
studying the electromechanical coupling on the anisotropic myocardial tissue.

14.1 Introduction

The interaction mechanism between contraction of the cardiac muscle and elec-
trical propagation is a complex multiscale phenomenon of vital importance in a
wide range of medical applications (Smith et al., 2004). From a purely mechani-
cal point of view, key features of muscle behavior include large deformations, fiber
anisotropy, heterogeneity of the tissue, and the ability to shorten when a substantial
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intracellular calcium concentration change occurs. The dynamics is driven by a trav-
eling action potential, usually modeled by a reaction-diffusion equation, where the
ions species diffusion activates the ionic currents reaction, which eventually dictate
the depolarization and repolarization of the cells. Ionic currents depend on the jump
in electric potential according to Ohm’s law whereas the conductance is typically
a highly nonlinear function of voltage described through gating variables or, more
recently, by means of Markov models. Such a nonlinearity is responsible for the
complex excitable behavior of the cardiac action potential cycle: rapid upstroke of
depolarization, followed by a plateau phase and a repolarization of the cells when
a voltage threshold is overcome. A variety of models exists in this respect, with in-
creasing detail in the description of ionic channels and intracellular reactions taken
into account (CellML, 2000; Rudy and Silva, 2006). Heuristic systems of equations,
that only reproduce a qualitative pattern of the voltage wave, are very useful in pro-
viding a framework simple enough to allow for mathematical analysis. However,
these kind of phenomenological models are not able to describe the correct behavior
of the cell in a pathological condition, or correctly describe drug interactions; fur-
thermore, the concentration of specific ions like intracellular calcium that induces
contractions and relaxations of cardiomyocytes, is typically not present. Therefore
a more detailed insight of several ionic currents is needed to provide the correct
physiological contractility.

The numerical simulation of these complex multiphysics and multiscale systems
poses a major challenge even if state-of-the-art computational techniques and com-
puter architectures are employed. Finite element formulations of nonlinear elasticity
for the myocardial tissue have been proposed since more than a decade (Nash and
Hunter, 2000), followed by a series of works focusing on the integration of cardiac
systems including elasticity, electricity, perfusion models, and on the close connec-
tion of the proposed models with experimental observations (see a review in Kerck-
hoffs et al., 2006). If a certain level of accuracy of the geometrical description of a
patient specific model is desired and the solution is to be obtained within a reason-
able amount of time, there is no way around using parallel computers (and suitable
numerical techniques combined with scalable algorithms exploiting the underlying
architectures). The public availability of scientific computing libraries such as, e.g.,
LifeV (2001), Continuity (2005) and Chaste (Pitt-Francis et al., 2009), represents a
substantial step forward in this direction. Parallel algorithms capable of performing
cardiac mechano-electrical simulations have recently been implemented reporting
scalable behaviors in Chapelle et al. (2009); Reumann et al. (2009); Lafortune et al.
(2012); Nobile et al. (2012).

In this paper we aim at investigating some features of the active strain formu-
lation in cardiac electromechanics (Cherubini et al., 2008; Ambrosi et al., 2011;
Nobile et al., 2012). Such approach is based on the assumption that the mechani-
cal activation, laying in the core of the cell-level excitation-contraction mechanism,
may be represented as a virtual multiplicative splitting of the deformation gradi-
ent into a passive elastic response, and an active deformation depending directly
on the electrophysiology. Alternative options that avoid such decomposition at the
deformation level are active-stress descriptions (see, e.g., Nash and Panfilov, 2004;
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Pathmanathan and Whiteley, 2009; Land et al., 2012) where the stress is composed
as a sum of a passive and an active part, the latter determined by the so-called ac-
tive tension, also depending on the electrical activation of the cell. In this paper we
address the feasibility of numerical simulations for the macroscopic coupling using
the active strain approach, and we present in detail an example of the full electrome-
chanical interaction. However, we will not discuss advantages and disadvantages of
the different strategies, rather we refer to Ambrosi and Pezzuto (2012) and Rossi et
al. (2012) for a thorough comparison.

This paper is organized as follows. In Sect. 14.2 we summarize the main math-
ematical characteristics of the electrical and mechanical problem and we detail the
specific modeling strategy that we adopt. The electromechanical coupling, i.e. the
cell contraction dictated by the electrical signal and the corresponding feedback (the
stretch activated currents) are illustrated in Sect. 14.3. The computational method is
outlined in Sect. 14.4 where we also present a numerical example, and we close with
a discussion in Sect. 14.5.

14.2 Mathematical Models for Cardiac Electromechanics

Force balance equations for an elastic continuum medium are employed to describe
large deformations of the myocardium under influence of the fluid pressure, the
surrounding organs and its own contraction. Such framework has to be coupled with
the macroscopic bidomain or monodomain equations accounting for the propagation
of the electric potential and ionic currents.

14.2.1 Models for the Heart Electrophysiology

Starting from the pioneering work of Hodgkin and Huxley (1952) on the nerve axon
model, several increasingly sophisticate models have been developed for the prop-
agation of electrical signals in cardiac tissue. Here we separate between models for
cardiac cell electrophysiology, and macroscopic tissue-level models based on con-
tinuum mechanics.

Popular cardiac cellular electrophysiology models include those based on exper-
imental observations on animals (e.g., Luo and Rudy, 1991) and humans (see, e.g.,
Iyer et al., 2004; ten Tusscher et al., 2004). Such models address cell excitation in
isolation from the rest of the cardiac function. They essentially include a descrip-
tion of the dynamics of ionic species (mainly potassium, calcium, and sodium) along
with the gating processes of several proteins that are blocked or allowed to transport
ions through the cellular membrane. A drastic decrease of computational cost can be
obtained by using simplified low dimensional models based on phenomenological
descriptions of such mechanisms (Rogers and McCulloch, 1994; Bueno-Orovio et
al., 2008). The price to pay for this simplification, provided that a correct behavior of
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the voltage field is reproduced, is that ionic species are not well resolved. Neverthe-
less, these types of electrical models are able to provide some specific information
of interest, such as contractility.

Systems of ordinary differential equations (ODEs) of the form

∂tv − Iion(v,w)= 0, ∂tw − m(v,w)= 0, (14.1)

are employed to describe these cellular models, without any spatial detail. Here
v denotes the transmembrane potential field, w contains all gating variables and
concentration of ionic species, and Iion and m drive the kinetics of the system, its
specific form depending on the chosen cellular model.

Models at the cell level can be incorporated into macroscopic descriptions for
the propagation of electrical excitation throughout the cardiac muscle in the sim-
plest way assuming homogeneous diffusion of ionic species on the microstructure
of the substrate. The texture of the cardiac tissue can be incorporated observing that
cellular and extracellular components are characterized by different diffusivities.
A homogenization process yields the so-called bidomain equations (Tung, 1978):

∂tv− ∇·(De∇ue)+ Iion = I i
app, ∂tv + ∇·(Di∇ui)+ Iion = I e

app, (14.2)

where ui and ue are the intra- and extracellular electric potentials (both defined in
every point of the domain), and (I i

app, I
e
app) are possible externally applied stimuli.

The cardiomyocytes are organized in fibers that originate the anisotropic conduc-
tivity in the electrophysiology of the heart. The myofiber angle varies continuously
from about −60° (inverse circumferential axis) at the epicardium, to about 70° at the
endocardium. From the apical region, the myofibers that conform the tissue follow a
right helical orientation towards the subendocardium and a left helical path parallel
to the wall on the subepicardium. On the mid-wall region, cardiac fibers exhibit a
circumferential orientation, and on the basal site fibers cross from subendocardial
to the subepicardial region. Myocardial propagation velocities in the parallel and
perpendicular myofiber directions can differ up to an order of magnitude. These
geometrical features are encoded in the anisotropic conductivity tensors Di and De
(Colli Franzone and Pavarino, 2004).

14.2.2 Mechanical Response of the Myocardium

The characterization of the material properties of the cardiac tissue requires precise
experimental settings that should reproduce physiological conditions as close as
possible. Usual tests include uniaxial and biaxial tension experiments, as well as
shear tests, from which it is possible to recover stress-strain relations on the different
directions of the anisotropic medium (fiber, sheets, and sheet-normal axes).

The usual kinematics descriptors of a continuum medium placed in Ωo ⊂ R
3

in its reference configuration are the deformation gradient of its motion F and the
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right Cauchy-Green tensor C = FTF. We denote by I1 = tr C, I2 = 1
2 (I

2
1 − tr C2),

I3 = det C, the principal invariants of C.
Due to the alignment of cardiac fibers and their organization in sheets, the my-

ocardium exhibits an orthotropic behavior that can be conveniently illustrated in-
troducing the orthogonal unit vector fields f0 and s0 denoting the orientation of the
fibers and collagen-sheets in the reference configuration. A hyperelastic material
with constitutive response invariant with respect to rotations around f0 and s0 is de-
scribed by a strain-energy function W (F) that depends on a set of invariant such as
I1,2,3, and also pseudo-invariants defined as follows:

I4,f = C : f0 ⊗ f0, I5,f = C2 : f0 ⊗ f0, I8,f s = C : sym(f0 ⊗ s0), (14.3)

and analogously I4,s and I5,s .
Orthotropic strain-energy functions were suggested in Usyk et al. (2000); Costa

et al. (2001); Holzapfel and Ogden (2009), that in addition are able to represent
the behavior of the laminar sheets in which cardiac myofibers are structured. For
instance, the energy function proposed by Holzapfel and Ogden (2009) is given by

W (F)= a

2b

(
eb(I1−3) − 1

)+
∑

i=f,s

ai

2bi

(
ebi (I4,i−1)2 − 1

)+ af s

2bf s

(
ebf sI

2
8,f s − 1

)
,

(14.4)
where the eight parameters a, b, af , bf , as , bs , af s and bf s are experimentally
fitted.

According to Ashikaga et al. (2008), the myocardium experiments a change in
myocardial volume of up to 10 %. This is possibly due to blood-filled spaces within
the myocardium which may communicate with the ventricular lumen or from the
coronary arteries from which blood is expelled during systole. However incompress-
ibility of the medium is often assumed as it is mainly constituted by water. In strictly
incompressible models, the pressure field is the Lagrange multiplier enforcing the
constraint, and in slightly compressible models a compressibility modulus penal-
izes the variation in density. For evident reasons, strict incompressibility is more
popular when analytical methods are applied, as one degree of freedom drops out
in homogeneous deformations, while penalization is often preferred in numerical
codes, where no compatibility between spaces of representation of displacement
and pressure fields must be abided.

14.3 Activation and Contraction

Myocardial systolic contraction is usually modeled at the macroscale by incorpo-
rating a possibly anisotropic, additive stress contribution in the force balance (Nash
and Panfilov, 2004; Smith et al., 2004; Göktepe and Kuhl, 2010; Pathmanathan et
al., 2010).

A different approach is to introduce a multiplicative decomposition of the strain.
The active strain method, introduced in the context of biomechanics in Taber and



194 R. Ruiz-Baier et al.

Fig. 14.1 Sketch of the
active strain decomposition
entailing an intermediate
virtual configuration Ωe
between the reference state
Ωo and the current
configuration Ω . Similar
splittings have been proposed
in finite elastoplasticity (Lee
and Liu, 1967), growth and
material remodeling (Taber
and Perucchio, 2000; Menzel
and Waffenschmidt, 2009),
and mechano-chemical
interactions (Murtada et al.,
2010)

Perucchio (2000); Nardinocchi and Teresi (2007), assumes that the deformation gra-
dient F can be rewritten in terms of a Lee-type multiplicative decomposition (Lee
and Liu, 1967), i.e.

F = FeFo, (14.5)

where Fo is the active deformation, to be constitutively prescribed in terms of ionic
species concentration, and Fe is the passive elastic deformation (see Fig. 14.1).
Whichever approach that is chosen, the model should satisfy due mathematical
properties (such as frame indifference and ellipticity of the total stress), and the con-
stitutive laws need to recover physiological relevant behaviors (such as the Frank-
Starling effect, where an increase of chamber volume at end-systolic pressure and
stroke work reflects on the tissue as a monotonic increase in isometric tension), (Lee
and Liu, 1967).

Comparisons between the usual active stress method and the active strain ap-
proach from a numerical viewpoints has been carried out in Rossi et al. (2012).
Defining the variables γf , γs , γn as the relative displacements in the directions f0,
s0, n0, (fibers, sheets and sheets-normal directions) of a single cell, respectively, the
local deformation is

Fo = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0. (14.6)

Note that γf represents the active shortening of the cardiomyocytes, whereas γs , γn
will take into account the associated thickening, in order to satisfy the incompress-
ibility of the cell itself (Iribe et al., 2007; Smerup et al., 2009). In Nardinocchi and
Teresi (2007), Evangelista et al. (2011) and Nobile et al. (2012), the contribution
of the terms depending on γs and γn are not included. Analogously, for some acti-
vation models (see, e.g., Göktepe and Kuhl, 2010; Rausch et al., 2011), the active
tension is assumed to act exclusively along the fibers direction. However, biaxial
tests provide a measure of the active contributions in the transverse direction. This
quantification can be obtained by either measuring the different rates of calcium
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release in these directions (as done in Usyk et al., 2000) and then translating this
information into active strains, or assuming transverse isotropy of the mechanical
response at the cell level (as in Rossi et al., 2012). Moreover, if the components of
the activated deformation Fo satisfy the condition

(1 + γf )(1 + γs)(1 + γn)= 1, (14.7)

then det Fo ≡ 1, a very convenient choice from a numerical point of view for this
nonlinear problem, since convergence has to be incrementally reached.

The thermodynamic assumption of the multiplicative decomposition (14.5) is
that the active deformation det Fo stores no energy, so that the strain-energy function
is Ŵ = W (Fe) and

Wstrain = det FoŴ = det FoW
(
FF−1

o

)
. (14.8)

The activation γf depends on the concentration of ionic species as can be deduced
from ordinary differential equation models (Rice et al., 2008; Murtada et al., 2010;
Nobile et al., 2012), which can be summarized in the symbolic equation

∂tγf −G(w, γf )= 0, (14.9)

whereG defines the activation dynamics depending on ionic concentrations denoted
by the vector w.

In the reference configurationΩo, the equations governing the electromechanical
interaction under active strain read
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇·
(

det Fo
∂W (FF−1

o )

∂F
− pF−T

)
= 0,

det F = 1,

in Ωo;

χcm∂tv− ∇·(F−1DeF−T∇ue
)+ χ(Iion + Isac)= I i

app,

χcm∂tv + ∇·(F−1DiF−T∇ui
)+ χ(Iion + Isac)= I e

app,

∂tw − m(v,w)= 0,

∂tγf −G(w, γf )= 0,

in Ωo × (0, T ).

(14.10)
System (14.10) is to be completed with suitable initial data for v, w as well as with
boundary conditions for all fields. The usual prescription of voltage at the initial
time is that a large enough perturbation is located at the apex, so that an electric
wave starts traveling up to the base, producing the due ionic currents and mechanical
contraction. This initial condition corresponds to immaterial assumption that the
electric signal, actually produced at the sinoatrial node, has been traveling very fast
along the Purkinje fibers down to the apex, where they finely branch producing a
volumetric diffusion at t = 0. Since the Purkinje fibers also branch up from the apex
towards the base at the subepicardial level, different protocols are often used to
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Fig. 14.2 Fiber distribution on the myocardium (left panel), and sketch of the geometrical domain
decomposition of the corresponding mesh into 16 subdomains (right panel)

stimulate the entire endocardial surface. This is done either synchronously or with
a slight delay going from apex to base. No-flux boundary conditions apply to the
electric variables, while mixed boundary data are imposed to the displacement field.
Robin conditions mimic the presence of the pericardial sac at the outer wall, while
blood pressure inside the ventricles is computed on the basis of pressure-volume
diagrams, relating the blood pressure depending to the ventricular volume.

14.4 Numerical Simulation

In what follows we present a simple numerical example illustrating the feasibility
of electromechanical active strain models. The simulations reported in the present
work are performed using the parallel finite element library LifeV (2001). We em-
ployed a biventricular geometry (originally from Sermesant, 2003) where the mesh
consists of 29 504 tetrahedral elements. Myocardial fibers are distributed in the mus-
cle following an analytical description so that the orientation varies linearly from
an elevation angle (between the short axis plane and the fiber) of 65° in the epi-
cardium, to −65° in the endocardium (see Fig. 14.2, left panel). The domain is then
partitioned into 16 subdomains (Fig. 14.2, right panel).

Since we are interested in the myocardium activation more than the passive prop-
erties of the muscle, we consider a simple neo-Hookean material with strain-energy
function W = μ

2 F : F, where μ = 385 kPa, in all regions of the cardiac muscle.
Moreover, the active strain Fo is chosen to be transversely isotropic, so γs = γn = 0
and therefore condition (14.7) is not needed. This means that the second Piola-
Kirchhoff tensor reads:

S = μ(1 − γf )I +μγf 2 − γf
1 − γf f0 ⊗ f0. (14.11)
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The specifications for (14.1) are in accordance with the minimal model of Bueno-
Orovio et al. (2008), a four-equations phenomenological model for human ventri-
cles. The auxiliary variables are w = (w1,w2,w3) which are phenomenological
quantities (no direct physical interpretation), however w3 behaves like a re-scaled
intracellular calcium concentration. The reaction terms are defined as

Iion(v,w) = −w1H(v− θ1)(v − θ1)(vv − v)/τf i + (v − v0)
(
1 −H(v − θ2)

)
/τ0

+H(v − θ2)/τ3,0 −H(v− θ2)w2w3/τsi, (14.12)

and

m(v,w)=
⎛

⎜
⎝

((1 −H(v − θ1))(w1,inf −w1)/τ
−
1 −H(v − θ1)w1/τ

+
1

(1 −H(v − θ2))(w2,inf −w2)/τ
−
2 −H(v− θ2)w2/τ

+
2

((1 + tanh(k3(v− v3)))/2 −w3)/τ3)
T

⎞

⎟
⎠ , (14.13)

where H stands for the usual Heaviside function. The switches and infinite values
are defined as follows:

τ−
1 = (1 −H (v− θ−

1

))
τ−

1,1 +H (v − θ−
1

)
τ−

1,2 (14.14)

τ−
2 = τ−

2,1 + (τ−
2,2 − τ−

2,1

)(
1 + tanh

(
k−2
(
v− v−

2

)))
/2 (14.15)

τ3,0 = τ3,0,1 + (τ3,0,2 − τ3,0,1)
(
1 + tanh

(
k3,0(v − v3,0)

))
/2 (14.16)

τ3 = (1 −H(v− θ2)
)
τ3,1 +H(v − θ2)τ3,2 (14.17)

τ0 = (1 −H(v− θ0)
)
τ0,1 +H(v − θ0)τ0,2 (14.18)

w1,inf =
{

1, v < θ−
1

0, u≥ θ−
1

(14.19)

w2,inf = (1 −H(v− θ0)
)
(1 − v/τ2,∞)+H(v − θ0)w

∗
2,∞. (14.20)

The model reproduces the correct shape of the voltage wave. For the sake of sim-
plicity, we use the epicardial parameters for the whole cardiac muscle: θ0 = 0.005,
θ1 = 0.3, θ2 = 0.13, θ−

1 = 0.1, τ3,0,1 = 91, τ3,0,2 = 0.8, τ3,1 = 2.7342, τ3,2 = 4,
τ0,1 = 410, τ0,2 = 7, w∗

2,∞ = 0.5, vv = 1.61, τ−
1,1 = 80, τ−

1,2 = τ+
1 = 1.4506,

τ−
2,1 = 70, τ−

2,2 = 8, τ+
2 = 280, k−2 = 200, v−

2 = 0.016, τf i = 0.078, k3,0 = 2.1,
v3,0 = 0.6, k3 = 2.0994, v3 = 0.9087, τsi = 3.3849, τ2,∞ = 0.01. The initial data
corresponds to w1 =w2 = 1, w3 = 0.

The governing ODE for the activation corresponds to (14.9), as introduced in
Rossi et al. (2011) and Nobile et al. (2012), with the specification G(γf ,w3) =
−0.02w3 − 0.04γf .

The time sequence of transmembrane potential, activation γf and other ionic
concentrations are illustrated in Fig. 14.3 for a point on the epicardial surface. The
highest activation value is attained with a delay of about 120 ms with respect to that
of the action potential.
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Fig. 14.3 Time evolution of
the electric fields in a specific
epicardial position of the
tissue. Plotted quantities are
the transmembrane potential
v, gate variables
w = (w1,w2,w3) and the
mechanical activation γf
which are all presented in
dimensionless form

Robin boundary condition mu + Pn = 0, with m = μ = 385 kPa, has shown
to yield a qualitatively correct end-systolic displacement magnitude (around 25 %)
and rotation of the left ventricle, as reported in Rossi et al. (2012). Quadratic finite
elements are used for displacement, whereas all other fields are discretized using
continuous piecewise trilinear elements, in order to satisfy Brezzi-Babuška inf-sup
condition. The timestep, fixed during the simulation, is  t = 0.01 ms and, as usual
in electromechanically coupled computational models (see, e.g., Nash and Panfilov,
2004; Cherubini et al., 2008; Pathmanathan and Whiteley, 2009; Land et al., 2012),
we iterate between electrical and mechanical problems in a segregated mode. The
nonlinear equations arising from the discretization of the mechanical problem are
linearized using the Newton-Raphson method. We find that no more than 6 iterations
are needed to converge with a tolerance of εtol = 10−8, with the maximum number
of iterations being always attained around the upstroke phase. The linear systems
are solved using the GMRES iterative method (with a tolerance of ε̂tol = 10−7).
The average overall CPU time spent per time step is 3.5 seconds, using 32 cores
distributed on 4 nodes on the Intel Harpertown cluster Callisto at EPFL.1

An external stimulus I e
app = −100 µA is applied at the apex at t = 0, in order

to generate a traveling wave for the transmembrane potential, initially everywhere
at rest (v = −84 mV). Figure 14.4 presents three snapshots of the solution of the
excitation-contraction problem at times t = 1, t = 40, t = 230 and t = 540 ms,
where fiber directions are represented by the gray volume arrows and the color-map
shows the values of the transmembrane potential v on the undeformed solid. Notice
that the activation patterns adopt a profile dictated by the tissue anisotropy.

1http://hpc-dit.epfl.ch/clusters/callisto.php.

http://hpc-dit.epfl.ch/clusters/callisto.php
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Fig. 14.4 Snapshots of the transmembrane potential field, plotted on the deformed configuration,
and fiber distribution at times t = 1, 40, 230, 540 ms, plotted on the undeformed configuration

14.5 Conclusions and Future Directions

The material outlined in this paper reports some recent work in modeling and nu-
merical simulation of cardiac electromechanics using the active strain approach.
Even though several physical approximations apply, recently performed compar-
isons with experimental observations by Evangelista et al. (2011) (in terms of tor-
sion of the left ventricle, endocardial volumes, and circumferential strains) and by
Rossi et al. (2012) (in terms of end-systolic normal and shear strains) suggest the
potential effectiveness of active-strain based models.

The effectiveness of an electromechanical model in capturing the key aspects of
the physiology depends on several factors. In particular, we take electric models
from a cell level and incorporate them in a force balance equation that holds at the
macroscale. Yet, it is not obvious that such an uplift between spatial scales can be
directly operated, without a suitable homogenization procedure. This is a concern
shared by all current models of cardiac electromechanics, and needs to be addressed
in further detail.
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Chapter 15
Hemodynamic Alterations Associated
with Coronary and Cerebral Arterial
Remodeling Following a Surgically-Induced
Aortic Coarctation

C. Alberto Figueroa, Jessica S. Coogan, and Jay D. Humphrey

Abstract Computational models promise to aid in the interpretation of the cou-
pled interactions between evolving wall geometry, structure, material properties and
hemodynamics seen in arterial adaptations. Motivated by recent aortic coarctation
models in animals, we used a computational fluid-solid-interaction model to study
possible local and systemic effects on the hemodynamics within the thoracic aorta
and coronary, carotid, and cerebral arteries due to a distal aortic coarctation and
subsequent spatial variations in wall adaptation. In particular, we studied an initial
stage of acute cardiac compensation (maintenance of cardiac output) followed by
early arterial wall remodeling (spatially varying wall thickening and stiffening).

15.1 Introduction

Although elevated mean arterial pressure (MAP) has traditionally been considered
to be an important indicator or initiator of cardiovascular risk in hypertension,
mounting evidence suggests that increased pulse pressure is as or more important
(Safar, 2000; Dart and Kingwell, 2001; Safar and Boudier, 2005). Data from surgi-
cally created aortic coarctations in animals reveal striking evolutions of wall geom-
etry, structure, and properties (Xu et al., 2000; Hu et al., 2008; Eberth et al., 2010)
that appear to be driven primarily by increased pulse pressure, not MAP (Eberth et
al., 2009). It also appears that the associated arterial adaptations progress at different
rates and to different extents both temporally (first at basal rates, then rapidly, then
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back to normal values) and spatially (from proximal to distal sites), see Hayenga
(2010).

Although additional experimental data will be needed to understand better
these spatio-temporal adaptations, computational fluid-solid-growth (FSG) models
(Figueroa et al., 2009) offer considerable promise both in the design and interpreta-
tion of such experiments and in implicating possible biomechanical mechanisms.

Building on recent advances in computational modeling (Figueroa et al., 2006;
Vignon-Clementel et al., 2006; Kim et al., 2009a,b; Moireau et al., 2012), the goal
of this work was to simulate possible effects of a surgically created coarctation in
the descending thoracic aorta on the hemodynamics within the proximal aorta and
the coronary, carotid, and cerebral arteries following both an acute cardiac compen-
sation (i.e., maintenance of cardiac output) and early arterial wall remodeling (i.e.,
spatially varying wall thickening and stiffening).

15.2 Methods

15.2.1 Model Geometry

15.2.1.1 Baseline Model

Computed tomographic (CT) images were collected from two adult male human
subjects free of cardiovascular disease to collectively encompass all major arteries
from the brain to the diaphragm. Separate 3D geometric models were constructed
from the CT datasets using custom software based on a 2D vessel segmentation
procedure, see Fig. 15.1. A finite element mesh was created by discretizing the 3D
model coarsely, running a steady-state flow simulation, and then performing field-
based adaptive mesh refinement (Sahni et al., 2006). The final finite element mesh
consisted of 2,462,487 linear tetrahedral elements and 477,872 nodes.

15.2.1.2 Coarctation Model

A thoracic aortic coarctation was modeled by introducing a 75 % diameter narrow-
ing in the aorta just above the diaphragm, consistent with both the location and the
degree of a surgically induced coarctation in mini-pigs in studies that provide in-
formation on temporal and spatial changes in arterial wall composition (Hu et al.,
2008; Hayenga, 2010).

15.2.2 Numerical Methods

Equations enforcing balance of mass and linear momentum (Navier-Stokes) were
solved for the flow of an incompressible Newtonian fluid within a deformable do-
main using a stabilized finite element formulation implemented in the open-source
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Fig. 15.1 3D computational model of the human thoracic aorta, coronary arteries, and head and
neck vessels based on CT images from two normal male subjects. From Coogan et al. (2012)

code SimVascular (Figueroa et al., 2006). Computations were performed on a super-
computer (276 Dell PowerEdge 1950) typically using 96 cores. We utilized a time
step size of 0.0001 seconds, and the simulations had an average residual of 0.005.
Simulations were run for 7 cardiac cycles until achieving cycle-to-cycle periodicity
in the pressure fields.

15.2.3 Fluid-Solid Models

Blood density was ρ = 1.06 kg/m3 and blood viscosity was μ = 0.04 P. We as-
sumed typical baseline values for the linearized stiffness and thickness of the wall
of each of the four primary vascular segments: thoracic aorta as well as coro-
nary, neck, and cerebral arteries. A coupled momentum method was used (Figueroa
et al., 2006) to model wall deformability and a coupled-multidomain formulation
(Vignon-Clementel et al., 2006) was used to link Windkessel models for the heart
and distal vessels to the 3D vascular model. The overall model thus required pre-
scription of one inlet and 22 outlet boundary conditions. Numerical values for the
lumped-parameter coefficients were determined iteratively to reach target values for
flow and pressure.
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Fig. 15.2 Various
lumped-parameter models
utilized to specify boundary
conditions for the 3D
computational model. The
Windkessel model was
applied at all outlets except
the coronary tree; the heart
model was applied at the
aortic root. From Coogan et
al. (2012)

15.2.3.1 Heart Model

Overall function of the heart was simulated using a lumped parameter circuit model
(Kim et al., 2009a) that includes resistors and inductors to represent the mitral
and aortic valves (RAV, RV-Art, LAV, LV-Art), a pressure source that represents left
atrial pressure PLA, and a variable capacitance that represents left ventricular elas-
tance/contractility E(t), see Fig. 15.2. The initial left atrial pressure was assumed to
be 10 mmHg. The final heart model parameters were PLA = 11 mmHg, maximum
elastance of 1.25 mmHg/mL, and time-to-peak elastance of 0.4 s. A Lagrange pro-
file constraint with a penalty number of 10,000 was used to stabilize the solution
during the systolic phase of the cardiac cycle (Kim et al., 2009b).

15.2.3.2 Windkessel RCR Model

Hemodynamic conditions were prescribed at every outlet in the descending aorta,
neck, and head vessels in terms of a proximal (larger arteries and arterioles) resis-
tance Rp, a proximal vessel capacitance C, and a distal (small arterioles and capil-
laries) resistance Rd (cf. Fig. 15.2). A Lagrange profile constraint was used at the
inlet and outlet of the aorta as well as at the outlets of the right and left subclavian
and external carotid arteries. Such constraints stabilize the computed solution while
affecting only the hemodynamics in a small region near the constraint (Kim et al.,
2009b).
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Table 15.1 Parameter values for the lumped parameter Windkessel and coronary models. The unit
of resistance is 103 dynes s/cm5 and the unit of capacitance is 10−6 cm5/dynes

Windkessel parameters Coronary parameters

Outlet Rp Rd C Outlet Ra Ra-micro Rv Ca Cim

Desc Aorta 0.25 2.48 500 LAD1 176 287 91 0.28 2.41

L Subclavian 1.88 19.0 44.7 LAD2 131 214 68 0.37 3.14

R Subclavian 1.88 19.0 48.3 LAD3 126 206 66 0.38 3.26

L Ext Carotid 4.39 44.4 15.0 LAD4 75 123 39 0.61 5.19

R Ext Carotid 4.39 44.4 13.9 LCX1 48 78 25 0.07 9.17

L Ant Cerebral 11.2 113 5.23 LCX2 159 260 83 0.41 3.50

R Ant Cerebral 11.2 113 5.05 LCX3 213 348 111 0.32 2.78

L Int Carotid 3.18 32.1 11.0 LCX4 167 272 87 0.39 3.38

R Int Carotid 3.18 32.1 10.3 RCA1 166 271 86 0.59 5.07

L Post Cerebral 8.29 83.8 5.41 RCA2 231 377 120 0.44 3.74

R Post Cerebral 8.29 83.8 6.13 RCA3 258 422 134 0.39 3.38

15.2.3.3 Coronary Model

A lumped parameter model of the coronary vascular bed (Kim et al., 2010) was pre-
scribed at the outlets of the large coronary vessels (cf. Fig. 15.2). In addition to the
resistors and capacitance of the Windkessel model, this model included the venous
circulation and incorporated effects of left ventricular pressure. The latter is criti-
cal since contraction of the heart is one of the main determinants of coronary flow.
The total resistance at each outlet Rtotal was again calculated assuming a MAP of
100 mmHg and that flow through each outlet scaled with cross-sectional area, with
mean coronary flow comprising approximately 4.5 % of cardiac output (Guyton and
Hall, 2006). The Windkessel portion of the lumped parameter coronary model was
represented by Ra, Ca, and Ra-micro. The venous pressure defined the relationship
between Ra, Ra-micro, and Rv and was assumed to be 15 mmHg. Two parameters,
Ca-total and Cim-total, were defined as the sum of all coronary arterial (Ca) and intra-
myocardial (Cim) compliances. An iterative tuning procedure was used to find val-
ues of Ca-total and Cim-total that yielded physiologic coronary flow waveforms. For
the left coronary vessels, the left ventricular pressure found in the lumped parameter
coronary model was equivalent to the pressure derived from the heart model. The
boundary condition for the right coronary artery was based on a scaling of left ven-
tricular pressure that was derived from the heart model, specifically PRV = 0.20PLV.
The final parameter values for the heart model and Windkessel models are listed in
Table 15.1.
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Fig. 15.3 Sections of the
model with different wall
properties. The acute cardiac
compensation frame refers to
the introduction of
coarctation and subsequent
cardiac compensation, the
early arterial remodeling
shows the differential
stiffening observed in animal
experiments in various
vascular regions. From
Coogan et al. (2012)

15.2.3.4 Vessel Wall Properties

Given current limitations in experimental data on regional variations in vascular
mechanical properties and thickness, four sections of the vasculature were endowed
with different but uniform wall properties, reflected by an effective constant stiff-
ness and thickness of the wall (Fig. 15.3). The stiffness of the thoracic aorta was
chosen to yield physiologic levels of strain over normal ranges of blood pressure
(Redheuil et al., 2010) whereas moduli for coronary, neck, and cerebral vessels were
based directly on data (Gow and Hadfield, 1979; Hayashi et al., 1980; Nichols and
O’Rourke, 2005). The thickness of the vessel in each section was assumed to be
10 % of the mean radius within that section (Nichols and O’Rourke, 2005).

15.2.4 Acute Cardiac Compensation Following Coarctation

When first introducing the coarctation, parameters for the heart model were modi-
fied to simulate an acute cardiac compensation. This modification accounted for the
increased work required of the heart to compensate for the increased afterload due
to the coarctation. If the heart were not to adapt, then cardiac output would decrease
due to the increased resistance in the aorta. Thus, the heart model was modified by
iteratively increasing values of the maximum left ventricular elastance and left atrial
pressure until cardiac output equaled that of the baseline model (Taylor and Donald,
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1960). We assumed that cardiac output remained unchanged since the aortic steno-
sis was moderate and that it is unlikely that either the perfusion or the metabolic
demands of the subject were altered significantly. It follows that, in order to main-
tain cardiac output, contractility of the heart (i.e., the elastance) must increase. In
addition, changes in elastance affect filling of the heart, thus requiring an increase
in left atrial pressure to maintain the same end diastolic volume. The final left atrial
pressure was 14 mmHg and the maximum elastance was 1.52 mmHg/mL.

15.2.5 Early Arterial Remodeling

Early arterial vascular remodeling (i.e., within the first 10 days or so) was simu-
lated by modifying wall properties to reflect stiffening and thickening of the tho-
racic aorta proximal to the coarctation, the coronary vessels, and the neck vessels.
These changes were based on findings that the pulse wave velocity can increase by
as much as two-fold with aging and that many adaptive processes associated with
aging are similar to those associated with hypertension (Wolinsky, 1972; Nichols
and O’Rourke, 2005). Updated values of stiffness and thickness are illustrated in
Fig. 15.3. Briefly, the stiffness of the aortic arch, coronary tree, and neck vessels
was increased by 100 %, 50 % and 50 %, respectively, while the thickness was
increased 15 %. We assumed that the cerebral vasculature did not experience any
changes in stiffness or thickness during this early period (Hayenga, 2010). We also
did not prescribe any associated changes in vascular lumen largely because of the
lack of associated experimental data and the possible competing effects of changes
in distal resistances (e.g., cerebral autoregulation) and local shear-regulated vasodi-
latation. The prescribed changes in vascular stiffness and thickness affected cardiac
afterload, hence additional cardiac compensation was required to maintain cardiac
output after arterial remodeling. The final left atrial pressure was 16 mmHg and the
maximum elastance was 1.82 mmHg/mL. All other outlet boundary conditions (ar-
terial and coronary) remained the same for baseline, acute cardiac compensation,
and early arterial remodeling.

15.2.6 Data Analysis

Simulation data were analyzed using the open-source software Paraview (Kitware,
Inc. Clifton Park, NY). Pressure, flow, and cyclic wall strain were analyzed at five
different locations within the vasculature (see Fig. 15.4): the proximal descending
aorta (P-Ao), left anterior descending (LAD) coronary artery, left common carotid
artery (LCCA), left middle cerebral artery (LMCA), and basilar artery (BA). Mean
circumferential wall strain was calculated based on changes in the cross sectional
area of the vessel over a cardiac cycle using the following Green-Lagrange type
expression Eθθ = (At/AD − 1)/2, where At is the cross sectional area at any given
time t and AD is a reference diastolic value (note: using area effectively represents
radius squared as needed in the nonlinear measure of strain).
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Fig. 15.4 Pressure, flow, and wall strain in baseline, acute cardiac compensation, and early arterial
remodeling conditions. From Coogan et al. (2012)

15.3 Results

The baseline simulation provided a prototypical human aortic pressure of
120/80 mmHg, cardiac output of 5 L/min, and heart rate of 60 bpm. Associated
pressure, flow, and strain waveforms also had realistic shapes (see blue plots in
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Fig. 15.4). The P-Ao had the highest mean and peak strain, followed by the LCCA,
BA, LAD, and LMCA. Conversely, the highest mean wall shear stress and mean
circumferential stress were in the LMCA, followed by the BA, LAD, LCCA, and
P-Ao. The coronary arteries exhibited realistic shapes and averages in the flow, pres-
sure, and strain waveforms. In addition, equal regional blood flows were obtained in
the left and right cerebral hemispheres, with mean and pulse pressure lower in the
cerebral arteries than in other areas of the vasculature. These results are summarized
in Fig. 15.4 and Table 15.2.

Cardiac output would have decreased from 5 to 4.46 L/min after introducing the
75 % aortic coarctation if no changes were made in the lumped parameter heart
model. Increasing the maximum elastance of the heart from 1.25 to 1.52 mmHg/mL
maintained cardiac output at 5 L/min, but increased blood pressure in the entire
model (e.g., from 120/80 to ≈ 150/90 mmHg in the P-Ao). The pressure, flow, and
strain waveforms exhibited more oscillations in each vascular territory, possibly due
to the additional reflection site at the coarctation (Fig. 15.4). Similar to the baseline
condition simulation, the P-Ao had the highest mean and peak strain, followed by
the LCCA, BA, LAD, and LMCA, all with values higher than in baseline conditions.
Interestingly, while the % increase in MAP was approximately the same throughout
the model; the % increase in pulse pressure was greatest in the P-Ao, followed by
the LCCA, BA, LAD, and LMCA (Table 15.3). Whereas flow increased through
the LAD, LCCA, LMCA, and BA, it decreased in the P-Ao, thus indicating an
early redistribution of flow due to the increased resistance at the coarctation. This
redistribution also explained the smaller percentage increase in wall shear stress in
the P-Ao compared to the other vascular territories. Cardiac workload, as measured
by the area within the pressure-volume loop of the left ventricle, increased 17 %
from 8476 to 9890 mmHg/mL.

In the early arterial remodeling case, had the heart model not been modified,
the changes in arterial properties would have decreased cardiac output from 5 to
4.59 L/min. Additional cardiac compensation was thus introduced (e.g., increased
maximum elastance to 1.82 mmHg/mL) to maintain cardiac output at 5 L/min. This
change resulted in yet another increase in blood pressure throughout the model, with
aortic blood pressure reaching ≈ 180/80 mmHg. Additional oscillations were seen
in the pressure, flow, and strain waveforms compared with those found in the acute
cardiac compensation stage (Fig. 15.4). The P-Ao again had the highest mean and
peak strain, followed by the BA, LCCA, LMCA, and LAD. In this case, wall strain
returned to near baseline levels in the P-Ao, whereas strains in the LCCA and LAD
were approximately the same as for acute cardiac compensation despite the stiffen-
ing and thickening experienced by these arteries. Lastly, strains in the LMCA and
BA were higher than those seen with acute cardiac compensation due to the higher
mean and pulse pressures, but no changes in wall properties. The mean values of cir-
cumferential stress were between those for baseline and acute cardiac compensation
for the P-Ao, LCCA, and LAD, but higher in the basilar artery and LMCA. When
comparing acute cardiac compensation and early arterial remodeling, the % increase
in mean pressure was nearly identical throughout the entire model but the % increase
in pulse pressure differed regionally, see Table 15.3. This finding emphasizes that
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possible differential changes in pulse, not mean, pressure throughout the vasculature
might be responsible for different time courses of arterial remodeling. Flow through
the LAD, LCCA, LMCA, and BA increased, whereas flow through the P-Ao de-
creased further. Cardiac workload increased 12 % from 9890 to 11059 mmHg/mL.

15.4 Discussion

Findings over the past few decades have revealed that vessels within the elastic,
muscular arteries, arterioles, capillaries, venules or veins respond markedly differ-
ently to altered biomechanical stimuli. For example, whereas all arteries and ar-
terioles tend to thicken in response to hypertension, the elastic arteries, muscular
arteries, and arterioles tend to do so while increasing, maintaining, and decreasing
their caliber, respectively (Humphrey, 2002). More recently, it has become apparent
that differential remodeling responses can even occur within vessels of the same
general classification and within close proximity to one another. For example, the
ascending aorta (an elastic artery) appears to be the first central artery (i.e., of the
rest of the aorta and carotids) to manifest aging related changes in structure that af-
fect overall mechanical properties (Redheuil et al., 2010). Amongst the many effects
of aging on arteries, including increased endothelial dysfunction and advanced gly-
cation endproducts (Lakatta et al., 2009; Safar, 2010), it appears that fatigue-type
damage to elastic fibers is particularly important (Arribas et al., 2006; O’Rourke
and Hashimoto, 2007). Indeed, it may well be that the increased susceptibility of
the ascending aorta to an aging related loss of elastic fiber integrity may explain in
part the increased susceptibility of the same region to dilatation and dissection in
Marfan syndrome (Pearson et al., 2008), which results from a genetic mutation in
the fibrillin-1 gene (FBN1); fibrillin-1 appears to help stabilize elastic fibers, hence
mutations in FBN1 also result in decreased elastic fiber integrity.

Understanding better the spatio-temporal progression of vascular changes in both
adaptive and maladaptive G&R could impact clinical care significantly. For exam-
ple, being able to identify early indicators of vascular disease or subsequent risk
could allow earlier interventions, before the subsequent disease presents symp-
tomatically as heart attack, stroke, or other life threatening condition. A long-term
goal of this work is to build a new class of computational models that aid in under-
standing local and systemic effects of spatially and temporally progressive changes
in large portions of the vascular tree and attendant changes in the hemodynamics,
which in turn serve as strong mechanobiological stimuli for subsequent vascular
growth and remodeling.

Toward that end, here we presented a zeroth order model wherein progres-
sive changes in large segments of the vasculature were introduced based on lim-
ited observations in the literature to study possible consequences on the associated
hemodynamics. Specifically, motivated by animal models of increased blood pres-
sure/pulse pressure (Xu et al., 2000; Hu et al., 2008; Eberth et al., 2009; Hayenga,
2010), we studied the potential short-term effects of the abrupt creation of a 75 %
coarctation in the human descending thoracic aorta.



15 Hemodynamic Alterations Associated with Arterial Remodeling 215

Acknowledgements This work was supported by NIH grant HL-105297, the Benchmark Fel-
lowship in Congenital Cardiovascular Engineering and the Vera Moulton Wall Center at Stanford
University.

References

Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension.
Pharmacol Ther 111:771–791

Coogan JS, Humphrey JD, Figueroa CA (2012) Computational simulations of hemodynamic
changes within thoracic, coronary, and cerebral arteries following early wall remodeling in re-
sponse to distal aortic coarctation. Biomech Model Mechanobiol (in press)

Dart AM, Kingwell BA (2001) Pulse pressure—a review of mechanisms and clinical relevance.
J Am Coll Cardiol 37:975–984

Eberth JF, Gresham VC, Reddy AK, Popovic N, Wilson E, Humphrey JD (2009) Importance of
pulsatility in hypertensive carotid artery growth and remodeling. J Hypertens 27:2010–2021

Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery
growth and remodeling in response to altered pulsatility. Am J Physiol, Heart Circ Physiol
299:1875–1883

Figueroa CA, Vignon-Clementel IE, Jansen KC, Hughes TJ, Taylor CA (2006) A coupled mo-
mentum method for modeling blood flow in three-dimensional deformable arteries. Comput
Methods Appl Mech Eng 195:5685–5706

Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-
solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng
198:3583–3602

Gow BS, Hadfield CD (1979) The elasticity of canine and human coronary arteries with reference
to postmortem changes. Circ Res 45:588–594

Guyton AC, Hall JE (eds) (2006) Textbook of medical physiology. Saunders, Philadelphia
Hayashi K, Hnada H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behaviour

of human intracranial and extracranial arteries. J Biomech 13:175–184
Hayenga HN (2010) Mechanics of atherosclerosis, hypertension-induced growth, and arterial re-

modeling. Dissertation, Texas A&M University, TX
Hu J-J, Ambrus A, Fossum TW, Miller MW, Humphrey JD, Wilson E (2008) Time courses of

growth and remodeling of porcine aortic media during hypertension: a quantitative immunohis-
tochemical examination. J Histochem Cytochem 56:359–370

Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer,
New York

Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA
(2009a) On coupling a lumped parameter heart model and a three-dimensional finite element
aorta model. Ann Biomed Eng 37:2153–2169

Kim T, Hwang W, Kamm RD (2009b) Computational analysis of a cross-linked actin-like network.
Exp Mech 49:91–104

Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-
specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng
38:3195–3209

Lakatta EG, Wang M, Najjar SS (2009) Arterial aging and subclinical arterial disease are funda-
mentally intertwined at macroscopic and molecular levels. Med Clin North Am 93:583–604

Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2012) Exter-
nal tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol
11:1–18

Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries. Theoretical, experimental
and clinical principles, 5th edn. Arnold, London, pp 73–97, Ch. 4



216 C.A. Figueroa et al.

O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective.
J Am Coll Cardiol 50:1–13

Pearson GD, Devereux R, Loeys B, Maslen C, Milewicz D, Pyeritz R, Ramirez F, Rifkin D, Sakai
L, Svensson L, Wessels A, Van Eyk J, Dietz HC (National Heart, Lung, and Blood Institute),
(National Marfan Foundation Working Group) (2008) Report of the National Heart, Lung, and
Blood Institute and National Marfan Foundation Working Group on research in Marfan syn-
drome and related disorders. Circulation 118:785–791

Redheuil A, Yu W-C, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D,
Lima JAC (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of
vascular aging in humans. Hypertension 55:319–326

Safar ME (2000) Pulse pressure, arterial stiffness, and cardiovascular risk. Curr Opin Cardiol
15:258–263

Safar ME (2010) Arterial aging-hemodynamic changes and therapeutic options. Nat Rev Cardiol
7:442–449

Safar ME, Boudier HS (2005) Vascular development, pulse pressure, and the mechanisms of hy-
pertension. Hypertension 46:205–209

Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive
discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195:5634–5655

Taylor SH, Donald KW (1960) Circulatory studies at rest and during exercise in coarctation of the
aorta before and after operation. Br Heart J 22:117–139

Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions
for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput
Methods Appl Mech Eng 195:3776–3796

Wolinsky H (1972) Long-term effects of hypertension on the rat aortic wall and their relation to
concurrent aging changes. Morphological and chemical studies. Circ Res 30:301–309

Xu C, Zarins CK, Basiouny HS, Briggs WH, Reardon C, Glagov S (2000) Differential transmural
distribution of gene expression for collagen types I and III proximal to aortic coarctation in the
rabbit. J Vasc Res 37:170–182



Chapter 16
Patient-Specific Surgery Planning for the Fontan
Procedure

Christopher M. Haggerty, Lucia Mirabella, Maria Restrepo,
Diane A. de Zélicourt, Jarek Rossignac, Fotis Sotiropoulos, Thomas L. Spray,
Kirk R. Kanter, Mark A. Fogel, and Ajit P. Yoganathan
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between the geometric characteristics of the surgical construct and the resulting
patient-specific hemodynamics, which may relate to the numerous chronic morbidi-
ties seen in these patients. The combination of medical imaging, computer graphics
and computational fluid simulations has introduced a powerful new paradigm for
these procedures: providing the means to model the various options and evaluate
the resulting characteristics. This paper details these methodologies, their applica-
tion to planning interventions, and their contributions to generalizable knowledge
of Fontan hemodynamics.

16.1 Introduction

Single ventricle congenital heart defects are lethal if left untreated. The most com-
mon surgical intervention, known as the Fontan procedure, creates a right heart
bypass by routing systemic venous return to the pulmonary arteries (Fontan and
Baudet, 1971), creating the total cavopulmonary connection (TCPC) (de Leval et al.,
1988). Despite acceptable operative outcomes, significant long-term complications
are common, owing in part to the altered hemodynamics associated with Fontan
physiology (Mair et al., 2001). Such complications include arrhythmias, ventricular
dysfunction, exercise intolerance, protein-losing enteropathy, and pulmonary arteri-
ovenous malformations (PAVM) (Gersony and Gersony, 2003).

Since its introduction, the TCPC has been the focus of large body of research in
an effort to understand how the geometric characteristics of the surgical construct
impact the hemodynamics within the connection (de Leval et al., 1996; Sharma
et al., 1996; Migliavacca et al., 2003; de Zélicourt et al., 2005). With only one ven-
tricle providing the driving pressure for both the systemic and pulmonary circula-
tions, the general motivation and hypothesis behind such studies are that minimizing
the hemodynamic power loss across the connection will provide long-term benefits
for cardiovascular health. While many early studies relied on relatively simple mod-
els of idealized geometries, the current state-of-the-art employs patient-specific data
for both the anatomic and physiologic boundary conditions for computational fluid
solvers.

Through such advances, in conjunction with progress in computer science and
free-form shape editing, it is now possible to both design and evaluate patient-
specific TCPC models (Pekkan et al., 2008). In other words, these engineering tools
can be used for prospective surgical planning by modeling any number of possible
anatomic variations and characterizing their associated hemodynamics. The appli-
cations of such methods extend equally well to either a patient’s initial Fontan pro-
cedure or, as shown by Sundareswaran et al. (2009a) and de Zélicourt et al. (2011),
any subsequent surgical revisions, perhaps necessitated by deteriorating physiology
(i.e., Fontan failure). As such, these techniques represent a powerful new paradigm
for the approach to Fontan surgery and cardiothoracic surgery as a whole. The ob-
jective of this work is to detail the underlying methods and techniques upon which
surgical planning builds. Different examples of each method are provided through-
out to demonstrate their utility.
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Fig. 16.1 Examples of typically acquired CMR images in relation to a patient-specific TCPC
reconstruction (central panel). Left: magnitude and phase velocity images through the IVC. Right:
axial steady-state free precession (SSFP) anatomic image through the right and left pulmonary
arteries (RPA, LPA); SVC: superior vena cava

16.2 Methods and Results

The fundamental components of the current surgical planning procedure are the fol-
lowing: (i) cardiovascular magnetic resonance (CMR) image acquisition and recon-
struction; (ii) virtual surgery, (iii) computational fluid dynamic (CFD) simulations.

16.2.1 CMR Imaging and Image Processing

Medical imaging provides the patient-specific anatomy and boundary conditions
that inform the rest of the modeling. CMR is the preferred modality as it provides the
means to both image the anatomic structures and make quantitative measurements
of blood flow through variations in the sequence of magnetic field excitation. Fig-
ure 16.1 shows examples of these various image types in the context of the TCPC.
The right image is taken from an axial stack of steady-state free precession images
spanning the thorax. Here, the blood pool in the vessels produces a signal (with-
out the use of a contrast agent), facilitating anatomical reconstruction (Frakes et al.,
2005). The left set of images shows an instantaneous through-plane phase contrast
measurement in a slice through the inferior vena cava (IVC). By acquiring such
2D images through each of the TCPC vessels, the local velocity fields (inlet/outlet
boundary conditions) can be measured (Sundareswaran et al., 2009b).

These acquisitions provide the minimum information required to perform the
subsequent anatomic and fluid mechanical modeling; however, advances in CMR
sequence designs and image processing have provided additional means to directly
assess in vivo flow patterns (Sundareswaran et al., 2012). Specifically, phase contrast
sequences can be expanded to acquire three orthogonal components of the velocity
vectors on a single slice; furthermore, the vector values between the slices can be in-
terpolated using a novel divergence-free scheme. Therefore, a stack of such images
spanning the TCPC can provide detailed 4D hemodynamic information throughout
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the entire volume. As indicated by the recent work of Sundareswaran et al. (2012),
these methods of 4D in vivo flow visualization and quantification have significant
clinical potential. When acquired and analyzed over a larger series of patients, the
results can be used to provide insights on a more generalizable level, such as the
hemodynamic implications of different approaches to Fontan surgery (extra- vs.
intra-cardiac) or the accuracy of computational fluid solvers for analyzing the same
flow conditions. The increased availability of these 4D flow imaging sequences, and
the development of volumetric phase contrast techniques (Markl et al., 2011), will
make such analyses possible on a much broader scale in the near future.

Furthermore, for failing patients referred for surgical planning, these imaging
techniques can be an invaluable means to directly identify adverse hemodynamic
characteristics, as demonstrated in the following case study.

16.2.1.1 Patient-Specific Case Study

This was an eleven year old patient with bilateral superior vena cavae (SVC), in-
terrupted IVC and azygos vein continuation, and a previous Fontan connection. In
this rare and complex anatomy, the majority of inferior venous blood flow is carried
by an enlarged azygos vein, which connects to one of the two SVCs. The Fontan
baffle therefore carries only hepatic blood from the liver to the pulmonary arteries.
Hemodynamic analysis was necessitated by the presence of PAVM in the right lung:
arterial to venous shunts within the pulmonary vasculature that bypass the oxygenat-
ing alveolar beds, leading to progressive hypoxia. Studies suggest that this condi-
tion can develop because of a lack of hepatic blood flow, and a so-called ‘hepatic
factor’, to either or both lungs (Duncan and Desai, 2003). This strong and well-
characterized relationship between PAVM and the local TCPC hemodynamics has
made it the primary indication in the preliminary series (n= 15) of patient-specific
surgical planning; identifying connection designs that achieve a balanced hepatic
flow distribution (HFD) has been shown to be effective in alleviating the disease
state. Therefore, the objective of the analysis was to (i) confirm the unilateral dis-
tribution of hepatic flow from the liver, which is consistent with PAVM in the right
lung; (ii) determine the factors mediating such undesirable hemodynamics.

Figure 16.2 (left panel) provides a single slice example of the coronal 4D MRI
data acquired: the magnitude image is shown on top and the three orthogonal vector
components (anatomically: anterior-posterior, foot-head, left-right) are shown at the
bottom. The results from the volumetric interpolation are also shown (right panel)
as instantaneous velocity streamlines, shaded based on the vessel of origin (LSVC
flow omitted). The overlaid numbers report the time-averaged contribution of each
vessel to the total flow, as determined from analysis of the through-plane phase
contrast data.

From the reconstructed velocity field, it was appreciated that flow through the
left-sided hepatic venous baffle (HepV; blue streamlines) was both very low in mag-
nitude and heavily influenced by the momentum of the RSVC and Azygos (Azy)
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Fig. 16.2 Left panel: magnitude (top) and 3D phase contrast velocity (bottom) images for a single
slice and cardiac phase from the coronal stack acquired. The TCPC is outlined in the magnitude
image for reference. Right panel: TCPC reconstruction with instantaneous velocity streamlines
from the 4D interpolation. Overlaid numbers represent time-averaged percentage contribution for
each vessel to the total venous return. Azy-Azygos vein; HepV-Hepatic venous baffle

flows (red streamlines), which comprised 70 % of the total volume flow rate. Fur-
thermore, only 35 % of flow through the connection exited the RPA, meaning that
a significant portion of the RSVC + Azy flow had to traverse the connection to exit
the LPA. This analysis is consistent with the right-to-left path of some of the red
streamlines seen in Fig. 16.2, which influenced the hepatic streamlines and forced
a unilateral (left) hepatic distribution, consistent with right-sided PAVM. Based on
these observations, which were made possible by the ability to visualize the in vivo
flow structures, it is evident that a successful surgical revision of this connection to
address the PAVM must overcome: low momentum hepatic flow, high momentum
superior venous flows, and potentially unfavorable results of their direct interaction.

16.2.2 Virtual Surgery

The use of CMR anatomical data to produce patient-specific models for detailed
computational and/or experimental analyses has been a standard practice for the
past decade (Frakes et al., 2003; de Zélicourt et al., 2005). However, such techniques
can only measure and characterize the current physiology; to prospectively create
connections in a realistic way to explore ‘what if’ scenarios required additional de-
velopments from the field of computer vision. To this end, a virtual interface was
developed that allowed the user to import patient-specific anatomical reconstruc-
tions (e.g., the TCPC, single ventricle and atria, aorta, pulmonary veins) and mimic
surgical gestures in the placement and deformation of the IVC baffle using free-form
haptic devices (Pekkan et al., 2008). Thus, for a given patient anatomy: the size and
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Fig. 16.3 Left panel: example of reconstructed TCPC and surrounding anatomy to be imported
into virtual surgery interface for simulation of Fontan completion (IVC baffle to PA). Right panel:
virtual options designed for a patient with bilateral SVCs and distinct atrial connections for the
IVC and hepatic vein. Variations in IVC connection type (single baffle vs. Y-graft), baffle offset
with respect to the PAs, and means of unifying IVC and hepatic flows are demonstrated

shape of the PAs, the orientation of the SVC-PA junction, and the size and location
of surrounding anatomical structures, all potential options for the size and place-
ment of the IVC baffle can be explored and generated in advance of the surgical
procedure.

Figure 16.3 (left side) shows an example of the patient-specific reconstructions
that are frequently incorporated into the virtual surgery interface. It is critical that
surrounding structures, not simply the TCPC vessels, be included so as to visually
provide the constraints and the relevant landmarks that surgeons rely on in the oper-
ating room. Otherwise, designing the connection ‘in a vacuum’ may yield unrealistic
results. The right side of Fig. 16.3 provides a series of connections designed for a
single patient with bilateral SVCs and separate IVC and hepatic connections to the
atrium (prior to Fontan completion). These images serve to both demonstrate the
capabilities of the software and emphasize its utility. In such complex anatomical
configurations, it is possible to parametrically vary connection approach (top row
vs. bottom row), baffle placement (a vs. b vs. c) or angle, and other patient-specific
considerations: in this case, the means of joining the hepatic and IVC flows (a–d vs.
e–f). Given that the examples shown are all reasonable approximations of the way in
which any given surgeon might approach the connection of such a patient, the abil-
ity to both identify such options and, as detailed in the follow section, characterize
the hemodynamic consequences a priori is a valuable asset.
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Fig. 16.4 Registration of
TCPC surface mesh (light
gray) within regular,
background Cartesian grid

16.2.3 Computational Fluid Dynamics

The final critical component of the surgical planning tool set is the means to pre-
dict hemodynamic outcomes for all virtually designed connection options. For this,
computational fluid dynamics (CFD) solvers play a central role. The subsequent
sections provide descriptions of the important considerations inherent to such mod-
eling, followed by selected results from preliminary experiences.

16.2.3.1 Solver Description

It is important to note that any validated computational fluid solver can be used
to yield the needed results for these analyses; however, the program presently de-
scribed has the advantage of simplifying the process of generating the discretized
computational mesh. In cases where there are a large number of possible anatomic
solutions to evaluate, this advantage is non-trivial.

The solver is based on the sharp-interface immersed boundary approach of
Gilmanov and Sotiropoulos (2005). This method, rather than requiring a dense,
high quality mesh of volume elements throughout the computational domain, only
requires the boundary (i.e., the walls of the TCPC) to be discretized with two-
dimensional triangular elements. This surface is then immersed and registered
within a regular Cartesian grid (Fig. 16.4) to be segregated into fluid nodes (those
falling within the boundaries), ‘immersed boundary’ (IB) nodes (nodes within the
boundaries but immediately adjacent to the sharp-interface of the wall), and wall
nodes (those external to the boundary). The 3D, unsteady incompressible Navier-
Stokes equations must then only be solved on the internal fluid nodes (discretized in
a hybrid staggered/non-staggered layout), with the wall boundary conditions (typi-
cally, the no-slip condition), imposed iteratively on the IB nodes. As described by
de Zélicourt et al. (2009) this method is further simplified by recasting the problem
into an unstructured Cartesian grid to reduced the required memory overhead of the
discarded wall nodes.
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16.2.3.2 Boundary Conditions

From the CMR analysis, specifically the through-plane phase contrast images, time-
varying flow conditions across the cardiac cycle are known for all TCPC vessels of
interest. The standard practice of TCPC simulations with this IB solver is to impose
these flows (either as time-averaged or time-varying flat velocity profiles) at the
inlets and the prescribed flow split at the outlets of the computational domain. Sur-
gical modeling simulations present the additional challenge of physiologic changes
(perhaps both acute and chronic) in the rest of the circulatory system in response
to Fontan surgery. The work of Fogel et al. (1996) indicates that such changes have
an impact on the cardiac output and thus systemic venous flows; the impact on the
pulmonary vasculature and/or distribution has only be reported in a single patient
case (Pennati et al., 2011) demonstrating unanticipated variations. In other words,
simply imposing the measured flow conditions on the surgical model is unlikely to
sufficiently represent the post-operative state.

There are thus several strategies that have been employed to combat this chal-
lenge. First is the parametric variation of the outflow distributions imposed: if a
60 %/40 % RPA/LPA distribution was measured pre-operatively, the proposed op-
tions might also be evaluated at 40/60, 50/50, and 70/30 to simulate possible out-
flow distributions. The finite and physiologically bounded nature of this parameter
space facilitates these variations. The primary guide in making such determinations
is the presence and hypothesized evolution of PAVMs in the given patient. For ex-
ample, a presumed decrease in the number of malformations present would increase
the effective vascular resistance of the pulmonary beds, leading to a decrease in lo-
cal flow. Additionally, natural growth and development is likely to vary the relative
distribution of pulmonary flows over the life of the patient, so identifying solutions
that are robustly able to handle such variation is desirable.

Similarly, the inflow conditions can be selectively varied, both with respect to
bulk flow rates and relative vessel distributions. However, it is important to note
that the parameter space for the inlet values may not be as well constrained as the
outlets, both with respect to magnitude and distribution variations, particularly as
the number of inlet vessels increases (such as cases like in Fig. 16.2). Furthermore,
the factors that mediate such changes, either at the level of the ventricular output or
the relative compliances of the systemic vascular bed, are not as easy to define or
predict, and no data yet exist in the literature to set a precedent.

Significant research and ongoing development efforts are focused on the use of
multi-dimensional models to create a comprehensive view of the cardiovascular cir-
cuit (Laganà et al., 2005; Migliavacca et al., 2006; Kim et al., 2009). That is, the
three-dimensional CFD domain is coupled with 0-dimensional lumped parameter
models to capture the global hemodynamics. This multi-dimensional approach may
address some of the limitations of prospective modeling efforts by providing a more
rigorous means of determining the post-operative boundary conditions, particularly
for the inlets. Of course, validation of such models will be critical and, as the work
of Pennati et al. (2011) demonstrates, lumped parameter models alone may not be
sufficient for capturing the range of possible patient-specific responses.



16 Patient-Specific Surgery Planning for the Fontan Procedure 225

Fig. 16.5 Top row: a subset of the surgical models created for a failing patient with right lung
PAVM. Middle row: flow streaming results (hepatic flow represented by gold streamlines) under
equal pulmonary outflow conditions. Bottom row: quantitative flow distribution results as a per-
centage of hepatic flow exiting the right (R) or left (L) pulmonary artery. For option 3, the results
of two possible variations on the same topology are shown

16.2.3.3 Patient-Specific Case Study

Returning to the patient case detailed in Sect. 16.2.1.1, Fig. 16.5 details a subset
of the virtual surgical options created and their associated flow streaming results.
The investigated options were intended to assess the impact of: (i) repositioning
the hepatic baffle (option 1); (ii) merging the hepatic flow with another vessel to
promote mixing (option 2); or (iii) bifurcating the hepatic flow laterally to either
side of the connection (options 3 and 4). The gold streamlines in the middle row of
Fig. 16.5 show the hepatic flow streaming results for each of these options with the
quantitative results shown in the bottom row in terms of the percentage of hepatic
flow perfusing the right or left pulmonary artery.

The results reveal substantial sensitivity of the flow streaming characteristics to
the surgical baffle placement, underscoring both the significant challenge in surgi-
cally treating this particular patient, as well as the tremendous value of this modeling
work in providing such information to the clinician. For option 1, simply reposition-
ing the hepatic baffle closer to the RPA was shown to provide no benefit to hepatic-
RPA flow because of the relative dominance of the RSVC and Azygos flows (blue
streamlines seen impinging into the hepatic baffle). On the other hand, option 2
reached the opposite extreme in that all hepatic flow went to the RPA (by way of
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the azygos vein). While this outcome would be acutely positive in addressing the
right-sided PAVM, it is not a desirable long-term result as it presents a risk of future
left lung PAVM development. Two different HFD values are provided for option 3
because multiple Y-graft designs were created and evaluated, with the right branch
of the bifurcation being positioned slightly further to the right in one case (46 %)
than the other (0 %). This drastic difference in potential outcome made such an ap-
proach undesirable given the uncertainty in how precisely the surgeon can mimic
the virtual model in the operating room (i.e., the option was not robust with respect
to the exact detail of surgical implementation). Finally, option 4 took an alternative
approach to flow bifurcation by routing the right branch to the azygos vein (similar
to option 2) while maintaining the original hepatic connection to provide flow to
the left lung. Of the options tested, this design was predicted to yield the best out-
come (71 % HFD to the RPA with a 50/50 outflow split of the total flow imposed
as the boundary condition), presumably because it was successfully able to avoid
direct competition between the low momentum hepatic flow and high momentum
SVC/azygos flows. This ‘H-graft’ connection was ultimately selected for surgical
implementation and, although no post-operative image data are available, arterial
oxygen saturations were clinically seen to improve from 70 to 87 % four months
post-operatively, which is indicative of regression of the PAVM, as predicted.

16.3 Conclusions

Through multi-disciplinary research collaborations and technological develop-
ments, image-based computational surgery planning for the Fontan procedure has
become a reality. This ability greatly increases the resources available to clinicians
in patient-specific decision making by supplementing intuition and experience with
modeled predictions tailored to the specific case and intervention of interest. Obvi-
ously, these techniques have potential to extend far beyond Fontan surgery into the
broader realm of cardiovascular procedures, but to do so requires a similar under-
standing of the specific hemodynamic end points that mediate the desired clinical
outcome (as HFD relates to PAVM). Furthermore, surgical planning for the Fontan
is still in its preliminary stages and much work remains to be done, perhaps most im-
portantly, developing and validating the means of predicting what the post-operative
boundary conditions will be. Nevertheless, the novelty and value of these techniques
in translating engineering principles into actionable clinical tools are clear and the
present an exciting new paradigm for cardiothoracic modeling and interventions.
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Chapter 17
Finite Element Modeling of Solutes in Hydrated
Deformable Biological Tissues

Gerard A. Ateshian and Jeffrey A. Weiss

Abstract A broad range of biological processes result from a combination of pas-
sive (non-reactive) and active processes involving solvent and solutes, and the ability
to model such processes in a general continuum framework represents an important
tool for biomedical engineers and scientists. Yet, computational tools for modeling
solute transport in neutral and charged deformable media are not widely available.
In recent years, FEBio has been introduced as an open source finite element program
in the public domain (www.febio.org), whose purpose is to provide such computa-
tional tools for the analysis of biological mixtures consisting of a porous deformable
solid matrix and interstitial solvent and solutes. This article summarizes the back-
ground literature on this topic and describes the governing equations and some of
the features of mixture analyses in FEBio.

17.1 Introduction

Most biological tissues are highly hydrated and their interstitial fluid contains a
variety of inorganic and organic solutes. These solutes represent a broad range of
constituents, such as nutrients, waste products, cytokines, and the building blocks
of intracellular structures or extracellular matrix. At a fundamental level, most bi-
ological processes evolve from chemical reactions among various constituents of
cells and tissues, and these chemical reactions generally involve any number of so-
lutes. For example, cell and tissue metabolism, growth and degradation processes,
active transport of solutes, active muscle contraction, mechanobiology, etc., repre-
sent broad categories of phenomena that involve the interaction of solutes with cell
and tissue matrix constituents via reactive processes.
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Passive processes involving solutes may also contribute significantly to the me-
chanics of biological tissues. Solutes are often charged and their transport through
the tissue’s porous solid matrix may be influenced by electrical charges fixed to
this matrix. Depending on their concentration and charge, solutes may significantly
influence the osmotic pressure of the interstitial fluid. In turn, this osmotic pres-
sure can produce significant deformation of the tissue’s solid matrix, demonstrating
significant coupling of mechanochemical and mechanoelectrochemical phenomena.
Large solute concentration gradients may induce significant flow of the solvent, a
process known as osmosis. Charged solutes can also induce electrical potentials and
carry electrical currents, or be driven by externally applied potentials or currents.

A broad range of biological processes thus result from a combination of passive
(non-reactive) and active processes involving solvent and solutes, and the ability to
model such processes in a general continuum framework represents an important
tool for biomedical engineers and scientists. Yet, computational tools for modeling
solute transport in neutral and charged deformable media are not widely available.
In recent years, FEBio (Maas et al., 2012) has been introduced as an open source
finite element program in the public domain (www.febio.org), whose purpose is to
provide such computational tools for the analysis of biological mixtures consisting
of a porous deformable solid matrix and interstitial solvent and solutes. This arti-
cle summarizes the background literature on this topic and describes the governing
equations and some of the features of mixture analyses in FEBio.

17.1.1 Solutes in Porous Media with Non-reactive Processes

In biomechanics, the study of interstitial fluid transport in deformable porous solids
evolved from the mechanics of porous media, such as the consolidation theory de-
rived from the work of Fillunger (1913), von Terzaghi (1933) and Biot (1941), and
the biphasic theory of Mow et al. (1980), derived from the mixture theory of Trues-
dell (1960) and Bowen (1976). The biphasic theory has been applied to the study of
creep and stress-relaxation responses of biological tissues under testing configura-
tions such as confined (Mow et al., 1980) and unconfined (Armstrong et al., 1984;
Cohen et al., 1998) compression, indentation (Mow et al., 1989; Athanasiou, 1991),
and permeation (Lai and Mow, 1980) for the purpose of extracting material proper-
ties such as equilibrium modulus and hydraulic permeability. Biphasic contact anal-
yses have been used to analyze articular contact mechanics in diarthrodial joints
(Ateshian et al., 1994; Ateshian and Wang, 1995). Mixture and consolidation theo-
ries have also been used in the study of interstitial fluid transport in skin (Oomens
et al., 1987), bone (Cowin, 1999), and cardiovascular tissues (Kenyon, 1976; Yang
et al., 1994).

Electrokinetic phenomena were subsequently coupled with a porous media
framework in the theory of Frank and Grodzinsky (1987a), by incorporating an
equation relating the electric current density to gradients in electric potential and
fluid pressure. Their framework was used to analyze phenomena such as streaming
potentials and current-induced stresses in cartilage (Frank and Grodzinsky, 1987b).

http://www.febio.org
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In 1991, Lai and co-workers introduced their triphasic theory (Lai et al., 1991) to
model mechanoelectrochemical phenomena in biological tissues. This framework,
also based on mixture theory, explicitly modeled the charged solid matrix, neutral
interstitial solvent, and two interstitial monovalent counter-ions, thus representing
one of the earliest explicit models of solute transport in deformable porous media.
The triphasic theory has been applied to the study of a variety of biological tis-
sues, including articular cartilage, intervertebral disc, cornea, aorta, and brain. This
framework has served as the basis for other related theories of swelling and charged
solute transport in biological tissues (Huyghe and Janssen, 1997; Gu et al., 1998).

Mechanochemical phenomena associated with neutral solutes in porous de-
formable media may also be examined with mixture theory, as shown in the
biphasic-solute framework of Mauck et al. (2003), which explicitly coupled the
frictional interactions of the solute with the tissue’s solid matrix and interstitial sol-
vent. When adapted to semi-permeable membrane transport, this theory reproduced
(Ateshian et al., 2006) the classical framework of Kedem and Katchalsky (1958).
Biphasic-solute theory has been used to model the response of gels (Albro et al.,
2007) and cells (Albro et al., 2009a) subjected to a change in their osmotic envi-
ronment. This framework has also demonstrated that dynamic loading of a porous
tissue may pump solute from a surrounding bath (Albro et al., 2008, 2010, 2011).

17.1.2 Finite Element Models for Solutes in Porous Media

Finite element implementations of charged porous media have been presented by
several authors, which are applicable to infinitesimal deformations (Simon et al.,
1996; Frijns et al., 1997; Sun et al., 1999; Kaasschieter et al., 2003; Yao and Gu,
2007; Magnier et al., 2009) and finite deformations (van Loon et al., 2003). Other
investigators have used the analogy between thermal diffusion and solute transport
to simulate a triphasic medium under infinitesimal deformation (Wu and Herzog,
2002), or have constrained their finite element analyses to modeling the equilib-
rium response to Donnan osmotic swelling under finite deformation (Azeloglu et al.,
2008; Ateshian et al., 2009). The neutral transport of solutes in porous deformable
media was addressed by Sengers et al. (2004), who formulated a finite element im-
plementation of a biphasic (uncharged) medium, undergoing finite deformation,
with solute transport and biosynthesis. Steck et al. (2003) and Zhang and Szeri
(2005) used a commercial finite element code to combine mass (solute) transport
with a poroelastic analysis using a two-stage solution procedure.

Recently, we developed a finite element implementation of neutral solute trans-
port in deformable porous media that incorporated a number of important phenom-
ena at the interface of mechanics and physical chemistry (Ateshian et al., 2011):
(i) Solvent and neutral solute transport in deformable anisotropic media, includ-
ing strain-induced alterations in permeability and diffusivity, and strain-induced
anisotropy (Ateshian and Weiss, 2010). (ii) Momentum exchange between solutes
and the solid matrix, which is responsible for increased hindrance to transport
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(Deen, 1987; Mackie and Meares, 1955) as well as enhanced convection under
dynamic loading (Mauck et al., 2003; Albro et al., 2008). (iii) Changes in tissue
and cell volume due to alterations in their osmotic environment (Albro et al. 2007,
2009a). (iv) Partial solute exclusion from pore spaces due to steric volume and short-
range electrostatic effects (Albro et al., 2009a), which may depend on solid matrix
deformation and solute concentration (Lazzara and Deen, 2004; Albro et al., 2009b).
(v) Deviation of the physicochemical responses of solutions from ideal behavior
with varying solute concentration and solid matrix deformation. These features were
incorporated into FEBio, under a framework described as a biphasic-solute material.
This framework has now been extended to also include triphasic materials (Lai et al.,
1991), as described below.

17.2 Mixture Models for Solutes in Porous Media

Mixture theory is able to describe the interaction of any number of solid of fluid
constituents. Solutes may be modeled as fluid constituents in a mixture that also
contains a porous solid and a solvent; when sufficiently dilute, the volume fraction
of solutes may be neglected relative to that of the solid and solvent. In mixture the-
ory, the axioms of mass balance and momentum balance must be satisfied for each
constituent. Interactions among the constituents are represented by supply terms
that represent exchanges of mass or momentum. In the mass balance equation, mass
supplies occur only when chemical reactions take place among the mixture con-
stituents which produce mass exchanges between reactants and products (Eringen
and Ingram, 1965). In the linear momentum balance equation, momentum supplies
may represent a combination of passive mechanisms, such as friction between con-
stituents, and active mechanisms such as momentum supply from motors (Bowen,
1976; Ateshian et al., 2010).

In most applications of mixture theory for biological tissues, it has been as-
sumed that each constituent of the mixture is intrinsically incompressible (Mow
et al., 1980; Bowen, 1980; Lai et al., 1991). This assumption implies that the true
density of each constituent is invariant in space and time, though heterogeneous
mixtures may exhibit a spatial variation in mixture density. A saturated mixture of
intrinsically incompressible constituents does not change in volume when subjected
to a hydrostatic pressure. However, when a mixture includes a porous solid matrix, a
material region defined on this solid may change in volume as fluid enters or leaves
the pore space, depending on loading and boundary conditions.

One of the challenges of presenting mixture models is the choice of notation and
the variety of ways that dependent variables describing the state of the mixture may
be represented. Part of this challenge arises from the fact that mixture theory com-
bines the classical fields of fluid mechanics, solid mechanics and chemistry. Each of
these fields may have a preferred representation for the functions of state. Another
challenge arises from the fact that intensive variables may be normalized in differ-
ent, but equally valid ways when dealing with a mixture of multiple constituents.
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For example, consider a mixture consisting of any number of constituents α. The
true density of a specific constituent, ραT , represents the mass dmα of α, per volume
dV α of α, in an elemental region dV ; thus, ραT = dmα/dV α . The true density is an
intrinsic property of constituent α. In a saturated mixture, the volume of the ele-
mental region is the sum of the constituent volumes, dV =∑α dV α . Therefore, it is
also possible to define the apparent density of constituent α as ρα = dmα/dV . The
apparent density represents a measure of the relative content of α in the mixture.
An alternative measure of relative content is the volume fraction ϕα = dV α/dV .
This measure is most useful when constituents are intrinsically incompressible, in
which case ρα = ϕαραT ; ρα and ϕα may be used interchangeably since ραT is invari-
ant in that case. In a saturated mixture, the volume fractions satisfy

∑
α ϕ

α = 1; if
the volume fraction of solutes is negligible, this relation reduces to ϕs + ϕw ≈ 1,
where α = s represents the porous solid matrix and α = w represents the sol-
vent. Another common measure of relative content, normally used for solutes, is
the molar concentration cα , defined as the number of moles dnα in the elemen-
tal region, per volume of the solution; thus, cα = dnα/(dV − dV s). Since the mo-
lar mass of α is defined as Mα = dmα/dnα (an invariant property), it follows that
ρα = (1 − ϕs)Mαcα ≈ ϕwMαcα . Many classical relations from chemistry employ
cα as measure of solute content; some applications in bone mechanics employ ρs to
describe trabecular bone density; and applications in cartilage mechanics use ϕs in
the formulation of various constitutive relations. Other measures of relative content
are also commonly used (e.g., molality, molar fraction, or mass fraction for solute
content); thus, users of mixture theory must be comfortable switching among these
various measures, depending on the needs of a particular analysis.

The motion of each constituent α of a mixture is given by χα(Xα, t), where
χα represents the position at time t of a material point initially located at Xα . The
velocity of α is given by vα = ∂χα/∂t . In biological tissues, the mixture includes
a solid matrix and the boundaries of the tissue are normally defined on that solid.
Therefore, the solid may be viewed as a special constituent that may serve as a
reference for the motion of the others. The mass flux of constituent α relative to
the solid is given by mα = ρα(vα − vs); note here that the mass flux is defined as
the rate of mass of α crossing a unit area of the mixture normal to the direction
of vα − vs . The volumetric flux of constituent α relative to the solid is given by
wα = ϕα(vα−vs); and the molar flux is jα = (1−ϕs)cα(vα−vs)≈ ϕwcα(vα−vs).
These fluxes are related by mα = ραTwα =Mαjα .

17.2.1 Mass Balance

In the absence of chemical reactions, the differential statement of the axiom of mass
balance for constituent α may be given by

∂ρα

∂t
+ div

(
ραvα

)= 0. (17.1)
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There are a number of alternative ways to write this equation, some of which may
be more advantageous for interpreting and applying this axiom in mixture analyses.
These alternative representations employ the deformation gradient for constituent
α, given by Fα = ∂χα/∂Xα . For example, when using the material time derivative
in the spatial frame following constituent α, the axiom of mass balance reduces to

Dα

Dt

(
Jαρα

)= 0, (17.2)

where Jα = det Fα and Dα(·)/Dt ≡ ∂(·)/∂t + grad(·) · vα . This relation clearly
shows that Jαρα remains invariant in the absence of mass supply to constituent α.
For example, in the case of the solid matrix, this relation reproduces the classical
statement J sρs = ρsr , where ρsr is the solid density in the reference configuration
(when χα = Xα and J s = 1). This means that the mass balance for the solid may
also be expressed as ϕs = ϕsr /J s , where ϕsr is the solid volume fraction in the refer-
ence state.

When using motion relative to the solid constituent, the mass balance equation
for any constituent may also be written as

Ds

Dt

(
J sρα

)+ J s div mα = 0. (17.3)

This relation is useful in finite element modeling of mixtures, when the mesh is
defined on the solid matrix.

When the mixture constituents are intrinsically incompressible, the relation ρα =
ϕαραT may be substituted into Eq. (17.1) and the invariant ραT may be canceled out
from the resulting expression. Taking the sum over all constituents and using the
mixture saturation condition,

∑
α ϕ

α = 1, produces a mass balance relation for the
mixture,

div

(
vs +

∑

α

wα
)

= 0. (17.4)

When the solute volume fraction is negligible, the volume flux of solutes is neg-
ligible in comparison to that of the solvent, thus the net volume flux of interstitial
fluid (solvent + solutes) relative to the solid, w ≡∑α wα , reduces to the flux of the
solvent, w ≈ ww .

In a finite element modeling framework for intrinsically incompressible con-
stituents, the mass balance equations that need to be enforced are Eq. (17.3) for
each of the solutes, Eq. (17.4) for the mixture, and Eq. (17.2) applied to the solid.
The intrinsic incompressibility constraint eliminates the need to explicitly enforce
the balance of mass for the solvent.

17.2.2 Electroneutrality

When mixture constituents carry an electric charge, a charge number zα may be
associated with each constituent, which represents the number of charges per mole
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of that constituent. If it is assumed that there can be no charge accumulation in
the mixture, this electroneutrality condition must be enforced with the following
constraint:

∑

α

zαcα = 0. (17.5)

Multiplying the mass balance in Eq. (17.3) with zα/Mα , taking the sum over
all constituents and making use of the above electroneutrality constraint produces
div
∑
α z
αjα = 0, or equivalently,

div Ie = 0, (17.6)

where Ie = Fc∑α z
αjα is the electric current density (the net rate of flow of electric

charge per unit area of the mixture) and Fc is Faraday’s constant. Thus, the elec-
troneutrality condition produces a constraint on the current density vector field in
the mixture.

In most biological mixtures, the solvent is water and thus neutral (zw = 0). The
charge on the solid matrix is described as a net fixed charge density cF ≡ zscs . Thus,
for solids, cF may be used in lieu of a molar concentration and associated charge
number.

17.2.3 Momentum Balance

Mixture models of biological tissues typically neglect the effects of the viscosity of
fluid constituents in comparison to frictional interactions between constituents. The
validity of this modeling assumption may be easily tested by performing compar-
isons of the orders of magnitude of these various terms, given representative values
of the relevant material properties. For example, in a solid-fluid mixture of artic-
ular cartilage, the non-dimensional number representing the ratio of internal fluid
friction (viscosity) to fluid-solid frictional drag is δ = η/h2K (Hou et al., 1989),
where η is the fluid viscosity, h is a characteristic length, and K is the solid-fluid
frictional drag coefficient. In articular cartilage, η ≈ 10−3 Pa · s, h ≈ 10−3 m, and
K ≈ 1015 N · s/m4, thus δ ≈ 10−12, showing a very negligible relative contribution
of fluid viscosity.

With negligible viscosity, the Cauchy stress tensor σ in a mixture of intrinsically
incompressible constituents only includes two contributions: The hydrostatic pres-
sure p in the fluid, and the Cauchy stress σ s in the solid, thus σ = −pI +σ s , where
I is the identity tensor. Under quasi-static conditions, and in the absence of external
body forces, the momentum balance for the mixture is given by

divσ = −gradp+ divσ s = 0. (17.7)

A constitutive relation is needed to relate σ s to the state variables adopted for a
particular analysis, such as solid matrix strain.
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For the fluid constituents of a mixture, the driving forces are the gradients in the
constituents’ mechanoelectrochemical potential, μ̃α . This potential represents the
sum of mechanical, electrical and chemical contributions, thus

μ̃α = p

ραT
+ zα

Mα
Fcψ +μα. (17.8)

In this expression, ψ is the electric potential in the mixture and μα is the chemical
potential of constituent α. The mechanical contribution is evidently proportional to
the fluid pressure p; the electrical contribution is proportional to ψ , but reduces to
zero for a neutral constituent (zα = 0). The chemical potential represents the rate
of change of the mixture free energy density with changes in the relative mass con-
tent (apparent density) of constituent α. A constitutive relation is needed for μα to
relate it to the state variables in an analysis, such as solute concentrations. In the mo-
mentum equation for fluids, the gradient in the mechanoelectrochemical potential is
balanced by the frictional interactions between constituents, inertia forces, external
body forces, and the momentum supply from active transport (Bowen, 1976; Lai
et al., 1991; Ateshian et al., 2010).

When the volume fraction of solutes is negligible, solute-solute frictional inter-
actions may be neglected relative to solute-solvent, solute-solid, and solvent-solid
interactions. Similarly, the mechanical potential of solutes in μ̃α becomes negligi-
ble. Under quasi-static conditions, in the absence of external body forces and active
transport mechanisms, the resulting linear momentum balance equations may be
inverted to produces the following expressions for the fluxes,

mw = −k̃ ·
[(
ρwT
)2 grad μ̃w + (ρwT )

2

ρw

∑

α �=s,w

dα

dα0
· ρα grad μ̃α

]
, (17.9)

mα = −ραM
α

Rθ
dα · grad μ̃α + ρα

ρw

dα

dα0
· mw , α �= s,w, (17.10)

where dα is the diffusivity tensor of solute α in the mixture (solid and fluid), dα0 is
the isotropic diffusivity of the solute in free solution (fluid), R is the universal gas
constant, θ is the absolute temperature, and k̃ is the hydraulic permeability tensor
of the porous solid to the interstitial fluid (solvent and solutes), given by

k̃ =
[

k−1 + Rθ

ϕw

∑

α �=s,w

cα

dα0

(
I − dα

dα0

)]−1

, (17.11)

where k is the hydraulic permeability tensor of the porous solid to the interstitial
solvent. Constitutive relations must be provided for k, dα , and dα0 , which relate
them to state variables such as solid matrix strain and suitable measures of solute
concentrations.

In a finite element modeling framework, it is necessary to define nodal variables
(degrees of freedom) that are continuous across the boundaries of elements. In a
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mixture framework, variables that satisfy such continuity requirements are the solid
displacement u and the mechanoelectrochemical potentials μ̃α of the solvent and
solutes. In general, neither fluid pressure p nor solute concentrations cα are contin-
uous across boundaries (Lai et al., 1991). However, since μ̃α’s are less practical to
use as nodal variables, it is possible to define related nodal variables that represent
effective measures of fluid pressure,

p̃ = p−Rθ Φ
∑

α �=s,w
cα, (17.12)

and solute concentration,

c̃α = cα

κ̃α
, α �= s,w. (17.13)

These equivalent nodal variables are obtained by making use of standard constitutive
relations from physical chemistry, for the chemical potential μα of the solvent and
solute in dilute solutions (Sun et al., 1999; Yao and Gu, 2007; Ateshian et al., 2011).
In these expressions, Φ is the osmotic coefficient, a non-dimensional property that
describes the deviation of the osmotic pressure from the ideal behavior known as
van’t Hoff’s law (McNaught and Wilkinson, 1997); κ̃α is the partition coefficient
of solute α relative to an ideal solution. This partition coefficient may be further
described by

κ̃α = κα

γ α
exp

(
−z

αFcψ

Rθ

)
, (17.14)

where the non-dimensional property κα is the solubility of solute α in the mixture,
representing the fraction of the interstitial pore volume which is accessible to the
solute (Mauck et al., 2003); and γ α is the activity coefficient of solute α, a non-
dimensional property that describes the deviation of the solute chemical potential
from the ideal behavior of a very dilute solution (Tinoco et al., 1995). The ratio
κ̂α ≡ κα/γ α may be interpreted as the effective solubility of solute α (Ateshian
et al., 2011). Constitutive relations must be provided for Φ and κ̂α . For a neutral
solute (zα = 0), the partition coefficient reduces to the effective solubility. For ideal
mixtures in the context of physical chemistry, Φ = 1 and κ̂α = 1.

Physically, since Rθ Φ
∑
α �=s,w cα is the osmotic (chemical) contribution to the

fluid pressure, p̃ may be interpreted as that part of the total (mechanochemical)
fluid pressure which does not result from osmotic effects; thus, it is the mechanical
contribution to p. Similarly, the effective solute concentration c̃α represents the true
contribution of the molar solute content to its electrochemical potential. When using
p̃ and c̃α in lieu of mechanoelectrochemical potentials, the mass fluxes given in
Eqs. (17.9), (17.10) may be represented by the equivalent fluid volume flux,

w = −k̃ ·
(

grad p̃+Rθ
∑

β �=s,w

κ̃β

d
β

0

dβ · grad c̃β
)
, (17.15)
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and solute molar fluxes,

jα = κ̃αdα ·
(

−ϕw grad c̃α + c̃α

dα0
w
)
, α �= s,w. (17.16)

These expressions are relatively compact, yet they describe a broad set of phenom-
ena, including permeation (fluid flux driven by a pressure gradient), osmosis (fluid
flux driven by solute concentration gradients), electroosmosis (fluid flux driven by
an electric potential gradient), diffusion (solute flux driven by a concentration gra-
dient), electrophoresis (solute flux driven by an electric potential gradient), and
barophoresis (solute flux driven by a fluid pressure gradient).

17.3 Finite Element Formulation

The virtual work integral for a mixture of intrinsically incompressible constituents
combines the balance of momentum for the mixture, the balance of mass for the
mixture, and the balance of mass for each of the solutes. In addition, for charged
mixtures, the current condition of Eq. (17.6) may be enforced as a penalty constraint
on each solute mass balance equation:

δW = −
∫

b

δv · divσdv

−
∫

b

δp̃ div
(
vs + w

)
dv

−
∑

α �=s,w

∫

b

δc̃α
[

1

J s

Ds

Dt

(
J sϕwκ̃αc̃α

)+ div jα +
∑

β �=s,w
zβ div jβ

]
dv,

(17.17)

where δv is the virtual velocity of the solid, δp̃ is the virtual effective fluid pres-
sure, and δc̃α is the virtual molar energy of solute α. Here, b represents the mixture
domain in the spatial frame and dv is an elemental volume in b. Applying the di-
vergence theorem, δW may be split into internal and external contributions to the
virtual work, δW = δWint − δWext, where

δWint =
∫

b

σ : δDdv+
∫

b

(
w · grad δp̃− δp̃

J s

DsJ s

Dt

)
dv

+
∑

α �=s,w

∫

b

[
jα · grad δc̃α − δc̃α

J s

Ds

Dt

(
J sϕwκ̃αc̃α

)]
dv

+
∑

α �=s,w

∫

b

grad δc̃α ·
∑

β �=s,w
zβ jβdv, (17.18)
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δWext =
∫

∂b

[
δv · t + δp̃wn +

∑

α

δc̃α
(
jαn +

∑

β �=s,w
zβjβn

)]
da. (17.19)

In these expressions, δD = (grad δv + gradT δv)/2, ∂b is the boundary of b, and
da is an elemental area on ∂b. In this finite element formulation, u, p̃ and c̃α are
used as nodal variables, and essential boundary conditions may be prescribed on
these variables. Natural boundary conditions are prescribed to the mixture traction,
t = σ · n, normal fluid flux, wn = w · n, and normal solute flux, jαn = jα · n, where
n is the outward unit normal to ∂b. To solve the system δW = 0 for nodal values of
u, p̃ and c̃α , it is necessary to linearize these equations (Bonet and Wood, 1997), as
shown for example in Ateshian et al. (2011).

If the mixture is charged, it is also necessary to solve for the electric potential ψ
using the electroneutrality condition in Eq. (17.5), which may be rewritten as

cF +
∑

β �=s,w
zβ κ̃β c̃β = 0. (17.20)

In the special case of a triphasic mixture, where solutes consist of two counter-ions
(α = +,−), this equation may be solved in closed form to produce

ψ = 1

zα

Rθ

Fc
ln

(
2zακ̂αc̃α

−cF ±√(cF )2 + 4(zα)2(κ̂+c̃+)(κ̂−c̃−)

)
, α = +,−. (17.21)

Only the positive root is valid in the argument of the logarithm function.
This finite element formulation has been implemented in the public domain, open

source finite element code FEBio (www.febio.org). To date, FEBio allows model-
ing of a biphasic-solute mixture consisting of a neutral porous solid, solvent, and a
single neutral solute; and a triphasic mixture consisting of a charged porous solid,
solvent, and two counter-ions (solutes with opposite charges).

17.4 Illustrations of Fundamental Phenomena

17.4.1 Permeation and Barophoresis

A permeation experiment may consist of prescribing a fluid pressure p0 upstream
of a tissue sample of thickness h, while maintaining the downstream side under
atmospheric conditions. Thus, the tissue sample is exposed to an upstream bath with
ambient pressure p∗

u = p0, and a downstream bath with ambient pressure p∗
d = 0,

where the asterisk denotes variables in the bath (Fig. 17.1). Consider that the fluid
contains a single, neutral solute, whose concentration c0 is the same in the upstream
and downstream baths, thus, c∗u = c∗d = c0. To set up this problem in a finite element
analysis, it is necessary to identify the boundary conditions on the upstream and
downstream faces of the tissue sample. Since pressure boundary conditions must
be prescribed on the effective fluid pressure p̃ instead of p, Eq. (17.12) is used

http://www.febio.org
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Fig. 17.1 Permeation analysis for a biphasic-solute tissue. The finite element mesh is shown at
left. For this analysis, h = 1 mm, p0 = 0.2 MPa, c0 = 1 mM. The solid matrix is neo-Hookean
with Young’s modulus = 1 MPa and Poisson’s ratio = 0; the initial solid volume fraction
is ϕsr = 0.2. The hydraulic permeability is 10−3 mm4/N · s; the solute diffusivity in free so-
lution is d0 = 10−3 mm2/s, and the diffusivity in the tissue is d = 0.5 × 10−3 mm2/s. At
steady-state, the fluid flux and solute flux are uniform and equal to 0.22 × 10−3 mm/s and
0.11 × 10−3 nmol/mm2 · s, respectively

to determine that the effective fluid pressure in the upstream bath is p̃∗
u = p0 −

RθΦ∗c0, and that in the downstream bath is p̃∗
d = −RθΦ∗c0. Since p̃ is a variable

that remains continuous across boundaries, we may thus prescribe p̃u = p̃∗
u on the

upstream face, and p̃d = p̃∗
d on the downstream face. Similarly, for the solute, the

boundary conditions must be prescribed on the effective concentration c̃ instead
of c. This is done using Eq. (17.13), thus c̃u = c̃∗u = c0, and c̃d = c̃∗d = c0, where
we have made use of the fact that κ̃∗ = 1 for a neutral solute in a fluid bath under
ideal conditions (κ̂∗ = 1 and ψ∗ = 0). Finally, it is also necessary to enforce traction
and displacement boundary conditions: On the unconstrained upstream face, tu =
−p0n, whereas on the constrained downstream face, the axial displacement is zero.

Initial conditions also need to be prescribed for this problem. It may be assumed
initially that the upstream and downstream bath pressures are both atmospheric, thus
p̃u = p̃d = 0. According to Eqs. (17.15), (17.16), equilibrium conditions (zero fluid
and solute flux, and zero solid velocity) are achieved when there is no gradient in
p̃ and c̃. Thus, based on the boundary conditions and the requirement for a uniform
value of p̃ at equilibrium, it may be assumed initially that p̃ = 0 throughout the
tissue. By a similar argument, it may be assumed initially that c̃= c0 throughout the
tissue.

Upon the application of the fluid pressure upstream, a transient response ensues,
whereby the tissue slowly compacts as interstitial fluid begins to exude from its
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downstream side (Fig. 17.1, t = 10 s); as time progresses, fluid flux on the upstream
side increases until, at steady-state, the fluid flux becomes uniform throughout the
tissue thickness (t = 103 s). In FEBio, it is possible to request a full transient anal-
ysis, or to restrict the analysis only to the steady-state response. At steady-state, as
expected, it is found that the fluid flux w along the thickness of the sample is di-
rected from the high pressure fluid bath to the atmospheric fluid bath. This is the
classical phenomenon known as permeation. Furthermore, despite the fact that the
solute concentration returns to a uniform distribution at steady-state, the fluid pres-
sure gradient continues to drives the solute from upstream to downstream, because
of the frictional interactions between solvent and solute. This mechanism is generi-
cally known as the convective effect of the solvent on the solute; more specifically
in this problem, this phenomenon may be described as barophoresis.

17.4.2 Diffusion and Osmosis

Diffusion represents the flux of solute in response to a gradient in its concentration.
Consider a canonical problem of diffusion of a neutral solute across a tissue sample,
from an upstream bath at a concentration c0 to a downstream bath with negligible
concentration. Both upstream and downstream baths are maintained at zero ambient
pressure. Therefore, upstream boundary conditions are c̃u = c0, p̃u = −Rθc0 (under
ideal conditions, Φ∗ = 1), tu = 0, and downstream conditions are c̃d = 0, p̃d = 0,
and zero axial displacement. Initial conditions may assume that the upstream bath
also starts out with zero solute concentration, so that c̃ = 0 and p̃ = 0 throughout
the tissue sample initially.

Upon raising the solute concentration to c0 upstream, a transient response ensues
whereby the solute begins to diffuse into the tissue on the upstream side. Over time,
the solute concentration within the tissue evolves into a linear profile, producing
a uniform solute flux across the entire thickness (Fig. 17.2). Simultaneously, it is
observed that the solvent flows from the downstream side toward upstream (from the
low concentration bath to the high concentration bath). This mechanism is known
as osmosis.

17.4.3 Electrophoresis and Electroosmosis

To examine the phenomena of electrophoresis and electroosmosis, consider a tissue
described by a triphasic material, where the ions represent Na+ (with zNa = +1)
and Cl− (zCl = −1) and the solid matrix is negatively charged. As in the above ex-
amples, the tissue is located between an upstream and a downstream bath. In these
baths, due to electroneutrality and the absence of a charged solid matrix, the anion
and cation concentrations must be the same. The salt concentrations in the upstream
and downstream baths may also be taken to be the same, to prevent diffusion and
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Fig. 17.2 Diffusion analysis for a biphasic-solute tissue. The finite element mesh is shown at
left. For this analysis, h = 1 mm, the ambient pressure is zero, and c0 = 100 mM on the left
(upstream face), and zero on the right (downstream) face. The remaining properties are the same
as in Fig. 17.1. These conditions produce solute flux (diffusion) from left to right and solvent flux
(osmosis) from right to left. At steady-state, the fluid flux and solute flux are uniform and equal to
−0.11 × 10−3 mm/s and 37 × 10−3 nmol/mm2 · s, respectively

osmosis, thus cNa∗
u = cCl∗

u = c0 and cNa∗
d = cCl∗

d = c0. To produce electrophore-
sis and electroosmosis, let the electric potential in the upstream bath be ψ∗

u = ψ0,
whereas the downstream bath is maintained at a zero potential, ψ∗

d = 0, thereby cre-
ating an electric potential gradient across the tissue thickness. Also let the pressure
equal ambient conditions in both baths, p∗

u = 0 and p∗
d = 0, to prevent permeation

and barophoresis. All of these conditions may be combined to produce the follow-
ing boundary conditions: On the upstream side, p̃u = −2Rθc0, c̃Na

u = c0e
Fcψ0/Rθ ,

c̃Cl
u = c0e

−Fcψ0/Rθ , and on the downstream side, p̃d = −2Rθc0, c̃Na
d = c0, c̃Cl

d = c0
(assumingΦ∗ = 1). For initial conditions, it may be assumed that the electric poten-
tial upstream is initially zero, thus p̃ = −2Rθc0, c̃Na = c0, and c̃Cl = c0 throughout
the tissue initially.

When performing finite element analyses with charged tissues, it is important to
remember that a Donnan osmotic pressure arises between the tissue and its external
bathing environment, due to the charged solute matrix. Since electroneutrality must
be satisfied in the tissue and the bath, the tissue concentrations of anion and cation
differ by the amount of the fixed charge, whereas the bath concentrations of an-
ions and cations are the same; to satisfy both conditions simultaneously, while also
satisfying continuity of solvent and solute mechanoelectrochemical potential, an im-
balance in osmolarity and electric potential must exist between tissue and bath. This
imbalance is responsible for the Donnan osmotic pressure and Donnan potential
between the tissue and its surrounding environment. The Donnan pressure swells
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Fig. 17.3 Electrophoresis analysis for a triphasic tissue with monovalent counterions. The finite
element mesh is shown at left, in its reference configuration. For this analysis, h = 1 mm, the
ambient pressure is zero on both sides, the ambient concentration of cation and anion is 150 mM
on both sides, and ψ0 = 10 mV on the left (upstream face), and zero on the right (downstream)
face. The fixed charge density in the reference configuration is cFr = −200 mEq/L. The solution
at steady state (4 panels at right) demonstrates that the tissue is in a swollen state (swelling to
the left) due to the Donnan osmotic pressure in the interstitial fluid (0.114 MPa). The cation flux
(electrophoresis), current density (electric conduction), and fluid flux (electroosmosis) are directed
from left to right, whereas the anion flux (electrophoresis) is in the opposite direction. The electric
potential ψ inside the tissue differs from the externally applied potential ψ∗ by the value of the
Donnan potential

the tissue and is resisted by the solid matrix stress. Therefore, under traction-free
swelling conditions, triphasic materials are not generally in a stress-free state, unless
the fixed charge density is zero, or the external bath has an osmolarity far exceeding
the tissue fixed charge density (theoretically, if the bath osmolarity is infinite).

In a finite element analysis, the initial state of the solid is stress-free (this is the
reference state). Therefore, to achieve a traction-free swelling condition prior to
subsequent loading, it is necessary to first perform an analysis whereby the fixed
charged density is changed from zero to the desired value (or the bath osmolarity
is decreased from a very high value down to the desired ambient conditions). Once
this free-swelling equilibrium has been achieved, the desired electric potential dif-
ference may be applied between upstream and downstream baths. At steady-state,
the following phenomena are observed (Fig. 17.3): (i) The positively charged cation
flows from the higher to the lower electric potential, whereas the negatively charged
anion flows in the opposite direction. This solute flux under the action of an exter-
nally applied electric potential is called electrophoresis. The cation and anion fluxes
do not cancel out, as a net transport of charge is observed from the upstream to the
downstream bath; this net flow is manifested by a non-zero current density Ie , flow-
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ing from upstream to downstream. (ii) At the boundaries with the baths, the electric
potential ψ inside the tissue is not the same as the bath potential ψ∗, because of
the fixed charge density in the tissue. The tissue electric conductivity may be eval-
uated from the ratio of |Ie| and the prescribed potential gradient, (ψ∗

u − ψ∗
d )/h,

where h is the tissue thickness. (iii) The solvent also flows from the upstream to
the downstream bath, due to the net frictional drag exerted on it by the solutes. This
phenomenon is known as electroosmosis.

17.5 Conclusion

Finite element modeling of mechanoelectrochemical phenomena in deformable
porous biological tissues and cells is a useful tool in the toolbox of biomedical engi-
neers. The examples presented in this chapter provide only the most basic features
of biphasic-solute and triphasic materials in FEBio. More elaborate analyses may be
performed which combine any number of driving mechanisms for deformation and
flow. The ability to describe transport of neutral or charged solutes within a porous
deformable solid matrix, using a formulation that couples these mechanisms, makes
it possible to address phenomena commonly observed in biology and physiology.
FEBio provides this tool in the public domain, allowing users to exchange models
and ideas in a common framework. Being open source, FEBio also allows users to
extend its current capabilities, by adding new constitutive relations or extending ex-
isting frameworks to include additional mechanisms. Current efforts are under way
to extend the existing biphasic-solute and triphasic frameworks to a more general
multiphasic module, where any number of neutral or charged solutes may be mod-
eled. Furthermore, the modeling of chemical reactions among any of the solid and
solute constituents will be incorporated in future extensions of the code. These ex-
tensions will make it possible to model chemical kinetics and growth mechanics in
deformable porous media, further extending the modeling capabilities into the realm
of biology and physiology.
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Chapter 18
Reformulation of Mixture Theory-Based
Poroelasticity for Interstitial Tissue Growth

Stephen C. Cowin

Abstract This contribution presents an alternative approach to mixture theory-
based poroelasticity by transferring some poroelastic concepts developed by Biot
to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity
average tensor, which Biot called the micro-macro velocity average tensor. This ve-
locity average tensor is assumed here to depend upon the pore structure fabric. The
formulation of mixture theory presented is directed toward the modeling of inter-
stitial growth, that is to say changing mass and changing density of an organism.
Growth is slow and accelerations are neglected in the applications. The velocity of
a solid constituent is employed as the main reference velocity in preference to the
mean velocity concept from the original formulation of mixture theory. The standard
development of statements of the conservation principles and entropy inequality em-
ployed in mixture theory are easily modified to account for these kinematic changes
and to allow for supplies of mass, momentum and energy to each constituent and to
the mixture as a whole. The objective is to establish a basis for the development of
constitutive equations for growth of tissues.

18.1 Introduction

The purpose of this contribution is to present an alternative approach to mixture
theory-based poroelasticity by transferring some poroelastic concepts developed by
Biot (1935, 1941, 1956a,b, 1962a,b) and Biot and Willis (1957) to mixture the-
ory. The long-term objective of this study is facilitating the mixture modeling of
biological growth phenomena. Since mixture theory was first presented by Trues-
dell (1957) its relationship to the previously established Biot’s poroelasticity theory
(Biot, 1941) has been a subject of discussion. In this contribution the overlap in the
two theories is increased. In several important ways the mixture model of saturated
porous media is more general than the Biot (1941) model of poroelasticity; Bowen
(1980, 1982) recovered the model of Biot (1941) from the mixture theory approach.
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Fig. 18.1 A cartoon that illustrates the thesis of this contribution; the cartoon is a paradigm for
the change in conceptual basis suggested for mixture theory based poroelasticity. The house being
transported represents a significant structure of mixture theory being moved to a representative
volume element viewpoint described in Biot (1941)

The most important way in which the mixture model is more general than the Biot
poroelastic model is that the mixture model admits the possibility of following many
solid and fluid constituents and it admits the possibility of having chemical reactions
occurring. Thus some constituents might vanish and others might be created. The
contrast with Biot theory is that Biot theory considers the single solid and fluid com-
ponents to be chemically inert. In several important ways the poroelastic model of
Biot (1941, 1956a,b, 1962a,b) and Biot and Willis (1957) offers better conceptual
mechanisms for relating the elements of the physical situation to their mathematical
representations, a principal example being a hierarchical structure that permits the
distinction between the matrix, the drained and the undrained elastic constants. It
is the objective of this contribution to transfer the selected Biot conceptual mecha-
nisms to a mixture theory formulation of poroelasticity, thus combining the advan-
tages of Biot’s ideas with mixture theory.

The cartoon in Fig. 18.1 illustrates the thesis of this contribution; the cartoon is
a paradigm for the change in conceptual basis suggested for mixture-theory based
poroelasticity. The house being transported represents the significant structure of
mixture theory. The foundation from which the house was removed represents the
Eulerian point considered in the analysis of mixtures of fluids (Fig. 18.2). The foun-
dation to which the house is moved represents the representative volume element
(REV) employed in Biot’s (1941) development of poroelasticity (Fig. 18.3). When
a house is moved from one location to another the plumbing must be disengaged
at the first location and reengaged at the new location. That is indeed the case for
this change in conceptual basis suggested for mixture-theory based poroelasticity.
However this change of plumbing for the theory is dealt with in a relatively simple
and simplifying way as will be described.
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Fig. 18.2 The foundation
from which the house was
removed represents the
Eulerian point considered in
the analysis of mixtures of
fluids

18.2 Mixture Theory

A mixture is a material with two or more ingredients, the particles of which are
separable, independent, and uncompounded with each other. If the distinct phases of
a mixture retain their identity, the mixture is said to be immiscible; if they lose their
identity, the mixture is said to be miscible. The constituents include a porous solid
of possibly a number of constituents, as well as solvents and solutes. The theory
of mixtures is based on diffusion models and stems from a fluid mechanics and
thermodynamics tradition and goes back to the century before last. Fick (1855) and
Stefan (1871) suggested (Truesdell and Toupin, 1960, Sects. 158 and 295) that each
place in a fixed spatial frame of reference might be occupied by several different
particles, one for each constituent of the mixture (Fig. 18.2). Truesdell and Toupin
(1960) assigned to each constituent of a mixture in motion a density, a body force
density, a partial stress, a partial internal energy density, a partial heat flux and a
partial heat supply density.

Truesdell and Toupin (1960) postulated equations of balance of mass, momentum
and energy for each constituent and derived the necessary and sufficient conditions
that the balance of mass, momentum and energy for the mixture be satisfied. Bowen
(1967) summarized the formative years of this subject. A readable history of the
subject and its applications in the period 1957–1975 is given by Atkin and Craine
(1976a,b). De Boer (1996, 2000) has presented more up-to-date histories. Of key
importance in the development of the mixture theories is the application by Bowen
(1967, 1976, 1980, 1982) of a thermodynamically-based analytical approach devel-
oped by Coleman and Noll (1963) to restrict the form of constitutive equations.

There have been many notable contributions of the mixture theory approach to
the modeling of tissue growth that are not cited here, as this is not a review of that
broad subject. Others have employed some of the modifications of mixture theory
employed here, but one would have to trace each modification through the literature
to determine which authors first employed it. Such a review is not the objective of
this contribution.

18.3 Poroelasticity

Poroelasticity is a theory that models the interaction of deformation and fluid flow
in a fluid-saturated porous, elastic medium. The deformation of the medium influ-
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Fig. 18.3 The foundation to
which the house is moved
represents the representative
volume element (RVE)
employed in Biot’s (1941)
development of poroelasticity

ences the flow of the fluid and vice versa. The theory was proposed and developed
by Biot (1941, 1956a,b, 1962a,b) and Biot and Willis (1957) as a theoretical exten-
sion of soil consolidation models for calculating the settlement of structures placed
on fluid-saturated porous soils. The theory has been widely applied to geotechnical
problems beyond soil consolidation, most notably problems in rock mechanics and
wave propagation in porous media. There are thousands of papers, and a singular,
but notable, book on the subject is that of Coussy (2004). The governing equations
for anisotropic poroelasticity for quasi-static and dynamic poroelasticity were de-
veloped and extended to include the dependence of the constitutive relations upon a
pore structure fabric tensor F as well as the porosity (Cowin 1985, 2004a; Cardoso
and Cowin, 2011; Cowin and Cardoso, 2011).

18.4 The Alternative Formulation of Mixture Theory-Based
Poroelasticity

In this alternative formulation of mixture theory-based poroelasticity, the Eulerian
point used in mixture theory as a model of the continuum point (Fig. 18.2) is re-
placed by a larger RVE introduced by Biot as the model of the continuum point
(Fig. 18.3). Further, Biot’s concept of the RVE level representation of the fluid ve-
locity as a function of the pore fluid velocities in the sub RVE pores is employed.
Finally, the mixture theory concept of the mean velocity of the solid and fluid con-
stituents is replaced by reference to the velocity of the solid and the diffusion veloc-
ities relative to a solid constituent.

This formulation of mixture theory is directed toward the modeling of biological
growth, that is to say changing mass and changing density of an organism. Growth
is slow, accelerationless from a mechanics viewpoint and therefore, although formu-
las for the acceleration are obtained (Cowin and Cardoso, 2012), accelerations will
be neglected in the applications. The formulas for acceleration are obtained so that
what is neglected is specially specified. The presentation of the theory of mixtures in
Cowin and Cardoso (2012) is further restricted to the situation in which all the mix-
ture constituents are compressible, immiscible, reacting (chemical reactions) and all
are at the same temperature. It is assumed that terms proportional to the square of
diffusion velocities will be negligible. Bowen (1976), see page 27 therein, considers
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the case where they are not negligible. Interstitial flow is slow through a particular
tissue because it is 8 liters per day or 5.55 cubic centimeters per minute for the en-
tire human body (Levick, 1995; Cowin, 2011). The exact velocity ranges of this flow
are unknown but measurements in limb tissue have suggested they are on the order
of 0.1 to 2 microns per second (0.03 to 0.57 feet per day) (Levick, 1995; Cowin,
2011). Deformation-driven interstitial flows, such as those that occur in bone tissue,
are greater, on the order of tens of microns per second. No tissue has a mass al-
ways composed of the same proteins and fluids; they are always changing, however
slowly. Thus tissues form open systems.

For the growth of soft tissue it is reasonable to assume that the blood supply to
the tissue will deliver the proteins and the supply of energy. If these proteins carried
by the blood are not employed or deployed by the liver in their first pass through the
tissue in need they will likely be transported across the blood vessel walls to pass
into the interstitial fluid of another tissue. The interstitial fluid will then pass through
the tissue to a collecting lymph node and then pass into the lymphatic system. The
lymphatic system collects the lymph from all the tissues, concentrates the proteins
and passes them back into the circulatory system at the left subclavian vein before
it enters the heart. The tissue building proteins are then recirculated again and again
before they find deployment in a tissue or are passed out of the body (Levick, 1995).
The coupling of these related transport problems to growth problems is not difficult
due to very slow transport velocities involved.

It is assumed that the stress tensor associated with each constituent is symmetric
and that there are no action-at-a-distance couples, as there would be, for example, if
the material contained electric dipoles and was subjected to an electrical field. The
restrictions associated with each of these assumptions may be removed; they are
imposed to restrict this presentation to an economical path for the development of a
tissue-appropriate model for normal physiological growth phenomena.

18.4.1 Open and Closed System Models at the Constituent and
Mixture Levels

Open systems permit the transport of mass, momentum and energy across their
boundaries, closed systems do not. Bertalanffy (1950) pointed out that ‘From the
physical point of view the characteristic state of the living organism is that of an
open system’. Thus an open system model is desired to model growth. In traditional
mixture theory (Truesdell and Toupin, 1960), each constituent is considered to be
an open system, but the entire mixture is considered to be a closed system. In the
Cowin and Cardoso (2012) development, the mixture is also considered to be an
open system as a mechanism by which growth may be modeled. This means that
the statements of the balance principles for the mixture may have supply terms as
well as the statements of the balance principles for each constituent.

An alternative attractive approach to achieving an open system by allowing sup-
ply terms in the balance equations for the mixture is to, instead, allow the mixture to
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be viewed as existing within a reservoir that is capable of supplying more mass of
any constituent or being capable of resorbing some of the mass of any constituent.
This was the approach taken in Cowin and Hegedus (1976) in the development of a
growth model for bone tissue.

18.4.2 The Biot RVE for Poroelasticity and the Mixture Theory
Approach

A key difference between the Biot effective parameter approach and the Eulerian
point approach to mixture poroelastic models is the averaging process employed.
The effective parameter approach illustrated in Fig. 18.3 is a schematic version of
the viewpoint described in Biot (1941). He wrote, ‘Consider a small cubic element
of soil, its sides being parallel with the coordinate axes. This element is taken to be
large enough compared to the size of the pores so that it may be treated as homoge-
neous, and at the same time small enough, compared to the scale of the macroscopic
phenomena in which we are interested, so that it may be considered as infinitesimal
in the mathematical treatment.’ This prose written by Biot appears to be the first
statement of what later came to be called the representative volume element (RVE)
concept. In Biot’s proposal a small but finite volume of the porous medium is used
as a model for a continuum point in the development of constitutive equations for
the fluid-infiltrated porous solid. These constitutive equations are then assumed to
be valid at a point in the continuum. The length or size of the RVE is assumed to
be many times larger than the length scale of the microstructure of the material,
say the size of a pore. The length of the RVE is the length of the material struc-
ture over which the material microstructure is averaged or ‘homogenized’ in the
process of forming a continuum model. The homogenization approach is illustrated
in Fig. 18.3 by the dashed lines from the four corners of the RVE to the continuum
point. The material parameters or constants associated with the solid phase are more
numerous and difficult to evaluate compared to those associated with the fluid phase.
The Biot-effective modulus approach provides a better understanding of the effec-
tive solid mechanical parameters like effective solid moduli than does the mixture
theory approach.

The averaging process for the mixture approach is illustrated in Fig. 18.2. This
is an Eulerian approach in that the flux of the various species toward and away
from a spatial point is considered. The spatial point is shown in Fig. 18.2 and the
vectors represent the velocities of various species passing through the referenced
spatial point. In neither approach is a length scale specified, but an averaging length
is implied in the Lagrangian material, Biot-effective modulus, approach because
a finite material volume is employed as the domain to be averaged over. On the
other hand the mixture theory is Eulerian and considers a fixed spatial point through
which different materials pass and, as with the Biot approach, no length scale is
suggested. It is difficult to imagine a length scale for the mixture theory approach
other than one based on the mean free paths associated with the constituents. The
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significantly different averaging lengths in the two approaches reflect the difference
in the averaging methods.

18.4.3 The Larger RVE Hypothesis

The larger RVE for mixture theory-based poroelasticity is considered to have a
length or size many times larger than the length scale of the pores (Fig. 18.3). It
is assumed that the pores represent a lesser length scale that is sub RVE. The length
of the RVE is the length of the material structure over which the porous microstruc-
ture is averaged or ‘homogenized’ in the process of forming a continuum model.
The RVE is of sufficient size so that three sets of elastic constants (the drained and
the undrained and those of the matrix material) may be represented as well as the
porosity and the pore structure fabric tensor F. Pore structure fabric is a quantitative
stereological measure of the degree of structural anisotropy in the pore architecture
of a porous medium (Hilliard, 1967; Whitehouse, 1974; Whitehouse and Dyson,
1974; Oda, 1976; Cowin and Satake, 1978; Oda et al., 1980, 1985; Satake, 1982;
Kanatani, 1983; Harrigan and Mann, 1984; Kanatani, 1984a,b, 1985; Odgaard 1997,
2001; Odgaard et al., 1997; Matsuura et al., 2008). The governing equations for
anisotropic poroelasticity were developed and extended to include the dependence
of the constitutive relations upon pore structure fabric (Cowin 1985, 2004a). Dy-
namic poroelasticity was extended by Cardoso and Cowin (2011) and Cowin and
Cardoso (2011) to include the pore structure fabric tensor as a variable. The pore
structure of the RVE is assumed to be characterized by porosity and a pore structure
fabric tensor F.

18.5 The Hypothesis for Representing Microflows at the RVE
Level

Let vm(a/s) denote the fluid sub RVE velocity of constituent ‘a’ relative to the selected
(solid) constituent ‘s.’ This is a velocity that exists only in the small pores of the
solid matrix. The general hypothesis for representing microflows at the RVE level
is that a homogenization process over the RVE may be constructed to determine
the RVE level fluid velocity v(a/s) from the fluid sub RVE velocity vm(a/s). This
homogenization process will depend on the pore structure fabric tensor F of the
RVE since the process is accomplished over the porous structure of the RVE.

The precise homogenization process employed is likely to depend upon the par-
ticular problem being studied so no general mathematical formulation is proposed
here. For this presentation the Biot hypothesis (1956a) for representing sub RVE
flows at the RVE scale is adopted:

v(a/s) = J · vm(a/s), (18.1)
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where J is the subRVE-RVE velocity average tensor; Biot (1962a) uses the term
micro-macro velocity average tensor. J plays the role of a density distribution func-
tion that relates the relative micro-solid-fluid velocity to its RVE level bulk volume
average v(a/s). The subRVE-RVE velocity average tensor J is related to the pore
structure fabric tensor A by (Cowin and Cardoso, 2011, Eq. (62))

J = Q · (j1I + j2A + j3A2), (18.2)

where j1, j2 and j3 are functions of I , II and III, where II and III are the second and
third invariants of A; the first invariant is normalized to one. Q represents a rotation
tensor associated with the transformation between the principal axes of F and the
reference coordinate system used for J. In earlier work the governing equations for
quasi-static (Cowin, 2004a) and dynamic (Cowin and Cardoso, 2011) linear theories
of anisotropic poroelastic materials were developed and extended to include the
dependence of the constitutive relations upon pore structure fabric (Cowin, 1985,
2004b). It is assumed there that any mixture theory growth model based on the
present formulation will assume that all the constitutive equations will depend upon
pore structure fabric. However, in the present contribution, the pore structure fabric
tensor will only appear in Eq. (18.2) above for the purpose of explaining the nature
of the subRVE-RVE velocity average tensor J. It was noted above that J functions
like a density distribution function; that density distribution is determined by the
pore structure fabric tensor A. It is possible that growth models will, in the future,
include fabric tensors associated with particular constituents (e.g., collagen) as well
as pore structure fabric.

18.6 The Mean Velocity of a Mixture

In the mixture theory it is customary to define the mean velocity of the mixture as
the density-weighted average of the velocities of all the constituents,

v = 1

ρ

N∑

a=1

ρ(a)v(a). (18.3)

There are two reasons why the concept of mean velocity is not employed in a sig-
nificant way in this development. The first is its dubious physical significance when
averaging over solid and fluid velocity components. The second is that its meaning
as the mean velocity (18.3) is compromised when some of the RVE fluid velocities
v(a/s) are determined from the sub RVE fluid velocities vm(a/s) by a homogeniza-
tion process. Given that the computation of the mean velocity employs RVE fluid
velocities v(a/s), which are determined from a homogenization process, renders the
dubious physical significance of the mean velocity (18.3) more obscure. Here the
velocity of the solid is used for reference velocity and the mean velocity of the mix-
ture is generally avoided as has been assumed by a number of earlier mixture theory
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authors, although we have not seen in previous publications all the consequences of
that assumption that we record here. This option results in some complicated for-
mulas for the acceleration of constituents, but the biological growth processes of
interest are accelerationless.

18.7 Summary

This contribution presented an alternative approach to mixture theory-based poroe-
lasticity by transferring some poroelastic concepts developed by Biot to mixture
theory. These concepts were a larger RVE and the subRVE-RVE velocity average
tensor, which was assumed to depend upon the pore structure fabric. The formula-
tion of mixture theory presented, and detailed in Cowin and Cardoso (2012), was
directed toward the modeling of interstitial growth, that is to say changing mass and
changing density of an organism by the addition of mass to each constituent and
to the total mixture. Traditional mixture theory considers constituents to be open
systems, but the entire mixture is a closed system. In this development the mixture
was also considered to be an open system as one possible mechanism for model-
ing growth. Growth is slow and accelerations are neglected in the applications. The
standard kinematics of mixture theory was modified to account for the fact that pore
fluid velocities generally occur at a scale below those of the solid velocities in poroe-
lastic materials. Use of the velocity of the main solid constituent is employed as the
main reference velocity in preference to the mean velocity concept from traditional
mixture theory. The standard development of statements of the conservation prin-
ciples and entropy inequality employed in mixture theory were modified in Cowin
and Cardoso (2012) to account for these kinematic changes and to allow for supplies
of mass, momentum and energy to each constituent and to the mixture as a whole.
The basis for the development of constitutive equations for growth of tissues was
thus partially established. There still remain the problems of specifying the supply
terms for each constituent and for the mixture as a whole as well as the specifica-
tion of how the building materials to be deposited are transported to their point of
deposition.
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Chapter 19
Constitutive and Computational Aspects
in Tumor Therapies of Multiphasic Brain Tissue

Wolfgang Ehlers and Arndt Wagner

Abstract The present contribution concerns the constitutive modeling and the nu-
merical simulation of brain tissue with a specific focus on tumor therapies carried
out by so-called convection-enhanced delivery processes (CED). The multiphasic
modeling approach is based on the Theory of Porous Media (TPM) and proceeds
from a volumetric homogenization of the underlying micro-structure. The brain tis-
sue model exhibits an elastic solid skeleton (cells and vascular walls), which is per-
fused by two liquids, the blood and the interstitial fluid. The latter is treated as
a mixture of two components, namely, a liquid solvent and a dissolved therapeu-
tic solute. The inhomogeneous and anisotropic nature of the white-matter tracts is
considered by a spatial diversification of the permeability tensors, obtained from
Diffusion Tensor Imaging (DTI). Numerically, the strongly coupled solid-liquid-
transport problem is simultaneously approximated in all primary unknowns (uppc-
formulation) using mixed finite elements and solved in a monolithic manner with an
implicit time-integration scheme. Within this procedure, numerical examples of the
CED under two- and three-dimensional conditions are discussed.

19.1 Introduction and Treatment Options for Brain Tumors

After a medical detection of a brain tumor, the conventional treatment proceeds
from a highly invasive removal of the tumor in combination with radiotherapy or
chemotherapy. However, the healing success is still low, because malignant tumors
are strongly resistant and regrow frequently. Therefore, the development of alterna-
tive and effective treatments is subject of current research.

Any suitable therapeutic agent reaching the malignant brain tumor can have the
desired therapeutic outcome. Basically, there are several methods for the application
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Fig. 19.1 Left: Sketch of limitations and characteristics of an intra-vascular medication. Right:
Comparison of extra-vascular medications in the dispersion of therapeutics after the same time

of pharmaceuticals. Within chemotherapies, the most commonly used method is the
intravenous application of drugs leading to a more or less regular distribution by the
blood circulation. Within this method, only a part of the therapeutic agent reaches
the target area. However, in case of brain tumors, the drugs have to pass the blood-
brain barrier (BBB) to enter the tissue. Unfortunately, this is not possible for most
of the commonly used therapeutic macro-molecules in brain-tumor therapies, cf.
Fig. 19.1 (left).

A possible solution of the delivery problem is a direct insertion of therapeutic
agents into the extra-vascular space in order to bypass the BBB. Herein, two differ-
ent basic approaches can be distinguished:

• Implantation of release systems:
– providing a constant concentration at the point of implantation
– driving the distribution by diffusion as a result of concentration gradients

• Infusion of interstitial fluid with dissolved therapeutic agents:
– distributing therapeutic agents by both concentration and pressure gradients
– resulting in an extensive spreading of the therapeutic particles, see Fig. 19.1

(right)

The latter more promising approach represents the focus of this contribution and is
generally known as convection-enhanced drug delivery (CED) of therapeutics. This
pioneering method was introduced by Bobo et al. (1994) and clinically established
by researchers from the National Institutes of Health (NIH). Through a small hole
in the skull, a catheter is directly placed in the brain tissue, while the therapeutic
solution is infused by an external medical pump. With this method, large target areas
can be supplied. However, the prediction of the distribution profile is challenging
since the distribution is affected by the complex nature of living brain tissue. Based
on these remarks, the goal of this contribution is the continuum-mechanical and
computational simulation of living brain tissue with application to the description of
the CED process. We hope that a practising surgeon can be pre-operatively assisted
in his decisions by our and comparable numerical studies.
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19.2 Continuum-Mechanical Modeling of Human Brain Tissue

The continuum-mechanical description of human brain tissue was always an im-
portant task of biomechanical studies. In the context of the hydrocephalus problem,
Hakim and Adams (1965) presented an early hypothesis that the occurring effects
can only be described by the interplay of several brain-tissue components. The first
satisfying mathematical approach, assuming the brain as a porous medium contain-
ing a viscous fluid in the extracellular space (ECS), was carried out two decades
later by Nagashima et al. (1987) including a simple numerical simulation of a two-
dimensional (2D) slice of the brain. Since then, various singlephasic and biphasic
brain-tissue models (see, e.g., Taylor and Miller, 2004; Franceschini et al., 2006;
Dutta-Roy et al., 2008) have been developed treating the hydrocephalus problem.
For the specific application to CED, models have been proposed by, e.g., Smith and
Humphrey (2007), Chen and Sarntinoranont (2007) or Linninger et al. (2008). How-
ever, there are still open questions concerning the coupling effects, the description
of the deformable porous tissue and its entire pore content. To contribute to the solu-
tion of these questions, the present approach is based on the comprehensive Theory
of Porous Media (TPM) in order to describe the multiphasic nature of brain tissue
including the brain solid, the interstitial fluid and the vascular system.

19.2.1 Multiphasic Modeling Based on the TPM

The TPM is a macroscopic continuum theory, which is based on the Theory of Mix-
tures (TM), cf. Bowen (1976), combined with the concept of volume fractions. For
more details on its foundation, cf., e.g., Ehlers (2002, 2009) and citations therein.

19.2.1.1 Basic Anatomy of the Human Brain Tissue

To obtain an overview of the modeling problem, the underlying structure of human
brain tissue is briefly summarized. Situated in the rigid scull, the brain is surrounded
by the cerebrospinal fluid (CSF), which is also found in the inner ventricles of the
brain hemispheres. The intracellular space (ICS) of the nervous brain tissue consists
of grey matter at the cerebral cortex (neural cell bodies) and of white-matter tracts
(myelinated axons) in the inner regions. The ECS of the nervous brain tissue is filled
with mobile interstitial fluid. Furthermore, the entire brain is crossed by a highly
branched blood-vessel system.

19.2.1.2 Constituents, Volume Fractions and Densities

In order to enable the numerical simulation of the CED process, a biphasic four-
constituent model is presented in accordance to Wagner and Ehlers (2010). The
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Fig. 19.2 Representative elementary volume (REV) with exemplarily displayed micro-structure
of brain tissue and macroscopic multiphasic-multicomponent modeling approach

homogenization procedure of a representative brain-tissue sample is shown in
Fig. 19.2, where a deformable solid skeleton ϕS consisting of tissue cells and vas-
cular walls with hyperelastic properties is perfused by two mobile but separated
liquid phases, the blood plasma ϕB and the overall interstitial fluid ϕI . The over-
all interstitial fluid ϕI is treated as a real chemical mixture of two components, the
liquid solvent ϕL and the dissolved therapeutic solute ϕD . This leads to a ternary
model ϕ =⋃α ϕα with α = {S,B, I } with four components initiated by ϕS , ϕB and
ϕI =⋃β ϕβ with β = {L,D}.

In order to account for the local compositions of the homogenized tissue, scalar
volume fractions nα = dvα/dv are introduced for the immiscible parts of the aggre-
gate. Therein, dvα and dv are the local volume elements of ϕα and of the overall
aggregate ϕ. Assuming fully saturated conditions, this leads to the well-known sat-
uration condition

∑

α

nα = nS + nB + nI = 1. (19.1)

With the aid of the volume fractions, two different densities can be distinguished
relating the local masses dmα either to dvα or to dv. These are the effective or
realistic density ραR and the partial density ρα = nαραR :

ραR = dmα/dvα, ρα = dmα/dv. (19.2)

Moreover, the sum of the partial densities yields the aggregate density ρ =∑α ρ
α .

To include the interstitial fluid mixture ϕI into the overall description, elements
of the TM have to be embedded in the TPM (Ehlers, 2009). Following this, the
amount of matter of ϕL and ϕD within ϕI has to be expressed by molar concentra-
tions cβm and molar massesMβ

m. For this purpose, the partial densities ρβ have to be
related to the mixture volume of ϕI . In conclusion, this leads to

ρβ = nIρβI with ρβI = cβmMβ
m, (19.3)

where ρβI is the partial density of ϕβ within ϕI . Finally, the effective density of the

interstitial fluid mixture with respect to the overall aggregate yields ρIR =∑β ρ
β
I .
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19.2.1.3 Kinematics of Superimposed Continua

Based on the fundamental assumption of superimposed continua, the TPM proceeds
from the idea that any spatial point x of the current configuration is simultaneously
occupied by material points of all constituents. However, each constituent follows
its own motion such that x = χα(Xα, t) with Xα as the reference position of the
respective material point of ϕα and time t . This leads to the individual velocity fields
′
xα= dχα(Xα, t)/dt . The solid matrix is described by a Lagrangian formulation via
the solid displacement uS = x − XS as the primary kinematic variable, while the
pore-flow of blood and interstitial proceeds from a modified Eulerian setting via the

seepage velocities wξ = ′
xξ − ′

xS with ξ = {B, I }. Assuming the velocities of the

liquid solvent and the interstitial fluid to be approximately identical,
′
xL≈ ′

xI with

nL ≈ nI , the pore-diffusion velocity of the therapeutic solute ϕD reads dDI = ′
xD

− ′
xI . This includes the possibility to define a seepage-like velocity wD = dDI +wI .

19.2.1.4 Balance Relations

The set of governing equations for the numerical treatment within the finite ele-
ment method consists of the following balance equations, which are obtained from
partial mass and momentum balances (e.g., Ehlers, 2009). Therein, materially in-
compressible constituents, no mass exchange between the constituents, quasi-static
conditions and a uniform temperature are assumed.

• Concentration balance of the therapeutic agent ϕD :

0 = (nI cDm
)′
S

+ nI cDm div(uS)′S + div
(
nI cDmwD

)
(19.4)

• Volume balance of the overall interstitial fluid:

0 = (nI )′
S

+ div
(
nIwI

)+ nI div(uS)′S (19.5)

• Volume balance of the blood plasma ϕB :

0 = (nB)′
S

+ div
(
nBwB

)+ nB div(uS)′S (19.6)

• Momentum balance of the overall aggregate ϕ =⋃α ϕα :

0 = div T + ρg. (19.7)

Therein, T = ∑α Tα is the overall Cauchy stress, while bα = g characterizes
uniform constant gravitational force.
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19.2.1.5 Constitutive Settings

The presented balance equations need to be completed with admissible constitutive
relations. An exploitation of the entropy inequality (Ehlers, 2002, 2009) yields re-
strictions and conditions for the formulation of constitutive equations such as the
principle of effective stresses, viz.,

TS = TSE − nSp I and Tξ = TξE − nξpξRI, (19.8)

where I denotes the second-order identity. The extra-stresses TξE of the pore liq-
uids are neglected due to dimensional reasons (e.g., Ehlers, 2002) as well as os-
motic pressure contributions. The partial stress of the solid skeleton contains the
pore pressure p = (nBpBR + nIpIR)/(1 − nS). Following this,

T = TSE − pI. (19.9)

Therein, TSE is the effective stress governed by the solid deformation. Concerning
the CED problem, use is made of the small-strain (linear) elasticity concept. In ad-
dition, although the brain tissue exhibits an inhomogeneous and anisotropic nature
of the white-matter tracts, which strongly influences the pore-fluid and diffusion
properties, it is assumed that a standard linear elasticity law in the Hookean sense is
sufficient for the description of the brain deformation. Thus,

TSE = 2μSεS + λS(εS · I)I. (19.10)

Therein, εS is the linear Green-Lagrangian strain, and μS and λS are the Lamé
constants.

In this contribution, the main attention is drawn to the flow of the administered
therapeutical including the drug. As a matter of fact, a slow infusion process with a
slight application dose as is applied within the CED causes only small deformations
in the solid skeleton (as is seen later in Fig. 19.7). However, if tumor growth or other
diseases, i.e. hydrocephalus, have to be taken into consideration, the tissue model
can be extended to finite elasticity or to finite viscoelasticity (see, e.g., Taylor and
Miller, 2004; Ehlers et al., 2009). In both cases, the inclusion of solid anisotropy is
possible.

Moreover, relations for the filter velocities nξwξ of the pore fluids and for the
drug diffusion nI cDmdDI need to be specified. Following the detailed constitutive
modeling process described in Acartürk (2009) and Ehlers (2009), appropriate as-
sumptions for the direct momentum production terms p̂ξ and p̂D have to be pos-
tulated and inserted into the respective partial momentum balances. In this regard,
Darcy-like filter laws for the pore liquids are obtained in terms of

nξwξ = − Kξ

γ ξR

(
gradpξR − ρξRg

)
(19.11)

as well as a Fick-like diffusion law for the therapeutic agent:

nI cDmdDI = −DD grad cDm. (19.12)
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In the above equations, γ ξR is the effective fluid weight and Kξ = γ ξRKSξ /μξR is
the Darcy permeability, involving the effective dynamic fluid viscositiesμξR and the
intrinsic permeabilities KSξ . Since the permeabilities are related to the deformation
of the solid skeleton, deformation-dependent intrinsic permeabilities (e.g., Markert,
2007) are included via

KSξ = KSξ0S

(
nξ

n
ξ
0S

nS0S

n
S

)κ
. (19.13)

Therein, KSξ0S are the permeability tensors of the undeformed solid reference config-
uration, which need to be equipped with material parameters describing the initial
(anisotropic) intrinsic permeability of the tissue perfusion by the interstitial fluid
(KSI0S ) and by the blood plasma (KSB0S ). The exponent κ ≥ 0 governs the non-linear
deformation-dependent behavior. A possibility for a patient-specific determination
of the coefficients of the permeability tensors and of the effective drug diffusion
tensor DD is described in Sect. 19.2.2.

Finally, there is a general need to express the volume fractions of all constituents
either by primary variables and initial conditions or by constitutive equations. In
case of an incompressible solid constituent with an initial volume fraction of nS0S in
the solid reference configuration, nS = nS0S(det FS)−1 holds and simplifies to nS =
nS0S(1−div uS) in case of small-strain theories. Thus, as a result of (19.1), nB and nI

cannot be specified by primary variables individually but only as a sum: nB + nI =
1 − nS . Thus, additional constitutive information is needed. To solve this problem,
it is assumed in the present study that the blood-vessel system is stable and inherent.
Furthermore, since the blood plasma is assumed to incompressible, this leads to the
assumption that nB = nB0S is constant. In particular, it is assumed that nB = nB0S =
0.05, cf. Table 19.1.

19.2.2 Inhomogeneous and Anisotropic Perfusion Parameters

Regarding the micro-structural composition of the nervous brain tissue, one can as-
sume that perfusion in grey matter (cell bodies) is isotropic. In contrast, white-matter
perfusion is anisotropic due to a preferred flow direction in the ECS along the axonal
fibers. The micro-structural information of the white-matter tracts can be provided
by Diffusion Tensor Imaging (DTI), cf. Basser et al. (1994). The outstanding feature
of DTI is the possibility to determine the diffusion tensor Dawd of water molecules
in living biological tissue. The symmetric, positive definite apparent water-diffusion
tensor Dn

awd of each voxel of the DTI can be written as

Dn
awd =

⎡

⎣
Dn

11 Dn
12 Dn

13
Dn

21 Dn
22 Dn

23
Dn

31 Dn
32 Dn

33

⎤

⎦ ei ⊗ ek =
⎡

⎣
γ n

1,awd 0 0
0 γ n

2,awd 0
0 0 γ n

3,awd

⎤

⎦vn
i ⊗ vn

i .

(19.14)
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Fig. 19.3 Left: visualization of diffusion tensors as ellipsoids at a brain slice. Middle: selected
values for all coefficients of the symmetric and anisotropic diffusion tensor DD obtained by DTI.
Right: vascular (grey) and non-vascular (black) areas on a brain slice

Therein, n denotes the voxel number, vn
i are the eigenvectors and γ n

i,awd the eigenval-
ues of Dn

awd at each voxel. The basic assumption to obtain the required parameters
is that Dawd possesses the same eigenvectors as DD and KSI0S , as it is proposed by
Tuch et al. (2001). Therefore, a calibration as was shown by Sarntinoranont et al.
(2006) or Linninger et al. (2008) is carried out via

γ n
i,DD,n = D̄D

γ n
i,awd

γ̄ n
awd

and γ n
i,KI,n = K̄I γ

n
i,awd

γ̄ n
awd

, (19.15)

where γ̄ nawd is the mean value of the eigenvalues and D̄D and K̄I are adjusting
reference values. Thus, the effective drug diffusion tensor DD,n and the anisotropic
permeability tensor KSI,n0S are computed for each evaluated voxel via

DD,n =
3∑

i=1

γ n
i,DD,n(vi ⊗ vi ) and KSI,n0S =

3∑

i=1

γ n
i,KI,n(vi ⊗ vi ). (19.16)

To show the general feasibility of this procedure, a patient-specific voxel data set
is used here (available at http://www.sci.utah.edu/~gk/DTI-data/). In this regard, a
custom MATLAB algorithm was programmed to process the raw binary data. Due to
the irregular distribution of the anisotropic diffusion parameters, cf. Fig. 19.3 (left),
it is not possible to define a closed analytical function for the anisotropic perfusion
parameters. Therefore, the diffusion data is stored in a look-up table and loaded in
a preceding calculation step to provide the full anisotropic perfusion parameters DD

for the drug, cf. Fig. 19.3 (middle), and KSI0S for the interstitial fluid, respectively.
In order to include micro-structural information of the blood-vessel system, mag-

netic resonance angiography (MRA) is a promising in vivo approach to locate and
image blood vessels within the brain tissue. In the present study, a blood-vessel
segmentation of a MRA image was carried out using AMIRA, a software platform
allowing for bio-medical data processing. With this tool, it is possible to assign
vascular and non-vascular areas by varying blood perfusion parameters KSB0S , cf.
Fig. 19.3 (right). In this contribution, a microscopical isotropic perfusion is as-
sumed, which varies in magnitude between vascular and non-vascular regions.

http://www.sci.utah.edu/~gk/DTI-data/
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19.3 Numerical Application

In order to treat the strongly coupled multiphasic and multiphysical problem numer-
ically, the FE solver PANDAS1 is used. The primary variables of the present initial-
boundary-value problem (IVBP) are the solid displacement uS with corresponding
test function δuS associated with the momentum balance (19.7) of the overall aggre-
gate, the effective pore pressures pξR with test functions δpξR corresponding to the
volume balances (19.5) and (19.6) of the interstitial fluid and the blood plasma, and
the concentration cDm with test function δcDm belonging to the concentration balance
(19.4) of the therapeutic agent. After a transformation of the local balance equations
into weak formulations, the momentum balance of the overall aggregate yields

GuS ≡
∫

Ω

T · grad δuS dv−
∫

Ω

ρg · δuS dv−
∫

Γt

t · δuS da = 0, (19.17)

where t = T n is the external stress vector acting on the boundary of the overall
aggregate and n is the outward-oriented unit surface normal. The weak form of the
liquid constituents reads

Gpξ ≡
∫

Ω

[(
nξ
)′
S

+ nξ div(uS)′S
]
δpξR dv

−
∫

Ω

nξwξ · grad δpξR dv+
∫

Γ
vξ

v̄ξ δpξR da = 0, (19.18)

where v̄ξ = nξwξ · n is the efflux of liquid volume. Finally, the weak formulation of
the concentration balance is

GcDm ≡
∫

Ω

[(
nI cDm

)′
S

+ nI cDm div(uS)′S
]
δcDm dv

−
∫

Ω

nI cDmwD · grad δcDmdv+
∫

Γ
ı̄D

ı̄DδcDm da = 0, (19.19)

where ı̄D = nI cDm wD · n is the molar efflux of the therapeutic agent.
The spatial discretization of the coupled solid-fluid-transport problem within a

uS–pBR–pIR–cDm -formulation requires mixed finite elements (see, e.g., Ellsiepen,
1999) with a simultaneous approximation of all primary variables. A standard
Galerkin method is applied using extended Taylor-Hood elements with quadratic
shape functions for uS and linear shape functions for pIR , pBR and cDm in order
to obtain a stable numerical solution. This leads to a differential-algebraic system
of equations, which is solved in a monolithic manner with an implicit Euler time-
integration scheme.

1Porous media Adaptive Nonlinear finite element solver based on Differential Algebraic Systems
(http://www.get-pandas.com).

http://www.get-pandas.com
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Table 19.1 Material parameters for numerical simulations of CED

Symbol Value Unit Description/reference

ρIR 0.993 · 10+3 [kg/m3] effective density interstitial fluid (water at 37 °C) and

ρBR 1.055 · 10+3 [kg/m3] effective density of blood plasma according to The Physics
Factbook by Glenn Elert (http://hypertextbook.com)

μIR 0.7 · 10−3 [Ns/m2] dynamic viscosity interstitial fluid (water at 37 °C) and

μBR 3.5 · 10−3 [Ns/m2] dynamic viscosity of blood at 37 °C according to The Physics
Hypertextbook by Glenn Elert (http://physics.info/viscosity)

nI0S 0.20 [–] initial interstitial fluid volume fraction, according to Baxter
and Jain (1989) and citations therein

nB0S 0.05 [–] initial blood volume fraction, according to Baxter and Jain
(1989) and citations therein

nS0S 0.75 [–] initial solidity (cells & vascular walls), remaining term in
(19.1)

μS 1.0 · 10+3 [N/m2] elastic Lamé constants (E = 2.8 kPa; ν = 0.417), chosen in

λS 5.0 · 10+3 [N/m2] magnitude according to Smith and Humphrey (2007), Chen
and Sarntinoranont (2007) and citations therein

DDij 10−11–10−12 [m2/s] order of magnitude of spatial varying drug diffusion coeffi-
cient, cf. Sect. 19.2.2, according to Baxter and Jain (1989)
and citations therein

KIij 10−7–10−8 [m/s] order of magnitude of spatial varying Darcy permeability for
the interstitial fluid, cf. Sect. 19.2.2, according to Kaczmarek
et al. (1997)

KBii 3.0 · 10−3 [m/s] isotropic Darcy permeability coefficient, blood in vascular

3.0 · 10−5 [m/s] and non-vascular regions, based on Su and Payne (2009)

κ 1.4 [–] deformation-dependent permeability (assumption)

19.3.1 Simulation of CED on a Human Brain Slice

As is well known in biomechanics, the in-vivo determination of patient-specific ma-
terial data is an almost impossible task. Lacking of an alternative, the simulation
parameters are predominantly extracted from the related literature on phantom ex-
periments and numerical studies on animals or gels, see Table 19.1. However, since
the focus of this contribution is mainly motivated by making available a model-
ing approach for numerical studies, we do not claim the accuracy for all included
material parameters.

For the present numerical study, a realistic geometry of slice of a human brain is
spatially discretized using 2,100 hexahedral Taylor-Hood elements (one element in
thickness direction). As is shown in Fig. 19.4, the catheter is virtually placed in the
brain tissue applying the corresponding boundary conditions for the CED. Further-
more, plane-strain conditions for the brain section are considered in combination
with a horizontally fixed exterior of the brain (cortex). In addition, the blood flow is
neglected in combination with a constant blood volume fraction. Figure 19.5 shows

http://hypertextbook.com
http://physics.info/viscosity
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Fig. 19.4 Boundary conditions for CED on a horizontal brain section corresponding to a usual
application dose. At the brain cortex and at the inner ventricle, an efflux of interstitial fluid and
therapeutic agents over the surface is possible

Fig. 19.5 Anisotropic distribution of the therapeutic agent during a CED process

Fig. 19.6 Left: Volume
fraction nI of the interstitial
fluid. Right: Interstitial fluid
excess pressure pIR during
the infusion process

the anisotropic concentration profile in the region of interest (ROI) close to the in-
fusion point at different time steps (in total three days). The therapeutic agent is
distributed as expected in an irregular manner due to the anisotropic permeability
parameters. Moreover, the propagation front is not smooth. The largest value of the
interstitial fluid volume fraction, cf. Fig. 19.6, is found at the administration site of
the catheter, as the solid constituent is dilated as a result of the infused solution.
The excess pressure is a result of the infusion and naturally maximizes at the in-
fusion site of the catheter, whereas the resulting pressure values are still moderate
due to the small application rate. Note that the infusion pressure strongly depends
on the infusion rate, the stiffness of the solid skeleton, and the tissue permeabilities.
Note again that the present example is rather a numerical study than an approach
on the basis of secure and patient-specific data. Nevertheless, numerical studies are
important and provide the basis for a variety of computational results. For example,
a decrease in the permeability parameters of the interstitial fluid would result in a
faster increase of the infusion pressure, cf. Fig 19.7. This is an important aspect in
the strategy of a clinical intervention, as a critical local pressure at the infusion site
could lead to life-threatening effects due to large local dilatations of the tissue.
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Fig. 19.7 Interstitial fluid
excess pressure pIR (left) and
norm of the solid
displacements |uS | at varying
permeabilities. Therein, KI

indicates the order of
magnitude of the spatial
varying Darcy permeability

Fig. 19.8 Left: Geometrical
preparation of the cerebral
hemisphere for the
finite-element meshing.
Right: Numerical simulation
results of a CED process,
showing the spatial
therapeutic agent distribution

19.3.2 Investigations on a Human Brain Hemisphere

For the sake of clarity, the simulation of a CED process was evaluated and discussed
on a 2D brain slice. But since all formulations are derived in three dimensions, re-
alistic geometries (e.g., of the human brain hemisphere) can be investigated. There-
fore, a standard human brain (commercially available at www.anatomium.com) is
used to survey the general physical behavior. The geometry was first adapted using
the CAD software RHINOCEROS to prepare the cerebral hemisphere for the spa-
tial discretization, cf. Fig. 19.8 (left). Afterwards, the geometry was exported into
the mesh generation toolkit CUBIT and spatial discretized using tetrahedral Taylor-
Hood elements. In the vicinity of the incorporated catheter, a finer grid was chosen.
Boundary conditions and material parameters are applied according to Sect. 19.3.1.
Realized numerical simulations show the 3D distribution front of therapeutic agents
in the 3D brain model, cf. Fig. 19.8 (right).

19.4 Summary and Outlook

An appropriate constitutive model based on the TPM was presented, which is able to
capture the infusion process of therapeutic agents into the brain tissue. All existing
physical constituents are included in the modeling approach and a reasonable con-
sideration of anisotropies and heterogeneities of the white-matter tracts was carried
out, as this influences the observed irregular distribution of the infused therapeutic
agents. The investigated model is able to describe the physical effects in a qualita-
tive correct manner. If profound material parameters can be found in the future (by

http://www.anatomium.com
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appropriate clinical studies), the practising surgeons will benefit from preoperative
studies, predicting the distribution of infused therapeutic agents.
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Chapter 20
A Biphasic 3D-FEM Model for the Remodeling
of Microcirculation in Liver Lobes

Tim Ricken, Uta Dahmen, Olaf Dirsch, and Daniel Q. Werner

Abstract In this study we focus on a 3D computational model for the description
of microperfusion and its application in liver lobes. The remodeling of microperfu-
sion is initiated after a venous outflow obstruction. In particular, focal hepatovenous
outflow obstruction can be caused by liver resection. Drainage of the obstructed
territories is reestablished via dilatation of sinusoids connecting outflow obstructed
territories to territories with normal hepatovenous outflow. Microperfusion is mod-
eled by a homogenized biphasic approach based on the theory of porous media, see
Ricken et al. (Biomech. Model. Mechanobiol. 9:435–450, 2010). Regarding the re-
modeling of microcirculation we make use of the phenomenological hypothesis that
the blood pressure gradient is the main driving force for the formation of sinusoidal
vascular canals. We recall the constitutive relations for the biphasic model includ-
ing the solid stress, the transverse isotropic permeability law, and the remodeling
algorithm. Finally, we present a numerical three-dimensional example covering mi-
crocirculation in seven liver lobes. After calculating the physiological status of the
microcirculation in the liver lobes, we tested the hypothesis that the reorientation
of blood flow mainly depends on the pressure gradient. Our findings support this
hypothesis due to good agreement between experimental observation and computa-
tional results. Further investigations are needed to analyze functional processes such
as cell metabolism.
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20.1 Introduction

The human liver receives its blood supply via the portal vein and the hepatic artery
and is drained via the hepatic vein. The supplying and draining systems are con-
nected via a delicate, highly organized vascular network. This vascular network con-
sists of specific capillaries called sinusoids. Sinusoids are evenly distributed among
liver cell plates, giving the liver ‘sponge-like’ properties.

Further, blood supply to the liver is delivered via two main branches of the portal
vein and hepatic artery. These branches are the right and left portal vein, respec-
tively, the right and left hepatic artery. Venous drainage of the liver is ensured by
three hepatic veins, called the right, middle, and left hepatic veins. This two-to-three
imparity is the anatomical basis of the focal outflow obstruction induced by resect-
ing half of the liver. This surgical procedure is performed in extended liver resection
and split liver transplantation. Resecting half of the liver requires the transection of
the middle hepatic vein, leading to an outflow obstruction in the dependent hepatic
territories.

Focal outflow obstruction induces hepatocellular damage in the respective drai-
nage territories, leading to additional loss of functional liver tissue. This loss of
functional liver mass adds to the loss caused by the resection itself. This combined
loss of functional live mass can be detrimental for the patient undergoing extended
liver resection, causing a small probability for size syndrome or even death. Liver
resection itself causes portal hypertension, as half of the vascular bed is removed,
forcing all blood from the intestine through a reduced vascular bed.

In Ricken et al. (2010) it was demonstrated that the proposed model applies to
impaired perfusion of the liver after inducing focal outflow obstruction and the sub-
sequent reestablishment of hepatic venous drainage. For the two-dimensional case,
the results are closely compared to the results obtained in parallel, specifically de-
signed experiments using our newly developed surgical model.

We created a surgical model of focal outflow obstruction in a rat, see Fig. 20.1.
The rat liver consists of a median lobe which is—as is the human liver—supplied
by two vessels, but drained by three vessels, and an additional three lobes supplied
and drained separately. We incorporated focal outflow obstruction by ligating the
right median hepatic vein and performed an additional 50 resection by removing
the left lateral lobe to induce portal hypertension, cf. Dirsch et al. (2008). We were
able to observe the extent of primary hepatic damage in the outflow obstructed area
as well as the spontaneous recovery process consisting of reestablishment of ve-
nous drainage and parenchymal recovery from outflow obstruction. Further, volume
recovery by growth of the liver (= regeneration) after liver resection was also ob-
served.

Hepatic-venous drainage was reestablished within hours after ligation by redi-
recting sinusoidal blood flow via multiple-dilated sinusoids into the unobstructed
neighboring territories. Within seven days the high number of dilated sinusoids was
reduced to single vascularized sinusoidal canals. We postulated that the pressure
gradient from the congested area to the neighboring normally drained territory in
the hepatic ‘sinusoid sponge’ was the driving force for the formation of vascular
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Fig. 20.1 (a) Congestion in the outflow disturbed territory (Dirsch et al., 2008); (b) animal model
with defined perfusion defect after PH-30 %; provided from U. Dahmen

canals. Distension of sinusoids into sinusoidal canals was accompanied by a shift in
gene and protein expression associated with a change in their wall structure, termed
vascularization of sinusoidal canals. Vascularization of sinusoidal canals led to a
thickening of the wall. Thickening of the sinusoidal wall is essential with respect
to the change of function of this distended sinusoid aimed at draining the outflow-
obstructed liver territory.

Changes in sinusoidal blood flow as well as the sinusoidal network were made
visible by using orthogonal polarization spectroscopy (OPS), a technique for intrav-
ital microscopy. Changes in vascular structure and protein expression were observed
using special histological and immunohistochemical staining methods.

The liver lobe is modeled as a sponge-like material with anisotropic perfusion
behavior resulting from the inhomogeneous distribution of the sinusoidal network.
This inner network structure of the liver admits such a high complexity that an ac-
curate geometrical description in a continuum mechanical manner is impractical.
Thus, a multiphase mixture theory based on the theory of porous media (TPM), see
de Boer (1996, 2000) and Ehlers (2002), is used. Since the authors’ past experience
with the theory of porous media is highly satisfactory, especially regarding accuracy
and thermodynamical consistency, we do not choose similar established multiphase
theories describing biological tissues such as the mixture theory, cf. Mow et al.
(1989) and Lai et al. (1991) or Biot’s theory, cf. Biot (1935, 1941). The minor but
significant differences between the three theories is the introduction of the consti-
tutive framework; see de Boer (1996, 2000) or Lu and Hanyga (2005). Thus, under
certain assumptions, the theories finally result in a set of field equations of similar
type, cf. Bluhm and de Boer (1998) and Schanz and Diebels (2003). The choice
of the theory of porous media should not be understood as a quantifying of these
theories but as a practical choice founded on previous results.

It is well known that living tissue has the capacity to grow and to adapt to environ-
mental changes by remodeling. In pathology, growth is understood as the increase
of volume whereas remodeling defines the change in tissue structures like vessels or
fibers, see, e.g., Majno and Joris (1996). In this paper we follow the definitions of
growth and remodeling given by Humphrey and Rajagopal (2002). Therein, growth
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Fig. 20.2 Macro (liver, lobes and segments), meso (lobule) and micro (microcirculation in sinu-
soids) structure of the liver

in soft tissues is mathematically defined as the increase of mass via an increase of
cells and/or via a synthesis of an extracellular matrix (ECM), whereas remodeling is
characterized by a change in structure that is achieved by reorganizing existing con-
stituents. As pointed out by Garikipati et al. (2006), remodeling and growth can be
separated although they appear simultaneously in biological tissue. In this contribu-
tion we focus on remodeling the inner structure instead of the growth phenomenon
as done by Epstein and Maugin (2000), Ambrosi and Mollica (2002), Kuhl and
Steinmann (2003), Kuhl et al. (2003) regarding one phasic approaches, or Klisch
et al. (2001), Humphrey and Rajagopal (2002), Guillou and Ogden (2006), Ehlers
et al. (2003), Garikipati et al. (2004), or Ricken et al. (2007) for multiphase models.

The first descriptions of remodeling are given by Lee (1969) and Cowin and
Hegedus (1976) in the context of plasticity. A general study of biological remodel-
ing is given in Garikipati et al. (2006) where both evolution of the reference config-
uration and the concept of internal variables is investigated. In the present study, the
latter concept has been used by integrating a preferred flow direction into the model.

Mechanical impact often influences the inner structures of biological tissues as,
e.g., the remodeling of collagen fiber in arterial walls is considered stress driven
where the fiber orientation follows the direction of principle stresses, see, e.g., Hari-
ton et al. (2007). Gleason et al. (2004) suggested that carotid arteries be modeled as
a flow-induced mixture in order to describe alterations in geometry, structure, and
properties.

The simulation was based on the concept of mechanical-induced remodeling
from Humphrey et al. (2009). The fluid is incorporated directly into the model as
a solid-fluid mixture. We hypothesized that the reorientation of the sinusoidal flow
and the remodeling of the sinusoidal structure depends mainly on the fluid pressure
and the fluid pressure gradient caused by the outflow obstruction, see Dahmen et al.
(2007) and Dirsch et al. (2008).

We tested this hypothesis with a numerical simulation and compared the results
to the experimental findings. As we did not implement liver resection in the math-
ematical model presented here, but concentrated on focal outflow obstruction only,
liver growth (= regeneration) was not addressed.
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Fig. 20.3 Image of a liver lobule; the center shows the central vein surrounded by the sinusoids
Hall (2006). The hepatic microcirculation was observed with an optical device using the technique
of Orthogonal Polarization Spectral (OPS) Imaging (Cytoscan, Cytometrics, Inc., Philadelphia,
PA, USA). This device allows real-time microscopic observation of the microcirculation of organ
surfaces in vivo. The probe is gently placed on a serous organ surface and emits polarized light
with a wavelength of 550 nanometers. Light penetrates into the tissue where most of it depolarizes
and creates a virtual light source in the tissue

20.2 Methods

The general structure of the liver can be divided into a macroscopic, mesoscopic,
and microscopic part as given in Fig. 20.2. At the macroscopic level, the human
liver is divided in segments, whereas rodent livers consist of clearly separated liver
lobes. Each lobule is connected with inflow vessels and one outflow vessel as shown
in Fig. 20.2. Inside the liver lobule, the blood flows from the ingoing vessels (hepatic
artery and portal vein) to the outgoing vessel (hepatic vein) through sinusoids; see
the micro level in Fig. 20.2 and the OPS (orthogonal polarization spectroscopy, see,
e.g., Nadeau and Groner, 2001) figure of the center of a lobule, see Fig. 20.3.

20.2.1 Biphasic Material Model for Liver

The two phases, namely the solid and the fluid phase, are presented as a bipha-
sic continuum ϕ = ϕS + ϕF which consists of the porous solid phase ϕS filled
with the fluid phase (blood) ϕF. Both phases are assumed to be material incom-
pressible see also Sect. 20.2.1.2. The solid phase represents the porous tissue struc-
ture with an anisotropic pore distribution since the blood flow is assumed so, but
transversely isotropic in the direction of the vein. The fluid flow is influenced by
both the outer pressure gradient and the anisotropic permeability. Here, we use the
theory of porous media, a coupled, superimposed, continuum mechanical frame-
work.
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Fig. 20.4 Biphasic macromodel

20.2.1.1 Mixture Theory, Concept of Volume Fraction and Kinematics

The microscopic structure is represented within a statistical distribution of the
constituents (solid and fluid) over a representative elementary volume (REV), see
Fig. 20.4. The constituents ϕα will be represented by an averaging volume frac-
tion nα . Thereby, the volume fractions nα refer to the volume elements dvα of the
individual constituents ϕα from the bulk volume element dv with

nα(x, t)= dvα

dv
,

κ∑

α=1

nα(x, t)=
κ∑

α=1

ρα

ραR = 1, α ∈ {S,F}, (20.1)

where x is the position vector of the spatial point x in the actual placement and t is
the time; we proceeded to a homogenized model with superimposed continua. The
now separated partial volumes dvα will again be interconnected constitutively by so-
called interaction quantities. In general, these quantities are a mass exchange ρ̂α , an
interaction force p̂α , and an energy exchange êα . The volume fractions nα in (20.1)1

satisfy the volume fraction condition (20.1)2 for κ constituents ϕα . Moreover, the
partial density ρα = nα ραR of the constituent ϕα is related to the real density of the
materials ραR involved via the volume fractions nα ; see (20.1)2. Due to the volume
fraction concept, all geometric and physical quantities, such as motion, deformation,
and stress, are defined in the total control space. Thus, they can be interpreted as the
statistical average values of the real quantities.

The saturated porous solid will be treated as an immiscible mixture of all con-
stituents ϕα with particles Xα , where at any time t each spatial point XS of the
current solid placement is simultaneously occupied by fluid particles XF. These
particles proceed from different reference positions Xα at time t = t0.

Furthermore, the Jacobian is defined as Jα = det Fα , where Fα = (∂xα)/(∂Xα)=
Gradα χα is the deformation gradient of the constituent ϕα . During the deformation
process Fα is restricted to satisfy det Fα > 0.

For scalar fields depending on x and t, the material time derivatives are defined
as (. . .)′α = ∂(. . .)/∂t+[grad(. . .)] ·x′

α , with grad(. . .)= ∂(. . .)/∂x. In order to use a
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material objective measure of the fluid velocity with respect to the solid velocity, we
introduce the seepage velocity wFS, which describes the difference in velocity be-
tween the fluid phase x′

F and the solid phase x′
S S as wFS = x′

F − x′
S. In connection

with the fluid volume fraction this leads to the definition of the filtration veloc-
ity nF wFS. An extended explanation of the kinematics of porous media is given in
de Boer (2000) or Ehlers (2002).

20.2.1.2 Assumptions

In general, we distinguish between four different types of biphasic materials: com-
pressible (both components are compressible), hybrid type I (compressible solid and
incompressible fluid), hybrid type II (incompressible solid and compressible fluid),
and incompressible type (both components are incompressible). Since in most bi-
ological tissues the compressibility of the overall solid porous material is much
higher in comparison with the material compressibility of the tissue material itself,
see, e.g., Humphrey (2002), we assume a material incompressible solid tissue ma-
trix ((ρSR)′S = 0) saturated by an incompressible pore fluid ((ρFR)′F = 0), i.e., the
incompressible type. The volumetric deformation of the mixture body results from
the change of pore space, namely a change of the volume fraction nα , which leads
to a macroscopic volumetric deformation. In liver tissue a volume deformation due
to a physiologically hydrostatic pressure can also be observed.

With the assumption of material incompressibility on the solid skeleton, a com-
paction point must be introduced defining the state where all fluid is pressed out and
all pores are closed so that no further compression occurs. The compaction point
cannot be achieved physiologically since in biological tissues, neither the intracel-
lular nor the interstitial fluid can be pressed out completely. Therefore, we used
the Helmholtz free energy function formulated in Bluhm (2002), where an energy
function based on Simo and Pister (1984) is extended to describe the compaction
effect.

Since no mass or volumetric changes occurred during the remodeling of dilated
sinusoids, we assume that mass exchanges between the solid and the fluid con-
stituent is negligible. In general, remodeling requires cell proliferation as well as cell
death. In the event of homeostatis, the balance of addition and depletion is equalized
and no residual mass or volume change occurs over time. Thus, it is convenient to
separate the phenomena of growth and remodeling for the modeling approach, see,
e.g., Garikipati et al. (2006) or Kuhl and Holzapfel (2007).

Due to constant thermal conditions during the remodeling process, we further
assume that interchanges of temperature and energy can be neglected among the
constituents. Hence, energy supplies (êα) between the phases were not taken into
account and we assumed an isothermal process with an equal temperature θ for
solid (θS) and fluid phase (θF). Lastly, accelerations for all phases (x′′

α = o) were
excluded.
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20.2.2 Constitutive Modeling

With respect to thermodynamically consistent material laws we consider the entropy
inequality, see Ricken et al. (2010). Thus, the thermodynamic restrictions

TS = −nSλI + 2ρSFS
∂ψS

∂CS
FT

S, TF = −nFλI (20.2)

for the solid (TS) and fluid (TF) stress, respectively, as well as for the fluid interac-
tion force p̂F = −p̂S with

p̂F = λgrad nF − SFwFS, (20.3)

must hold. In (20.2) and (20.3), SF denotes a positive definite material parameter
tensor for permeability and λ represents the pressure.

On the one hand, the enlarged entropy inequality (20.2) forms the basic struc-
ture for the thermodynamically consistent constitutive modeling and provides the
necessary restrictions for the material laws. On the other hand, biological tissues
show highly coupled material behavior including anisotropy deformation response,
viscoelasticity, anisotropic poroelasticity, osmosis, remodeling, and growth. For the
description of the liver we confined ourself to a model including the anisotropy de-
formation response, anisotropic poroelasticity, and modeling of the poroelasticity.
Although not all characteristics of the material are represented in the current model,
we were able to describe the vascular behavior of the hepatic tissue in the case of
outflow obstruction. The modeling of the anisotropic material behavior for stress
which includes the compaction point is given in Ricken et al. (2010). Here, we will
focus on the filter velocity, the transversely isotropic permeability, and the flow re-
orientation.

20.2.2.1 Filter Velocity and Transversely Isotropic Permeability

For the liver tissue we consider that the fluid flow is affected by two major mecha-
nisms. Firstly, on the macroscale, blood is transported inside the liver from the main
vessels (liver artery and portal vein; see Fig. 20.2) via smaller vessels into the lobar
vessels. From here, the second mechanism starts: a micro-filter flow through the si-
nusoids; see Fig. 20.5. This filter flow forms the connection between the branches
of the portal vein and liver artery with the branches of the liver vein. In the normal
liver evenly and clearly directed, mostly straight perfusion of the sinusoids is seen
by employing Orthogonal Polarization Spectroscopy (OPS) (Dirsch et al., 2008 and
Dahmen et al., 2007). The ‘sponge-like property’ of the liver became more appar-
ent, when observing the redirected blood flow of the liver with outflow obstruction
using OPS (Dirsch et al., 2008). Redirection of flow leads not only to an actual
change of direction—aiming for liver territories in which outflow is preserved—but
also to a visible change in flow characteristics, like flow velocity, as well as a visible
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Fig. 20.5 Permeability in dependence on vessel and sinusoid distribution

change of the shape of the sinusoids. Although this connection is not straight linear,
we mark an average major direction out, neglecting the waviness of the sinusoids.
This major direction is neither fixed nor unique but underlies a varying dispersion as
shown in Fig. 20.5. The major direction, dispersion, and diameter of the sinusoids
are variable in time and space. Depending on boundary conditions, the liver tissue is
able to change all three properties. In order to give a continuum representation of the
sinusoidal orientation, we introduce a generalized structure tensor MF = aF ⊗ aF,
where the arbitrary vector aF = FS aF0, related to the arbitrary reference unit vector
with |aF0| = 1, represents the major distribution direction of the sinusoids. Due to
the fact that the motions of both solid and fluid are connected by the interaction
forces p̂F = −p̂S and considering the thermodynamic restriction

p̂F = λgrad nF − SFwFS (20.4)

(see (20.3) and Ricken and Bluhm 2009, 2010), we propose the representation of
the anisotropic intrinsic permeability of the liver tissue as

SF = αF0
[
(1 − αF)I + αFMF

]−1
. (20.5)

The parameter αF ∈ [0,1] defines the range between the fully isotropic state
(αF = 0) and the complete transverse isotropic state (αF = 1). This parameter is
suitable to adjust the direction distribution of sinusoids. In the case of a parallel dis-
tribution of all sinusoids, αF becomes one, whereas for a random distribution, the
condition αF = 0 is assumed.

We derive the balance equation of momentum for the fluid phase with

div
(−nFλI

)+ ρFb + λgrad nF − (αF0
[
(1 − αF)I + αFMF

]−1)wFS = 0, (20.6)

see Ricken et al. (2010). In order to obtain a determination of the filter velocity
nF wFS, we rearrange (20.6) into

nFwFS = (nF)2

αF0

[
(1 − αF)I + αFMF

](−gradλ+ ρFRb
)
. (20.7)
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Fig. 20.6 Remodeling of a sinusoid to a vessel (Dirsch et al., 2008)

The base permeability can either be described by using the initial Darcy permeabil-
ity kF

0S [m/s] and the specific weight γ FR [N/m3], or by use of the intrinsic solid
permeability kS

0S [m2] and the effective shear viscosity μFR [Ns/m2], where

(nF)2

αF0
=
(

nF

1 − nS
0S

)m kF
0S

γ FR =
(

nF

1 − nS
0S

)m kS
0S

μFR , (20.8)

where m denotes a dimensionless material parameter; see also, e.g., Eipper (1998).
In (20.8), the term related to the volume fraction nF is related to the change of
permeability caused by the change of pore space, where nS

0S denotes the reference
solid volume fraction. Hence, an increasing fluid volume fraction is connected to a
decrease of the permeability and vice versa.

20.2.2.2 Remodeling of Preferred Flow Direction

As shown in Dirsch et al. (2008), liver tissue undergoes a vascular remodeling pro-
cess in response to focal outflow obstruction. After blocking the outflow, the de-
pendent liver territory develops congestion with a clear demarcation line between
properly drained areas and outflow obstructed areas (see Fig. 20.1a and Fig. 20.6a).
Starting from universal sinusoidal dilatation in the border zone (Fig. 20.6b), single
dilated sinusoids are transformed into vascularized sinusoidal canals which drain
the congested area and therefore the obstructed zone recovers (Fig. 20.6c).

For the continuum mechanical description we consider a local pressure-modu-
lated modeling approach. Since the time scale of the remodeling of the sinusoids is
significantly higher than for the fluid flow, an artificial modeling time step is intro-
duced in the definition of a remolding evolution relation for the preferred flow di-
rection aF. Similar modeling approaches can be found, e.g., in Hariton et al. (2007)
where a collagen fiber stress state depending on a reorientation approach in arterial
walls is discussed, or in Himpel (2008) where a general kinematics-based reorien-
tation approach can be found.

Here, we assume that the preferred flow direction develops in the liver lobule
in order to minimize the flow dissipation, i.e., in order to find the optimal state
with least resistance to blood flow. Therefore, the sinusoid tends to be oriented in
the direction of the (normalized) pressure gradient p0 = ‖Gradλ‖ with |p0| = 1;
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Fig. 20.7 Developing
different angel θ t

ap in the
aF0 × p0 plain spanned by the
pressure gradient p0 and
preferred flow direction aF0
or a′

F0

see Fig. 20.7. Thus, we postulate that the preferred flow direction aF with |aF| = 1
develops in the direction of the pressure gradient p0 by a′

F0. According to Himpel
(2008) the merging process of both vectors is expressed by the relation

a′
F0 = aF0 + �aF0, aF0 · �aF0 = 0, (20.9)

where �aF0 denotes the incremental update of the preferred flow direction aF0. The
incremental update can be expressed by a rigid body rotation of aF0 by

�aF0 = ω × aF0, (20.10)

where ω denotes the angular velocity of reorientation. Since ω is perpendicular to
the plane spanned by aF0 and p0 the condition

ω = δt(aF0 × p0) (20.11)

must hold where δt denotes a virtual damping coefficient with respect to the time
dependent model. Inserting (20.11) in (20.10) yields the direct evaluation of the
incremental update with

�aF0 = δt
([aF0 × p0] × aF0

)
. (20.12)

Thus, the new updated flow direction a′
F0 can be expressed directly by (20.9)1.

The governing weak formulations and their implementation into the FE-
calculation program FEAP by Taylor (2012) are given in Ricken et al. (2010).

20.3 Numerical Example: Recovery of Liver Perfusion After
Focal Outflow Obstruction

In the numerical example we consider the situation in a liver lobule (see Fig. 20.5)
with the material parameters given in Table 20.1. The blood supply of the lobule is
ensured via a small branch of the portal vein and the hepatic artery. The hepatic arte-
rial and the portal venous blood come together in the sinusoids that supply the liver
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Table 20.1 Parameters of
liver lobule Parameter Value Unit Parameter Value Unit

μS 1 · 106 Pa kF
0S 1 · 107 m/s

λS 1 · 104 Pa γ FR 1 · 104 N/m3

JS
cp 0.0 – α1 0.0 Pa

ρSR
0S 1 · 103 kg/m3 α2 0.0 –

ρFR
0S 1 · 103 kg/m3 nS

0S 0.5 –

αF 0.90 – nF
0S 0.5 –

δt 0.25 –

cell plates. As mentioned in Sect. 20.2.2.2, sinusoids are oriented in the direction of
the pressure gradient between portal tract and central vein.

In order to capture this physiological situation in the numerical model, we started
with the unphysiological assumption that the direction of all sinusoids is horizontal.
In Fig. 20.8a the different angle between pressure gradient and the direction of the
sinusoids is plotted in the left column, the pressure is in the middle and on the right-
hand side, the development of the norm of velocity is observed, each at three time
steps: time = 1,5 and 50, where in this approach the time has a virtual scale. At
t = 1, the large difference angle causes a high resistance against the blood flow
which causes a high pressure amplitude as well as local zones with high velocities.
As time goes on, the sinusoids orient in the direction of the pressure gradient and
the different angles, pressure, and the maximum of velocity all become smaller.
Finally, the sinusoids are oriented parallel to the pressure gradient and no further
reorientation occurs. This state can be defined as the optimal state and a reasonable
physiological starting configuration.

In the next step, an outflow obstruction of the left lower vein is considered, see
the black mark in Fig. 20.8b. Now the drainage of the liver lobule will only be
realized with the remaining outflows. The obstruction first causes an increase of
the pressure magnitude and then a new distribution of the pressure gradient. Again,
the sinusoids follow the direction of the pressure gradient which can be seen at
time t = 55. Finally, at t = 100, the sinusoids are oriented to the remaining outflow
gates, so that a new optimized drainage has been established where the pressure and
velocity magnitude are as low as possible.

We repeat this procedure by closing two more veins as given in Fig. 20.8c. Again,
the same reorientation mechanism can be observed.

20.4 Discussion

Proceeding from the theory of porous media, the model equations for a fluid-
saturated liver have been derived. In order to model the deformation of the solid, the
diffusion flow of the fluid and the internal change of sinusoidal distribution com-
prise a two phase solid-fluid model that includes an evolutional transverse isotropic
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Fig. 20.8 Calculation of conditions in a liver lobule: (a) capturing physiological situation without
outflow obstruction (time step 1–50), (b) after outflow obstruction of one portal vein (time step
51–100), (c) after outflow obstruction of three portal veins (time step 101–150)
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permeability. The material modeling is derived from a thermo-mechanical inves-
tigation of the transversely isotropic biphasic mixture body. Thermodynamically
consistent constitutive relations are formulated describing the anisotropic behavior
of both the solid matrix and the fluid flow. In particular, a new description of the
transverse isotropic permeability has been discussed and enhanced with an evolu-
tionary approach for the preferred flow direction caused by the inner remodeling
process.

In the framework of the finite element method, the governing model equations
have been treated within a standard Galerkin procedure. This procedure leads to a
system of algebraic differential equations in time which can be efficiently solved by
an appropriate time integration scheme.

The numerical simulation model reflects the time-evolution of the hepatic vas-
cular remodeling process in response to a focal outflow obstruction as observed by
intravital microscopy. Philosophically speaking, the liver tries to ‘escape’ the in-
creased sinusoidal pressure, caused by the obstruction, by forming new vascular
structures called sinusoidal canals derived from multiple dilated sinusoids that fol-
low the direction of the highest pressure gradient. Therefore, we hypothesized that
the reorientation of the sinusoidal flow and the remodeling of the sinusoidal struc-
ture depends mainly on the fluid pressure and the fluid pressure gradient caused by
the outflow obstruction. We tested this hypothesis with a numerical simulation and
compared the results to experimental findings.

Due to the incorporated transverse isotropic permeability relation it was possible
to define a remodeling approach that captured the process of re-establishing hepatic
venous drainage via redirection of blood flow and formation of new vascular struc-
tures along fluid flow. It should be pointed out that the proposed model is based on
a phenomenological description and macroscopic observations. Micromechanical
influences are not taken into account at this stage.

In conclusion, we developed a modeling concept that reflects the experimental
observation of the remodeling process. We propose to use this concept for future
modeling steps on our way to simulate the individual response of a patient with focal
outflow obstruction after liver resection. We aim to do so by integrating additional
physiological data.
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Chapter 21
Multiphysics Modeling of Reactions, Mass
Transport and Mechanics of Tumor Growth

Shiva Rudraraju, Kristen L. Mills, Ralf Kemkemer, and Krishna Garikipati

Abstract The biochemical dynamics involved in tumor growth can be broadly clas-
sified into three distinct spatial scales: the tumor scale, the cell-ECM interactions
and the sub-cellular processes. This work presents the tumor scale investigations,
which are expected to eventually lead to a system-level understanding of the pro-
gression of cancer. Many of the macroscopic phenomena of physiological relevance,
such as tumor size and shape, formation of necrotic core and vascularization, pro-
liferation and metastasis of cell populations, external mechanical interactions, etc.,
can be treated within a continuum framework by modeling the evolution of various
species involved by transport equations coupled with mechanics. This framework
is an extension of earlier work (Garikipati et al. in J. Mech. Phys. Solids 52:1595–
1625, 2004; Narayanan et al. in Biomech. Model. Mechanobiol. 8:167–181, 2009,
J. Phys. Condens. Matter. 22:194122, 2010) based on the continuum theory of mix-
tures for modeling biological growth. Specifically, the focus is on demonstrating the
effectiveness of mechano-transport coupling in simulating tumor growth dynamics
and explaining some in vitro observations like mechanics-induced ellipsoidal tumor
shapes. Additionally, this work also seeks to demonstrate the effectiveness of tools
like adaptive mesh refinement and automatic differentiation in handling highly non-
linear, coupled multiphysics systems.

21.1 Background

The primary biochemomechanical aspects of tumor growth involve (a) rapid can-
cer cell proliferation leading to formation of solid tumors, (b) metabolism by
which cells consume nutrients like oxygen and glucose and create byproducts,
(c) mechanical interactions between tumor mass, the extracellular matrix (ECM)
and surrounding tissues, and (d) cell migration leading to formation of new tu-
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Fig. 21.1 Time progression of the growth of an LS174T tumor embedded in a 0.5 % agarose gel

mor colonies (metastasis). All these processes can be mathematically modeled as
reaction-transport phenomena coupled with growth induced mechanics and mechan-
ical interactions at the tumor scale, where the complex biophysical interactions be-
tween these processes are more broadly observable than in single-cell studies.

In vitro observations of prevascular tumor growth of human colon adenocarci-
noma (LS174T, trypsinized variant of LS180) cells, involving multicellular tumor
spheroids embedded in a tissue-mechanics-mimicking hydrogel (Mills et al., 2011,
2012), have shown strong influence of growth induced mechanics on the tumor scale
growth dynamics, such as rate of tumor growth (Fig. 21.1) and evolution of different
tumor shapes (Fig. 21.2). Our motivation in this work is to develop a quantitative
understanding of these in vitro observations. The underlying physical processes that
lead to these observations are also of interest because of their potential influence on
the progression of the cancer. Towards this goal, we have been developing a coupled
reaction-transport and finite deformation framework. The mathematical formulation
and numerical implementation of this framework and a discussion of potential un-
derlying mechanisms are presented here.

21.2 Mathematical Formulation

The formulation presented here is based on a broader treatment that was developed
for the growth and remodeling of biological tissue. It is based on the continuum the-
ory of mixtures and has been detailed in Garikipati et al. (2004) and Narayanan et
al. (2009, 2010). The first step in this formulation is the identification of the various
biological and chemical species involved and characterizing their sources, transport
behavior and external interactions. The primary biological species are the cancer
cells, represented as a concentration at the tumor scale. The two chemical species
considered are the critical nutrients: oxygen and glucose. Over time, the cancer cells
consume oxygen and glucose and produce many byproducts. In this study, the pro-
duction of metabolic byproducts is not modeled; however, the production of ECM
is modeled as it has an important role in the calculation of available free volume and
the elastic compliance of the growth matrix. Cell death is tracked by considering
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Fig. 21.2 Different in vitro shapes of LS174T tumors. In all cases, the initial tumor seed was
spheroidal

dead cells as a separate concentration field. Also, keeping in view recent sugges-
tions in the literature (Valastyan and Weinberg, 2011), a secondary cell population
of more motile and proliferating cancer stem cells in considered in certain simula-
tions. Now the reaction-transport equations and various source and sink terms are
presented.

21.2.1 Species Transport

The evolution of these biological and chemical species is modeled using the follow-
ing set of reaction-transport partial differential equations. The primary transport of
these species is due to diffusion. However, to account for active transport of cells
in response to mechanical/chemical signaling, advection terms have also been in-
cluded. The concentrations of ECM and dead cells have no associated transport,

ρ̇c = πc(ρc, τ c)− πcn(ρc, σ,ρo, ρg)− ∇ · (−Dc∇ρc)− V c(σ )∇ρc, (21.1)

ρ̇s = πs(ρs, τ s)− πsn(ρs, σ,ρo, ρg)− ∇ · (−Ds∇ρs)− V s(σ )∇ρs, (21.2)

ρ̇e = πe(ρc,ρs), (21.3)

ρ̇n = πcn(ρc, σ,ρo, ρg)+ πsn(ρs, σ,ρo, ρg), (21.4)

ρ̇o = −πo(ρc,ρs, ρo, ρg)− ∇ · (−Do∇ρo), (21.5)

ρ̇g = −πg(ρc,ρs, ρo, ρg)− ∇ · (−Dg∇ρg). (21.6)

Here, the species are identified by the superscripts: c-cancer cells (primary cell pop-
ulation), s-cancerous stem cells (secondary cell population), e-ECM, n-dead cells,
o-oxygen and g-glucose. The subpopulations of dead cells are separately identified
as cn-dead cancer cells and sn-dead stem cells. πx are the species source terms,
Dx and V x the diffusivity and advective velocity, respectively. In addition, τx rep-
resents the cell doubling time which controls the proliferation rate and σ is the
Cauchy stress induced due to growth and external interactions. As can be seen from
the equations, the source terms control the growth dynamics via cell proliferation
and nutrient consumption, hence a detailed discussion of these terms follows.
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21.2.2 Species Sources and Chemomechanical Coupling

The source terms are expressed as mass rate per unit volume with units of fg/µm3 s
(fg = femtogram). Many of the empirical relations listed here are from Casciari
et al. (1992) or their modified relations from Narayanan et al. (2010). For brevity of
the expressions, only the primary cancer cell population is considered in the source
terms listed here. For the cell populations, the source terms model the initial stages
of the tumor growth, characterized by exponential growth, i.e.

πc
(
ρc, τ c

)= ρc0

J

1

τ cinv
etτ

c
inv , τ cinv = 0.693/τ c, τ c = tcD

log 2
. (21.7)

Here, ρc0 is the initial cell concentration and tcD is the doubling time of the cells,
while J is the determinant of the deformation gradient, which is driven by volumet-
ric growth of the tumor, in addition to its elastic deformation. The cell doubling time
is dependent on the oxygen and glucose concentrations (Casciari et al., 1992), and
the pH (ρH

+
) of the medium (Casciari et al., 1992; Bourrat-Floeck et al., 1991). We

have used the equation proposed by Casciari et al. (1992) for the doubling times:

tcD = tc
opt

0.014

(
ρg + 1.8 · 10−2

ρg

)(
ρo + 7.3 · 103

ρo

)
(
ρH

+)0.46
. (21.8)

This exponential growth is balanced by the sink πc
n
, representing the concentration

of dead cells produced primarily due to aging, depletion of nutrients or environmen-
tal factors like surrounding pressure. These terms are modeled as follows:

πc
n(
ρc, σ,ρo, ρg

) = ρcκ{1.0 − e2.0−[(ρo0/ρo)2+(ρg0 /ρg)2]}

+ ρcκ[1.0 − e−(σii/Pc)2]. (21.9)

Here, the first term on the right hand side denotes cell death due to aging and the
second term represents stress-driven cell death. Although it is known that cells have
different tolerances to different stress states, here, stress-driven cell death is assumed
to only depend on the hydrostatic component of the stress, represented by the trace
σii of the Cauchy stress, κ is the cell death rate constant and Pc is the threshold
value of pressure at which stress-driven cell death is significant. Equation (21.9)
represents a possible chemomechanical coupling which accounts for the effect of
mechanics on cell proliferation.

The oxygen and glucose consumption rates were also adapted from Casciari et al.
(1992) to be consistent with the different units used here, and scaled by the local
cell concentration to be expressed as mass rates per unit volume. The resulting rate
functions take on field values that vary over time and space, and have the forms

πo
(
ρc
)= −ρc

(
7.68 · 10−7 + 3.84 · 10−15

ρg(ρH
+
)0.92

)(
ρo

ρo + 1.47 · 10−4

)
, (21.10)
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πg
(
ρc
)= −ρc

(
1.14 · 10−10 + 3.65 · 10−17

ρo

)(
ρg

ρg + 7.21 · 10−3

)
1

(ρH
+
)1.2
.

(21.11)

The dependence of πo on ρo, and πg on ρg is ‘Michaelis-Menten-like’, giving rates
that vary monotonically from zero to a maximum asymptotic value as the respective
concentrations increase from ρo, ρg = 0.

Finally, the ECM production is assumed to be linearly proportional to the total
living cell population and is given by

πe
(
ρc
)= 8.27 · 10−8ρc. (21.12)

21.2.3 Influence of Mechanics: Growth, Cell Death and Enhanced
Motility

Tumors start as single cells or multi cell colonies and grow over time resulting in
deformation of the tumor mass and the surrounding matrix due to growth. Bio-
logical growth is modeled by introducing a multiplicative split in the deformation
gradient F = FeFg, where Fe and Fg are the deformation gradients induced due
to elastic strain and growth, respectively (Garikipati et al., 2004). Assuming only
dilatational growth and resorption, Fg is an isotropic tensor. It represents the kine-
matics of growth caused by cell proliferation, and is given by

Fg =G(ρc)I, (21.13)

where I is the second-order unit tensor, andG is any nonlinear function characteriz-
ing the swelling caused due to growth as a function of cell population. In this work,
the following dependence is assumed:

G
(
ρc
)=

{
1, ρc ≤ ρh.
1
2 (1 + ρc

ρh
), ρc > ρh.

(21.14)

Here, ρh is the critical cell population density required to occupy all available free
volume without causing any mechanical stress. This growth causes mechanical in-
teractions with the surrounding growth matrix and results in significant compressive
stresses, which, when beyond a certain threshold, can inhibit cell proliferation. This
stress inhibited proliferation is modeled by Eq. (21.9), where the second term con-
taining the trace of the Cauchy stress is only considered when it is compressive and
above a threshold value. Further, as a possible explanation of symmetry-breaking
in tumor shapes leading to ellipsoidal tumors, it is assumed that cancer cells, being
highly motile, can migrate away from regions of high compressive stresses within
the tumor mass. This is modeled by the advection terms in Eqs. (21.1) and (21.2),
and given by

V c(σ )=M∇σii, (21.15)
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where M is a constant representing the motility of the cells. Further, tumor surface
tension is modeled through localized enhancement of the Cauchy stress tensor, i.e.
σ ST, on the tumor surface and is given by

σ ST = γ (∣∣∇ρc∣∣)(I − n̂ ⊗ n̂), (21.16)

where n̂ is the unit normal to the tumor surface and γ (|∇ρc|) is the coefficient of
surface tension, while γ (|∇ρc|) is defined to be non-zero only in the neighborhood
of the tumor boundary whose location is identified by the sharp gradient in cell
concentration.

21.3 Numerical Framework

The coupled system of PDE’s (Eqs. (21.1)–(21.6)) is solved using the Galerkin Fi-
nite Element Method and is integrated in time using the backward Euler scheme.
The time steps were adaptively chosen to ensure near quadratic convergence. The
code was based on the deal.ii (Bangerth et al., 2007) finite element library and heav-
ily utilized its hanging nodes based adaptive mesh refinement capability (Fig. 21.3)
and its suite of iterative solvers. A monolithic scheme was adopted to concurrently
solve for the complete set of solution variables (ρc,ρs, ρn,ρe, ρo, ρg and ū). How-
ever, a matrix based monolithic scheme would require the computation of the Jaco-
bian of the global residual equation. In this work, the exact Jacobian was computed
using the Sacado (2011) automatic differentiation library which allows for efficient
run time computation of the variational derivative of the residual equations.1

21.4 Simulations

The chemomechanical framework presented above is used to simulate tumor
growth. Most of the growth related parameters, transport constants and elastic com-
pliance values were obtained from the literature. The results presented in this work
are primarily 2D simulations, however, a representative 3D simulation is also in-
cluded at the end of this section. The problem geometry and the initial tumor seed-
ing concentrations are depicted in Fig. 21.4. The initial tumor seed is a uniform
spherical concentration of cells (ρc = 250 fg/µm3) and the surrounding matrix is
modeled as an elastic soft material (E = 2.4 · 10−8 N/µm2, ν = 0.49). To model the

1Automatic differentiation, also referred to as algorithmic differentiation, calculates derivatives of
functions up to any order to within machine precision by reducing complex functions to elementary
arithmetic operations and elementary functions by repeated application of the chain rule. It can
result in significant speedup of multiphysics implementations by computing the Jacobian of finite
element residuals. For variational problems, even greater ease of implementation is possible: only
the energy functional needs to be coded, and the system of residual equations and the Jacobian can
be computed by taking variational derivatives of the functional and residual equations, respectively.
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Fig. 21.3 Adaptively refined meshes with hanging nodes were used to discretize the problem
domain. Such meshes involve minimal computational penalty while refining and coarsening, and
the elements have a unit aspect ratio

Fig. 21.4 The problem geometry and the initial tumor seeding. The problem domain dimensions
are around 1000 µm

rise of a secondary stem cell population, some simulations consider an additional
concentration of cancer stem cells (ρs = 250 fg/µm3) located eccentrically with re-
spect to the primary cancer cell population. Based on the experimental observations
of change in tumor volume, the cell doubling times are assumed to be around one
day (tcD = 1.16 days, t sD = 1.04 days). The results presented here can be broadly
classified as follows:

• Simulation of growth dynamics: Initial simulations were geared towards repro-
ducing experimentally observed growth dynamics (evolution of tumor size and
shape, cell distribution within the tumor mass, etc.) (Mills et al., 2011, 2012) and
were used to fine tune the various parameters controlling the species interactions
and the effects of mechanics on cell proliferation. Figure 21.5 shows the distri-
bution of various biological and chemical species after about 10 days of growth.
As discussed in the introduction, a secondary population of tumor stem cells was
also considered to study the effects of highly proliferating local cell populations
on the overall tumor growth. Our computations (Fig. 21.6) show that the aggres-
sive proliferation of these stem cells would tend to ultimately dominate the shape
of the tumor, and depending on the relative proliferation rates of the two cell
populations, the resulting shape may be different from a spheroid or ellipsoid.
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Fig. 21.5 Spatial distribution of species concentration after 10 days of growth. All the concentra-
tion values have been normalized. The formation of nutrient a depleted region at the center of the
tumor leading to increased cell death can be observed

Fig. 21.6 Evolution of total cell concentration (cancer cells and stem cells) in the presence of an
underlying secondary population of cancer stem cells. Also plotted are contour lines (pink-cancer
cells, blue-stem cells) showing the dominant regions of the two cell populations. The stem cell
population is assumed to be eccentrically-located in the initial tumor spheroid, and the stem cells
are modeled to be more proliferative by reducing their doubling time by 10 % compared to the
doubling time of the primary cancer cells

• Study of proliferation and migration mechanisms: One of our primary moti-
vations for simulating tumor growth was to use the numerical framework to probe
the possible mechanisms that cause symmetry-breaking in tumor shape leading
to formation of ellipsoidally shaped tumors (Mills et al., 2012). The first mecha-
nism we considered was the existence of microscopic compliant planes in the tu-
mor growth matrix along which the stress produced by growth of tumors would be
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Fig. 21.7 Effect of microscopic complaint gel layers on tumor growth. Reduced cell death along
these planes leads to enhanced proliferation and thus lead to ellipsoidal tumor shapes

Fig. 21.8 Effect of high proliferation regions at symmetrically opposite ends of the tumor on the
tumor shape evolution. The effect is becomes more predominant when the tumor growth matrix is
subjected to compression

lower. If such regions of low stress exist, then they would act as enhanced cell pro-
liferation fronts, as stress induced cell death in these regions would be relatively
less compared to other regions of the tumor. This mechanism leads to symmetry-
breaking in tumor shapes, as shown in Fig. 21.7. However, the observed ellipticity
in the tumor shape was significantly less than the in vitro observations. To further
understand the level of proliferation needed to produce significant ellipsoidal tu-
mor growth, we conducted an inverse study, wherein we artificially created high
proliferation regions at symmetrically opposite ends of the tumor, and it was seen
that even a small reduction in the rate of cell death in these regions (10–20 %)
leads to expected ellipsoidal shapes, as shown in Fig. 21.8. Lastly, cell migration
from regions of high compressive stress to regions of lower compression/tension,
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Fig. 21.9 Effect of cell migration from regions of high compressive stress to regions of lower
compression/tension, modeled as pressure gradient driven advection

modeled as pressure gradient driven advection (Eq. (21.15)), was considered. The
results in Fig. 21.9 show that such a stress-driven migratory behavior of cells can
lead to preferred growth directions and thus may be a possible explanation for
development of ellipsoidal tumor shapes.

Extension of the above formulation to 3D is only limited by available compu-
tational resources. A representative simulation of 3D tumor growth is shown in
Fig. 21.10.

21.5 Discussion

The mathematical formulation based on multi-species reaction-transport equations
and chemomechanical coupling presented here is to be seen as a generic framework
for simulating tumor growth dynamics. The specific details of the source terms,
transport properties and the influence of mechanics will depend on the type of the
tumor, and one needs an extensive experimental program to fine tune various pa-
rameters and assumptions of inter-species interactions. The work presented here
was part of a larger experimental program to investigate the growth of human colon
adenocarcinoma tumors in agarose hydrogels, and thus the in vitro observations of
tumor growth allowed us to set bounds on various chemical, transport and mechan-
ical parameters. The simulations presented compared well with in vitro observa-
tions of tumor growth dynamics (tumor size and shape evolution, cell population
distribution, etc.) (Mills et al., 2011, 2012). As a natural second step, this simula-
tion framework is now being used to probe the possible mechanisms driving tumor
growth, and our current interests include the evolution of various tumor shapes and
effects of initial cell distributions (single cells, distributed colonies, secondary stem
cell population, etc.). The results presented here seem to suggest that mechanics
plays a critical role in evolution of these tumor shapes and various mechanics driven
phenomena could possible explain some of the in vitro observations. One possible
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Fig. 21.10 Three-dimensional simulation of tumor growth. Shown is the evolution of the iso-sur-
face of the total cell concentration

extension of the model being considered is the ability to simulate vascularization
and surface migration of cancer cells.
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Chapter 22
Multicompartmental Poroelasticity
as a Platform for the Integrative Modeling
of Water Transport in the Brain

John C. Vardakis, Brett J. Tully, and Yiannis Ventikos

Abstract This work proposes the implementation of a multiple-network poroelas-
tic theory (MPET) model for the purpose of investigating in detail the transport of
water within the cerebral environment. The key advantage of using the MPET repre-
sentation is that it accounts for fluid transport between CSF, brain parenchyma and
cerebral blood. A further novelty in the model is the amalgamation of anatomically
accurate Choroid Plexus regions, with their individual feeding arteries. This model
is used to demonstrate and discuss the impact of aqueductal stenosis on the cerebral
ventricles, along with possible future treatment techniques.

22.1 Introduction

Brain diseases affect over one quarter of the European population, at an estimated
cost of over €450 billion (Gustavsson et al., 2011). Age-related changes are im-
posing huge challenges to the global healthcare system. Diseases of old-age, such
as dementia and normal pressure hydrocephalus (NPH), are exerting substantial
pressures on society through growing numbers and costs. At the same time, medical
experts and policy makers are increasingly aware that the efficacy and economy of
therapy is strongly connected with the personalization of treatment.

This research proposes a novel application of multiple-network poroelastic the-
ory (MPET) to investigate cerebral fluid transport. A detailed investigation of mul-
tiscalar, spatio-temporal transport of fluid between the cerebral blood, cerebrospinal
fluid (CSF) and brain parenchyma is conducted. Specifically, the MPET model of
the cerebral tissue is coupled with a three-dimensional representation of the CSF
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Fig. 22.1 CSF circulates through the four brain ventricles and in the subarachnoid space surround-
ing the brain and spinal cord. Most of the CSF is reabsorbed into the venous system through the
arachnoid granulations and through the walls of the capillaries of the central nervous system and
pia mater

flow patterns arising from the source of production within the patient-specific ven-
tricular system.

A particular drawback of the majority of existing CSF transport models is the
conflation of the cerebral blood network and the CSF. In comparison, MPET allows
an elegant and novel extension of traditional poroelastic models to include detailed
transfer mechanisms between the cerebral blood and extracellular fluid/CSF. The
novelty of this approach leads to both a strength and a challenge, as many of the
requisite material properties have never been recorded. Previous parametric studies
(Tully and Ventikos, 2011) have identified both healthy and symptomatic ranges for
these newly introduced parameters.

22.2 Background

22.2.1 Background to Cerebral Anatomy

Figure 22.1 illustrates a sagittal cut of the cranial area under consideration. As can
be seen, the cerebral ventricles are the major CSF-containing spaces. It is known
that when considering adults, the normal CSF circulation proceeds in a consistent
and uniform manner. The classical hypothesis of CSF transport through the ventri-
cles involves the production of CSF at the Choroid Plexuses of the lateral, third and
fourth ventricles. CSF then flows out of the lateral ventricles via both the foram-
ina of Monro and into the third ventricle. From there, CSF passes into the fourth
ventricle via the aqueduct of Sylvius. The foramen of Magendie and the bilateral



22 Integrative Modeling of Water Transport in the Brain 307

Fig. 22.2 (Left): Axial view of geometry of a human ventricular system showing key anatomical
features. (Right): View of the ventricular system along with the choroid plexus of the lateral, third
and fourth ventricle. The arteries supplying these plexuses are also shown

foramina of Luschka act as the final outlets of the CSF leading to the subarachnoid
space. The central canal of the spinal cord also receives CSF from the fourth ventri-
cle; however, in comparison to the foramen of Luschka and foramina of Magendie,
this is a minute quantity. Once the CSF has exited from the cerebral ventricular sys-
tem, it accumulates in the subarachnoid cisterns surrounding the brainstem (cisterna
magna, medullary, pontine, interpeduncular, ambient and suprasellar cistern respec-
tively). The choroid plexus is the main site of CSF production and is situated within
the third, fourth and the underside of the lateral ventricles, see Figs. 22.1 and 22.2.
CSF is also produced, to a lesser degree, within the bulk of the brain parenchyma
(Irani, 2009). Once the CSF reaches the fourth ventricle, some of it exits through the
central canal but the overwhelming proportion flows around the tentorium cerebelli
in order for it to be absorbed by the arachnoid granulations and into the superior
sagittal sinus (Rekate, 2008; Gupta et al., 2010).

Since this work will incorporate geometrically accurate choroid plexuses in all
the aforementioned locations, the arterial supplies to these plexuses have to be in-
cluded, see Fig. 22.2. For the lateral ventricle, the arterial supply is dominated by
the anterior choroidal artery (ACA) and the medial and lateral posterior choroidal
arteries (MpCA and LpCA). Likewise, the choroid plexus of the third and fourth
ventricle is supplied by the posterior cerebral and inferior cerebellar arteries (PCA
and ICrA) respectively (Irani, 2009).

22.2.2 Hydrocephalus (HCP)

HCP can be succinctly described as the abnormal accumulation (imbalance between
production and circulation) of CSF within the brain (Rekate, 2008, 2009). This bal-
ance of CSF production and reabsorption allows for the CSF pressure to lie within
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Table 22.1 Classification of hydrocephalus along with some examples within this classification

Obstructive HCP Communicating HCP

Congenital Congenital

Stenosis of aqueduct of Sylvius, TVa & FVb Chiari malformations

Dandy Walker Syndrome, TVa & FVb Venous hypertension

Acquired Acquired

Midline supratentorial tumors Subarachnoid haemorrhage

Posterior fossa tumors Meningeal carcinomatosis

a Third ventricle, b Fourth ventricle

the 600–2000 Pa range (Irani, 2009). HCP cannot be considered a singular patho-
logical entity, but instead, a consequence of a variety of congenital and acquired dis-
orders present within the CNS (Thompson, 2009). What can be said with confidence
is that HCP is classified with regards to whether the point of CSF obstruction lies
within the ventricular system (obstructive) or not (communicating), see Table 22.1.
HCP can be further sub classified as acute or chronic. The prior is caused by the ob-
struction of CSF flow pathways, whilst the latter is characterized by prolonged time
scales for development. In addition, in most cases, this latter form of HCP possesses
no radiographically identifiable flow obstruction.

Normal pressure HCP (NPH): this form was originally described by Hakim and
Adams (1965). It aims to correlate a triad of disturbances, namely gait disturbance,
dementia symptoms and urinary incontinence. The key point for NPH is that the
aforementioned symptoms occur under the auspice of radiographic hydrocephalus
with normal CSF pressure (Byrd, 2006). NPH can be either idiopathic (no clear
aetiology and effects the elderly) or secondary (possesses an identifiable cause,
e.g., subarachnoid haemorrhage). Some thoughts on the aetiology of NPH include
the quashing of deep white matter ischemia as a cause, and instead focusing on
the diminishing compliance of superficial veins or other progressive impairment of
periventricular blood flow (Bradley, 2008). What is clear is that no matter what the
encountered aetiology, the final result of NPH is ventriculomegaly (communicating
HCP), which in turn may proceed in entertaining numerous manifestations of the
disease.

Acute HCP: this form of HCP is unlike its chronic counterpart, since it presents
clearly identifiable radiographical obstructions of the CSF flow pathways. The ven-
tricular system itself is affected by the location of these obstructions, for instance,
of the lateral ventricles and third ventricle, whilst an obstructed subarachnoid space
(due to inflammatory or haemorrhagic fibrosing meningitis) may lead to widespread
dilatation (Tully and Ventikos, 2011).

Surgical treatment is the preferred therapeutic option when treating hydro-
cephalus (Hamilton, 2009; Schödel et al., 2012), however this topic will not be
elaborated here.
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22.3 Mathematical Modeling and Anatomy Acquisition

22.3.1 Background

The primary theoretical development of the relationship between the pressure of a
fluid permeating a solid matrix and its constituent displacement was established by
Biot (1941). It is well known that a soil under an applied load does not conform to
an instantaneous deflection. Instead, it settles gradually (due to the soil adapting to
that load) at a variable rate. This settlement of soil to the load variation is termed
consolidation. Consolidation is analogous to an elastic ‘sponge’ saturated with wa-
ter deforming under load. The consequence of an applied load onto this system
would yield a gradual settlement proportional to the rate of water being squeezed
out of the voids of the elastic skeleton. Terzaghi (1943) initially applied the afore-
mentioned principles on a restricted one-dimensional case of a column under an
applied constant load. Biot extended Terzaghi’s one-dimensional work to portray
the number of physical constants necessary to determine the properties of the soil,
along with the general equations necessary to predict the settlements and stresses in
a three dimensional form. In doing so, he made the following assumptions regarding
the soil: (i) isotropic; (ii) under the final equilibrium conditions, the stress-strain re-
lationships (assumed linear) can be reversed, in addition, small strains are assumed;
(iii) water in the pores is assumed incompressible; (iv) Darcy’s law applies to wa-
ter flowing through the porous skeleton. It must be noted that the assumption of
isotropy is not a stringent one, and may be replaced by anisotropy. Assumptions (ii)
and (iii) on the other hand warrant more attention. Surface tension forces allocate a
soil grain configuration of minimum potential energy. This occurs since any changes
would take place at an infinitely slow rate, and so the final state of the soil is indepen-
dent of the path taken to reach this stage. This concept ties in well with assumption
(ii), since if one considered the potential energy negligible in this case; energy could
theoretically be drawn out of applied loading/unloading within a closed cycle. Re-
versibility is assigned on the basis of small strains, since a slight perturbation in the
macroscopic sense is unlikely to disturb the existing grain configuration.

22.3.2 Multiple-Network Poroelastic Theory (MPET)

Regulation of CSF and tissue displacement within the cerebral environment was
modeled by considering a spatio-temporal model. MPET theory is actively used in
geotechnical engineering to model materials which have naturally fractured fluid
passages of various sizes and which possess both storage and transport porosities.
These reservoirs intrinsically contain various subdivisions of permeabilities and are,
therefore, aptly suited to a multiple-poroelastic network (Bai et al., 1993). MPET
amalgamates fundamental conservation of mass and momentum principles, stress-
strain relationships, the Terzaghi effective stress principle and porous flow laws. In
the system in question, a solid matrix (s) is permeated by a = 1, . . . ,A number
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of fluid networks. Each network has its own individual porosity na , density ρa ,
permeability ka and finally fluid velocity relative to the aforementioned solid matrix
wai /n

a .
The complete system presents a highly non-linear set of equations which require

vast computational effort. Fortunately, we are dealing with biological flows and so
acceleration frequencies can be neglected and this can simplify the system to a con-
cise set of A+ 1 equations, i.e.

∇ · σ ′ −
A∑

a=1

αa∇pa + ρ
(

b − ∂2u
∂t2

)
= 0, (22.1)

1

Qa

∂pa
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+ αa ∂(∇ · u)

∂t
+ ∇ ·

[
kaρa

(
b − ∂2u

∂t2

)
− ka∇pa

]
−

A∑

b=1,b �=a
ṡb→a = 0.

(22.2)

Here, σ ′ is the effective stress in the solid matrix, b is the local body force, u is
the displacement vector of the solid matrix, ρ = ∑A

a=1 n
apa + ρs(1 − n) is the

total density of the system, n=∑n
a=1 n

a is the total porosity of the combined fluid
networks, ρs is the density of the solid, k is the isotropic permeability, Q is the
combined compressibility of the system, ∂(∇ · u)/∂t = ε̇ is the strain rate in the
solid matrix, αa is the Biot parameter of the defined network a and finally ṡb→a is
the rate of fluid exchange from network b to a (Tully and Ventikos, 2011).

The MPET framework strives to capture the independent nature of the fluid trans-
fer within the brain. The quadruple MPET model takes into account the arterial
blood network (a), the arteriole/capillary network (c), venous blood network (v)
and extracellular/CSF network (e). To transform the system in Eqs. (22.1) and (22.2)
into the quadruple MPET system required, one setsA= 4 and a = (a, c, v, e). In ad-
dition to this, further simplifications are made by assuming: a linear stress-strain re-
lationship, isotropic permeability, no external forces on the system, negligible grav-
itational effects, stationary reference frame, quasi-steady system due to the large
time scales in the development of HCP and physiology-derived constraints of spe-
cific directional transfer of water between networks in order to avoid breaches in
continuity and finally a spherically symmetric geometry. This gives the following
simplified relationships for the new quadruple MPET system, i.e.
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)
− |ṡa→c| + |ṡc→e| + |ṡc→ν | = 0, (22.5)
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Fig. 22.3 Schematic represents the transfer restrictions placed on the MPET model. For example,
it can be seen that there is no provision allowing for flow to occur between the CSF and arterial
networks

−kν
(
∂2pν

∂r2
− 2

r

∂pν

∂r

)
− |ṡc→e| + |ṡe→ν | = 0, (22.6)

−ke
(
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∂r2
− 2

r

∂pe

∂r

)
− |ṡc→ν | − |ṡe→ν | = 0. (22.7)

In the above, G is the shear modulus and ν is the Poisson’s ratio. In addition, if
one observes the set of Eqs. (22.3)–(22.7), there is an evident alternation of signs
for the |ṡ| terms. A negative/positive sign indicates an addition/loss of fluid to that
particular network, see Fig. 22.3. It is noted that in Eqs. (22.3)–(22.7), the transfer
between networks is via a hydrostatic pressure gradient (for the current stata of de-
velopment of the model), hence ṡs→t = ξst (pt −ps). Here, ξst is a constant scaling
the flow between networks s and t .

22.3.3 Anatomy Acquisition

The three dimensional anatomy of the ventricular system, choroid plexuses and the
arterial system was reconstructed from a series of 511(xy), 314(xz), 511(yz) DI-
COM files produced from a T2-weighted MRI scan of a healthy male volunteer aged
in his sixties. The images of the entire cranial area were acquired in the sagittal, axial
and coronal directions. The slice spacing was 0.5 mm. The acquired images were
manually segmented for the ventricular system using Amira (Mercury Computer
Systems, San Diego, CA, USA) and the raw segmented geometry from this process
was saved as a stereo lithography (STL) file. In order to preserve key anatomical
features such as the aqueduct of Sylvius, subsequent smoothing of the STL file was
done using the open-source modeling software, Blender (The Blender Foundation,
www.blender.org).

Owing to its powerful individual nodal manipulation capabilities, Blender was
also used to apply the smooth and local stenosis (Tully and Ventikos, 2011) to the
three-dimensional patient specific geometries for the cases involving the three de-
grees of HCP severity, namely open (3.00 mm diameter), mild (1.25 mm diameter)
and severe (0.80 mm diameter). The aforementioned dimensions are those of the
hydraulic diameter defined in Sect. 22.4. It must be noted that the current standard

http://www.blender.org
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voxel size produced from clinical imaging does not permit the accurate differentia-
tion of different degrees of aqueductal stenosis. Finally, inlets and outlet boundaries
were created using CFD-VisCART (ESI Group, Paris France), which was also used
to generate non-conforming computational grids. The final smoothed STL file for
an open aqueduct (i.e. no applied stenosis) is seen in Fig. 22.2, along with a clearer
labeling technique.

22.3.4 Solution Method

The governing multicompartmental poroelastic equations are solved with an im-
plicit second-order central finite differences scheme on the midpoints and for-
ward/backward Euler used on the boundary nodes. The quasi-steady time discretiza-
tion (for the temporally dependent terms in the boundary conditions) is performed
via a first-order Euler approach.

Flow through the multidimensional aqueducts is solved using the multiphysics
software CFD-ACE+ (ESI Group, Paris France) which is based on the finite vol-
ume approach, along with central spatial differentiating, algebraic multigrid scheme
(Webster, 1994; Khandelwal and Visaria, 2006; Tu et al., 2008) and the SIMPLEC
pressure-velocity coupling. The coupling between the poroelastic solver and the
flow solver is achieved through the CFD-ACE+ user-defined subroutines (UDS’s).
This approach allows for the embedding of the patient-specific aqueduct of Sylvius
into the model.

22.4 Results and Discussion for Aqueductal Stenosis

The results shown in Fig. 22.4 show the first application of the MPET model to
acute HCP. The transfer of water between the four networks to mimic the cerebral
environment reveals interesting features. The plots in Fig. 22.4 show the results
of the ventricular displacement along with the corresponding CSF pressure for the
three cases of stenosed aqueduct. The greatest displacement was witnessed for the
severely stenosed case, which was 1.93 · 10−4 m. The severe case also exhibited the
highest ventricular CSF pressure, that being 1096 Pa.

The CSF pressure converges to 1089 Pa on the skull, for all cases, as expected
since that value is connected with the venal absorption boundary condition. The
ventricular displacement decreases to 0 m at the skull, since this is imposed as a
rigid, adult skull boundary condition (skull radius of 10 cm).

The Reynolds number, defined as Re = ρeDhνp/μe, where νp is the peak ve-
locity flowing through the aqueduct, varied from 15 in the open case, 112 for the
mild and 135 for the severely stenosed aqueduct. The peak velocities associated
with these Reynolds numbers correspond to 4.4, 80 and 152 mm/s, respectively.
The hydraulic diameter Dh is given by Dh = 4A/P , where A is the cross sectional
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Fig. 22.4 Comparison of induced hydrocephalus behavior. The plots show results for ventricular
displacement and CSF pressure when varying the degree of aqueductal stenosis

area and P is the perimeter, given by P = 2π((a2 + b2)/2)1/2. Both a and b are the
major and minor axis of an ellipse. Finally, μe is the dynamic viscosity of CSF, and
is taken as 8.9 · 10−4 Ns/m2.

These results reasonably resemble those of Howden et al. (2007), although the
artificially stenosed cases obviously differ due to differences in implementing the
stenosis. It was also clear from the work currently undertaken that the central canal
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Fig. 22.5 (Left): Sagittal view of a z-slice of the mildly obstructed aqueduct of Sylvius. The con-
tour lines denote velocity magnitude. (Centre): Lines tangent to the instantaneous velocity vector
(at an instant coinciding with peak systole) in the aqueduct of Sylvius, indicating a smooth flow.
(Right): Rotated view of lines tangent to the instantaneous velocity vector (at an instant coinciding
with peak systole) in the aqueduct of Sylvius and fourth ventricle (open case)

displays the lowest peak velocities of all the outlets (did not exceed 0.02 m/s)
throughout the different applied occlusions. From an anatomical perspective, this
canal acts as a cushioning system for the spinal cord. This is in good agreement
with similar inferences made in the literature (Loth et al., 2001; Gupta et al., 2009,
2010).

A final note is made on the complexity of the flow. The streamlines in Fig. 22.5
(right) show just how complicated and asymmetric the flow within the ventricular
system is (namely in the fourth ventricle). Here, two vortices have developed, and
they both rotate in an anti-clockwise direction. The other portion of CSF travels
along the floor of the fourth ventricle and leaves via the three foramina. In the same
figure, one can also appreciate how flow exits through the foramen of Magendie
and in addition how a negligible amount leaves through the central canal. These
visualizations of the cranio-caudal flow are in good agreement with the literature
(Stadlbauer et al., 2010).

22.5 Future Work

The current MPET model can be extended to include a more varied range of hy-
drocephalic cases, namely those associated with atresia of the three foramina in
the fourth ventricle and both the foramina of Monro, see Fig. 22.2. The effects of
shunting, endoscopic third ventriculostomy (ETV) and a very recent development
in fourth ventriculostomy (Giannetti et al., 2011) will be investigated. This investi-
gation will be done in conjunction with the above cases of aqueductal stenosis, or



22 Integrative Modeling of Water Transport in the Brain 315

in addition, may form an integral part of a study addressing the direction of allevi-
ating the symptoms of hydrocephalus when considering the aforementioned cases
of atresia in the fourth ventricle. This model also allows for the natural incorpo-
ration of further, multiscalar detail by involving cellular level interactions such as
aquaporin-centered transport, believed to facilitate rapid absorption from CSF and
ISF.

The functional implications of the interthalamic adhesion (IA) and how it in-
fluences the CSF dynamics remains unclear. In the build-up to the current work,
it was witnessed that varying the position of the IA varied the flow characteristics
and pressure distribution quite considerably. Some very preliminary work has been
carried out to link the IA with Chiari malformations (Cheng et al., 2010), and an
appreciation of its imposing characteristics could prove pivotal when considering
the pulsatile distribution of CSF within the ventricles during systole and diastole.
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Chapter 23
Discontinuous Versus Continuous Chemical
Potential Across a Crack in a Swelling Porous
Medium

Jacques M. Huyghe, Famke Kraaijeveld, Joris J.C. Remmers,
and René de Borst

Abstract Understanding and prediction of mechanisms of failure is needed to
develop methods for prevention and treatment of failure. To increase the accu-
racy for the prediction of failure, advanced computational models are developed.
Mesh-independent modeling of cracks in porous media is obtained by enriching the
displacement field with a discontinuous shape function describing the crack. In a
poroelastic finite element modeling, an enrichment of the pressure field is manda-
tory around the crack. Two options are available to account for the sharp pressure
gradient around the crack. One is to resolve the pressure gradient using a continuous
pressure enrichment, the other is not to resolve the steep gradients and use discon-
tinuous jumps across the crack surface. In the latter case, analytical solutions of
the pressure field at an interface is used to evaluate the real pressure gradient. This
paper formulates criteria to decide whether to use one or the other approach. The
techniques are applied to swelling media in which the pressure degree of freedom
takes the form of a chemical potential.

23.1 Introduction

The mechanical causes of intervertebral disc (IVD) degeneration and herniation are
poorly known (Urban and Roberts, 2003). The presence of fixed charges in the col-
lagen network of tissues causes differences in ion concentrations with the surround-
ing fluid and, therefore, Donnan-osmotic pressure. This gives the IVD its prestress
and its protective nature against crack growth. During degeneration a loss of fixed
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charges and hydration occurs. Understanding and prediction of failure of the IVD
asks for the combination of experiments and computational models. Although finite
element models of failure of the disc exist, the modeling has usually been restricted
to stress analysis studies (Kim, 2000; Natarajan et al., 2007) or inserting contact
elements as a model for lesions (Little et al., 2007). Accurate modeling of the crack
improves the predictive behavior of those models. This is not only an issue in biome-
chanics, but there is a need for a good model for fracture in ionized porous media to
study geotechnical issues as well.

A macro fracture in a continuum is often of interest and therefore a discrete
fracture model is used. Herniation is not perfectly brittle. The macro-crack is pre-
ceded by a zone with small-scale yielding and micro-cracking. This process zone
is simulated by a cohesive zone model, where the decrease of strength in the zone
is lumped into a discrete line (in 2D modeling) and a stress-displacement relation-
ship across this line. Larsson and Larsson (2000) introduced a discontinuity in the
fluid by a regularized Dirac delta function. Armero and Callari (1999) assume only
discontinuous displacement. Steinmann (1999) extended these embedded disconti-
nuity models based on enhanced strains concepts without the restriction of locally
drained or undrained behavior by a new interface law based on Darcy’s law. To
eliminate mesh dependency and artificial length scales, Babuska and Melenk (1997)
introduced a discontinuity in a mesh free way by adding an enhanced field on top of
the standard displacement (and pressure) field, in this case by a Heaviside function
using the partition of unity property of the finite element shape functions. The num-
ber of degrees of freedom at the nodes whose support is crossed by a discontinuity
is increased. Therefore, no new nodes are added during propagation. Belytschko
and Black (1999) introduced this method for a solid together with an asymptotic
enhancement of the displacement field at the crack tip. Wells and Sluys (2001) in-
troduced cohesive segments within the finite elements followed by Remmers et al.
(2003) who modeled the crack not as a single entity but as a collection of overlap-
ping cohesive segments. A practical benefit of the method is that standard discretiza-
tion is used and crack propagation is independent of the discretization. A downside
of this method is that it is difficult to implement in commercial codes. Gasser and
Holzapfel (2006, 2007) have applied the partition of unity finite element method
to tissues, namely the fracture of an aortic wall and of bone. Réthoré et al. (2007)
considered shear banding by using partition of unity with crack tip singularity for
the solid phase and without crack tip singularity for the fluid phase, suggesting a
discontinuity in the pressure field in case of shearing, combined with Darcy’s law
similar to the enhanced strain models. A diaphragm with low permeability at the
discontinuity is assumed.

The above work has shown that the partition of unity approach is promising for
crack propagation in porous media. Much discussion is still on the treatment of the
fluid phase, because there is no comparison to a benchmark solution. In this research
we analyze under which conditions a discontinuous enrichment of the pressure field
should be preferred above a continuous. For the modeling of the osmoelastic behav-
ior of the material, Lanir’s plane strain model (Lanir, 1987) for small deformations
is used. Lanir assumes incompressible constituents, namely the solid matrix and in-
terstitial fluid, and neglects the influence of ion flow. Lanir’s model coincides with
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Fig. 23.1 Schematic
representation of the body Ω :
the two parts are Ω+ and
Ω−, separated by crack Γd.
A traction force holds on Γt
and fluid supply at Γf

Biot’s model if osmotic effects are neglected. This model is implemented with the
cohesive segment model by Remmers et al. (2003) and de Borst et al. (2006) for the
solid phase assuming quasi-brittle crack growth. Two cases are considered:

• A pressure discontinuity is introduced similarly to the displacement discontinu-
ity. The flow across the crack surface is evaluated from Darcy’s law where the
pressure gradient follows from Terzaghi’s one-dimensional consolidation.

• A continuous pressure enrichment is introduced which resolves the pressure gra-
dient in the vicinity of the crack.

23.2 Governing Equations

The governing equations consist of equations for the bulk and for the discontinuity.
Figure 23.1 shows a body Ω with external boundary Γ with a traction force on Γt

and fluid supply on Γf, with n the normal unit vector on the boundary Γ directed
outwards. The body is cut by a discontinuity Γd in two domains, Ω+ and Ω−. The
normal of the discontinuity n+ is directed towards Ω+.

23.2.1 Bulk Behavior

Osmoelastic media have large negatively charged groups fixed to the solid ma-
trix. Counter charges are present in the fluid for electro-neutrality. Due to the fixed
charges the total ion concentration inside the medium is higher than in the surround-
ing fluid. This leads to an osmotic pressure difference and therefore swelling of the
medium. Lanir (1987) assumes in osmoelasticity that free ions are always in equi-
librium with the external salt concentration. Ion contribution is therefore neglected
and the medium is described by two constituents only: the solid (s) and the fluid
(f). The constituents are assumed to be incompressible. The material is assumed
linear elastic, isothermal, isotropic, homogeneous and fully saturated. The presence
of the fixed charge causes a deformation dependent pressure difference between the
sample and surrounding fluid. Van’t Hoff relation defines the osmotic pressure in
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terms of concentrations of free cations c+, anions c−, gas constant R and temper-
ature T and depends indirectly on the fixed charge density cfc and the external salt
concentration cex, i.e.

 π = π − πex =RT
√(
cfc
)2 + 4

(
cex
)2 − 2RT cex. (23.1)

Not hydrostatic pressure, but the chemical potential of the fluid is the driving force
for fluid flow. Chemical potential is a measure for the free energy of the fluid. The
chemical potential of the fluid μf is defined per unit volume fluid

μf = p− π, (23.2)

where π is the osmotic pressure and p the hydrostatic pressure. The osmotic pres-
sure is determined by the empirical Van’t Hoff equation, which defines the osmotic
pressure in terms of concentrations of free cations c+, anions c−, gas constant R
and temperature T . Thus,

π =RT (c+ + c−), c+ + c− =
√(
cfc
)2 + 4

(
cex
)2
. (23.3)

This osmotic pressure holds outside as well as inside the medium, but outside the
medium the fixed charge density cfc is zero and the osmotic coefficient may be
different. Electro-neutrality holds, therefore, the amount of negative charges are
equal to the amount of positive charges: c− + cfc = c+. Furthermore we introduce
 π = π − πex. The seepage flux q follows Darcy’s law in the presence of concen-
tration gradients. The total equations are given as:

Momentum equation ∇ · σ = ∇ · σ e − ∇(μf + π)= 0, (23.4)

Stress-strain relation σ e = 2με + λ tr(ε)I, (23.5)

Mass balance ∇ · ∂u
∂t

+ ∇ · q = 0, (23.6)

Darcy’s law q = −K · ∇μf, (23.7)

Swelling equation  π =RT
√(
cfc
)2 + 4

(
cex
)2 − 2RT cex, (23.8)

Fixed charge cfc = φf
i c

fc
0

tr(ε)+ φf
i

. (23.9)

The parameters μ = E/2(1 + ν) and λ = μ2ν/(1 − 2ν) are the Lamé constants,
and E, ν and μ are the Young’s modulus, Poisson’s ratio and shear modulus, re-
spectively. The tensor K =KI denotes the permeability tensor and is assumed to be
isotropic and constant in space and time.

The presence of ions fixed to the solid matrix results in prestress of the solid
matrix at the initial condition. Therefore, ε is the strain tensor which is separated
in an initial strain εi and the deformation from an initial to the current state, i.e.
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ε = ε − εi = ∇su = [∇u + (∇u)T]/2. Similarly, the fixed charge density is calcu-
lated from the fixed charge density cfc

0 at the stress-free configuration and the initial
volume fraction φf

i . Equations (23.4)–(23.8) may be reduced to

∂ tr(ε)

∂t
− ∇s · (K · ∇sμf)= 0, (23.10)

2μ∇s · ε + λ∇s tr(ε)− ∇s[μf + π(ε)]= 0. (23.11)

The boundary and initial conditions are given by (Γt ∪ Γu = Γ , Γt ∩ Γu = ∅ and
Γf ∪ Γμ = Γ , Γf ∩ Γμ = ∅),

u(x,0)= u0(x), x ∈Ω, μf(x,0)= μf
0(x), x ∈Ω,

u(x, t)= uγ (x, t), x ∈ Γu, μf(x, t)= μf
γ (x, t), x ∈ Γμ,(

σ e − (μf + π)I) · n = tt(x, t), x ∈ Γt q · n = ff(x, t), x ∈ Γf.

(23.12)
If the initial state is an unloaded state, where the material is in contact with a filter
(μf

in = μf
ex), the next holds

σ e(εi)− π(εi)I = 0, (23.13)

provided that the medium is homogeneous. Then the initial strain tensor is given by

εi = εiI, (23.14)

εi =  πi

2μ+ 2λ
,  πi =RT

√(
cfc

i

)2 + 4
(
cex

i

)2 − 2RT cex
i . (23.15)

In the case that the swelling in one direction is obstructed, for instance by adjacent
vertebrae, the initial strain is not isotropic.

23.2.2 Discontinuous Kinematics

A set basis or shape functions {N}ni=1, with n the number of integration points, form
a partition of unity since

∑n
i=1Ni = 1. A field v is interpolated as

v(x, t)=
n∑

i=1

Ni(x)

(

ai(t)+
m∑

k=1

ψk(x)bik(t)

)

, (23.16)

with ai the regular degrees of freedom (DOFs), {ψ}mk=1 additional basis functions
and bik additional degrees of freedom (Babuska and Melenk, 1997). These addi-
tional basis functions may not originate from the span of the original set of basis
functions.

Using these extra basis functions, the displacement field and the chemical poten-
tial distribution are separated into two different scales: the bulk behavior (standard
field) and crack behavior (enhanced field). The opening or sliding of a crack can
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Fig. 23.2 When a shear band
develops, the displacement
jump becomes nonzero and a
large gradient in chemical
potential arises with a small
transition zone (A). With
time, the displacement jump
grows, the gradient in
chemical potential decreases
and the transition zone
widens (B)

be incorporated as a jump in the displacement. A jump in displacement is math-
ematically represented by the Heaviside function. We assume that the strain field
is defined everywhere even at the surface across which the jump occurs. Then the
displacement field u of the body can be additively decomposed into the continuous
part û and the enhanced part ũ (Remmers et al., 2003)

u(x)= û(x, t)+ HΓd(x)ũ(x, t). (23.17)

The Heaviside function HΓd is defined with the jump at the discontinuity as

HΓd =
{−h/2, x ∈Ω+,

+h/2, x ∈Ω−. (23.18)

The Heaviside function is acting on the smooth function ũ(x, t) keeping the crack
surface continuous. The jump at the discontinuity Γd is given by [u] and represents
the opening of the crack

[
u(x, t)

]= hũ(x, t), x ∈ Γd. (23.19)

The strain becomes

ε = ∇su = ∇s û + HΓd∇s ũ + δΓd

(
ũn+)s , (23.20)

with n+ the normal at the crack surface directed inwards. The last term only has a
contribution in the variational description at the discontinuity. The second degree of
freedom that needs enrichment across the crack is the chemical potential, or in case
of a non-swelling medium, the pressure. Figure 23.2 shows in two steps what hap-
pens at the crack. On initial growth a small opening arises, i.e. small displacement
jump, and a steep gradient in the chemical potential occurs over a small transition
zone (case A). While the opening grows, the gradient in the chemical potential de-
creases in magnitude and spreads over a wider transition zone. This is illustrated for
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the case of mode II cracking in Fig. 23.2. The difficulty here lies in the fact that the
most critical area of the crack, namely the crack tip has a jump in chemical potential
that cannot be captured using continuous functions, and further away from the crack
tip a discontinuous description fails as the chemical potential becomes increasingly
continuous.

High gradients are either approximated by

• case 1: a jump μ̃f(x, t) over the crack surfaces. In this case the decomposition
becomes

μf(x)= μ̂f(x, t)+ HΓd(x)μ̃
f(x, t), (23.21)

and the difference in chemical potential at the discontinuity is given by [μf]:
[
μf(x, t)

]= hμ̃f(x, t), x ∈ Γd. (23.22)

The gradient in the chemical potential becomes

∇sμf = ∇s μ̂f + HΓd∇sμ̃f + hδΓd

(
μ̃fn+), (23.23)

or
• case 2: a continuous enrichment of the chemical potential. In this case the decom-

position becomes

μf(x)= μ̂f(x, t)+ DΓd(x)μ̃
f(x, t). (23.24)

The distance function is defined with respect to the coordinates of the crack xΓ ,
namely by

DΓd = h

2

∣∣(x − xΓ ) · n+∣∣, x ∈Ω, (23.25)

with h the magnitude of the Heaviside jump. The gradient ∂D of the distance
function is given by

∂D = ∇sDΓd =
⎧
⎨

⎩

h
2 n+ x ∈Ω+

h
2 n− x ∈Ω−

= HΓdn+, (23.26)

where ∇su = [∇u + (∇u)T]/2 holds.

The Heaviside function results in a discontinuous distribution with a jump at the
location of the crack and a linear distribution away from the crack (Fig. 23.3a). The
distance function continuous distribution of the chemical potential with a nonlinear
distribution of the chemical potential away from the crack (Fig. 23.3b).

23.2.3 Local Behavior at the Crack

A local coordinate system (n, s) is introduced where n is in the direction of the
normal vector toΩ+ and t is orthogonal in the direction of propagation. This means
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Fig. 23.3 A 1D representation of the effect of (a) the Heaviside function (case 1) and (b) the
distance function (case 2). The total field is the additive result of the standard field and the enhanced
field

a displacement jump is decoupled into

[u] = [u]nn+ + [u]st+, (23.27)

with n+ = −n− directed into the body and t+ is directed along the crack surface
opposite to the direction of propagation. We define crack surfaces Γ +

d = ∂Ω+ ∩Γd

and Γ −
d = ∂Ω− ∩ Γd.

23.2.3.1 Local Mass Balance

Deformation around the discontinuity is strongly linked to fluid flow. Fluid flow
takes place at the surface of the discontinuity from the medium into the crack and a
flow along the crack when opening of the crack increases. When the crack is closed,
the normal fluid flow f±

c over surface Γ ±
d determines the amount of fluid exchange.

When the crack opens, additional terms are included. Figure 23.4 shows a schematic
overview of the local mass balance. There is a balance between tangential flow and
normal flow

qΓ · n+ + qΓ · n− = f+
Γ + f−

Γ = −∂qΓ · t+

∂s
− ˙[u]n, (23.28)

qΓ · t+ = −∣∣[u]n
∣∣kKd

∂μf
Γ

∂s
, (23.29)

where s represents the distance along the crack, with s = 0 the crack tip and s
positive in direction of t+. Tangential flow is assumed of the Couette type. The
fluid flows from the crack into the formation are calculated from Darcy’s law. If the
pressure gradient is resolved (case 2), then the resolved pressure gradient is used. If
the pressure gradient is unresolved (case 1), then the pressure gradient is evaluated
from Terzaghi’s analytical solution of linear one-dimensional consolidation:

f+
Γ (x, t)= −Kμ

f+ −μfΓ

 x
, f−

Γ (x, t)= −Kμ
f− −μfΓ

 x
, (23.30)
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Fig. 23.4 Schematic
representation of the fluid
flow at the crack surface with
parameter s the distance
along the crack

where x is the width of the pressure gradient and depends on the time t since dis-
continuity developed at that place, the bulk permeability K and aggregate modulus
of the material (c= 2μ+ λ− δπ/δ tr(ε)), namely  x2 ∼ tKc. In other words, at
the crack tip, the pressure gradient is infinitely steep, while as one moves away from
the crack tip, the pressure gradient is softening. Equation (23.30) can be rewritten
in terms of an unresolved hydraulic permeability kd:

f+
Γ = −kd

(
μf+ −μf−)= −kd

[
μf]= −hkdμ̃

f. (23.31)

23.2.3.2 Local Momentum Balance

A discrete crack is preceded by local damage. This micro-damage is lumped into
one constitutive relation (cohesive zone) and projected onto the crack (Remmers et
al., 2003). The model relates the decohesion, i.e. softening of the traction forces, as
result of opening of the crack. For the traction forces at each surface holds σ · n+ =
t+Γ = −t−Γ = −σ · n−, i.e.

[
σ e − (μf + π)I]± · n± = t±Γ (x, t), x ∈ Γ ±. (23.32)

The cohesive law holds locally and is described in the local coordinate system of the
discontinuity. The cohesive zone model is nonlinear and acts on the effective stress.
For the cohesive damage model an exponential law similar to Xu and Needleman
(1993) is used, see Fig. 23.5. This law denotes the softening behavior after reaching
the critical stress state. Defined is critical length δs = Gc/τult, with τult the ultimate
traction forces and Gc fracture toughness. The cohesive law is then

ts = τult
[u]s
δs
e
−( [u]s

δs
)2
. (23.33)

Note that the surface underneath the curve is the fracture toughness Gc:
∫ ∞

−∞
tsd[u]s =

∫ ∞

−∞
tsd[u]s = τultδs2

∫ ∞

0

r

2
e−r2

dr = τultδs = Gc. (23.34)

A history parameter κ is introduced in case of unloading each time step the current
opening κ0 and traction τ0 are remembered. When the new opening is smaller than
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Fig. 23.5 Normalized
distribution of the exponential
cohesive law illustrated for
shearing related traction
forces and displacement

previous, then unloading takes place according to

ts = τ0

κ0
[u]s . (23.35)

Damage is defined as

D = 1 − |ts |
τult
. (23.36)

Macro crack is developed when the local damage approaches maximum (D = 1)
and therefore when the exponential approaches zero. When locally the opening de-
creases compared to previous time step unloading takes place. The cohesive law
parameters Gc and τult can be obtained from experimental data.

23.2.3.3 Yield Criterion

Crack growth is determined by damage in the solid matrix. Therefore, the yield
criterion, next to the cohesive zone, is related to the effective stress. The effective
stress at the crack tip varies locally, therefore the critical effective stress state is
calculated non-locally using Gaussian functions following Wells and Sluys (2001),
i.e.

σ tip =
ntot∑

i=1

wi

wtot
σe1,2, wtot =

ntot∑

j=1

wj , wi = (2π)2/3

l3a
e
− r2i

2l2a , (23.37)

with ri the distance between integration point i and the crack tip and la is a length
scale parameter which determines the influence of a sample point. σe1,2 and associ-
ated angle αn is evaluated either from Camacho and Ortiz (1996) (mode I):

σe1,2 = σex − σey

2
±
√(

σex − σey

2

)2

+ σ 2
exy, (23.38)
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or by Tresca criterion (mode II). As soon as the criterion is met, the crack propagates
to the next element boundary, additional enrichments are added to accommodate for
the extra length of the crack and the criterion is tested for the next element.

23.3 Numerical Description

The weak form for the finite element method is derived by standard Galerkin ap-
proach. Then the weak equations are discretized leading to a time-dependent, non-
linear system. This is solved using a Crank-Nicolson scheme for time-integration
and Newton-Raphson iteration within each time increment. A discretized form is
derived by dividing body Ω into elements Ωe , e = 1, . . . , ne (Ω =⋃ne1 Ωe). The
result is that also the discontinuity is discretized in elements Sd and the boundary
in elements Se. The displacements, the chemical potential and their variations are
discretized similarly (Bubnov-Galerkin approach) by

û =N~ Ta~u, ũ =N~ Tb~u, μ̂f =m~ Ta~μ, μ̃f =m~ Tb~μ, (23.39)

where N~ = [N~ x N~ y] contains the shape functions. The columns a~u and b~u contain
the nodal values for bulk part and enhanced part, respectively. Similar are m~ , a~μ
and b~μ columns of shape functions and nodal values. The introduction of fluid flow
does demands a time stepping algorithm. Time stepping here is therefore driven
by diffusion of the fluid and not dissipation of energy. The solution is sensitive to
the magnitude of the time increment. A large time step leads to underestimation
of fluid pressure in confined compression. Taking too small steps leads to initial
oscillation. For stable time integration the following law has to be satisfied (Vermeer
and Verruijt, 1981)

 t >
 x2

cK
, (23.40)

in which  x is characteristic size of an element and  t is the time step. A Crank-
Nicolson scheme is used. Although the bulk material is assumed linear elastic, the
presence of damage introduces nonlinearity. The system is therefore solved itera-
tively at each time step. The matrices involved are given elsewhere (Kraaijeveld et
al., 2009). The model has been programmed using the Jem/Jive finite element toolkit
which has been developed by Habanera (Rijswijk, Netherlands). For implementa-
tion aspects like the tracking of the crack tip, increasing the degrees of freedom
or other propagation issues we refer to Remmers et al. (2003, 2008) and Remmers
(2006).



328 J.M. Huyghe et al.

Fig. 23.6 Left: schematic
representation of the
compression test. Right:
representation of the mesh for
the compression test

23.4 Results

23.4.1 Shear Test Using Discontinuous Chemical Potential
(Case 1)

For the shear test the sample is boxed except for the contact area with the piston.
On the right the sample is in contact with a filter, which causes an equilibrium with
an external salt solution (μf

in = μf
ex) and concomitant prestress is all directions. An

initial crack is imposed away from element interfaces (Fig. 23.6).
The material properties are given in Table 23.1. External load is applied through

the piston. The piston is moved with constant speed v = 0.15 · 10−3 mm/s. Crack
growth is investigated in a free swollen sample. The initial size of the sample is the
result of free swelling in both directions. The resulting pre-strain is εix = εix = 1.2 ·
10−3. In Fig. 23.7 the distribution of the chemical potential is given. The movement
of the piston results in initially straight crack growth which after a while deflects.
At the crack tip a pressure gradient over the crack exists.

The fluid flow evolution in case of free swelling is considered across the crack
q · n+ for two points, in the initial crack (dx = 0.28 mm) and in the crack (dx =
0.48 mm), see Fig. 23.8. The flow in the initial crack is nonzero. Every time the
crack propagates a peak in flow takes place which is also felt in the already existing
crack. The crack grows for several elements after which stress is built up again and
in which the flow relaxes. The fluid flow is nonzero from start. When the local per-
meability is taken constant and similar to bulk permeability (kd =Kd), the overall
crack propagation is not changed much, but fluid exchange is lower and more slowly
initiated. When the permeability is taken much lower, there is hardly any fluid flow.

There are two types of discretization sensitivity: in time and in space. Decreas-
ing the time discretization by a factor 4 does not have any influence on bulk and
crack behavior. Therefore, the time step is sufficiently small. Decreasing the mesh
discretization size by a factor two, does not have a negligible effect. Decreasing
the mesh size, but keeping the nonlocal length la (Eq. (23.37)) constant, increases
the amount of integration points over which the stress at the crack tip is averaged.
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Table 23.1 Material
properties for shear test R = 8.3145 Nmm/mmolK T = 298 K

E = 90.0 MPa ν = 0.20

φf
i = 0.80 K = 0.28 · 10−3 mm4/Ns

cex = 0.15 · 10−3 mmol/mm3 cfc
i = −0.2 · 10−3 mmol(eq)/mm3

Kd = 0.28 · 10−3 mm3/Ns

Gc = 0.002 N/mm τult = 0.4 MPa

la = 0.2 mm v = 1.5 · 10−3 mm/s

Fig. 23.7 Distribution of
chemical potential
(dt = 16.6 s). Crack-path is
independent of mesh. Across
the crack line a jump in
chemical potential is
observed

The result is that the stress at the crack tip is lower and, therefore, crack growth is
slightly slower, but more constant. This has effect on the fluid flow. Decreasing the
nonlocal length and the discretization size by a factor 2 causes faster crack growth.

23.4.2 Delamination Using Continuous Chemical Potential
(Case 2)

A delamination test is performed with a predefined angle of 0◦. An initial defect
of length 13 mm is inserted on the left hand side, Fig. 23.9. The sample is fixed
on the right hand side and is in contact with a filter (μf = 0). Crack propagation is
initiated by pulling the sample on the top and bottom over approximate 8 mm with
a fixed velocity of 1.0 · 10−3 mm/s. The local fluid distribution is determined by
Eqs. (23.28) and (23.29).
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Fig. 23.8 Normal flow for free swelling along the crack at points dx = 0.28 mm and
dx = 0.48 mm. Crack growth causes a peak in flow after which relaxation takes place. The jump
in chemical potential imposed by the one-sided compressive load results in a nonzero initial flow
and high peaks in case of crack growth followed by relaxation. The resulting crack-growth occurs
in a staccato fashion. Crack growth over several elements followed by a pause during which the
chemical potential jump diffuses away. This diffusion of the chemical potential leads to increasing
load on the effective stress field of the solid, and hence failure of the solid

Fig. 23.9 The mesh and
boundary conditions for
delamination consisting of
575 elements. Material is
pulled at the top and bottom
on the left and is on the right
in contact with a filter

The exact material properties are given in Table 23.2. This means that
2RT Γ cex = 4.96 N/mm2 holds. A time step of 0.1 s is used.

The influence of mesh refinement, prestress and local boundary conditions on the
crack is considered on crack propagation and flow around the crack. For the mesh re-
finement, the mesh of Fig. 23.9 is refined to 2701 elements. The corresponding time
step is a quarter of the time step of the coarse mesh. For the influence of prestress
four cases are compared, no prestress, prestress in both directions and prestress in
either x- or y-direction. The modes of prestress are the result of different initial
swellings, not the result of uneven distribution of fixed charges. Furthermore, the
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Table 23.2 Material
properties for delamination
test

R = 8.3145 Nmm/mmolK T = 298 K

E = 1.4 · 104 MPa ν = 0.33

φf
i = 0.10 K = 0.2 mm4/Ns

cex = 1.0 · 10−3 mmol/mm3 cfc
i = −1.0 · 10−3 mmol(eq)/mm3

Kd = 0.2 mm3/Ns k = 2

Gc = 0.020 N/mm τult = 1.1 MPa

la = 7.8 mm v = 1.0 · 10−3 mm/s

influence of local mass balance is considered by decreasing the local permeability
with respect to the standard case or prescribing the chemical potential in the crack.
Considering the chemical potential distribution, Fig. 23.10, the figures show local-
ization at the crack tip with a negative chemical potential. This low chemical poten-
tial is relaxed by fluid redistribution towards the crack tip. The chemical potential is
largest at the left due to largest opening of the crack.

Figure 23.11 shows the fracture length versus the pull displacement. Crack
growth occurs slightly faster in the case of prestress. With further opening of the
crack, the chemical potential decreases and the tangential flow increases. Numerical
oscillations seem to be present, but the oscillations are actual changes in chemical
potential due to crack growth and redistribution of load. These changes are less in
the case of prestress than when there is no prestress present. In addition in the case
without prestress the growth seems more smoothly. Furthermore, the chemical po-
tential is nonzero from the start in case of prestress. When fluid is not taken into
account, crack growth occurs faster, while the time to damage initiation is almost
the same as in the case with fluid present.

23.5 Discussion

Computations of both mode I and mode II crack propagation in saturated porous
media predict stepwise crack propagation, provided fluid exchange between crack
and formation is accounted for. The time  t during which the propagation pauses
and the distance  x over which the crack propagates in one step relates according
to Terzaghi’s relationship:

 t =  x2

cK
. (23.41)

In mode I, the triaxial tensile stress state at the crack tip results in a strong under-
pressure in the fluid. This pressure (or chemical potential) dip at the crack tip attracts
fluid, particularly from the crack itself, resulting on the one hand into a closing of
the crack a short distance away from the tip, and on the other hand into a progressive
transfer of the triaxial state of tensile stress from the fluid to the effective stress of
the solid. This progressive transfer leads to failure of the solid and further propaga-
tion of the crack. The same scenario repeats itself all over again a little further into
the material.
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Fig. 23.10 Delamination in
case of prestress in both
directions after 950 time
increments (i.e.
9.5 · 10−2 mm displacement
of top boundary). Distribution
of (a) chemical potential
(N/mm2), (b) flow in the
x-direction (mm/s), (c) flow
in the y-direction (mm/s)

In mode II a very similar phenomenon occurs. A sharp pressure (or chemical
potential) gradient develops as the shear band proceeds, causing a fluid flow across
the band. This fluid flow transfers the stress concentration at the crack tip from
the fluid to the effective stress, resulting in a (delayed) shear band propagation,
recreating thereby the steep pressure gradient across the newly created shear band.

The crack chemical potential tracing in Fig. 23.11 are indicative of a model that
cannot resolve the variations imposed by the stepwise progression of the crack. On
the contrary, the flow tracings in Fig. 23.8 are obtained though discontinuous en-
richment of the chemical potential field. This approach exempts from resolving the
steep chemical potential gradients and reconstructs the steep gradients from the an-
alytical solution of Terzaghi. From the poromechanical theory, we can infer that the
continuous approach as taken in Fig. 23.11, can only capture the flow and pressure
(or chemical potential) variations correctly if the time step is larger than  x2/cK ,
in which  x is the characteristic mesh size. From this criterion we infer that for
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Fig. 23.11 Comparison of the effect of prestress for delamination dx = 13.71 mm (ahead of the
initial crack) on tangential flow in the crack, chemical potential in the crack and crack growth
against pull displacement at the top

adequate resolving of the chemical potential gradient, the time step should be larger
than 180 s, which is not suitable for crack propagation. The only option left is to
decrease  x, in other words, increase the spatial resolution.  x should decrease a
factor 40 = √

180/0.1 in order to allow a time step of 0.1 s. If one does so through
a mesh refinement, the advantage of partition of unity is largely lost. Choosing for
high order polynomials for the enrichment function D is probably the only option
to handle fracture in saturated porous media by means of continuous enrichment for
the pressure. The lower the hydraulic permeability and the lower the Young’s mod-
ulus of the porous medium, the higher the order of the polynomial has to be. The
computationally more effective approach is the discontinuous enrichment function
for the pressure.
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Chapter 24
Mechanisms of Brain Morphogenesis

Benjamen A. Filas, Gang Xu, and Larry A. Taber

Abstract In structures with obvious mechanical function, like the heart and bone,
the relationship of mechanical forces to growth and development has been well stud-
ied. In contrast, other than the problem of neurulation, the developmental mecha-
nisms in the nervous system have received relatively little attention. In this review
we discuss recent advances in our understanding of the physical mechanisms of
morphogenesis during brain development. Specifically, we focus on two processes:
formation of the primary brain vesicles and folding of the cerebral cortex.

24.1 Introduction

During development, the brain undergoes a dramatic transformation from a simple
tubular structure to (in large mammals) a highly convoluted shape. Most investiga-
tors recognize that mechanics plays a major role in this process, but the physical
mechanisms of brain morphogenesis remain poorly understood.

In this review, we discuss the state of the field and some of the current research
challenges. Where appropriate, we emphasize interspecies differences in morpho-
genetic mechanisms, as understanding these differences can provide insight into the
development of individual organisms (Lui et al., 2011). After discussing background
and embryology we focus on the formation of the primary vesicles in the early brain
and cortical folding, which occurs relatively late in development. These processes
warrant further study, as abnormalities in brain shape and folding patterns have been
linked to a wide array of neurological disorders including schizophrenia, epilepsy,
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autism, and mental retardation. Morphogenesis offers a number of challenges for
computational modelers, and we hope this review stimulates more interest in these
problems among biomechanical engineers.

24.2 Neurulation and Brain Tube Formation

Neurulation is the earliest stage of development specific to the nervous system. This
process begins within the first three weeks of conception in humans, as a central
region of ectoderm called the neural plate folds to create the neural tube (Fig. 24.1).
The wall of the tube is a neuroepithelium composed of a single layer of undiffer-
entiated neural progenitor cells (Lowery and Sive, 2009). The cells are columnar,
and the cell nuclei migrate between the apical side (facing the lumen) and basal side
(facing the exterior) during the cell cycle, giving the neuroepithelium a pseudos-
tratified, or multi-layered appearance (Sauer, 1935; Miyata, 2008). Eventually, the
anterior and posterior regions of the neural tube become the brain and spinal cord,
respectively.

Morphogenesis of the neural tube occurs in a specific spatiotemporal pattern
along the length of the embryo. In the chicken, mouse, and human embryo, the neu-
ral plate elevates, folds, and fuses to form a tube with a hollow lumen (Fig. 24.1A).
Depending on the longitudinal position along the tube, this closure is facilitated by
the formation of one or three hinge points (Fig. 24.1A, asterisks). Generally, multi-
ple hinge points are present at the anterior end of the tube (prospective brain), while
only one hinge point forms posteriorly (prospective spinal cord). The end result is
a tube that decreases in cross-sectional area from the brain through the spinal cord.
Collectively this folding is known as primary neurulation, which has been shown to
require the coordination of forces intrinsic to the neuroepithelium as well as extrin-
sic forces generated by surrounding tissues (Schoenwolf and Smith, 1990).

In contrast, during later stages of development, an entirely different mechanism
sculpts the furthest posterior spinal cord region. Here, undifferentiated mesenchy-
mal (loosely connected, highly migratory) cells condense and cavitate to form an
internal lumen in a process known as secondary neurulation (Fig. 24.1B). Hence,
the anterior brain and spinal cord form via coordinated bending of the neuroep-
ithelium, whereas the posterior end of the spinal cord forms via the agglomeration,
cavitation, and epithelialization of loosely connected cells.

In species such as Xenopus (frog) and zebrafish, however, such a difference be-
tween neurulation mechanisms is not immediately apparent (Schmitz et al., 1993;
Lowery and Sive, 2004; Harrington et al., 2009). Here, neural precursor cells mi-
grate medially to form a neural keel (Fig. 24.1C, arrows), intercalate (exchange
neighbors), and remodel to form a slit-like lumen. Interestingly, it remains contro-
versial as to whether the brain forms via a primary or secondary neurulation mode
in these species. Dynamic (time lapse) imaging studies suggest that these cells roll
into a tube, as occurs during primary neurulation, but in doing so, the cells interca-
late and migrate, displaying behaviors more typical of those involved in secondary
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Fig. 24.1 Neurulation mechanisms. (A) Primary neurulation in the chicken. A central region
of ectoderm (neural plate) bends to form the neural groove. Multiple (brain) or single hinge
points (spinal cord) facilitate subsequent tube closure (asterisks). (B) Secondary neurulation in
the chicken. Mesenchymal cells coalesce and cavitate to form the posterior spinal cord. (C) Neu-
rulation in zebrafish. Cells migrate medially (arrows) to form the neural keel and reorganize to
form a slit-like lumen. (D) Schematic from Schoenwolf and Smith (1990) showing representative
cell morphologies during stages of hinge point formation in the prospective chicken brain, adapted
with permission from Development. Interrelated processes of cell shape change, contraction at the
apical (inner) wall, and nuclear positioning cooperatively shape the bending neuroepithelium

neurulation (Lowery and Sive, 2004; Harrington et al., 2009). Hence, neurulation in
these species may involve a combination of the primary and secondary neurulation
mechanisms. Computational models for neural tube closure in amphibians have pro-
vided insight into some of these processes (Clausi and Brodland, 1993; Chen and
Brodland, 2008; Brodland et al., 2010).

What does seem to be clear, however, is that hinge points do not form during neu-
ral tube formation in Xenopus or zebrafish as occurs in chicken, mouse, and human
embryos (Fig. 24.1A, C, Harrington et al., 2009). Hinge point formation is char-
acterized by interrelated, intrinsic processes such as cell wedging, possibly caused
by apical contraction or the radial positioning of nuclei in the neuroepithelial wall
(interkinetic nuclear migration) (Fig. 24.1D, Schoenwolf and Smith, 1990). The nu-
cleus constitutes the bulk of the cell volume (Fig. 24.1D) and its radial position in
the neuroepithelial wall depends on the stage of the cell cycle. If, for example, a
subset of cells takes longer to undergo DNA synthesis at the outer wall of the neu-
roepithelium, then the nucleus would force the basal side of these tall, thin cells to
expand and potentially generate a hinge point (Smith and Schoenwolf, 1988). Api-
cal narrowing via contraction may also be involved, however, as proteins that regu-
late cytoskeletal contraction (rho, phosphorylated myosin light chain, and F-actin)
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Fig. 24.2 Mechanisms of brain vesicle formation. (A) Differential opening of a slit-like brain tube
is concomitant with primary vesicle formation in frog and fish. Shapes vary in transverse cross
sections between the forebrain (F), midbrain (M), and hindbrain (H). (B) Primary brain vesicles
similarly form in species with comparatively open brain tubes, but vesicle shapes are rounded and
relatively homogeneous

colocalize and accumulate at the inner wall of the neuroepithelium at hinge points
(Sadler et al., 1982; Lee and Nagele, 1985; Kinoshita et al., 2008). It is currently
unclear whether hinge point formation acts as a driving or a stabilizing force during
normal neural tube closure (Greene and Copp, 2009). Early finite element models
have shown that apical constriction can produce invaginations (Odell et al., 1981)
and hinge-like morphologies (Clausi and Brodland, 1993), but this mechanism war-
rants further study.

24.3 Brain Tube Morphogenesis

The brain tube of vertebrates subsequently subdivides into three primary vesicles
(forebrain, midbrain, and hindbrain) (Fig. 24.2). Depending on the species, the brain
vesicles develop from either a hollow tube or a comparatively closed, slit-like tube
(Fig. 24.1). This suggests that, as in neurulation, morphogenetic mechanisms driv-
ing vesicle formation may vary between species.

24.3.1 Lumen Opening in Zebrafish Brains

To date, mechanistic studies of brain vesicle formation have been conducted pri-
marily in zebrafish embryos. In this species, the internal lumen of the tube differen-
tially opens to generate the primary vesicles. The lumen of the hindbrain opens first,
followed closely by the midbrain and the forebrain (Lowery and Sive, 2005). In-
terestingly, the forebrain, midbrain, and hindbrain lumens open into different cross-
sectional shapes (Fig. 24.2A). Specifically, the midbrain lumen is shaped like a di-
amond, the hindbrain a triangle, while the forebrain opens into a tear-drop shape
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Fig. 24.3 Model for lumen opening. (A) Finite element model of a tube with a slit-like cross sec-
tion. Tangential contraction is prescribed at the apical (inner wall) at two mediolateral (darkened)
locations. (B) Local contraction generates lateral hinge points (asterisks) and opens the lumen into
a diamond shape. Figure adapted from Filas et al. (2012), with permission from Biomechanics and
Modeling in Mechanobiology

(Filas et al., 2012); see also Fig. 5G, J, M in Lowery and Sive (2005). It is currently
unclear whether all regions initially open as diamonds (as occurs in the midbrain;
Nyholm et al., 2009) and later remodel into different shapes, or if the shape inhomo-
geneities are preserved throughout the opening process. Moreover, the significance
of regionally varying shapes along the length of the brain tube is not yet known. No-
tably, at comparable developmental stages, early chicken, mouse, and human brains
are generally round in transverse cross section (Fig. 24.2B, Copp et al., 2003; Filas
et al. 2011, 2012).

The morphogenetic mechanisms that drive luminal opening in the zebrafish mid-
brain are beginning to be uncovered. In particular, inhibiting myosin by blebbistatin
exposure prevents this process (Nyholm et al., 2009). This result has led to spec-
ulation that cytoskeletal contraction at lateral hinge points may facilitate luminal
opening in zebrafish (Nyholm et al., 2009). Consistent with this idea, finite element
modeling has shown that simulating local contraction at the inner wall of a tube
with an initially slit-like cross section generates lateral hinge points and a diamond-
shaped lumen (Fig. 24.3).

Once the lumen opens, later expansion of the hindbrain requires relaxation of
the cytoskeleton (Gutzman and Sive, 2010). Hence, it seems that the zebrafish brain
tube actively contracts to establish a lumen, and later relaxes to facilitate expansion
in response to increasing fluid pressure in the lumen (see Sect. 24.3.2).

24.3.2 Brain Vesicle Formation

Evidence suggests that brain tube morphology at the mid-hindbrain boundary in ze-
brafish is not purely a consequence of differential luminal expansion. The decreased
radius in this region is associated with wedge-shaped cells produced by a com-
bination of basal constriction and apical expansion (Gutzman et al., 2008). Actin
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is concentrated on the basal side of these cells, consistent with actomyosin driven
basal contraction. (Interestingly, in most other instances of invagination that involve
cytoskeletal contraction, the contraction occurs at the cell apex, Davies, 2005.) In
embryos that lack laminin, which is a major component of the basement membrane
surrounding the outside (basal side) of the brain tube, the mid-hindbrain bound-
ary still forms, but is not as sharp as in wild type embryos (Gutzman et al., 2008).
Hence, differential lumen opening may set the initial pattern for the brain vesicles,
while ongoing actomyosin activity remodels the tube into its characteristic three-
dimensional structure.

Outside of zebrafish, however, the mechanisms of brain vesicle formation have
received relatively little attention. To begin exploring this process, we measured
morphogenetic strains at the inner wall of the neural tube during the stages of vesi-
cle formation in the chicken embryo (Filas et al., 2008). As expected, negative cir-
cumferential strains occur at the mid-hindbrain boundary, with negative longitudi-
nal strains in the surrounding ventricles. These results suggest that the brain may
shorten in a specific, regionally dependent manner to facilitate vesicle formation.
Corresponding changes in mechanical properties were measured by probing the
stiffness of the neuroepithelium via microindentation (Xu et al., 2010a). Surpris-
ingly, the characteristic brain geometry gives a nearly uniform indentation stiffness
along the brain tube.

Recently, we have developed a finite element model for brain vesicle formation
(BAF unpublished). The model consists of a circular tube with contraction simulated
within a narrow region next to the lumen. When the mid-hindbrain boundary region
undergoes circumferential contraction and the surrounding vesicles isotropic con-
traction (consistent with actin staining), the model yields geometric changes consis-
tent with experimental measurements (Fig. 24.4B).

Extrinsic forces also may play a role in shaping the brain tube. The brain forms
on the dorsal side of the embryo surrounded by a loosely packed network of cells
and extracellular matrix known as the head mesenchyme. During vesicle forma-
tion in chicken and human embryos, the early brain seals at both ends to become a
fluid-filled pressure vessel. The brain then begins a period of rapid expansion, and
studies have shown that this growth depends on cerebrospinal fluid pressure (Gato
and Desmond, 2009). Specifically, prematurely sealing the brain cavity causes the
expansion to begin early (Desmond and Levitan, 2002), whereas relieving the pres-
sure severely retards growth (Desmond and Jacobson, 1977).

In these embryos, however, the majority of vesicle morphogenesis occurs prior
to the brain becoming a sealed, pressurized system. Hence, the primary source of
external forces acting on the neuroepithelium during vesicle formation would likely
be from surrounding tissues. To explore these effects, we removed the head mes-
enchyme and cultured isolated chicken brains through the stages of vesicle forma-
tion (Filas et al., 2011). In these brain tubes, the vesicles and overall morphology
developed normally, suggesting that vesicle formation is intrinsic to the neuroep-
ithelium.
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Fig. 24.4 Boundary formation in the brain tube of the chicken embryo. (A) The primary brain
vesicles (forebrain, midbrain, and hindbrain) are separated by the permanent fore-midbrain (FM)
and mid-hindbrain (MH) boundaries. Rhombomeres (RH) are transient, sequential bulges in the
early hindbrain. (B, C) Axisymmetric finite element models of vesicle (B) and rhombomere (C)
morphogenesis. Contraction occurs at the apical (inner) wall. (B) The mid-hindbrain boundary
contracts in the circumferential direction, but the apical side of the wall contracts isotropically
elsewhere to create vesicles. (C) Longitudinal contraction between the more passive rhombomere
boundaries causes local bulges (rhombomeres) to form

24.3.3 Rhombomere Formation

As the primary brain vesicles form, a series of smaller, periodic bulges arise in the
hindbrain. These rhombomeres (Fig. 24.4A), have received considerable attention
since the early 1990s as regions of cell lineage restriction and differential gene ex-
pression (reviewed in Kiecker and Lumsden, 2005). With the spotlight on these
structures as local signaling centers, interest in the morphogenetic mechanisms of
rhombomere formation has receded. Still, some useful mechanistic details can be
garnered from the earlier literature.

In rhombomeres of chicken embryos, cell proliferation rates and apical F-actin
concentrations are higher in interboundary regions than in the boundaries (Guthrie
et al., 1991). In addition, the amount of extracellular space between neighboring
cells tends to increase in the boundaries during development (Heyman et al., 1993).
These results led to early speculation that a bowing or buckling mechanism, due to
constrained cell proliferation, drives rhombomere formation.

Alternatively, apical contraction between boundaries could play a role in rhom-
bomere formation. For example, the model in Fig. 24.4C shows that longitudinal
contraction along the inner wall between boundaries causes these regions to bend
outward, producing a shape consistent with experimental observations.

Interestingly, rhombomeres are transient structures during brain development (as
opposed to the primary vesicle boundaries which persist through maturity) (Kiecker
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and Lumsden, 2005). Before they disappear, rhombomere boundaries facilitate spa-
tially dependent patterns of axonal migration, cell differentiation, and gene expres-
sion. In a recent study in zebrafish, rhombomere boundaries abnormally persisted in
hyper-contracted mutants (Gutzman and Sive, 2010), suggesting that rhombomere
formation and subsequent dissolution may be a consequence of regulated patterns
of cytoskeletal contraction.

24.4 Cortical Folding

24.4.1 Cerebral Cortex Development and Theories for Folding

Following vesicle formation, the brain rapidly expands due to an increasing lumen
pressure. This expansion is primarily a growth response, rather than a simple infla-
tion (Desmond and Jacobson, 1977; Pacheco et al., 1986). During these stages of
rapid growth, the forebrain subdivides into the diencephalon and the more anterior
telencephalon, which gives rise to the neocortex. Neurons generated in the devel-
oping neocortex differentiate and migrate along radially aligned glial fibers to form
the characteristic layers of the mature brain in an inside-out manner (Bystron et al.,
2008). In large mammals, folding of the cortex begins after these stages of neuronal
migration and proliferation. The primary folding patterns are generally conserved
across species, but secondary folds can differ considerably.

Several hypotheses have been proposed for cortical folding mechanisms, and
many are based on the idea that folds are produced by differential or constrained
growth. A straightforward idea is that the brain grows faster than the skull, which
therefore exerts compressive forces on the brain that cause it to buckle. To study
this hypothesis, Raghavan et al. (1997), modeled the cerebral cortex as a thin curved
beam that grows within a semicircular boundary representing the skull. With some
ad hoc assumptions, these authors obtained realistic folding patterns. Experimental
evidence, however, indicates that the brain can fold without external constraints
(Barron, 1950).

The cerebral cortex is more accurately modeled as a thin shell. Such a model was
proposed by Richman et al. (1975), who assumed that the outer layers of the cor-
tex grow faster than the inner layers, causing compressive stresses that buckle the
cortex (Fig. 24.5A). Their analysis yielded wavelengths consistent with those mea-
sured in the normal brain, as well as in brains with a microgyric (short wavelength)
or lissencephalic (long wavelength) cortex. However, these investigators neglected
nonlinear effects, which become increasingly important as folds grow large.

Several other computational models for growth-driven cortical folding have been
proposed. Toro and Burnod (2005) modeled the cortex as a ring of 2D truss elements
with growth constrained by radially aligned elastoplastic fibers. Extending a similar
model to 3D, Nie et al. (2009) examined the effects of constraint of skull constraint,
growth rate, regional variations in growth, and initial geometry of folding patterns.
In addition, Geng et al. (2009) examined folding of small 3D regions of the cortex
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Fig. 24.5 Postulated models for cortical folding. (A) Intracortical differential growth hypothe-
sis (Richman et al., 1975). Brain cortex is divided into two layers with the outer layer growing
faster (indicated by ++) than the inner layer (+). Underlying tissue does not grow (0). Differential
growth results in cortical buckling. (B) Axon tension hypothesis (Van Essen, 1997). Tension (black
arrows) in axons pulls two cortical regions together to form an outward fold. The inward fold that
forms between the outward folds separates weakly interconnected cortical regions (grey arrows).
(A′) Phased differential growth model. Cortical growth in region 1 (t < tc) followed by cortical
growth in region 2 (t > tc) produces two folds. The underlying subplate grows to relax the induced
stresses. (B′) Experimental distributions of axon tension. Axons are under tension (black arrows)
and aligned in the directions shown. Importantly, no circumferential tension (grey arrows) or axons
(grey dotted lines) were detected in the cores (subplate) of the outward folds. (C–C′′) Correspond-
ing finite element model for cortical folding caused by phased differential growth. The dark and
light grey colors indicate circumferential tension and compression, respectively (Xu et al., 2010b).
Figure reproduced from Xu et al. (2010b), with permission from the Journal of Biomechanical
Engineering, ASME

by combined osmotic expansion and artificially applied loads and constraints. It is
important to note, however, that these models focus mainly on folding geometry and
do not present stress distributions, which can be used to help distinguish between
multiple solutions.

In an alternative hypothesis, Van Essen (1997) has postulated that the brain ex-
pands due to hydrostatic pressure and growth, but tension in axons restricts this
expansion locally, forcing the cortex to fold (Fig. 24.5B). Consistent with obser-
vations, such a mechanism would tend to create outward folds in regions that are
strongly interconnected, producing compact wiring, whereas inward folds form in
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weakly connected regions. Until recently, this mechanism had not been tested ex-
perimentally (see Sect. 24.4.2).

24.4.2 Phased Differential Growth as a Mechanism for Cortical
Folding

The ferret is a popular animal for studies of cortical folding, as the ferret brain does
not begin to fold until after birth (Smart and McSherry, 1986a,b; Barnette et al.,
2009). To test the axonal tension hypothesis, we used tissue dissection to determine
stress patterns in the folding ferret brain. The results indicate that axonal tension
is significant, but the principal directions of this tension (and the corresponding
axon orientations) are different from those predicted by the axon tension hypothesis
(Fig. 24.5B′; Xu et al., 2010b). Notably, there is no significant tension between the
walls of the outward folds (gyri). This result suggests that, although axonal tension
is present, it likely does not play the mechanistic role during folding proposed by
Van Essen (1997).

Next, we proposed a new model for folding driven by differential growth. This
model is similar to that of Richman et al. (1975) with the following exceptions:
(i) Tangential growth in the cortex is out of phase between adjacent regions (phased
differential growth); and (ii) the underlying subplate grows in response to the de-
veloped stresses. During the simulation, growth in one region produces an outward
fold, which is then followed by a second growth-induced fold in the neighboring re-
gion, and so on (Fig. 24.5C). Consistent with this idea, imaging studies have shown
that folds form in such a sequential manner during development (Neal et al., 2007;
Kroenke et al., 2009). This model yields folding geometry and stress distributions
that agree well with experimental results (Xu et al., 2010b). More recent data sug-
gest, however, that the differential growth hypothesis may require further refinement
to include a radial gradient in growth (Reillo et al., 2011).

24.5 Conclusions

In summary, results from a number of laboratories are providing new insights into
the biomechanical mechanisms of brain morphogenesis. Careful consideration must
be taken in interpreting the results from these studies, as brain morphology can be
highly variable between different model organisms.

The treatment of the subject here is not exhaustive and much work remains to be
done to fill in the gaps. Notably, we have omitted discussion of secondary vesicle
generation in the brain tube, as well as secondary cortical folding. Deeper questions
remain relatively unexplored, such as the possible role of mechanical feedback in
driving and potentiating brain morphogenesis. Indeed, mounting evidence suggests
that the neuroepithelium can actively respond to changes in mechanical stress (Filas
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et al., 2011), and that changes in mechanical loading can directly affect cell prolif-
eration rates (Desmond et al., 2005). Lastly, we note that the biomechanical events
that cause folding anomalies associated with pathological conditions warrant further
attention.
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Chapter 25
A Micromechanical Viscoelastic Constitutive
Model for Native and Engineered Anterior
Cruciate Ligaments

Jinjin Ma and Ellen M. Arruda

Abstract Ligaments and tendons are soft tissues that are largely composed of
aligned collagen and elastin. Due to this microstructure, they have nonlinear vis-
coelastic responses. We have developed a micromechanical constitutive model to
capture the inhomogeneous, nonlinear viscoelastic properties of native ACL and of
a tissue engineered ligament graft upon explantation. This constitutive model incor-
porates a viscoelastic collagen network and a nonlinear elastic elastin network. The
model captures the nonlinear viscoelastic responses of these tissues using a lim-
ited number of parameters that can be interpreted in terms of physical properties of
the collagen fibers and elastin. The parameters used to model the tissue engineered
ligament response are similar to those found for the native ACL, indicating that
the microstructure of the tissue engineered ligament graft has developed in vivo to
match that of the native ACL.

25.1 Introduction

Ligaments and tendons are fibrous connective tissues that transmit forces from mus-
cle to bone (tendon) or from bone to bone (ligament). In particular, the anterior cru-
ciate ligament (ACL) is one of four major ligaments that stabilizes the knee. The
ACL assists knee movement in anterior-posterior translation and constrains the tibia
from excessive anterior motion relative to the femur. ACL tears (or ruptures) occur
when the knee experiences a sudden landing with or without direction change. The
incidents of ACL injury are on the rise and an ACL rupture is now one of the most
common knee injuries in the US. Without a functional ACL, a patient’s knee will ex-
perience abnormal joint movement and this may induce further knee complications
such as osteoarthritis or multiple ligament tears. Eventually the knee may develop
severe degenerative joint diseases that require a total knee replacement. The current
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treatment for ACL injuries uses a tendon graft to replace the torn ACL. Despite the
generally good outcomes of the current method, several research and clinical re-
ports have documented limitations of the treatment such as the high economic cost,
donor-site morbidity, and the risk of osteoarthritis development (Wilder et al., 2002;
NationalSurvey, 2004; Salgado et al., 2004; Roos, 2005; Moffat et al., 2008). A crit-
ical concern of the current tendon graft is that it is stiffer than the ACL it is replacing
and, therefore, it is over-designed for its application. These limitations have led re-
searchers to investigate the possibility of utilizing a tissue engineered ACL graft for
ACL reconstruction. Recent work shows tissue engineered grafts have great poten-
tial to meet this unmet clinical need to restore native ACL anatomy and function
(Goulet et al., 2004; Fan et al., 2008; Ma et al., 2012a).

An important goal of tissue engineering grafts for ACL replacement is that the
biomechanical response of the graft match that of the native ACL. For the past
few decades, efforts have contributed to elucidating the biomechanical behavior, re-
modeling process and failure mechanisms of native ACL and ACL grafts (Butler
et al., 1992; Danto and Woo, 1993; Jackson et al., 1993). However, researchers have
faced many challenges such as inaccurate strain and stress field measurements and
the difficulty of mimicking a physiological loading condition (Weiss and Gardiner,
2001). Therefore, computational biomechanics has become an increasingly impor-
tant tool to provide information to fill this gap. To further investigate the biome-
chanical response of the native ACL and to design and evaluate possible grafts in
a 3D finite element framework, a constitutive model that can accurately describe
the nonlinear viscoelastic behavior of the native and engineered ACLs is required to
prescribe the material properties in the finite element analysis (FEA). Ligaments and
tendons have nonlinear viscoelastic responses that can be characterized via stress-
strain, load-unload, stress relaxation, and creep tests. Recent work has demonstrated
that the viscoelastic responses of ligaments and tendons are both time and strain de-
pendent and various viscoelastic constitutive laws have been proposed to capture
these responses (Provenzano et al., 2001; Duenwald et al., 2009; Ma et al., 2012a).

The generalized Maxwell model that is shown schematically in Fig. 25.1 consists
of multiple spring and dashpot combinations. It has been used to model inorganic
polymer viscoelasticity and has been proposed for soft tissue (Corr et al., 2001; Tang
et al., 2011; Sopakayang et al., 2012). In the latter modeling approach the multiple
spring-dashpot elements are often thought of as representing the aligned fibrous
structures of ligament or tendon. A generalized description of the model in 1D is
expressed in Eq. (25.1), where ki is the Young’s modulus of the ith linear spring and
ηi the viscosity of the ith linear dashpot. The advantage of this model is that it is
simple and convenient to implement into computer programs and to auto-search the
parameters to fit the experimental data. However, this model requires a fairly large
number of parameters in order to capture both the load-unload and stress relaxation
responses. Because the parameters are determined by fitting specific test data, these
parameters often do not fully describe the responses of the specimen under different
boundary conditions (Sopakayang et al., 2012). The generalized description of the
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Fig. 25.1 Generalized
Maxwell model

model is

σ(ε, t)=
(
k1 exp

−k1t

η1
+ k2 exp

−k2t

η2
+ · · · + ki−1 exp

−ki−1t

ηi−1
+ ki

)
t. (25.1)

To capture the nonlinear behavior with a reduced number of parameters, Fung’s
quasi-linear viscoelasticity (QLV) theory has been widely used (Fung, 1972). QLV
theory assumes that the relaxation or creep response can be separated into strain-
dependent and time-dependent components, as described in 1D as

σ(ε, t)=
∫
Et(t − τ)dσ

dε

ε(t)

dτ
dτ, (25.2)

where Et is the reduced relaxation function that depends on time and dσ/dε is
the instantaneous elastic response. Both functions are obtained by curve-fitting the
experimental data. The QLV model is able to fit a single set of experimental data
(Weiss and Gardiner, 2001) such as a stress relaxation experiment. However, this
model cannot fully describe or predict stress or strain profiles at different constraint
levels with the same set of parameters due to the fact that the reduced relaxation
functionEt depends on time only (Provenzano et al., 2001) whereas the actual tissue
response includes a strain-dependent relaxation function. The QLV model predicts
the same relaxation or creep rate regardless of strain or stress levels.

Schapery’s single integral nonlinear theory, or modified superposition theory
(Provenzano et al., 2002; Duenwald et al., 2010), is similar to Schapery’s single
integral nonlinear theory and therefore in this paper, we use Schapery’s single inte-
gral theory to demonstrate this class of constitutive models. In 1D uniaxial loading,
Schapery’s theory can be expressed as:

σ(ε, t)= he(ε)Eeε+ h1(ε)

∫
 E
[
ρ(t)− ρ′(τ )

]dh2(ε)ε

dτ
dτ, (25.3)

where the reduced time ρ and the reduced time variable of integration ρ′ are func-
tions of strain and time and are defined as:

ρ =
∫ t

0

dt ′

ae[ε(t ′)] , ρ′ =
∫ τ

0

dt ′

ae[ε(t ′)] . (25.4)
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Ee is the final value of the elastic modulus and  E is the transient modulus dur-
ing the relaxation between the initial and final values of the elastic modulus, while
he, h1, h2 and ae are strain-dependent material properties. A power law equation
 E(ρ)= Cρn is used to fit a stress relaxation curve and the other material proper-
ties are fitted using the rest of the relaxation curves. To fit four different curves, a
total of ten parameters are used and the relaxation function is obtained from curve-
fitting the lowest relaxation profile. The model has been applied to ligament and can
describe its strain and time dependent response (Provenzano et al., 2002; Duenwald
et al., 2010). However, the relaxation function in the model is not unique. In fact,
for four different relaxation curves, four different relaxation functions can be fit and,
therefore, four separate sets of parameters would describe this behavior, indicating
the method is essentially a curve-fitting based methodology.

The 1D models discussed above describe the uniaxial response of ligaments and
tendons. They must be extended to 3D formulations to be used within a finite ele-
ment framework or even to consider a different mode of deformation analytically,
such as the anterior tibial translation deformation that results in ACL tears. Ex-
tending these models to 3D is likely to require the involvement of more parame-
ters for describing the tissue responses in other orientations because, for instance,
anisotropy is not addressed in these models in their present form. QLV viscoelastic
models and modified QLV models have been implemented into 3D finite element
modeling (Pioletti et al., 1998). These continuum models are able to describe the
tissue behavior in 3D settings with curve-fitted parameters. However, because the
QLV and modified QLV models are based on the separable relaxation function, they
cannot fully predict the time and strain dependent responses of soft tissue.

To address this desire for a nonlinear viscoelastic model that can capture the
3D response of ligament and tendon with a reduced number of parameters, and
moreover can potentially be predictive, we have taken a micromechanics approach
that describes the deformation of aligned structural proteins such as collagen and
elastin. Since these are macromolecules we describe their elastic response in terms
of hyperelastic formulations that have been shown to be predictive of the nonlinear
elasticity of biopolymers and inorganic elastomers alike (MacKintosh et al., 1995;
von Lockette and Arruda, 1999a, 1999b, 2001, 2002; Bischoff et al., 2000, 2001,
2002a, 2002b, 2002c, 2004; Boyce and Arruda, 2000, 2001; Palmer and Boyce,
2008).

25.2 Constitutive Modeling of Mechanical Response

Ligaments and tendons are largely comprised of aligned viscoelastic collagen fibers
and nonlinear elastic elastin networks. To capture their structure and nonlinear vis-
coelastic behavior, we have developed a micromechanical model incorporating col-
lagen and elastin to describe the nonlinear viscoelastic response of ACLs and our
tissue engineered grafts.
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Fig. 25.2 An anisotropic
representative volume
element for a network of
semi-flexible chains (Bischoff
et al., 2002b, 2002c)

25.2.1 3D Hyperelastic Constitutive Models

Collagen fibers and elastin are long-chain molecules. Their mechanical responses
can be categorized into three regimes: flexible, semi-flexible, and stiff (Palmer et al.,
2010). Many biopolymer inspired constitutive models have been proposed, such as
the freely jointed chain and semi-flexible chain models. MacKintosh et al. (1995)
proposed a model that describes the nonlinear behavior of semi-flexible biopolymers
at small strains well (MacKintosh et al., 1995). This model has been implemented in
an eight-chain framework (Arruda and Boyce, 1993) to capture the response of an F-
actin network (Palmer and Boyce, 2008). The Cauchy stress tensor TA is expressed
as

TA = nkΘA

3lp

r0

λc

1

4(1 − λcλ0/Lc)2

Lc/lp − 6(1 − λcr0/Lc)

Lc/lp − 2(1 − λcr0/Lc)
B − pI, (25.5)

λc =√tr(B)/3. (25.6)

In this equation, n is the chain density of the network, k is Boltzmann’s constant,
ΘA is the temperature, and p is the hydrostatic pressure. For the MacKintosh chain
network lp represents the persistence length, Lc represents the contour length, r0 is
the initial vector chain length and λc is the chain stretch. Since these are all physical
parameters, potentially, they are measurable experimentally. The MacKintosh chain
network of the micromechanical model is embedded within an initially isotropic
or anisotropic 8-chain framework (Arruda and Boyce, 1993; Bischoff et al., 2002b,
2002c), as in Fig. 25.2 to mathematically model the mechanical behavior of a struc-
tural protein network or inorganic elastomer network.
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Fig. 25.3 Bi-linear stress
relaxation response of native
ACL

25.2.2 A 3D Viscoelastic Constitutive Model

The simplest viscoelastic model that can capture solid-like behavior is the standard
linear solid model the 1D analog of which has two linear springs and a linear dash-
pot. The configuration of this model can be represented with springs of stiffness k1

and k2 and a dashpot with viscosity η1, as in Fig. 25.1. The model describes the lin-
ear viscoelastic behavior of solids well. In the extension to 3D each spring becomes
a 3D linear elastic stress-strain relationship (i.e. Hooke’s law) and the dashpot be-
comes a 3D linear viscous element. Since the ACL and its grafts have a nonlinear
viscoelastic behavior, we substitute a nonlinear MacKintosh semi-flexible network
of Fig. 25.3 for one linear stress-strain relationship. We have examined various pos-
sibilities for the remaining elements in the three-element model and found the com-
bination of a second nonlinear elastic network and a linear dashpot to capture liga-
ment and tendon viscoelasticity reasonably well, but not fully accurately (Ma et al.,
2010). Our previous stress relaxation experiments have demonstrated that ACLs
and tissue engineered grafts have the distinct bi-linear relaxation behavior shown in
Fig. 25.4 that may be captured by two linear elastic networks and two linear viscous
elements. Therefore, the proposed model consists of five elements as illustrated in
1D in Fig. 25.4, a nonlinear elastic network, two linear elastic networks and two
linear viscous elements.

In this model Fe
B and Fe

C are the elastic parts of the deformation gradient tensors
and Fv

B and Fv
C are the viscous parts. From compatibility, the total deformation F is

F = Fe
BFv

B = Fe
CFv

C . The left Cauchy-Green tensor B is B = FFT. From equilibrium
of the system, the total Cauchy stress is given as T = TA + TB + TC , where TA is
the Cauchy stress in the nonlinear spring network A, given by Fig. 25.4, and TB
and TC are the Cauchy stresses in the linear spring networks B and C. The Cauchy
stress tensors in the linear networks can be represented as follows:

TB,C = nkΘB,CBe
B,C − pI. (25.7)
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Fig. 25.4 A five-element
nonlinear viscoelastic
constitutive model

The linear dashpot constitutive equation for the viscous element B , C is Dv
B,C =

T′
B,C/ηB,C where Dv

B,C is the viscous shear strain rate, ηB,C is the constant shear
viscosity and T′

B,C is the equivalent shear stress. The network deformation is as-
sumed to be incompressible. The model implementation and parameter determina-
tion will be presented in the next section.

25.3 Methods

25.3.1 Experimental Characterization of the ACL and Tissue
Engineered Graft

We have previously developed a tissue engineered bone-ligament-bone (BLB) con-
struct from bone marrow stromal cells and used it as a graft to replace the ACL in a
sheep model. A detailed description can be found in Ma et al. (2012a, 2012b). After
9 months of implantation, the tissue engineered grafts and the contra-lateral ACLs
were dissected with the femur and tibia attached for mechanical testing. The femur
and tibia of each sample were fixed in a customized grip apparatus at a 30 degree
knee flexion angle and the entire unit was installed onto an MTS 810 servo hydraulic
test system with a 25 kN load cell. Uniaxial tension tests and stress relaxation tests
were conducted to characterize the material properties of the samples. High-speed
cameras were employed to measure the displacement at the tissue level. A speckle
pattern made from waterproof India ink was applied on the surface of the samples.
VIC-2D software (Correlated Solutions) was used for accurate tissue deformation
determination via digital image correlation analysis and full-field strain contours of
the tissue were obtained. The strain data of each test were then obtained by averag-
ing all the data points on the tissue surface.



358 J. Ma and E.M. Arruda

Fig. 25.5 Obtaining parameter constants from the instantaneous load-unload response (triangles)
and the equilibrium response from the stress relaxation data (circles)

25.3.2 Determination of the Model Parameters

Stress and strain data from the uniaxial test and the final value of the stresses from
each stress relaxation test conducted on the same specimen are used to determine
the range of the model parameters. As shown in Fig. 25.5, first, the parameters of the
MacKintosh 8-chain model,Lc, lp, and nkΘ , are determined by fitting the three final
stress points shown in black dots to a nonlinear elastic MacKintosh model shown
by the solid purple line in the figure. With these three parameters determined, the
contributions of the two linear springs (yellow and blue curves) are added to the
model to fit the uniaxial test data. The rate of the uniaxial test is 0.05 s−1, therefore,
one load-unload test ends within 4 seconds. The hysteresis of the uniaxial load-
unload response can be fit using the viscosity of a fast linear dashpot. Finally, using
the three sets of stress relaxation data, the parameters associated with the linear
series spring-dashpot systems are adjusted so that the same set of seven parameters
can fit all three stress relaxation response curves as well as the uniaxial tension
response obtained from the same specimen.

A rate formulation is employed to compute the stress vs. strain responses of var-
ious tissues to a cyclic load/unload test. Time and the total stretch are prescribed so
that Fv can be explicitly computed based on updating the rate of deformation of the
viscous dashpots from the previous time step. Fe is, therefore, updated in the current
time step using Fe = FFv−1

and then used to compute the stresses. Once the total
stress is calculated the deformation increments of the dashpots are updated based on
the stress in each dashpot element and the next increment of viscous deformation,
the Fv for each dashpot, is determined for the next time step.
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Fig. 25.6 Full-field deformation maps of the native ACL and tissue engineered BLB explant dur-
ing the uniaxial loading (Ma et al., 2012b)

25.4 Results

Full-field deformation maps of the native ACL demonstrate that the native ACL is
inhomogeneous and functionally graded with the most compliant region near the
tibia insertion (Fig. 25.6). The contralateral tissue engineered BLB explant shows
a similar full-filed deformation map. The micromechanical model proposed herein
captures the uniaxial load-unload responses of the native ACL and the engineered
BLB (Figs. 25.7A and C). With the same sets of the parameters, the model predicts
the stress relaxation responses (Figs. 25.7B and D).

The parameters used to predict the engineered BLB response are very similar to
those used to predict the native ACL response (Table 25.1). A total of 7 parameters
are needed to capture these responses, but unlike the previous models discussed in
the Introduction, the current formulation is 3D and additional model parameters are
not needed to describe other deformation states.

25.5 Discussion

The conventional methods of strain measurement in soft tissues either record the
displacement output from the testing machine itself or add fiduciary markers on the
tissue surface as optical displacement trackers. Although gripping systems have be-
come more advanced, tissue slip in the grips is still difficult to avoid. Experiments
have shown that ligaments and tendons are highly nonlinear within their physiolog-
ical range, which is a strain level of less than 0.05. Therefore, the displacements
attributed to machine and grip compliances would largely affect the accuracy of
mechanical characterization of these tissues. Therefore, we have employed optical
strain measurements in our analysis. The ACL has a very complex geometry: the
ligament portion consists of multiple fiber bundles twisting together and the inser-
tions to the femur and tibia have irregular footprints. Using a speckle pattern and
digital image correlation methods described elsewhere (Ma et al., 2012b), we are
able to accurately capture the strain contours of the entire ACL surface. This infor-
mation is critical for 3D finite element implementation. The full-field deformation
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Fig. 25.7 Experimental response of native ACL (A) and (B) and BLB (C) and (D), and the com-
putational predictions using the 3D micromechanical viscoelastic model

analysis also serves as an important tool to characterize the ACL graft locally to
evaluate if it fully develops to match the biomechanical response of native ACL.
The similar functionally graded strain pattern that our tissue engineered BLB has
developed indicates its great potential to be used as the ACL graft (Fig. 25.6).

Previously we have developed a three-element viscoelastic model (Ma et al.,
2010), for describing ligament and tendon response. This simple model qualitatively
captured the nonlinear viscoelastic responses of ligaments and tendons. Experimen-
tal data from stress relaxation experiments demonstrate that these soft tissues pos-
sess a bi-linear relaxation pattern. This finding is in agreement with the results from
collagen related research done by Shen et al. (2011) and Yang et al. (2012). There-
fore, we added another linear series spring-dashpot system to the existing model as
this two time constant feature fits the data well as seen in Fig. 25.3. The nonlin-
ear strain-dependent viscoelastic responses of ligaments and tendons are captured
by the nonlinear MacKintosh network representing the collagen components of the
structure.

Our previous study shows the tissue engineered BLB, after 9 months of in vivo
recovery, has developed a similar microstructure to that of the native ACL as indi-
cated from longitudinally and sectionally stained tissue samples for both collagen
and elastin (Ma et al., 2012b). Vascularization and innervation are also developed in
these engineered BLBs and provide nutrition from the host body to further mature
the engineered BLBs in vivo. The tangent modulus of the engineered BLB attains
52 % of that of the contralateral ACL. The parameters of our microstructural consti-
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Table 25.1 Model parameter comparison between native ACL and engineered BLB

Tissue type MacKintosh spring Fast spring Fast dashpot Slow spring Slow dashpot

nkΘA Lc lp nkΘB ηB nkΘC ηC

(kPa) (–) (–) (kPa) (kPa/s) (kPa) (kPa/s)

Native ACL 5000 12.5 8 5000 1000 8000 280000

Engineered BLB 5000 12.4 8 3500 1000 2000 150000

tutive model are in agreement with the previous biological and mechanical studies.
The model parameters used to capture the native ACL and engineered BLB response
show the three parameters for the MacKintosh network are indeed very similar, indi-
cating the engineered BLBs have remodeled in vivo and have developed mechanical
properties that are very similar to that of the native ACL. The BLB parameters in-
dicate a more compliant response than do those of the ACL, indicating a longer
recovery time may be needed for our BLBs to fully develop to native ACLs.

The seven model parameters needed to capture the nonlinear response of these
tissues are intended to capture the full 3D response of these tissues, however they as-
sume initial isotropy. The modeling framework does allow for initial anisotropy, as
seen in Fig. 25.2, without adding several more parameters. A transversely isotropic
ligament or tendon would incur an additional parameter, which is the ratio of the rep-
resentative volume element dimensions in the direction of the fibers versus perpen-
dicular to them. In ongoing work we intend to implement this model into a commer-
cially available finite element program to simulate the complicated inhomogeneous
response of the knee during an anterior tibial translation, the motion that results in
ACL failure. We will assess the initial anisotropy requirements needed to capture
this response.

25.6 Conclusions

Experimental results show the mechanical response of ligaments and tendons is non-
linear, viscoelastic and functionally graded. Moreover, engineered ligaments used as
an ACL replacement rapidly develop in vivo to obtain similar structure and function
to native ACL. Our micromechanical computational model of connective tissue has
been used to explore the rich mechanical response of native and engineered liga-
ments from a microstructural point of view and is in agreement with the findings in
histological studies.

Acknowledgements We thank MICHR and Coulter Foundation for their generous financial sup-
port.
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Chapter 26
Mechanical Characterization of the Human
Liver

Marc Hollenstein and Edoardo Mazza

Abstract The aspiration technique was used to characterize the mechanical behav-
ior of the liver. Intra-operative application on human organs aimed at (i) tissue clas-
sification towards development of novel diagnostic procedures, and (ii) constitu-
tive modeling of liver tissue. The first goal was achieved using scalar parameters
extracted from time histories of aspiration pressure and deformation. Determina-
tion of parameters for nonlinear time dependent constitutive model formulations
required solving the inverse problem. Glisson’s capsule was analyzed separately
from parenchyma and was shown to behave as I2-material. 207 aspiration measure-
ments were performed on 33 patients. The influence of the contact force between
the aspiration device and the liver was kept minimal in order to achieve a high re-
producibility of the mechanical measurements. Histopathological characterization
with biopsies taken at the measurement location allowed analyzing the influence of
tissue microstructure. Tumors with high connective tissue content were shown to
significantly affect the mechanical response.

26.1 Introduction

Simulation based planning and virtual reality training of minimally invasive hep-
atic surgery requires realistic constitutive models formulation and corresponding
parameters (Schwartz et al., 2005). Recent advances in diagnostic procedures rely
on the characterization of hepatic tissue’s mechanical response, such as in dynamic
magnetic resonance elastography for the detection of liver fibrosis (Huwart et al.,
2006; Rouvière et al., 2006). Knowledge of the mechanical behavior of human liver
might also contribute to improvements in radiation therapy. In fact, 4D CT or MRI
is used for evaluation of organ displacement due to respiratory motion (von Sieben-
thal et al., 2007) and realistic mechanical models of liver tissue could improve the
predictive capabilities of the algorithms used for tumor localization.
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Experimental observations of the mechanical response of hepatic tissue are es-
sential for determining model parameters of phenomenological model equations and
are useful for verifying the predictive capabilities of model formulations proposed
in the literature. Constitutive equations often aim at describing the in vivo mechan-
ical behavior of tissues and organs when subjected to physiological conditions of
loading and deformation. Mechanical measurements must be characterized by well
defined kinematic and kinetic boundary conditions so to allow the inverse problem
to be solved. Many experimental studies were performed to characterize the me-
chanical behavior of liver tissue, see, e.g., Chui et al. (2007) and Gao et al. (2010).
Most of these involved ex vivo measurements on animal tissue. Data from ex vivo
experiments, without physiological blood perfusion, might provide inappropriate
results for mechanical modeling of the liver, as analyzed by Kerdok et al. (2006).
This motivates the development of experimental techniques for in vivo mechanical
testing. Account on the state of the art in measuring the deformation behavior of
soft biological tissue, in particular liver, is given in Hollenstein (2011). Among the
procedures proposed for in vivo liver characterization a few works shall be men-
tioned here: in Brown et al. (2003) an endoscopic grasper is used for experiments
on porcine liver. Ottensmeyer (2002) and Samur et al. (2007) present indentation
tests on animal organs. Carter et al. (2001) performed first intra-operative in vivo
experiments on human liver. They used an indentation device and calculated a value
of approximately 270 kPa for the linear elastic modulus of human liver. In contrast,
dynamic elastography experiments on human liver, Huwart et al. (2006) and Rou-
vière et al. (2006), indicated that the linear elastic modulus of healthy human liver
is in the range of 6 kPa.

In our laboratory, first in vivo mechanical experiments on human liver performed
during open surgery using the so called ‘aspiration device’ were reported in Mazza
et al. (2007) and Nava et al. (2008). Data from 23 measurements on 6 healthy organs
were analyzed in Nava et al. (2008) and a constitutive model for ‘average liver tis-
sue’ determined. Two main factors affect the corresponding results: (i) the liver was
modeled as a homogeneous deformable solid without consideration of the mechan-
ical resistance of the Glisson’s capsule (the connective tissue layer that covers the
organ); (ii) the initial deformation of the liver tissue, due to the compressive force
applied to ensure a good initial contact between aspiration device and liver, was not
considered for the inverse problem.

Results from our latest clinical study with aspiration experiments on the liver dur-
ing open abdominal surgery are presented in this paper. An extensive experimental
campaign with measurements on patients undergoing hepatic resection has been re-
cently completed. In total the livers of 33 patients at the age of 38–82 years have
been tested in vivo at the beginning of the surgical procedure. Measurements were
taken on one normal reference site and one or two target sites with lesion leading to
a total of 207 realizations of the aspiration experiment during open surgery on the
human liver in this study.
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Fig. 26.1 Measuring principle, components, and assembly of the aspiration probe. (a) The CCD-
camera is non-sterile mounted to the assembled probe through a long sterile bag taped to the rear
probe end and sealed from the aspiration tube via an optical glass. (b) The tissue is aspirated
through a 10 mm hole and the resulting deformation side view profile captured as it is reflected in
an optical prism to the camera mounted at the top of the probe

26.2 Methods

This section introduces the experimental methods for intraoperative aspiration mea-
surements, Glisson’s capsule characterization, and the corresponding data analy-
sis procedures.1 The procedure for intra-operative measurements on humans must
be non-traumatic, operate under sterile conditions and comply with the time- and
space-limitations in the operating room, while at the same time allowing to main-
tain control over the mechanical boundary conditions and the protocol applied in
the test.

26.2.1 Aspiration Device

The working principle of the aspiration device is illustrated in Fig. 26.1. The pro-
cedure is based upon the so called ‘pipette aspiration’ technique. The instrument
consists of a tube closed on one extremity by a disk containing the circular open-
ing (diameter: 10 mm) for tissue aspiration. The internal pressure in the tube can

1The work described here constitutes the main contribution of the PhD Thesis of the first author,
see Hollenstein (2011). For this reason, text passages, figures, and tables from Hollenstein (2011)
are used in this article.
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Fig. 26.2 Side view of a
human liver as captured by
the CCD-camera of the
aspiration probe; the
extracted contour is indicated
as white line with the apex
defined as point with the
maximum deflection along
the contour, denoted ‘P ’ on
the picture

be controlled according to a prescribed time history. The experiment is performed
by establishing thorough contact between the probe head and the tissue, and cre-
ating a time-variable vacuum in the aspiration tube such that the tissue is sucked
in through the aspiration hole. A sufficiently smooth surface region of the organ of
about 30 mm diameter is required to enable proper contact. During a typical ex-
periment on human liver, a maximum suction pressure of 200 mbar is applied such
that the displacement of the tissue apex is in the order of 3 mm (point P, Figs. 26.2
and 26.3). Nominal strains up to 30 % are induced into the involved tissue portion.
Tissue from the surface down to about 10–15 mm is considered to contribute to the
observed response, i.e. represents the characterized tissue volume. A monochrome
CCD-camera at the top of the body captures the full side view profile of the de-
forming tissue mirrored in a prism installed in the probe head. A cold light source is
used to illuminate the tissue surface by dint of an optical fiber. A pressure sensor is
installed in the handle of the device. The silicone pressure conduit, the optical fibers
and electronic cables for the pressure sensor are maintained and sealed in a standard
medical cable tube suitable for sterilization. Pressure data and images are recorded
at 25 Hz. The assembled probe weighs approximately 0.5 kg. The probe is designed
such that it can be completely disassembled for cleaning and ethylene oxide (EO)
gas sterilization. The pneumatic system is composed of a diaphragm pump, an air
reservoir, two pressure sensors, and two three-way isolation valves. The pressure
sensors, the valves, the pump, and the CCD-camera are linked to a computer for
controlling and data acquisition by means of a custom-written LabView program.
The pictures are processed off-line with Matlab to extract the contour of the side
view of the aspirated tissue. Time histories of measured pressure and deformation
profiles are the input data for further analysis. Further technical details and descrip-
tions of all components are reported in Hollenstein (2011).

26.2.1.1 Inverse Analysis

The time histories of applied negative pressure and resulting tissue deformation pro-
files are used to determine parameters describing the mechanical behavior of the
tissue. One possible evaluation method is based on the iterative comparison be-
tween predicted and measured tissue response, i.e. on the solution of the so called
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Fig. 26.3 Typical pressure
profile applied on human liver
and corresponding tissue
response as the displacement
history of the apex point ‘P’,
see Fig. 26.2

‘inverse problem’. This approach uses the finite element method to simulate the ex-
perimental procedure and aims at determining constitutive model parameters of the
soft tissues involved. The commercial FE-software Abaqus was applied here. An
axisymmetric model incorporating parenchyma and capsule as separate tissues is
used. Both tissues are assumed to be isotropic, homogeneous, incompressible, and
initially unstressed. Previous studies (Nava, 2007; Mazza et al., 2008; Hollenstein
et al., 2009), identified the influence of probe geometry, contact conditions and fric-
tion, size of the modeled tissue portion, applied boundary conditions, and preload
in terms of the initial contact force applied prior to test onset; the latter leads to
probe indentation. A Matlab script was written to generate structured meshes with
a high refinement level in the contact region and near the aspirated surface. Several
transition regions were included to coarsen the mesh towards the bottom and lateral
boundary. The capsule was represented with linear membrane elements (MAX1)
with their nodes (slave) tied and prescribed to follow the nodes of the underly-
ing quadrilateral elements (master). The aspiration probe was modeled as analytic
rigid surface fully clamped at the reference point. The contact between aspirator
and tissue was left frictionless, which is not only consistent with previous findings
(Nava, 2007; Hollenstein et al., 2009), but is as well physically plausible as the
capsule during the intraoperative measurements was moisturized with saline and
thus was wet and slippery. The reduced polynomial strain energy potential form
and quasi-linear viscoelasticity were used to describe the parenchyma. The capsule
was represented hyperelastic using the Rubin-Bodner strain energy potential (Rubin
and Bodner, 2002), with parameters determined, as described in Sect. 26.2.2. This
model formulation was shown to suitably represent tissue response in equibiaxial
stress state.

26.2.1.2 Scalar Parameters

An alternative approach providing an immediate evaluation of the measured re-
sponse is based on scalar parameters extracted directly from the pressure and apex
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point (P, Fig. 26.2) displacement histories. The course of the apex displacement
exhibits characteristic points, A–D, see Fig. 26.3. The displacement history can
thus be characterized by relative displacement measures, such as d0 := dB − dA,
d1 := dC − dA, d2 := dC − dB, d3 := dD − dA. The ratio between the maximum
aspiration pressure Pmax and the induced apex-displacement defines a measure for
the instantaneous stiffness. The ratio between d2 and d0 might be used to quantify
the degree of ‘creep’ in the tissue. A few scalar parameters related to the time and
history dependent mechanical behavior of soft biological tissue were analyzed in
previous studies, see, e.g., Bauer et al. (2009). The parameter η = Pmax/d0 will be
reported for the intraoperative liver measurements in this paper.

26.2.1.3 Patient Election and Ethical Aspects

Intraoperative aspiration measurements on human livers were conducted under
given approval of the Swiss ethics commission and informed consent by the pa-
tient (SPUK Chirg/Anäst/Patho USZ, Stv-Nr.: 007-2004). Elective were patients of
18 years or older planned for routine hepatectomy with primary or secondary liver
tumors, and benign tumors.

26.2.2 Characterization of Glisson’s Capsule

Characterization of the liver capsule aimed mainly at quantifying its influence on the
analysis of the aspiration experiment. In fact, the aspiration measurement does not
provide sufficient information for characterizing both, capsule and parenchyma. An
average capsule model based on uniaxial and biaxial experiments on liver capsule
was implemented in the inverse finite element model described in Sect. 26.2.1.1.
The present section briefly introduces the methods applied for experimental charac-
terization of Glisson’s capsule. The long-term response of 69 bovine and 8 human
liver capsule samples has been recorded in uniaxial tension, and of 18 bovine sam-
ples in biaxial inflation experiments. One healthy human liver could be obtained
postmortem from an 80-year-old subject for mechanical tests from the Institute of
Surgical Pathology, University Hospital Zurich. The decedent gave informed con-
sent for the autopsy. Mechanical tests were complemented with a morphological
and biochemical characterization (Hollenstein, 2011). The human and the bovine
liver capsule turned out to scale with a factor of about 3 in terms of membrane stiff-
ness, thickness, collagen content, and the diameter of the collagen fibers, whereas
their general microstructure was found very similar. The bovine equibiaxial stress
characteristic, as obtained from the inflation test, were thus used to estimate the
homeostatic point, to calibrate the Rubin-Bodner model (Rubin and Bodner, 2002),
and to scale the corresponding parameters for inclusion in the finite element analysis
of the aspiration experiment on the human liver.



26 Mechanical Characterization of the Human Liver 371

Fig. 26.4 Experimental setup and sample preparation for uniaxial tensile testing. (a) Situation on
the uniaxial testing machine: the installed sample inside the bio-chamber, the clamping interfaces,
the xy-positioning stage, and the load cell are visible. (b) Excision of the capsule samples from
the parenchyma using a scalpel and a plastic template. On the right, a sample with paper backing
is shown on the site of extraction. The underlying parenchyma is visible. (c) The custom-made
assembling jig for precise and gentle alignment and mounting of the samples on the clamps

26.2.2.1 Uniaxial Tests

The liver capsule samples were tested in a Zwick 1456 universal materials test-
ing machine. The axial force was measured with a 50 N load cell. A custom-made
biochamber was used to simulate physiological conditions. During testing, the sam-
ples remained entirely immersed in the saline with its temperature controlled to
37.0 °C. A two-axis linear positioning stage was installed on the load cell to pre-
cisely align the sample with the tensile axis of the machine in order to prevent shear-
ing. The test setup is shown in Fig. 26.4. Samples were delicately excised using a
surgical scalpel and a thin plastic sheet template. The samples were approximately
15 mm in width and 60 mm in length. The sample thickness was assumed equal
within the same sample and was assessed by averaging three measurements taken at
random locations using a micrometer caliper. The time between sample preparation
and mechanical test never exceeded 1 h.

A preload of 0.065 N was applied at the beginning of the tests; note that
the choice of the preload has significant influence on the definition of the refer-
ence configuration and thus on the strain calculation. Tests were carried out un-
der displacement-controlled conditions with an elongation rate of 0.5 %/s nominal
strain. In order to obtain a preconditioned state of the tissue samples, the samples
underwent 10 cycles of loading and unloading between 0 and 15 % nominal strain
prior to ultimate loading until tissue rupture. Given the sample width ofw = 15 mm,
the displacement of the cross bar, the free gauge length at preload, and the exerted
tensile force, the nominal strain and the nominal membrane tension in uniaxial ten-
sion were computed.
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Fig. 26.5 (a) Inflation cylinder with cover ring bolted down with 6 screws. An inflated soft poly-
mer is visible. (b) Part of a liberated bovine liver capsule with the sandpaper rings attached

26.2.2.2 Inflation Tests

Inflation experiments allow to easily investigate the response of membranous tissue
to a biaxial loading. The circular sample is placed over a hollow cylinder filled with
saline solution and clamped using a rigid ring. Increased liquid pressure leads to
membrane inflation and the side view profile of the deforming sample is measured
with a video extensometer. The theoretical framework for data analysis is more in-
volved than that for the classic material tests such as uniaxial or in-plane biaxial
tests. In fact, the induced state of stress and strain is inhomogeneous, with equibi-
axial stress state at the center of the testpiece and a configuration of pure shear at
the clamping interface. For isotropic material behavior, the problem becomes truly
axisymmetric. The effective strain and stress fields must be computed using FE-
simulations postulating a particular constitutive behavior, or they must be estimated
from analytic approximations (Hollenstein, 2011).

The setup is depicted in Fig. 26.5. It consists of the inflation-cylinder, which is
connected by sidewise bores to an external pressure sensor and a peristaltic pump, a
mounting rail for the extensometer CCD-camera, an LCD-backlight to enhance the
image contrast, a control box that contained the peristaltic pump and all the elec-
tronic measuring equipment, and a control-PC. The inflation-cylinder was made of
aluminum with an inner diameter of 50 mm, an outer diameter of 60 mm. A cover
ring of 1 mm thickness with an inner diameter of 50 mm and an outer diameter
of 60 mm, and with a chamfer radius at its inner perimeter of 0.5 mm was used
to clamp the samples to the cylinder by dint of 6 screws. Physiological saline so-
lution was used to inflate the liver capsule samples to rupture at room temperature
without preconditioning. For the tests on the liver capsule, the final experimental
data included the pressure course inside the inflation cylinder and the displacement
history of the apex of the inflated specimen, i.e. the maximal vertical displacement
progression of the specimen. More details about the setup can be found in Egger
(2008) and Hollenstein (2011). Sandpaper rings were used to improve the effective-
ness of the clamping. They were prepared with inner and outer diameters of 50 mm
and 70 mm, respectively. A commercial cyanoacrylate based glue was applied on
the outer margin of the smooth surface of these precut sandpaper rings. The sandpa-
per rings with the glue were then gently applied onto capsule regions devoid of any
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visible defects. In this way, the underside of the capsule was prepared according to
the desired number of samples (Fig. 26.5b). Subsequently, the capsule was turned
to its other side and sandpaper rings were glued onto the upside opposing the rings
on the underside. This procedure resulted in capsule samples sandwiched between
two sandpaper rings with their rough side facing away from the capsule. Finally, the
sandwiched samples were cut out with surgical scissors along the outer margin of
the sandpaper rings.

26.3 Results

A representative constitutive model for Glisson’s capsule is required in order to
analyze the aspiration experiments on human liver. Correspondingly, the mechanical
characterization of liver capsule is presented first, Sect. 26.3.1. The capsule model
is then used in the analysis of the sensitivity of the aspiration experiment described
in Sect. 26.3.2. Next we present results from more than 200 measurements during
open surgery.

26.3.1 Mechanical Behavior of Glisson’s Capsule

Uniaxial test results provided qualitatively similar results for human and bovine
samples. The characteristics of all stress-strain curves are consistent with the typ-
ical J-shaped behavior of soft tissues. They exhibit large scatter in the initial stiff-
ness and in the toe- and heel-part of the curves. This scatter can be considerably
reduced by increasing the reference preload. In contrast, the stiffness in the part
of the curves at larger strains is fairly consistent. The high-strain tangent stiffness
in uniaxial stress was evaluated with reference to the free gauge length at 0.2 N
preload, see Fig. 26.6. The uniaxial mechanical data indicate that human capsule
is about a factor of 3 more compliant as compared to bovine tissue. Corresponding
microstructural analysis (Hollenstein, 2011) yield a similar factor for the thickness
of these membranes, as well as for the collagen content, or the diameter of collagen
fibers bundles. The human tissue available was not sufficient in quantity for per-
forming corresponding inflation experiments. The observations from inflation tests
on bovine tissue were used as a basis for determination of a human capsule model,
scaled with the factor of 3.

A typical uniaxial and a typical equibiaxial tension-strain characteristic, as de-
rived from the uniaxial tension and the inflation test, are compared in Fig. 26.7. To
this end, the equibiaxial characteristic was adjusted for the preload of the inflation
test to be consistent with the uniaxial tensile test in terms of pretension. The respec-
tive high strain slopes show that liver capsule is 2–3 times stiffer in an equibiaxial
than in an uniaxial state of stress; note that the uniaxial characteristic, in contrast
to the equibiaxial characteristic, is based on a preconditioned sample. Analytical
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Fig. 26.6 Uniaxial high
strain membrane tangent
modulus mEu

2 for bovine and
human samples

and FE based analysis of the inflation data enabled determining constitutive model
equations for the long term response of liver capsule. As shown in Fig. 26.7, both
types of loading, uniaxial and equibiaxial stress, can only be reproduced simulta-
neously by a 2nd order polynomial form of the strain energy potential in the strain
invariant I2.

Based on average biaxial data, a calibrated and physiologically representative
constitutive model was determined in order to include the capsule as an individ-
ual structure in computer simulations, Sect. 26.2.1.1. To this end, the elastic and
isotropic part of Rubin-Bodner model (Rubin and Bodner, 2002) was considered
for describing the equibiaxial characteristic of bovine liver capsule. The reference
configuration in the inflation experiment however is different from the in vivo ref-
erence state, i.e. before performing the aspiration experiment. In fact, the capsule is
subjected to internal pressure. The intra-hepatic blood pressure averages up to about
50–60 mmHg, i.e. 6.7–8.0 kPa. Assuming that the parenchyma is non-load-bearing
and the liver has a characteristic diameter of 17.5 cm, a guess for the physiological
true tension in the liver capsule at equilibrium yields 0.64 N/mm. The associated
biaxial strain is about 7 %. By means of the multiplicative nature of the stretch, the
‘typical’ equibiaxial tension-strain characteristic was shifted to this point and the
Rubin-Bodner model calibrated with respect to this new reference curve. To adjust
the model for the human capsule, the finding that the human capsule is about three
times thinner and softer than the bovine capsule was implied, i.e. they ‘scale’ with
a factor of 3, and thus the Rubin-Bodner parameter μ0 was corrected accordingly,
see Table 26.1.

26.3.2 Finite Element Analysis of the Aspiration Experiment

The FE-model introduced in Sect. 26.2.1.1 was used to analyze the determina-
tion of constitutive model parameters of liver capsule and parenchyma from the
inverse analysis of aspiration measurements. The Rubin-Bodner formulation was
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Fig. 26.7 Comparison of the uniaxial and the equibiaxial membrane tension response of bovine
liver capsule based on typical nominal tension-strain characteristics; the equibiaxial characteristic
is based on the analytic solution of the inflation test. Indicated by dashed lines is the combined fit of
the 2nd order polynomial strain energy form withC10,C20,C11 set to zero, and C01 = 0.320 N/mm
and C02 = 2.964 N/mm. U : uniaxial stress, EB: equibiaxial stress, P-U: response in uniaxial stress
of the 2nd order polynomial form, P-EB: response in equibiaxial stress of the 2nd order polynomial
form

used for liver capsule and a quasi-linear viscoelastic model for the parenchyma,
see Table 26.1. The parameter values are consistent with typical observations from
aspiration experiments on healthy human liver tissue. The capsule was shown to
be about 3-times more significant for the local response of the organ to aspira-
tion as compared to parenchyma. Furthermore, when investigating the impact of
the capsule properties on the apex-displacement by varying the initial shear mod-
uli of capsule by ±25 %, changes of ±10 % of the reference apex-displacement
were observed. For corresponding changes in the parenchyma properties variations
were in the range of less than 1 %. Note however that all constitutive parameters are
well-determined for the chosen low-order constitutive models.

The effects of a tumor or diffuse cirrhosis were estimated by assigning consider-
ably stiffer constitutive behavior to particular subregions of the FE-model. Tumoral
tissue was assumed as very stiff nodules and modeled three-orders of magnitude
stiffer than the peripheral parenchymal tissue. In contrast, diffuse fibrosis was in-
cluded 10-times stiffer as the peripheral tissue, in accordance with the findings in
Sandrin et al. (2003). Tumors were modeled as cylindrical disks of 15 mm radius
and 5 mm height just underneath the aspirator embedded at different depths. Simi-
larly, diffuse cirrhosis was assigned to subregions of 15 mm radius and spread be-
tween varying depths. This analysis showed that aspiration measurements are only
marginally affected in case of lesions starting at a depth of more than 5 mm from
the surface.
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Table 26.1 Condensation for the parameter setup of constitutive models for parenchyma and cap-
sule as used for the FE-analysis of the aspiration test. The tissues were modeled fully incom-
pressible. RP: reduced polynomial, QLV: quasi-linear viscoelasticity in terms of Prony-series, RB:
Rubin-Bodner. Note that the capsule model is expressed in terms of membrane properties

RP QLV RB

C∞
10 (kPa) C∞

20 (kPa) g1 (–) τ1 (s) g2 (–) τ2 (s) mμ0 (N/mm) q (–)

Parenchyma 0.7 4.5 0.49 1.9 0.19 6.5

Capsule 4.81 0.052

26.3.3 Open Surgery Measurements

Aspiration measurements were performed on the fully perfused organ after open-
ing of the abdomen and mobilization of the liver for resection. Typically the whole
measurement procedure did not exceed 5 min. The measuring sites were defined on
the part of the organ to be resected, which then was available for biopsy acquisition.
First, the aspiration measurement was realized 3-times on normal tissue for refer-
ence. Subsequently, the measurement was repeated 3-times on the lesion. The tissue
was not preconditioned. The aspiration cycle was set for a step decrease to a target
suction pressure of 200 mbar with a hold time of 9 s. One measuring cycle took
about 30 s. The measurement procedure was established based on initial trials, as
follows: the probe head is kept perpendicular and just in contact with the organ sur-
face, keeping the downforce as small as possible, while the surgeon visually tracks
the motion of the organ due to the artificial respiration of the patient; once a stable
situation has been accomplished, the operator initiates the measurement; the sur-
geon tracks the motion of the liver keeping the probe in a constant relative position
to avoid changes in the contact conditions and dependence of the measurement on
the far-field boundary conditions; at the end of each measuring cycle, the surgeon
carefully retracts the probe and visually checks the measurement site.

The repeatability of the measurements was assessed based on the stiffness pa-
rameter (Sect. 26.2.1.2). The coefficient of variation was calculated as the standard
deviation of normalized with respect to the measuring site mean value. The coeffi-
cient of variation for the present data resulted in 3.9 % for the reference sites, 4.8 %
for the lesion sites, and 4.2 % overall. Considering previous data (Mazza et al., 2007;
Nava et al., 2008), with typical values of the coefficient of variation in the range of
20 %, a fivefold increase in repeatability was achieved. Most probably these im-
provements are due to the minimization and better control of the contact force, and
are due to the fact that always the same surgeon performed the measurements.

Figure 26.8(a) reports all measured stiffness values for normal tissue and lesion
with the corresponding connective tissue content as measured by histo-pathological
analysis (Hollenstein, 2011). Although a weak separation between lesion (higher
values) and normal tissue can be observed, no significant correlation could be found
between stiffness value and connective tissue content. More interesting findings can
be worked out when considering the relative difference between the ‘reference’ site
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Fig. 26.8 (a) Stiffness η vs connective tissue content fct circles and squares indicate the reference
and the target measuring sites, respectively. (b) Box plots of the relative differences in the stiffness
parameter ηp/ηn divided into the categories ‘desmoplasia’ (‘D’), ‘other’ (‘O’), and ‘lesion’ (‘L’);
‘n’ stands for the reference measuring site and ‘p’ for the target measuring site. The relative in-
crease in the stiffness parameter is significant and 100 % sensitive for the category ‘desmoplasia’

and the ‘target’ site. Figure 26.8(b) shows the box plots for the relative increase in η
with separated evaluation of lesion type ‘desmoplasia’, ‘other’, and all ‘lesion’. On
the current database, it was possible to reach 100 % sensitivity with η for detection
of ‘desmoplasia’; the confidence interval is large, but it is still highly significant, the
median indicating at 2.4-fold increase in the stiffness parameter. For the selected
threshold value the corresponding specificity is 63 %.

The acquired aspiration data enabled the calibration of constitutive models, based
on the FE-model and the inverse analysis procedure. The results obtained for aver-
age observations from measurements on normal tissue were reported in Sect. 26.3.2,
assuming a given model for liver capsule.

26.4 Discussion

26.4.1 Protocol for Open Surgery Measurements

A significant improvement was achieved in the repeatability of intraoperative aspira-
tion experiments in the present study. In all previous applications the aspiration test
was performed as combination of indentation and aspiration without measurement
of the contact force, where the former led to unknown contact and far-field boundary
conditions. This is considered as the main reason for the pronounced scatter in the
measuring data of previous studies (Nava, 2007). The new measuring protocol min-
imizes the contact force between probe head and organ, with the surgeon following
as much as possible the motion of the liver during the measurement. This provided
better-defined and hence more repeatable kinetic and kinematic initial and boundary
conditions. It was possible to reduce the systematic error by a factor of 5 to a co-
efficient of variation of about 5 %. One other reason for better reproducibility was
the fact that always the same surgeon trained to operate the aspiration device per-
formed the measurements. This is good accuracy for intraoperative measurements,
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which drastically improved the data quality and makes possible to repeat an identical
experiment between different measuring sites and subjects. Actually, the possibil-
ity to conduct locally-confined measurements independent of the far-field is a key
strength of the aspiration test. Unknown initial and boundary conditions is one of
the major issues with other invasive measurement techniques: for the analysis of
large indentation, for example, knowledge not only of the contact condition and the
indentation-depth (near-field) are required, but similarly the organ geometry and its
embedding in the abdomen (far-field) are relevant, but these latter are typically not
available. For comparison, the coefficients of variation of data reported in the litera-
ture for the liver are as follows: for indentation Zheng et al. (2000), Tay et al. (2006)
and Samur et al. (2007) show data with coefficients of variation of 15 %, 20 %, and
29 %, while as to dynamic elastography Sandrin et al. (2003), Huwart et al. (2006),
and Rouvière et al. (2006) have coefficients of variation of 3.2 % (intra-operator
cv), 10.3 %, and 5.6 % (on a tissue phantom), respectively.

26.4.2 Mechanical Behavior of Glisson’s Capsule

Conventional uniaxial tensile tests with simple inflation experiments were combined
to provide information on the multiaxial mechanical behavior of liver capsule. The
inflation test complements well the uniaxial tension test in that, for a homogeneous
and isotropic membrane, it subjects the membrane to different modes of distortion
from ‘uniaxial strain’ at the clamping interface to ‘equibiaxial strain’ at the sam-
ple apex over a large strain range; these modes are all of high stress-biaxiality and
typical for physiologically relevant deformations of biological membranes. Thus
uniaxial tension and inflation test together characterize tissues response over a wide
region of the strain space.

Besides the physiologically relevant loading, advantages of the inflation test are
the easy sample preparation and test realization, and the well-defined boundary and
initial conditions. However, the test is restricted in the control of the test kinematics
and kinetics, the applicable nominal strain rate does usually not exceed 10 %/s, the
tension and strain values are typically derived from less-precise video extensome-
ter data and the total measurement of the distension pressure. Furthermore, sample
inhomogeneities, irregular deformations, and surface imperfections influence the in-
terpretation of the test.

Uniaxial and biaxial data were analyzed in order to determine corresponding
constitutive model equations able to describe both experiments. Good predictions
are obtained when the model formulation is based on the second invariant I2 of
the right Cauchy-Green tensor. As illustrated in Fig. 26.9, the invariant I1 can be
interpreted as the average (squared) stretch of the sides of an infinitesimal volume
element. For an incompressible material I2 is proportional to the average area stretch
of the faces of an infinitesimal volume element. It is thus interesting to note that
Glisson’s capsule behaves as a I2 material. This might be associated with a network
arrangement of collagen fibers in the capsule, leading to a response closer to the one
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Fig. 26.9 Illustration of the interpretation of the invariants I1 and I2 of the right (left) Cauchy-
Green tensor as related to change in length or surface area of an infinitesimal volume element

of a textile with much higher resistance to area stretch in the plane of the membrane
than to elongations in uniaxial stress state. Similar observations were reported from
the multiaxial characterization of fetal membranes (Bürzle et al., 2012), indicating
that this behavior might be common to several biological membranes.

Attention was given to the definition of the reference configuration in both, the
mechanical test set-up and the in vivo physiological reference state. The influence
of setting a threshold membrane tension value for the analysis of uniaxial and biax-
ial data was demonstrated. Liver capsule, as many other biological membranes, is
subjected to a preload due to the homeostatic pressure at their reference physiolog-
ical state. Thus, a mechanical model describing the response of the capsule in the
vicinity of that reference state might be defined with respect to a preloaded config-
uration, i.e. the state corresponding to the in vivo membrane tension. This approach
was adopted here for determining a constitutive model of Glisson’s capsule. It is
interesting to note that the scatter of the experimental results is drastically reduced
in case the physiological membrane tension is taken as threshold force value.

26.4.3 Diagnostic Relevance of Aspiration Measurements

As demonstrated with corresponding finite element investigations, the aspiration
technique cannot detect moderate changes in consistency of parenchyma, mainly
due to the shielding effect of the capsule. However at least for dense lesions with
a high connective tissue content, which are larger than the aspiration hole and not
located deeper than 15 mm, a trend to a stiffer response was observed. The reduced
sensitivity of the technique motivated the analysis in terms of relative stiffness, i.e. to
assess the base properties of normal parenchyma, such as a stiffness-level, and then
to assess the suspected lesion site relative to its peripheral parenchyma character-
ized from the reference measurement. This strategy leads to a real significant result:
lesions with a high connective tissue content, a larger diameter than the aspiration
hole, and not located deeper than 15 mm beneath the capsule lead to a detectable
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increase in the stiffness parameter relative to the peripheral parenchyma. For the cur-
rent database, the median increase is 2.4-fold, where the lower significance bound
is located at 1.7.

The absolute values of the aspiration parameters and corresponding elastic mod-
uli derived from the aspiration data, ‘normal’, ‘desmoplasia’, and ‘connective tis-
sue’, are in good agreement with literature data and agree with the finding from
elastography (Sandrin et al., 2003). It is interesting to note that the diagnostic per-
formance of tissue aspiration and digital palpation were similar (Hollenstein, 2011).
Both reached 100 % empirical sensitivity for desmoplastic lesions at specificities
of 63 % and 85 %, respectively. Other cases are not likely to be detected with both
techniques. Observe that aspiration is probably more limited to superficial lesions,
where palpation might as well detect deeper lesions. Also it should be noted that dig-
ital palpation was non-blinded and always conducted by the same surgeon, which
might have biased the outcome.

26.4.4 Mechanical Behavior of Human Livers

The solution of the inverse problem enabled determining model parameters for cap-
sule and parenchyma which are considered as representative of the behavior ob-
served in aspiration experiments on normal liver tissue. From the FE-analysis of
the aspiration experiment and despite the shielding-effect of the capsule, it was
surprising to learn that for the proposed macrostructural two-layer model of the
liver, the constitutive parameters for both, the capsule and the parenchyma, are well-
determined for the implied Rubin-Bodner and 2nd order reduced polynomial form,
respectively. This was quantitatively evaluated in Hollenstein (2011). The degree of
determination will rapidly decrease for higher-order models, especially regarding
the parenchyma. The inverse FE-analysis based solely on the apex-displacement in
the objective function cannot possess a unique solution: for instance, the optimiza-
tion kernel could drive the elasticity of the parenchyma down to zero and adjust the
capsule properties to capture the measured course of the apex-displacement by itself.
Thus it takes a good initial guess for the parameters in order to find a meaningful
local solution to the optimization problem.

26.5 Conclusions

The present study improved with respect to existing models of liver tissue in that
(i) parenchyma and capsule were separately modeled, (ii) a wide range mechani-
cal characterization of liver capsule was provided, (iii) data were used from intra-
operative in vivo mechanical measurements.

The aspiration technique was applied in an extensive clinical study with over 200
measurements during open abdominal surgery. All procedures related to this exper-
iment were optimized leading to an excellent repeatability of the intra-operative
measurements.
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Inverse analysis of the aspiration measurements enabled defining a representative
liver model including Glisson’s capsule and parenchyma. The results of this work
can also be used as a relevant benchmark for simulation of the mechanical behavior
of human liver.

The cases in which aspiration data can provide diagnostic information were iden-
tified. The aspiration technique was shown to yield to a sensitivity similar to the one
of (un-blinded) digital palpation by an experienced surgeon.

As a note, by now the aspiration technique has been further developed for ap-
plication during laparoscopy. Technical details for this novel setup and first results
from corresponding in vivo measurements are found in Hollenstein et al. (2011).
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Chapter 27
In Vivo Validation of Predictive Models for Bone
Remodeling and Mechanobiology

Alina Levchuk and Ralph Müller

Abstract In silico modeling is a powerful tool for the prediction of bone remodel-
ing and mechanobiology. As the method is gaining popularity a standardized mea-
sure for the in vivo validation of the quality of the produced simulations is required.
In this review, we discuss current validity assessment approaches, as well as the
validation ‘gold standard’, in which the experimental and computational parts are
carried out concomitantly, and by the same research team. A novel validation frame-
work for the tissue level model, based on the true geometry is introduced.

27.1 Introduction

Our understanding of bone remodeling and its governing mechanisms has come a
long way since the first attempts to explain these complex processes (Roux, 1881;
Wolff, 1892). In fact, it is now often left to the biologists to characterize the elabo-
rate signaling processes in bone, while a new branch of computational biomechanics
has emerged, with the focus on creating realistic models of these biological events.
In silico modeling, supported by experimental investigations, is a powerful tool that
allows translation of biological phenomena into mathematical laws, thus facilitat-
ing detailed analyses of distinct biological processes. The true value of in silico
modeling is, however, in its predictive power, which, if close enough to the in vivo
events can not only save large efforts in the experimental domain both resource and
time wise, but also introduce treatment prediction options in clinics, thus improving
therapeutic outcomes.

The transition from theoretical modeling to in silico simulations required a ma-
jor improvement in the available computational capabilities. The advent of the finite
element (FE) analysis in the second part of the 20th century has become such a
breakthrough for the field of biomechanics. The first published investigation, which
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incorporated the technique, was performed by Brekelmans et al. (1972). The popu-
larity of the application grew exponentially ever since, many of the prominent pub-
lications of the first decade of its existence being reviewed in Huiskes and Chao
(1983).

Micro-computed tomography (micro-CT), introduced several years later (Feld-
kamp et al., 1989), allowed not only three-dimensional (3D) visualization of bone
architecture, but also a more reliable image-based validation method for the com-
putational models. However, the first validation of an in silico model against the
corresponding biological data was reported only in 1997, in a study that compared
FE models of trabecular bone with contact radiographs both quantitatively and qual-
itatively (Silva and Gibson, 1997).

In the meantime, both computational and visualization advances have provided
a framework for accurate simulations of bone remodeling and mechanobiology
throughout the hierarchical levels of its complexity, while algorithm validation with
experimental data collected within the same study was deemed ‘gold standard’ for
model confirmation (Anderson et al., 2007). This review focuses on different ap-
proaches of in vivo validation across multiscale modeling of bone remodeling and
mechanobiology from cell to tissue and on to the organ level.

27.2 Cell Level

Bone is a tissue subject to frequent remodeling due to various mechanically trig-
gered remodeling processes as well as micro- and macro-fractures. The study of
bone mechanobiology, thus, remains relevant throughout the lifetime of the organ-
ism. However, understanding and prediction of the cell mechanics is particularly
significant for the multiscale applications, such as implant selection and fixation,
and fracture healing (Van der Meulen and Huiskes, 2002). Nevertheless, even with
the focus of research narrowed down to the single cell level, in silico studies range
from the simulations of cellular interactions, to signaling pathway modeling, and all
the way to the intracellular predictions of cytoskeletal reorganization.

The first validated model in mechanobiology described osteocyte excitation by
mechanical stresses in mathematical terms (Weinbaum et al., 1994). The model was
based on the experimental observations, and attempted to quantify mechanical stim-
uli sensed by osteocytes within the bone tissue. For validation purposes, the calcula-
tions were compared to experimentally measured results, reported by a collaborating
group (Fritton et al., 2000).

Incorporation of the FE analysis into the mechanobiological models was initially
an attempt to provide analytical perspectives on observed in vivo events; this trend
later developed quantification and even prediction of the mechanical changes on the
local level. Nevertheless, comparison with literature remained a preferred method of
validation in the field (Carter et al., 1998; Knothe Tate and Niederer, 1998; Bonivtch
et al., 2007).
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In an effort to create more realistic and sophisticated in silico models researchers
started incorporating true geometries obtained by various imaging methods (Mc-
Garry et al., 2005; Anderson and Knothe Tate, 2008). The study by Anderson and
collaborators, for example, was based on high-resolution transmitted electron micro-
graphs to analyze stresses imposed on osteocytes by fluid drag, while McGarry and
colleagues incorporated previously reported images of cell spreading (Frisch and
Thoumine, 2002) to assess the effect of fluid shear stress and strain on the mechani-
cal response of bone cells using FE analysis. Nevertheless, while computational and
experimental components of the investigations are rarely carried out within a single
integrative study addressing the same research question using both in silico and in
vivo modalities concomitantly, the possibility of direct validation remains slim.

A computational model for signaling pathways and interactions between os-
teoblast and osteoclasts has attempted to predict the effects of catabolic treatment
with parathyroid hormone (PTH), as well as to simulate the interaction between
receptor activator of nuclear factor-κβ , its ligand, and osteoprotegerin (RANK-
RANKL-OPG pathway), which is essential for osteoclast formation (Lemaire et
al., 2004). This complex in silico framework has reportedly been able to correctly
predict cellular interaction, and the effects of the common metabolic diseases, such
as estrogen deficiency, calcitriol deficiency, senescence and glucocorticoid excess.
The results of the simulation find convincing evidence in the extensive comparison
with literature; however no other direct validation has been undertaken. Other the-
oretical models with the focus on the prediction of molecular signaling pathways
and mechanobiology have also been presented (Potter et al., 2005; Pivonka et al.,
2008; Lio et al., 2011); unfortunately, despite the fact that all of them strive to pre-
dict bone adaptation on the micro scale, none of them have been verified against
corresponding in vivo data, and thus are lacking confirmation of the level of fidelity.

The need for validation has also been emphasized for in silico models of cellular
chemotaxis and cytoskeletal reorganization (Loosli et al., 2010; Landsberg et al.,
2011). Both investigations compare results of the computational simulations with
the in vitro experiments. In both reports sample geometries and boundary condi-
tions for the models were derived directly from the experimental data. For example,
the study by Landsberg and colleagues used a tetrahedral mesh for micro-CT re-
construction, as a starting point for the chemotaxis simulation, while Loosli and
colleagues reconstructed the shapes of the adhesive islands from the in vitro study
to computationally predict the adhesion sites of the cells (Fig. 27.1). Such comple-
mentary experimental and in silico studies tend to enable better understanding of the
model limitations. For example, Landsberg and colleagues refer to a similar ongo-
ing experimental study, utilizing signaling molecules, for further model validation.
Loosli and colleagues, on the other hand, mention the algorithm’s failure to predict
adhesion formation at curved geometries, due to a missing model parameter, as one
of the limitations, requiring further improvements.

The overall lack of adequate validation for the predictive value of microscale
models in bone mechanobiology has also been noted by other authors (Jacobs and
Kelly, 2011; Webster and Müller, 2011; Isaksson, 2012). A particular concern of
validating models with in vivo data provided by collaborating investigators is that
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Fig. 27.1 Experimental (top row) and in silico (bottom row) results of controlled spreading on T-
and V-shaped adhesive islands. Adapted with permission from Loosli et al. (2010)

important details of experimental setup, and measurements relevant for the confir-
mation of the computational results, might be omitted. This is often the case for
boundary conditions and mechanical properties of the material, which generally
hold true only for the exact conditions of the testing setup. Consequently, while
numerous experimental reports can be found in literature, extrapolations or estima-
tions of such data for validation purposes could be misleading and erroneous.

27.3 Tissue Level

It has long been shown that trabecular bone is more susceptible to the effects of
osteoporosis than cortical bone (Leichter et al., 1987). Non-surprisingly, most pre-
dictive models for bone adaptation on the tissue level focus on this particular compo-
nent of bone. While a large number of existing models have already been extensively
reviewed (Gerhard et al., 2009; Webster and Müller, 2011), validation of those stud-
ies has never been comprehensively discussed. This section covers bone remodeling
algorithms which have been validated in one way or another. Additionally, a new in
vivo validation technique for a recently developed model of mechanically triggered
trabecular remodeling is discussed.

The first algorithm based on true bone geometry comprised a phenomenological
model for bone resorption and was performed on the high resolution quantitative
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computed tomography (QCT) images (Müller and Rüegsegger, 1996). In the study,
3D FE models were paired with controlled Gaussian filtration to derive two models
of moderate and pronounced bone atrophy. While the resulting apparent Young’s
moduli were the only mode of validation for this early attempt of in silico simula-
tion of bone adaptation, the reported methods became the foundation for subsequent
models. Thus, a follow-up study introduced further improvement to the application
by using 3D micro CT scans as the input for the algorithm (Müller and Hayes,
1997). The isotropic resolution of the input images increased from 170 to 14 µm. In
addition, the original simulated bone atrophy (SIBA) model was expanded to fol-
low the mechanostat hypothesis (Frost, 1964), allowing controlled formation and
resorption. This, in turn, facilitated simulation of various stages of bone loss, as
well as a more realistic ‘age-match’. For validation the results were compared to
the experimental measurement of the post-menopausal group both qualitatively and
quantitatively, and proved to be in good agreement. Finally, the model was applied
to the 3D micro CT scans of human iliac crest and lumbar spine biopsies selected
from the pre- and post-menopausal groups, in an attempt to simulate pre-, peri-,
and post-menopausal bone states (Müller, 2005). In this study strong emphasis was
placed on the validation of the results against biological data. Thus, visual compar-
ison after the simulation of 43 years confirmed that the model produced realistic
trabecular architecture when compared to the in vivo group, while quantitative bone
morphometry, carried out for both groups produced a 100 % match for the bone vol-
ume density (BV/TV) parameter, and excellent agreement for the other parameters.

Another in silico simulation, based on true bone geometry and verified against
in vivo biological data, employed a voxel-based surface adaptation under uniaxial
compression (Adachi et al., 2001). In this algorithm, micro-CT measurements of
canine cancellous bone were obtained from the previously published investigation
(Goldstein et al., 1991), and the results of the simulation were compared to the
corresponding animals at the end of the in vivo study (Guldberg et al., 1997). The
validation was performed based on a comparison of the calculated morphometric in-
dices for the in silico and in vivo experiments respectively. The results from the two
approaches were in good agreement with values for bone volume fraction (BV/TV)
being 0.230 and 0.222 for the experimental and simulated samples, respectively.

Several other notable studies, presenting elaborate models with realistic results,
should be mentioned. For example, long-term investigation performed on the 3D
micro-CT scans of human vertebra modeled the period of 50 years (Van der Lin-
den et al., 2001). Morphometric indices, calculated for the resulting structures, cor-
related closely with the values reported in literature. Unfortunately, no validation
against experimental data has been performed for this study. Another remarkable
algorithm has been presented by Ruimerman et al. (2005a). The simulation was car-
ried out on computer generated cubes of trabecular bone, and investigated the abil-
ity of bone to adapt in response to elevated strains. In addition to implementing the
theory for metabolic expression under load (Huiskes et al., 2000), an extensive ex-
amination of osteocytic stimuli, such as maximal principal strain, volumetric strain,
and strain energy density (SED) have been carried out as part of the study (Ruimer-
man et al., 2005b). While the model parameters themselves are largely based on the
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values found in literature, the results of the simulations have not received any va-
lidity confirmation past the ‘circumstantial evidence’ validation, a term the authors
used to summarize the similarity of the assumption-based prediction and biological
reality.

A different algorithm for stochastic simulation of bone adaptation via the ex-
change of discrete bone packets and an accompanying novel approach for validation
has recently been introduced (Hartmann et al., 2011). The study was subdivided into
the investigation of the most effective signal integration for this in silico model, as
well as validation of the results with quantitative backscattered electron imaging
(qBEI) data. The model assumed that resorption takes place randomly on the bone
surface, while deposition is mechanically controlled. The investigation of collective
(summed), individual (maximal) and total (the sum of the previous two) signaling
modalities indicated that using collective signal from the osteocyte network will in-
troduce effective surface tension, which the authors argue plays a key role in bone
morphogenesis and cell sorting. Validation of the simulation results against exper-
imental qBEI data centered on correlating the values of quantified material hetero-
geneity. For this purpose, the age of bone packets (voxels) has been converted to
represent corresponding mineral content (Ruffoni et al., 2007). When comparing
simulated structures to the experimental images, bone mineralization density dis-
tribution (BMDD) exhibited similar trends, where older bone was enclosed under
layers of younger bone. Notably, this validation method helped identify one of the
limitations of the algorithm, as it did not comply with the proposed theory that older
bone is more likely to be remodeled than younger bone (Taylor et al., 2007), and
was capable of remodeling only bone surface voxels.

More recently, Schulte et al. (2011) introduced an algorithm to simulate bone
thickening in response to cyclic mechanical loading using an open control loop. This
in silico model is based on the assumption that a single remodeling signal submitted
as an input for the simulation is sufficient to predict the long-term outcome of the
remodeling process. Micro-CT scans of whole murine caudal vertebrae measured at
the beginning of the in vivo study were used as the input for the simulation and the
results computed from the time-lapsed in vivo images were compared to the simu-
lated time points. This approach allowed not only comparison of the morphometric
indexes and relative geometries in vivo and in silico, but also quantification and spa-
tial distribution of the errors produced by the algorithm for each individual animal.
The authors report a maximum error of 2.4 % for bone volume fraction and 5.4 %
for other morphometric parameters. In addition, similarly to the previous study, the
appropriate validation method helped detect one of the less obvious model limita-
tions, namely that in the simulation remodeling occurred rather homogeneously in
the surface layers, while a similar assessment of the in vivo data revealed localized
areas of stronger deposition.

Finally, a similar approach has been extended for the validation of a newly de-
veloped algorithm for bone remodeling employing Frost’s mechanostat theory and
using SED values calculated after each remodeling iteration, in a closed feedback
loop (Schulte, 2011). The growth velocity was calculated with a set of iteratively
solved non-linear equations, and the mechanical thresholds for resorption, forma-
tion or homeostasis were selected interactively. The algorithm was applied for a



27 In Vivo Validation of Predictive Models for Bone 389

Fig. 27.2 Long-term simulation of the catabolic effect of PTH treatment combined with cyclic
mechanical loading in a murine caudal vertebra

short-term prediction of the effects of hormone depletion due to ovariectomy, cyclic
loading, and pharmaceutical treatments with anabolic (parathyroid hormone (PTH)),
and anti-resorptive (bisphosphonate (BIS)) agents, as well as for the control studies
for all groups. The model is also capable of long-term prediction (Fig. 27.2). The
input micro-CT images of the murine caudal vertebra were obtained from a con-
comitant in vivo study. The results of both in silico and in vivo study have been
assessed qualitatively as described elsewhere (Schulte, 2011). For the quantitative
evaluation, both static and dynamic morphometric parameters were calculated, and
comparative physiome maps were constructed for each parameter showing again
strong agreement between experiment and simulation.

27.4 Organ Level

Due to their place in the hierarchy of bone modeling, organ-level simulations often
treat bone as a continuum, disregarding local architecture, and biological events. In-
stead, such models focus on global stresses and strains, as well as on the interaction
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of bone tissue with other materials. Thus, computational models on the organ level
can be an invaluable tool for the pre-clinical studies of orthopedic implant perfor-
mance and whole bone fracture healing. Since such investigations have the potential
to go to clinics, thorough and well planned validation is mandatory in order to assess
practicality and applicability of such in silico efforts.

The questions of importance of validation and its existing modalities have been
comprehensively discussed by Huiskes (1997). In the same study, the author pre-
sented a three-tier approach to validation of the augmented femur model. Accord-
ing to the model, periprosthetic remodeling runs under the effects of stress shielding,
and can be estimated according to the adaptive bone-remodeling theory. The levels
in the proposed validation included quantitative validity of the results at large, the
validity of the outcome in a specific population, which was verified again with re-
sults from a canine study (Sumner et al., 1992), and the validity of the prediction rel-
ative to a single specimen in the population, assessed with the human post-mortem
retrieval study (Engh et al., 1992). Remarkably, the suggested model performed well
on all levels, and was deemed clinically relevant. Another two studies that attempted
to predict pre-operative implant fit and fill (Testi et al., 2004), as well as to analyze
different mechanical signals (Schmitz et al., 2004) for the total hip arthroplasty ap-
plication have been validated with a similar approach. The presented algorithms
were first validated against the in vitro CT data for the surface assessment and dis-
tance map accuracy in the first study, and performance of the FE code in the second
study. Following this validation step, both algorithms were tested in vivo on patient
specific clinical data. Eventually, both models were declared clinically applicable,
with only the cortical penetration parameter performing slightly lower than expected
in the sensitivity test of the first investigation. The second study also demonstrated
that SED and deviatoric strains were the best candidates for the in silico mechanical
signal used in the remodeling algorithm.

In addition, as both the need for computational modeling, and validation of such
models is getting increasing recognition among researchers, several groups have
focused on generating and collecting potential validation data (Lengsfeld et al. 2002,
2005; Sangiorgio et al., 2011), where micro CT imaging was performed either pre-
operatively, and/or in the follow up studies, with the hope of making this data useful
for future in silico studies, needing validation.

Another common validation method for the organ level computer models is com-
parison with the in vivo performed dual-energy X-ray absorptiometry (DXA). Sev-
eral studies reported successful use of bone mineral density (BMD) measurements
obtained from the 2D DXA images to validate and improve their algorithms (Kerner
et al., 1999; Coelho et al., 2009; Santos et al., 2010). Thus, Kerner and colleagues
were able to demonstrate that the results of both in silico patient specific model
and clinical results agree in that bone loss corresponds to the inverse of the pre-
operative bone mineral content (BMC). This result suggests that the model can be
used to improve current implant design, by taking into account predicted bone loss.
An investigation by Coelho et al. (2009) proposes a hierarchical model on the organ
and tissue levels, where each scale of complexity was represented by density based
variables. The model correlated apparent density distribution with that measured
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Fig. 27.3 Methodology framework for comparative analysis of the in silico and in vivo studies on
the organ level. Reprinted with permission from Santos et al. (2010)

with clinical DXA, and found good agreements in both quantitative and qualitative
results. The latest of the validated studies (Santos et al., 2010) was based on the
patient-specific model for the prediction of BMD (Fig. 27.3). When quantitatively
compared to the DXA derived results for the normal, osteopenic, and osteoporotic
bone, the maximum discrepancy between the in silico and in vivo measurements
was only 3.92 %. In addition, the authors report, that comparison with the clinical
data has helped them improve the model by selecting the parameters that lead to the
biologically relevant results.

Fracture healing is another area of interest that borders on the cellular and or-
gan levels, in that it focuses on an event associated with the cellular level, such
as sheer forces or angiogenic processes, but the algorithm is still based on a con-
tinuum assumption. One of the first computational models attempting to simulate
tissue differentiation during fracture healing was based on the biphasic poroelastic
FE algorithm that started at granulation and traced the process all the way to bone
resorption (Lacroix and Prendergast, 2002). The model was validated against histo-
morphometric data from literature, with different fracture gap sizes. The validation
confirmed that the proposed mechanobiological model produced realistic results for
different gap sizes and loading magnitudes on the rate of reduction in interfragmen-
tary strains. Isaksson and colleagues have performed a comparative review of the
existing approaches, and determined that deviatoric strain is the most significant
parameter for the modeling of tissue differentiation (Isaksson et al., 2006). Unfor-
tunately, since fracture healing is an inflammatory time-dependent process that is
difficult to monitor, this investigation relied only on previous reports for validation.
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27.5 Conclusions

While in silico simulations are gaining popularity, and have even been referred to
as the ‘third method of science’, following logic and experiment (Kelly, 1998), ad-
equate validation is the only way to ascertain the level of fidelity, and thus, the
advantage of such studies. It is generally accepted that the ‘gold standard’ method
of validation is a complementary in vivo investigation, ideally carried out within
the same research group. Both in silico and in vivo approaches should focus on
the same research questions, and match boundary conditions, time scales, and other
relevant parameters on the sample basis. Additionally, current imaging capabilities
allow the use of the experiment data as direct input for the computational models,
an improvement that should be taken advantage of for all suitable studies. Finally,
it is important that both qualitative and quantitative modules of validation are com-
prehensively evaluated for the convincing evidence of the algorithm’s capability to
produce realistic results.

Acknowledgements The authors gratefully acknowledge funding from the European Union for
the Osteoporotic Virtual Physiological Human project (VPHOP FP7-ICT2008-223865) and com-
putational time from the Swiss National Supercomputing Center (CSCS, Manno, Switzerland).

References

Adachi T, Tsubota K, Tomita Y, Hollister SJ (2001) Trabecular surface remodeling simulation for
cancellous bone using microstructural voxel finite element models. J Biomech Eng 123:403–
409

Anderson AE, Ellis BJ, Weiss JA (2007) Verification, validation and sensitivity studies in compu-
tational biomechanics. Comput Methods Biomech Biomed Eng 10:171–184

Anderson EJ, Knothe Tate ML (2008) Idealization of pericellular fluid space geometry and dimen-
sion results in a profound underprediction of nano-microscale stresses imparted by fluid drag
on osteocytes. J Biomech 41:1736–1746

Bonivtch AR, Bonewald LF, Nicolella DP (2007) Tissue strain amplification at the osteocyte la-
cuna: a microstructural finite element analysis. J Biomech 40:2199–2206

Brekelmans W, Slooff T, Poort H (1972) New method to analyze mechanical behavior of skeletal
parts. Acta Orthop Scand 43:301–317

Carter DR, Beaupré GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin
Orthop Relat Res S355:S41–S55

Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling
of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular
structure. J Biomech 42:830–837

Engh CA, Mcgovern TF, Bobyn JD, Harris WH (1992) A quantitative-evaluation of periprosthetic
bone-remodeling after cementless total hip-arthroplasty. J Bone Jt Surg, Am Vol 74:1009–1020

Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination
of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res
4:3–11

Frisch T, Thoumine O (2002) Predicting the kinetics of cell spreading. J Biomech 35:1137–1141
Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity

and self-similarity of low-magnitude strains. J Biomech 33:317–325



27 In Vivo Validation of Predictive Models for Bone 393

Frost HM (1964) The laws of bone structure. Thomas, Springfield
Gerhard FA, Webster DJ, van Lenthe GH, Müller R (2009) The relative significance of trabec-

ular and cortical bone-density as a diagnostic index for osteoporosis. Philos Trans R Soc A
367:2011–2030

Goldstein SA, Matthews LS, Kuhn JL, Hollister SJ (1991) Trabecular bone remodeling—an ex-
perimental model. J Biomech 24:135–150

Guldberg RE, Richards M, Caldwell NJ, Kuelske CL, Goldstein SA (1997) Trabecular bone adap-
tation to variations in porous-coated implant topology. J Biomech 30:147–153

Hartmann MA, Dunlop JW, Brechet YJ, Fratzl P, Weinkamer R (2011) Trabecular bone remod-
elling simulated by a stochastic exchange of discrete bone packets from the surface. J Mech Beh
Biomed Mat 4:879–887

Huiskes R (1997) Validation of adaptive bone-remodeling simulation models. Stud Health Technol
Inform 40:33–48

Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the
first decade. J Biomech 16:385–409

Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD, (2000) Effects of mechanical forces on
maintenance and adaptation of form in trabecular bone. Nature 405:704–706

Isaksson H (2012) Recent advances in mechanobiological modeling of bone regeneration. Mech
Res Commun 42:22–31

Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysi-
cal stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech
39:1507–1516

Jacobs CR, Kelly DJ (2011) Cell mechanics: the role of simulation. In: Fernandes PR, Bártolo PJ
(eds) Advances on modeling in tissue engineering. Computational methods in applied sciences,
vol. 20, pp 1–14

Kelly K (1998) The third culture. Science 279:992–993
Kerner J, Huiskes R, van Lenthe GH, Weinans H, van Rietbergen B, Engh CA, Amis AA (1999)

Correlation between pre-operative periprosthetic bone density and post-operative bone loss in
THA can be explained by strain-adaptive remodelling. J Biomech 32:695–703

Knothe Tate ML, Niederer P (1998) A theoretical FE-based model developed to predict the rela-
tive contribution of convective and diffusive transport mechanisms for the maintenance of local
equilibria within cortical bone. In: Clegg S (ed) Advances in heat and mass transfer in biotech-
nology. The American Society of Mechanical Engineers, New York, pp 133–142

Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during
fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171

Landsberg C, Stenger F, Deutsch A, Gelinsky M, Rosen-Wolff A, Voigt A (2011) Chemotaxis
of mesenchymal stem cells within 3D biomimetic scaffolds—a modeling approach. J Biomech
44:359–364

Leichter I, Bivas A, Giveon A, Margulies JY, Weinreb A (1987) The relative significance of trabec-
ular and cortical bone-density as a diagnostic index for osteoporosis. Phys Med Biol 32:1167–
1174

Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between
osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309

Lengsfeld M, Gunther D, Pressel T, Leppek R, Schmitt J, Griss P (2002) Validation data for
periprosthetic bone remodelling theories. J Biomech 35:1553–1564

Lengsfeld M, Burchard R, Gunther D, Pressel T, Schmitt J, Leppek R, Griss P (2005) Femoral
strain changes after total hip arthroplasty–patient-specific finite element analyses 12 years after
operation. Med Eng Phys 27:649–654

Lio P, Merelli E, Paoletti N, Viceconti M (2011) A combined process algebraic and stochastic
approach to bone remodeling. Electron Notes Theor Comput Sci 277:41–52

Loosli Y, Luginbuehl R, Snedeker JG (2010) Cytoskeleton reorganization of spreading cells on
micro-patterned islands: a functional model. Philos Trans R Soc, Math Phys Eng Sci 368:2629–
2652



394 A. Levchuk and R. Müller

McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ (2005) A comparison of strain and
fluid shear stress in stimulating bone cell responses—a computational and experimental study.
FASEB J 19:482–484

Müller R (2005) Long-term prediction of three-dimensional bone architecture in simulations of
pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporos Int 16:S25–S35

Müller R, Hayes WC (1997) Biomechanical competence of microstructural bone in the progress
of adaptive bone remodeling. Proc SPIE 3149:69–81

Müller R, Rüegsegger P (1996) Analysis of mechanical properties of cancellous bone under con-
ditions of simulated bone atrophy. J Biomech 29:1053–1060

Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR
(2008) Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263

Potter LK, Greller LD, Cho CR, Nuttall ME, Stroup GB, Suva LJ, Tobin FL (2005) Response to
continuous and pulsatile PTH dosing: a mathematical model for parathyroid hormone receptor
kinetics. Bone 37:159–169

Roux W (1881) Der Kampf der Theile im Organismus. Ein Beitrag zur Vervollständigung der
mechanischen Zweckmässigkeitslehre. Leipzig

Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization
density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005a). A theoretical framework for strain-
related trabecular bone maintenance and adaptation. J Biomech 38:931–941

Ruimerman R, van Rietbergen B, Hilbers P, Huiskes R (2005b). The effects of trabecular-bone
loading variables on the surface signaling potential for bone remodeling and adaptation. Ann
Biomed Eng 33:71–78

Sangiorgio SN, Longjohn DB, Dorr LD, Ebramzadeh E (2011) Challenges in relating experimental
hip implant fixation predictions to clinical observations. J Biomech 44:235–243

Santos L, Romeu JC, Canhao H, Fonseca JE, Fernandes PR (2010) A quantitative comparison
of a bone remodeling model with dual-energy X-ray absorptiometry and analysis of the inter-
individual biological variability of femoral neck T-score. J Biomech 43:3150–3155

Schmitz MJ, Clift SE, Taylor WR, Hertig D, Warner MD, Ploeg HL, Bereiter H (2004) Inves-
tigating the effect of remodelling signal type on the finite element based predictions of bone
remodelling around the thrust plate prosthesis: a patient-specific comparison. Proc Inst Mech
Eng, H J Eng Med 218, pp 417–424

Schulte FA (2011) In silico bone biology in a murine model of bone adaptation. Diss. ETH
No. 19679, Zurich

Schulte FA, Lambers FM, Webster DJ, Kuhn G, Müller R (2011) In vivo validation of a computa-
tional bone adaptation model using open-loop control and time-lapsed micro-computed tomog-
raphy. Bone 49:1166–1172

Silva MJ, Gibson LJ (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects
of age-related changes in microstructure. Bone 21:191–199

Sumner DR, Turner TM, Urban RM, Galante JO (1992) Remodeling and ingrowth of bone at two
years in a canine cementless total hip-arthroplasty model. J Bone Jt Surg, Am Vol 74:239–250

Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone.
Nat Mater 6:263–268

Testi D, Cappello A, Sgallari F, Rumpf M, Viceconti M (2004) A new software for prediction of
femoral neck fractures. Comput Methods Programs Biomed 75:141–145

Van der Linden JC, Verhaar JAN, Weinans H (2001) A three-dimensional simulation of age-related
remodeling in trabecular bone. J Bone Miner Res 16:688–696

Van der Meulen MCH, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech
35:401–414

Webster D, Müller R (2011) In silico models of bone remodeling from macro to nano-from organ
to cell. Wires Syst Biol Med 3:241–251

Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of ostecytes by mechanical
loading-induced bone fluid shear stresses. J Biomech 27:339–360

Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin



Chapter 28
Bridging Scales in Respiratory Mechanics

Lena Yoshihara, Mahmoud Ismail, and Wolfgang A. Wall

Abstract In this paper, we review different types of overall lung models developed
recently in our group. The first approach is based on three-dimensional (3D) con-
tinuum models of both the airways and the tissue. As only parts of the lung can
be resolved in detail in the model, advanced multi-scale techniques are utilized to
adequately consider the unresolved parts. Alternatively, we have proposed a com-
prehensive reduced-dimensional lung model allowing to effectively study pressure
and flow characteristics in the entire conducting region of the lung, albeit at the cost
of detailed information on local tissue stresses and strains. To combine the advan-
tages of detailed and simplified lung models, we have developed a novel approach
for the coupling of 3D and 0D airway models.

28.1 Introduction

Compared to other areas in biomechanics like the circulatory or the musculoskeletal
system, surprisingly many open questions related to structural-functional correla-
tions in the lung remain. Much of the uncertainty stems from the difficulties in
documenting lung mechanics on the ‘micro-level’, given the small size of corre-
sponding interior structures and the large movement of the lung during breathing.
Therefore, a sound standing ‘virtual lung model’ can be a valuable tool for various
applications ranging from the better understanding of lung diseases to progress on
individual therapeutic approaches.

Our current main motivation for modeling the respiratory system is related to
the treatment of patients suffering from the Acute Respiratory Distress Syndrome
(ARDS). This severe diffuse lung disease is characterized by a number of symptoms
such as reduced overall lung compliance, edema, severe hypoxemia, and general in-
flammation of the lung tissue. Although many therapeutic approaches have been
developed, the mortality associated with ARDS remains relatively high (Tsushima
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et al., 2009). An indispensable tool in the treatment for ARDS is mechanical ven-
tilation. However, heterogeneity of the ARDS lung predisposes patients towards
a number of complications which are collectively termed ventilator associated lung
injuries (VALI) and deemed one of the most important factors in the pathogenesis of
ARDS (Ranieri et al., 1999). VALI mainly occurs in the walls of the small lung com-
partments constituting the blood-gas barrier. In these so-called alveoli, both primary
mechanical and secondary inflammatory injuries occur (DiRocco et al., 2005). Pri-
mary injuries are consequences of alveolar overexpansion or frequent recruitment
and derecruitment inducing high shear stresses. Since mechanical stimulation of
cells can result in the release of proinflammatory mediators—a phenomenon com-
monly called mechanotransduction—secondary inflammatory injuries often directly
follow, possibly starting a cascade of events leading to sepsis and multi-organ fail-
ure. Understanding the reason why the lungs still become damaged despite recent
developments towards more ‘protective’ ventilation protocols (Amato et al., 1998)
is a key question sought by the medical community.

Computational models of the respiratory system can provide essential insights
into involved phenomena and open up new vistas towards improved patient-specific
ventilation protocols. In particular, computational models offer the possibility to
predict data that cannot be measured in vivo such as local alveolar strains and
stresses which are relevant for the development and progress of VALI. However,
establishing reasonable models is difficult since the lung comprises more than 20
generations of bifurcating airways ending in approximately 500 million alveoli. This
complexity inhibits a direct numerical simulation resolving all levels of the respira-
tory system from the onset. Therefore, we currently pursue two distinct modeling
strategies, which will be reviewed in the following. The first approach is based on
three-dimensional (3D) continuum models of both the airways and the tissue. As
only parts of the lung can be resolved in detail in the model, advanced multi-scale
techniques are utilized to adequately consider the unresolved parts. After having
discussed the 3D approach in Sect. 28.2, an alternative reduced-dimensional (0D)
lung model will be presented in Sect. 28.3. This approach allows to effectively study
pressure and flow characteristics in the entire conducting region of the lung, albeit at
the cost of detailed information on local alveolar stresses and strains. In Sect. 28.4,
the presented models will be briefly summarized and an outlook to future work will
be provided.

28.2 3D Lung Model

To enable the quantification of local stresses and strains during ventilation, we have
established a comprehensive 3D continuum model of the respiratory system. In the
following, the basic building blocks and their combination to one overall lung model
will be surveyed.
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28.2.1 3D Model of Individual Alveoli

Since alveoli are the main site of VALI, a detailed knowledge of all involved phe-
nomena on this ‘micro-level’ is crucial. Therefore, as a first step, we have developed
a comprehensive computational model of individual alveoli. Alveolar tissue can be
characterized as an irregular open foam consisting of mainly polyhedral structures
with average dimensions ranging around 200 µm. Our computational model is based
on both artificial (Wiechert et al., 2008) and imaging-based geometries (Rausch et
al., 2011a).

For modeling of alveolar tissue behavior, a hyperelastic constitutive law intro-
duced originally by Holzapfel et al. (2000) for arterial tissue has been adapted
(Wiechert et al., 2009). The chosen isotropic strain-energy density function is com-
posed of two main parts related to the major stress-bearing elements, i.e. the ma-
trix material including elastin fibers and the collagen fiber network. To satisfy the
quasi-incompressibility constraint typical of all soft biological tissues, the penalty
function proposed by Balzani et al. (2006) has been implemented. Due to the lack of
experimental data for individual alveolar walls, the material model has been fitted
to available stress-strain curves of lung tissue sheets (Al Jamal et al., 2001).

Since alveolar walls are covered with a thin fluid film, the interaction of tissue
and liquid lining mechanics has also been included in the computational model.
However, instead of explicitly discretizing the fluid film, we have proposed a novel
approach based on integrating the interfacial energy in the alveolar wall model
(Wiechert et al., 2009). To model the complex behavior of the surface active agents
in the liquid lining, the constitutive law of Otis et al. (1994) relating the local con-
centration of these substances to the surface stresses has been employed.

The simulation of small alveolar ensembles already becomes computationally
very expensive. Hence, modeling all 500 million alveoli in the human lung is ob-
viously not feasible. To overcome this problem, we have established an advanced
multi-scale model of lung tissue which will be discussed in the following section.

28.2.2 3D Multi-scale Model of Lung Tissue

Although neighboring lung regions influence each other strongly—a phenomenon
known as interdependence (Mead et al., 1970)—this effect has been completely ne-
glected in previous alveolar models (Kowe et al., 1986; Gefen et al., 2001; Denny
and Schroter, 2006). Due to the lack of physiologically reasonable boundary con-
ditions for alveolar models, clinically relevant predictions of local stresses and
strains during mechanical ventilation were not feasible up to now. Therefore, in-
stead of restricting analyses to isolated alveolar domains, it seems reasonable to
model lung parenchyma—i.e., lung tissue at a global scale—as a whole. In this
case, suitable boundary conditions can be easily derived, e.g., from 4D CT imaging.
Since the alveolar micro-structure cannot be resolved everywhere, we have pro-
posed to employ two complementary approaches. The bulk of lung parenchyma is
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Fig. 28.1 Schematic overview on nested dynamic multi-scale method for a given time step. The
deformation of the RVE boundary is prescribed according to the macroscopic deformation gradient.
After having solved the RVE problem, the macroscopic density, stress, and constitutive tensor are
determined by volume averaging. Nonlinearities on both scales are taken into account. For time
discretization of the dynamic macro-scale problem, the generalized alpha scheme is utilized

modeled using a homogenized, phenomenological constitutive law fitted to experi-
ments (Rausch et al., 2011b). At certain hotspots in our model, however, we want
to zoom in on the alveolar micro-structure in order to quantify local stresses and
strains relevant for VALI. To bridge the gap between the global parenchyma and the
local alveolar level, we have developed a novel computational multi-scale approach
based on the nested solution of the boundary value problems on both levels. The
benefit of this so-called FE2 strategy is twofold; firstly, improved global properties
are derived due to the detailed modeling of the underlying complex micro-structure.
Secondly, the global parenchyma model serves as an ‘embedding’ of the locally re-
solved micro-structure, thereby providing physiologically reasonable boundary con-
ditions for alveolar simulations.

Our approach extends existing methods (Feyel and Chaboche, 2000; Kouznetsova
et al., 2001; Miehe, 2003; Geers et al., 2010; Peric et al., 2010) to coupled and
dynamic scenarios inherent to (mechanical) ventilation. To account for the tran-
sient effects, we have proposed to couple a dynamic simulation on the global level
with a quasi-static simulation of the discretized alveolar level (Wiechert and Wall,
2010). This procedure enables us to investigate the time-dependent behavior of lung
parenchyma as a whole and local alveolar ensembles simultaneously without neces-
sitating to resolve the alveolar micro-structure completely. Instead, representative
volume elements (RVEs) of the underlying alveolar microstructure including inter-
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Fig. 28.2 Simple numerical example illustrating the mutual coupling of parenchyma and alveolar
levels in the multi-scale model. Right: heterogeneous deformation of simplified lung parenchyma
strip due to locally different alveolar liquid lining compositions. Left: deformation states for alve-
olar assemblages under surface tension load using traction-free (top) and multi-scale boundary
conditions (bottom)

facial effects are defined and associated with selected macro-scale Gauss integration
points. For the macro-micro scale transition, currently displacement boundary con-
ditions are utilized. Since the boundary deformation of each RVE is prescribed
according to the associated macro-scale deformation state, RVEs of neighboring
Gauss points influence each other indirectly via the macro-level. Hence, the impor-
tant interdependence effect is inherently considered in our model. After solution
of the local, constrained micro-problem, computational homogenization procedures
are employed to determine volume-averaged densities, stresses, and constitutive
tensors for the macroscopic simulation. A schematic representation of the dynamic
multi-scale method is shown in Fig. 28.1.

Since global parenchyma and local alveolar models are simulated simultane-
ously, a mutual information transfer is enabled. The right hand side of Fig. 28.2
shows exemplarily the overall heterogeneous deformation of an idealized lung
parenchyma strip due to locally different compositions of the alveolar liquid lining.
A diseased state was modeled by assuming a deficiency of surface active agents, i.e.
a purely aqueous liquid lining, in some of the associated alveolar micro-structures.
This phenomenon is known to occur in case of lung failure. On the left hand side
of Fig. 28.2, the effect of the multi-scale boundary conditions on local alveolar de-
formations is illustrated. For comparison, the behavior of an alveolar ensemble with
traction-free boundary conditions was simulated. This type of boundary condition
has been standardly employed in alveolar simulations so far. For a given surface
tension load on the interior surfaces, considerable differences in the resulting defor-
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mation states can be observed. Although imposed multi-scale boundary conditions
are still very simple, alveolar deformation can be simulated more realistically than
in the comparative simulation neglecting the influence of the surrounding tissue
completely.

28.2.3 Coupling of 3D Parenchyma and Airway Models

Although VALI is known to occur primarily in the alveolar region, the conducting
part of the lung also has to be included in the model. After all, local parenchyma de-
formations are determined by the distribution of airflow into the peripheral domains.
Hence, we have been recently focusing on completing our ‘bridging of scales’ by
combining our multi-scale parenchyma model with 3D airway models (cf., e.g.,
Wall and Rabczuk, 2008; Comerford et al., 2010). Again, due to limited computa-
tional resources and the insufficient resolution of CT imaging techniques (minimum
voxel size of 0.5 × 0.5 × 0.5 mm), a detailed modeling of all relevant airway struc-
tures from the trachea—where the endotracheal tube is situated during mechanical
ventilation—down to the alveoli is not possible. Therefore, airway models are usu-
ally restricted to the first generations of the tracheo-bronchial tree.

To compensate for the gap between resolvable airways and the alveolar region,
we have proposed a general concept for the homogenization of unresolvable struc-
tures (Yoshihara and Wall, 2012). Briefly, our approach considers two different types
of interactions of airway and tissue models. Firstly, lung parenchyma surrounds the
main part of the airway tree, thereby affecting airflow and inducing an interdepen-
dence of neighboring airways not present in the isolated airway tree. This effect
can be considered by means of fluid-structure interaction (FSI) procedures (see,
e.g., Gee et al., 2010; Küttler et al., 2010). Secondly, the parenchyma is inflated
by the air transported in the conducting part. To consider this coupling, we divide
the parenchyma model into subdomains associated with the outlets of the resolved
three-dimensional airway tree. Each subdomain can be thought of as a homogenized
continuum consisting of smaller airways and alveoli that is provided with air by the
associated 3D airway. Hence, the volume of air passing through each outlet has to
equal the change in volume of the corresponding tissue subdomain. To enforce this
constraint within the framework of FSI problems, we utilize a Lagrange multiplier
technique. For the parallel and iterative solution of the resulting linear systems, a
specific preconditioning algorithm has been introduced.

The simple numerical example shown in Fig. 28.3 illustrates the novel volume-
coupled FSI approach. A cuboidal parenchyma model is split into two parts consis-
tent with the two outlets of the embedded deformable cylindrical airways. If both
parenchyma blocks exhibit the same material properties, a perfectly symmetric dis-
tribution of parenchyma deformations and airflow develops for a prescribed inflow.
However, if the Young’s modulus of the left block is doubled, most of the inflow-
ing air is transported into the softer right parenchyma block resulting in a hetero-
geneous deformation state. In combination with the multi-scale approach of lung
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Fig. 28.3 Deformation of parenchyma model and distribution of airflow velocities for a given
prescribed inflow. Diagrams on the right visualize how air volumes split between the two outlets.
(a) Tissue parameters are homogeneous throughout the parenchyma model. (b) Young’s modulus
of the left half of the parenchyma model is twice as large as the one of the right half. (c) Combi-
nation of volume-coupling and multi-scale approach enabling the determination of local alveolar
stresses and strains depending on the airflow in the associated airways

parenchyma, the developed models allow to simulate airflow in the airways and
coupled local alveolar deformation realistically for the first time.

Currently, we are working on simulating coupled airflow and parenchyma defor-
mation using CT-based instead of simplified geometries. In this case, however, the
number of subdivisions of the parenchyma model is limited since only few airway
generations can be resolved. To overcome this problem and enable more realistic
predictions of the distribution of gases and local deformations, we have recently
proposed an efficient reduced-dimensional model of the conducting region which
will be reviewed in the following section.
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Fig. 28.4 Generation of 0D lung models. (a) Lobes segmented from CT images. (b) Space-filling
airway tree generated within the lobes. (c) Acini generated within the lobes

28.3 Reduced-Dimensional Lung Model

An effective alternative to 3D lung models are reduced-dimensional models such
as 1D, 0D, and impedance models. Corresponding approaches are generally based
on electrical analogies, where flow resistance, fluid inertia, and tissue compli-
ance are represented by resistors, inductors, and capacitors, respectively. Reduced-
dimensional models were shown to well capture the averaged physiological and
physical behavior of lung mechanics (Pedley et al., 1970; Horsfield et al., 1971;
Lambert et al., 1982; Bates, 2009; Comerford et al., 2010; Ismail et al., 2012a).
To enable the spatial representation of flow in the lung, our reduced-dimensional
model is based on patient-specific CT images and morphological information for
the unresolvable generations (cf. Fig. 28.4). We utilize a methodology similar to
the one presented by Tawhai et al. (2000) to generate a space-filling tree of 0D air-
ways. With each terminal airway, the volume of a so-called acinus representing a
cluster of alveolar ducts is associated. In the following, the building blocks of our
reduced-dimensional lung model will be briefly reviewed.

28.3.1 Tree of 0D Airways

Following Pedley et al. (1970) and van Ertbruggen et al. (2005), we model the air-
way tree as a combination of pipes with nonlinear resistances. Pre-integration in
radial as well as longitudinal direction leads to a 0D model of the individual seg-
ments which are then combined to an overall model. To validate our approach, we
compared the results obtained in fully 0D and coupled 3D–0D simulations (Ismail et
al., 2012a). To create the 3D–0D model, we coupled a 3D airway model segmented
from CT scans with a space-filling tree of 0D airways for the lower generations (cf.
also Sect. 28.3.3). The results shown in Fig. 28.5 demonstrate that the 0D model can
indeed mimic the space-averaged 3D results.
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Fig. 28.5 Pressure distribution obtained in (a) a fully 0D simulation and (b) a coupled 3D–0D
simulation. In both cases, the trachea flowrate was 120 l/min. The pressure at the terminal airways
was taken to be zero. (c) Total bronchial pressure drop of models (a) and (b) at different inlet
flowrates

28.3.2 0D Model of Acini

To account for the influence of alveolar dynamics, we have proposed to introduce
simplified acinar models at all ends of the airway tree (Ismail et al., 2012a). Each ac-
inus is constructed from a tree of several alveolar ducts which are approximated by
Maxwell models (see Fig. 28.6). Corresponding parameters have been determined
by calibrating the Maxwell model with 3D simulation results from the literature.

28.3.3 3D–0D Coupling

If detailed flow patterns in the larger airways are of interest, it seems reasonable to
utilize a combination of 3D and 0D airway models. Recently, we have developed
a novel coupling algorithm of 3D and reduced-dimensional models (Ismail et al.,
2012b) based on the Neumann inflow boundary condition presented by Gravemeier
et al. (2012). This approach was shown to reproduce correct pressure levels and
resolve potential instabilities on inflow boundaries. Briefly, we first evaluate the
pressure on the 0D boundary using the flowrate of the 3D boundary. Subsequently,
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Fig. 28.6 (a) Maxwell model for a single alveolar duct. (b) 3D alveolar duct model of Denny and
Schroter (2000) utilized to calibrate the 0D model. (c) Construction of an acinus from a tree of
alveolar ducts

both 0D pressure and 3D flowrate are utilized to evaluate the total traction, which
is then applied as a Neumann boundary condition to the 3D boundary. In Fig. 28.7,
selected simulation results are provided for an overall lung model containing nine
3D airways, 55,000 0D airways, and 28,000 0D acini. The validity of our coupling
approach is illustrated by the perfect matching of pressure curves at associated 3D
and 0D boundaries. The simulated tracheal flowrate is in excellent agreement with
reported physiological flowrates.

28.4 Conclusion and Outlook

In this paper, we have reviewed different types of overall lung models developed
recently in our group. If detailed information about local flow patterns or tissue
stresses and strains are of interest, utilization of 3D models is indispensable. As a
first step, we have established a comprehensive 3D model of individual alveoli con-
sidering not only tissue behavior but also the influence of the covering surfactant
film. Since it is impossible to resolve all 500 million alveoli in the human lung,
we have proposed an advanced multi-scale methodology enabling the simulation of
tissue dynamics at a global level while still resolving alveolar scales locally. To com-
plete the ‘bridging of scales’, a novel approach for the coupling of 3D parenchyma
and airway models into one overall lung model has been developed. The number of
resolvable 3D airways is, however, limited.

Therefore, we have proposed an alternative reduced-dimensional lung model al-
lowing to effectively study pressure and flow characteristics in the entire conduct-
ing region of the lung. For this purpose, a space-filling artificial airway tree with
attached acini is generated using patient-specific morphological information. Each
airway is modeled as a pipe with nonlinear resistance. The 0D acinus model is based
on a combination of Maxwell models fitted to 3D simulation results from the litera-
ture. The resulting reduced-dimensional lung model was shown to reproduce global
physiological data in a very efficient manner.
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Fig. 28.7 3D–0D simulation results for spontaneous breathing. (a) Bronchial pressure distribution
at maximum inspiration. (b) Pressure curve at the 3D boundary (line) and at the 0D boundary
(circles) in the right bottom lobe. (c) Simulated flowrate at the inlet of the trachea

Recently, we have also developed a novel approach for the coupling of 3D and 0D
airway models. Hence, we can resolve in detail local flow patterns in larger airways,
whereas a reduced-dimensional model is utilized to approximate the distribution of
pressure and flow in the peripheral region.

To determine tissue stresses and strains relevant to VALI, though, a 3D model
of the alveolar region is essential. Therefore, future work will be concerned with
a novel 3D–0D–3D coupling based on a modification of our volume coupling ap-
proach. This way, we can combine the advantages of 3D and 0D airways and enable
a reasonable investigation of alveolar mechanics during (mechanical) ventilation
for the first time. In order to validate our computational models, we plan to cor-
relate simulation results with medical data obtained from, e.g., positron emission
tomography (PET) or electrical impedance tomography (EIT). Although developed
against the background of VALI, our approaches are by no means restricted to this
particular application. Hence, we believe that our models can promote further un-
derstanding of the lung under healthy and diseased conditions. Thus, they will be
valuable for answering a number of questions brought up by the medical and bio-
logical community.

Acknowledgements Support by the German Science Foundation/Deutsche Forschungsgemein-
schaft (DFG) through projects WA1521/6-2, WA1521/9-2, and WA1521/9-2 within the priority
program ‘Protective Artificial Respiration’ (PAR) is gratefully acknowledged.

References

Al Jamal R, Roughley PJ, Ludwig MS (2001) Effect of glycosaminoglycan degradation on lung
tissue viscoelasticity. Am J Physiol, Lung Cell Mol Physiol 280:L306–L315

Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GPP, Lorenzi-Filho G, Kairalla
RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR (1998) Effect of a
protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J
Med 338:347–354

Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological
tissues. Adjustment to experimental data. Int J Solids Struct 43:6052–6070

Bates J (2009) Lung mechanics: an inverse modeling approach. Cambridge University Press, Cam-
bridge



406 L. Yoshihara et al.

Comerford A, Förster C, Wall WA (2010) Structured tree impedance outflow boundary conditions
for 3D lung simulations. J Biomech Eng 132:081002

Denny E, Schroter RC (2000) Viscoelastic behavior of a lung alveolar duct model. J Biomech Eng
112:143–151

Denny E, Schroter RC (2006) A model of non-uniform lung parenchyma distortion. J Biomech
39:652–663

DiRocco JD, Carney DE, Nieman GF (2005) The mechanism of ventilator-induced lung injury:
role of dynamic alveolar mechanics. In: Yearbook of intensive care and emergency medicine
2005, vol 2005, pp 80–92, Part 2

Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic be-
haviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–
330

Gee MW, Küttler U, Wall WA (2010) Truly monolithic algebraic multigrid for fluid-structure in-
teraction. Int J Numer Methods Eng 85:987–1016

Geers MGD, Kouznetsova V, Brekelmans WAM (2010) Multi-scale computational homogeniza-
tion: trends & challenges. J Comput Appl Math 234:2175–2182

Gefen A, Halpern P, Shiner RJ, Schroter RC, Elad D (2001) Analysis of mechanical stresses within
the alveolar septa leading to pulmonary edema. Technol Health Care 9:257–267

Gravemeier V, Yoshihara L, Comerford A, Ismail M, Wall WA (2012) Neumann inflow boundary
conditions in biomechanics. Int J Numer Methods Biomed Eng 28:560–573

Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall me-
chanics and a comparative study of material models. J Elast 61:1–48

Horsfield K, Dart G, Olson D, Filley G, Cumming G (1971) Models of the human bronchial tree.
J Appl Physiol 31:207–217

Ismail M, Comerford A, Wall W (2012a) Coupled and reduced dimensional modeling of respira-
tory mechanics during spontaneous breathing. Int J Numer Methods Biomed Eng (submitted)

Ismail M, Gravemeier V, Comerford A, Wall W (2012b) A computational approach for simulating
coupled 3D–0D biofluid networks using Neumann inflow boundary conditions (in preparation)

Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling
of heterogeneous materials. Comput Mech 27:37–48

Kowe R, Schroter RC, Matthews FL, Hitchings D (1986) Analysis of elastic and surface tension
effects in the lung alveolus using finite element methods. J Biomech 19:541–549

Küttler U, Gee MW, Förster C, Comerford A, Wall WA (2010) Coupling strategies for biomedical
fluid-structure interaction problems. Int J Numer Methods Biomed Eng 26:305–321

Lambert RK, Wilson TA, Hyatt RE, Rodarte JR (1982) A computational model for expiratory flow.
Respir Physiol 52:44–56

Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity.
J Appl Physiol 28:596–608

Miehe C (2003) Computational micro-to-macro transitions for discretized microstructures of het-
erogeneous materials at finite strains based on the minimization of averaged incremental energy.
Comput Methods Appl Mech Eng 192:559–591

Otis DR, Ingenito EP, Kamm RD, Johnson M (1994) Dynamic surface tension of surfactant TA:
experiments and theory. J Appl Physiol 77:2681–2688

Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resis-
tance within the human bronchial airways. Respir Physiol 9:387–405

Peric D, de Souza Neto EA, Feijoo RA, Partovi M, Molina AJC (2010) On micro-to-macro tran-
sitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis
and finite element implementation. Int J Numer Methods Eng 87:149–170

Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS
(1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respi-
ratory distress syndrome: a randomized controlled trial. J Am Med Assoc 282:54–61

Rausch S, Haberthuer D, Stampanoni M, Schittny JC, Wall WA (2011a) Local strain distribution
in real three-dimensional alveolar geometries. Ann Biomed Eng 39:2835–2843



28 Bridging Scales in Respiratory Mechanics 407

Rausch S, Martin C, Bornemann PB, Uhlig S, Wall WA (2011b) Material model of lung
parenchyma based on living precision-cut lung slice testing. J Mech Beh Biomed Mat 4:583–
592

Tawhai MH, Pullan AH, Hunter PJ (2000) Generation of an anatomically based three-dimensional
model of the conducting airways. Ann Biomed Eng 28:793–802

Tsushima K, King LS, Aggarwal NR, De Gorordo A, D’Alessio FR, Kubo K (2009) Acute lung
injury review. Int Med 48:621–630

van Ertbruggen C, Hirsch C, Paiva M (2005) Anatomically based three-dimensional model of
airways to simulate flow and particle transport using computational fluid dynamics. J Appl
Physiol 98:970–980

Wall WA, Rabczuk T (2008) Fluid-structure interaction in lower airways of CT-based lung geome-
tries. Int J Numer Methods Fluids 57:653–675

Wiechert L, Wall WA (2010) A nested dynamic multi-scale approach for 3D problems accounting
for micro-scale multi-physics. Comput Methods Appl Mech Eng 199:1342–1351

Wiechert L, Rabczuk T, Comerford A, Metzke R, Wall WA (2008) Towards stresses and strains in
the respiratory system. ESAIM Proc 23:98–113

Wiechert L, Metzke R, Wall WA (2009) Modeling the mechanical behavior of lung tissue at the
microlevel. J Eng Mech 135:434–438

Yoshihara L, Wall WA (2012) Fluid-structure interaction including volume coupling of homoge-
nized subdomains for treating artificial boundaries (in preparation)



Index

A
Abaqus user subroutine, 138
Actin, 25, 28, 31, 78, 79, 81, 137
Actin filament, 46, 49, 50, 53
Action potential, 178, 180, 183, 185,

186
Active contraction, 79, 81
Active strain, 189–191, 193–196, 199
Activity coefficient, 239
Adaptation, 119
Adenocarcinoma, 294, 302
Adhesion, 35
Advection, 295, 297, 302
Affinity, 26, 27, 29–33, 35, 36
Airway model, 395
Alveolar model, 396
Amino-acid, 6
Anatomical reconstruction, 219, 221
Angiotensin-II, 125
Anisotropic perfusion, 269
Anterior cruciate ligament, 351
Aorta, 221
Aortic coarctation, 203, 204, 211
Apparent density, 235
Aqueduct of sylvius, 306
Arrhythmia, 218
Arterial adaptation, 119
Arterial clamping, 130
Artery, 161, 307
Ascending thoracic aortic aneurysm, 149
Aspiration experiment, 366, 370, 373–375,

377, 380
ATPase, 92
Automatic differentiation, 293, 298
Azygos flow, 225
Azygos vein, 220, 221, 226

B
Barophoresis, 240
Bicuspid aortic valve, 149
Bidomain equation, 191, 192
Biochemomechanical model, 25, 26, 40
Biochemomechanics, 120
Biphasic, 277, 281–283, 290
Biphasic solute, 233
Biphasic theory, 232
Blood flow, 220
Bone, 383
Bone-ligament-bone graft, 357
Brain development, 337, 343
Brain folding, 337, 344–346
Brainstem, 307
Bubnov-Galerkin approach, 327

C
Calcium ion, 78, 80, 83
Cancer, 293
Capsule, 365–367, 369–381
Cardiac tissue, 175, 177, 179, 185
Cardiothoracic modeling, 226
Cardiovascular magnetic resonance (CMR),

219, 221, 224
Cell, 27, 32, 34, 35
Cell membrane, 27, 30, 33
Cell migration, 293, 301, 302
Cell model, 27, 40
Cell motility, 298
Central canal, 307
Chemical potential, 29, 31, 238, 317, 320–323,

327, 329–333
Chemomechanical efficiency, 100
Chemomechanical model, 45, 61
Chemomechanics, 65, 296, 299, 302
Choroid lexus, 305

G.A. Holzapfel, E. Kuhl (eds.), Computer Models in Biomechanics,
DOI 10.1007/978-94-007-5464-5, © Springer Science+Business Media Dordrecht 2013

409

http://dx.doi.org/10.1007/978-94-007-5464-5


410 Index

Coarse-grained model, 3
Collagen fiber, 136
Collagen fibrils, 11–13, 17, 19–23
Collagen III, 123
Colon, 294, 302
Communicating hydrocephalus, 308
Compliance, 308
Computational fluid dynamics (CFD), 219,

223, 224
Computational fluid solver, 218, 220, 223
Computational grid, 312
Connective tissue, 365, 366, 376, 377, 379
Consolidation, 309
Constitutive model, 27, 373–379
Constrained mixture model, 120
Contact force, 365, 369, 376, 377
Continuum mechanics, 79, 106, 119
Continuum theory of mixture, 294
Continuum thermodynamics, 78
Contractile cell, 26
Contractile unit, 49, 50, 53, 55, 57, 58, 61, 79
Contractility, 27, 29, 31, 35, 36, 39, 40
Contraction kinetics, 69
Convection-enhanced drug delivery, 272
Corneal stroma, 12–14
Crack growth, 317, 319, 328–331
Crack surface, 317, 319, 322–324
Crack tip, 318, 323–328, 331, 332
Crank-Nicolson scheme, 327
Cross-bridge, 28, 46, 47, 49, 50, 52, 53, 57, 59,

61, 79, 81, 83–85
Cross-bridge cycle, 78, 80
CSF, 305
Current, 232
Cytokine, 125
Cytoskeleton, 27, 28, 39, 40, 341
Cytosol, 28

D
Damage, 135
Damage model, 134
Darcy’s law, 318–320, 324
Deformation gradient, 236
Delamination test, 329, 331
Dementia, 305
Denatured protein, 3
Density, 232
Depolymerization, 27, 28, 32, 35, 36
Diffusion, 233, 295
Diffusivity, 233
Digital image correlation, 357, 359
Digital palpation, 380, 381
Displacement, 27, 30, 35
Dissection properties, 149

Dissipation, 83
Dissipation potential, 82
Dissociation, 28
Donnan, 233
Donnan-osmotic pressure, 317
Doyle-Ericksen formula, 179, 182

E
Effective solubility, 239
Effective solute concentration, 239
Effective stress, 325, 326, 330–332
Ehlers—Danlos syndrome, 123
Elasticity, 28
Electrical current, 232
Electrical potential, 232
Electrochemical, 78, 82
Electrochemical potential, 238
Electrokinetic phenomena, 232
Electromechanical interaction, 189, 191, 195
Electromechanics, 108, 175, 176, 184, 185
Electroneutrality, 237
Electroosmosis, 240
Electrophoresis, 240
Electrophysiology, 176, 178, 183
Embryology, 337
Endoscopic third ventriculostomy (ETV), 314
Endothelial cell, 124
Endothelin-1, 124
Equilibrium, 26, 27, 30, 31
Excitation-contraction coupling, 189
Extension-inflation test, 138
Extracellular calcium, 51, 52
Extracellular fluid, 306
Extracellular matrix, 26, 293–295, 297

F
Fabric tensor, 254
FE2 approach, 398
FEBio, 231
Fibrillin-1, 123
Fick’s law, 121
Filament overlap, 49, 53, 54, 57–60
Filament sliding, 50, 52, 53, 57, 59–61
Filament translation, 78, 81
Filter velocity, 284, 285
Finite deformation, 233
Finite difference, 312
Finite element, 25, 31, 231, 298, 299
Finite element method, 111, 318, 327, 369
Fixed charge density, 237
Flow pattern, 219
Flow rate, 221, 224
Fluid pressure, 232
Fluid-solid-growth, 161, 204



Index 411

Fluid-solid-growth (FSG) model, 167
Fluid-structure interaction, 203, 400
Focal adhesion, 25–27, 29, 31–37, 40
Fontan procedure, 217, 218, 226
Foramina of luschka, 307
Foramina of magendie, 306
Foramina of monro, 306
Force generation, 80
Force-velocity, 49, 50, 54, 58, 60
Formation, 26–29, 32
Forward dynamics, 111
Fourth ventriculostomy, 314
Fracture toughness, 325
Free energy, 29, 82, 85, 94

G
Gel, 25, 32–34, 40
Gel modulus, 34
Gel substrate, 26, 32–35
Glucose, 293, 294, 296
Growth, 167, 224, 251, 278–280, 283, 284,

293, 337, 342, 344–346
Growth and remodeling, 120

H
Heart model, 175, 176, 184, 186
Hemodynamics, 218, 220, 224
Hepatic baffle, 225
Hepatic flow, 220–222, 225, 226
Hill’s equation, 87
Hindrance, 233
Homogenization, 110
Hydrocephalus, 305, 308, 313, 315
Hydrostatic pressure, 311
Hypertension, 203, 209, 214
Hypoxia, 220

I
Ideal mixture, 239
Image acquisition, 219
Immersed boundary, 223
In silico, 383
In vivo, 383
Incompressible, 135, 234
Infinitesimal deformation, 233
Inflation test, 370, 372, 373, 375, 378
Integrin, 26, 27, 29–33, 35, 36
Integrin-ligand complex, 29–31
Interstitial growth, 259
Intervertebral disc, 317, 318
Intracellular calcium, 50, 52, 55
Inverse problem, 365, 366, 369, 380
Ion, 28
Isometric, 85

Isometric contraction, 47, 49, 54, 56,
59, 60

Isometric stress, 28
Isotonic quick-release, 46, 47, 49, 54, 58–60

K
Kinetic model, 80
Kinetics, 30
Krebs, 131

L
Latch state, 80
Latch-bridge, 47, 49–51, 59, 61
Length scale, 256
Length-tension, 48, 50, 55, 57, 60
Ligand, 27, 29–31
Liver, 365
Liver resection, 277, 278, 280, 290
Lung, 220, 225, 226
Lung model, 395

M
Marfan syndrome, 123
Mass balance, 234
Mass flux, 235
Matrix metalloproteinase, 125
Maxwell model, 403
Mechanical feedback, 346
Mechano-sensitivity, 27, 28
Mechanobiology, 123, 383
Mechanochemical, 232
Mechanoelectrochemical, 232
Membrane, 369, 378, 379
Mesh refinement, 293, 298, 330, 333
Microperfusion, 277
Microstructure, 370
Minimal model, 197
Mixture theory, 126, 232, 251, 279
Molar concentration, 235
Molar flux, 235
Molecular dynamics, 3
Momentum balance, 234
Morphogenesis, 338, 340, 342, 346
Motor unit, 108
MRI, 311
Multi-body dynamics, 112
Multi-scale, 78
Multi-scale model of respiratory system, 397
Multiphase, 279, 280
Multiphasic brain tissue, 265
Multiphysics, 293, 299
Multiple-network poroelastic theory (MPET),

305
Myocardium, 176, 180, 181



412 Index

Myofiber, 183–186
Myograph, 131
Myosin, 28, 78, 79, 81, 137
Myosin dephosphorylation, 46, 47, 51
Myosin filament, 49, 50, 53
Myosin phosphorylation, 46, 49, 51, 56

N
Navier-Stokes equation, 223
Nitric oxide, 124
Nonlinear viscoelastic model, 354
Normal pressure hydrocephalus (NPH), 305

O
Obstructive hydrocephalus, 308
Open surgery, 366, 373
Open system, 255
Orthogonal polarization spectroscopy, 279,

281, 284
Osmosis, 232
Osmotic coefficient, 239, 320
Osmotic pressure, 232, 319, 320
Outflow obstruction, 278, 280, 284, 288–290
Oxygen, 226, 293, 294, 296

P
Parenchyma, 365, 369–371, 374–376, 379–381
Partition coefficient, 239
Permeability, 232, 277, 281, 284–286, 290,

318, 320, 325, 328, 331, 333
Permeation, 232
Phosphorylation, 78
Physiome, 119
Platelet-derived growth factor, 125
Polymerization, 27, 31, 32, 40
Pore structure, 251
Poroelastic, 305
Poroelasticity, 251
Porous media, 232, 277, 279, 281, 283, 288,

317, 318, 331, 333
Post-bed, 25, 26, 34–38
Power stroke, 79–81
Preferred flow, 280, 286, 287, 290
Prestress, 317, 320, 328, 330–333
Principle of virtual power, 81
Protein, 28, 31
Proteoglycans, 11–13, 18, 22
Pulmonary arteriovenous malformation

(PAVM), 218, 220, 221, 224–226
Pulmonary artery, 217–220, 225
Pulmonary vein, 221
Pulse pressure, 203, 211, 214

Q
Quick-release experiment, 85

R
Reaction rate, 80
Reaction-diffusion equation, 121
Reaction-transport equation, 295, 302
Regeneration, 278, 280
Remodeling, 167, 277, 279, 280, 283, 284,

286, 290, 383
Reorientation, 277, 280, 284, 286–288, 290
Representative volume element (RVE), 251
Residual strain, 140
Reynolds number, 312
Robotic surgery, 130
Rule-of-mixture, 123

S
Saturated mixture, 234
Seepage velocity, 283
Semi-flexible biopolymer, 355
Shear band, 318, 322, 332
Shear lag, 37
Shortening velocity, 86
Signal, 27, 28, 32, 35
Signaling cascade, 27
SIMPLEC, 312
Simulation, 25, 383
Sinusoids, 277, 278, 280, 281,

284–286, 290
Skeletal muscle, 104
Smooth muscle, 45, 77
Smooth muscle activation, 63
Smooth muscle cell, 63, 124, 137
Solid matrix, 231
Solubility, 239
Solute, 231
Solvent, 231
Space-filling airway tree, 402
Spinal cord, 307
Steady-state free precession (SSFP), 219
Stem cell, 295, 299, 300, 302
Stereo lithography file (STL), 311
Stiffness parameter, 376, 377, 380
Strain energy, 83, 134
Streaming potential, 232
Stress, 27–29, 32, 37–39
Stress fiber, 25–29, 31, 32, 34–38, 40
Stress relaxation test, 352, 353, 357,

358
Subarachnoid space, 307
Superior sagittal sinus, 307
Surface tension, 298
Surfactant model, 404



Index 413

Surgical planning, 218–220, 223, 226
Swelling, 233, 317, 319, 321, 328, 330
Swelling pressure, 11–15, 17, 18, 20, 22, 23

T
Tensile test, 146
Tension, 26–28, 31, 35
Tentorium cerebelli, 307
Theory of porous media, 265
Thorax, 219
Tissue engineered graft, 351, 352, 354, 356,

357
Tissue model (lung parenchyma), 400
Total cavopulmonary connection (TCPC),

218–224
Transforming growth factor beta, 125
Transmembrane potential, 192, 197–199
Transmembrane protein, 27
Transport, 231
Triphasic theory, 233
True density, 234
Tumor, 293, 296, 365, 370, 375
Two-to-three imparity, 278

U
Unfolded protein, 3
Uniaxial extension, 85
Uniaxial test, 373

V
Validation, 383
Van’t Hoff equation, 320
Velocity, 219–221, 224
Vena cava, 219, 220
Venous blood, 310
Ventricle, 217, 218, 221
Vinculin, 31, 34
Virtual work, 240
Viscosity, 237
Volume fraction, 234, 282, 283, 286
Volumetric flux, 235

W
Wall shear stress, 123

Y
Yield criterion, 326
Young’s modulus, 29, 32–34


	Computer Models in Biomechanics
	Preface
	Contents

	Part I: Protein and Cell Mechanics
	Chapter 1: Towards a Coarse-Grained Model for Unfolded Proteins
	1.1 Introduction
	1.2 Extraction Method to Obtain Coarse-Grained Potentials
	1.2.1 Mapping Backbone Internal Degrees of Freedom (phi,psi) to Pseudo Bending and Torsion Angles (theta,alpha)
	1.2.2 Coil Library
	1.2.3 Three-Letter Amino Acid Model
	1.2.4 Extraction of Potential Functions

	1.3 Application to Denatured Proteins
	1.4 Conclusion
	References

	Chapter 2: Modeling Collagen-Proteoglycan Structural Interactions in the Human Cornea
	2.1 Introduction
	2.2 Comparison of Donnan and Poisson-Boltzmann Theories Applied to the Cornea
	2.2.1 Donnan Theory
	2.2.2 Poisson-Boltzmann Theory
	2.2.3 An Unit Cell Model Based on Collagen Fibril Volume Exclusion

	2.3 The Case for a PG-Coating of the Collagen Fibrils
	2.4 Molecular-Level Unit Cell Model
	2.5 Discussion
	References

	Chapter 3: Simulations of Cell Behavior on Substrates of Variegated Stiffness and Architecture
	3.1 Introduction
	3.2 A Biochemomechanical Model for the Cell
	3.2.1 Stress Fiber Formation and Contractility
	3.2.2 Focal Adhesion Model
	3.2.3 Finite Element Framework
	3.2.4 Correlation Between Model Parameters and Experimental Results

	3.3 Modeling Cell Behavior on Flat Substrates of Variegated Stiffness
	3.3.1 Finite Element Implementation
	3.3.2 Simulation Results

	3.4 Models of Cell Behavior on Micro-Posts
	3.4.1 Finite Element Setup for Cells on Posts
	3.4.2 Simulation Results and Discussion
	3.4.2.1 Focal Adhesion and Stress Fiber Distribution
	3.4.2.2 Average Force Versus Post Stiffness


	3.5 Concluding Remarks
	References


	Part II: Muscle Mechanics
	Chapter 4: A Mathematical Approach for Studying Ca2+-Regulated Smooth Muscle Contraction
	4.1 Introduction
	4.2 Smooth Muscle Behavior
	4.2.1 Myosin Kinetics
	4.2.2 Length-Tension Relationship
	4.2.3 Force-Velocity Relationship
	4.2.4 Smooth Muscle Modeling

	4.3 The Chemomechanical Response in Smooth Muscle-Results
	4.3.1 Cross-Bridge Kinetics Model
	4.3.2 Mechanical Model of the Smooth Muscle Contractile Unit
	4.3.2.1 Mechanical Framework
	4.3.2.2 Evolution Law of Filament Sliding

	4.3.3 Length-Tension and Force-Velocity Relationships
	4.3.3.1 Agonist Sensitivity and Dispersion of Contractile Fibers
	4.3.3.2 Filament Overlap and Sliding Behavior


	4.4 Discussion and Concluding Remarks
	References

	Chapter 5: A Coupled Chemomechanical Model for Smooth Muscle Contraction
	5.1 Introduction
	5.2 Field Equations of Smooth Muscle Chemomechanics
	5.2.1 Kinematics
	5.2.2 Balance Equations
	5.2.3 An Active Artery Model
	5.2.3.1 Elastin
	5.2.3.2 Collagen
	5.2.3.3 Smooth Muscle Cells


	5.3 Numerical Examples
	5.3.1 Model Validation
	5.3.2 Muscle Tissue Strip

	5.4 Conclusion
	References

	Chapter 6: Modeling of Smooth Muscle Activation
	6.1 Introduction
	6.2 Continuum Model for Smooth Muscle Contraction
	6.2.1 Myosin Kinetic Law
	6.2.2 Kinematics
	6.2.3 Balance Laws
	6.2.4 Constitutive Equations

	6.3 A Numerical Example
	6.4 Discussion
	References

	Chapter 7: A Cross-Bridge Model Describing the Mechanoenergetics of Actomyosin Interaction
	7.1 Introduction
	7.2 Theoretical Background
	7.3 Methods
	7.3.1 Model Description
	7.3.2 Optimization Strategy

	7.4 Results and Discussion
	7.5 Conclusion
	References

	Chapter 8: Multiscale Skeletal Muscle Modeling: From Cellular Level to a Multi-segment Skeletal Muscle Model of the Upper Limb
	8.1 Introduction
	8.2 Constitutive Modeling of Skeletal Muscles
	8.3 The Electromechanical Skeletal Muscle Model
	8.4 The Multiscale Constitutive Equation
	8.5 A Multiscale Forward-Dynamics Musculoskeletal Simulation Framework
	8.6 Discussion
	References


	Part III: Cardiovascular Mechanics
	Chapter 9: Multiscale Modeling of Arterial Adaptations: Incorporating Molecular Mechanisms Within Continuum Biomechanical Models
	9.1 Introduction
	9.2 Continuum Framework
	9.3 Towards Multiscale Constitutive Relations
	9.4 Discussion
	References

	Chapter 10: Cardiovascular Tissue Damage: An Experimental and Computational Framework
	10.1 Introduction
	10.2 Damage Quantiﬁcation
	10.3 Damage as a Function of the Mechanical Load
	10.4 A Material Model for Arteries
	10.4.1 Constitutive Equations
	10.4.1.1 Volumetric Bulk Material
	10.4.1.2 Damage to the Deviatoric Components
	10.4.1.3 Elastic Energy of the Deviatoric Constituents
	10.4.1.4 Collagen Fibers
	10.4.1.5 Smooth Muscle Cells

	10.4.2 Implementation
	10.4.3 Parameter Selection

	10.5 Finite Element Simulation
	10.5.1 Arterial Clamping
	10.5.2 Functional Damage Assessment
	10.5.3 A Different Clamp Design

	10.6 Results
	10.7 Discussion
	References

	Chapter 11: Mechanical Properties of Ascending Thoracic Aortic Aneurysm (ATAA): Association with Valve Morphology
	11.1 Introduction
	11.2 Material and Methods
	11.2.1 Human Aortic Tissue Specimens
	11.2.2 Biomechanical Testing
	11.2.3 Data Analysis
	11.2.4 SEM Imaging

	11.3 Results
	11.4 Discussion
	11.5 Conclusion
	References

	Chapter 12: Intracranial Aneurysms: Modeling Inception and Enlargement
	12.1 Introduction
	12.2 IA Inception
	12.2.1 Methodology
	12.2.1.1 Computational Fluid Dynamics

	12.2.2 Results

	12.3 IA Enlargement
	12.3.1 Methodology
	12.3.2 Examples of FSG Models of IA Evolution

	12.4 Discussion
	References

	Chapter 13: Micro-structurally Based Kinematic Approaches to Electromechanics of the Heart
	13.1 Introduction
	13.2 Coupled Cardiac Electromechanics
	13.2.1 Kinematics: Active-Passive Decomposition
	13.2.2 Governing Differential Equations
	13.2.3 Constitutive Equations

	13.3 Model Problem of Cardiac Electromechanics
	13.3.1 Active and Passive Stress Response
	13.3.2 Spatial Potential Flux
	13.3.3 Current Source

	13.4 Numerical Example: Excitation-Contraction of the Heart
	13.5 Conclusion
	References

	Chapter 14: Activation Models for the Numerical Simulation of Cardiac Electromechanical Interactions
	14.1 Introduction
	14.2 Mathematical Models for Cardiac Electromechanics
	14.2.1 Models for the Heart Electrophysiology
	14.2.2 Mechanical Response of the Myocardium

	14.3 Activation and Contraction
	14.4 Numerical Simulation
	14.5 Conclusions and Future Directions
	References

	Chapter 15: Hemodynamic Alterations Associated with Coronary and Cerebral Arterial Remodeling Following a Surgically-Induced Aortic Coarctation
	15.1 Introduction
	15.2 Methods
	15.2.1 Model Geometry
	15.2.1.1 Baseline Model
	15.2.1.2 Coarctation Model

	15.2.2 Numerical Methods
	15.2.3 Fluid-Solid Models
	15.2.3.1 Heart Model
	15.2.3.2 Windkessel RCR Model
	15.2.3.3 Coronary Model
	15.2.3.4 Vessel Wall Properties

	15.2.4 Acute Cardiac Compensation Following Coarctation
	15.2.5 Early Arterial Remodeling
	15.2.6 Data Analysis

	15.3 Results
	15.4 Discussion
	References

	Chapter 16: Patient-Speciﬁc Surgery Planning for the Fontan Procedure
	16.1 Introduction
	16.2 Methods and Results
	16.2.1 CMR Imaging and Image Processing
	16.2.1.1 Patient-Speciﬁc Case Study

	16.2.2 Virtual Surgery
	16.2.3 Computational Fluid Dynamics
	16.2.3.1 Solver Description
	16.2.3.2 Boundary Conditions
	16.2.3.3 Patient-Speciﬁc Case Study


	16.3 Conclusions
	References


	Part IV: Multiphasic Models
	Chapter 17: Finite Element Modeling of Solutes in Hydrated Deformable Biological Tissues
	17.1 Introduction
	17.1.1 Solutes in Porous Media with Non-reactive Processes
	17.1.2 Finite Element Models for Solutes in Porous Media

	17.2 Mixture Models for Solutes in Porous Media
	17.2.1 Mass Balance
	17.2.2 Electroneutrality
	17.2.3 Momentum Balance

	17.3 Finite Element Formulation
	17.4 Illustrations of Fundamental Phenomena
	17.4.1 Permeation and Barophoresis
	17.4.2 Diffusion and Osmosis
	17.4.3 Electrophoresis and Electroosmosis

	17.5 Conclusion
	References

	Chapter 18: Reformulation of Mixture Theory-Based Poroelasticity for Interstitial Tissue Growth
	18.1 Introduction
	18.2 Mixture Theory
	18.3 Poroelasticity
	18.4 The Alternative Formulation of Mixture Theory-Based Poroelasticity
	18.4.1 Open and Closed System Models at the Constituent and Mixture Levels
	18.4.2 The Biot RVE for Poroelasticity and the Mixture Theory Approach
	18.4.3 The Larger RVE Hypothesis

	18.5 The Hypothesis for Representing Microﬂows at the RVE Level
	18.6 The Mean Velocity of a Mixture
	18.7 Summary
	References

	Chapter 19: Constitutive and Computational Aspects in Tumor Therapies of Multiphasic Brain Tissue
	19.1 Introduction and Treatment Options for Brain Tumors
	19.2 Continuum-Mechanical Modeling of Human Brain Tissue
	19.2.1 Multiphasic Modeling Based on the TPM
	19.2.1.1 Basic Anatomy of the Human Brain Tissue
	19.2.1.2 Constituents, Volume Fractions and Densities
	19.2.1.3 Kinematics of Superimposed Continua
	19.2.1.4 Balance Relations
	19.2.1.5 Constitutive Settings

	19.2.2 Inhomogeneous and Anisotropic Perfusion Parameters

	19.3 Numerical Application
	19.3.1 Simulation of CED on a Human Brain Slice
	19.3.2 Investigations on a Human Brain Hemisphere

	19.4 Summary and Outlook
	References

	Chapter 20: A Biphasic 3D-FEM Model for the Remodeling of Microcirculation in Liver Lobes
	20.1 Introduction
	20.2 Methods
	20.2.1 Biphasic Material Model for Liver
	20.2.1.1 Mixture Theory, Concept of Volume Fraction and Kinematics
	20.2.1.2 Assumptions

	20.2.2 Constitutive Modeling
	20.2.2.1 Filter Velocity and Transversely Isotropic Permeability
	20.2.2.2 Remodeling of Preferred Flow Direction


	20.3 Numerical Example: Recovery of Liver Perfusion After Focal Outﬂow Obstruction
	20.4 Discussion
	References

	Chapter 21: Multiphysics Modeling of Reactions, Mass Transport and Mechanics of Tumor Growth
	21.1 Background
	21.2 Mathematical Formulation
	21.2.1 Species Transport
	21.2.2 Species Sources and Chemomechanical Coupling
	21.2.3 Inﬂuence of Mechanics: Growth, Cell Death and Enhanced Motility

	21.3 Numerical Framework
	21.4 Simulations
	21.5 Discussion
	References

	Chapter 22: Multicompartmental Poroelasticity as a Platform for the Integrative Modeling of Water Transport in the Brain
	22.1 Introduction
	22.2 Background
	22.2.1 Background to Cerebral Anatomy
	22.2.2 Hydrocephalus (HCP)

	22.3 Mathematical Modeling and Anatomy Acquisition
	22.3.1 Background
	22.3.2 Multiple-Network Poroelastic Theory (MPET)
	22.3.3 Anatomy Acquisition
	22.3.4 Solution Method

	22.4 Results and Discussion for Aqueductal Stenosis
	22.5 Future Work
	References

	Chapter 23: Discontinuous Versus Continuous Chemical Potential Across a Crack in a Swelling Porous Medium
	23.1 Introduction
	23.2 Governing Equations
	23.2.1 Bulk Behavior
	23.2.2 Discontinuous Kinematics
	23.2.3 Local Behavior at the Crack
	23.2.3.1 Local Mass Balance
	23.2.3.2 Local Momentum Balance
	23.2.3.3 Yield Criterion


	23.3 Numerical Description
	23.4 Results
	23.4.1 Shear Test Using Discontinuous Chemical Potential (Case 1)
	23.4.2 Delamination Using Continuous Chemical Potential (Case 2)

	23.5 Discussion
	References


	Part V: Morphogenesis, Biological Tissues and Organs
	Chapter 24: Mechanisms of Brain Morphogenesis
	24.1 Introduction
	24.2 Neurulation and Brain Tube Formation
	24.3 Brain Tube Morphogenesis
	24.3.1 Lumen Opening in Zebraﬁsh Brains
	24.3.2 Brain Vesicle Formation
	24.3.3 Rhombomere Formation

	24.4 Cortical Folding
	24.4.1 Cerebral Cortex Development and Theories for Folding
	24.4.2 Phased Differential Growth as a Mechanism for Cortical Folding

	24.5 Conclusions
	References

	Chapter 25: A Micromechanical Viscoelastic Constitutive Model for Native and Engineered Anterior Cruciate Ligaments
	25.1 Introduction
	25.2 Constitutive Modeling of Mechanical Response
	25.2.1 3D Hyperelastic Constitutive Models
	25.2.2 A 3D Viscoelastic Constitutive Model

	25.3 Methods
	25.3.1 Experimental Characterization of the ACL and Tissue Engineered Graft
	25.3.2 Determination of the Model Parameters

	25.4 Results
	25.5 Discussion
	25.6 Conclusions
	References

	Chapter 26: Mechanical Characterization of the Human Liver
	26.1 Introduction
	26.2 Methods
	26.2.1 Aspiration Device
	26.2.1.1 Inverse Analysis
	26.2.1.2 Scalar Parameters
	26.2.1.3 Patient Election and Ethical Aspects

	26.2.2 Characterization of Glisson's Capsule
	26.2.2.1 Uniaxial Tests
	26.2.2.2 Inﬂation Tests


	26.3 Results
	26.3.1 Mechanical Behavior of Glisson's Capsule
	26.3.2 Finite Element Analysis of the Aspiration Experiment
	26.3.3 Open Surgery Measurements

	26.4 Discussion
	26.4.1 Protocol for Open Surgery Measurements
	26.4.2 Mechanical Behavior of Glisson's Capsule
	26.4.3 Diagnostic Relevance of Aspiration Measurements
	26.4.4 Mechanical Behavior of Human Livers

	26.5 Conclusions
	References

	Chapter 27: In Vivo Validation of Predictive Models for Bone Remodeling and Mechanobiology
	27.1 Introduction
	27.2 Cell Level
	27.3 Tissue Level
	27.4 Organ Level
	27.5 Conclusions
	References

	Chapter 28: Bridging Scales in Respiratory Mechanics
	28.1 Introduction
	28.2 3D Lung Model
	28.2.1 3D Model of Individual Alveoli
	28.2.2 3D Multi-scale Model of Lung Tissue
	28.2.3 Coupling of 3D Parenchyma and Airway Models

	28.3 Reduced-Dimensional Lung Model
	28.3.1 Tree of 0D Airways
	28.3.2 0D Model of Acini
	28.3.3 3D-0D Coupling

	28.4 Conclusion and Outlook
	References


	Index



