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Abstract We present a new type of deformable model which combines the realism
of physically based continuum mechanics models and the usability of frame-based
skinning methods, allowing the interactive simulation of objects with heterogeneous
material properties and complex geometries. The degrees of freedom are coordinate
frames. In contrast with traditional skinning, frame positions are not scripted but
move in reaction to internal body forces. The deformation gradient and its deriv-
atives are computed at each sample point of a deformed object and used in the
equations of Lagrangian mechanics to achieve physical realism. We introduce novel
material-aware shape functions in place of the traditional radial basis functions used
in meshless frameworks, allowing coarse deformation functions to efficiently resolve
non-uniform stiffnesses. Complex models can thus be simulated at high frame rates
using a small number of control nodes.

1 Introduction

Deformable models are essential in mechanical engineering, biomechanics and com-
puter graphics, typically for simulating the behavior of soft objects. The classical
approach is physically based deformation, typically using continuum mechanics.
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This has the significant advantage of physical realism. Complex deformations are
generated by numerical integration of discretized differential equations. However,
these methods can be expensive and difficult to use. In the popular Finite Element
Method (FEM) framework, the degrees of freedom of the discretized model are the
vertices of a mesh, which must be constructed for each simulation object. A rela-
tively fine mesh (i.e., a dense sampling of the deformation field) is required to capture
common deformations such as torsion, leading to expensive simulations. Mesh adap-
tation can be difficult due to the topological constraints of the mesh. Particle-based
meshless methods have been proposed to address these problems. While they obviate
the need to maintain mesh topology, particles can not be placed arbitrarily. There-
fore, these methods also need a dense cloud of particles not very different from the
vertices of an FEM mesh.

Another approach, from the computer graphics community, is skinning (also
known as vertex blending or skeletal subspace deformation). The deformation is
kinematically generated by manipulating “bones,” i.e., specific coordinate frames.
This method is widely used, not only for its simplicity and efficiency, but because
it provides natural and intuitive handles for controlling deformation. Skinning gen-
erates smooth deformations using a very sparse sampling of the deformation field.
Adaptation is simple since frames can be inserted easily to control local features.
These interesting features have made it the most widely used method for character
animation. However, as a consequence of its purely kinematic nature (i.e., the frame
positions need to be scripted), achieving physically realistic dynamic deformation is
a major challenge with this approach.

We present a new approach that combines the advantages of both physically
based deformation and skinning [13]. Instead of the vertices of a mesh, the degrees
of freedom are a sparse set of coordinate frames. The equations of motion are derived
for the moving frames by applying the principles of continuum mechanics across the
volume of the deformed object, and solved using classical implicit time integration.

In addition, we show that it is possible to simulate complex heterogeneous objects
with sparse sampling using new, material-aware shape functions [10]. So far, most of
the work has focused on objects made of a single, homogeneous material. However,
many real-world objects, including biological structures, are composed of heteroge-
neous material. The simulation of such complex objects using the currently available
techniques requires a high resolution spatial discretization to resolve the variations
of material parameters. However, dense sampling creates numerical conditioning
problems, especially in the case of stiff material. Shape functions are geometrically
designed to achieve a certain degree of locality and smoothness, independent of the
material. The resulting deformations are rather homogeneous between the nodes.
Consequently, the realistic simulation of such complex objects has remained impos-
sible in interactive applications. Our approach is based on a simple observation:
points connected by stiff material move more similarly than connected by compli-
ant material. Given a deformable object to simulate and a number of control nodes
corresponding to an expected computation time, optimization criteria can be used to
compute, at initialization time, a discretization of the object and the associated shape
functions, in order to achieve a good realism.
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Our specific contributions are the following: (1) a new approach which unifies
skinning and physically based deformation modeling. (2) material-aware shape func-
tions using a novel distance function based on compliance; (3) a method to automat-
ically model a complex object for this method, with an arbitrary number of sampling
frames, based on surface meshes or volumetric data; (4) a system that implements the
above methods and shows the ability to simulate complex deformation with a small
number of dynamic degrees of freedom. The remainder of this chapter is organized
as follows. We first briefly review in Sect. 2 relevant previous work, which allows
us to motivate and sketch our approach with respect to the existing ones. In Sect. 3,
we present the kinematic discretization using frames, and the interpolation function
based on skinning. In Sect. 4, we derive the differential equation which governs the
dynamics of the object, investigate precision issues and propose a strategy to opti-
mize spatial integration. We then study in Sect. 5 the problem of material-aware shape
functions starting in one dimension and extending to two or three dimensions, and
propose a method to optimize the distribution of nodes. We finally present results
and discuss future work.

2 Related Work

Physically based deformable models have attracted continuous attention in Computer
Graphics, since the seminal work of Terzopoulos [39]. We refer the reader to the
excellent survey of [31] on this topic. Here, we briefly review the main Lagrangian
models of deformable objects.

Mesh-based methods: Early works on deformable models in Computer Graph-
ics have focused on interconnected particles. In mass-spring systems [35], con-
straints on edge length are enforced to counter stretching. Bending and shear can
be controlled using additional springs. More general constraints such as area or
volume conservation can be enforced using appropriate energy functions [40]. To
realistically model volumetric deformable objects, it is necessary to apply contin-
uum mechanics. The spatial derivatives of the displacement field can be computed
using finite differences on a regular grid [39]. Terzopoulos and Qin [38] studied the
case of physically deformable NURBS surfaces for shape modeling. Finite elements
[7, 8, 14, 33] allow irregular meshes, which are generally more convenient to sample
objects with arbitrary shapes, but may be poorly conditioned. The spatial domain is
subdivided into elements such as triangles, hexahedra or more frequently tetrahe-
dra, in which the displacement field is interpolated using shape functions. At each
point the strain can be computed using the spatial derivatives of the displacement
field. Accurate material models have been implemented from rheological models
relating stress and strain in hyperelastic, viscoelastic, inhomogeneous, transversely
isotropic and/or quasi-incompressible media [41]. For simplicity, linearized strain
has been applied assuming small displacements in rotated frames [27]. Precom-
puted deformations modes have been used to interactively deform large structures
[6, 18, 22]. Using deformation modes rather than point-like nodes as DOFs allows
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(a) (b) (c) (d)

Fig. 1 Comparison of displacement functions. The black line encloses the area where the displace-
ment function is defined, based on node positions (black circles) and associated functions (colored
areas). a Finite element, b point-based, c frame-based with RBF kernels, d frame-based with our
material-based kernels

to easily trade-off accuracy for speed. A layered model combining articulated body
dynamics and a reduced basis of body deformation is presented in [12]. However, the
deformation modes lack locality and pushing on one point may deform the whole
object. Models based on Cosserat points have been proposed for large deforma-
tions in thin structures [34] and solids [30]. Since robustness problems such as
inverted tetrahedra [17] or hourglass deformation modes in hexahedra [30] have
been addressed, meshing remain the main issue in finite elements. To reduce com-
putation time, embedding detailed objects in coarse meshes has become popular in
computer graphics [27, 32, 37]. Multi-resolution approaches have been proposed [9,
15]. In recent work, disconnected or arbitrarily-shaped elements [19, 25] have been
proposed to alleviate the meshing difficulties.

Meshless methods: Meshless methods do not use an underlying embedding struc-
ture but unstructured control points. In computer graphics, meshless methods have
been first introduced for fluid simulation and then extended to solid mechanics
[16, 28]. Besides continuum mechanics-based methods, fast algorithms have been
developed for video games to simulate quasi-isometry [1, 29]. They are not able
to model real materials, being based on geometry only. In meshless methods, each
control node has a given influence that generally decreases with the distance to it.
Standard approximation or interpolation methods have been investigated for phys-
ical simulation such as Shepard functions, radial basis functions and moving least
squares (see [11] for an extensive review). Despite the added flexibility due to the
absence of elements, sampling issues remain, since each interpolated point must lie
in the range of at least four non-coplanar nodes, as illustrated in Fig. 1b, contrary
to our method that explicitly use rotations in the degrees of freedom. A very inter-
esting meshless approach using moving frames was recently proposed to alleviate
this limitation [26], using the generalized moving least squares (GMLS) interpola-
tion. In this method, even one single neighboring node is sufficient to compute a
local displacement, as illustrated in Fig. 1c. Moreover, the authors introduce a new
affine (first-degree) approximation of the strain, called elaston. In contrast with the
plain (zero-degree) strain value traditionally used, this allows each integration point
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Fig. 2 Deformation modes obtained using two rigid frames. a Rest shape, b twisting, c, d com-
pression with linear (resp. nonlinear) shape functions, e shear, f bending can be obtained using
skinning, but g not using GMLS

to capture bending and twisting in addition to the usual stretch and shear modes.
These improvements over previous methods remove all constraints on node neigh-
borhood and allow the simulation of objects with arbitrary topology within a unified
framework. However, a dense sampling of the objects is applied, leading to high
computation times.

3 Frame-Based Deformation

In continuum media mechanics, it is necessary to numerically solve systems of
differential equations (see Sect. 4). A general procedure is to smoothly approximate
continuous functions in the solid from sought values at discrete sample locations.
These values are the independent degrees of freedom (i.e., the DOFs qi ) which
we will call nodes. In most simulation methods (Sect. 2), nodes are points and the
deformation in the material is linearly interpolated from node displacements. In
contrast, we consider rigid frames, affine frames and quadratic frames. Nodes are
associated with shape functions, also called weights, which are combined to produce
the displacement function of material points in the solid. To model deformable objects
using a small number of control nodes, we need convenient, natural deformation
functions. In character animation, the blending of frame displacements has been
studied to deform a skin from an embedded articulated skeleton [21]. This method,
called skinning or vertex blending or skeletal subspace deformation, is widely used,
not only for its simplicity and efficiency, but because it provides natural and intuitive
handles for controlling deformation. Skinning generates smooth deformations using
a very sparse sampling of the deformation field. Here, we present two different
blending techniques that we have explored for parameterizing a physically based
deformable model, and how we measure the deformation.

Linear blend skinning: The simplest and most popular blending method is linear
blend skinning [24] where the displacements of control nodes qi are locally combined
according to their shape function wi . The following derivations hold for different
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Fig. 3 The displacement u of a deformable object is discretized using nodes (blue). Strain is
measured based on the deformation of local frames (black arrow) computed at integration points p
in the material

types of control nodes: points, rigid frames, linearly deformable (affine) frames, and
quadratic frames. Let p̄ and p be positions in the initial and deformed settings and
u = (p− p̄) the corresponding displacement, expressed as: u =∑

i wi (p̄)Ai p̄∗ − p̄,
where (p̄)∗ denotes a vector of polynomials of dimension d in the coordinates of
p̄. For point, affine or rigid, and quadratic primitives, we respectively use complete
polynomial bases of order n = 0, n = 1, n = 2, noted as (.)n . In 3D, we have
d = (n+1)(n+2)(n+3)/6 and the three first bases are: p0 = [1], p1 = [1, x, y, z]T ,
p2 = [1, x, y, z, x2, y2, z2, xy, yz, zx]T . The 3 × d matrix Ai (qi ) represents the
transformation of node i from its initial to its current position and is straightforwardly
computed based on the independent DOFs qi : for instance, the 12 DOFs of an affine
primitive are directly pasted into a 3×4 matrix, while the 6 DOFs of a rigid primitive
are converted to a matrix using Rodrigues’ formula. wi (p̄) is the shape function of
node i evaluated at p̄. In linear blend skinning, weights need to constitute a partition
of unity (

∑
wi (p̄) = 1). To impose Dirichlet boundary conditions, it is convenient

to have interpolating functions at x̄i , the initial position (frame origin) of node qi in
3d space: wi (x̄i ) = 1 and w j (x̄i ) = 0, ∀ j �= i .

Dual quaternion skinning: Linear blend skinning suffers from well known volume
loss artifacts when the relative displacement between nodes is large and non linear.
To remedy this, extra nodes need to be inserted. Another solution, is to use a better
blending function. For rigid frames, dual quaternion blending offers a good approx-
imation of the linear interpolation of screws at a reasonable computational cost [20].
It provides a closed-form solution for more than two transforms contrary to screw
interpolation that requires an iterative treatment. Here, the relative displacement of
a rigid frame i is no more expressed using a 3× 4 matrix Ai , but using a 8d vector
ai = [aiT

0 aiT
ε ]T where ai

0 (resp. aiT
ε ) is a unit quaternion representing the rotation

(resp. translation). Blended displacements are computed as normalized weighted
sums of dual quaternions: b′ =∑

wi ai/‖∑ wi ai‖. Finally the blended dual quater-
nion is converted [20] into a 3×4 rigid transformation matrix A to transform material
points: u = Ap̄∗ − p̄.

Strain measure: As shown in Fig. 3, the displacement is sampled at nodes, and is
interpolated within the object based on nodal displacements. To apply the laws of
continuum mechanics, we first need to measure the local deformation of the mate-
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rial. Consider a material whose undeformed positions p̄(θ) are parametrized by
local, curvilinear coordinates θ (like texture coordinates). When the material under-
goes a deformation, the points are displaced to new positions p(θ) = p̄(θ) + u(θ).
At each material point, the derivatives of the position function p with respect to
the coordinates θ are the vectors of a local basis called the deformation gradient
F = dp/dθ , with reference value F̄ = dp̄/dθ , typically the identity. The local
deformation of the material is the non-rigid part of the transformation F̄−1 F between
the reference and current states (like the distortion of a checkerboard texture). The
strain, ε, is a measure of this deformation. Different strain measures have been
proposed, but all of them fit in our framework. For instance, the popular Green-
Lagrange strain tensor, which is well suited for large displacements is computed as
(FT F̄−T F̄−1 F − I)/2. Its six independent terms can be compactly stored in a 6d
vector: ε(θ) = [εxx εyy εzz εxy εyz εzx ]T .

4 The Dynamics of Frame-Based Continuum

This section explains how to set up the classical differential equation of dynamics for
our models. An overview of the algorithm is given at the end of the Section. As shown
in the following diagram, we apply a classical hyperelastic scheme: from the degrees
of freedom q, we interpolate a displacement field based on skinning, from which
we compute the strain through spatial differentiation (Sect. 3). The elastic response
σ(ε) generates the elastic forces, and is a physical characteristic of the material.
The elastic energy of a deformed object is the work done by the elastic forces from the
undeformed state to the current state, integrated across the whole object (Sect. 4.4):
W = ∫

V

∫ ε

0 σ T dε. The associated elastic forces f are computed by differentiating
the energy with respect to the DOFs (Sect. 4.1). After time integration (Sect. 4.3), we
obtain the acceleration, velocity and the new position of each node.

Position Strain Energy

q
∂→ ε

Material→ W∫ ↑ ↓ ∂

q̇
∫

← q̈
Mass← f

Velocity Acceleration Force

4.1 Elastic Force

The associated elastic forces f are computed by differentiating the energy with respect
to the DOFs. Here, we explicitly introduce the deformation gradient F in the force
computation:



152 B. Gilles et al.

f = −∂W

∂q

T

= −
∫

V

∂ε

∂q

T

σ = −
∫

V

(
∂ε

∂ F

∂ F

∂q

)T

σ (1)

This provides us with great modularity: the material module computes σ(ε), the
strain module computes ∂ε/∂ F , while the interpolation module computes ∂ F/∂q,
and the three can be designed and reused independently. This modularity allows us to
implement the blending of rigid, affine and quadratic primitives using different tech-
niques (e.g., linear blend skinning, dual quaternion skinning), and to easily combine
them with a variety of strain measures. Note that other interpolation methods, such
as FEM and particle-based methods, fit in this framework. We have implemented
the popular corotational and Green-Lagrange strains, and Hookean material laws.
Incompressibility is simply handled by measuring the change of volume, ‖F‖ − 1,
and applying a scalar response using the bulk modulus. Other popular models such
as Mooney-Rivlin and Arruda-Boyce would be easy to include.

One additional differentiation provides us with the stiffness ∂f/∂q, used in implicit
integration schemes and static solvers. Iterative linear solvers like the conjugate
gradient only address the matrix through its product with a vector, which amounts
to computing the change of force δ(f) corresponding to an infinitesimal change of
position δ(q). This frees us from explicitly computing the stiffness matrix, and allows
us to simply compute the changes of the terms in the force expression and accumulate
their contributions:

δ(f) = −
∫

V

∂ε

∂q

T ∂σ

∂ε

∂ε

∂q
δ(q)−

∫

V

δ

(
∂ε

∂q

)T
σ (2)

= −
∫

V

(
∂ε

∂ F

∂ F

∂q

)T ∂σ

∂ε

(
∂ε

∂ F

∂ F

∂q

)

δ(q)−
∫

V

(

δ

(
∂ε

∂ F

)
∂ F

∂q
+ ∂ε

∂ F
δ

(
∂ F

∂q

))T
σ

The first term corresponds to the change of stress intensity. The second corresponds to
a change of direction due to non-linearity, and may be null or negligible, depending
on the interpolation and strain functions. Damping forces, based on velocity, can
straightforwardly be derived in this framework and added to the elastic forces.

4.2 Visual and Contact Surfaces

Visual and contact surfaces can be attached to the deformable objects using the skin-
ning method presented in Sect. 3. Our framework sets no restriction on the collision
detection and response methods. Any force fext applied to a point p on the contact
surface can be accumulated in the control nodes using the following relation, deriving
from the power conservation law:

f+ = ∂p
∂q

T

fext (3)
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4.3 Differential Equation

Lagrangian mechanical models obey the following ordinary differential equation in
generalized coordinates:

Mq̈− f(q, q̇) = fext (q, q̇) (4)

where M is the mass matrix, q and q̇ are the DOF value and rate vectors, q̈ denotes
the accelerations, f the internal (elastic) forces, fext the external and inertial forces.
Without loss of generality we consider Implicit Euler integration (see e.g., [5]), which
computes velocity updates by solving the following equation:

(
M− hC− h2K

)
δq̇ = h (fext + hKq̇) (5)

where h is the time step, K = ∂f
∂q is the stiffness matrix, and C = ∂f

∂q̇ the damping
matrix, often represented using the popular Rayleigh assumption: C = αM + βK.
The matrices does not need to be explicitly computed, since the popular Conjugate
Gradient solver addresses them only through their products with vectors. The gen-
eralized mass matrix is computed by assembling the Mi j blocks related to node
i and j :

Mi j =
∫

V

ρ
∂p
∂qi

T ∂p
∂q j

, (6)

where ρ is the mass density. For simplicity, we lump the mass of each primitive by
neglecting the cross terms: Mi j = 0, ∀i �= j . The resulting global mass matrix is
block diagonal and the Mi i are square matrices, simplifying the time integration step
without noticeable artifacts. For affine and quadratic primitives, masses are constant
and can be pre-computed based on the voxel grid. We also pre-compute the mass of
rigid primitives and rotate them in run-time according to their current rotations.

4.4 Space Integration

The quantities derived in the previous sections are numerically integrated across
the material using a set of function evaluations. The accuracy of this process,
called cubature, is described by its order, meaning that polynomial functions
of lower degrees can be integrated exactly. Table 1 summarizes the degrees of
the different quantities obtained with linear shape functions for different strain
measures and primitives.

Classical cubature methods such as the midpoint rule (order 1), the Simpson’s
rule (order 3) or Gauss-Legendre cubature (order 5) would require many evaluation
points to be accurate. The most representative evaluation points can be estimated
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Table 1 Polynomial degrees obtained with linear shape functions and linear blend skinning

Node Strain measure u M F ε, σ f

Affine/rigid Corotational 2 4 1 1 2
Affine/rigid Green-Lagrange 2 4 1 2 4
Quadratic Corotational 3 6 2 2 4
Quadratic Green-Lagrange 3 6 2 4 8

Fig. 4 In this example 15,000
integration samples are gen-
erated by rasterizing a bunny
model, and a midpoint (zero
order) integration scheme is
used. Colors represent a hue
mapping of the strain

as in [4], but it requires intensive static analysis at initialization time. Fortunately,
displacements based on linear blend skinning can be easily differentiated and all
quantities can be integrated explicitly in regions of linear weights. In a region V e
centered on p̄, we express points as p̄+ δ(p̄). The integration of order n of a scalar
quantity v in this region can be written as

∫
V e v = vT

∫
V e δ(p̄)n where v is a vector

containing the quantity v and its spatial derivatives up to degree n, and
∫
V e δ(p̄)n

is the integrated polynomial basis of order n over the region. The last term can be
accurately estimated at initialization time using a voxel grid, as the one shown in
Fig. 4. This integration is exact if n is the polynomial degree of v. This formula-
tion generalizes the concept of elastons [26] where quantities of order n = 2 are
explicitly integrated in cuboid regions. Here, we consider arbitrary regions, and
orders. Note that, using n = 0, the integration scheme is the classical midpoint rule:∫
V e v ≈ vV e.

The method presented in Sect. 5 generates as-linear-as possible shape functions.
However, the gradients are discontinuous at the boundaries of the influence regions.
We therefore partition the volume in regions influenced by the same set of nodes, and
place one integration sample V e in each of them. To increase precision, we recur-
sively subdivide the remaining regions up to the user-defined number of integration
points. Our subdivision criterion is based on the error of a least squares fit of the
voxel weights with a linear function.
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Algorithm 4 Deformable model computations.
Data: Voxel map of material properties, number of control nodes
Initialization:

• Distribute the control nodes // Sect. 5.4
• Compute the shape functions // Sect. 5.3
• Compute the mass matrix // Sect. 4.3
• Generate the integration samples // Sect. 4.4
• Compute the weights of the surface vertices // Sect. 4.2

Loop:

• Accumulate force from each integration point: // Eq. 1

– Compute F (and its spatial derivatives);
– Compute ε (and derivatives) from F using a given strain measure;
– Compute σ (and derivatives) from ε using a given material model;
– Add integrated force to each influencing primitive;

• External forces and collision handling // Eq. 3
• At each solver iteration: // Eq. 5

– Accumulate force change from each integration point // Eq. 2

5 Material-Aware Shape Functions

Building sparse frame-based physical models not only requires appropriate defor-
mation functions as discussed in the previous section, but also anisotropic shape
functions to resolve heterogeneous material as illustrated in Fig. 1d. In this section,
we propose a method to automatically compute such functions.

5.1 Compliance Distance

Consider the deformation of a heterogeneous bar in one dimension, as shown in
Fig. 5, where each point p is parameterized by one material coordinate x . Let the
endpoints p0 and p1 be the sampling points of the displacement field. At any point,
the displacement is a weighted sum of the displacements at the sampling points:
u(x) = w0(x)u0 + w1(x)u1. If the bar is heterogeneous, the deformation is not
uniform and depends on the local stiffness, as illustrated in Fig. 5b. We call a shape
function ideal if it encodes the exact displacement within the bar given the displace-
ments of the endpoints, as computed by a static solution. Choosing the static solution
as the reference is somehow arbitrary, since inertial effects play a role in dynamics
simulation. However, the computation of interior positions based on boundary posi-
tions is an ill-posed problem in dynamics, since the solution depends on the veloci-
ties and on the time step. Moreover, for graphics, we believe that our perception of
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(a)

(b)

(c)

(d)

(e)

Fig. 5 Shape function based on compliance distance. a A bar made of 3 different materials, in rest
state, with stiffness proportional to darkness. b The bar compressed by an external force. c The
displacement across the bar. d The ideal w0 shape function to encode the material stiffness. e The
same, as a function of the compliance distance

realism is more accurate for static scenes than when the object is moving. Using the
static solution as a shape function makes sense from this point of view, and encodes
more information than a purely geometric shape function.

It is possible to derive the ideal shape functions by computing the static solution
u(x) corresponding to a compression force f applied to the endpoints. Note that this
precomputation is exact for linear materials only. For simplicity, we assume that the
bar has a unit section. At any point the local compression is ε = du

dx = f/E = fc,
where E is the Young’s modulus, and its inverse c is the compliance of the material.
Solving this differential equation provides us with: u(x) = u(x0) +

∫ x
x0

fc dx , and
since the force is constant across the bar, the shape function w0 illustrated in Fig. 5d
is exactly:

w0(x) = u(x)− u(x1)

u(x0)− u(x1)
=

∫ x1
x c dx

∫ x1
x0

c dx
(7)

Let us define the compliance distance between two points a and b as: dc(a, b) =∫ xb
xa

c |dx |. The slope of the ideal shape function is: dw0
dx = −c/dc(p0, p1). It is

proportional to the local compliance c and to the inverse of the compliance distance
between the endpoints. Interestingly, the shape function is thus an affine function
of the compliance distance, as illustrated in Fig. 5e, and it can be computed without
solving an equation.

5.2 Extension to Two or Three Dimensions

We showed in the previous section that computing ideal shape functions in 1D objects,
without performing compute-intensive static analyses as in [32], is straightforward
based on compliance distance. Let n be the number of points where we want to com-
pute exact displacements to encode in shape functions. In one dimension, both the
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static solution and the distance field can be computed in linear time. In two dimen-
sions, computing the static solution for n independent points requires the solution
of a 2n × 2n equation system. The worst case time complexity of the solution is
O(n3), and direct sparse solvers can achieve it with a degree between 1.5 and 2 in
practice. In contrast, the computation of an approximate distance field in a voxel grid
is O(n log n), which is much faster, but does not allow us to expect an exact solution
like in one dimension. The reason is that there is an infinity of paths from one point
to another to propagate forces across, thus the stress is not uniform and can not be
factored out of the integrals and simplified like in Eq. 7. Another difference with
the one-dimensional case is the number of deformation modes. Higher-dimensional
objects exhibit several stretching and shearing modes, and we can not expect the
ratio of displacement between two points to be the same in each mode. Since a single
scalar value can not encode several different ratios, there is no ideal shape function in
more than one dimension. Another limitation of this measure is that the compliance
distance is the length (compliance) of the shortest (stiffest) path from one point to
the other, independently of the other paths. Thus, two points connected by a stiff
straight sliver are at the same compliance distance as if they were embedded in a
compact block of the same material, even though they are more rigidly bound in
the latter case. Moreover, material anisotropy is not modeled using a scalar stiff-
ness value. Nonetheless, the compliance distance allows the computation of efficient
shape functions, as shown in the following.

5.3 Voronoi Kernel Functions

In meshless frameworks, each node is associated with a kernel function which defines
its influence in space, as presented in Sect. 3. A wide variety of kernel functions
have been proposed in the literature, most often based on spherical, ellipsoidal or
parallelepipedal supports. Our design departs from this, and is guided by a set of
properties that we consider desirable for the simulation of sparse deformable models.
To correctly handle the example shown in Fig. 1d, we need to restrict kernel overlap,
to prevent the influence of the left node from unrealistically crossing the bone and
reaching the flesh on the right. We thus need to constrain the kernel values, while
keeping them as smooth as possible. In particular, we favor as-linear-as possible shape
functions with respect to the compliance distance, in order to reproduce the theoretical
solution in pure extension. A kernel value should not vanish before reaching the
neighboring nodes, otherwise there would be a rigid layer around each node. With a
sufficient number of radial basis functions, all the boundary conditions could be met
[36]. Unfortunately, shape functions computed with RBFs are generally global and
can increase with distance, producing unrealistic deformations. Local RBFs have
isotropic compact support, and are thus only approximating.

Since there is no general analytical solution that can satisfy all the desired prop-
erties, we numerically compute a discrete approximate solution on the voxelized
material property map. Solving a Laplace or heat equation on the grid would require
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(a)

(b)

(c)

Fig. 6 Color map of the normalized shape function corresponding to the red node, computed using
two Voronoi subdivisions (left), one subdivision (top right) and five subdivisions (bottom right)

the solution of a large equation system, and would compute nonlinear weight func-
tions. A Voronoi partition of the volume allows us to easily compute kernels with
compact supports, imposed values and linear decrease. This can be efficiently imple-
mented in voxelized materials using Dijkstra’s shortest path algorithm. Since a point
on a Voronoi frontier is at equal distance from two nodes, we set the two kernel
values to 0.5 at this point, and scale the distances accordingly inside each cell. To
extend the distance function outside a cell, we generate the isosurface of kernel value
1/4 by computing a new Voronoi surface between the 1/2 isosurface and the other
nodes. We can then recursively subdivide the intervals to generate a desired number
of isosurfaces. The kernel values can straightforwardly be interpolated between the
isosurfaces: for instance, the value at P1 in Fig. 6a is ( 1

2 d3/4+ 3
4 d1/2)/(d3/4+ d1/2),

where di is the distance to isosurface of kernel value i , on Dijkstra’s shortest path the
point belongs to. To compute values between the last isosurface and 0 (the neighbor-
ing nodes), we apply a particular scheme since points beyond the neighbors, such
as P2 in the figure, should not be influenced by the node. In this case, we linearly
extrapolate the kernel function: (− 1

2 d1/4 + 1
4 d1/2)/(d1/4 + d1/2). This technique is

easily generalized to compliance distance and all the desired properties are met: it
correctly generates interpolating, smooth, linear and decreasing functions between
nodes. The corresponding cell shapes are not necessarily convex in Euclidean space,
which allows them to resolve complex material distributions as illustrated by the
compliance distance field in Fig. 10d. Since points can be in the range of more than
two kernels, a normalization is necessary to obtain a partition of unity and the linear-
ity of the shape functions is not perfectly achieved, however the functions are often
close to linear as shown in the accompanying video. When using a small number of
Voronoi subdivisions, we are not guaranteed to reach all the expected regions due
to inaccurate extrapolation (see arrow tip in Fig. 6b, where d1 < 2d1/2). Increasing
the number of isosurfaces reduces this artifact, but can lead to unrealistically large
influence regions as shown in Fig. 6c, where the right part is influenced by the red
node due to the linear interpolation between the right and left nodes. In practice,
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a small number of subdivisions are sufficient to remove noticeable artifacts while
maintaining realistic bounds. The design of more realistic kernels in the extreme
case of a very sparse discretization, large material inhomogeneities and complex
geometry, is deferred to future work.

5.4 Node Distribution

The Voronoi computations provide us with a natural way to uniformly distribute
nodes in the space of compliance-scaled distances. We apply a standard farthest
point sampling followed by a Lloyd relaxation (iterative repositioning of nodes in
the center of their Voronoi regions) as done in [1, 26]. The uniform sampling using
the compliance distance results in higher node density in more compliant regions,
allowing more deformation in soft regions. Since a whole rigid object corresponds to
a single point in the compliance distance metric, all its points in Cartesian space have
the same shape function values. Interestingly, it thus undergoes a rigid displacement,
even if it is not associated to a single node. However, due to the well-known arti-
facts of linear blend skinning, it may actually undergo compression in case of large
deformations. This artifact can be easily avoided by initializing nodes in the rigid
parts, and keeping them fixed during the Lloyd relaxation. Another solution would
be to replace linear blend skinning with dual quaternion skinning [20], at the price
of more complex mechanical computations due to normalization.

6 Results

6.1 Validation

We implemented our method within the SOFA framework [2] to exploit its implicit
and static solvers, as well as its GPU collision detection and response [3]. To
encourage its use, our software will be freely available in the upcoming release.
We measured the displacement of the centerline of a 10 × 4 thin plate, as shown in
Fig. 7. The left side is fixed, while a uniform traction is applied to the right side. As
expected, we obtain similar results using FEM and our method, with the same material
parameters. A slight over-extension occurs in dense frame distributions, probably due
to numerical issues in the voxel-wise integration of the deformation energy. We have
also compared the simulations of cantilever beams, as illustrated in Fig. 8. We used
regularly spaced nodes along the axis, with piecewise linear weight functions. We
apply an extension force to the beam and verify that the force-extension law pre-
cisely matches the theoretical St. Venant-Kirchhoff model f = ε + 3ε2/2 + ε/2,
independently of the number of frames and the volume sample densities. Bending is
more complex because it simultaneously involves extension–compression and shear,
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Fig. 7 Comparison with FEM on the extension of a plate. Left with a stiffness gradient. Right
uniform stiffness and rigid part. Top compliance distance field within each Voronoi cell, left 500×
200 grid, right 100× 40 grid

Fig. 8 Comparison of our
models (solid colors) with
FEM (wireframe). Blue with
two affine frames. Green three
affine frames. Red five affine
frames. Yellow nine affine
frames

especially with large displacements as shown in the example in Fig. 8. This confirms
that accurate continuum mechanics can be performed using our model. The behaviors
converge as we increase the number of nodes. As usual, fewer degrees of freedom
result in more stiffness.

6.2 Performance

Computation times are difficult to compare rigorously because we use an iterative
solver based on the conjugate gradient algorithm. In the test on heterogeneous mate-
rial shown in Fig. 7, we measured the total number of CG iterations applied to reach
their final state with less than 1 % of precision. The frame-based models converged
from one to three orders of magnitude faster, thanks to the reduced number of DOFs.
We used a regular FEM mesh. A more sophisticated meshing strategy taking the
stiffness into account would certainly be more efficient, unfortunately implementa-
tions of these are not easily available. Carefully designed meshes can greatly enhance
the speed of the FEM method. However, resolving geometrical details requires fine
meshes with a large number of DOFs, and in case of large variations of stiffness,
numerical issues considerably slow down the convergence, even using precondition-
ing. The ability of our method to encode the stiffness in the shape functions not
only reduces the number of necessary DOFs, but also seems to reduce the condi-
tioning problems. The pre-computation times range from less than one second for
10 frames in a 100 × 40 voxel grid to 10 min for 200 frames in a 500 × 200 grid.
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Table 2 Timings

Model # frames # samples # vertices (K) # voxels tini (s) FPS

Steak 3 10 5 67 K 3 500
Steak 10 53 5 67 K 8 100
Steak 20 140 5 67 K 12 40
Dragon 3 6 20 7 M 100 300
Dragon 10 41 20 7 M 220 150
Dragon 20 158 20 7 M 360 27
Ribbon 5 9 4 60 K 4 200
Knee 10 200 35 500 K 11 10
Rat 30 230 600 1.5 M 90 8

Our implementation is straightforward and there is plenty of room for optimization
and parallelization.

Table 2 presents frame rates achieved on a common PC (2.67 Hz processor, 8 GB,
Nvidia 295GTx). They include all the computations, including rendering and colli-
sion detection. The dragon and the ribbon demos are shown in the video. The com-
putation times strongly depend on the number of integration points, which suggests
that a GPU implementation of the force computations may dramatically increase
the speed. A faster node relaxation [23] would speed up the precomputations in fine
grids.

Corotational strain is about 1.5 times faster than Green-Lagrange strain due to
the lower degree integration. However, in our implementation, it is not as robust
because the rotation part of F is not differentiated to compute forces (Eq. 2). Their
accuracy on static solutions is comparable in our tests. Rigid and affine primitives
exhibit similar computational time. Quadratic primitives are about 15 % slower with
the same number of integration points of the same degree. We believe that the best
compromise between accuracy and performance is achieved using affine primitives:
they have more DOFs than rigid frames so can capture more deformation modes, and
they require significantly fewer integration points than quadratic primitives if we limit
the expansion of the deformation gradient to the first order, and the integration degree
to 4 (= 30 polynomial terms). In theory, quadratic primitives would need a second
order expansion of F and an eighth order integration (=165 polynomial terms), which
would be more costly. Affine and rigid frames require only one integration point per
region with linear shape function, providing the main deformation modes of a rod
using only two frames and one integration point (see Fig. 2). In our implementation,
linear blend skinning of rigid frames is about five times faster than dual quaternion
skinning [13] with the same number of integration points. Dual quaternion skinning
is more accurate in large bending (no volume loss) but requires more integration
points due to the non-linear blending function and is significantly more complex to
implement.

We found that sampling integration points in the overlapping influence regions was
a suitable strategy, since it allowed a good linear approximation of the fine grained



162 B. Gilles et al.

Fig. 9 An object with asymmetric stiffness automatically computed based on its asymmetric shape

shape function defined in the voxel grid: in our test, the average difference was
0.05 (the shape function being defined between 0 and 1, making the approximation
error less than 5 %). This result also shows that the normalization of the kernel
function does not significantly change the linearity. Uniformly distributed sample
points unrealistically increase the stiffness because soft parts are assigned with a
high stiffness due to averaging in the sample region.

6.3 Simulations

The most appealing feature of our method is probably its ability to easily model
deformable objects using a reduced number of control nodes. The T-shaped rub-
ber object shown in Fig. 9 (Young’s modulus E = 200 kPa, Poisson’s ratio ν = 0.3)
exhibits compression, shear, bending and torsion using only two frames, correspond-
ing to a total of 12 DOF. The same number of DOF only allows to model a single linear
tetrahedron in FEM, which can not exhibit torsion and bending! The object automat-
ically exhibits an asymmetric stiffness reflecting its asymmetric shape (Fig. 9).

Figure 11 shows a close-up of the high speed simulation presented in Fig. 10, which
runs at haptic rates. The fat undergoes more deformation than the flesh because it
is more compliant, even though they are interpolated between the two same control
frames. The method of [32] also realistically resolves heterogeneous materials, but
a rigid bone across several elements would result in high stiffnesses and generate
numerical problems. In contrast, our method handles the rigid parts straightforwardly,
independently of their shape.

Our method allows the interactive simulation of complex biological systems such
as the knee joint shown in Fig. 12. In this model, we have integrated four differ-
ent tissues: bones, muscles, fat and ligaments. With only 10 nodes, we are able to
realistically simulate flexion and fine movements such as the motion of the patella
(knee cap) at ten frames per second, without any prior knowledge of the kinematic
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(a) T-Bone Steak (b) (c) (d) (e)DeformationDistance mapDiscretizationStiffness

Fig. 10 The T-bone steak (a) has a rigid bone and softer muscle and fat, as seen in the volumetric
stiffness map (b). Our method can simulate it using only three moving frames and ten integration
points (c), running at 500 Hz on an ordinary PC. The frame placement is automatically generated
using a novel compliance-scaled distance (d). Observe that when one side of the meat is pulled (e),
the bone remains rigid and the two meaty parts are correctly decoupled

Fig. 11 The flesh and the fat, although interpolated between the same two control frames, pulled
at the black point, exhibit different strains due to different stiffnesses

Fig. 12 Interactive knee simulation using 10 nodes. Pulling the quadriceps lifts the tibia

skeleton. Forces are transmitted from the quadriceps to the tibia suggesting that accu-
rate dynamic models of the anatomy, taking into account muscle actuation, could be
built. A few modifications in the voxelization and material modules would allow
motion discontinuity between tissues in contact and a more accurate simulation of
the highly anisotropic non-linear fibrous biological tissues.

Adding mechanical degrees of freedom during the simulation by inserting new
frames with custom radial-basis shape functions is dramatically simpler than editing
the mesh of an FEM model. In Fig. 13, we show that a dynamically inserted frame
at the contact point with an object can be used to generate a local deformation. The
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Fig. 13 More or less global deformation produced by dynamically inserting a frame with two
different weight functions

Fig. 14 Mix of animation and simulation. Left model subset animated using motion capture and
added physical nodes. Right result, with flesh and tail animated using physics

range of the local deformation can be tuned using the shape function of the inserted
frame. Such a high level of adaptivity in a physical model is straightforward with
our model, while it is difficult to implement using previous methods.

Our method can also be used to easily simulate physically-based secondary
motions from skeleton-based animation or motion capture, as illustrated in Fig. 14.
The skin and the complete skeleton of a rat were acquired from micro-CT data. We
applied our method to automatically sample the intermediate soft tissues and the tail
with additional nodes. Optical motion capture was used to capture the movements
of the limbs, head and three bones on the back.

7 Conclusion

In this chapter, we have presented a new type of deformable model using con-
tinuum mechanics applied to objects undergoing skinning deformation fields. Our
approach allows the creation of sparse meshless models with arbitrary constitutive
laws, and we have demonstrated it using St. Venant-Kirchhoff materials. Moreover,
we have introduced novel, anisotropic kernel functions using a new definition of dis-
tance based on compliance, which allow the encoding of detailed stiffness maps in
coarse meshless models. We have shown that the behavior of heterogeneous objects
with complex materials and geometries can be simulated using a small number of
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control nodes and small computation times. The models are robust to large displace-
ments and deformations.

In contrast with classical FEM and with the methods using geometrical shape
functions, our approach decouples the resolution of the material from the resolution
of the displacement function. The ability of setting an arbitrarily low number of
frames, combined with a compliance-based distribution strategy, allows fast mod-
els to capture the most relevant deformation modes. Sampling is easier than with
traditional particle-based meshless methods because there is no constraint on the
number and on the placement of the nodes. Compared with FEM, adaptivity is easier
because no volumetric mesh is used. However, due to computational time issues, the
shape functions of the dynamically inserted nodes are currently limited to analytic
radial-basis functions with local support. A faster computation of material-aware
shape functions and hardware implementations are currently under investigation.

Acknowledgments We would like to thank Florent Falipou, Michaël Adam, Laurence Boissieux,
François Jourdes, Estelle Duveau and Lionel Revéret for models and data. This work is partly funded
by European project PASSPORT for Liver Surgery (ICT-2007.5.3 223894) and French ANR project
SoHuSim. Thanks to the support of the Canada Research Chairs Program, NSERC, CIHR, Human
Frontier Science Program, and Peter Wall Institute for Advanced Studies.

References

1. Adams B, Ovsjanikov M, Wand M, Seidel H-P, Guibas LJ (2008) Meshless modeling of
deformable shapes and their motion. In: Symposium on computer animation, pp 77–86, 2008

2. Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C, Delingette H, Grisoni L (2007)
SOFA–an open source framework for medical simulation. In: Medicine meets virtual reality,
MMVR 15, pp 1–6, Long Beach, California, Etats-Unis, 2007

3. Allard J, Faure F, Courtecuisse H, Falipou F, Duriez C, Kry P (2010) Volume contact constraints
at arbitrary resolution. ACM Trans Graph 29(3):205–223

4. An SS, Kim T, James DL (2008) Optimizing cubature for efficient integration of subspace
deformations. ACM Trans Graph 27(5):1–10

5. Baraff D, Witkin A (1998) Large steps in cloth simulation. SIGGRAPH Comput Graph 32:
106–117
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