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Lecture Notes in Computational Vision and Biomechanics

The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful
achievement, numerous research topics should be considered, such as image processing and
analysis, geometric and numerical modelling, biomechanics, experimental analysis, me-
chanobiology and enhanced visualization, and their application to real cases must be
developed and more investigation is needed. Additionally, enhanced hardware solutions and
less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of
high level information from static images or dynamic image sequences. Examples of
applications involving image analysis can be the study of motion of structures from image
sequences, shape reconstruction from images and medical diagnosis. As a multidisciplinary
area, Computational Vision considers techniques and methods from other disciplines, such
as Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite
the many research projects in this area, more robust and efficient methods of Computational
Imaging are still demanded in many application domains in Medicine, and their validation
in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered
to be strongly connected and related. Hence, the main goal of the LNCV&B book series
consists of the provision of a comprehensive forum for discussion on the current state-of-
the-art in these fields by emphasizing their connection. The book series covers (but is not
limited to):

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis

• Cellular Imaging and Cellular Mechanics

• Clinical Biomechanics

• Computational Bioimaging and Visualization

• Computational Biology in Biomedical Imaging

• Development of Biomechanical Devices

• Device and Technique Development for Bio-
medical Imaging

• Digital Geometry Algorithms for Computa-
tional Vision and Visualization

• Experimental Biomechanics

• Gait & Posture Mechanics

• Multiscale Analysis in Biomechanics

• Neuromuscular Biomechanics

• Numerical Methods for Living Tissues

• Numerical Simulation

• Software Development on Computational
Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and Mesh
Generation

• Image Processing and Analysis

• Image Processing and Visualization in
Biofluids

• Image Understanding

• Material Models

• Mechanobiology

• Medical Image Analysis

• Molecular Mechanics

• Multi-modal Image Systems

• Multiscale Biosensors in Biomedical Imaging

• Multiscale Devices and Biomems for Bio-
medical Imaging

• Musculoskeletal Biomechanics

• Sport Biomechanics

• Virtual Reality in Biomechanics

• Vision Systems
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Preface

The computational modeling of deformations has been actively studied for the last
30 years. This is mainly due to its large range of applications that include
computer animation, medical imaging, shape estimation, face deformation as well
as other parts of the human body, and object tracking. In addition, these advances
have been supported by the evolution of computer processing capabilities,
enabling realism in a more sophisticated way.

This book encompasses relevant works of expert researchers in the field of
deformation models and their applications. The primary audience for this work are
researchers from different multidisciplinary fields, such as those related with
Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioen-
gineering, Mathematics, Physics, Medical Imaging, and Medicine.

This book is divided into two main parts. Part I presents recent object defor-
mation techniques from the point of view of computer graphics and computer
animation. First, Palmer et al. present a survey of all the most modern techniques
in the representation of deformable objects such as NURBS representation, free
form representation, level sets, mass-spring models, algebraic surfaces, modal
decomposition, and so on. Next, in Chap. 2, Raffin presents the free-form defor-
mation techniques and its application to deform objects maintaining their topology
and geometry.

Chapter 3 introduces us to the cage deformation techniques. Nieto and Susin
show how these techniques are useful in modeling, texturing, and animation. In
addition, the advantages and drawbacks of these techniques are shown, as well as
how they are used in order to deform more complex systems. In the following
chapter, Xie shows how to deform an image gradient using level set. The 2D and
3D deformable model segmentation is used to capture complex geometries and to
deal with difficult initializations, weak edges, and broken boundaries.

In Chap. 5, Buades et al. present a new methodology to design shoes based on
the biomechanical anatomical structure of the foot and of the deformable shape.
The use of a deformable model is introduced in order to design shoes that are
perfectly adapted to the foot’s shape. The last chapter of this part introduces a
deformable model, which allows the interactive simulation of objects with
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heterogeneous material properties and complex geometries. The model presented
by Gilles et al. combines the realism of physically based continuum mechanics
models and the usability of frame-based skinning methods.

The work presented thus far covers the geometric- and physics-based
deformation models. In computer vision, however, modeling deformations is
necessary in order to study the variations of natural shapes so as to extract useful
real information from image or video sequences. Thus, deformation models are
important for the accurate localization of complex structures in applications
ranging from facial feature detection to tracking of anatomical structures in
medical images.

Part II of this book presents six works that study deformations from a computer
vision point of view with a common characteristic: deformations are applied in
real-world applications.

First, the work of Marques et al. presents four methods to initialize deformable
models in order to properly extract 2D and 3D shape estimations. These algorithms
show an improved performance when compared to the classical techniques. This is
proved experimentally in the estimation of facial features in 2D face images and in
the detection of deformations of the left ventricle in an ultrasound 3D volume. The
following chapters are mainly devoted to these two fields of application of
deformations models. Particularly, one of the most recent impressive advances in
facial feature tracking is explained in Chap. 8, where Saragih reviews the con-
strained local models (CLM). This approach for deformable face alignment
leverages the generalization properties of local appearance representations of parts
and the strong global constraints imposed by the geometrical relationships between
part locations. Specifically, this work places CLM in the general context of
deformable face alignment, highlighting its similarities and differences with other
approaches and justifying its benefits.

In the field of medical imaging, the work of the Siemens research team has
achieved a great interest from the scientific community by using a robust approach to
deformation models in medical applications. Chapter 9 presents their robust learn-
ing-based fusion framework, demonstrating it by means of various medical image
analysis applications. The framework combines the prior information with tradi-
tional tracking approaches based on template matching and registration, in order to
maintain an anatomically consistent representation of target appearance. This rep-
resentation has proved it can cope with inherent changes due to target movement,
imaging device movement, varying imaging conditions, and is consistent with the
domain expert clinical knowledge. A different approach in medical imaging appli-
cations is presented in the next chapter, where Igual et al. describe an automatic
segmentation method for brain medical images. Its approximation defines a
deformable model by combining an atlas-based segmentation strategy with a well-
known computer vision technique, the Graph-cut model, which is adapted to make it
suitable for segmenting small and low contrast structures. The obtained results show
improved performance in terms of segmentation accuracy compared to current
approaches. The last two chapters present two particular applications of deformation
models in medical applications. In Chap. 11, Fürtinger et al. map a Purkinje fiber
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network from a real heart. The elastic deformations guarantee that despite even large
differences in the endocardial geometries of both models, the artificial Purkinje fiber
network is mapped sufficiently close to the real endocardium. In the last chapter,
Bilgen applies deformation models in order to obtain an accurate and precise motion
estimate in elastography.

Finally, we want to thank the chapter authors for providing work of great
quality and for their collaboration in all the book edition process. We believe that
thanks to the achieved contributions, this book gives an excellent overview of the
state of the art of the applications of deformation models in animation and com-
puter vision.

School of Engineering Manuel González-Hidalgo
University of Balearic Islands Arnau Mir
March 2011 Javier Varona
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Part I
Fundamentals and Animation

Applications



Deformable Objects Representation

Pere Palmer, Arnau Mir and Manuel González-Hidalgo

Abstract In order to have a good representation of deformable objects, is clever to
have an adequate model to represent them. Since the origins of computer graphics,
a large number of representation models have been presented. Not all of them are
adequate to represent deformable objects. The way in which the objects can be
handled, allowing local changes in their shape, or the possibility of the creation of
objects matching with data gathered from one or more datasources, are some of the
desirable characteristics in those models. This chapter represents a study of the way
in which the deformable objects can be represented. It is possible to classify them
into some categories allowing to select the most adequate depending on the use given
to the model.

1 Introduction

In order to simulate the deformable objects behaviour in a computer system, this
must be able to represent the shape of those objects. To do this, it will be necessary
to describe the geometry of these objects and also determine the evolution of this
geometry along the deformation process [88].

In the literature related to deformation models many surveys has been appeared
some of them are classics [54, 85], and other are more recent [51, 94], and some
covered in depth some topics more specific [17, 27, 48, 102, 125].

P. Palmer (B) · A. Mir ·M. González-Hidalgo
Department of Mathematics and Computer Science, University of Balearic Islands, Anselm
Turmeda Building. Crta. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
e-mail: pere.palmer@uib.es

A. Mir
e-mail: arnau.mir@uib.es

M. González-Hidalgo
e-mail: manuel.gonzalez@uib.es

M. González Hidalgo et al. (eds.), Deformation Models, Lecture Notes in Computational 3
Vision and Biomechanics 7, DOI: 10.1007/978-94-007-5446-1_1,
© Springer Science+Business Media Dordrecht 2013



4 P. Palmer et al.

Fig. 1 A classification of the geometric representation of deformable objects

In this chapter we will study the approaches, the representation of the geometry
of deformable objects, that has been raised over the time. In each case, an indication
of the aspects for which they are more appropriate will be given.

A first classification of object representation models states that such models can be
continuous or discretes. In the case of the discrete representation the shape is inferred
from a finite set of known points on the object surface. The knowledge is incomplete,
so that numerical problems can arise when performing certain differential calcula-
tions (normal at a given point, higher derivatives, …). It is quite usual to consider as a
discrete representations those having only C0 continuity on the surface. By contrast,
in a continuous representation the whole surface is well known, so in principle, all
geometric parameters are well defined and are known at any point on the surface.
This second approach has its own drawbacks, because if a computational treatment
is required, it will be necessary to perform a spatial discretization of the model.

Within the continuous representation models is possible to make a distinction
between parametric models and the explicit and implicit models, see Fig. 1.

2 Discrete Models

This kind of object representation has been used long time before the development
of computers. During the Renaissance, from the hand of Leonardo da Vinci, Luca
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(a) (b) (c)

Fig. 2 Discrete models are, in fact, prior to computing. Their use is clearly documented since the
fifteenth century. a Paolo Uccello, Perspective study of a chalice, around 1450, pencil on paper, the
Uffizi Gallery, Florence, Italy. b An example of intarsia, mosaic of engraved wood, made by Fra
Giovanni Pacioli for the Cathedral of Santa Maria in Organo, Verona, Italy, in the early sixteenth
century. In it, it can be seen some shapes obtained from drawings by Leonardo da Vinci, as the
high rombicuboctahedron, c, which appears in De Divina Proportione of the same Pacioli printed
in 1509

Pacioli, o Paolo Uccello,1 there is already geometric representations of three dimen-
sional objects in a way in which nowadays are so-called polygonal meshes, see
Fig. 2.

The aim of these models is to eliminate the parameters present in the other models
and, thereby, eliminate the disadvantages that these parameters imply. However, not
everything is profit. On one hand most of the difficulties faced by other models are
solved but on the other hand these models lead to an explicit numerical scheme which
can lead to numerical problems because the equations of motion obtained do not allow
the regularization of the surface and may be necessary to impose restrictions.

2.1 Polygonal Meshes

A polygonal mesh, M , allows to describe an object from a discrete set of points and
a list of connectivity between them, so that each point has a relation of neighboring
points. Therefore, a mesh is defined by a couple, M = 〈V ,N 〉, where

• V is the vertex set, defined in a space Rd :

V = {Pi }i∈I ,

1 one of whose works appears on the cover of Computer Aided Geometric Design.
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(b)(a)

Fig. 3 In a a polygonal mesh is shown, and in b a representation of the connectivity function,
showing, for the red vertex, their neighbours (the yellow ones) and the edges connecting them (in
blue). Note that only the connected vertexes by an edge are considered neighbours. In the figure,
the gray vertexes are not considered as neighbours

• and N is the connectivity function of the mesh:

N : V −→ V ∗
Pi �→

{
Pi,1, Pi,2, . . . , Pi,mi

}
.

Where V ∗ is the set of finite parts of V and mi (mi ≥ 2) indicates number of
neighbours of the vertex Pi . The Fig. 3 clarifies the concept.
The function N and the elements set V ∗ satisfies:
• If two vertices are connected, they do so by a single edge:

∀i ∈ I, Pi, j 
= Pi,k∀ j, k : 1 ≤ j, k ≤ mi ∧ j 
= k.

• A vertex is not joined to itself:

∀i ∈ I, Pi 
∈ N (Pi ) .

The edge set, E , of a polygonal mesh is defined as:

E = {
(Pi , Pi, j ) ∀Pi ∈ V , ∀Pi, j ∈ N (Pi )

}
,

from E the set of polygons P is defined as:

P = {
f = (ei1,i2 , ei2,i3 , . . . , eil ,i1), eik ,ik+1 ∈ E

} ⊆ E ∗, (1)

being l the number of edges of each polygon and E ∗ is the set of finite parts of E .
There are multiple techniques to generate polygonal meshes from objects defined

by some other method of representation. In [90] the objects are defined with cubic
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meshes, that is: the space is divided into regular cubes, in an analogous way as in
a surface; and the mesh is generated automatically from a polygonal mesh of the
surfaces defining the object.

If the value of l in (1) is always 3, then all the polygons defining the mesh are
triangles, and the mesh is usually called triangulation. The use of triangles offers
several advantages, for example: the connectivity of each polygon and the coplanarity
of the three vertex related, makes the surfaces representation algorithms defined by
triangulation very simple and efficient. In [133], a method of representing triangular
and tetrahedral meshes is presented: triangular meshes defining objects, not only the
surface of the objects. The particularity of this proposal is that the model allows to
define complex objects without a high computational cost.

Other approaches based on this model are, among others: [1] which proposes an
image segmentation based on triangular meshes which adapt their topology to fit the
objects in the image.

The explicit models are difficult to use when the topology of the objects repre-
sented can change along the deformation process. Some works in this direction are
dealing with this problem. In [122] is presented a model that uses triangular meshes
to represent objects capable to be divided or cracked. Also in [138] the objects can
also be split but also they can be merged or blended.

Another way in which the deformable object are represented is presented in [69],
where the deformable objects are represented by a skeleton and over it a mesh which
determines the volume and the shape.

Another interesting application of this model can be seen in [95], which describes
a graphical tool, FiberMesh, with which a user can easily design complex free-form
objects by the interpolation of a set of 3D curves and using some basic operations
(curve creation, cutting, extrusion and tunneling).

Although the advantage is its simplicity, this kind of representation has some
drawbacks. Among them, being dependent on the scale or level of approximation of
the object.

2.1.1 Delaunay Triangulation

One of the ways in which a mesh can be established, and also a very effective way
to do this, is known as Delaunay triangulation and its dual problem, the Voronoi
diagrams:

Given a set of plane points, P , a triangulation of the set is a subdivision of its
convex hull in triangular regions by using edges whose vertexes are points of the set.
Of all these, a Delaunay triangulation verifies [118, 119]:

• All the triangles are such that the circumference which passes for its vertexes does
not contain any other point of P .
• All the edges of the triangulation are such that there exists a circumference passing

by its extremes and without any other point of the set.
• The minimal angle between edges is maximal. That is, any other possible triangu-

lation has edges forming minor angles.
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(a) (b) (c) (d)

Fig. 4 For a set of points in a 2D space P (a), the space can be divided into a Voronoi diagram (b),
that is, it is divided in regions such that the points of each region are nearer to the corresponding
point of the set than to the others. Also the points can be interpreted as a vertexes of a Delaunay
triangulation (c). The Voronoi diagram and the Delaunay triangulation are related, as it can be seen
in (d)

Furthermore, it is also fulfilled that the Delaunay triangulation of a set of points
is the dual graph of the Voronoi diagram of that set, see Fig. 4.

A Voronoi diagram is a tessellation of the plane based on the euclidean distance
of the plane points to the points of the set P , because it represents a plane partition
into regions such that every point of the set is mapped into the geometrical place of
the points of the plane nearest to it more than any other point of P .

2.1.2 Simplex Meshes

Simplex meshes are discrete representations of objects which are characterized by
the constant connectivity between vertexes [38, 39]. For the surfaces representation,
2-simple meshes are used, see Fig. 5. In these meshes, every point is joined through
edges to, exactly, three different points.2 The geometry is very simple because of the
constant connectivity between vertexes.

A k-simple mesh, (M), defined in Rd represents a meshing of connectivity k+1.
The main difference with respect to the others polygonal meshes is that the connec-
tivity function is defined as follows:

N : V −→ {V }k+1 =
k+1

︷ ︸︸ ︷
V × · · · × V

Pi ∈ V −→ (N1(i), N2(i), . . . Nk+1(i)).

These meshes are a particular kind of meshes in which all vertexes have exactly
the same number of neighbours. What makes interesting this approach is:

• Its generality: it is possible to represent any kind of orientable surfaces, being able
to represent deformations of k-dimensional surfaces with k + 1-simples meshes.
• Its easy and efficient implementation.

2 There exists a duality between the representation based on triangulations and the one based on
simplex meshes.



Deformable Objects Representation 9

(a) (b) (c) (d)

Fig. 5 Duality between a triangulation and a 2-simplex mesh. a Surface representation with a
regular triangulation. b 2-simplex mesh, in blue, over the same surface, there exists a problem at
the contour. c The meshing is corrected with the addition of the dual of the triangulation contour,
in red. d The 2-simplex mesh finished with the contour

• Its adaptability: it is possible to refine the meshing to increase the number of
vertexes in areas with high curvature. If the surface to build is based on a given
series of points, it is also possible to refine the meshing to correct values or to
adapt them to create contours where data is incomplete.

Furthermore, it can be shown [38], that a triangulation is equivalent to a simplex
mesh in which the formed faces by the edges are flat. It is also possible to define a
model with both approaches, this way it is possible to have the best features of each
one combined [52].

This kind of representation is used in medical image segmentation [53, 88]. This
model can also be used in image segmentation. Delingette [40] proposes a general
tridimensional reconstruction algorithm of range and volumetric images, based on
deformable simplex meshes, the objects recovered can be of any topology, it is also
possible divide a single object into multiple parts.

Simplex Meshes are valuable models thanks to their good propensity to handle
a large variety of shape alterations altogether with a fine resolution and stability.
However, despite all these great characteristics, Simplex Meshes are lacking to cope
satisfyingly with other related tasks, as rendering, mechanical simulation or recon-
struction from iso-surfaces [52].

2.2 Particle Systems

The particle systems are based on the concept that every object to represent is formed
by a set of particles that can be characterized by a set of physical parameters (mass,
position, velocity, acceleration, …). The behaviour of the particles is determined by
the laws of Newtonian mechanics. The interaction of the particles is performed by
attraction/repulsion forces with which it is possible to obtain a certain organization.

Due to its design, particle systems are well suited for representing viscous objects
or fluids [33]. Although they are also used to represent the behaviour of fabrics
[19–21, 46].
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In [124] a model is proposed, the oriented particles, based on particles which
have potential functions added that favour the organization of these particles in
certain forms. Each particle has associated a matrix of rotation with respect to
a reference system. With this matrix, together with a normal vector associated
with each particle, it is possible to achieve potentials that induce particles to orga-
nize themselves according to certain restrictions of co-planarity, co-normality and
co-circularity. This way, it is possible to get easily a representation of the surfaces.

The use of particle systems combined with other techniques has been used to
represent objects from data obtained empirically. In [64], parametric curves has been
used first to define the contours of organs obtained from medical images. Once
the contour is obtained, the interior is created using particles of different sizes
and weights arranged in layers. In [18] particles are used together with implicit
surfaces to represent clouds. Each cloud is defined by successive particle layers.
The final cloud shape is obtained by an explicit formulation. Heïgéas et al. [61]
presents a modeling process in order to produce a realistic simulation of crowds
based on particle systems. In particular the non-deliberative emergent crowd phe-
nomena, that is: the self-organization of a group of people. Finally, in [82] the par-
ticle systems are proposed as a model to represent 1D and 2D shapes, as hair and
cloth respectively.

The main drawback of the models based on particles is the difficulty that repre-
sents to obtain accurate measures of the way the objects are represented (for example:
the surface curvature). Another drawback is the higher computational cost of
the model.

2.3 Mass–Spring Models

Mass–spring models are one of the most used physical techniques. An object repre-
sented with this model consists on a set of punctual masses connected by a series of
springs, with null mass and a certain length, forming a deformable structure.

The springs are often linears, based on de Hooke’s law, but it is possible to use any
other behavioral model for them. The object behaviour along the deformation process
will be established by the application of Newton’s second law to each particle, the
forces acting are those fixed externally by the user and also those generated by the
stretching of the different springs as a result of the motion of the particles [59, 101].

The particles can be connected with the springs in a way more or less complex, see
Fig. 6. For example, in [105] three different kind of spring are stated: the structural
springs, the shear springs and the flexural springs; each kind of spring acts as a
reaction to a determined kind of stress (traction–compression, shearing and bending
respectively).

These models are frequently used to represent cloth because the fabric structure,
made by weft and warp, simplifies their description, representing the surface by a
set of points, each one joined with its neighbours by several links giving to the set
some properties of elasticity and flexibility [42, 86].
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(a) (b)

Fig. 6 Different mass and spring configurations. a Simple configuration: each mass is connected
by springs with its immediate neighbours. b Configuration stated in [105]: each mass is connected
by structural springs (1), shear springs (2) and flexural springs (3)

This is not the only way in which this model is used. In [129, 134] masses and
springs, the so-called adaptative meshes, are used to reconstruct objects from images.
In the same way, in [92] a mass–spring model is used to perform the segmentation
of images and also to track the objects detected in them.

Far from being abandoned, this model remains as a topic of great interest. Thus,
in [84] this model is used, paradoxically, to represent rigid object with high degree
of realism in its movement. In [66], starting from oriented particles [124], a system
in which the particles maintain a reference vectors is proposed. These vectors allow
to represent the object with great stability without being necessary to add a lot of
springs to ensure such stability.

In general it is very difficult to determine the correct elasticity parameters to
represent the real behaviour of an object, although in [93] an automatic method is
proposed.

In [109] the deformable objects are defined as a simplex meshes, but they really
represent lumped masses (that is: a mass–spring model). The object evolution is
driven by an image, the result is the segmentation of this image.

In a different approach, [113] uses a mass–spring model to represent hundred
thousands hairs in an human head. This model takes into account the hair-to-hair
interactions using physical techniques.

3 Explicit Models

Explicit models are based on the premise that objects can be represented in a way
in which every of their point can be well known. In order to do this, it is usual
describe them mathematically by using several parameters that determine their shape.
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Thus, one object, Sq, can be described from a vector of shape parameters3 of the
form, q = (q1, . . . , qnq)

�, so that if Ω is the parametric space where the object is
defined, then the representation of the object will be:

Sq : Rnq ×Ω −→ R3

(q1, . . . , qnq ,u) −→ (x(q,u), y(q,u), z(q,u)).
(2)

The characteristics of the shape obtained, and the deformations it may receive, will
be one or another depending on the type of the chosen parameters. For example, if
the parameters allow controlling local deformations, that is, the deformations which
affect a small part of objects, then the objects obtained will have very elaborated
shapes, but with a significant computational effort. In contrast, if the parameters are
controlling the whole object, then the computational cost will be lower and also the
complexity of the objects obtained with them will be lower too.

This model has several drawbacks:

• They are continuous models, so they need a discretization in the parametric space.
This discretization necessarily lead to some degree of error.
• The decomposition of the parametric space at regular intervals doesn’t lead to a

regular decomposition of the surface.
• To define the topology of the object, the explicit representation requires the intro-

duction of boundary conditions.

However, this way the objects representation tends to be simple. In the first
approaches to deformable objects, it was usual that the representation model was
an approach that can be classified as an explicit model.

3.1 Generalized Cylinders

Among the earliest representations of deformable objects, it highlights those which
were based on the way in which an outline evolved along a curve (Fig. 7).

Generalized cylinders consist of a space curve or axis and a set of cross sections
described on this axis. They describe in a natural and intuitive way pieces which
possess elongation, or which have axial symmetry. The generalized cylinders may
be linked together in various ways to form Complex Objects [7]. The way in which
the solid is obtained is by sweeping a curve along the axis. The cross sections define
how the solid object is obtained from this swept. The curve can be deformed by a
scaling function during its evolution along the axis. This scaling function can be
described as a curve secant and perpendicular to the curve used as a model for the
cross sections see Fig. 7.

3 Several authors consider explicit models within the group of parametric models. However, some
specific features also allow them to be considered as an independent group.
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(c)(b)(a)

Fig. 7 A generalized cylinder is formed from a curve that serves as the axis, see a, on which another
curve, the contour, can be used to define cross sections (b), to generate a shape (c)

The first references to jobs using this model date back in the early years of the
1970s of the twentieth century [7]. In [8], the generalized cylinders are used to
recover the shape of real objects obtained from a primitive 3D laser-based scan-
ner. The 3D object recovery from data gathered from images of real objects using
generalized cylinders has been used in some other works afterwards, for example
in [34, 132].

It is possible to build complex shapes through a combination of generalized cylin-
ders. However, it is not always easy to represent a shape by using an axis and an
outline, nor is it the most intuitive way of describe objects. Thus it does not appear
to be an appropriate model to be used regularly.

The concept of generalized cylinders has been adopted as the basis for other
models, such as the so-called swung surfaces [106], and the swept surfaces [103],
which, in fact, are actually parametric surfaces although essentially they follow the
approach of generalized cylinders.

Recently some new applications of generalized cylinders has been appeared. For
example, [50] uses generalized cylinders to model soil microstructures, specifically
the generalized cylinders are used to represent the pores which represent a com-
plex volume into the soil space. The scope of the generalized cylinder has been
extended to include fields such as the representation of medical images. In [87] gen-
eralized cylinders are used to segment and reconstruct 3D vascular trees. In the same
field of application, in [137] the generalized cylinders are used to represent ten-
dons, ligaments, and surgical sutures (in the same article, other biological tissues are
modeled using triangular and quadrangular meshes).

An equivalent approach to generalized cylinders is presented in [75], where is
presented a model capable to represent hollow tubes with deformable cross-sections.

3.2 Active Contour Models

Stated first in [68], the active contour models, also known as snakes, are curves which
change their form in order to match a given shape into an image. The adjustment
mechanism depends upon a number of parameters which impose restrictions. The
snakes evolution allows to find the contours and lines, and also other characteristics
of the objects represented on the images. In principle, the snakes are one-dimensional
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curves that can adapt to contours, track movements, etc. responding to internal ten-
sions opposing the stretching and bending, to the forces the user can impose and
those that can be inferred from the images. Some authors [36], have been extended
the active contour model so it can be applied also in 3D contours.

The snakes are used regularly for the image enhancement and detection of organs
on medical imaging [22–24]. In [107] their are used to gather the information needed
to reconstruct, with a parametric model, the left ventricle of the heart. The natural
context in which this model can be applied is in the image segmentation.

In this line, [76] propose an alternative method to reconstruct cranial defects. The
authors combine medical information, low-resolution images and the active contour
model to suppress partial volume defects, the result is a 3D skull with the defective
part reconstructed.

In general, the active contour models are computationally expensive. This draw-
back is partially reduced in [145], its proposal is to analyze the curve gradient flow in
order to study the evolution of active contour. When the curve is far from the object,
the curve suffers a global translation, and when it is near to the object, the curve suffers
a local deformation. With this approach the evolution of the active contour is more
efficient and the computational effort less expensive. Another approach is proposed
in [41], consists in discretize the space, replacing the continuous curve by a polygon,
and defining the internal energy as a function based on the minimum length polygon.

Another problem of the active contour models, in the field of the images segmen-
tation, is that it is not easy to separate adjacent objects. In [26] a graph-based method
of active contour models, called network snakes, is presented and investigated. The
main idea is to identify the objects into the image and also the relations between
them, allowing differentiate adjacent objects correctly.

3.3 Continuous Objects

The models based on a continuous representation consider objects defined on a subset,
Ω , of the 2D or 3D space. This approach is valid both for curves as for surfaces. Some
of the papers with the greatest significance in the deformable objects representation
context have proposed models following this approach [127, 130, 131].

The objects represented according to this model are in an euclidean space, 3D,
under a framework, Φ. At a given time, t , the position of each point u ∈ Ω , x(u, t),
is defined in several ways.

In a first formulation, [131], so-called primal formulation in [126], the placement
of each material point is defined directly as:

r(u, t) = (r1(u, t), r2(u, t), r3(u, t))�

This formulation leads to getting objects that can deform and move freely, but
there is always some risk of getting an ill-conditioned system as revealed in [99].
This means that for the representation of objects with a degree of stiffness this
formulation is not completely adequate.
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(a) (b)

Fig. 8 An explicit object representation: a defined upon a reference system, and b defined as a
rigid displacement with respect to a reference system and a deformation

There exists another formulation, the hybrid formulation, described on [130],
which is a combination of the concepts of the rigid body dynamics and the deformable
objects. In this second formulation, the position q, of each point of an object will
be defined from a reference system local to the object φ, therefore these positions
are represented as:

q(u, t) = r(u, t)+ e(u, t),

where r(u, t) is a reference component, defining the shape of the object without
any deformation, and e(u, t) is the deformation component, adding to the reference
component the relative displacement of each point at every time. Both r and e are
defined with respect to φ, which is placed in the center of mass of the object, c(u, t),
whose position in turn is defined with respect to the inertial reference systemΦ (see
Fig. 8). The center of mass moves according to the laws of rigid body dynamics.

This hybrid formulation has no ill-conditioning problems that appear on the pri-
mal formulation, so it is possible to represent objects with a high degree of rigidity.
The greater the rigidity of objects, the system will be better conditioned. More-
over, this system does not get good results when simulating flexible objects (fab-
rics, elastic objects, …). However, in [127], the authors represent the behaviour
of viscoelastic and plastics materials as well as fractures by using generalized
splines functionals.

4 Implicit Models

Another way to represent the shape of an object, S f , is taking null values in a given
real-valued function, f :

f : R3 −→ R

S f =
{
p ∈ R3 | f (p) = 0

}
, (3)
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in fact, the Eq. (3) defines the limits of an object, their surface. Depending on what
type of function is used, more o less capacity for representation can be achieved.

4.1 Algebraic Surfaces

If the function f from Eq. (3) is a polynomial, then the surfaces obtained
are so-called algebraic surfaces. This type of surfaces is often used, although the
use of some kinds of polynomials can lead to problems. For example, determining
the zeroes of a polynomial function is not an easy problem. Furthermore, the number
of shapes that can be represented is not as large as would be desirable.

4.1.1 Superquadrics

Of all the algebraic surfaces, the family of superquadrics has a significant popularity,
dealing with them allows getting symmetrical surfaces easily. It was precisely by
this fact that, around 1965, this became one of the first surface models used to define
aircraft fuselages. The name of superquadric was proposed by Barr [11], to define
a whole set of surfaces defined in R3 obtained as a spherical product of two curves
defined in R2 [65], see Fig. 9. For example, if a semi-circle s(φ) is defined in the
plane (y, z):

s(φ) =
(

cosφ
sin φ

)
, −π2 ≤ φ ≤ π

2 ,

and the circle c(θ), defined in the plane (x, y):

c(θ) =
(

cos θ
sin θ

)
, −π ≤ θ ≤ π ,

then from the spherical product4 of s(φ) and c(θ) is obtained the spherical surface
r(φ, θ):

r(φ, θ) = s(φ)
⊗

c(θ) =
⎛

⎝
cosφ cos θ
cosφ sin θ

sin φ

⎞

⎠ ,
−π2 ≤ φ ≤ π

2 ,−π ≤ θ ≤ π.

If an ellipse is used instead of a semicircle, the result is an ellipsoid instead of a
sphere. It is also possible the use of a signed exponentiation function having different

4 The spherical product
⊗

is defined by:

(
X1
X2

)
⊗

(
Y1
Y2

)
=

⎛

⎝
X1Y1
X1Y2
X2

⎞

⎠
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(a) (b) (c)

Fig. 9 Sphere defined as a surface superquadric. a Two curves defined in a plane. From the spherical
product of both is obtained the surface of revolution (b), which finally generate the sphere (c)

parameters to define both curves. In his work, Barr deduced that superellipsoids are
just one kind of a superquadrics. In general a superquadrics surface is defined as:

Q(φ, θ) = s

⎛

⎜
⎝

a1Cε1
1 (φ)C

ε2
2 (θ)

a2Cε1
1 (φ)S

ε2
2 (θ)

a3Sε1
1 (φ)

⎞

⎟
⎠ . (4)

Being a1, a2, a3 ∈ R y s, ε1, ε2 ∈ R+
⋃{0}, the parameter s is a scaling factor,

a1, a2, a3 are parameters controlling the proportionality of the figure, and ε1 and ε2
are coefficients controlling the shape. This way for values less than 1.0 the shape
tends to be rectangular with the corners more or less rounded, and for values greater
than 1.0 the shape seems more as the one shown in Fig. 10a.

Generally, the shape of a superquadric is defined by the functions Cε
1(φ), Cε

2(θ),
Sε1(φ) and Sε2(θ). Depending on which are these functions, four kind of superquadrics
can be established:

1. Superellipsoids:
Cε1

1 (φ) = cosφε1 , Cε2
2 (θ) = cos θε2 ,

Sε1
1 (φ) = sin φε1 , Sε2

2 (θ) = sin θε2 ,

−π2 ≤ φ ≤ π
2 ,

−π ≤ θ ≤ π.

(5)

2. One sheet super hyperboloids:

Cε1
1 (φ) = secφε1 , Cε2

2 (θ) = cos θε2 ,

Sε1
1 (φ) = tan φε1 , Sε2

2 (θ) = sin θε2 ,

−π2 ≤ φ ≤ π
2 ,

−π ≤ θ ≤ π,

(6)
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(a) (b)

Fig. 10 A superquadric surface example: a superellipsoid with parameters s = a1 = a2 = a3 =
1.0, ε1 = ε2 = 5.0. a Normal shape, b with a deformation

3. Two sheet super hyperboloids:

Cε1
1 (φ) = secφε1 , Cε2

2 (θ) = sec θε2 ,

Sε1
1 (φ) = tan φε1 , Sε2

2 (θ) = tan θε2 ,

−π2 ≤ φ ≤ π
2 ,

−π2 ≤ θ ≤ π
2 (sheet 1),

π
2 ≤ θ ≤ 3π

2 (sheet 2).

(7)

4. Supertoroids:
Cε1

1 (φ) = a4 + cosφε1 , Cε2
2 (φ) = cosφε1 ,

Sε1
1 (θ) = a4 + sin θε2 , Sε2

2 (θ) = sin θε2 ,

−π ≤ φ ≤ π,
−π ≤ θ ≤ π,
a4 = R√

a2
1+a2

2

.

(8)

Being the exponentiation a signed operation defined as:

ab = sgn(a)|a|b,
sgn(a) =

{−1 if a < 0,
1 if a ≥ 0.

However, a surface defined by a superquadrics is regular and symmetrical, a priori
it does not seem adequate to represent a deformable object. However, some studies
[128] propose superquadrics to which a local disturbance component is added, so
that an object will be expressed by:

Q̃(φ, θ) = c + R(Q(φ, θ)+ d(φ, θ)) (9)
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Being c the inertial center of the superquadric Q(φ, θ), R is a rotation matrix,
and d(φ, θ) is a displacements field over the surface. The result obtained is a regular
shape except at the point where the displacements field modifies the shape of the
superquadric.

The superquadric representation can be also defined from implicit functions5

[9, 10]:

1. Superellipsoids:

F(x, y, z) =
((

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1
. (10)

2. One sheet superhyperboloids:

F(x, y, z) =
((

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

−
(

z

a3

) 2
ε1
. (11)

3. Two sheet superhyperboloids:

F(x, y, z) =
((

x

a1

) 2
ε2 −

(
y

a2

) 2
ε2

) ε2
ε1

−
(

z

a3

) 2
ε1
. (12)

4. Supertoroids:

F(x, y, z) =
⎛

⎜
⎝

((
x

a1

) 2
ε2 −

(
y

a2

) 2
ε2

) ε2
2

− a4

⎞

⎟
⎠

2
ε1

−
(

z

a3

) 2
ε1
. (13)

In [141] this model is used together with the geons model (a volumetric model
that allows to extract qualitative features) to provide superquadric geons, which can
be used to define parts of 3D objects, and also describe the topological relations
between different parts. Also, [104] gives a solution to the problem of detecting
contact between convex superquadric surfaces using implicit equations.

Although the superquadric surfaces are a good global approximation, the shapes
that can be represented with this family of surfaces are too limited to represent
complex forms with accuracy [9, 10].

The superquadrics model is also used to extract information from images [12].
See also [144], where is presented an automatic 3D hybrid segmentation approach
based on free-form deformation and superquadrics.

5 It is also possible to represent the superquadrics as a parametric function. So they are also among
the parametric models.
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4.1.2 Hyperquadrics

The hyperquadric surfaces are proposed as an extension of the superquadrics [60].
A hyperquadric surface is defined as:

fq(p) =
n≥3∑

j=1

∣
∣a j px + b j py + c j pz + d j

∣
∣ε j = 1, (14)

being ε j > 0 ∀ j y q = (a1, b1, c1, d1, ε1, . . . , an, bn, cn, dn, εn)
�. For a value of

n greater than three, the Eq. (14) does not have an explicit representation. The form
represented is inscribed in the convex hull defined by the planes a j px + b j py +
c j pz + d j = ±1. The coefficient ε j is a fitting parameter of the surface to its convex
hull. The number of shapes that can be represented with this kind of surfaces is greater
than with the superellipses, but it is only possible to define shapes homeomorphics
with a sphere [37].

4.2 Isosurfaces

Another approach is to define the surface by a potential function, that is, a function
that maps each space point to a numerical value:

F : R3 −→ R.

With this function, a surface can be defined as the set of the space points where
the function has certain value, v.

Sv = {p ∈ R3|F(p) = v}. (15)

For a given function many surfaces can be obtained by simply changing the value v
(Fig. 11).
The generated surfaces depend on the used function F . For example, if F is defined
as F(p) = p2

x + p2
y + p2

z , then for each possible value v > 0, Sv will define the
surface of a sphere of radius

√
v.

This kind of surfaces, depending on the potential function used, are called:

1. Blobs: surface model described initially in [14] with a potential function inspired
in the behaviour of the atoms when joining together to create molecules.

F(p) =
∑

i

bi e
−ai r2

i , (16)
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being ri the distance from the point p to the center of the i molecule. For each
molecule, a Gaussian centered at ri , a height ai and a standard deviation bi are
defined. The potential for each space point will be expressed by the contribution
of every particle.

2. Metaballs: this approach is slightly later [97], it defines the potential function for
every metaball as:

wi (p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

di

(
1− 3

(
ri
bi

)2
)

0 ≤ ri <
bi
3 ,

3di
2

(
1− ri

bi

)2 bi
3 ≤ ri < bi ,

0 bi ≤ ri ,

(17)

in which ri is the distance from the point p to the center of the i th metaball, being
bi its radius and di a weighting coefficient.
If M is defined as a set of metaballs which are combined, a fusion cluster, then
the potential function is:

F(p) =
∑

mi∈M

wi (p). (18)

3. Soft objects: it is an evolution of the blob molecules [139, 140] where the potential
function is approximated with a polynomial whose value is null from a certain
distance from a key point, the influence radius:

Ci (p) =
{
− 4

9

(
ri
Ri

)6 + 17
9

(
ri
Ri

)4 − 22
9

(
ri
Ri

)2
ri ≤ R,

0 ri > R.
(19)

In this case ri is the distance from the point p to each key point and Ri is the
influence radius of the i th key point. Therefore if it is desired to calculate the
potential field corresponding to a set of key points, the potential function is:

F(p) =
∑

i

Ci (p) (20)

The three models described are very similar, although there are notable differences
between them. Thus, in the blobs model, to calculate the intensity of the field in each
space point, it is necessary to calculate the contribution of every molecule, and this
can make the calculation too expensive. Originally, the problem was solved with the
setting of an influence sphere for each molecule, neglecting its effect in the areas
outside this sphere. In the metaballs model there is no such problem due to the form
of the functions, because they convert the potential of each element farther from
some distance in a null value. However, a polynomial function, such as the case of
Eqs. (17) and (19), is less expensive than an exponential function, which is the case of
(16). Moreover, the soft objects have as a main advantage the fact that their potential
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(a) (b) (c) (d)

Fig. 11 Isosurface defined from three equally spaced spheres with an influence radius expressed
as a percentage of their respective radius: in (a) 99% , in (b) 45%, in (c) 30% and in (d) 25%

function is the simplest one to evaluate, even the square roots implicit in the distance
calculations can be simplified thanks to the function exponents.

Later, models which a more complex shape than a sphere have been appeared.
In fact, also in the seminal works, the possibility of extensions and variations were
presented. A posteriori, isosurfaces has been build from a geometric skeleton, more
or less elaborated.

There exists another aspect related to the isosurfaces: their representation. One
of the most widely used algorithms is marching cubes [80]. Basically, the algorithm
consists in dividing the space into small cubes or voxels; the smaller the size, the
greater the smoothness of the surface generated. Then, it is performed a scanning
through all the vertexes of the cubes to determine whether the value of the scalar field
is greater than or less than the threshold indicated. After the scan is performed, each
one of the eight vertex of the cube will have a boolean value, true or false, depending
on the results of the comparison. In total there are 256 possible combinations of true
and false values of the eight vertexes.6 Each combination determines a possible form
for the surface in this particular cube. Thus, what it must be done is to change each
cube by the surface piece determined by its combination.

The result of the algorithm is the isosurface of a given value in the scalar
field. The smoothness will depend on the chosen size of the cubes. In the Fig. 12
two blobs molecules are shown, they are represented with the described algorithm
and with different cube sizes. Other approaches in the same line are proposed in
[15, 16, 117].

This kind of surfaces can be used to define deformable contours. In this way, in
[28] they use isosurfaces defined from a skeleton.

In more recent works [18] this technique is used to modeling clouds from a set of
particles.

Other of the aspects in which the use of this method offers advantage in front of
others is in the object representation from image data, or from measuring mechanisms
that get clouds of points with some noise level. In [63], an hybrid mechanism is used,

6 In practice it is enough with 16 different combinations, the rest can be obtained from affine
transformations.
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Fig. 12 Two blobs [14] represented, from left to right, with a higher level of detail

Fig. 13 The level set can be visually interpreted as the contours of the intersection of two surfaces.
In the picture, from left to right can be seen in the top row, how a 3D surface generates a 2D shape (the
level set) over a plane. Depending on the displacement of the 3D surface, the 2D shape is changed

in part an explicit model and in part an implicit one. With it, surfaces can be generated,
which in turn can be deformed.

4.3 Level Sets

The level sets were originally proposed by Osher and Sethian [98, 114, 117]. Its
function is to follow the contours of the objects which change their shape, this
approach is very similar to the active contour models introduced in Sect. 3.2.

Basically their approach is to place the object to deform in a space with a larger
number of dimensions. If the object changes shape, the function of movement must
also be projected.

Thus, if Γ (t) represents the object, seen as a closed hypersurface in motion:

Γ (t) : [0,∞)→ Rn .

The motion can be considered in a direction normal to the object. Let ±d the
distance from the propagation front. Assuming that the propagation front is the 0
level-set of a function φ, defined on the higher dimensional space, then φ(x∈Rn,

t = 0) = ±d. Then the evolution of φ can be represented with the partial differential
equation:

φt + F |∇φ| = 0,

for a given φ(x ∈ Rn, t = 0), F is the speed of Γ , see Fig. 13.
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One of the main advantages of this model is that the level set remains valid even if
the hypersurface changes its topology. The other models described are based on the
determination of the position of some points of the contour, and in the calculation of
the shape of this contour from the calculated points. This approach is not generally
applicable if there are changes in the objects topology, such as when a break occurs.

This approach is perfectly applicable to surfaces. But its natural scope is the images
segmentation [83], and medical imaging. It is therefore an alternative to the active
contours model. An early review on level set methods in 2D/3D medical images can
be found in [123].

In the medical imaging field, [91] uses the level sets to identify and track biological
cells using video microscopy techniques. Also, [120] proposes an automatic lungs
segmentation from medical images.

Also [2–5] use level sets for image segmentation and edge detection. In those
works is presented a new approach based on morphology operators implemented
as fast algorithms that significantly reduce the high computational cost associated
with this model. See also [74]. However, [143] the level sets are used to reconstruct
complex 3D models by using a geometric external force field, which determines the
evolution of the system.

This model can also be used to describe fluids and other complex objects (smoke,
fire, …) [116].

4.4 Sampled Object Representation

The Sampled Object Representation, SOR, defines a graphical model using data
obtained from a sampling process, which takes a collection of samples at discrete
positions in space in order to capture certain geometrical and physical properties of
one or more objects of interest [32].

This technique does not allow to have the topological, geometric o semantic
information that is required in order to handle the objects in a correct way. Such
information must be obtained in some otherwise.

Some properties of this technique are:

• Limited geometric information. Although it need not always be like this, it is
usual that the sampled data do not contain geometric information and this, though
a certain limitation, can easily describe amorphous objects—smoke, fire, dust—
that are particularly difficult to be represented with other models.
• Limited topological information. The only topological information available is

that of spatial or temporal arrangement in which samples are obtained.
• Limited semantic information. The sampled information can hardly contain

semantic information of source objects of the samples.
• Multiple data channels. The data obtained can be of very different types: temper-

atures, images, sounds, …
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• Multivalued data channels. The values of the samples can give rise to some uncer-
tainty due to the type of data they describe.

Depending on the specific information to deal with this model, other models can
be used to generate objects.

5 Parametric Models

A traditional way of posing the surface deformations is determining that these shapes
should be adjusted according to some constraints. Thus, starting from an initial
surface, more or less adjusted to the final shape desired, the appropriate modifications
must be made to adjust the surface to the desired final result as much as it is possible.
The constraints are posed on the basis of mathematic functions combined with the
surface definition to achieve a system of equations. The surface definition must have
enough degrees of freedom to allow the system of equations be solvable [58].

With this model the object representation is more restrictive than the one given
by the explicit models, this is due to the constraints it must be imposed. On the other
hand, parametric modeling has a much more simpler representation.

The parametric representation of an object, mathematically speaking, is that where
each point is represented separately by an explicit function with a set of independent
parameters. Thus, a parametric surface is represented as an application, S, defined
in its domain Ω ⊆ R2 so that each point, (u, v), of the domain has a corresponding
point in R3, (x(u, v), y(u, v), z(u, v)):

S : Ω ⊆ R2 −→ R3

S(u, v) −→ (x(u, v), y(u, v), z(u, v)).
(21)

The presentation cannot be unique, in fact there exists multiple parametric repre-
sentations for a given object, from all of the possible representations, the interesting
are those that [103]:

• Are capable to represent with accuracy all shapes the users want.
• Are implementable efficiently in a computer system, it is especially important that:

– The calculation of the points and the derivatives can be performed efficiently.
– The numeric operations are robust, without numeric errors.
– They do not need too much storage space.

• Are simple and well understood from a mathematical point of view.

Among the different representations proposed, the simplest one is the based on
polynomials, although there exist so many objects that cannot be represented with
them.
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5.1 Superquadrics

The superquadrics, described in Sect. 4.1.1, can be represented in a parametric way.
In this case, the coefficients are the values characterizing the posed superquadric.
In [128] they are used to represent 3D deformable objects.

5.2 Modal Decomposition

The essence of these models is to consider the object to be depicted as included
in a space that can be expressed as a linear combination of an orthonormal basis
of the space. The coefficients of the linear combination are the parameters defining
the object. The advantage of this representation is that it is possible to achieve an
approximation of the object by a finite subset of coefficients.

Thus, if an object, f , can be considered as an element of a Hilbert space H , that
is, a space with a scalar product 〈·, ·〉, then the object can be expressed as:

f =
∑

n∈Z+
αnφn,

where {φn}n∈Z+ is an orthonormal basis of H and

αi = 〈 f, φi 〉 ∀i ∈ Z+.

So, for a certain value, p ∈ Z+, an approximation of f is:

f ≈
p∑

k=1

αkφk ,

so that the vector (α1, α2, . . . , αp) forms the set of parameters defining the shape of
the object with a certain degree of approximation. Obviously, the larger number of
parameters, the larger the accuracy of the representation.

In [121] there is an approach using Fourier basis, so the Fourier coefficients
determine the shape of objects. The essence of this paper is to put the object in the
frequency space. Each frequency waves that describe an object consists of a set of
harmonics. The parametric representation of objects following the modal decompo-
sition approach requires that the parameters are the weights corresponding to these
harmonics. Depending on the number of harmonics used, the object can be repre-
sented more or less accurately. In practice the interest is to minimize this number,
provided that the model fits enough to the object to be represented.

In [100] this model is used to represent a simplified dynamic model, having a
reduction of the representation complexity and a simplification of it thanks to the
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elimination of the vibration modes of higher frequency; as a counterpart, there are
some limitations on the deformations that can be represented.

Using modal analysis it is possible to decompose a deformable shape into mean-
ingful parts, requiring only a single input pose, see [62]. The modal analysis is
able to determine which parts tend to move rigidly and it is possible to determine
the deformation field associated to the shape. Another application of modal analy-
sis can be seen in [43], where is presented a real-time method to animate complex
scenes of thousands of trees under a user-controllable wind load, the main modes of
deformation are pre-calculated and used later to deform the trees under wind load.
This approach can be efficiently implemented on graphics hardware and requires a
low computational effort.

5.3 Subdivision Surfaces

Subdivision is a technique to generate smooth curves and surfaces, which extends
classical spline modeling approaches. Its algorithmic implementation is very simple
and efficient. Subdivision defines a smooth curve or surface as the limit of a sequence
of successive refinements.

The main idea of the subdivision of curves and surfaces is: given an initial set of

control points p0, forming a grid, where p0 = (
. . . p0−2, p0−1, p0

0, p0
1, p0

2, . . .
)�

(the
values p0

i are points of R
2 or R

3 depending on if we are in the plane or in the space)
and a matrix S, called subdivision matrix, the set of control points p1, can be found
in this way: p1 = Sp0. And, in general, the series of points pk can be calculated as
pk+1 = Spk . The points pk are considered a level k approximation to the curve or
surface.

When a subdivision is defined, it must be taken into account:

• The eigenvalues of the matrix S. In order to have convergence, all the eigenvalues
λi of S must verify: |λi | ≤ 1, ∀i . In order to have affine invariance, S must have
the eigenvalue 1 with eigenvector (1, . . . , 1)�.
• In the case of curves, if λ0 = 1 < λ1 < λi , and if p0 = ∑n−1

i=0 ai xi where xi is
the eigenvector corresponding to the λi eigenvalue; then the tangent vector to the
curve in pk , for a k large enough, can be approximated by a1, (ai are in R

2 or R
3)

vectors.
• In the case of surfaces, if λ0 = 1 < λ1 = λ2 < λi and p0 = ∑n−1

i=0 ai xi , then
the vectors which generate the tangent plane in pk for a k large enough, can be
approximated by a1 and a2.
• Regularity of the subdivision-generated surface. The control points pk are forming

a grid. The number of edges of the grid bearing this point are so-called control point
valence. Then, a control point pk

i is extraordinary if it has a different valence with
respect to the rest of the supposed regular grid points. Where there is regularity, the
subdivision-generated surface has continuity C 1, but at the extraordinary point,
the C 1 continuity is not guaranteed.



28 P. Palmer et al.

Fig. 14 An example of subdivision surface, showing three successive levels of refinement [146].
On the left, an initial triangular mesh as a first approximation to the surface. Each triangle is split
into 4 according to a particular subdivision rule. On the right the mesh is subdivided a second time
following the same scheme

• Characteristic map. From the eigenvalues x1 and x2 (which depend on the subdi-
vision scheme) and the vectors a1 and a2 (which depend of the initial subdivision
grid, p0), it is possible to make a local study of the subdivision generated surface
in pk for a k large enough. From this study, it is possible to define the characteristic
map indicating the regularity of the surface in an environment of pk .

This model arose from [30] where an algorithm to represent smooth curves based
on a control polygon were stated. The main idea is cut the corners of the control
polygon to generate another polygon, for each vertex of the original polygon two
new ones are created. This new polygon can be used this way again. This procedure
can be applied recursively and the successive control polygons obtained converge
to a smooth curve. The procedure stops when the distance between two consecutive
polygons is less than some threshold (for example, the resolution of the display
device where the shape is rendered).

The first references to this model are [29, 44], although the model has been widely
developed afterwards. In fact examples of this method can be often viewed in any
animation movie of today, as an example see Fig. 14.

The subdivision methods can be organized in categories based on four criteria
[146]:

• Type of refinement rule: face split or vertex split.
• Type of grid generated: triangular or quadrilateral.
• Type of scheme: approximation or interpolation.
• Smoothness of the limit surfaces for regular meshes (C1,C2, . . .).

Next, there is a classification of some of the most used methods:
An application of this model can be seen in [6], a meshless approach to represent

deformable objects. The objects are represented as a set of coarse nodes which
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Face split
Triangular meshes Quadrilateral meshes

Approximating Loop [78]: C2 Catmull–Clark [29]: C2

Interpolating Butterfly [45]: C1 Kobbelt [70]: C1

Vertex split
Doo–Sabin [44]: C1

separation is described in a similar way as the fast marching method [115]. The
deformation are solved by using modal decomposition techniques, see Sect. 5.2.
The results illustrate that this model can handle complex shapes at interactive rates
producing realistic deromable 3D shapes and their motion.

This model is commonly used in the context of free-form deformations, but usually
a final conversion to other polygonal models is necessary due to its computational
cost, specially when there is a real-time constraint as for example in the field of
video-games. To solve this it is possible to use specific hardware, such as Graph-
ics Processing Units (GPUs). But this kind of processors are specially designed to
speedup the polygonal calculations, although something has been done in this ori-
entation [79].

5.4 Bézier Curves

The Bézier curves were studied independently by Bézier and de Casteljau at the same
time (endings of the 1950 decade in the case of de Casteljau and beginnings of the
1960 decade for the Bézier case).

Their solution, never before proposed, were based on the use of Bernstein polyno-
mials, dating back the beginning of twentieth century, and the control polygons. The
approach was revolutionary: the curve were not defined from points on the curve,
but for some other points near the curve, the so-called control polygon. Instead of
modifying directly the curve, the points of the control polygons could be modified,
and doing this, the curve follows the change in an intuitive way. The work of both
researchers was developed later and was shown to be equivalent.

A Bézier curve of degree n is defined as

C(u) =
n∑

i=0

Bi,n(u)Pi 0 ≤ u ≤ 1, (22)

being Bi,n(u) the Bernstein polynomials of degree n:

Bi,n(u) =
(

n
i

)
ui (1− u)n−i = n!

i !(n − i)!u
i (1− u)n−i . (23)
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Fig. 15 The Bernstein poly-
nomials set the influence
of each control point on
every point of the curve. In
the image, four Bernstein
polynomials are show, those
corresponding to a degree
three curve

All control points influence to a greater or lesser extent in the shape of the curve,
the degree of influence is given by Bernstein polynomials, see Fig. 15.

The geometrical coefficients, {Pi ∈ R3, 0 ≤ i ≤ n}, are the control points.
The polygon formed by joining the control points by straight lines is called control
polygon and it results to be an approximation of the curve. The control points also
define a convex hull of the curve. Another interesting characteristic is that the curve
passes through the first and last control points.

In the field of deformable objects representation, in [135] is proposed the use of
triangular Bézier patches for the representation of surfaces constructed from restric-
tions as a variational approach.

Among all the existing ways for the representation of parametric surfaces one of
the most commonly used is based on the tensor product. In this case, the bivariate
basic functions, functions of variables u and v, are constructed as the product of the
respective univariate basic functions. The geometric coefficients are arranged in a
network, and the tensor product has the form

S(u, v) =
n∑

i=0

m∑

j=0

fi (u) · g j (v) · bi j ,

⎧
⎨

⎩

bi j = (xi j , yi j , zi j ),

a ≤ u ≤ b,
c ≤ v ≤ d,

that can be expressed in matrix form as:

S(u, v) = [ fi (u)]
� [

bi j
] [

g j (u)
] = f�bg,

being [ fi (u)]� a row vector,
[
g j (u)

]
a column vector, both representing the univariate

basis. At the same time,
[
bi j

]
is a (n+1)×(m+1)matrix of three dimensional points.

The domain of (u, v) is a rectangle [a, b] × [c, d] ⊆ R2, although is quite usual
the use of the rectangle [0, 1] × [0, 1] as a domain, due this does not suppose any
restriction and, instead, it allows some simplifications.

In the case of Bézier surfaces the tensor product form is:
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S(u, v) =
n∑

i=0

m∑

j=0

Bi,p(u) · B j,q(v) · Pi j 0 ≤ u, v ≤ 1 (24)

The control points form a polyhedron, the polyhedron of control, which proves to
be a linear approximation of the surface. The properties that satisfy Bézier surfaces
are analogous to those described for curves, extending them for a two-dimensional
parametric spaces.

Both curves as Bézier surfaces, being polynomial representations, have a number
of drawbacks:

• A very high degree is required for the polynomial if the shape to represent has to
adjust to a large number of constraints (in general, a n − 1 degree polynomial is
required to satisfy n constraints). The same occurs if the shape is complex. The
representation algorithms are less efficient as higher is the degree; and also, the
higher the degree, the higher the numerical instability.
• The control of the shape is no local, then the manipulation of any control point

affects the entire shape in a not intuitive way. This fact makes this model be
unattractive to their use in interactive environments.
• There is a great amount of shapes that can not be represented by a polynomial

curve: the conics and quadrics (circles, cones, spheres, …). An extension of the
Bézier shapes are the rational Bézier shapes proposed in [47]. With the use of
rational Bézier polynomials some of the cited limitations are solved, because it is
possible to define conics with this kind of curves.

5.5 B-Splines

A solution to the problems posed by the Bézier schemes takes into account the
piecewise polynomial functions.

The idea is to build a complex shape by the union of different sections with
a polynomial structure and a low degree, without the drawbacks derived from the
use of high degree polynomials. Therefore, a curve arises as a set of polynomial
segments joint one after another. The unions between segments are called break
points, also known as knots. Each segment is independent from the others, each one
of the polynomial segments is defined between two consecutive knots. The junctions
are made in a form that it is possible to guarantee some degree of continuity along
the entire curve (see Fig. 16).

B-Splines are defined from the so-called B-Spline Basis functions. Given a set of
real values U = {a = u0, u1, . . . , um = b}, such that ui ≤ ui+1∀i ∈ {0 . . .m − 1},
the i th B-Spline basis function of degree p is defined recursively as7:

7 There exists the possibility to obtain a quotient of the form 0
0 or ·0 . To algorithmic development

purposes these cases are considered as 0.
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Fig. 16 The curves, defined as piecewise polynomial shapes, are formed as a result of the union
of the curve segments that each polynomial shape represent. In the image the segments are shown
differentiated

Fig. 17 Different B-Spline curves and their respective control polygons

Ni,0(u) =
{

1 if ui ≤ u ≤ ui+1,

0 otherwise.
Ni,p(u) = u−ui

ui+p−ui
Ni,p−1(u)+ ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u).

(25)

Each basis function Ni,p(u) is defined in R, although the interest is centered at
the interval [u0, um]. Usually the knots set is defined such u0 = 0 and um = 1.

From the B-Spline basis functions, the B-Spline curves and surfaces are defined.
In particular, given a knots set

U = {a, . . . , a︸ ︷︷ ︸
p+1

, u p+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

},

and a point set, {Pi ∈ R3, i = 0 . . . n}, the p degree B-Spline curve is defined as:

C(u) =
n∑

i=0

Ni,p(u)Pi , (26)
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The Bernstein polynomials (23), can be obtained from the B-Spline basis functions
(25) if the knots set is defined as:

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}.

Therefore, the Bézier curves and surfaces can be considered as a particular case
of the B-Spline ones. However, B-Splines have a higher capacity of representation.
This is due to some of the characteristics that define them. In fact, B-Spline shapes
solve the problems discussed for Bézier forms:

1. The construction of the B-Spline shapes as piecewise polynomials shapes is due
precisely to reduce the complexity and the degree of the Bézier shapes.

2. The local support comes from the fact that a certain number of basis function
Ni,p(u), has not null values only in the interval [ui , ui+p+1). In practice, this
makes the influence of each control point to be reduced to only one interval of
the shape. Namely, the control point Pi has influence in the interval [ui , ui+p+1)

of the represented shape. Therefore, a change in a control point will only affect
to a part, not to the whole shape.

3. Another problem, that of the difficulty of defining complex shapes, is solved since
it is possible to define shapes with sharp angles and even without visual continuity
thanks to the multiplicity of the control points, which can be greater than 1. See
Fig. 17.

B-spline surfaces can also be obtained from curves by using tensorial products
(24). So a B-Spline surface S(u, v), of degree p in one dimension and q in the other
one, with the knot set:

U = { 0, . . . , 0︸ ︷︷ ︸ , u p+1, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸},
p + 1 p + 1

V = { 0, . . . , 0︸ ︷︷ ︸ , vq+1, . . . , vs−q−1, 1, . . . , 1︸ ︷︷ ︸},
q + 1 q + 1

and the control points

{Pi j ∈ R3, i = 0 . . . n, j = 0 . . .m},

so that r = n + p + 1 and s = m + q + 1, is defined as:

S(u, v) =
n∑

i=0

m∑

j=0

Ni,p(u) · N j,q(v) · Pi j 0 ≤ u, v ≤ 1. (27)

Also, it is possible to define solid objects using B-Splines. This can be done from
a three-dimensional tensorial products:
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S(u, v) =
I∑

i=0

J∑

j=0

K∑

k=0

Nk,p(u) · N j,q(v) · Nk,r (w) · Pi jk 0 ≤ u, v, w ≤ 1. (28)

This approach is followed in [107] to represent the human left heart ventricle from
medical images. For more details about B-Spline curves and surfaces, see [49, 103].

B-splines are also used in other fields, as for example in registration algorithms,
that is classification. In [108] is proposed a diffeomorphic registration method by
composing sequences of free-form deformations based on B-splines.

Other interesting articles related to this model are [56] where an analytic solution
of an evolution model is proposed in order to deform B-splines parametric surfaces.
Also [55] which introduces a dynamic evolution model in order to deform parametric
surfaces, finally in [57] a method to deform non-planar parametric surfaces based
on B-splines is presented. To develop this method, an energy functional and its
variational formulation are introduced.

Although the variety of objects that B-Splines can represent is much broader than
using Bézier schemes, still it is not possible to represent the conics and quadrics,
shapes commonly used in environments such as simulation, animation, design, and
so on. Therefore, it is necessary look for a scheme which, being more general, allow
the representation of these shapes.

5.6 NURBS

The NURBS objects appear as a solution to a necessity in the world of computer
aided design (CAD) and the computer aided manufacturing (CAM), that is the need
for representation of different geometric elements in an unified way.

Taking into account the formulation established in Sect. 5.5, a NURBS curve,
C(u), is defined as:

C(u) =
∑n

i=0 Ni,p(u) · ωi Pi∑n
i=0 Ni,p(u) · ωi

, (29)

and analogously, a NURBS surface, S(u, v), is defined as:

S(u, v) =
∑n

i=0
∑m

j=0 Ni,p(u) · N j,q(v) · ωi j · Pi j
∑n

i=0
∑m

j=0 Ni,p(u) · N j,q(v) · ωi j
0 ≤ u, v ≤ 1, (30)

being ωi and ωi j real values, the so-called weights.
The Non-Uniform Rational B-Spline (NURBS) objects, see Fig. 18, have become a

de facto standard in the context of objects representation. Some of the characteristics
that have promoted this are:
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Fig. 18 A NURBS surface, the control points are represented as the small blue points connected
by the control mesh, the red lines

• They allow to represent a wide range of shapes, from analytic shapes to free-forms,
giving an unifying model. This makes that algorithms whose combining different
objects, such as intersection, union, and so on, are general.
• The algorithms are fast and numerically stable [103].
• They can represent discontinuities such as bending, marking, twisting, and so on.
• They are invariant to affine transformations.
• They have a projective semi-invariance.
• The Bézier curves and surfaces, and also the B-Spline ones, are NURBS particular

cases.
• They are intuitive, in the sense that the modifications that can be done over the

shape to represent, correspond naturally to changes on the elements defining
them.

The first references to NURBS are from the mid 1970 [136]. At the beginnings of
the 1980 the first NURBS—based modelers appear. The interest aroused in the field
of aeronautics, the academic world, and entities related to structures in general, was
great.

The incorporation of NURBS in the graphics standards of the time (PHIGS+,
IGES), and also for their special features, has allowed a great acceptance in the field
of CAD/CAM.

Some of the NURBS characteristics are:

• They are based on a mathematical model allowing to represent both free-forms
(FFD) and analytics forms (conics, quadrics, …). They are a B-Splines extension,
thus it is also possible to represent parametric forms as Bézier and B-Spline.
• By the manipulation of the control points and the weights, it is possible the rep-

resentation of a large number of shapes. Furthermore, the manipulation is local,
that is: the change of a weight or a control point only affects to a part of the shape,
this makes the objects modification become easier.
• In general, the algorithms are numerically stable.
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• The geometric interpretation is intuitive, so its use is easier.
• There exists a large amount of operations that can be applied to NURBS. Thus, it

is possible to easily adjust and adapt them to multiple forms.
• They are invariant to the affine and perspective transforms, this convert them an

ideal design tool.

Working with NURBS has many advantages, but this kind of elements has several
drawbacks:

• The parameterization depends on the assigned weights, an incorrect application
of the same causes deficiencies in the shape.
• Not all the geometric operation fits correctly to work with NURBS. Determining

object intersections, or collision checking, are operations requiring algorithms too
expensive computationally.
• Some algorithms, in particular that determines the parameters corresponding to a

surface point, are numerically unstable and require algorithms with a high com-
putational cost [103].
• Some elementary representations (circles, squares, …) require much more data

using NURBS than with other kind of representation.

This model has been used widely in many areas shape reconstruction from
images [25, 73, 89], Free-Form deformations [35, 67, 72, 73] and in many others
[13, 71, 81], also in biomedical images. For example, in [31] is proposed a method of
parametric representation and functional measurement of 3D cardiac shapes based
on deformable NURBS.

To increase performance, this model can be implemented so that it is possible to
display real-time NURBS surfaces by using a Graphics Processing Unit, GPU [142].

5.7 T-Splines

When two NURBS surfaces are joined together, the combination of the two con-
trol nets arises represent a problem. To solve this, using NURBS, it is necessary
combine both control nets, adding rows and columns where necessary, to generate
another control net capable to represent the shape of both surfaces. It is computa-
tionally expensive and often requires an additional effort to users. Another problem
appears when it is necessary to add a control point. In this case an entire row or
column must be added to the control grid. It is due to the necessary regularity of the
control net.

T-splines [112] are non-uniform B-spline surfaces with T-junctions. With this add
on it is possible to insert control points into the control grid without propagating
an entire row or column of control points. It is also possible combine two T-splines
without any supplementary effort [110]. This way the regularity of the control net
imposed on NURBS can be superseded.
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The basis of T-splines are the point-based B-splines, PB-splines. The equation of
a PB-spline is

P(s, t) =
∑n

i=1 Pi · Bi (s, t)
∑n

i=1 Bi (s, t)
(s, t) ∈ D, (31)

where Pi are the control points, and Bi (s, t) are the basis functions:

Bi (s, t) = N p
i,0(s) · N q

i,0(t),

being N p
i,0(s) the B-spline basis function of p degree associated with the knot vector

si = {si0, si1, . . . sip, sip+1} and N q
i,0(t) the B-spline basis function of q degree

associated with the knot vector ti = {ti0, ti1, . . . tiq , tiq+1}. Thus, for each control
point a pair of knot vectors must be provided.

The domain D in (31) is the union of the domains of each individual control point:

D ⊆ D1 ∪ D2 ∪ . . . Dn = ∪n
i=1 Di ,

D does not has to be rectangular, it only has to be connected and such that:

n∑

i=1

Bi (s, t) > 0 ∀s, t ∈ D.

T-splines are PB-splines with a control grid, a T-mesh, imposing some order to
the control points. The T-mesh gives an easier way to handle the control points than
the allowed by the independent control points of the PB-splines. It also gives a way
to deduce the knot vectors si and ti for each basis function.

The key aspect is that each control point in a NURBS control grid, except those of
the edges, has two neighbours in each direction of the grid, horizontal and vertical.
But in a T-mesh it is possible to have a control point with only one neighbour vertically
o horizontally, this is a T-junction.

A T-mesh is basically a rectangular grid which allows T-junctions. Each edge in a
T-mesh is a line segment of constant s, a s-edge or a constant t , a t-edge. A T-junction
is a vertex shared by one s-edge and two t-edges or by two s-edges and one t-edge,
see Fig. 19.

Each edge in a T-mesh is labeled with a knot interval, constrained by the two
rules:

1. The sum of knot intervals on opposing edges of any face must be equal. Then for
the face F of the Fig. 19: r2 = r5 + r6 and c2 + c4 = c5.

2. If a T-junction on one edge of a face can be connected to an opposing edge of
the face (thereby splitting the face into two faces) without violating the first rule,
that edge must be included in the T-mesh.

For a given control point Pi , to find the knot vectors, si and ti , two lines in
the parameter space are used. Let (si j , tik) be the knot coordinates of Pi , then
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Fig. 19 A T-mesh. The dotted
lines are the s-edges and the
t-edges. The bullets are the
control points, the red ones are
regular control points and the
yellow ones are T-junctions

the line R(α) = (si j + α, tik) will intersect with the s-edges, the intersection will
give the si knots. The ti knots can be obtained the same way. For example, in the
Fig. 19, for the control point P , if the degree is 2, the knots in the s direction are
s = {s1, s2, s2 + r5, s3}.

In conclusion, T-splines have the same advantages as NURBS, but with a simpler
way to represent the surfaces. Thus they are a very interesting model to represent
objects. In this line, in [96] an alternative to NURBS-based isogeometric analy-
sis that allows for local refinement is presented. The idea is based on polynomial
splines and exploits the flexibility of T-meshes for local refinement. Also, [77] investi-
gates higher-order and higher-continuity functions in isogeometric structural analysis
under distortion of the control and physical meshes.

An extension of T-splines is proposed in [112], the so-called T-NURCCs. Basically
they are an extension of the NURBSS presented in [111]. The Non-Uniform Rational
Catmull-Clark (NURCC) surfaces with T-junctions in their control grids, in the same
way as been described for the T-splines.

With this approach it is possible to have a model that combine NURBS and
subdivision surfaces, as both are particular cases of T-NURCC surfaces, also with a
simple formulation.

6 Conclusions

There are many ways in which the objects can be represented. A visual classification
of the models described can be seen in Table 1.

The answer to the question of what model has to be used depends on each particular
case. Although it is possible to establish a general rule: if the objects can be changed
or adjusted to fit some constraint, then it is desirable to have a local control on the
deformation. Furthermore it may be taken into account the fact that the objects can
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be synthetically generated or, otherwise, can be generated from data gathered from
real objects.

Not all the models can be used the same way and each one can be used with
advantages in front of the others in some cases. Although, as has been summarized
in Table 1, the continuous parametric models, in particular the B-splines, NURBS,
and T-splines models, are a good choice and can be considered a general-purpose
deformable models.
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93. Natsupakpong S, Cenk Çavuşoglu M (2010) Determination of elasticity parameters in lumped
element (mass-spring) models of deformable objects. Graph Models 72(6):61–73. doi:10.
1016/j.gmod.2010.10.001

94. Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable
models in computer graphics. Comput Graph Forum 25(4):809–836. doi:10.1111/j.1467-
8659.2006.01000.x

95. Nealen A, Igarashi T, Sorkine O, Alexa M (2007) Fibermesh: designing freeform surfaces
with 3D curves. ACM Trans Graph 26(3):41. doi:10.1145/1276377.1276429

96. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S, Rabczuk T (2011) Isogeometric analysis
using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids. Com-
put Methods Appl Mech Eng 200:1892–1908. doi:10.1016/j.cma.2011.01.018. http://www.
sciencedirect.com/science/article/pii/S0045782511000338

97. Nishimura H, Hirai M, Kawai T, Kawata T, Shirakawa I, Omura K (1985) Object modeling
by distribution function and a method of image generation. Trans Inst Electron Commun Eng

http://dx.doi.org/10.1016/j.cma.2009.01.022
http://www.sciencedirect.com/science/article/pii/S0045782509000346
http://www.sciencedirect.com/science/article/pii/S0045782509000346
http://dx.doi.org/10.1145/1661412.1618497
http://dblp.uni-trier.de/db/conf/cadgraphics/cadgraphics2009.html#Magnenat-ThalmannBV09
http://dblp.uni-trier.de/db/conf/cadgraphics/cadgraphics2009.html#Magnenat-ThalmannBV09
http://citeseer.nj.nec.com/446389.html
http://citeseer.nj.nec.com/meyer00interactive.html
http://citeseer.nj.nec.com/meyer00interactive.html
http://liris.cnrs.fr/publis/?id=4666
http://dx.doi.org/10.1109/TIP.2003.819858
http://dx.doi.org/10.1016/j.gmod.2010.10.001
http://dx.doi.org/10.1016/j.gmod.2010.10.001
http://dx.doi.org/10.1111/j.1467-8659.2006.01000.x
http://dx.doi.org/10.1111/j.1467-8659.2006.01000.x
http://dx.doi.org/10.1145/1276377.1276429
http://dx.doi.org/10.1016/j.cma.2011.01.018
http://www.sciencedirect.com/science/article/pii/S0045782511000338
http://www.sciencedirect.com/science/article/pii/S0045782511000338


Deformable Objects Representation 45

Jpn J68-D(4):718–725 (traducido al inglés por T. Fujuwara, Advanced Studies in Computer
Aided Art and Design, Middlesex Polytechnic, England, 1989)

98. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49. http://citeseer.ist.psu.edu/
osher88fronts.html

99. Palmer P, Mir A, González M (2000) Stability and complexity study of animated elastically
deformable objects. AMDO’2000. First international workshop on articulated motion and
deformable objects, Lecture notes in computer science, vol 1899. Springer, Berlin, pp 58–71

100. Pentland A, Williams J (1989) Good vibrations: model dynamics for graphics and anima-
tion. In: Proceedings of the 16th annual conference on computer graphics and interactive
techniques. ACM Press, New York, pp 215–222. doi:10.1145/74333.74355

101. Picinbono G, Delingette H, Ayache N (2000) Real-time large displacement elasticity for
surgery simulation: non-linear tensor-mass model. In: Third international conference on med-
ical robotics, imaging and computer assisted surgery: MICCAI 2000, pp 643–652. ftp://ftp-
sop.inria.fr/epidaure/Publications/Picinbono/miccai2000.ps.gz

102. Piegl L (1991) On NURBS: a survey. IEEE Comput Graph Appl 11(1):55–71. doi:10.1109/
38.67702

103. Piegl L, Tiller W (1997) The NURBS book: monographs in visual communications, 2nd edn.
Springer, New York

104. Portal R, Sousa L, Dias J, Santos N (2009) Contact detection of convex superquadric using
optimization techniques with graphical user interface. In: Proceedings of the 7th EUROMECH
solid mechanics conference (ESMC2009)

105. Provot X (1995) Deformation constraints in a mass-spring model to describe rigid cloth behav-
iour. In: Davis WA, Prusinkiewicz P (eds) Graphics interface ’95. Canadian Human–Computer
Communications Society, pp 147–154. http://citeseer.nj.nec.com/provot96deformation.html

106. Qin H, Terzopoulos D (1995) Dynamic NURBS swung surfaces for physics-based shape
design. Comput Aided Des 27(2):111–127. http://citeseer.nj.nec.com/qin95dynamic.html

107. Radeva P, Amini AA, Huang J (1997) Deformable B-solids and implicit snakes for 3D local-
izaton and tracking of SPAMM MRI data. Comput Vis Image Underst 66(2):163–178

108. Rueckert D, Aljabar P, Heckemann R, Hajnal J, Hammers A (2006) Diffeomorphic registration
using B-splines. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and
computer-assisted intervention MICCAI 2006, Lecture notes in computer science, vol 4191.
Springer, Berlin, pp 702–709. doi:10.1007/11866763_86

109. Schmid J, Iglesias Guitin J, Gobbetti E, Magnenat-Thalmann N (2011) A GPU framework for
parallel segmentation of volumetric images using discrete deformable models. Vis Comput
27:85–95. doi:10.1007/s00371-010-0532-0

110. Sederberg MT, Sederber TW (2010) T-splines: a technology for marine design with minimal
control points. Technical report

111. Sederberg TW, Zheng J, Sewell D, Sabin M (1998) Non-uniform recursive subdivision sur-
faces. In: Proceedings of the 25th annual conference on computer graphics and interactive
techniques, SIGGRAPH ’98. ACM, New York, NY, USA, pp 387–394. doi:10.1145/280814.
280942

112. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-nurccs. ACM Trans
Graph 22(3):477–484. doi:10.1145/882262.882295

113. Selle A, Lentine M, Fedkiw R (2008) A mass spring model for hair simulation. ACM Trans
Graph 27(3):64:1–64:11. doi:10.1145/1360612.1360663

114. Sethian JA (1987) Numerical methods for propagating fronts. In: Concus P, Finn R (eds)
Variational methods for free surface interfaces. Proceedings of the September 1985 Vallam-
brosa conference. Springer, New York, pp 155–164

115. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235
116. Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Fluid Mech 35:341–372
117. Shetian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge

University Press, Cambridge (Cambridge monograph on applied and computational math-
ematics)

http://citeseer.ist.psu.edu/osher88fronts.html
http://citeseer.ist.psu.edu/osher88fronts.html
http://dx.doi.org/10.1145/74333.74355
ftp://ftp-sop.inria.fr/epidaure/Publications/Picinbono/miccai2000.ps.gz
ftp://ftp-sop.inria.fr/epidaure/Publications/Picinbono/miccai2000.ps.gz
http://dx.doi.org/10.1109/38.67702
http://dx.doi.org/10.1109/38.67702
http://citeseer.nj.nec.com/provot96deformation.html
http://citeseer.nj.nec.com/qin95dynamic.html
http://dx.doi.org/10.1007/11866763_86
http://dx.doi.org/10.1007/s00371-010-0532-0
http://dx.doi.org/10.1145/280814.280942
http://dx.doi.org/10.1145/280814.280942
http://dx.doi.org/10.1145/882262.882295
http://dx.doi.org/10.1145/1360612.1360663


46 P. Palmer et al.

118. Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput
Geom 22(1–3):21–74. doi:10.1016/S0925-7721(01)00047-5. http://www.sciencedirect.com/
science/article/pii/S0925772101000475 (16th ACM symposium on computational geometry)

119. Shewchuk JR (2005) Theoretically guaranteed delaunay mesh generation—in practice. In:
14th international meshing roundtable, vol. Short Course

120. Silveira M, Nascimento J, Marques J (2007) Automatic segmentation of the lungs using robust
level sets. In: Proceedings of the 29th annual international conference of the IEEE engineering
in medicine and biology society. EMBS 2007, pp 4414–4417. doi:10.1109/IEMBS.2007.
4353317

121. Staib LH, Duncan JS (1996) Model-based deformable surface finding for medical images.
IEEE Trans Med Imaging 15(5):720–731

122. Steinemann D, Otaduy MA, Gross M (2009) Splitting meshless deforming objects
with explicit surface tracking. Graph Models 71(6):209–220. doi:10.1016/j.gmod.2008.
12.004. http://www.sciencedirect.com/science/article/pii/S1524070309000034 (2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2006))

123. Suri JS, Liu K, Singh S, Laxminarayan S, Zeng X, Reden L (2002) Shape recovery algorithms
using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inf Technol
Biomed 6:8–28

124. Szeliski R, Tonnesen D (1992) Surface modeling with oriented particle systems. Comput
Graph 26(2):185–194

125. Terzopoulos D (2011) Deformable and functional models. In: Tavares JMRS, Jorge RMN
(eds) Computational vision and medical image processing, computational methods in applied
sciences, vol 19. Springer, Netherlands, pp 125–143. doi:10.1007/978-94-007-0011-6_7

126. Terzopoulos D, Fleischer K (1988) Deformable models. Vis Comput 4:306–331
127. Terzopoulos D, Fleischer K (1988) Modelling inelastic deformation: viscoelasticity, plasticity,

fracture. Comput Graph 21(4):269–278
128. Terzopoulos D, Metaxas D (1991) Dynamic 3D models with local and global deformations:

deformable superquadrics. IEEE Trans Pattern Anal Mach Intell 13(7):703–714
129. Terzopoulos D, Vasilescu M (1991) Sampling and reconstruction with adaptive meshes. In:

IEEE computer society conference on computer vision and pattern recognition (CVPR’91),
IEEE Computer Society Press, Maui, Hawaii, pp 70–75

130. Terzopoulos D, Witkin A (1988) Physically based models with rigid and deformable compo-
nents. IEEE Comput Graph Appl 8:41–51

131. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Ellastically deformable models. Comput
Graph (Proceedings (SIGGRAPH) 21(4):205–214

132. Terzopoulos D, Witkin A, Kass M (1988) Constraints on deformable models: recovering 3D
shape and nonrigid motion. Artif Intell 36(1):91–123

133. Teschner M, Heidelberger B, Mueller M, Gross M (2004) A versatile and robust model for
geometrically complex deformable solids. In: Proceedings of computer graphics international
CGI’04, pp 312–319

134. Vasilescu M, Terzopoulos D (1992) Adaptive meshes and shells: irregular triangulation, dis-
continuities, and hierarchical subdivision. In: IEEE computer society conference on computer
vision and pattern recognition (CVPR’92). IEEE Computer Society Press, Champaign, pp
829–832

135. Veltkamp RC, Wesselink W (1996) Variational modeling of triangular Bézier surfaces. http://
citeseer.nj.nec.com/387772.html

136. Versprille K (1975) Computer-aided design applications of the rational B-spline approxima-
tion form. PhD thesis, Syracuse University

137. Wang Y, Xiong Y, Xu K, Liu D (2012) vKASS: a surgical procedure simulation system for
arthroscopic anterior cruciate ligament reconstruction. Comput Anim Virtual Worlds. doi:10.
1002/cav.1434

138. Wojtan C, Thürey N, Gross M, Turk G (2009) Deforming meshes that split and merge. In:
ACM SIGGRAPH 2009 papers, SIGGRAPH ’09. ACM, New York, NY, USA, pp 76:1–76:10.
doi:10.1145/1576246.1531382

http://dx.doi.org/10.1016/S0925-7721(01)00047-5
http://www.sciencedirect.com/science/article/pii/S0925772101000475
http://www.sciencedirect.com/science/article/pii/S0925772101000475
http://dx.doi.org/10.1109/IEMBS.2007.4353317
http://dx.doi.org/10.1109/IEMBS.2007.4353317
http://dx.doi.org/10.1016/j.gmod.2008.12.004
http://dx.doi.org/10.1016/j.gmod.2008.12.004
http://www.sciencedirect.com/science/article/pii/S1524070309000034
http://dx.doi.org/10.1007/978-94-007-0011-6_7
http://citeseer.nj.nec.com/387772.html
http://citeseer.nj.nec.com/387772.html
http://dx.doi.org/10.1002/cav.1434
http://dx.doi.org/10.1002/cav.1434
http://dx.doi.org/10.1145/1576246.1531382


Deformable Objects Representation 47

139. Wyvill G, McPheeters C, Wyvill B (1986) Animating soft objects. Vis Comput 2(4):235–242
140. Wyvill G, McPheeters C, Wyvill B (1986) Data structure for soft objects. Vis Comput

2(4):227–234
141. Xing W, Yuan B (2012) 3D part based structural description extracting and modeling.

In: Proceedings of the international multiconference of engineers and computer scientists,
IMECS’2012 (2012). http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp209-
212.pdf

142. Yau H-T, Lin YK, Yeh CT (2009) A new approach to accelerate NURBS surface rendering
on GPU. Comput Aided Des Appl 6(4):529–538. doi:10.3722/cadaps.2009.529-538

143. Yeo SY, Xie X, Sazonov I, Nithiarasu P (2011) Geometrically induced force interaction for
three-dimensional deformable models. IEEE Trans Image Process 20(5):1373–1387. doi:10.
1109/TIP.2010.2092434

144. Zhang H, Yang L, Foran DJ, Nosher JL, Yim PJ (2009) 3D segmentation of the liver using
free-form deformation based on boosting and deformation gradients. In: Proceedings of the
sixth IEEE international conference on symposium on biomedical imaging: from nano to
macro, ISBI’09. IEEE Press, Piscataway, NJ, USA, pp 494–497. http://dl.acm.org/citation.
cfm?id=1699872.1699997

145. Zhu L, Fan B, Tang Y (2009) Active contour method with separate global translation and
local deformation. In: Xie M, Xiong Y, Xiong C, Liu H, Hu Z (eds) Intelligent robotics and
applications, Lecture notes in computer science, vol 5928. Springer, Berlin, pp 876–884.
doi:10.1007/978-3-642-10817-4_86

146. Zorin D, Schröder P (2000) Subdivision for modeling and animation. Technical report, SIG-
GRAPH 2000—Course Notes

http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp209-212.pdf
http://www.iaeng.org/publication/IMECS2012/IMECS2012_pp209-212.pdf
http://dx.doi.org/10.3722/cadaps.2009.529-538
http://dx.doi.org/10.1109/TIP.2010.2092434
http://dx.doi.org/10.1109/TIP.2010.2092434
http://dl.acm.org/citation.cfm?id=1699872.1699997
http://dl.acm.org/citation.cfm?id=1699872.1699997
http://dx.doi.org/10.1007/978-3-642-10817-4_86


Free Form Deformations or Deformations
Non-Constrained by Geometries or Topologies

Romain Raffin

Abstract Free-form deformations are widely used to model 3D objects. In these
methods “free-form” designates: “whatever the object is, whatever its description
and topology, we are able to deform it”. They limit the user interaction to pull
some points of an embedding rough mesh. From the user point-of-view, it does
not matter if the object manipulated is 3-dimensional, of 0-genus or a parametric
surface, he or she always uses the same process to model a complex object: load
an initial object from a library and deform it via Ffd methods to follow his (her)
needs. A large number of deformation methods have been published, allowing new
deformations, new kinds of controls or enhancing the description of resulting objects.
In fact advantage of deformation non-constrained by geometries is also a drawback:
as it only manipulates points it could only result in points, so its necessary to use
and maintain the neighborhood (the topology) or the surface expression on a second
hand, as these methods do not care of object description.

1 Free-Form Deformations from the Beginning

The work of creating an object from an empty scene is quite tedious, first methods
of mesh manipulation [28, 31] highlight the future needs of user-oriented, efficient
modeling methods. They first deform an object from a single vertex, diffusing the
deformation on neighbors according to edges distance weights. The work of Barr [2]
initiates free-form deformation techniques. It permits to deform an existing object
globally (see Fig. 1), with mathematical functions (taper, bend, twist). Since it was
not a “vertex by vertex” displacement method it simplifies the creation process. This
method does not act on topology, keeping the neighbors as they were, with the edges
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(a) (b) (c) (d) 

Fig. 1 Barr [2] global deformations. a Initial object; b taper; c bend; d twist

and faces (in a B-rep model) providing links between vertices. The deformation func-
tions are described by matrices, as transformations (rotate, scale, translate) and the
method allows composition and application of a stack of deformations, compliantly
with a CSG modeling environment.

As Barr methods are made to be applied globally, locality of a deformation is
obtained by the developer with conditional instructions, as this is not described by
the transformation matrices.

2 FFD: Free Form Deformation

The method created by Sederberg and Parry [37] tends to give a virtual sculpture
approach. In a global view the method considers the object to be deformed embedded
in a parallelepipedical grid (see Fig. 2). Once the local coordinates of all vertices
of the object (the teapot in Fig. 2) are expressed in the grid frame, pulling a grid
point transmits the deformation to the initial object by a simple re-expression of the
coordinates of the object in the world frame.

Authors described (in words) the process of Ffd:

A good physical analogy for FFD is to consider a parallelpiped of clear, flexible plastic in
which is embedded an object, or several objects, which we wish to deform. The object is
imagined to also be flexible, so that it deforms along with the plastic that surrounds it.

More formally expressed, a Ffd is a R
3 → R

3 application using a trivariate
product of Bernstein polynomials. First step is to define object vertices coordinates
in grid space. It needs an origin X0 and frame vectors:

−→
S ,
−→
T and

−→
U (in 3D space

but 2D or 4D adaptation can be made trivially).
Figure 3a shows the local frame and expression of local object coordinates (s, t

and u) of a point X , following:

−−→
X0 X = s

−→
S + t

−→
T + u

−→
U

A way to compute (s, t, u) values is:
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(a) (b)

Fig. 2 Ffd deformation of a teapot. a Initial object and surrounding Ffd mesh; b changes in mesh
configuration involve object deformation

X0

S

T

U

X

(a) (b)

Fig. 3 Ffd schema. a Ffd local associated frame; b Ffd embedding mesh construction

s =
−→
T ∧ −→U • −−→X0 X
−→
T ∧ −→U • −→S

t =
−→
S ∧ −→U • −−→X0 X
−→
S ∧−→U • −→T

u =
−→
S ∧ −→T • −−→X0 X
−→
S ∧ −→T • −→U

If a point X lies in the grid it verifies: 0 < s < 1, 0 < t < 1 and 0 < u < 1. The
grid is cut in l, m, n parts according to

−→
S ,
−→
T and

−→
U dimensions respectively. In

the example of Fig. 3b, we defined a uniform l = m = n = 3 grid.
Each vertex Pi jk of the embedding grid is associated to a control point of a

parametric volume. In the frame (X0,
−→
S ,
−→
T ,
−→
U ), their locations are given by:

−−−−→
X0 Pi jk = i

l

−→
S + j

m

−→
T + k

n

−→
U with i ∈ [0 . . . l], j ∈ [0 . . .m], k ∈ [0 . . . n]
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(a) (b)

Fig. 4 Local Ffd. a Initial object and local range grid; b deformation by a local grid

We can express the position of X in the grid frame (denoted X f f d ) with these
control points, and weights given by Bernstein polynomial values:

Xffd =
l∑

i=0

(
l

i

)
(1− s)l−i si

⎡

⎣
m∑

j=0

(
m

j

)
(1− t)m− j t j

[
n∑

k=0

(
n

k

)
(1− u)n−kuk Pijk

]⎤

⎦

(1)

Computing local coordinates of each point of the initial object is made with for-
mulae (1) and attach the object’s points to control points of the grid. Local influence
of these control points is underlaid in the Bernstein polynomial weights. The more a
control point is close from an object vertex, the more it weighs in local coordinates
expression, and the more its displacement acts on point deformation. Conversely
control points influence all object vertices: even if an extreme control point is dis-
placed, the entire deformed object must be recomputed (an analogy is evident with
Bézier curve control points).

Initially the Ffd method does not describe local deformation of an object, but
authors propose to use a restricted grid on the local part to be deformed (as illustrated
at Fig. 4). Continuity between unmoved and deformed parts is not defined (kept as
initially), as the deformation continuity exists only in embedding grid. Attention
must be paid to not create stretched faces by displacing the whole local grid far from
the object, or twisting it until self-intersection.

2.1 Ffd Properties

Ffd method is interesting because:

1. It conserves the object visual aspect. Even though its topology is not managed
by the deformation, it is not possible to create or remove holes, even if inverting
exterior and interior can be possible.
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2. It mainly uses polyhedral B-rep object but one can use parametric object as
input to increase potential resulting shapes. If this object obey to control network
displacement, deforming such an object consists in deforming the control points
net. As it deforms a control net of an approximating parametric surface, the
deformation effect is then nothing but user-friendly.

3. An information on the volume of the deformed part of the object can be computed
studying the jacobian of the Ffd [37] and volume-preserving methods have been
published [17, 35].

To conclude, the Ffd method is a rapid and user-friendly method to deform an
object. Locality can be obtained with a restricted embedding grid. As the method is
easy to implement, it is mainly used in a wide range of applications. An important
drawback is the parallelepiped shape of the grid with an influence zone of a deforma-
tion difficult to place, to localize on the initial object or to manipulate finely. Starting
from this, another methods have been implemented, modifying some steps or tools
of the process (grids shapes, coordinates functions, objects that can be deformed).

2.2 Extensions and Classifications of Ffd

The initial method proposed par Sederberg [37] initiate a lot of extensions. In this
section, we propose to list some of them sorted by geometry dimension as these
methods lie on point “grid”, curves or volumes (like the initial Ffd).

2.3 0-Dimensional Methods

First dimension listed, it involves the deformation tool to be a single point. Vertices
of the initial object are expressed regarding this frame by a simple distance value
(mostly euclidean). The methods of [3, 4, 18, 36] or [29] can be cited, an other
definition of local coordinates can be found in [30]. We will develop some of these
methods later in the document. Hsu et al. [18] propose a direct manipulation of the
initial mesh, hiding to the user the complexity of the embedding grid. The latter exists
but the model interacts with the grid diffusing the initial object point displacement
to the grid and computing the resulting deformation on the entire object. B-splines
basis functions are used to ensure local action and continuity. Coordinates of a point
in space are obtained by:

qi, j,k(s, t, u) =
0∑

l,m,n=−3

Pi+l, j+m,k+n Bl(s)Bm(t)Bn(u) (2)

As previously seen, local coordinates (s, t, u) are computed for each object point.
For one single object point displacement with relative distances it moves the grid
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(a) (b) (c)

Fig. 5 Ffd direct manipulation [18]. a Initial object and deformation profile; b profile placement;
c resulting deformation

of control points solving a least-square problem (LSQ). Denoting B the B-spline
coefficients matrix and P the control points matrix, this can be written as:

q = B P

qnew new location of point q is given by (ΔP contains control point displacement):

qnew = B(P +ΔP)

= B P + BΔP

= q +Δq with Δq = BΔP

Then, finding ΔP is done by:

ΔP = B−1Δq

≡ B+Δq

B+ is the pseudo-inverse matrix of B, obtained with LSQ method. It may occurs
that the resulting control points configuration obtained decrease continuity by repeat-
ing control points, authors add a matrix characterizing control points self-dependence
that solves this problem.

The preceding method works well if one move two object points that not share the
same control point. In the contrary, solving the constraint equations can not be done,
and a way to overcome this problem is to refine the initial mesh. It involves more
B-splines description but permits to separate their influence zones. Figure 5 shows
a deformation obtained by direct manipulation of object points. A tool (profile) is
put on the object, once pushed it displaces some object points, updates grid points
location and results in the object deformation.

An other method: Dffd [9] stands for Dirichlet based Free-Form Deformation.
As the preceding method it hides the embedding grid, using Sibson coordinates [13]
to control the weights of points. The grid is based on a set of points and influence
zones obtained automatically by Voronoï diagram of these points. Once done, the



Free Form Deformations 55

other points of the objects are inserted in this spatial arrangement to compute their
locale coordinates. Computing the difference between the two Voronoï configurations
before and after point deformation permits to diffuse deformation to regions (sets of
object points). This method is more local than the classical Ffd as a point acts on its
Delaunay-neighbors and support easily multiresolution objects. It has been applied
to hand movements in virtual environments [20, 30].

2.4 Dimension 1: Curves

Curves can define deformation tools, local parametrization is obtained by distances
computations (so it can raise problems if points are projected on the same site on
the curve). Two principal methods are detailed here: AxDF [26] and Wires [38].
AxDF [26] main idea is to express local coordinates according a curvilinear axis.
Apart of this, the process is merely the same:

1. creation of an axis passing through the object,
2. expression of object coordinates in axis ones with projection from R

3 space to R

curve parameter,
3. axis transformation,
4. computation of object’s vertices new locations.

End-user interacts with the deformation by defining the axis and its modification.
It remains mandatory to keep a well defined sliding frame, whose displacement along
the axis is constrained (Frenet based [6, 7]) to avoid axis inversions (see Fig. 6).

To solve this continuity problem, authors use a minimization method [21]. One
can retrieve in AxDF deformations the results of classical ones: rotation, tor-
sion (see Fig. 6b, c). An interesting contribution of the method is that it defines
an influence area that restricts deformation spatially and preserves continuity, as
on Fig. 7c. Three zones are used with two radii Rmin and Rmax . In the first one (if
distance from the axis is less than Rmin) the deformation is maximal. From Rmin to
Rmax influence decreases as the distance increases. Beyond Rmax the deformation
vanishes (Fig. 7a).

The Wires [38] method is similar to the latter. It deforms a curve in another curve
in space, with all the belonging geometries. Two parametric curves are defined by the
user: R(t) lies on the object and W (t) figures the destination of R(t). For each point
P in space, if we can compute the distance ‖R(pr )−P‖we can assign a deformation
value at this point. Denoting pr the parameter that correspond to the projection of
P onto R(t), we have: ‖R(pr ) − P‖ = min (‖R(t)− P‖) (see Fig. 9a). The value
of pr is obtained by solving the equation R′(t) · (R(t)− P) = 0. The deformation
manage the constraint linked to R(t) according to a deformation function f .

An additional parameter s is introduced, allowing to “pinch” the deformation
along its axis. It attracts or repulses the deformed points following their distances to
R(t) curve.
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(a) (b) (c)

Fig. 6 AxDF construction [26]. a Example of construction; b object to be deformed and AxDF
axis; c result of axis transformation

Rmax
minR

(a) (b) (c)

Fig. 7 Influences’ radii of AxDF [26]. a Radii examples; b influence’s radii projected on a plane;
c effects of axis displacement

Curves shown at Fig. 8a–c illustrate the impact of different s values. The location
of a deformed point Ps from its initial position P (see Fig. 9b) is now given by:

Ps = R(pr )+ (P − R(pr ))

(
1+ (s − 1) f

(‖R(pr )− P‖
r

))

In the preceding equation r is a radius that creates an isotropic influence around
the curve R(t). The path from R(t) curve to W (t) is discretized to a set of posi-
tions that preserves tangential continuity and assure the displacement constraint.

Tangent
−−−→
R′(pr ) is collinear to

−−−−→
W ′(pr ) according to the f function. Translation

TRW = (W (pr ) − R(pr )) f
( ‖R(pr )−P‖

r

)
is then applied. The Pdef image of P

by the deformation (see Fig. 9d) is obtained by:

Pdef = Pr + (W (pr )− R(Pr )). f

(‖R(pr )− P‖
r

)



Free Form Deformations 57

(a) (b) (c)

Fig. 8 Wires deformations obtained by different values of s. a s < 1; b s = 1; c s > 1

Pr is an intermediate image of Ps by the rotations α and θ around the axis R(pr )

and
−−−→
R′(pr ) ∧ −−−−→W ′(pr ) (see Fig. 9c), where θ is the angle

(
̂−−−→

R′(pr ),
−−−−→
W ′(pr )

)
and

α = f (P).

One can see that if
−−−−→
W ′(pr ) = −−−→R′(pr ) the displacement is reduced to a single

translation.

2.5 Dimension 2: Surfacic Deformations

In the third stage of free-form deformations we will study surfacic deformation
tools [14, 22, 30]. We can include in this section the Dffd deformations [30] as they
use a neighborhood with the edges joining each vertex and describe a discrete mesh.
We develop herein the [14] method. If a parametric surface is used as a deformation
tool, a parametric surface S(u, v) must be defined and the projection of object’s
points on these surface gives the local coordinates in the tool space (as in AxDF
for curves). The H(u, v) surface (“height” surface) allows the modification of the
distance between point P and initial surface S(u, v) (see Fig. 10).

More formally, the deformation is expressed as follow:

• The two parametric surfaces that construct the deformation tool

S(u, v) =
ms∑

i=0

ns∑

j=0

Si j Bi,ksu (u)B j,ksv (v) and H(u, v) =
mh∑

i=0

nh∑

j=0

Si j Bi,khu (u)B j,khv (v)
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R(t)

P prR(  )

W(t)

R(t)

P prR(  )
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P prR(  )
R'(   )pr
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W'(   )pr

W(   )pr
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(c)

R(t)

P prR(  )
R'(   )pr

W(t)

PS

W'(   )pr

W(   )pr

PR

Pdef

(d)

(a)

Fig. 9 Wires deformation schema. a Construction of R(pr ); b construction of Ps ; c construction
of PR ; d deformation

Initially, Feng et al.[14] use B-spline surfaces with node constraints to fix borders
curves.
• P(x, y, z) a point of the object to be deformed and P ′(x ′, y′, z′) the projection of

P on S(u, v). With the normal
−→
NS of S at P ′, P is:

P = P ′ + h p
−→
N S = S(u p, vp)+ h p

−→
N S(u p, vp)

where h p is the distance from point P to surface S(u, v). The parameters u p and
vp are those of P ′ on S. If we denote Pnew the new position of P after surface
deformations of S and H in Snew and Hnew respectively:

Pnew = Snew(u p, vp)+ Hnew(u p, vp)h p
−→
N new(u p, vp)

where
−→
N new is the normal vector of Snew. Figure 10 shows construction and defor-

mations process. This deformation is limited to vertical displacements of the sur-
face H . Its extension to other displacements will increase rapidly the computational
costs to minimize displacements.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Surfacic deformation [14]. a P ′ projection of P; b deforming S, obtaining Pnew; c config-
uration of S and H ; d S displacement; e H modification; f deformation by S and H

2.6 Dimension 3: Volumes

“Last” tool type (as we can increase easily space dimension of the embedding grid),
volumic deformations were the initiators of free-form deformations. Most of works
defines new volumes [16, 20, 23, 27], grid construction to define a wide range of
tools [8], continuous definition of the deformation [1] or dynamic characterization
to animate objects [12]. We will first describe the method of [8] which composes
Ffd meshes. We will also see [23] for a new embedding grid definition. Last, we will
present a method combining implicit objects and deformations [10].

2.6.1 EFFD

Any intuitive it can be, the Ffd method is disadvantaged by its simplicity. The
construction of a complex object and the definition of a precise deformation are
difficult with a parallelepiped embedding grid. As an example, the Fig. 11 shows a
deformation applied on a sphere, the rectangular definition of the grid projection on
the spherical surface produces a non-isotropic deformation (Fig. 11a, b). Conversely,
a cylindrical grid definition would override this problem (see Fig. 11c, d).

Effd is an extension of Ffd (Extended Free-Form Deformation), described by
Coquillart [8]. The deformation process is kept but it can use non-prismatic grids
(see Figs. 11, 12) or a combination of grids. The usable meshes are more interesting
for the final user, but their complexity can lead challenges to manipulate them. As
the grid manipulate the embedded object, if some details are needed one can increase
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(a)

(d)

(b)

(c)

Fig. 11 Isotropy failure in Ffd. a Ffd parallepiped grid; b deformation result of this Ffd; c cylin-
drical grid; d deformation result (Effd)

(a) (b)

Fig. 12 Non-prismatic grids combination [8]. a Effd mesh building; b resulting deformation

locally the grid density, but as joints between grids also manage continuity, a balance
must be found (it also increases computational cost).

A hard part of the Effd process is to express the global coordinates of the embed-
ded object in the grid. It requires to found the chunk an object point lies in and to
obtain the local coordinates in the grid volume. Fortunately, the grid is defined by
Bézier tensor products and it is possible to use the control networks convex hulls.
Once the chunk is found authors use a Newton approximation to compute coordinates
in this local grid.
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(a) (b) (c)

Fig. 13 Effd deformation example [8]. a Initial mesh; b grid modification; c resulting object

This method is a great improvement of initial Ffd. It brings intuitive control,
various grid shapes and grids combinations that serve the user wishes. Figure 13
shows the ease of construction of a star obtained from a deformation applied on a
plane.

2.6.2 NFFD

To control locality of the deformation Lamousin and Waggenspack [23] propose to
use Nurbs instead of Bézier volumes (Nffd method). The embedding grid is no
longer divided in a uniform way but can be refined in areas where the deformation is
important and kept rough where the user want only to conserve the initial object shape.
The process is based again on Ffd, where the local expression of grid coordinates
is the only module that is modified. If the grid mesh Vi, j,k = (xi, j,k, yi, j,k, zi, j,k)

is used, a weight Wi, j,k is given to each vertex (initially 1). With u, v and w the
axis of the local coordinate system, and a, b and c the divisions of these axis, it
gives (a+ 1)× (b+ 1)× (c+ 1) grid points that embed the initial object. B-splines
basis functions follow the rules:

2 ≤ p ≤ a + 1

2 ≤ m ≤ b + 1

2 ≤ n ≤ c + 1

Nodal vectors are expressed for each coordinates by:

U = (u0, . . . , uq) with q = a + 2(p − 1)

V = (v0, . . . , vr ) with r = b + 2(m − 1)

W = (w0, . . . ,ws) with s = c + 2(n − 1)

These vectors are non-uniforms and the nodes multiplicity is equal to basis functions
order at extremities to ensure borders interpolation. As in Effd method, a minimiza-
tion is necessary to obtain, once the cell of the Nurbs volume is determined, the local
coordinates of every object vertices.
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2.6.3 IFFD

This method is described in [11] and is based on the use of implicit volumes instead
of polyhedral ones for the embedding grid (in addition a more global method can be
found in [19], manipulating scalar fields). Here again, the main difficulty is raised
by the local coordinates computation, as the deformation tool can be defined with
n + 1 objects P0, . . . , Pn with for each Pi :

• a local coordinates system and its associated function φi : R
3 → R

3 that gives
for every point M in global space its coordinates M̃i in Pi by M̃i = φi (M).
This function is reversible and bijective to ensure the return from local to global
coordinates Mi = φ−1

i (M̃i ),
• a transformation function Δi : R3 → R

3 that permits, in local space, to displace
M̃i to M̃ ′i ,
• a density function Fi : R3 → R

+ that gives the influence of the implicit primitive.
It is a decreasing function with finite support.

The process is the same as in Ffd:

M

⎡

⎣
x
y
z

⎤

⎦ =⇒
Freezing

M̃

⎛

⎜
⎝

M̃0
...

M̃n

⎞

⎟
⎠ =⇒

Deforming
M̃ ′

⎛

⎜
⎝

M̃ ′0
...

M̃ ′n

⎞

⎟
⎠ =⇒

Combining
M ′
⎡

⎣
x ′
y′
z′

⎤

⎦

Influence functions balance displacements according to the following two formu-
lations:

• Globally,

M ′ = M +
∑n

i=0 Fi (M)(M ′i − M)
∑n

i=0 Fi (M)

• Locally, a function Γi : R→ [0, 1] is added to implement deformation range. The
blending function fi is based on [10]:

fi (t) =

⎧
⎪⎨

⎪⎩

3−4t
2 0 < t ≤ 1

2

2(1− t)2 1
2 < t ≤ 1

0 else

with:

M ′ = M +
∑n

i=0 Γi
( 3

2 − F(M)
)

Fi (M)(M ′i − M)

F(M)

where F(M) =∑n
i=0 Fi (M)

Images of Fig. 14 show some deformations that can be obtained with Iffd.
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(a) (b)

(c) (d)

Fig. 14 Iffd: implicit free-form deformation examples [10]. a Grid translation; b translation result;
c grid rotation; d rotation result

2.7 FFD Conclusion

This short survey of Ffd methods declination shows that these methods are intu-
itive, quite easy to implement and easy to use. The complexity of the inner object
to be deformed is hidden by the embedding grid. A drawback is due to user needs
to go further in the definition of complex grids. Since the grids definitions must
ensure that every vertex coordinates of the initial object can be expressed in the
grid space, the algorithmic complexity increases as costs of computational process
and can raise singularity situation. This has the opposite effect to that intended:
the user can not understand this complexity and leaves the method. Another draw-
back is however the lack of constrained deformations (by positions, continuity, etc).
We propose to study in the next section free-form deformations that permits this
constraints description.

3 nD-Deformation

The previous methods we have compared have in common a description of a deforma-
tion but without displacement constraint satisfaction, this prevents the user to easily
place objects relatively. Considering the numerous variations based on Ffd methods
and the hardness to overcome polyhedral grids in 2 or 3 dimensions, Bechmann [3]
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Fig. 15 nD-deformation schema for a 2D deformation

creates a more generic deformation model, named “nD-deformation” that express the
deformation whatever the space dimensions. In this system, deformations are con-
sidered as constraints satisfactions, initial object is embedded in a space that permits
to solve deformation constraints and then reprojected in three or four dimensions
(with 4D deformations one can construct animations by deformation of space-time).
Figure 15 presents the main principle of nD-deformation. An initial object is embed-
ded in a space where more freedom-degrees exists (an upper dimensional space), in
this space constraints solving is made easier and can be processed. Once achieved,
the object is projected in a 3D space, eventually by different projection methods that
result, for the same constraints solving system, in a set of matching resulting objects.

In the Fig. 15 the deformation is applied on object vertices, and is mathematically
described by a polynomial function f : R

n → R
m , with n = 2 the initial space

dimensions and m = 3 the embedding one. There is m degrees of freedom to solve
the deformation’s constraints and f defines locality controls on the deformation. T :
R

m → R
n is a linear inverse projection, from the upper space R

m to the initial one.
The projection matrix corresponding to T is computed using pseudo-inverse methods
to satisfy constraints or least-squares ones to give approximate deformation. If the
space R

m is of sufficient high-order, user can also provides attracting or repulsing
constraints.

Formally, if we denote:

• Q(x1, x2, x3, . . . , xn) a point in space R
n ,

• ΔQ(Δx1,Δx2,Δx3, . . . , Δxn) the displacement values of Q, with

ΔQ = d(Q) = (d(x1), d(x2), d(x3), . . . , d(xn))
T

If M is the projection matrix associated to T , the deformation can be written as:

d(Q) = M. f (Q) (3)
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The deformation process is:

1. User gives r constraints Ci , i ∈ [1, r ] in space R
n and their new positions. Authors

denote d(Ci ) = [d1(Ci ), d2(Ci ), . . . , dn(Ci )]T the coordinates variation.
2. Matrix M is obtained by solving a system of n×r linear equations (each constraint

raises n equations):
d(Ci ) = M. f (Ci ) ∀i ∈ [1, r ] (4)

3. Once M computed, the displacement d(Q) of a point Q in the initial space is
given by:

d(Q) = M. f (Q)

If we consider each line M j of M separately (with j a coordinate in R
n), we can

solve the lines of M independently:

d j (Ci ) = M j . f (Ci ) = f T (Ci ).M
T
j , ∀i ∈ [1, r ] and j ∈ [1, n]

For the j th coordinate, the set of constraints gives:

D j =

⎡

⎢
⎢
⎢
⎣

d j (C1)

d j (C2)
...

d j (Cr )

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

f T (C1)

f T (C2)
...

f T (Cr )

⎤

⎥
⎥
⎥
⎦
. MT

j = X · MT
j (5)

with:

X =
⎡

⎢
⎣

f1(C1) . . . fm(C1)
...

f1(Cr ) . . . fm(Cr )

⎤

⎥
⎦

We can now aggregate these results to construct the matrix M :

MT
j = X−1

⎡

⎢
⎢
⎢
⎣

d j (C1)

d j (C2)
...

d j (Cr )

⎤

⎥
⎥
⎥
⎦

One difficulty is to find the values for inverse matrix X−1, because of its size r ×m.
This matrix is generally non-invertible. This led three cases:

• If m > r there is more unknown factors than equations, an infinity of solutions
can be computed whatever the rank of matrix X , each of them satisfying the
deformation constraints,
• If m = r and rank of X is r , there is only one solution, the set of constraints defines

fully the deformation,
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Fig. 16 4D deformation [3] of a circle

• If m < r no solution can be found, one can use approximation method to find a
“best-satisfying” solution according to the constraints.

The preceding list shows that it is necessary to use a value of m that is greater than
(or at least equal to) the constraints number. Authors [3] use a pseudo-inverse matrix
and a numerical method [5].

The initial 3D geometrical space can be extended to a 4D one that describe space-
time deformations and animations. Figure 16 shows a deformation of a circle defined
at initial time (up) and solved at end time (right down). Intermediate times explores
the set of transitional shapes from the initial one to the deformed one.

The function f is chosen to preserve deformed (and resulting) object continuity.
To obtain independent columns r of X , the f components must also be composed
of non-linear combinations of the n coordinates. They can be point-oriented with m
sub-functions, or axis-oriented with a tensor product of n vectors, or a mix between
these two definitions. Basis formulation of f with m sub-functions is:

f (Q) = ( f1(Q), f2(Q), . . . , fm(Q))

The fi functions are defined as fi : Rn → R for i ∈ [1,m]. If we only use points as
constraints, the deformation is defined in R

n . Each component fi of f is a product
of n values:

fi (Q) = f 1
i (x1) f 2

i (x2) . . . f n
i (xn)

With f j
i : R→ R for i ∈ [1,m] and j ∈ [1, n]. We can then write f as:

f (Q) = f 1(x1) . . . f n(xn)with f j =
(

f j
1 (x j ) . . . f j

m(x j )
)
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Each function can be managed separately and gives availability to specialize the
deformation on a specific axis, for example to favor a direction or a temporal axis.
f would be a tensor product of functions f k , k ∈ [1, n] defined from R

pk into uk if:

∀U ∈ R
n, f (U ) =

n⊗

k=1

f k(uk)with f k : R→ R
pk

The dimension of the deformed object is then m =∏n
k=1 pk and we could compute

the component of f (U ) by:

∀ j ∈ [1,m], f j (U ) =
n∏

k=1

f k
s( j,k)(uk)with 1 ≤ s( j, k) ≤ pk

If m = r and B-spline basis functions are used for fi , we obtain the method
Scodef developed by [4] and presented hereafter.

3.1 SCODEF

Basing their works on the preceding method, Borrel [4] introduces a radius of influ-
ence for each constraint: it is the Scodef model (Simple Constrained Deformation).
As previously seen, it permits to fix the dimension value of R

m as the constraints
number, facilitating constraint solving and hiding the embedding process (even it is
always done). In the Scodef model defined from R

n to R
n we have:

• n the dimension of the space,
• r the number of constraints,
• Ci the initial position of point,
• Di the point displacement in the deformed space,
• Ri the influence radius associated with the Ci constraint,
• fi the deformation function linked to Ci .

The deformation is point-oriented, its formulation is the same than Eq. 3, it says that:

d(Q) =
r∑

i=1

Mi . fi (Q) (6)

This can be rewritten with the addition of spherical influences. Each fi function
gives the contribution of the i th constraint to the displacement d(Q) of a point Q. It
is a scalar function that depends on each Ci constraint with its radius Ri :

fi (Q) = Bi

(‖Q − Ci‖
Ri

)
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Where Bi is a B-spline basis function, centered at 0 and decreasing to value 0 in 1.
If we denote Ui (Q) = ‖Q − Ci‖/Ri and fi (Q) = Bi (Ui (Q)) we can con-
sider Ui (Q) as a local parametrization of Q coordinates in Ci constraint influence.
The value f (0) = 1 ensure constraint satisfaction. In a similar vein, the zero value of
the function after passing 1 cancel the deformation outside the range of the influence
radius. As in the Eq. 5 we can write for the j th coordinate:

d j (Ci ) = Di j =

⎡

⎢
⎢
⎢
⎣

D1 j

D2 j
...

Dr j

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

f T (C1)

f T (C2)
...

f T (Cr )

⎤

⎥
⎥
⎥
⎦
. MT

j = X · MT
j

Following the definition, a constraint Ci influences a point Q if the distance
‖Ci − Q‖ is lower than the constraint radius Ri : ‖Ci − Q‖ < Ri . Three situations
must be evaluated:

• First case, the constraints are disjoints, the influence hull of each constraint does
not overlap an other one (see Fig. 17). Influence of each constraint is isotropic.
This mean for the constraint Ci :

U j (Ci ) = ‖Ci − C j‖
R j

=
{

0 if i = j

1 if i �= j

As f j (Ci ) = f (U j (Ci )) = δi j this gives f (Ci ) = (0, . . . , 1︸︷︷︸
rank i

, . . . , 0)T . As Mi

is the i th vector of M , Di = d(Ci ) = (M1, . . . ,Mr ). f (Ci ) = Mi . This column
is also the displacement d(Ci ) of constraint Ci . Based on Eq. 6 we have:

d(Q) =
r∑

i=1

Bi

(‖Q − Ci‖
Ri

)
Di

When the constraints are disjoints the displacement of a point Q is the weighted
average of the displacements of the constraints it is under influence. This weight
of a constraint Ci is inversely proportional to the distance ‖Q − Ci‖,
• Second case, the constraints are disjoints but there is an overlapping influence.

A point Q will be under control of all of these constraints if it lies inside the
overlapping area. It does not compromise the computation of matrix M and can
be treated by the first case,
• If two constraints self-influence each other, their radii and centers are overlapping,

this situation raises vectors dependance problem for the matrix M (see Fig. 18).
If we take an example with two constraints, and identical radius and deformation
function, i.e. R1 = R2 and f1(C2) = f2(C1) = α:
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(a)

c1 2c

1

0 1 0 11 1

f1 2f

(b)

C1 C2

dC1
dC2

(c)

Fig. 17 Disjoints constraints in Scodef method. a Constraints configuration; b showing associated
functions; c deforming a line by these 2 constraints

(d(C1) d(C2)) = M

(
1 α
α 1

)

It implies:

M1 = 1

1− α2 d(C1)− α

1− α2 d(C2) and M2 = −α
1− α2 d(C1)+ 1

1− α2 d(C2)

In the worst case d(C1) = −d(C2), that gives:

M1 = −M2 =
(

1

1− α
)

And finally the displacement of a point Q is given by:

d(Q) = d(C1)

1− α ( f1(Q)− f2(Q))

As much as the distance between the constraints decreases, i.e. α → 1, displace-
ment vanishes, i.e. d(Q) → ∞. The deformation raises a singularity, named as
“Space-tearing” in [4].

To solve the “Space-tearing” problem, authors propose to add another influence
radius for each constraint, and it looks like a constraint duplication (see Fig. 18d).
The larger radius permits to define the constraint influence on space, the smaller one
manage the co-influences between constraints. In the preceding example, if C1bis

is the new constraint, duplicated from C1, we have f1(C1bis) = 1, f2(C1bis) = α,
f1bis(C1) = 1 and f1bis(C2) = 0, that gives for calculations of f :

f =
⎛

⎝
1 α 1
α 1 0
1 α 1

⎞

⎠

This matrix can be inverted by the same method we see in [3], a large number of
solutions can be found varying the smaller radius of influence.
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(a)

2c

0 1

c1

2f

1

01

f1

f1
2f

f1 2f+

(b)

C1 C2

dC1 dC2
(c)

C2
1C
1bisC

(d)

Fig. 18 Non-disjoints constraints. a Constraints; b Functions; c line deformation; d constraint
duplication avoids Scodef singularity

3.1.1 Extensions of the SCODEF Model

Extensions of the Scodef model with geometric tools to handle the deformation have
been made by [24, 32, 34] to form “Extended-Scodef”. Authors propose a generic
expression of Scodef model. They add new functions definitions, to vary the pinch of
the object part deformed. As another extension of the deformation function, authors
propose to consider the displacement to be curvilinear. The example of Fig. 19a
presents a Bézier curve to construct the deformation path from the constraint point
C to the displacement constraint d(C).

The deformation is then expressed by:

T (d(Q)) = T

(
r∑

i=1

Mi fi (Q)

)

Where T is a transformation of the deformation according to curve displacement.
To prevent twisted curve authors use a sliding Frenet-frame along the displacement
curve (see Fig. 19). This approach is quite near of sweeping techniques (see [39]).

They use this formal expression to complete influence hull’s definition and to
permit non-isotropic influences, Raffin et al. [32] use star-shaped shapes as a proof
of concept. As the center of this shape is always defined and interior, the computations
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CR

d(C)

Bezier(0)

Bezier(1)

f(Q)=0

f(Q)=1

B 3

1B

2B

0B
C

dC

Q

dQ

C
C

t = f(Q)

(b)

(c) (d) 

(a)

Fig. 19 Avoiding stretching in a curvilinear displacement. a Curvilinear displacement using a
Bézier curve. B0 . . . B3 are the control points of the parametric curve; b frenet sliding frame;
c initial method; d frenet based curvilinear construction

of relatives distances is possible and extended-scodef can be applied. They also work
with polyhedral or implicit hulls.

Another important add is the use of curvilinear constraints (see Fig. 21). As in
Wires’s method, user can describe a curve to specify the trace of the deformation on
the object’s surface, taking into account of some neighboring points with influence
hull, and associated displacement (or curvilinear path [25, 33]). This method is more
user-friendly, as one can easily see the relation between deformation functions and
deformed object pinch, influence hull with object’s part deformed, etc.
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(a) (b) (c) (d) 

Fig. 20 Complex deformation with a non-isotropic hull. a Initial plane and constraint; b curvilinear
displacement and spherical hull; c same displacement and star-shaped hull; d resulting deformed
object

Fig. 21 Skeleton based constraint definition

4 Conclusion

All of the methods we have seen expect to deform objects of arbitrary topologies
or geometries. We do not pretend to be exhaustive in this paper, as dozens of other
methods and implementations exist. They are commonly used because they provide
easy ways to control a deformation by giving access to a rough mesh that embeds the
object and diffuse the grid displacement to some object’s points lying in the same
zone. This zone can be defined by parallelepiped mesh, spherical ones, compositions,
vertices’s distances, . . . and first initialized with the bounding box of the object. The
user can handle a set of intuitive tools to control influence range of a constraint (and
its shape), to describe a path of deformation the constraint will follow, or manage the
pitch of the deformed part like he (or she) would do with plasticine. We saw defor-
mations with freedom in deformed object and others with displacement constraint
satisfaction. Nevertheless, the methods presented here are non reversibles and do not
provide a way to recover the initial object from the deformed one (apart of saving
initial object obviously). Some works have also been made with the construction of
a deformation tree, that allow modifying, suppressing or moving a deformation, but
in case of close but non-dependent constraints maintaining that kind of construction
tree is not trivial (need to separate deformations influences).

Next things to be done on Ffd related deformations is to take into account distance
on surface (geodesic) or mesh. Free-form deformations of surfaces is still difficult
as the user manipulate a grid that embeds the control points network of the surface.
This gives two level of abstractions for the manipulation of the initial surface and
its not “natural”. As subdivision surfaces can express simultaneously discrete mesh
and parametric surface in a single definition, [27] initiate free-form deformation on
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surfaces. The main problem of singularity is persistent, as the deformation is based
on constraints satisfaction with linear solving (to express vertex in local grid or
to ensure displacements), if the constraints are close the system becomes unstable
or its computational cost rapidly increases [15]. A very promising way for point-
based methods, without location constraints, has started with “cage-deformations”
methods.
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Cage Based Deformations: A Survey

Jesús R. Nieto and Antonio Susín

Abstract Cage based deformation techniques aims to be an easy to use tool for
graphics modeling, texturing and animation. In this paper we describe the most
important methods, their foundations, and the desirable properties that they should
satisfy. We also present a comparative to show the strong and weak points of each one,
taking into account their distinctive utilities. Finally, we discuss some applications
that exploit cage capabilities in order to create a more complex deformation system
or to simplify other deformation techniques.

1 Introduction

Mesh deformation is a common process in geometry modeling and computer ani-
mation. Modeling can be very accurate, like in engineering design, or be flexible to
allow the artist to freely express his creative ideas. Similarly, in computer animation
we may want a realistic behavior, simulating physics, or rather a stylized and artistic
animation far from what is really possible. But, regardless of the preferred approach,
we need flexible tools for mesh deformation to achieve the desired results easily. In
the past years there have been many efforts in this direction, from different points
of view: Free-form deformation (FFD), generalized barycentric coordinates, Radial
Basis Functions (RBF), curve based deformation, skeletons and physics simulation
[1–3, 20, 26, 27, 29, 32]

Character articulation, also called rigging, has a significant place in the field
of mesh deformations; It is an important component in high-end applications used
in film and audiovisual content. Professional softwares, specially Softimage XSI,
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Fig. 1 An object wrapped by a cage. In the left, the cage and the object are in rest pose for
coordinates computing. Then we can transform cage vertexes for producing a deformation in the
volume and consequently in the object. From [18]

Maya and 3DStudio, provide a wide range of character articulation methods. Some
classic examples are Enveloping [20] and blend shapes [16], but there are also many
chainnable deformers that achieve amazing results.

Regarding character animation, there are a number of constraints that some of the
previous methods do not fulfill. Firstly we need a deformation method able to work
in real-time, for interactive applications, which limits the computation time. Also, it
is desirable to have a convenient and easy to use system which makes it simple for
a broad array of users to get quickly familiar with it. Cage based methods are good
candidates for this purpose. Even if nowadays these methods are not the most used in
professional animation applications, they have undergone significant developments
so that could push forward the usual rigging techniques (Fig. 1).

Research in cage based methods were born at the beginning of feature film ani-
mation. The pioneers were Sederberg and Parry [27], in 1986, with the Free Form
Deformation. This development become popular for several reasons. First, because
it offers a smooth and intuitive control over the character using limited parameters:
free form lattice control points. Besides, the model to be deformed does not need to
satisfy other geometric constraint apart from being inside the control lattice. On the
other hand, this kind of deformer has a well number of drawbacks: if the deformations
are complex, such as character articulated with several limbs, it becomes difficult or
even impossible to implement. A lattice will never fit perfectly the character shape,
since the topologic rigidity of lattice is not flexible enough for that, and combining
several cages would be a hard task [17].

Next, we introduce the methods that will be the main line of discussion throughout
the paper. We need a cage which better fits the character shape. The first complete
environment that allow to do this is Mean Value Coordinates (a solution proposed
and developed simultaneously by to papers: Floater et al. [9] and Ju et al. [18], in
2005). This method lead mesh deformation to the world of generalized barycentric
coordinates. The original concepts were introduced by Möbius in 1827, and have
been developed by many mathematicians since then [7, 10, 12, 24, 25, 33]. The
main point to solve is the relationship between a cage and its interior. If there is an
object inside a cage, we can deform it using the cage no matter the complexity of the
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object. For this purpose, Floater [8] proposed to use the mean value theorem, but his
formulation has some problems; the main one, being that the coordinates could be
negative, which will produce anti-intuitive and annoying results.

Even if this problem only applies to certain cases, the relevance of this issue
advises to discard this method for character animation, as Joshi [17] claims. He
proposed an alternative solution adopting a slightly different approach which does
not produce negative coordinates: Harmonic coordinates. This approach produces a
more local deformation, which is a very positive feature, but this also has drawbacks,
i.e. computation time and discretization accuracy.

Similarly, Lipman [21] proposes an improvement to Mean Value Coordinates that
leads to positive coordinates. He uses GPU visibility render techniques for analyzing
the volume inside the cage in order to cut off negative coordinates. In spite of the
improvements of this method, also has some smoothness problems with concave
shapes (as the original Mean Value Coordinates does).

Then, Lipman [22] realized that the surface details were not preserved, especially
if the deformation is large, thereby suggesting that more data should be used for being
able to relate the cage to the object. While Mean Value Coordinates and Harmonic
Coordinates only use cage vertex positions, Lipman’s Green Coordinates also uses
face normals.

These are strictly cage based deformation methods, but there are other deforma-
tion methods that use cages in other ways. This is the case for Biharmonic weights
[15] and subspace gradient domain deformations [14]. There have also been improve-
ments and new developments for using these concepts, such as volume-preserving
deformation [4], Cage-based deformation transfer [5] and skinning templates [19].

In the following section we are going to describe some basic concepts for deeper
understanding cage based methods, which we analyze afterwards in Sect. 3. Then, in
Sect. 4, the main conclusions are summarized and, finally, in the appendix we collect
some pseudocode algorithms that can be very useful for a better understanding of
these methods.

2 Barycentric Coordinates and Cage Based Deformation

Let us denote as a cage C any triangle mesh, or more generally a polyhedric mesh,
convex or not, which is closed, and that envelop a model to be deformed. For per-
fect model fitting the cage must be topologically flexible, and may be manually or
automatically generated [35]. As far as there is a well defined relationship between
the cage surface and its inside volume, the deformation applied to the cage will also
affect the volume, and therefore any object it contains. This procedure endows us
with an easy to use control handles (cage vertexes) to deform whatever complex
model inside the cage.
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Fig. 2 The coordinates w1,w2,w3 define the relationship between v1, v2, v3 and the interior point
v. After having distorted the triangle vertexes, the inside points are relocated constrained with the
same relationship

2.1 Barycentric Coordinates Definition

The first mathematical approach defining a cage-to-model relationship was intro-
duced by Möbius in 1827 with barycentric coordinates for triangles [25]. The issue
was set out in the following terms: Which weights w1, w2, w3 must be given to the
vertexes A, B, C of a triangle to obtain P as the center of gravity of these weights?
Thus, point P is the barycenter, while the value of the vertex weights are the barycen-
tric coordinates of P for each vertex. Generalizing the problem, v can be considered
as the barycenter of points v1, . . . , vn if and only if

v = w1(v)v1 + · · · + wn(v)vn

w1(v)+ · · · + wn(v)
. (1)

More precisely, these coordinates are homogeneous and need to be normalized by

λi (v) = wi (v)∑
i wi (v)

,

n∑

i=0

λi (v) = 1. (2)

Where all the values λi are between 0 and 1. For the case of triangles, there is also
a relation between the coordinate wi (from vertex vi ) of the interior point v and
the area of the triangle [v, vi+1, vi+2] (Fig. 2). Therefore, they are also called area
coordinates. The barycentric coordinates are a linear transformation of Cartesian
Coordinates over a triangle. Then, they vary linearly over the boundary, inside and
outside the triangle. This means that we can use it as an interpolation function φ
inside the polygon using the values defined at the vertexes φ(vi ) (Eq. 3)

φ(v) =
n∑

i=0

λi (v)φ(vi ). (3)
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Fig. 3 The kernel of this
polygon is the region K

An example of this interpolation is Phong and Gouraud shading, a rendering
algorithms widely used in computer graphics [12]. These interpolations can also be
employed for geometry deformation. The coordinates define the relationship between
the triangle vertexes and the triangle inside. After having distorted the triangle ver-
texes, we can relocate the inside points constrained with the same relationship (Fig. 2).
In fact, by using identity as interpolation function φ(vi ) = vi in Eq. 3, we have an
interpolation of the vertex space positions.

2.1.1 Barycentric Coordinates Generalization

The above formulation works well with simplexes, but a number of difficulties arise
when the issue is generalized to more complex polygons. Let us see now some of the
many approaches that have been tried to implement such a generalization. The first
attempt was proposed by Wachspress [33], who tried to deal with finite element meth-
ods. The goal of this kind of methods is to solve equations, approximating continuous
values as a set of discrete points, usually distributed into a grid. The Wachspress’s
definition is only suited to the case of convex polygons. Other studies have developed
these methods for quasi-convex polygons [23] and arbitrary polygons [31].

We distinguish quasi-convex polygons from convex ones to denote this kind of
polygons which are not convex but have a convex kernel, and therefore are convex in
some sense. The kernel of a polygon is the region K of a polygonΩ such that, taking
any point v ∈ K , for all vertex vi of the cage, the segment [v, vi ] only intersects with
the polygon boundary at vi (Fig. 3).

Another approach to barycentric coordinates generalization is point cloud inter-
polation. The objective of this method is to define the interior volume of the point’s
convex hull [6, 11, 28].

Finally, we consider that the most interesting approach as far as this paper is
concerned, is piecewise surface interpolation [7, 8]. It is particularly relevant because
it enables volume deformation by cage control. In the same way that a triangle is
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able to define a deformation for its support plane, a mesh can define one for its inside
volume. The most interesting works in this area have been done in turn, ending in
Mean Value Coordinates, Harmonic Coordinates and Green Coordinates, that we
discuss in the next section, but first we will summarize the main properties of cage
based deformation methods.

2.2 Cage Deformation Desired Properties

The final goal is to develop a procedure for producing natural and intuitive deforma-
tions by using some control handle vertexes that form a cage. For this purpose, some
properties may be defined.

The first concept to be analyzed is deformation domain, which is the space region
influenced by the cage. To start with, deformation needs to be well defined inside
the mesh volume, without singular points. To this aim, we can constraint the object
to be totally inside the cage. However if only a part of the object is aimed to deform,
we need the cage to cover just that part, intersecting the object, which is a problem
when the domain is not well defined also at the boundary and outside the cage. There
are different approaches for outside coordinate’s extension from cage, as we will see
in the next sections.

Coordinates can be managed as a function, so that, if coordinates are well defined
(ensuring continuity all over the domain) we also expect smoothness, which means
continuity at first derivatives.

Interpolation, that is, coincidence values for the vertexes, is the main application.
As long as interpolation is ensured, the fact that φ(v) = 1 implies

∑n
i=1 λi (v) = 1,

for all points v in the domain. This fact is known as affine invariance (Eq. 3).
Besides, local deformation will be needed to restrict vertexes influence to their

neighborhood only at local state. The implication follows that a control point (cage
vertex) must cut off the influence of other control points over a part of the cage
volume, if it is placed between them.

In deformation methods, conformality is an important property that relates trans-
mission of local rotation transformations and, accordingly, surface detail preserva-
tion. While conformal mapping maps infinitesimal spheres to other infinitesimal
spheres, quasi-conformal mapping is able to map infinitesimal spheres into infini-
tesimal ellipsoids (with a certain ratio between axis). This property works towards a
natural deformation without losing shape semantic (Fig. 4).

Another important property for character articulation is positiveness. This feature
ensures that the coordinate values are positive in the entire domain, or at least in some
controlled parts. In as much as this is achieved, deformation will be successfully
intuitive.

Moreover, if we want to develop a real-time interactive deformation tool, compu-
tation time needs to be reduced as much as possible. All the implementations segment
deformation process in two parts to break off the heaviest computations into a pre-
process (getting coordinates), so that the actual application of deformation is isolated
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Fig. 4 Rotation transformation is naturally applied keeping the object shape semantic, extracted
from [22]

in a simple computation to achieve real-time. Using GPU parallel techniques speed
up the process, since transformations for each vertex can be done simultaneously.
In order to develop such a low time-consuming computations we need to allocate
in memory coordinates for every point of the object. Depending on the method, a
fast access to memory for many little sets of data (sets of vertex coordinates) will be
needed.

3 Mean Value Coordinates (MVC)

The first approach to MVC comes from Floater et al. [9] and Ju et al. [18]. Both
studies aimed at looking for an interpolation method for surfaces. Initially, Floater
[8] presented a 2D mean value coordinates over quasi-convex polygons, where the
coordinates were well defined inside and outside the polygon. Even if there was a
problem of discontinuity at boundaries, it could be solved easily [12] by extending
coordinates from the interior domain. In this case, the coordinates were well defined,
but it was not ensured that the values were necessarily positive for the entire domain.
In fact, positive coordinates can only be ensured inside the kernel of the polygon
(a convex or star-shaped one) [9]. Afterwards, Floater developed a 3D version of the
algorithm, but the negativity problem remained unsolved. Then, Ju et al. developed
another solution by using the Floater’s 2D approach but addressing the issue from a
slightly different point of view. Their attempt to solve the matter as a 3D interpolator
provided us with a solution which is more robust than the 3D one presented by
Floater (the pseudocode of Ju’s MVC is included in the appendix). In Summary,
these coordinates satisfy most of the properties enumerated in the previous section
[18] (mainly the fact of being a good interpolation method [12]) but the lack of
positiveness and locality are serious drawbacks for mesh deformation.

MVC uses mean value theorem to relate the points of a cage with its interior,
which is oriented by harmonic coordinates theory. Next, we present some concepts
that may help understanding the process, and also be helpful for discussing further
methods.
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3.1 Harmonic Functions

The main problem to solve the desired cage-object relationship starts with a more
theoretical problem, the approximation of harmonic functions by piecewise linear
functions over triangulations, in such way that the injective property is preserved.
An harmonic function u is a function over the reals for which the second derivative
is continuous and satisfy Laplace’s equation

�u = 0⇐⇒ ∂2u

∂x2 +
∂2u

∂ y2 +
∂2u

∂z2 = 0. (4)

Dirichlet raised the problem of finding a relation between a continuous function
f over a boundary v|∂Ω of a regionΩ and its interior, by using a harmonic function
u assuming as known the values of f at v|∂Ω . Basically, he explores whether such a
function u can exist and, if it does, if it is unique. The conclusion of such an attempt
is to establish the existence of a function with these characteristics and named his
solution as Dirichlet’s principle.

Following Dirichlet development, Floater approximates a solution of u that satis-
fies the Dirichlet’s boundary conditions, u|∂Ω = fi , by means of a linear piecewise
function uT over the triangulation. This leads us to a linear system where the values
of uT are at the inside vertexes of the triangulation T , (observe the similitude with
Eq. (3))

uT (v) =
k∑

i=1

λi uT (vi ) (5)

3.2 Mean Value Theorem

Floater carries out this approximation by using the mean value theorem, which states
that for a circumference B = B(v, r) ⊂ Ω (where r is the radius of a circumference
centered at point v, completely inside the regionΩ) and its circumference perimeter
Γ , the Eq. (6) approximates the function uT fitting the Dirichlet’s conditions, as is
expressed in Eq. (5)

u(v) = 1

2πr

∫

Γ

u(v|∂Ω)d S. (6)

It is also relevant to analyze the geometric interpretation. Recall area coordi-
nates, we compute the i coordinate of interior point v as a ratio between the area of
the opposite sub-triangle (v, vi+1, vi+2) from vertex vi and the total triangle area.
Similarly, there is also a ratio to compute Mean Value Coordinates, this time between
partial perimeter of a circumference centered at point v, obtained from the projection
of the cage segment [vi , vi+1] over the circumference, and the total circumference
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(a) (b)

Fig. 5 a Parameter interpretation to obtain mean value coordinates. It is easy to see that if we
consider angles with sign there may be negative values for some coordinates, this is the case of
concave polygons as in b. The angle α1 corresponding to segments [v, vi ] and [vi , vi+1] is positive
while the angle α2 defined from segments [v, vi+1] and [vi+2] is negative

perimeter. Note that Floater, as an extension of his analysis, uses the angles between
segments [v, vi ] and [vi , vi+1] to obtain the same ratio (Fig. 5a). It is easy to see
that, by considering angles (or perimeters) with sign there may be negative values
for the coordinates. This is the case of concave polygons (Fig. 5b). The following
expressions are derived by Floater to obtain Mean Value Coordinates wi and their
normal form λi :

λi = wi
∑k

j=1 w j
, wi = tan(αi−1/2)+ tan(αi/2)

‖vi − v0‖ (7)

In a similar way, mean value coordinates in R3 can be derived. In this case, the
coordinates are obtained as the area ratio over a sphere. With a sphere S centered
at point v, the coordinates of point v are equal to the ratio of the projected area of
every cage simplex over the sphere and the total sphere surface area. To get a closed
form expression, Floater uses other tools. He claims that, in fact, 2D coordinates can
be computed as a proportion of normals integration of the projected cage piece over
the circumference. Thus, we can integrate in 3D the normals over the partial sphere.
The integration of sphere normals over the entire sphere is equal to 0, from which
we can derive:

0 =
∫

S

n(p) =
∫

S

(p − v) =
∑

T∈T

∫

T ′
(p − v) (8)

and define the Spherical Barycentric Coordinates of every partial sphere that comes
from the cage triangles projection over the sphere. These coordinates can be used as
a uT approximation, which is what we need. The derivation of these coordinates in
a closed form expression is given by:



84 J. R. Nieto and A. Susín

(a) (b)

Fig. 6 a Tetrahedron b “tetrahedron” defined by a spheric triangle. From [9]

0 =
n∑

i=1

∑

vi∈T

μi,T ei =
n∑

i=1

wi (vi − v) (9)

wi = 1

ri

∑

vi∈T

μi,T > 0, μi,T = β jk + βi j ni j · n jk + βki nki · n jk

2ei · n j k
(10)

Following the scheme of Fig. 6, where βrs ∈ (0, π) is the angle between two
segments [v, vr ] and [v, vs], and nrs as the unitary vector of the face [v, vr , vs] pointing
into the tetrahedron. (r and s take the values of i, j, k)

Floater analyzes this case carefully and concludes that the Eq. (10) is not well
defined on the boundary. Besides, he proves that the coordinates can be extended to
the boundary and beyond without losing of continuity and smoothness. The closed
form expressions proposed by Floater to obtain coordinates is the most appropriate
context for computing with parallel GPU techniques.

4 Harmonic Coordinates (HC)

Joshi et al. [17] developed another method to set the coordinates successfully avoiding
some of the MVC drawbacks. Their concern was focussed on articulation in feature
film animation, so that the mentioned issues were annoying for that purpose. The
main problem is the fact that MVC are based in euclidean distances, which neglects
the visibility between cage points and object points. Then, the deformation results are
non-intuitive and require additional work to solve or to avoid the problem. Consider
the case of Fig. 7: the cage’s left limb acts over the object’s left and right limbs,
resulting a non-expected displacement.

When analyzing further the matter, two important issues are found. Firstly, the
negative coordinates. The influence of the vertexes of the cage’s left limb deliv-
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(a) (b) (c)

Fig. 7 Comparative of MVC and HC in a conflictive deformation case of character articulation.
a Bind pose. b Mean value coordinates. c Harmonic coordinates. From [17]

(a) (b)

Fig. 8 Coordinate values for the blue marked vertex, all over the domain. Note that Mean value
coordinates (a) takes two colors for coordinate representation: yellow for positive values and green
for negative ones. In Harmonic coordinates (b), the domain only complains cage interior, but values
are always positive. From [17]

ers positive values for points inside the cage’s left limb, but negative ones for
the cage’s right limb. Figure 8 show coordinate’s value distribution for a marked
vertex.

The second issue is related to global influence: every cage vertex affects all object
vertexes producing a general deformation, even if control vertex and object vertex
are in opposite parts of the cage. Note though that in this case the influence is
small.

Joshi exposes a local method, like heat diffusion, to decay control vertexes influ-
ence as it flows through the interior of the cage. The coordinates values inside the
cage have a top bound value that corresponds to control vertexes values, usually 1,
and decay to 0 as they are placed farther from the cage vertexes. Hence, all the
coordinates will be within the range [0 . . . 1], but are constrained to be inside the
cage, since the boundary breaks off the influence diffusion. This approach ensures
positive coordinate values all over the domain: the cage interior, as shown in Fig. 8b.
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Joshi’s approximation for piecewise linear function uT is the identity function, the
simplest harmonic function. It satisfies Laplace’s equation and can propagate the
values from boundary to cage interior as we want. By simply applying the laplacian
operator, we get the desired results. Note that if the cage is a triangle the result-
ing coordinates are the simple barycentric coordinates. Unfortunately, this process
encloses the domain to cage interior, allowing no possible influence outside, so
that continuity at boundaries will only be preserved by Dirichlet boundary con-
ditions. Therefore, to get a smooth result, the cage needs to wrap completely the
object without intersections, or to trick the process for achieve some smoothness at
boundaries. An interesting feature of this method is that we can use interior con-
trol points that behave like cage pieces. These will propagate the influence to the
cage volume in the same way as the boundary cage does. But in accordance with
that, there will be a lack of smoothness in deformation at points where the object
intersects these interior control points. Joshi presents an example that sorts out this
problem by subdivision surface objects. Subdivision control points ensure smooth-
ness over the surface even when the deformation applied to its control points is not
smooth.

4.1 Implementation and its Consequences

The method of applying a simple laplacian operator inside the cage works theo-
retically (with infinitesimal equations) but computationally we need to discretize a
volume big enough to cover the cage, and to compute a coordinate value for every
volume division cell. Joshi implemented some empirical tests to fit the best volume
subdivision and then propose dividing it into 2s cells, being s = 6 in the 2D ver-
sion, and s = 7 in the 3D case. To compute the coordinates he proposed the next
process: first, to mark every cell as it belongs to cage boundary (BOUNDARY),
inside (INTERIOR) or outside (EXTERIOR), and then assign cage vertex values
to its corresponding cells. Next, through an iterative process these values will be
propagated through the volume if cells are “INTERIOR” marked, with a 4 cell-
connected laplacian operator in two dimensions, and 6 cell-connected one for 3D.
Joshi proposes some optimizations for reducing computation time, since convergence
of laplacian operators is too slow and requires many iteration-steps before it reaches
the end process condition. This condition consist of imposing a threshold that sets a
top bound for cell values variation between two laplacian operator successive steps.
He proposes to use the threshold t = 10−5.

One of the main advantages of this approach is the fact that the inside object
can be changed whenever is needed, given that the coordinates are computed over
the grid cells and not over the object. The coordinates can be reassigned to the new
object with no more computation than reading values from the grid. Nevertheless,
saving the coordinates every cell is a waste of memory, unless the number of cells is
smaller than the number of object vertexes. On the other hand, discretization causes
some precision errors that need to be managed to deliver right deformation outcomes.
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Undeformed MVC PMVC HC

Fig. 9 This example, created by Lipman, shows clearly how negative value coordinates are pre-
sented on every kind of coordinates. From [21]

In some sense, the problem may be reduced if the implementation is done by applying
an adaptive resolution grid.

5 Positive MVC (PMVC)

The Harmonic Coordinates procedure solves the negativity problem of Mean Value
Coordinates, but the fact that it lacks closed form expressions makes it very con-
suming time, even with optimizations. While MVC and Green Coordinates have
a closed form formulation that enables parallel computation, in the case of HC is
too hard to apply parallelism. To prevent negative values Lipman proposes apply-
ing a local Mean Value Coordinates which is accomplished with visibility testing
adopting GPU rendering techniques. The normals integration over the sphere (or cir-
cumference) centered at point v is computed if the corresponding cage’s simplex for
the coordinate wi is viewed by point v. This process allows us to localize the influence
of each cage vertex. The results are very good (as Fig. 9 illustrates), but there are
some singularities, specially in concave polygons. Lipman trivializes the problem
claiming that such a distortion is not significant enough to be taken into account, as
his experiments prove. Yet, the problem arises as a consequence of visibility compu-
tation, since the visibility region from point v (similar to a kernel centered at point v)
has a really sharp boundary. This fact introduces a little lack of smoothness which as
long as the vertex forms a concavity becomes a problem. Thus, as a way to overcome
this difficulty, Lipman proposes to split out the cage at the points where this problem
is presented.
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Fig. 10 Detail preservation is exhibited using Green Coordinates (on the right), where the details
adhere to the surface deformation and rotate accordingly. In the middle, the MVC result is depicted
where the details maintain their original orientation and therefore shear. From [22]

6 Green Coordinates (GC)

The main advantage of deformation methods based on cages are their simplicity,
flexibility and fastness. Every object vertex is deformed independently under these
techniques, which are transparent to object surface representation and are
“discretization-error-free” in most of the cases. Unfortunately, the methods dis-
cussed previously do not preserve surface details, which is a drawback com-
pared to other deformation techniques (such as those based in surface differen-
tials [30]), especially if deformation is too big. Green Coordinates, developed by
Lipman [22], try to apply generalized barycentric coordinates taking into account
this fact.

MVC and HC uses only cage vertex positions which, as Lipman noticed, induce an
axis independent deformation (i.e., any translation over x axis of a cage vertex does
not translate into the object in the y and z axis, resulting an unnatural deformation
(Fig. 10)).

To achieve a natural deformation with shape preserving, Lipman adds cage faces
data to the deformation operator.

v = F(v;C) =
∑

i∈IV

ωi (v)vi +
∑

j∈IT

ψ j (v)n(t j ) (11)

Being the cage C = (V, T ), where V are the cage vertexes and T the cage
simplexes (edges or faces).ωi values are the coordinates based in cage’s vertexes and
ψi are the ones based in the normal of the simplexes, which are the face data added.
And n(t j ) is the normal outward unitary vector of the simplex t j . The deformation
over the object is obtained in this way:

v �→F(v;C ′) =
∑

i∈IV

ωi (v)v
′
i +

∑

j∈IT

ψ j (v)s j n(t
′
j ) (12)
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where v′i and t ′j are the modified vertex and faces of C ′ respectively. The expression
introduces a new term {s j } j∈IT to ensure some properties such as scale invariance.
The result is very good as it preserves better and more natural than other methods
the object shape and details (Figs. 4, 10, 12) producing a conformal mapping in 2D
and quasi-conformal in 3D.

6.1 Coordinates Derivation

To obtain closed form expressions Lipman realizes that the harmonic functions also
follows the Green’s theory, thereby permitting to apply the third Green identity to
solve the problem.

u(v) =
∫

∂D

(
u(ε)

∂G(ε, v)

∂n(ε)
− G(ε, v)

∂u(ε)

∂n(ε)

)
dσε (13)

where ε is a point over the surface and G is the fundamental solution of the Laplace
equation, which can be solved by

G(ε, v) = 1

(2− d)Ad
‖ε − v‖2−d dimension d ≥ 3 (14)

G(ε, v) = 1

2π
log ‖ε − v‖ dimension d = 2 (15)

where Ad is the area of a unit sphere in Rd , which in the 3D case is equal to 4π . By
deriving these equations, we obtain the closed form expression of the two coordinate
sets for each object vertex, ωi (v) and ψ j (v), which are used in the Eq. (12) to obtain
the deformation.

ωi (v) =
∫

ε∈N {vi }
Γk(ε)

∂G

∂n
dσε, i ∈ IV (16)

ψi (v) = −
∫

ε∈t j

G(ε, v)dσε, j ∈ IT (17)

where N {vi } is the neighborhood 1-connected vertexes of vertex v, which are points
used for computing Γk(ε), a linear combination to get ε depending on the vertexes
of N {vi }, in such way that it satisfies ε =∑d

k=1 Γk(ε)vk .
The scale factor s j depends on the growing or decreasing of every cage simplex,

and is computed in real-time when the deformation is applied:

s j = ‖t ′j‖/‖t j‖ in 2D case. (18)
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Fig. 11 There are two successive deformations applied to the same object using all methods. The
graphics show the distortion error accumulation at every deformation. Only GC presents an upper
bounded error. From [22]

s j =
√
‖u′1‖2‖u2‖2 − 2(u′1 · u′2)(u1 · u2)+ ‖u1‖2‖u′2‖2√

8 area(t j )
in 3D case, (19)

where vectors u1 and u2 define the edges of the triangle t j , and where u′1 and u′2 are
the corresponding edges of the modified cage triangle t ′j . This parameter ensures a
natural deformation, which can though be modified to distort slightly the uniform
scaling (see the pseudocode in the appendix).

Lipman has studied the existing distortion in MVC, HC and GC, with the ratio
σmax (v)
σmin(v)

, where σmax (v) and σmin(v) are the maximum and minimum singular value of
the differential F (jacobian matrix) at point v. Any map with a top bounded distortion
is named quasi-conformal, but only Green Coordinates present such upper bound
(except in some degenerated cases). MVC and HC distortions are proportional to the
deformation applied (Fig. 11).

The coordinates expressed in Eqs. 11, 12, 16 and 17 are smooth and well defined all
over its limited domain: inside the cage. Besides,ωi (v) as a function (Eq. 16), present
derivate discontinuities over the simplexes at vertexes intersections and, therefore is
not smooth at the boundaries. In fact, this function cannot be used as a surface inter-
polation method. In spite of that, it seems to be a really good system for character
articulation. Lipman does not mention anything about the negativity of his coor-
dinates, but attending to the corresponding closed expressions, we expect positive
values at the entire domain.
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(a) (b) (c)

Fig. 12 GC cage deformation affects only center fingers of the model, leaving deformation-free
the rest of the model. MVC affect all the model with a natural extension of the coordinates, but
producing unwanted results. a Bind pose. b Green coordinates. c Mean value coordinates. From
[22]

6.2 Outwards Cage Extension

The lack of smoothness introduced by the mentioned discontinuities at the bound-
aries entails limitations for the expressed formulation to be inside the cage. That
is why Lipman adds some terms to extend the inside coordinates to reach beyond
the cage. He considers the outside region as a set of subregions linked to some
simplexes. Whenever an object crosses through a simplex, the whole part of the
object that is outside the cage will be affected by the transformations of this simplex
in the way of affine transformations. Then, a set of simplexes that works with the
same similarity transformation could be used as a unique simplex that propagates a
unique affine transformation outside the cage. Therefore, we will compute as many
affine transformations as separated parts of the object are placed outwards the cage
(Fig. 12).

7 Other Developments of Cage Based Methods

There are two early approaches of barycentric coordinates. The first one, presented
by Hormann and Sukumar [13], is called Maximum entropy coordinates (MEC).
These coordinates are non-negative for arbitrary polytopes, are smooth inside the
domain, and can be computed locally at any point v inside the cage like MVC
and GC, but they are only defined inside the convex hull of the polytope, and
not everywhere in Rd . MEC do not present a significant improvement over the
already discussed methods. Weber [34] presents another kind of coordinates named
Complex Barycentric Coordinates. This interesting approach reformulates the
barycentric coordinates definition with expressions based in complex numbers.
Unfortunately, it only works for 2D, and seems to be very difficult to be extended to
a higher dimension.
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There are some studies that make use of cage based methods and reach further.
We have already discussed direct cage based deformation, but enriching a more
complex behavior to this deformation will be interesting. Since the cage provides a
simplified version of an object for simpler deformation, it enables computing com-
plex constraints over the object with a simpler computation over the cage. Actually,
this constraint assignment is further complex, we should apply constraints to the
object rather than to the cage. Therefore, in a previous step, we group object con-
straints on cage vertexes for collapse computations. Generalized barycentric coor-
dinates can do this for us. An interesting contribution in this regard is the one
made by Cervero et al. [4], who develop a method for object volume preserva-
tion over any kind of generalized barycentric coordinates. Volume preservation is
a highly esteemed skill for creating believable deformations in character anima-
tion. Another paper that follows such kind of scheme is Huang et al. [14], in which
object deformation is obtained by subspace gradient domain techniques constrained
by some conditions. They uses this constraint grouping method for improving the
computations which would not otherwise be made in real or at least close-to-real
time.

There is still another interesting work that has a close relationship with the essence
of cage based methods: biharmonic coordinates [15]. The goal of all the mentioned
methods consist of defining a volume from its cage surface, in the case of bihar-
monic coordinates the cage is the object itself. As long as we have a good knowledge
of the volume (the relationship between points within) we will be able to process
deformations by modifying some points inside or over the surface while preserv-
ing these relations as a constraint. Control points could be vertexes, segments or
faces. Besides, they can be inside, on the surface or outside the object. These coor-
dinates, properly created, generate smooth deformations everywhere and can be
used with other character articulation tools, such as point deformers, skeletons and
cages.

Animation transfer using cages is another approach that also uses generalized
barycentric coordinates [5]. Whenever for the cases in which two characters are
using exactly the same cage (or different cages but with the same cage topology),
every deformation applied to one cage can be translated into the other one easily. A
different approach pursuing a similar goal is the one proposed by Ju et al. [19]. They
use templates, as cage predefined setups, for applying similar animations to several
characters easily.

8 Conclusions

In this paper we have described cage based deformation methods and some of the
applications that exploit their utility. Each of these methods has strong and weak
points, which are more or less relevant depending on the purpose. In the following
section, we discuss the most significant points in a schematic way, as a summary
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of the concepts previously exposed. In the appendix we collect some pseudocode
implementations, extracted from their corresponding papers, that could be useful for
further clarifying these concepts.

8.1 Discussions

The three methods described have been developed by gradually approximating the
issue. Floater [9] first proposed a generalization for barycentric coordinates, by intro-
ducing harmonic functions theory, which proves mean value theorem. The main pur-
pose of Mean Value Coordinates was to interpolate values from some points over a
surface into its volume (i.e. vertex color). The same formulation is used to interpo-
late the space position of v based on cage vertex positions. Then, a cage could be
created wrapping a model, and deform the model maintaining the same interpola-
tion values (coordinates) before and after the cage transformation. Note that until
this point there have been used only point data to compute the interpolation, regard-
less of the cage topology. This is important since the lack of data will cause problems
like negative coordinates and no-local deformations. These drawbacks are specially
annoying for character animation. The Harmonic Coordinates approach solves these
problems by adding more data such as intra-cage-space point relations, but to satisfy
the neighboring relationships at the time of computing the coordinates, is too time
and memory consuming. On the other hand, grid discretization process proposed
for HC computation is very flexible for character articulation because we can reas-
sign coordinates to different models, composed with a unique mesh or in several
parts, without recomputing anything else, provided they use the same cage. Green
Coordinates was born as a solution of MVC and HC drawbacks, taking into account
also surface details preservation. To achieve it, is added more data into the compu-
tation (cage simplexes normal) for describing better the behavior of deformation at
surface, and translate it accordingly to the interior, producing a conformal or quasi-
conformal mapping. On Table 1 we summarize the features that characterize each
method.

MVC are the best solution for value interpolation, given that are well defined inside
the volume and over the surface, and their simple closed form expressions encourages
to use they in the fastest real-time applications, specially if they are computed by
GPU techniques. The fact of having negative values and global deformation makes
this method less interesting to character articulation.

HC is a good solution for character articulation, specially to add a specific and
controlled deformation to a part of an object, due to its flexibility to control influ-
ence propagation. Although we must take into account the smooth discontinuities at
boundaries to achieve a good overcome. In a rigging process is really valuable that
the model could change after the cage creation and coordinates computation, so that
HC become a better solution in that cases.
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Table 1 Cage based methods properties comparative

Property Mean value coords Harmonic coords Green coords

Cage topology Triangles (vertex) No matter (vertex) Triangles
(vertex+ normal)

Conformality No No conformal(2D)
quasi-conformal(3D)

Interpolation Boundary+ inside Inside Inside
Closed formulation Yes No Yes
Control point influence Global (euclidean distances) local Global
Positiveness No Yes Yes
Outside cage extension Natural formulation No Segmented affine

extension transformation

Table 2 A comparative of the main cage based methods exposed (MVC, HC and GC) working in
different scenarios (Column, Bust and Horse)

Model
name

Model
vertexes

Model
faces

Cage
vertexes

Cage
faces

MVC HC GC

Column 2202 4400 24 44 0.051 31.905 0.241
Bust 255358 510712 32 60 8.232 229.534 38.348
Horse 19851 39698 90 176 1.614 513.549 8.692

Finally, GC is the best approach for general purpose in character articulation, since
surface detail preservation with few control points makes it effective and easy to use.
Its formulation is more complex than the other two methods, so that the deformation
application will be slower. Besides, its global deformation is a small drawback that
must be solved in further research (Table 2).

We present a table for analyzing the preprocessor computation time. It has been
prepared by a non-optimized implementation of the MVC, HC, and GC papers dis-
cussed. The timings were measured on a 2.8 Ghz Quad-Core Intel Xeon with 4 GB
of RAM and expose clearly that MVC is the fastest algorithm, followed by GC with
a near to 5 times factor, and far behind, the HC with several magnitude orders over.
Note that while MVC and GC increases time computation proportionally with model
and cage complexity, HC depends on the grid size, specifically the INSIDE marked
cells count.

Acknowledgments We are grateful to Pedro García, John Grieco and Guillermo Posadas for help-
ing us to enrich the text with their corrections. This work was partially supported by TIN2010-
20590-C02-01.
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Appendix

First, we expose Green coordinates pseudocode, extracted from Lipman’s paper [22].
The 2D and 3D version for deforming object vertexes Λ ⊂ Cin . We have changed
φi (v) from the original paper by ωi (v) to keep coherence all over
the document. We note that for exterior or boundary points one should add to
these coordinates the {αk} and β as is introduced in Sect. 6.2, and explained in
depth in Sect. 4 of Lipman’s paper. Note that αk and β also posses a simple closed-
form formula employing the regular barycentric coordinates in triangles (3D) or
edges (2D).

Algorithm 1: 2D version of Lipman’s Green Coordinates.
Input: cage C = (V,T), set of points Λ = {η}
Output: 2D GC ωi (η), ψ j (η), i ∈ IV , j ∈ IT , η ∈ Λ
/* Initialization
set all ωi = 0 and ψi = 0
/* Coordinate computation
for each point η ∈ Λ do

for each face j ∈ IT with vertices v j1, v j2 do
a := v j2 − v j1 ; b := v j1 − η
Q := a· a ; S := b· b ; R := 2a· b
B A := b· ‖a‖ n(t j ) ; SRT := √

4SQ − R2

L0 := log(S) ; L1 := log(S + Q + R)

A0 := tan−1(R/S RT )
S RT

A1 := tan−1((2Q+R)/S RT )
S RT

A10 := A1− A0 : L10 := L1− L0
ψ j (η) := −‖a‖ /(4π)[(4S − R2

Q )A10+ R
2Q L10+ L1− 2]

ω j2(η) := ω j2(η)− B A
2π [ L10

2Q − A10 R
Q ]

ω j1(η) := ω j1(η)− B A
2π [ L10

2Q − A10(2+ R
Q )]

end for
end for

Harmonic Coordinates implementation is exposed in the corresponding Sect. 4.1,
there is no pseudocode in the paper. Finally, Mean Value Coordinates pseudocode
from Ju’s paper [18] is presented. It is written for value interpolation, but with some
modifications could be adapted for mesh deformation.
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Algorithm 2: 3D version of Lipman’s Green Coordinates.
Input: cage C = (V,T), set of points Λ = {η}
Output: 3D GC ωi (η), ψ j (η), i ∈ IV , j ∈ IT , η ∈ Λ
/* Initialization
set all ωi = 0 and ψi = 0
/* Coordinate computation
for each point η ∈ Λ do

for each face j ∈ IT with vertices v j1, v j2, v j3 do
for each l = 1,2,3 do

v jl := v jl − η
end for
p := (v j1· n(t j )n(t j ))

for each l = 1,2,3 do
sl := sign(((v jl − p)× (v jl+1 − p))n(t j ))

Il := GCT ri I nt (p, v jl , v jl+1, 0)
I Il := GCT ri I nt (0, v jl+1, v jl , 0)
ql := v jl+1 × v jl
Nl := ql/ ‖ql‖

end for
I := −|∑3

k=1 sk Ik |
ψ j (η) := −I

w := n(t j )I +∑3
k=1 Nk I I k

if ‖w‖ > ε then
for each l = 1, 2, 3 do
ω jl (η) := ω jl (η)+ Nl+1·w

Nl+1·v jl

end for
end if

end for
end for

proc GCTriInt(p, v1, v2, η)

α := cos−1
(
(v2−v1)(p−v1)
‖v2−v1‖‖p−v1‖

)

β := cos−1
(
(v1−p)(v2−p)
‖v1−p‖‖v2−p‖

)

λ := ‖p − v1‖2sin(α)2

c := ‖p − η‖2
for each θ = π − α , π − α − β do

S := sin(θ) ; C := cos(θ)

Iθ := −sign(S)
2

[
2
√

ctan−1
( √

cC√
λ+S2c

)
+√λ

(
2
√
λS2

(1−C)2

(
1− 2cC

c(1+C)+λ√λ2+λcS2

))]

end for
return −1

4π |Iπ−α − Iπ−α−β −√cβ|
end proc
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Algorithm 3: Ju’s version of Mean Value Coordinates in 3D
for each vertex p j with values f j do

d j ←
∥
∥p j − x

∥
∥

if d j < ε return fi
u j ← (p j − x)/d j

end for
totalF← 0
totalW← 0
for each triangle with vertices p1, p2, p3 and values f1, f2, f3 do

li ← ‖ui+1 − ui−1‖ // for i = 1, 2, 3
θ ← 2arcsin[li/2]
h← (

∑
θi )/2

if (π - h < ε) then
//x lies on t, use 2D barycentric coordinates
wi ← sin[θi ]di−1di+1
return (

∑
wi fi )/(

∑
wi )

end if
ci ← (2sin[h]sin[h − θi ])/(sin[θi+1]sin[θi−1])− 1

si ← sign[det[u1, u2, u3]]
√

1− c2
i

if ∃i, |si | ≤ ε then
// x lies outside t on the same plane, ignore t
continue

end if
wi ← (θi − ci+1θi−1 − ci−1θi+1)/(di sin[θi+1]si−1)

total F+ =∑
wi fi

totalW+ =∑
wi

end for
fx ← total F/totalW
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15. Jacobson A, Baran I, Popović J, Sorkine O (2011) Bounded biharmonic weights for real-time
deformation. ACM Trans Graph 30:78:1–78:8

16. Joshi P, Tien WC, Desbrun M, Pighin F (2005) Learning controls for blend shape based realistic
facial animation. In: ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. ACM, New York, NY,
USA

17. Joshi P, Meyer M, DeRose T, Green B, Sanocki T (2007) Harmonic coordinates for character
articulation. ACM Trans Graph 26:71

18. Ju T, Schaefer S, Warren J, (2005) Mean value coordinates for closed triangular meshes. In:
ACM SIGGRAPH 2005 papers, SIGGRAPH ’05. ACM, New York, NY, USA, pp 561–566

19. Ju T, Zhou QY, van de Panne M, Cohen-Or D, Neumann U (2008) Reusable skinning templates
using cage-based deformations. ACM Trans Graph 27:122:1–122:10

20. Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. In: Proceedings of the 27th annual conference on
computer graphics and interactive techniques, SIGGRAPH ’00. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, pp 165–172

21. Lipman Y, Kopf J, Cohen-Or D, Levin D (2007) Gpu-assisted positive mean value coordinates
for mesh deformations. In: Proceedings of the fifth Eurographics symposium on geometry
processing. Eurographics Association, Aire-la-Ville, Switzerland, pp 117–123

22. Lipman Y, Levin D, Cohen-Or D (2008) Green coordinates. ACM Trans Graph 27:78:1–78:10
23. Malsch EA, Dasgupta G (2004) Interpolations for temperature distributions: a method for all

non-concave polygons. Int J Solids Struct 41(8):2165–2188. doi:10.1016/j.ijsolstr.2003.11.037
24. Meyer M, Lee H, Barr A, Desbrun M (2005) Generalized barycentric coordinates on irregular

polygons. Computer 7(1):0–4
25. Möbius AF (1827) Der barycentrische Calcül. Georg Olms Verlag
26. Peng Q, Jin X, Feng J (1997) Arc-length-based axial deformation and length preserved anima-

tion. Comput Animat’97. Conference Publications, pp 86–92
27. Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. SIGGRAPH

Comput Graph 20:151–160
28. Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed)

Interpreting multivariate data. Wiley, Chichester, pp 21–36
29. Singh K, Eugene F (1998) Wires: a geometric deformation technique. In: Proceedings of the

25th annual conference on computer graphics and interactive techniques, SIGGRAPH ’98.
ACM, New York, NY, USA, pp 405–414

30. Sorkine O (2006) Differential representations for mesh processing. Comput Graph Forum
25(4):789–807

31. Sukumar N, Malsch E (2006) Recent advances in the construction of polygonal finite element
interpolants. Arch Comput Methods Eng 13:129–163

32. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In:
Proceedings of the 14th annual conference on computer graphics and interactive techniques,
SIGGRAPH ’87. ACM, New York, NY, USA, pp 205–214

http://dx.doi.org/10.1111/j.1467-8659.2008.01292.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01292.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01292.x
http://dx.doi.org/10.1016/j.ijsolstr.2003.11.037


Cage Based Deformations: A Survey 99

33. Wachspress E (1975) A rational finite element basis. Academic Press, New York
34. Weber O, Ben-Chen M, Gotsman C (2009) Complex barycentric coordinates with applications

to planar shape deformation. Comput Graph Forum 28(2):587–597
35. Xian C, Lin H, Gao S (2011) Automatic cage generation by improved obbs for mesh

deformation. Vis Comput 28(1):21–33



Image Gradient Based Level Set Methods
in 2D and 3D

Xianghua Xie, Si Yong Yeo, Majid Mirmehdi, Igor Sazonov
and Perumal Nithiarasu

Abstract This chapter presents an image gradient based approach to perform 2D
and 3D deformable model segmentation using level set. The 2D method uses an
external force field that is based on magnetostatics and hypothesized magnetic
interactions between the active contour and object boundaries. The major contri-
bution of the method is that the interaction of its forces can greatly improve the
active contour in capturing complex geometries and dealing with difficult initial-
izations, weak edges and broken boundaries. This method is then generalized to
3D by reformulating its external force based on geometrical interactions between
the relative geometries of the deformable model and the object boundary charac-
terized by image gradient. The evolution of the deformable model is solved using
the level set method so that topological changes are handled automatically. The
relative geometrical configurations between the deformable model and the object
boundaries contribute to a dynamic vector force field that changes accordingly as
the deformable model evolves. The geometrically induced dynamic interaction force
has been shown to greatly improve the deformable model performance in acquir-
ing complex geometries and highly concave boundaries, and it gives the deformable
model a high invariancy in initialization configurations. The voxel interactions across
the whole image domain provide a global view of the object boundary representation,
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giving the external force a long attraction range. The bidirectionality of the external
force field allows the new deformable model to deal with arbitrary cross-boundary
initializations, and facilitates the handling of weak edges and broken boundaries.

1 Introduction

Depending on the assumption of how object boundary is described, active contours
can be classified into edge based [3, 14, 17, 25], region based [5, 7, 16], and hybrid
approaches [4, 9, 23]. For edge based methods, it is assumed that object boundaries
collocate with image intensity discontinuities which is widely adopted, for example,
in depth estimation from stereo [2]. Region based techniques, on the other hand,
assume that object boundaries collocate with discontinuities in regional character-
istics, such as color and texture. In other words, each object has its own distinctive
and continuous regional features.

Region based techniques have some obvious advantages over edge based methods
in that object boundary description based on image gradient can often be compro-
mised by noise and weak edges. They are also less sensitive to initialization, while
edge based active contours are prone to local minima. Thus, it is often desirable
for edge based techniques to carefully place the initial contour. This assumes that
the prior knowledge of the object location is available, which is not always true in
reality. Existing techniques can only reduce this initialization dependency to a very
limited extent. The balloon force [3] can only expand or shrink the contours. The
bidirectionality of GVF can sometimes cause the contours to collapse on approach
to the same boundary. Moreover, it has convergence issues caused by critical points.
[8, 17, 24]. It is evidently clear that initialization invariance is particularly difficult
to achieve for edge based methods. More recent attempts, such as [8, 12, 14, 17],
showed promising but limited success.

In this chapter, we present an image gradient based approach to perform 2D
and 3D deformable model segmentation using level set. Section 2 presents the 2D
method which uses an external force field that is based on magnetostatics and hypoth-
esized magnetic interactions between the active contour and object boundaries. The
major contribution of the method is that the interaction of its forces can greatly
improve the active contour in capturing complex geometries and dealing with dif-
ficult initializations, weak edges and broken boundaries. This method is then gen-
eralized to 3D in Sect. 3 by reformulating its external force based on geometrical
interactions between the relative geometries of the deformable model and the object
boundary characterized by image gradient. The relative geometrical configurations
between the deformable model and the object boundaries contribute to a dynamic
vector force field that changes accordingly as the deformable model evolves. Experi-
mental results are shown in Sect. 4. The proposed dynamic interaction force has been
shown to greatly improve the deformable model performance in acquiring complex
geometries and highly concave boundaries, and it gives the deformable model a high
invariancy in initialization configurations. The voxel interactions across the whole
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image domain provide a global view of the object boundary representation, giving
the external force a long attraction range. The bidirectionality of the external force
field allows the new deformable model to deal with arbitrary cross-boundary initial-
izations, and facilitates the handling of weak edges and broken boundaries.

2 MAC Model: A 2D Approach

Fittings based on local intensity discontinuity can often lead to undesired local min-
ima. The CPM [12] assigns opposite charges to edges and free particles so that the
particles are pulled towards edges while repelling each other. This global interaction
provides much freedom of initialization. However, particles on weak edge can be
gradually pulled towards neighboring strong edges, resulting in broken boundaries.
Particle addition and deletion and contour reconstruction can also be difficult in
practice.

Instead of assigning fixed charges, we allow the charges flow through the edges.
These flows of charges will then generate a magnetic field. The active contour, car-
rying similar flow of charges, will be attracted towards the edges under this magnetic
influence. Without losing generality, let us consider the image plane as a 2D plane
in a 3D space whose origin coincides with the origin of the image coordinates.
Additionally, the third dimension of this 3D space is considered perpendicular to the
image plane.

The direction of the currents, flows of charges, running through object boundary
can be estimated based on edge orientation, which can be conveniently obtained by a
90◦ rotation in the image plane of the normalized gradient vectors ( Î x , Î y), where I
denotes an image. Let x denote a point in the image domain. Thus, the object boundary
current direction, O(x), can be estimated as: O(x) = (−1)λ(− Î y(x), Î x (x), 0),
where λ = 1 gives an anti-clockwise rotation in the image coordinates, and λ = 2
provides a clockwise rotation. However, we show later by using the proposed level set
updating scheme different λ values lead to the same result. Since the active contour
is embedded in a signed distance function, the direction of current for the contour,
denoted as υ, can be similarly obtained by rotating the gradient vector ∇Φ of the
level set function. Similar to O, υ is also three dimensional and lies in the image
domain, i.e. υ(x) = (−Φ̂y(x), Φ̂x (x), 0).

Let f (x) be the magnitude of edge pixel and the magnitude of boundary current
be proportional to edge strength, that is, the electric current on object boundary is
defined as f (x)O(x). The magnetic flux B(x) generated by gradient vectors at each
pixel position x can then be computed as:

B(x) ∝
∑

s∈S,s �=x

f (s)O(s)× R̂xs

R2
xs
, (1)
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where s denotes an edge pixel position, S is the set containing all the edge pixel
positions across the image, R̂xs denotes a 3D unit vector from x to s in the image
plane, and Rxs is the distance between them. Thresholding can be applied to remove
some erroneous edge pixels with very small gradient magnitude [12, 24]. The active
contour is assigned with unit magnitude of electric current. The force imposed on it
can be derived as:

F(x) ∝ υ(x)× B(x). (2)

From (1) and (2), we can see that B intersects the image plane perpendicularly and F
is always perpendicular to both υ and B. Thus, F also lies in the image domain and
its third element equals to zero. For simplicity, from now on, we shall ignore its third
dimensional component and denote F(x) as a 2D vector field in the image domain.
The basic model can then be formulated as:

dC

dt
= αg(x)κn̂ + (1− α)(F(x) · n̂)n̂, (3)

where g(x) = 1/(1 + f (x)), κ denotes the curvature, and n̂ is inward unit normal.
Its level set representation then takes this form:

∂Φ

∂t
= αg(x)∇ ·

( ∇Φ
|∇Φ|

)
|∇Φ| − (1− α)F(x) · ∇Φ. (4)

We can see from (1) and (2) that the image force is derived from global inter-
actions among rotated gradient vectors, i.e. f (x)O(x). Thus, it is more robust than
fittings based on local gradient towards weak edges (where f (x) is small) and noise
(where O(x) is locally inconsistent). It is worth noting, however, that general contrast
consistency along the object boundaries is important to the model. Large contrast
variation can disrupt the force field, e.g. half of the object appears brighter than
background and the other half appears to be darker. However, this does not mean that
the entire object has to be brighter or darker than background. Those regions away
from object boundary can be continuously varying in intensity. The model also can
tolerate a fair amount of local contrast inconsistency, in the same way as to image
noise and weak/broken edges.

As aforementioned, due to cross product computation the external force, F,
is always perpendicular to υ which is tangent to the contour, i.e. the external force is
imposed along the normal direction. Note the internal force due to curvature flow is
enforced in the inward normal direction. Thus, the total force is always perpendicular
to active contour. In other words, it dynamically updates itself according to contour
evolution to push and pull the contours along the normal direction until they reach
object boundaries where forces from both sides are in balance. As a result, the prop-
agating contour will not suffer from those convergence issues related to static force
fields, such as GVF, in which evolving contours may become tangent to underly-
ing force vectors resulting in false convergence. This force field is also significantly
different from others used in edge based methods. For example, in CPM, the force
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Fig. 1 Preventing contour collapsing. a Two contours, C1 and C2, are placed on each side of an
object boundary with current directions indicated by arrows. Contour C1 is attracted by the object
boundary and expands itself in the outward normal direction. It eventually will wrap around and
capture the object boundary. Contour C2 however is repelled and forced to shrink in the inward
normal direction. Thus, two contours will not collapse to each other. b Similar to (a), however
contour C1 is placed across the object boundary. Those contour segments of C1 that are inside
object boundary will be pulled towards object boundary and the rest of contour C1 will expand
and wrap around the object boundary. The segments inside object boundary and outside will not
collapse to each other. c The object in this case contains an internal boundary. The behavior of C1
and C2 is similar to that in (a). Contour C3 will expand itself to capture the internal boundary. Three
contours will not collapse to each other, while capturing both boundaries. d Contours C1 and C2 are
now initialized across external and internal boundaries, respectively. The behavior of C1 is similar
to that in (b). The contour segments of C2 that are inside the object (gray area) will be attracted to
the object internal boundary that is initially inside contour C2. The other contour segments of C2
will expand to capture the rest internal boundaries. No contour collapsing will occur, either. GVF
contours, as an example, will collapse to each other in all above scenarios

between an edge pixel s and an infinitesimal contour segment c lies in a straight line
between these two, regardless the orientation of the contour segment. In our model,
the orientation of the edge pixel and the contour segment also have influence on the
resulting force interaction. This ability to adapt is very important since it ensures the
active contour, once initialized, overcome deep concavities and narrow regions to
reach object boundaries (Fig. 1).

By incorporating (2), Eq. (3) can be re-written as:

dC

dt
= αg(x)κn̂ + (1− α) (υ(x)× B(x) · (n̂, 0)

)
n̂ (5)

= αg(x)κn̂ + (1− α) (B(x) · ((n̂, 0)× υ(x))) n̂.

The external force in the second term is in fact a projection of the magnetic flux
onto a binormal unit vector which is computed from a cross product of the contour



106 X. Xie et al.

inward normal and its tangent vector. A positive projection will force the contour
to expand and a negative projection will shrink the contour, which acts in a similar
way as what a region indication function does in a region based approach, however,
this is derived from the edge based assumption. Thus, an edge can attract or push
a contour which may lie either side of the edge. However, this bidirectionality is
fundamentally different from that in, for example, GVF. In GVF, the force imposed
on the contour is independent of the contour itself, which can cause the contours to
collapse to each other when reaching to the same object boundary. For the proposed
method, the force is related to both the image gradient and the contour (which can
be clearly seen from Eq. (5)). It has the ability to prevent the contour from reaching
to the same boundary and disappearing after merging together.

In [24], we proposed to perform nonlinear diffusion of the magnetic field in order
to overcome noise interference when necessary. An edge saliency measure can be
added to the weighting function in order to better preserve the edges [22]. Let B(x)
denote the signed magnitude of B(x). The diffused field B̂(x) is obtained by solving:

dB

dt
(x) = p(B(x))∇2B(x)− q(B(x))(B(x)− B(x)), (6)

where p(B(x)) = e−
|B(x)|S (x)

K , q(.) = 1 − p(.), and S (.) is a n edge saliency
measure which is measured based on edge strength and orientation coherency, i.e.
S (x) = f (x)v(x) where v(.) is the variance of orientation in a local neighborhood,
e.g. 9 × 9 as used here. More sophisticated saliency measures, e.g. [11], can be
used. Weighting the flux magnitude with S (.) further ensures as little diffusion as
possible at object boundaries, while areas lack of consistent support from edges result
in substantial diffusion.

3 Extension to 3D

Shape segmentation from volumetric data has an important role in applications
such as medical image analysis. Volumetric image segmentation remains an intri-
cate process, due to the complexity and variability of image data and shapes (i.e.
anatomical structures). There have been applications of simple techniques such as
thresholding and region growing in the extraction of 3D objects from volumetric
images [20, 21]. However, these techniques are very sensitive to noise and inten-
sity inhomogeneities which exist in real images, and often produce leakages and
regions which are not contiguous. Statistical approaches [10, 19] are also used to
identify different tissue structures from medical images. It usually involves manual
interaction to segment images in order to obtain a sufficiently large set of training
samples. Such strategies are often restricted to problems where there is sufficient
prior knowledge about the shape or appearance variations of the relevant structures.
Also, the use of the same training set for a large number of image scans may lead
to biased results that do not take sufficient consideration of the variability within
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Fig. 2 Relative position and orientation between geometries in 2D and 3D

individuals. Atlas based approaches perform segmentation based on image registra-
tion techniques [15], whereby an image can be segmented by finding a transformation
that maps a template image to the target image. It is however generally difficult for
atlas based techniques to accurately extract complex geometries such as those from
volumetric medical images due to the variability of anatomical structures.

The external force field presented previously is based on the hypothesized mag-
netic force between the active contour and object boundaries. This formulation can be
applied directly in the magnetostatic active contour to compute the magnetic field and
force required to draw the active contour towards object boundaries in 2D images.
This image gradient based method showed significant improvements on conver-
gence issues, e.g. reaching deep concavities, and in handling weak edges and broken
boundaries. When applying the analogy directly to deformable modeling, it requires
estimation of tangent vectors for the deformable contours, which is convenient in 2D
case, however, not possible in 3D. Our approach is to define a novel external force
field that is based on hypothesized geometrically induced interactions between the
relative geometries of the deformable model and the object boundaries (characterized
by image gradients). In other words, the magnitude and direction of the interaction
forces are based on the relative position and orientation between the geometries of the
deformable model and image object boundaries, and hence, it is called the geometric
potential force (GPF) field [27]. The bidirectionality of the new external force field
can facilitate arbitrary cross-boundary initialization, which is a very useful feature to
have, especially in the segmentation of complex geometries in 3D. It also improves
the performance of the deformable model in handling weak edges. In addition, the
proposed external force field is dynamic in nature as it changes according to the
relative position and orientation between the evolving deformable model and object
boundary. This GPF force however is in fact a 3D extension of the 2D MAC model.

3.1 Geometric Potential Force

First, consider a deformable contour C and an ideal object boundary C ′ in the image
plane (see Fig. 2). Let dl and dl ′ denote the infinitesimal elements of contour C
and object boundary C ′, respectively. In the existing force field based models such
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as [13, 26], the interaction between dl and dl ′ is inversely proportional to the distance
separating these two elements and the derived force lies in a straight line between
them. They do not take into account the local geometry of the deformable contour C
or object boundary C ′. We propose to incorporate the mutual location and orientation
of these elements.

Let x and x′ denote the positions of elements dl and dl ′, respectively. Thus,
rxx′ = x − x′ is their mutual location of those two elements, rxx′ = |x − x′| is the
distance between them, and r̂xx′ = (x−x′)/rxx′ is the unit vector pointing dl from dl ′.
The directions of these elements can be represented by their unit tangent vectors t̂ and
t̂′. However, a unique tangent vector is no longer available for infinitesimal surface
elements in 3D. Thus, we use unit outward normal vectors n̂ and n̂′ to characterize
the orientations of these elements instead (see Fig. 2). In 2D, they are simply 90◦
rotated tangent vectors.

We are now ready to introduce the hypothesized interaction force dF dl which
acts on element dl by virtue of the hypothesized force field induced by element
dl ′. It is desirable to combine the element orientation vectors and distance vector
in deriving the force. We propose a simple but effective combination of these three
vectors as n̂ (r̂xx′ · n̂′), unlike CPM [12] as an example where only the distance
vector r̂xx′ is used. The multiplication of contour normal n̂ ensures that the force is
always imposed in the normal direction so that the deformable model does not suffer
from convergence issues (i.e. stationary points, saddle points and extreme boundary
concavities), which are often associated with other vector force field based methods
such as GVF [25]. The dot product of the object boundary element normal with the
distance vector allows the force on the contour in the normal direction to diminish as
the contour reaches the object boundary. Similar to other physics-inspired force field,
it is also desirable to decay the force interaction with the increase of distance between
the elements, i.e. the force is designed proportional to n̂ (r̂xx′ · n̂′)/rλxx′ where λ > 0.
Thus, the contribution of element dl ′ of object boundary C ′ to the total force acting
on dl in accordance with their distance and mutual orientation can be formulated as

dF dl = n̂ dG dl, dG =
(

r̂xx′

rλxx′
· n̂′

)

dl ′ (7)

where F is defined as force per unit length, dG is the contribution of element dl ′
of object boundary C ′ into the scalar field G(x), which can be considered as an
intermediate potential field, and λ is a positive constant that affects the magnitude
of the interaction force based on the distance between the elements. In our study,
we obtained the best results when λ coincides with the dimension of the image
data, i.e. λ = 2 in the 2D case. Furthermore, we show later that when λ coincides
with data dimension in 2D, the proposed force interaction has an explicit link to the
magnetostatics theory and thus the spatial decay of the magnitude of the interaction
force is analogous to that of the magnetic field.

As shown in (7), the computation of the new force field only requires unit normal
vectors and relative position of the two elements, which is convenient to acquire.
Thus, this new force field can be easily extended to higher dimensions, e.g. 3D. Let dA
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belong to the deformable surface S whereas dA′ belongs to the object boundary S′
(see Fig. 2). The generalized 3D version of force dF dA acting between these two
area elements can be readily given as

dF dA = n̂ dG dA, dG =
(

r̂xx′

rλxx′
· n̂′

)

dA′ (8)

where F is defined as force per unit area, G is the corresponding 3D potential field,
n̂ and n′ are unit surface normals of the deformable model and object boundary,
respectively, and λ = 3. Again, the magnitude and direction of the induced force F is
handled intrinsically by the relative position and orientation between the geometries
of the deformable model determined by the evolving surface S and object boundary
determined by S′. Since the force is derived geometrically and its interaction is a
function of inverse distance, we name it geometric potential force (GPF).

3.2 GPF Deformable Model

The GPF force in (8) is derived using geometrical information from ideal object
boundaries. Next, we extend this to deal with real image data and formulate it in
3D deformable modelling. In this work, we adopt an edge based approach, that is
using image intensity discontinuity to estimate the presence and strength of object
boundaries.

Let I (x) denote the 3D image, where x is a voxel location in the image domain.
Temporarily, we consider x as a continuously varying point. One may treat this as
an interpolation between voxel grid points to obtain a continuous image I (x). To
compute the force acting on dA, we first compute the total potential field for an
arbitrary point x:

G(x) = P.V .
�

�

�

�

∫∫

S′
W (x′)

(
r̂xx′

rλxx′
· n̂′(x′)

)

dA′. (9)

where W (·) is a weighting function that is defined later, and P.V . means ‘Principal
Value’: the contribution of infinitesimal circular vicinity of singular point x′ = x into
the integral is disregarded, which occurs when surfaces S and S′ intersect.

First, we consider the case, in which S′ can be defined rigorously on an ideal
object O , i.e. S′ = ∂O . The object O can be specified by a binary image:

I (x) =
{

I0 x ∈ O
0 x /∈ O,

(10)

where I0 is a nonzero constant. For such an image, ∇I is infinite on S′ and can be
represented through the 3D Dirac’s delta as
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∇I (x) = ΔI δ(x − x′) n̂′(x′) (11)

where ΔI is the jump in function I (x) at the boundary of O; x′ ∈ S′ and n̂′(x′)
is the unit normal vector to the surface S′. Setting W equal to the jump of I at the
boundary, i.e. W = ΔI , we can re-write (9) as a volume integral

G(x) = P.V .
∫∫∫

Ω

W (x′)
(

r̂xx′′

rλxx′′
· n̂′(x′)

)

δ(x′′ − x′) dV ′′ (12)

Here, x′′ is the integration variable and dV ′′ denotes a volume element. The
Dirac’s delta is used to obtain the area element from the volume element, i.e.
d A′ → δ(x′′ − x′) dV ′′.

Taking into account (11) and W = ΔI , we can replace the product W (x′) n̂′(x′)
δ(x′′ − x′) in the integral of (12) by ∇I (x′′). Thus, (12) can be re-formulated as

G(x) = P.V .
∫∫∫

Ω

(
r̂xx′′

rλxx′′
· ∇I (x′′)

)

dV ′′. (13)

It is now readily generalizable to real 3D data.
In real images, ∇ I is a smooth function reaching maximum magnitude in the

vicinity of the object boundary. The natural generalization of (13) is to substitute
Dirac’s delta by this smoothed function analog into (13), i.e. W (x′) n̂′(x′) δ(x′′ −x′)
→ ∇ I (x′′), where I denotes a real image. The geometric potential field in a contin-
uous form can then be formulated as

G(x) = P.V .
∫∫∫

Ω

(
r̂xx′

rλxx′
· ∇ I (x′)

)

dV ′. (14)

Note, due to the substitution of W (x′) n̂′(x′) δ(x′′ − x′) by ∇ I (x′′), the x′ defined on
the ideal surface S′ is no longer needed. Hence, the notation is simplified by replacing
the integral variable x′′ with x′. Finally, its discrete form can be written as

G(x) =
∑

x′∈Ω,x′ �=x

(
r̂xx′

rλxx′
· ∇ I (x′)

)

. (15)

This can be considered as a convolution of the image gradient with the vector kernel
Kλ(x) ⎧

⎪⎪⎨

⎪⎪⎩

Kλ(x) = P.V . x̂
|x|λ = P.V . x

|x|λ+1

G = Kλ ∗ ∇ I = ∫∫∫

Ω

(
Kλ(x−x′) · ∇ I (x′)

)
dV ′

(16)
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which can be computed efficiently using the fast Fourier transform (FFT). Note that
the potential field G is computed as a convolution of two vector functions.

The total force acting on the unit area element of the deformable surface S is
thus given as F = n̂ G(x). where n̂ is the outward unit normal of level set surface.
Note, an inward normal can also be used, i.e. F = −n̂ G(x), which will result in
opposite deformable model propagation since the force field is exactly in the opposite
direction. Hence, the force can be re-written in a generalized form:

F =J n̂ G(x). (17)

where J is a constant taking values of ±1. Note this is different from the constant
force in the geodesic model, where the force is monotonically expanding or shrinking.
The sign convention ± is merely used to determine whether outward and inward
normals of the deformable surface are considered.

The general contrast consistency along the object boundaries however is important
to the model. Large contrast variation can disrupt the force field, e.g. half of the object
appears brighter than background and the other half appears to be darker. However,
this does not mean that the entire object has to be brighter or darker than background.
Those regions away from object boundary can be continuously varying in intensity.

Once the force field F(x) is derived from the hypothesized interactions based on
the relative geometries of the deformable model and object boundary is determined,
the evolution of the deformable model S(x, t) under this GPF field can be given as

dS

dt
= (F · n̂)n̂. (18)

Since surface smoothing is usually desirable, the mean curvature flow can be incor-
porated and the complete GPF deformable model evolution can be formulated as

dS

dt
= α g κ n̂ + (1− α)(F · n̂)n̂ (19)

where g(x) = 1/(1 + |∇ I |) is the edge stopping function. Note that in our case,
the flow of F is directed by definition normal to surface S, therefore (F · n̂)n̂ = F.
Notation (F · n̂)n̂ is inherited from the traditional methods, e.g. GGVF. The level set
representation of the proposed deformable model based on GPF can then be written as

∂Φ

∂t
= α g κ |∇Φ| − (1− α)(F · ∇Φ) (20)

where Φ(t, x) is the level set function, such that the deformable surface S is defined
asΦ(t, x) = 0. Note, the GPF force field is defined on the deformable surface, which
is implicitly embedded in the level set function, i.e. the force field computed at the
propagating front needs to be extended across the computational domain so that the
full level set function can be continuously evolved. Although direct force extension
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method such as [1] can be used, we can conveniently compute the GPF forces for
each level set so that this external force is extended to the entire level set function.

The GPF deformable model differs from conventional edge based models by
utilizing edge voxel interactions across the whole image, thus providing a more
global view of the object boundary. The magnitude of the potential field strength
at each image location x is based on the relative position of x with all other voxels
in the image. Therefore, voxels at homogeneous regions will also have a non-zero
potential field strength. In this way, surfaces which are initialized far away from
object boundaries can propagate towards the image edges and converge.

As shown in (8), the dot product r̂xx′ · n̂′ can be both positive and negative,
depending on the relative configurations of the geometries between the deformable
model and the image boundaries, thus giving a bidirectional vector force field. This
useful bidirectionality facilitates arbitrary cross boundary initializations, as its force
vectors point towards the object boundary from both ways. This also allows the model
to stabilize the deformable surfaces at weak edges, thus preventing leakage.

The physics-based deformable models described in [12, 13, 18, 26, 28] all use a
kernel based function to compute the external force field with kernels being decreas-
ing functions of distance from the origin. They are in effect equivalent to the external
force derived in [13] based on convolving a vector field with the edge map. For
example, the external force in [12] can be represented as a convolution with the same
kernel Kλ (16) with λ = 2:

Fa(x) = q

4πε

(
Kλ ∗ |∇ I |), Fr (x) = q2

4πε

(
Kλ ∗ 1Ω

)
(21)

where 1Ω(x) is a function equal to 1 when x ∈ Ω and 0 otherwise. The repelling
force is largely imposed in the tangential direction, which has very limited effect on
changing the shape or topology of the deformable model. Thus, it is not necessary in
our model. In order to compare with the dominant attraction force Fa , we combine
(16) and (17) and rewrite the GPF force as

FGPF =J n̂
(
Kλ ∗ ∇ I

)
(22)

It is clear that the GPF force is directed by the normal of the deformable model, i.e.
it does not contain the tangential ‘parasitic’ component in contrast to the Fa force.
Moreover, the proposed GPF takes into account edge orientations, as well as edge
strength (the convolution in (21) is based on a convolution of a vector function on a
scalar field; whereas in (22) it is carried out on a vector field).

4 Experimental Results

In this section, we present experimental results on both synthetic and real world image
data. The comparative analysis is performed using several classical and state-of-the-
art methods, which consists of image gradient based and region based methods.
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Fig. 3 Comparing shape recovery on synthetic images (by columns)—a initial snakes, b recovered
shape using DVF, c geodesic, d GGVF, e GeoGGVF, f CVF, and g proposed MAC snakes

In particular, the geodesic model is included as a representative of conventional local
edge fitting based method which is based on monotonically expanding or shrinking
force. The various vector field based models, such as [12, 13, 18, 28], have very
similar convergence and initialization dependence behavior to the GVF or GGVF,
since their dominant external forces are static as discussed earlier.

Figure 3 shows comparative results of 2D segmentation on synthetic data. Even
though these images have clear (ideal) boundary and the active contour models are all
using level set representation, convergence issues still arise. The solution becomes
particularly challenging under certain initialization conditions. The first two rows
in Fig. 3 show comparative recovered shapes for the DVF [6], geodesic, GGVF,
GeoGGVF, CVF, and MAC models in columns (b) to (g) respectively. When the initial
contour was placed outside the four discs (first row), only the geodesic snake and
MAC could accurately recover them. However, in a more arbitrary cross-boundary
initialization case (second row), only MAC was successful. Next, we consider the
recovery of an acute concavity as shown in the third and fourth rows in Fig. 3, again
with different initialization conditions. For the DVF, GGVF, and GeoGGVF snakes,
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Fig. 4 Comparative study—results by row: a DVF, b geodesic, c GGVF, d GeoGGVF, e CPM,
f MAC

their stationary vector force fields exhibit stationary and saddle points, e.g. the saddle
point at the entrance of the concave shape which prevents the snake converging to
the object boundaries. Again, given an arbitrary cross-boundary initialization, the
geodesic snake suffers severe problems and the constriction on the left side of the
concave shape causes difficulties for the CVF active contour. MAC was the only
active contour model that could successfully recover the shape in both initializations.
When dealing with complex geometries, such as the swirl shape and the text “PAMI”
shown in the last two rows in Fig. 3, MAC was the only model that managed to fully
recover the shapes. The latter example further illustrates MAC’s ability in dealing
with multiple objects with complex topology.
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Fig. 5 GPF: first row from left to right—input image and initial deformable model, corresponding
edge map and computed geometric potential field, second row—initial and evolving deformable
models, and the third row—associated GPF vector field

Figure 4 shows a brain MRI image and its comparative segmentation results.
For the active contour models, the snake was initialized across the left and right
hemispheres, while for the particle model a grid of charges was used. The static
vector force based methods (DVF, GGVF, and GeoGGVF) failed to evolve through
the tortuous structures and collapsed to nearby edges as shown in rows (a), (c), and
(d). The geodesic snake, in row (b), stepped across the weak edges but also failed
to localize the boundaries. The free charges of CPM initially reached most of the
object boundaries, but later failed to stabilize at weaker edges resulting in incomplete
boundary description (row (e)). The MAC contours succeeded in evolving through
the narrow and twisted structures as shown in row (f). Multiple regions were captured
simultaneously.

Next, we demonstrate the results of the 3D model. The first row of Fig. 5
shows a substantially blurred image with linearly varying intensity, and the cor-
responding edge map and computed geometric potential field. In addition, as the
deformable model evolves, the unit vector r̂xx′ changes accordingly based on the
relative geometries. This contributes to a vector force field that changes dynamically
as the deformable model evolves, as depicted in the second row of Fig. 5. Therefore,
the proposed model has much better invariance to its initial position and can deal
with complex geometries and extreme boundary concavities.



116 X. Xie et al.

(a
) 

(b
)

(c
) 

(d
) 

(e
) 

Fig. 6 Shape recovery from synthetic images: a isosurfaces of various shapes to be recovered from
synthetic images (128×128×128), b initial deformable models (yellow) with input shapes (blue,
semi-transparent), c recovered shape using geodesic, d GGVF, e proposed GPF

Figure 6 shows comparative results of extracting 3D shapes. The first column
shows the shape extraction results for the six-ellipsoids problem. Given an arbitrary
initialization across all the ellipsoids, only GPF could accurately recover the shapes.
The geodesic model, given the same initialization configuration, simply expanded
outwards and reached the image borders. This is due to the fact that the geodesic
model cannot handle cross-boundary initialization as the constant pressure term can
only monotonically shrink or expand the contour. Although the bidirectionality of
the GGVF model enables it to handle cross-boundary initialization, the saddle and
stationary points in this example prevented GGVF from extracting the ellipsoids. The
second and third columns show the geometrical object to be recovered consists of two
flattened ellipsoids connected by a narrowing tube with a constriction in the middle.
With the deformable models initialized inside one of the ellipsoid, only GPF could
propagate through the narrowing tube to accurately extract the shape. Also, with a
more arbitrary cross-boundary initialization, GPF was the only successful model to
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Fig. 7 Segmentation of cerebral arterial structure using different deformable models—first row
geodesic, second row GGVF, third row Chan-Vese, fourth row proposed GPF

extract the exact shape. The fourth and fifth columns in Fig. 6 compares the shape
extraction results on a complex geometry with different initialization configurations.
When the initial surface is placed inside one of the sphere of the molecular structure,
GPF is the only model that managed to extract the geometry successfully. These
examples demonstrate the superior performance of the GPF deformable model in
resolving deep concavities and handling complex geometries and topologies. This
is mainly due to the dynamic nature of the vector force field. In addition, we show
that the bidirectionality of the new force field gives GPF the flexibility to deal with
arbitrary cross-initializations.
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Fig. 8 More examples of the proposed method on real 3D medical data

Figure 7 shows comparative results on the segmentation of cerebral arterial struc-
ture from magnetic resonance (MR) imaging. Two initial surfaces are placed inside
the object of interest for the geodesic model, and across the object boundaries for
GGVF, Chan-Vese and GPF. The geodesic model cannot propagate through the nar-
row tubular structures, and leaks out at weak object boundaries during the evolution.
The GGVF model collapsed to the nearby object edges due to the saddle or sta-
tionary points inside the narrow image structures. In contrast, the Chan-Vese and
GPF models are able to propagate through the long tubular structures to extract
the cerebral arterial geometry. Further examples of the 3D method on real data are
given in Fig. 8. The examples above have shown that the GPF deformable model can
efficiently segment thin and complex structures, and can handle inhomogeneity in
image intensities, noises and weak edges, which are often present in real images.
The improvements achieved by the proposed method, as demonstrated extensively
in various examples, are significant and consistent.

5 Conclusions

We have presented two image gradient based deformable models that are both based
on global image gradient vector integrations, instead of conventional local edge
fitting. The 2D MAC model can attract the contour into deep concave regions and
does not suffer from saddle point and stationary point problems. Our comparative
study showed significant improvement in initialization invariancy and convergence
capability on existing state-of-the-art techniques. Its extension to 3D, known as
the geometric potential force (GPF) model, utilizes pixel or voxel interactions across
the whole image. The derived geometric potential field is thus more informative
and exhibits spatial and structural characteristics of image objects which are more
coherent than image cues that are based solely on local edge or regional information.
This makes the model more robust towards image noise and weak object edges. The
relativity between geometries gives the proposed deformable model its distinctive
bidirectionality, which facilitates the handling of arbitrary cross-boundary initializa-
tions. The straightforward generalization of the proposed model to higher dimensions
allows the framework to be applied on N-dimensional images, and opens up to a wide
range of potential applications.
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A Fast Geometric Deformation Method
to Adapt a Foot to a Platform

J. M. Buades, M. González-Hidalgo, Francisco J. Perales, S. Ramis-Guarinos,
A. Oliver and E. Montiel

Abstract The main goal of this research work is to develop a new system that designs
shoes that adapts exactly to the foot shape. This research is based on a biomechanical
anatomical structure of the foot and of the deformable shape. The system automati-
cally selects significant foot points. We consider several anthropometrical parts of the
foot in order to apply a global deformation with different axis. Also an interpolation
process is designed to combine the several parts of the foot in an efficient and accurate
manner. We consider different criteria in the deformation process because the top is
rigid and the sole is assumed non-rigid. The system is implemented in an optimized
software version in order to control the computational cost of the deformation process.
A prototype of oriented commercial Application Programming Interface (API) is
developed for non specialized users of the system. The results presented evaluate
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the error between deformations and we validate the error of several users (foot and
last). Also the low error obtained guarantees the comfort of the foot that is a very
important objective in this area of research.

1 Introduction

The footwear manufacturers from Europe, and particularly from Spain, need to bet
on high performance and added value products, since they cannot compete in price
against the low cost producing countries invading the markets. Personalization is
an ideal strategy: It offers a high added value and links the client to the enterprise.
Once the feet of the client are scanned and registered, the client could demand
his personalized shoes from the catalogue or Internet. The system presented in
this paper completes and follows one of the research and development lines which
is being carried out at the INESCOP for several years, and is a clear example of
collaboration between industry and university research group. Until now this project
(European ERGOSHOE project: http://www.ergoshoe.inescop.es; also CEC-made
shoe project: http://www.cec-made-shoe.com) led to the development of a low cost
3D foot scanner, a high precision 3D last scanner and software tools (Forma-3D and
INFOHORMA) for last design which also allows to superimpose and compare dif-
ferent volumes (e.g. foot and last). These ideas will be addressed in Sect. 2. However
there are still unsolved issues. With the general aim in mind of improving the auto-
matic process of personalizing footwear. This paper address the issue of deforming
the foot in order to predict his geometry once it is placed upon an elevated sole profile
(e.g. high heels), considering the scan performed of the feet and the profile of the sole
last. We need to be able to use the foot scan of the foot for multiple lasts, and most of
the lasts have a certain amount of heel rise. The elevated sole profile is determined
by the last.

The idea of “measuring” the shoe fit to the foot is not new. Lowe in 1927 obtained
a patent for a fluoroscope intended to check the fitting of the shoes visually [11].
At that time the radiation was not taken very seriously and the idea was quite suc-
cessful. Many shoe stores offered this service in Europe until the 1950s. But these
fluoroscopes were removed in 1953. Letting radiation aside, this method was lim-
ited to observe the fit with the feet in an existing shoe. However, having the right
technology, there has not been great progress since then. The process of digitizing
a foot and changing the last shape from its numerical representation is something
that is already being done at the theoretical and practical level [13, 15–17]. There
have been some advances in foot volume parametrization from 3D coordinates of
discrete points [12–14], and numerous mathematical models have appeared to
describe the foot motion (see example [1, 2], although it does not offers any infor-
mation about the volume of the foot). There are models that describe the shape of
the foot, but these tend to be static [12]. Some of them describe the deformation of
the foot depending on the load [5] and there are also attempts to record real-time full
volume during walking (CEC made shoe project). But, in our concern, we have not

http://www.ergoshoe.inescop.es
http://www.cec-made-shoe.com
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found articles performing deformation models of the foot for applications with time
restrictions.

Foot deformation on a high level position, as we can see in Fig. 6, is not so simple.
Techniques such as free form deformation (FFD) (see [17]) suggest a technique of
spatial deformation able to deform the scanned foot points. This technique associates
some key points of the 3D model with the control points. The manipulation of these
control points generates the deformation of the model. Techniques such as warping
to the silhouette of the shoe last will not produce satisfactory results for such cases.
Using an analytical model of foot bones that will lead to surface deformation could
produce useful results [2], but has a high consuming time. Leon Kos et al. [8] propose
that the scanned foot in the flat position should be matched with a similar foot from
the database to obtain land mark similarities for the fitness analysis. The surfaces of
the foot and the shoe last are scanned in 3D. Then they apply a series of deformation
algorithms to evaluate the correspondence between the volumes. So you can have a
shoe lasts database with which to compare foot for the analysis of the fitting of the
shoes. Tang and Hui [22] presents an approach for modelling human foot tendons and
determines their influence on the skin layer deformation. An anatomical foot model
including skin, muscle, tendon and skeleton layers is adopted. Experimental results
[22] showed that the axial deformation technique can model deformation of the foot
tendons with satisfactory visual realism. In [23] they proposed an approach based on
boundary element method (BEM) to model foot deformation and present its applica-
tion in simulating interaction with footwear towards footwear design. Witana et al.
in [27] developed a study on the feet of 16 participants showing that the interaction
between the plantar surface of the foot and the load-bearing surface contributes to
foot and surface deformations and hence to perceived comfort, discomfort or pain.
Foot shape deformations were quantified using 3D laser scans. This study can have
implications for the design and material selection of orthotics, insoles and footwear,
and justify the importance of a suitable adjustment of foot to shoe last. Wang [26]
develop a process for identifying the most suitable shoe last in a database for the
human feet. Fuzzy techniques followed by an analytical hierarchy process (AHP) was
applied to find the weighting factors for each girth to determine the fitness function
among the shoe lasts and the feet.

Recently, Rupérez [19] (see also [20, 21]) conduce a similar research that in
[23], but using the finite element method (FEM) instead BEM, to develop a software
application for the simulation of the footwear deformation in gait. Artificial Neural
Networks are successfully applied to predict the force exerted by a sphere that,
simulating a bone, pushes a shoe upper material sample. Distribution of contact forces
in the footwear is used for comfort analysis. The finite element method is applied
to determine the pressure at the upper part of the shoe in a gait motion. In order to
deform the foot model, the movement of 20 landmarks captured from a camera, is
proposed to determine the foot motion. The deformation is calculated by minimizing
the sum of the square of the distance between the landmarks. Alternatively, the foot
model can be deformed with a geometric approach with 20 landmarks. On the other
hand, creating foot deformation of different subjects requires an initial 3D foot model
and captured motions of the landmarks of each subject. The method is time expensive
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Fig. 1 Description of the deformation virtual process

for simulating foot motions and it is a drawback of the methods based on FEM or
BEM, and are not suitable for applications with time constraints.

In [18] Rout et al. discuss the basic concepts and current methods being followed
to convert foot to shoe-last, retrieve the best fitting shoe last based on the 3D foot
scan of the customer, and to obtain customized shoe last. Leng et al. [9] propose
to use a distance map to indicate how well the selected shoe last fits the specific
foot shape and to guide the deformation, in this case, the idea is to deform existing
last model to fit a consumer’s foot shape with minimally affecting the original last
style, this process is achieved by minimizing an equation. Only results using men’s
shoes with low profile are shown. As we can see a typical idea is to select from an
existing shoe lasts database or deform an existing shoe last model into one that fits
the scanned foot data (see [3, 7, 10, 15–17]).

In this paper we propose a system to predict and study the deformation of a
consumer’s foot when it adapts to different lasts, for in a subsequent process, design
the best last that fits its foot.

The system uses as input a scanned 3D model of the foot obtained through the
INESCOP 3D scanner (see [25] for other 3D surface scanning) and a model of the
last bottom line. The foot is scanned over a flat plane and its orientation is irrelevant
since the system is designed to automatically place the foot so it matches up with the
sole last orientation. The process described in this paper is shown in Fig. 1. Moreover,
the computations for each vertex of the 3D foot model are independently, therefore
the whole process is easily parallelizable. This fact is important because you can
compare several sole lasts with foot deformation. Therefore the computation time
decreases.

The paper is organized as follows. Section 2 goes into the ideas of the customiza-
tion of footwear identified at the beginning of the introduction. Section 3 is devoted to
the description of the deformation process of the foot. Section 4 shows the interface
created. The analysis of the results is carried out in Sect. 5. Finally, the paper ends
with the conclusions and future work.
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Table 1 Commercial tools in advanced shoe design

Company Personalization 3D scan foot Pressure platform Comfort Foot
of shoe deformation

Nike Yes No No No No
Todo para sus Pies Yes Yes Yes Yes No
Shoemaster Yes Yes Yes Yes No
Romans CAD Yes No No Yes No
Crispin-Powershape Yes Yes No Yes No
UIB-INESCOP Yes Yes Yes Yes Yesa

a This deformation process is based on 3D scanned plane foot. So we can deformate the foot virtually
for different last and compare

2 A General Framework in Shoes Customization

Actually the shoe last models are made with traditional methods with the help of
CAD/CAM systems to design some specific features and to mill it. The shoe last
is produced manually by expert’s craftsmen. The shape of the shoe last is often
arbitrary and it is based on expert’s experience, shoe’s design and fashion trends.
The materials used in the fabrication as well as the type of machines, also influence
the final product. Although the integration of technologies allows a rapid fabrication
of prototypes, the craftsman still must retouch the final product. There are several
initiatives that try to automate the process to create a shoe last. This implementation
proposes new methods for development and research in this area.

From a commercial point view, the case NikeId1 is a Nike service that allows
customizing footwear. The customer can design the product. The user can choose
the materials and colors. The system can choose 31 parts of the Nike’s shoe for the
personalization, 82 materials and options. This service is growing, developing new
applications to give a better on-line service. Although it has many advantages, the
system only changes the foot’s appearance. It does not enter in the comfort of the shoe.
Similar initiative have been set up by other brands such ADIDAS (MyADIDAS),
MUNICH (Myway) and others. More technical methods are used by “The Spanish
company Todo Para sus Pies S.L.”2, that has a customization system for footwear and
insoles. It serves patients with diabetic foot or vascular problems. So, the customer
gets the shoe model that better adapts him.

Table 1 shows a non-exhaustive comparative between software tools of several
companies engaged in this sector.

So we see a need to improve the processes of creation and design of the shoe at
all levels and possible applications (medical, sports and general public). Following
the conventional criteria to improve the quality in the production process of shoes,

1 http://nikeid.nike.com/nikeid/index.jsp
2 http://www.todoparasuspies.es

http://nikeid.nike.com/nikeid/index.jsp
http://www.todoparasuspies.es
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Fig. 2 Basic elements needed for simulation of a foot deformation. Left cloud of points of the
scanned foot. Center scanned platform shoe. Right scanned of the foot and platform together

Fig. 3 Initial human foot. Left cloud of points. Right polygon mesh obtained by the DIGIPIE 3D

comfort is considered one of the most important. Our deformation process combines
the features necessary to obtain an appropriate design to the biomechanical needs of
each individual foot. This process is very fast and guarantees the comfort.

3 Deformation and Methodology

In this section, we describe the method used for the foot deformation. Through a 3D
foot capture system we scan three basic elements: the foot, the platform shoe and both
together. In Fig. 2 we show these basic elements. At left we can found the scanned
points cloud corresponding to a consumer’s foot, at center the scanned platform shoe,
and at right the image of both together. Note that the goal is to deform the scanned
foot and put it in the position determined by the platform shoe. The platform is used
to obtain the line of deformation (see the red line of Fig. 6). To obtain it we cut the
platform by a perpendicular plane and the points on the platform that intersect with
this plane form the deformation line. The foot on the platform (see right part in Fig. 2)
is necessary for the comparison between the deformed foot simulation and the real
deformed foot in order to estimate the error and validate the method. So, we will
obtain the final result.

In order to proceed to deform a foot, an initial foot model and a line deformation
are required. The initial foot model is created using the DIGIPIE 3D, the INESCOP
low cost foot scanner.3 The scanned foot is represented by a cloud of points that is

3 The DIGIPIE 3D and the high precision last scanner are developed by the INESCOP in the
ERGOSHOE European project: http://ergoshoe.inescop.es/project.htm.

http://ergoshoe.inescop.es/project.htm
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Fig. 4 Foot dimensions

model by a surface polygon mesh as shown in Fig. 3. The surface mesh of the foot
model is composed of triangular elements with N vertices, and we have determined
the 3D coordinates of each of them. The shoe platform model has been obtained
using the INESCOP high precision scanner and the line deformation is modeled by a
B-spline curve. The scanned foot and platform model are usually without noisy and
are appropriate for conducting graphics applications.

In this paper, deformation of the foot model to adapt it to a platform is based on
geometrical considerations. The proposed algorithm is divided in five steps:

1. Significant foot points.
2. Foot areas division.
3. Sole deformation.
4. Top deformation.
5. Fusion of both deformations.

In the following subsections will describe each of these steps.

3.1 Significant Foot Points

To obtain an accurate deformation we need to calculate several significant foot points.
The most important points are IH, IF, MT, MF, HA and HB (see Fig. 4). The length
of the foot is the x-coordinate, the width is the y-coordinate and the height is the
z-coordinate. HF is the point with lowest x-coordinate and IF is the point with the
lowest distance between the point HF and all the points of the top foot border line.

Now we divide the length of the foot in two parts: forefoot (from the middle of
the foot to the toes) and hindfoot (from the middle of the foot to the heel). In the
forefoot we find the points MF and MT. MF is the point with the lowest y-coordinate
and MT is the point with the highest y-coordinate. We do the same in the hindfoot
where HA is the point with the lowest y-coordinate and HB is the point with the
highest y-coordinate.
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Fig. 5 Left Planes of the foot. Right areas in which we divide the foot

With the points MT and MF we create the plane that divides the toes from the
instep and with the points IF and HF we create the plane that divides the instep from
the ankle (see Fig. 5, left).

3.2 Foot Areas Division

On the basis of considerations made by footwear designers, we divide the foot into
different areas which are affected differently by the deformation of the foot to adapt
to the platform. We separate the foot into two principal parts (see Fig. 5, right): the
sole (purple color) and the top that is divided in three areas (red, blue and green
areas). The left side of the Fig. 5 shows the planes that define the different parts
which we divides the foot. Recall that these planes are: the plane πz of z-coordinate
constant and containing the point MT, the plane πM determined by the line joining
the point MF with MT and, the plane πH determined by the line connecting the
points IF and HF. Each part will suffer a different type of deformation according to
their characteristics.

• The Sole: The sole is composed of all the points below the plane πz (Fig. 4).
• The Top: The top is the part of the foot that does not belong to the sole. This part

is divided in three parts: the toes, the instep and the ankle, as we can see in Fig. 4.
Region “toes” consists of all the points between the fingertips and the plane πM.
Region “instep” is composed of all points between the planes πM and πH. Finally,
region “ankle” consists of all points above the plane πH.

3.3 Sole Deformation

The deformation of the sole is the main step to obtain the deformation of the foot
adapted to the platform. We must adapt with precision the sole to the deformation
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Fig. 6 Deformed foot and the final deformation of the sole in purple

line. In order to do that, we obtain the normal vector of every point of the line. This
is necessary to correctly locate points on the deformed sole. The sole deformation
varies according to deformation line. In Fig. 6, we show an example of the final
deformation of the sole.

Sole of the foot is adapted to the deformation line starting from the heel. The
process advances from the heel to the tiptoe, fitting the vertexes of the foot to the
line deformation and taking into account the normal direction to the deformation
line. The vertices to deform are at a distance d of the heel and height h. To obtain
the deformed vertexes, the process goes over the deformation line until reach dis-
tance d, and moves it in normal direction h units until gets the exact deformed
vertex.

3.4 Top Deformation

After the deformation of the sole must be addressed the deformation of the remaining
regions of the foot. We must take into account that the deformation of these regions
are subject to the restriction of the positions determined in the previous step for
the points of the sole. Recall that divide the top of the foot in three parts: the toes
area, the instep area and the ankle area. Each area is separated by a joint and it has a
different rotation angle. The two principal joints are the metatarsal joint and the ankle
joint.

• Metatarsal Joint: The metatarsal bones are responsible of the toes movement.
This joint is essential in the virtual deformation because it allows the correct
rotation of the forefoot. Its importance is due to is the most influential in the final
shape of the foot. The metatarsal joint is obtained from the most prominent points
of the forefoot (MT and MF). The axis of rotation passes through these two points
(see Figs. 4 and 7).
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Fig. 7 Axis of rotation of the
metatarsal bones

Fig. 8 Axis of rotation of the
ankle

• Ankle Joint: The ankle joint is obtained from the most prominent points of the
hindfoot (HA and HB). The axis of rotation passes through these two points (see
Figs. 4 and 8) allowing the ankle movement.

Note that, after deformation of the areas in which we have divided the top region
of the foot, we must to join all deformed areas of the foot. First we must applied
an interpolation in regions where two different areas are joining, followed by a
smoothing process (see Fig. 6). The result meets the C1 continuity. The interpolation
and the smoothing process is described below.

3.4.1 Rigid Areas

The toes, the instep and the ankle regions are considered rigid parts of the foot. When
the foot is deformed we apply a composition of transformations:

M = T · (R · T−1). (1)

It basically moves the object to the origin (T ), rotates (R) and returns it to its original
point (T−1). Then,
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Fig. 9 Left rotation angle of the toes area. Right rotation angle of the instep area

T =

⎛

⎜
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1 0 0 x
0 1 0 y
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0 0 0 1
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⎜
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⎟
⎟
⎠ . (3)

The axis of rotation for the metatarsal joint and the ankle joint is the y-axis. Then,

M =

⎛

⎜
⎜
⎝

cosα 0 sin α −x cosα − z sin α + x
0 1 0 0

− sin α 0 cosα x sin α − z cosα + z
0 0 0 1

⎞

⎟
⎟
⎠ . (4)

We need to determine the rotation angle of the three considered areas.

• Angle of Toes Area. This angle is the angle determined by the vectors AC =
C − A and BD = D − B (see Fig. 9, left). Where A is the point with the highest
x-coordinate of the foot without deforming and B is the point with the highest
x-coordinate of the deformed foot. The points C and D are the points with the
lowest x-coordinate in the toes area of the foot without deforming and the deformed
foot, respectively.
• Angle of Instep Area. The angle, shown in Fig. 9 on the right, is the angle

determined by the vectors CE = E − C and FD = D − F . The points C and D
are the same as in the toes area. We estimated the furthest point in the heel (with
the lowest x-coordinate and z-coordinate): the point of the foot without deforming
(point E) and the point of the deformed foot (point F).
• Angle of Ankle Area. The angle used to rotate the ankle area is the same as used

for the instep area, except that it is negative.

After the rotation angles have been obtained we deform the remaining areas of
the foot.
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Fig. 10 Deformed foot with-
out rotated ankle

As first solution we apply rotation to vertexes taking into account the area it
belongs. The upper vertexes are catalogued as toes, instep or ankle. First we only
rotate the toes and the instep areas (see Fig. 10). After that we deform the foot rotating
the ankle (see Fig. 11). This solution produces discontinuities (see Figs. 11 and 12,
middle image). To avoid this discontinuity we define a interpolation area. In this area
the vertexes are rotated taking into account its position to get smoother deformation of
upper vertexes (see Figs. 11 and 12, right image). To smooth the borders in the union
of different areas of the foot we apply a interpolation and we obtain satisfactory results
using two planes. We can appreciate the difference between the results obtained using
one plane (see Fig. 11, right) or two planes (see Fig. 12, right) in order to compute
the ankle area. Next section explains in detail the interpolation areas.

3.4.2 Interpolation Areas

The interpolation process is similar to the used by Kavan et al. in [6]. Then we
need to delimit the interpolation zones. The following describes as we compute the
interpolation zone for the union of the instep area with the ankle area. A similar
process is carried out for the interpolation in the joining zone of toes area with instep
area.

Let S be a surface in the original foot consisting of points belonging to the inter-
section of two planes with the foot, as we can see in Fig. 13. The the first plane π1 is
the plane parallel to the πH plane (see Sect. 3.2, left) and passing through point HB.
The second plane π2 is the plane done by z =HBz . The interpolation zone is delim-
ited by two surfaces obtained by the translation of S in the z-axis by two scalars tmin

and tmax . Where tmin = −α · c and tmax = α · c̃ and c, c̃ should be determined. Let
Sm and SM be the translated surfaces (see Fig. 13, right), the interpolation parameter
t is done by

t = t ′

tmax − tmin
, (5)
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Fig. 11 Left unrotated ankle (one plane). Middle rotated ankle (one plane). Right interpolation
with one plane

Fig. 12 Left unrotated ankle (two planes). Middle rotated ankle (two planes). Right interpolation
with two planes

Fig. 13 Interpolation areas

where
t ′ = d(P, Projz(P, Smin)),

d is the euclidean distance, P is a point on the interpolation zone and Projz is the
projection on z-axis direction of P in Smin .

Then, following [6] we apply an interpolation of angle β when we rotate all vertex
of this zone. Where β = α · t and α is the angle calculated for the ankle area. That is,
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M =

⎛

⎜
⎜
⎝

cosβ 0 sin β −x cosβ − z sin β + x
0 1 0 0

− sin β 0 cosβ x sin β − z cosβ + z
0 0 0 1

⎞

⎟
⎟
⎠ . (6)

Observed in this way, we obtain a simple implementation of the deformation of a
foot that allows an acceptable computational cost. Therefore, the results are tighter
to the real deformation of the foot. Figure 13 shows the interpolation zone that is
limited by the surfaces Sm and SM for the ankle area.

3.5 Fusion of Both Deformations

Once we have both top and sole of the deformed model, it is necessary to merge both
into a single 3D model that represents the client’s foot placed on the platform. This
3D model of the foot can be compared a posteriori with different shoe lasts to check
the comfort of them.

The fusion is a simple process since it is based on linking two 3D models into a
single one, considering shared points. These points will form a union that can present
certain anomalies produced by the deformation process. Therefore, it is smoothed
using the Laplacian smoothing technique (see [4, 24]). This process is also known
as diffusion. The equation of Laplacian smoothing is,

∂X

∂t
= λL(x), (7)

where X is the vertex of the mesh, L is the Laplacian, and λ is a scalar which
controls the rate of diffusion. By integrating Eq. (7) over time, a small disturbance
will disperse rapidly in its neighbourhood, smoothing the high, while the main shape
will be only slightly affected. The Laplacian operator can be linearly approximated
at each vertex, then a sequence of meshes {Xn} can be constructed by integrating the
diffusion equation with a explicit scheme, obtaining the following forward difference
equation,

X (n + 1) = (I + λ dt L)X (n). (8)

Obviously, the implementation of the previous explicit method, that have very nice
properties such us linear time and linear memory size for each step (see [4]), is
very straightforward. Unfortunately, if the mesh is large can be appear practical
limitations on the time step, that can be avoid using an implicit scheme in order to
integrate Eq. (7).

Note that the above process does not change the connectivity of the mesh. Each
step changes the position of the vertices, but the mesh topology remains unchanged.
The relaxation of a given vertex only requires information about its immediate
neighbours. In Figs. 21 and 22 can be seen the final deformation obtained after the
fusion process.
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Fig. 14 Interface initial

Fig. 15 Menu display. From left to right menu 1 and menu 2, respectively

4 Data Representation and Tool Description

As mentioned previously, the system needs two mandatory inputs for compute
the position of a foot on a platform: the model of the foot and the deformation
line corresponding to the selected platform. A third, optional input, concerning to
the foot on the platform can be provided. This last is necessary if we want statistics
of the errors. We have created a simple interface to load the three elements for the
deformation. The initial interface is shown in Fig. 14.

The first component that is request by the program is the deformation line (see
Fig. 15, menu 1). This line is stored in an igs file.

Once the deformation line is loaded, we will proceed to load the foot model (see
Fig. 15, menu 2). The foot was previously scanned and stored as a polygon formed by
tens of thousands of triangles in a stl file. Then, the program display the deformation
line an the foot in its interface, and we can proceed with the deformation. To do
this, we can click on the button generate deformation (“generar deformación”). The
obtained result is the deformed foot over the deformation line (see Fig. 16).
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Fig. 16 Fina interface with the foot deformed

Fig. 17 Menu display. From left to right menu 1 and menu 2, respectively

Finally we can interact with both models easily (the foot without deforming and
the deformed foot) with only a click:

• Left button: x-axis rotation (vertical moving) and z-axis rotation (horizontal
moving).
• Middle button: z-axis translation (vertical moving) and x-axis translation (hori-

zontal moving).
• Right button: y-axis translation.

Note that the y-axis is the depth and the z-axis is the height.

We also have several display options (see Fig. 17, menu 1):

• Ejes (axis): Displays the coordinate axis.
• Grid (grid): Displays a grid under the foot.
• Pie (foot): Displays the foot at rest.
• Corte (cut): Displays the sole at rest.
• Pie + alza: Displays the foot model placed on the platform shoe.
• Resultado (pie): Displays only the foot from the Pie + Alza model loaded.
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Fig. 18 The original foot
with the platform shoe

Fig. 19 The colour map in
the foot deformed

• Pie deformado (deformed foot): Displays the deformed foot.
• Perspective (perspective): Perspective or orthographic projection.
• Superponer (superimpose): Display an superimpose of the elements (deformation

line, foot at rest and/or deformed foot).
• Sec. deform. (mejor.) (deformed section): Displays the deformed sole.
• Esqueleto (skeleton): Display of the deformed foot wireframed.
• Sig. Points (significant points): Displays some significant points and the legend of

the areas in both foot models.

If we want to generate the numerical results associated with our approximation of
foot position on the platform, we must load the model for the foot on the platform,
see menu 2 in Fig. 17, this loads the “pie + alza” (see Fig. 18). Obviously, this model
should be correspond to the platform from which we have loaded the deformation
line.

Once the foot on the platform has been loaded we can generate statistics and calcu-
late the errors in the approximation by clicking on the button “Generar estadísticas”
(generate statistics). Thus, the program generates a color map in the foot deformed,
based on the error on each face. The color changes depending on the amount of error
of each face respect to the corresponding face in the model of the foot on the platform
(see Fig. 19).



138 J. M. Buades et al.

Fig. 20 Example of different feet scanned. From left to right: foot 1, foot 2 and foot 3

Platform 4 Platform 25

Platform 35 Platform 75

Platform 4 Platform 25

Platform 35 Platform 75

Fig. 21 From left to right: deformation and inclined platform adjustment of the foot 1 and foot 2
in Fig. 20. The deformation line is the red line

5 Results

In this section we describe the results obtained with the proposed system. To val-
idate the results we need to perform a comprehensive study of the error between
the deformed foot to adapt it to platform and the foot on the platform. Moreover,
the results must be validated by footwear designers. In the first phase of the project
we scanned nine women’s feet with Europe size 37, considered a common size. Note
that we scan the foot flat, the foot on the platform and the platform, and each foot
for several platforms.



A Fast Geometric Deformation Method to Adapt a Foot to a Platform 139

Platform 4 Platform 25

Platform 35 Platform 75

Fig. 22 Deformation and inclined platform adjustment of the foot 3 in Fig. 20. The deformation
line is the red line

After obtaining the data (Fig. 20), it is filtered and processed with the deformation
algorithm. The different deformations are shown in Figs. 21 and 22 with platform of
4, 25, 35, and 75 mm.

To estimate the error, the algorithm calculates the distances from deformed foot
vertexes to the real foot. Real foot is computed from scanned foot over platform
subtracting scanned platform. To get a more accurate error, distance is computed
as Euclidean distance from vertexes to real foot in normal direction. The errors are
shown in a color map, as we can see in Fig. 23, where green color means that the
deformed foot is above the real model, red color the deformed foot is below the real
model and grey the deformed foot coincides with the model.

Note that with Platform 4 of Fig. 23 of the foot 1, there are a lot of matches between
the real model and the deformed model. It has more grey zones than zones in red and
green. You can visually appreciate that this model has a lower error. With Platform
35 there are more red zones. That means that this person twisted her foot towards the
inside above the platform. With Platform 75a of Fig. 23 there are more green zones.
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Platform 4 Platform 35

Platform 75a Platform 75b

Platform 4

Platform 35 Platform 75

Fig. 23 From left to right: colour maps of the deformed foot 1 and foot 9

The woman of this foot twisted her foot towards outside above the platform. Note
that the real model protrudes outside of the deformed model.

In the Platforms 4 and 75 of Fig. 23 of the foot 9 dominates the color red. So this
person put her foot twisted above the platform. You can visually appreciate that she
twisted her foot forwards the outside above the platform of 75 mm and inside above
the platform of 4 mm. With Platform 35 the woman put her foot straighter than the
others. Therefore, there is more grey zones in this figure.

We effect a comparison of the deformed foot and the real foot with the same rise.
Comparing the real foot to the deformed foot with the same rise we gather the average
errors of each foot with each platform in Table 2. Because of the foot positions during
the scanning process some errors may seem high. In the Table 3 we show the total
average error. We observe that the greater is the rise of the platform, more possibilities
that the person twists the foot. In the Table 3 we show the total average error. We
observe that the greater is the rise of the platform, more possibilities that the person
twists the foot.

Finally the results were supervised by Footwear experts. They concluded that the
results are more precise than initially estimated.

6 Conclusions and Future Work

In this research project, we have achieved a virtual deformation of a consumer’s foot
and adapt it to a previously selected platform. This way we will be able to determine
the shoe that best fits the customer’s foot. With the final goal in mind of a global
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Table 2 Error

Platform 04 (mm) Platform 35 (mm) Platform 75 (mm)

Foot 1 1.23059 2.13966 4.96364
Foot 2 4.14564 4.46409 4.18545
Foot 3 2.24506 4.07791 5.29221
Foot 4 2.73462 4.54069 4.00599
Foot 5 1.60728 3.39996 4.28592
Foot 6 2.06498 4.50866 5.28577
Foot 7 1.92616 2.79563 3.60909
Foot 8 2.82117 4.6632 4.54722
Foot 9 3.07567 2.25532 3.36666

Table 3 Average error

Platform 04 (mm) Platform 35 (mm) Platform 75 (mm)

Maximum average error 4.14564 4.6632 5.29221
Minimum average error 1.23059 2.13966 3.36666
Total average error 2.688115 3.40143 4.329435

process of adaptation of the shoes to the feet of a customer, the speed of the process
is essential. For this reason, we adopt in this simulation a deformation model based
on geometry rather than on physics.

Up to our knowledge, the solution proposed is new because it includes a foot
deformation procedure with conform criteria and a 3D scan foot that generates the
personalization of shoe. We sacrifice physical realism for speed and efficiency but
we guarantee the correctness of the deformation done. A client can’t wait a long time
to find out what type of shoe suits his/her feet better.

The system designed has a low computational cost and a low error rate. The
error rate has been supervised by experts in footwear design and it is considered
acceptable to guarantee the comfort of the foot. The control points needed to perform
the deformation are detected automatically. A pleasant user interface, easy to use has
been created. Using the system proposed we can obtain a better fit of the footwear
to the customer’s foot.

We have seen that the tests are satisfactory and that the system is easily paral-
lelizable. In the section results a numerical and quantitative comparison is shown.
However a more comprehensive study of the error will be performed and we expect
to evolve the deformation to make it more realistic in the critical points. We will also
extend the system proposed to special pathological feet that require a more specific
deformations criterion.

Acknowledgments This work is subsidized by the national project DPI2009-14738-C02-01 of the
MICIIN Spanish Government coordinated by INESCOP (Asoc. investigacin industrias del calzado
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Frame-Based Interactive Simulation
of Complex Deformable Objects

Benjamin Gilles, François Faure, Guillaume Bousquet
and Dinesh K. Pai

Abstract We present a new type of deformable model which combines the realism
of physically based continuum mechanics models and the usability of frame-based
skinning methods, allowing the interactive simulation of objects with heterogeneous
material properties and complex geometries. The degrees of freedom are coordinate
frames. In contrast with traditional skinning, frame positions are not scripted but
move in reaction to internal body forces. The deformation gradient and its deriv-
atives are computed at each sample point of a deformed object and used in the
equations of Lagrangian mechanics to achieve physical realism. We introduce novel
material-aware shape functions in place of the traditional radial basis functions used
in meshless frameworks, allowing coarse deformation functions to efficiently resolve
non-uniform stiffnesses. Complex models can thus be simulated at high frame rates
using a small number of control nodes.

1 Introduction

Deformable models are essential in mechanical engineering, biomechanics and com-
puter graphics, typically for simulating the behavior of soft objects. The classical
approach is physically based deformation, typically using continuum mechanics.
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This has the significant advantage of physical realism. Complex deformations are
generated by numerical integration of discretized differential equations. However,
these methods can be expensive and difficult to use. In the popular Finite Element
Method (FEM) framework, the degrees of freedom of the discretized model are the
vertices of a mesh, which must be constructed for each simulation object. A rela-
tively fine mesh (i.e., a dense sampling of the deformation field) is required to capture
common deformations such as torsion, leading to expensive simulations. Mesh adap-
tation can be difficult due to the topological constraints of the mesh. Particle-based
meshless methods have been proposed to address these problems. While they obviate
the need to maintain mesh topology, particles can not be placed arbitrarily. There-
fore, these methods also need a dense cloud of particles not very different from the
vertices of an FEM mesh.

Another approach, from the computer graphics community, is skinning (also
known as vertex blending or skeletal subspace deformation). The deformation is
kinematically generated by manipulating “bones,” i.e., specific coordinate frames.
This method is widely used, not only for its simplicity and efficiency, but because
it provides natural and intuitive handles for controlling deformation. Skinning gen-
erates smooth deformations using a very sparse sampling of the deformation field.
Adaptation is simple since frames can be inserted easily to control local features.
These interesting features have made it the most widely used method for character
animation. However, as a consequence of its purely kinematic nature (i.e., the frame
positions need to be scripted), achieving physically realistic dynamic deformation is
a major challenge with this approach.

We present a new approach that combines the advantages of both physically
based deformation and skinning [13]. Instead of the vertices of a mesh, the degrees
of freedom are a sparse set of coordinate frames. The equations of motion are derived
for the moving frames by applying the principles of continuum mechanics across the
volume of the deformed object, and solved using classical implicit time integration.

In addition, we show that it is possible to simulate complex heterogeneous objects
with sparse sampling using new, material-aware shape functions [10]. So far, most of
the work has focused on objects made of a single, homogeneous material. However,
many real-world objects, including biological structures, are composed of heteroge-
neous material. The simulation of such complex objects using the currently available
techniques requires a high resolution spatial discretization to resolve the variations
of material parameters. However, dense sampling creates numerical conditioning
problems, especially in the case of stiff material. Shape functions are geometrically
designed to achieve a certain degree of locality and smoothness, independent of the
material. The resulting deformations are rather homogeneous between the nodes.
Consequently, the realistic simulation of such complex objects has remained impos-
sible in interactive applications. Our approach is based on a simple observation:
points connected by stiff material move more similarly than connected by compli-
ant material. Given a deformable object to simulate and a number of control nodes
corresponding to an expected computation time, optimization criteria can be used to
compute, at initialization time, a discretization of the object and the associated shape
functions, in order to achieve a good realism.
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Our specific contributions are the following: (1) a new approach which unifies
skinning and physically based deformation modeling. (2) material-aware shape func-
tions using a novel distance function based on compliance; (3) a method to automat-
ically model a complex object for this method, with an arbitrary number of sampling
frames, based on surface meshes or volumetric data; (4) a system that implements the
above methods and shows the ability to simulate complex deformation with a small
number of dynamic degrees of freedom. The remainder of this chapter is organized
as follows. We first briefly review in Sect. 2 relevant previous work, which allows
us to motivate and sketch our approach with respect to the existing ones. In Sect. 3,
we present the kinematic discretization using frames, and the interpolation function
based on skinning. In Sect. 4, we derive the differential equation which governs the
dynamics of the object, investigate precision issues and propose a strategy to opti-
mize spatial integration. We then study in Sect. 5 the problem of material-aware shape
functions starting in one dimension and extending to two or three dimensions, and
propose a method to optimize the distribution of nodes. We finally present results
and discuss future work.

2 Related Work

Physically based deformable models have attracted continuous attention in Computer
Graphics, since the seminal work of Terzopoulos [39]. We refer the reader to the
excellent survey of [31] on this topic. Here, we briefly review the main Lagrangian
models of deformable objects.

Mesh-based methods: Early works on deformable models in Computer Graph-
ics have focused on interconnected particles. In mass-spring systems [35], con-
straints on edge length are enforced to counter stretching. Bending and shear can
be controlled using additional springs. More general constraints such as area or
volume conservation can be enforced using appropriate energy functions [40]. To
realistically model volumetric deformable objects, it is necessary to apply contin-
uum mechanics. The spatial derivatives of the displacement field can be computed
using finite differences on a regular grid [39]. Terzopoulos and Qin [38] studied the
case of physically deformable NURBS surfaces for shape modeling. Finite elements
[7, 8, 14, 33] allow irregular meshes, which are generally more convenient to sample
objects with arbitrary shapes, but may be poorly conditioned. The spatial domain is
subdivided into elements such as triangles, hexahedra or more frequently tetrahe-
dra, in which the displacement field is interpolated using shape functions. At each
point the strain can be computed using the spatial derivatives of the displacement
field. Accurate material models have been implemented from rheological models
relating stress and strain in hyperelastic, viscoelastic, inhomogeneous, transversely
isotropic and/or quasi-incompressible media [41]. For simplicity, linearized strain
has been applied assuming small displacements in rotated frames [27]. Precom-
puted deformations modes have been used to interactively deform large structures
[6, 18, 22]. Using deformation modes rather than point-like nodes as DOFs allows
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(a) (b) (c) (d)

Fig. 1 Comparison of displacement functions. The black line encloses the area where the displace-
ment function is defined, based on node positions (black circles) and associated functions (colored
areas). a Finite element, b point-based, c frame-based with RBF kernels, d frame-based with our
material-based kernels

to easily trade-off accuracy for speed. A layered model combining articulated body
dynamics and a reduced basis of body deformation is presented in [12]. However, the
deformation modes lack locality and pushing on one point may deform the whole
object. Models based on Cosserat points have been proposed for large deforma-
tions in thin structures [34] and solids [30]. Since robustness problems such as
inverted tetrahedra [17] or hourglass deformation modes in hexahedra [30] have
been addressed, meshing remain the main issue in finite elements. To reduce com-
putation time, embedding detailed objects in coarse meshes has become popular in
computer graphics [27, 32, 37]. Multi-resolution approaches have been proposed [9,
15]. In recent work, disconnected or arbitrarily-shaped elements [19, 25] have been
proposed to alleviate the meshing difficulties.

Meshless methods: Meshless methods do not use an underlying embedding struc-
ture but unstructured control points. In computer graphics, meshless methods have
been first introduced for fluid simulation and then extended to solid mechanics
[16, 28]. Besides continuum mechanics-based methods, fast algorithms have been
developed for video games to simulate quasi-isometry [1, 29]. They are not able
to model real materials, being based on geometry only. In meshless methods, each
control node has a given influence that generally decreases with the distance to it.
Standard approximation or interpolation methods have been investigated for phys-
ical simulation such as Shepard functions, radial basis functions and moving least
squares (see [11] for an extensive review). Despite the added flexibility due to the
absence of elements, sampling issues remain, since each interpolated point must lie
in the range of at least four non-coplanar nodes, as illustrated in Fig. 1b, contrary
to our method that explicitly use rotations in the degrees of freedom. A very inter-
esting meshless approach using moving frames was recently proposed to alleviate
this limitation [26], using the generalized moving least squares (GMLS) interpola-
tion. In this method, even one single neighboring node is sufficient to compute a
local displacement, as illustrated in Fig. 1c. Moreover, the authors introduce a new
affine (first-degree) approximation of the strain, called elaston. In contrast with the
plain (zero-degree) strain value traditionally used, this allows each integration point
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(a)

(c)

(e)

(b)

(d)

(f)

(g)

Fig. 2 Deformation modes obtained using two rigid frames. a Rest shape, b twisting, c, d com-
pression with linear (resp. nonlinear) shape functions, e shear, f bending can be obtained using
skinning, but g not using GMLS

to capture bending and twisting in addition to the usual stretch and shear modes.
These improvements over previous methods remove all constraints on node neigh-
borhood and allow the simulation of objects with arbitrary topology within a unified
framework. However, a dense sampling of the objects is applied, leading to high
computation times.

3 Frame-Based Deformation

In continuum media mechanics, it is necessary to numerically solve systems of
differential equations (see Sect. 4). A general procedure is to smoothly approximate
continuous functions in the solid from sought values at discrete sample locations.
These values are the independent degrees of freedom (i.e., the DOFs qi ) which
we will call nodes. In most simulation methods (Sect. 2), nodes are points and the
deformation in the material is linearly interpolated from node displacements. In
contrast, we consider rigid frames, affine frames and quadratic frames. Nodes are
associated with shape functions, also called weights, which are combined to produce
the displacement function of material points in the solid. To model deformable objects
using a small number of control nodes, we need convenient, natural deformation
functions. In character animation, the blending of frame displacements has been
studied to deform a skin from an embedded articulated skeleton [21]. This method,
called skinning or vertex blending or skeletal subspace deformation, is widely used,
not only for its simplicity and efficiency, but because it provides natural and intuitive
handles for controlling deformation. Skinning generates smooth deformations using
a very sparse sampling of the deformation field. Here, we present two different
blending techniques that we have explored for parameterizing a physically based
deformable model, and how we measure the deformation.

Linear blend skinning: The simplest and most popular blending method is linear
blend skinning [24] where the displacements of control nodes qi are locally combined
according to their shape function wi . The following derivations hold for different
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Fig. 3 The displacement u of a deformable object is discretized using nodes (blue). Strain is
measured based on the deformation of local frames (black arrow) computed at integration points p
in the material

types of control nodes: points, rigid frames, linearly deformable (affine) frames, and
quadratic frames. Let p̄ and p be positions in the initial and deformed settings and
u = (p− p̄) the corresponding displacement, expressed as: u =∑

i wi (p̄)Ai p̄∗ − p̄,
where (p̄)∗ denotes a vector of polynomials of dimension d in the coordinates of
p̄. For point, affine or rigid, and quadratic primitives, we respectively use complete
polynomial bases of order n = 0, n = 1, n = 2, noted as (.)n . In 3D, we have
d = (n+1)(n+2)(n+3)/6 and the three first bases are: p0 = [1], p1 = [1, x, y, z]T ,
p2 = [1, x, y, z, x2, y2, z2, xy, yz, zx]T . The 3 × d matrix Ai (qi ) represents the
transformation of node i from its initial to its current position and is straightforwardly
computed based on the independent DOFs qi : for instance, the 12 DOFs of an affine
primitive are directly pasted into a 3×4 matrix, while the 6 DOFs of a rigid primitive
are converted to a matrix using Rodrigues’ formula. wi (p̄) is the shape function of
node i evaluated at p̄. In linear blend skinning, weights need to constitute a partition
of unity (

∑
wi (p̄) = 1). To impose Dirichlet boundary conditions, it is convenient

to have interpolating functions at x̄i , the initial position (frame origin) of node qi in
3d space: wi (x̄i ) = 1 and w j (x̄i ) = 0, ∀ j �= i .

Dual quaternion skinning: Linear blend skinning suffers from well known volume
loss artifacts when the relative displacement between nodes is large and non linear.
To remedy this, extra nodes need to be inserted. Another solution, is to use a better
blending function. For rigid frames, dual quaternion blending offers a good approx-
imation of the linear interpolation of screws at a reasonable computational cost [20].
It provides a closed-form solution for more than two transforms contrary to screw
interpolation that requires an iterative treatment. Here, the relative displacement of
a rigid frame i is no more expressed using a 3× 4 matrix Ai , but using a 8d vector
ai = [aiT

0 aiT
ε ]T where ai

0 (resp. aiT
ε ) is a unit quaternion representing the rotation

(resp. translation). Blended displacements are computed as normalized weighted
sums of dual quaternions: b′ =∑

wi ai/‖∑ wi ai‖. Finally the blended dual quater-
nion is converted [20] into a 3×4 rigid transformation matrix A to transform material
points: u = Ap̄∗ − p̄.

Strain measure: As shown in Fig. 3, the displacement is sampled at nodes, and is
interpolated within the object based on nodal displacements. To apply the laws of
continuum mechanics, we first need to measure the local deformation of the mate-
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rial. Consider a material whose undeformed positions p̄(θ) are parametrized by
local, curvilinear coordinates θ (like texture coordinates). When the material under-
goes a deformation, the points are displaced to new positions p(θ) = p̄(θ) + u(θ).
At each material point, the derivatives of the position function p with respect to
the coordinates θ are the vectors of a local basis called the deformation gradient
F = dp/dθ , with reference value F̄ = dp̄/dθ , typically the identity. The local
deformation of the material is the non-rigid part of the transformation F̄−1 F between
the reference and current states (like the distortion of a checkerboard texture). The
strain, ε, is a measure of this deformation. Different strain measures have been
proposed, but all of them fit in our framework. For instance, the popular Green-
Lagrange strain tensor, which is well suited for large displacements is computed as
(FT F̄−T F̄−1 F − I)/2. Its six independent terms can be compactly stored in a 6d
vector: ε(θ) = [εxx εyy εzz εxy εyz εzx ]T .

4 The Dynamics of Frame-Based Continuum

This section explains how to set up the classical differential equation of dynamics for
our models. An overview of the algorithm is given at the end of the Section. As shown
in the following diagram, we apply a classical hyperelastic scheme: from the degrees
of freedom q, we interpolate a displacement field based on skinning, from which
we compute the strain through spatial differentiation (Sect. 3). The elastic response
σ(ε) generates the elastic forces, and is a physical characteristic of the material.
The elastic energy of a deformed object is the work done by the elastic forces from the
undeformed state to the current state, integrated across the whole object (Sect. 4.4):
W = ∫

V

∫ ε
0 σ

T dε. The associated elastic forces f are computed by differentiating
the energy with respect to the DOFs (Sect. 4.1). After time integration (Sect. 4.3), we
obtain the acceleration, velocity and the new position of each node.

Position Strain Energy

q
∂→ ε

Material→ W∫ ↑ ↓ ∂

q̇
∫

← q̈
Mass← f

Velocity Acceleration Force

4.1 Elastic Force

The associated elastic forces f are computed by differentiating the energy with respect
to the DOFs. Here, we explicitly introduce the deformation gradient F in the force
computation:
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f = −∂W
∂q

T

= −
∫

V

∂ε

∂q

T

σ = −
∫

V

(
∂ε

∂F

∂F

∂q

)T

σ (1)

This provides us with great modularity: the material module computes σ(ε), the
strain module computes ∂ε/∂F , while the interpolation module computes ∂F/∂q,
and the three can be designed and reused independently. This modularity allows us to
implement the blending of rigid, affine and quadratic primitives using different tech-
niques (e.g., linear blend skinning, dual quaternion skinning), and to easily combine
them with a variety of strain measures. Note that other interpolation methods, such
as FEM and particle-based methods, fit in this framework. We have implemented
the popular corotational and Green-Lagrange strains, and Hookean material laws.
Incompressibility is simply handled by measuring the change of volume, ‖F‖ − 1,
and applying a scalar response using the bulk modulus. Other popular models such
as Mooney-Rivlin and Arruda-Boyce would be easy to include.

One additional differentiation provides us with the stiffness ∂f/∂q, used in implicit
integration schemes and static solvers. Iterative linear solvers like the conjugate
gradient only address the matrix through its product with a vector, which amounts
to computing the change of force δ(f) corresponding to an infinitesimal change of
position δ(q). This frees us from explicitly computing the stiffness matrix, and allows
us to simply compute the changes of the terms in the force expression and accumulate
their contributions:

δ(f) = −
∫

V

∂ε

∂q

T ∂σ

∂ε

∂ε

∂q
δ(q)−

∫

V

δ

(
∂ε

∂q

)T
σ (2)

= −
∫

V

(
∂ε

∂F

∂F

∂q

)T ∂σ

∂ε

(
∂ε

∂F

∂F

∂q

)
δ(q)−

∫

V

(
δ

(
∂ε

∂F

)
∂F

∂q
+ ∂ε

∂F
δ

(
∂F

∂q

))T
σ

The first term corresponds to the change of stress intensity. The second corresponds to
a change of direction due to non-linearity, and may be null or negligible, depending
on the interpolation and strain functions. Damping forces, based on velocity, can
straightforwardly be derived in this framework and added to the elastic forces.

4.2 Visual and Contact Surfaces

Visual and contact surfaces can be attached to the deformable objects using the skin-
ning method presented in Sect. 3. Our framework sets no restriction on the collision
detection and response methods. Any force fext applied to a point p on the contact
surface can be accumulated in the control nodes using the following relation, deriving
from the power conservation law:

f+ = ∂p
∂q

T

fext (3)
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4.3 Differential Equation

Lagrangian mechanical models obey the following ordinary differential equation in
generalized coordinates:

Mq̈− f(q, q̇) = fext (q, q̇) (4)

where M is the mass matrix, q and q̇ are the DOF value and rate vectors, q̈ denotes
the accelerations, f the internal (elastic) forces, fext the external and inertial forces.
Without loss of generality we consider Implicit Euler integration (see e.g., [5]), which
computes velocity updates by solving the following equation:

(
M− hC− h2K

)
δq̇ = h (fext + hKq̇) (5)

where h is the time step, K = ∂f
∂q is the stiffness matrix, and C = ∂f

∂q̇ the damping
matrix, often represented using the popular Rayleigh assumption: C = αM + βK.
The matrices does not need to be explicitly computed, since the popular Conjugate
Gradient solver addresses them only through their products with vectors. The gen-
eralized mass matrix is computed by assembling the Mi j blocks related to node
i and j :

Mi j =
∫

V

ρ
∂p
∂qi

T ∂p
∂q j

, (6)

where ρ is the mass density. For simplicity, we lump the mass of each primitive by
neglecting the cross terms: Mi j = 0, ∀i �= j . The resulting global mass matrix is
block diagonal and the Mi i are square matrices, simplifying the time integration step
without noticeable artifacts. For affine and quadratic primitives, masses are constant
and can be pre-computed based on the voxel grid. We also pre-compute the mass of
rigid primitives and rotate them in run-time according to their current rotations.

4.4 Space Integration

The quantities derived in the previous sections are numerically integrated across
the material using a set of function evaluations. The accuracy of this process,
called cubature, is described by its order, meaning that polynomial functions
of lower degrees can be integrated exactly. Table 1 summarizes the degrees of
the different quantities obtained with linear shape functions for different strain
measures and primitives.

Classical cubature methods such as the midpoint rule (order 1), the Simpson’s
rule (order 3) or Gauss-Legendre cubature (order 5) would require many evaluation
points to be accurate. The most representative evaluation points can be estimated
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Table 1 Polynomial degrees obtained with linear shape functions and linear blend skinning

Node Strain measure u M F ε, σ f

Affine/rigid Corotational 2 4 1 1 2
Affine/rigid Green-Lagrange 2 4 1 2 4
Quadratic Corotational 3 6 2 2 4
Quadratic Green-Lagrange 3 6 2 4 8

Fig. 4 In this example 15,000
integration samples are gen-
erated by rasterizing a bunny
model, and a midpoint (zero
order) integration scheme is
used. Colors represent a hue
mapping of the strain

as in [4], but it requires intensive static analysis at initialization time. Fortunately,
displacements based on linear blend skinning can be easily differentiated and all
quantities can be integrated explicitly in regions of linear weights. In a region V e
centered on p̄, we express points as p̄+ δ(p̄). The integration of order n of a scalar
quantity v in this region can be written as

∫
V e v = vT

∫
V e δ(p̄)

n where v is a vector
containing the quantity v and its spatial derivatives up to degree n, and

∫
V e δ(p̄)

n

is the integrated polynomial basis of order n over the region. The last term can be
accurately estimated at initialization time using a voxel grid, as the one shown in
Fig. 4. This integration is exact if n is the polynomial degree of v. This formula-
tion generalizes the concept of elastons [26] where quantities of order n = 2 are
explicitly integrated in cuboid regions. Here, we consider arbitrary regions, and
orders. Note that, using n = 0, the integration scheme is the classical midpoint rule:∫
V e v ≈ vV e.

The method presented in Sect. 5 generates as-linear-as possible shape functions.
However, the gradients are discontinuous at the boundaries of the influence regions.
We therefore partition the volume in regions influenced by the same set of nodes, and
place one integration sample V e in each of them. To increase precision, we recur-
sively subdivide the remaining regions up to the user-defined number of integration
points. Our subdivision criterion is based on the error of a least squares fit of the
voxel weights with a linear function.



Frame-Based Interactive Simulation 155

Algorithm 4 Deformable model computations.
Data: Voxel map of material properties, number of control nodes
Initialization:

• Distribute the control nodes // Sect. 5.4
• Compute the shape functions // Sect. 5.3
• Compute the mass matrix // Sect. 4.3
• Generate the integration samples // Sect. 4.4
• Compute the weights of the surface vertices // Sect. 4.2

Loop:

• Accumulate force from each integration point: // Eq. 1

– Compute F (and its spatial derivatives);
– Compute ε (and derivatives) from F using a given strain measure;
– Compute σ (and derivatives) from ε using a given material model;
– Add integrated force to each influencing primitive;

• External forces and collision handling // Eq. 3
• At each solver iteration: // Eq. 5

– Accumulate force change from each integration point // Eq. 2

5 Material-Aware Shape Functions

Building sparse frame-based physical models not only requires appropriate defor-
mation functions as discussed in the previous section, but also anisotropic shape
functions to resolve heterogeneous material as illustrated in Fig. 1d. In this section,
we propose a method to automatically compute such functions.

5.1 Compliance Distance

Consider the deformation of a heterogeneous bar in one dimension, as shown in
Fig. 5, where each point p is parameterized by one material coordinate x . Let the
endpoints p0 and p1 be the sampling points of the displacement field. At any point,
the displacement is a weighted sum of the displacements at the sampling points:
u(x) = w0(x)u0 + w1(x)u1. If the bar is heterogeneous, the deformation is not
uniform and depends on the local stiffness, as illustrated in Fig. 5b. We call a shape
function ideal if it encodes the exact displacement within the bar given the displace-
ments of the endpoints, as computed by a static solution. Choosing the static solution
as the reference is somehow arbitrary, since inertial effects play a role in dynamics
simulation. However, the computation of interior positions based on boundary posi-
tions is an ill-posed problem in dynamics, since the solution depends on the veloci-
ties and on the time step. Moreover, for graphics, we believe that our perception of
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(a)

(b)

(c)

(d)

(e)

Fig. 5 Shape function based on compliance distance. a A bar made of 3 different materials, in rest
state, with stiffness proportional to darkness. b The bar compressed by an external force. c The
displacement across the bar. d The ideal w0 shape function to encode the material stiffness. e The
same, as a function of the compliance distance

realism is more accurate for static scenes than when the object is moving. Using the
static solution as a shape function makes sense from this point of view, and encodes
more information than a purely geometric shape function.

It is possible to derive the ideal shape functions by computing the static solution
u(x) corresponding to a compression force f applied to the endpoints. Note that this
precomputation is exact for linear materials only. For simplicity, we assume that the
bar has a unit section. At any point the local compression is ε = du

dx = f/E = fc,
where E is the Young’s modulus, and its inverse c is the compliance of the material.
Solving this differential equation provides us with: u(x) = u(x0) +

∫ x
x0

fc dx , and
since the force is constant across the bar, the shape function w0 illustrated in Fig. 5d
is exactly:

w0(x) = u(x)− u(x1)

u(x0)− u(x1)
=

∫ x1
x c dx

∫ x1
x0

c dx
(7)

Let us define the compliance distance between two points a and b as: dc(a, b) =∫ xb
xa

c |dx |. The slope of the ideal shape function is: dw0
dx = −c/dc(p0,p1). It is

proportional to the local compliance c and to the inverse of the compliance distance
between the endpoints. Interestingly, the shape function is thus an affine function
of the compliance distance, as illustrated in Fig. 5e, and it can be computed without
solving an equation.

5.2 Extension to Two or Three Dimensions

We showed in the previous section that computing ideal shape functions in 1D objects,
without performing compute-intensive static analyses as in [32], is straightforward
based on compliance distance. Let n be the number of points where we want to com-
pute exact displacements to encode in shape functions. In one dimension, both the
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static solution and the distance field can be computed in linear time. In two dimen-
sions, computing the static solution for n independent points requires the solution
of a 2n × 2n equation system. The worst case time complexity of the solution is
O(n3), and direct sparse solvers can achieve it with a degree between 1.5 and 2 in
practice. In contrast, the computation of an approximate distance field in a voxel grid
is O(n log n), which is much faster, but does not allow us to expect an exact solution
like in one dimension. The reason is that there is an infinity of paths from one point
to another to propagate forces across, thus the stress is not uniform and can not be
factored out of the integrals and simplified like in Eq. 7. Another difference with
the one-dimensional case is the number of deformation modes. Higher-dimensional
objects exhibit several stretching and shearing modes, and we can not expect the
ratio of displacement between two points to be the same in each mode. Since a single
scalar value can not encode several different ratios, there is no ideal shape function in
more than one dimension. Another limitation of this measure is that the compliance
distance is the length (compliance) of the shortest (stiffest) path from one point to
the other, independently of the other paths. Thus, two points connected by a stiff
straight sliver are at the same compliance distance as if they were embedded in a
compact block of the same material, even though they are more rigidly bound in
the latter case. Moreover, material anisotropy is not modeled using a scalar stiff-
ness value. Nonetheless, the compliance distance allows the computation of efficient
shape functions, as shown in the following.

5.3 Voronoi Kernel Functions

In meshless frameworks, each node is associated with a kernel function which defines
its influence in space, as presented in Sect. 3. A wide variety of kernel functions
have been proposed in the literature, most often based on spherical, ellipsoidal or
parallelepipedal supports. Our design departs from this, and is guided by a set of
properties that we consider desirable for the simulation of sparse deformable models.
To correctly handle the example shown in Fig. 1d, we need to restrict kernel overlap,
to prevent the influence of the left node from unrealistically crossing the bone and
reaching the flesh on the right. We thus need to constrain the kernel values, while
keeping them as smooth as possible. In particular, we favor as-linear-as possible shape
functions with respect to the compliance distance, in order to reproduce the theoretical
solution in pure extension. A kernel value should not vanish before reaching the
neighboring nodes, otherwise there would be a rigid layer around each node. With a
sufficient number of radial basis functions, all the boundary conditions could be met
[36]. Unfortunately, shape functions computed with RBFs are generally global and
can increase with distance, producing unrealistic deformations. Local RBFs have
isotropic compact support, and are thus only approximating.

Since there is no general analytical solution that can satisfy all the desired prop-
erties, we numerically compute a discrete approximate solution on the voxelized
material property map. Solving a Laplace or heat equation on the grid would require
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(a)

(b)

(c)

Fig. 6 Color map of the normalized shape function corresponding to the red node, computed using
two Voronoi subdivisions (left), one subdivision (top right) and five subdivisions (bottom right)

the solution of a large equation system, and would compute nonlinear weight func-
tions. A Voronoi partition of the volume allows us to easily compute kernels with
compact supports, imposed values and linear decrease. This can be efficiently imple-
mented in voxelized materials using Dijkstra’s shortest path algorithm. Since a point
on a Voronoi frontier is at equal distance from two nodes, we set the two kernel
values to 0.5 at this point, and scale the distances accordingly inside each cell. To
extend the distance function outside a cell, we generate the isosurface of kernel value
1/4 by computing a new Voronoi surface between the 1/2 isosurface and the other
nodes. We can then recursively subdivide the intervals to generate a desired number
of isosurfaces. The kernel values can straightforwardly be interpolated between the
isosurfaces: for instance, the value at P1 in Fig. 6a is ( 1

2 d3/4+ 3
4 d1/2)/(d3/4+ d1/2),

where di is the distance to isosurface of kernel value i , on Dijkstra’s shortest path the
point belongs to. To compute values between the last isosurface and 0 (the neighbor-
ing nodes), we apply a particular scheme since points beyond the neighbors, such
as P2 in the figure, should not be influenced by the node. In this case, we linearly
extrapolate the kernel function: (− 1

2 d1/4 + 1
4 d1/2)/(d1/4 + d1/2). This technique is

easily generalized to compliance distance and all the desired properties are met: it
correctly generates interpolating, smooth, linear and decreasing functions between
nodes. The corresponding cell shapes are not necessarily convex in Euclidean space,
which allows them to resolve complex material distributions as illustrated by the
compliance distance field in Fig. 10d. Since points can be in the range of more than
two kernels, a normalization is necessary to obtain a partition of unity and the linear-
ity of the shape functions is not perfectly achieved, however the functions are often
close to linear as shown in the accompanying video. When using a small number of
Voronoi subdivisions, we are not guaranteed to reach all the expected regions due
to inaccurate extrapolation (see arrow tip in Fig. 6b, where d1 < 2d1/2). Increasing
the number of isosurfaces reduces this artifact, but can lead to unrealistically large
influence regions as shown in Fig. 6c, where the right part is influenced by the red
node due to the linear interpolation between the right and left nodes. In practice,
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a small number of subdivisions are sufficient to remove noticeable artifacts while
maintaining realistic bounds. The design of more realistic kernels in the extreme
case of a very sparse discretization, large material inhomogeneities and complex
geometry, is deferred to future work.

5.4 Node Distribution

The Voronoi computations provide us with a natural way to uniformly distribute
nodes in the space of compliance-scaled distances. We apply a standard farthest
point sampling followed by a Lloyd relaxation (iterative repositioning of nodes in
the center of their Voronoi regions) as done in [1, 26]. The uniform sampling using
the compliance distance results in higher node density in more compliant regions,
allowing more deformation in soft regions. Since a whole rigid object corresponds to
a single point in the compliance distance metric, all its points in Cartesian space have
the same shape function values. Interestingly, it thus undergoes a rigid displacement,
even if it is not associated to a single node. However, due to the well-known arti-
facts of linear blend skinning, it may actually undergo compression in case of large
deformations. This artifact can be easily avoided by initializing nodes in the rigid
parts, and keeping them fixed during the Lloyd relaxation. Another solution would
be to replace linear blend skinning with dual quaternion skinning [20], at the price
of more complex mechanical computations due to normalization.

6 Results

6.1 Validation

We implemented our method within the SOFA framework [2] to exploit its implicit
and static solvers, as well as its GPU collision detection and response [3]. To
encourage its use, our software will be freely available in the upcoming release.
We measured the displacement of the centerline of a 10 × 4 thin plate, as shown in
Fig. 7. The left side is fixed, while a uniform traction is applied to the right side. As
expected, we obtain similar results using FEM and our method, with the same material
parameters. A slight over-extension occurs in dense frame distributions, probably due
to numerical issues in the voxel-wise integration of the deformation energy. We have
also compared the simulations of cantilever beams, as illustrated in Fig. 8. We used
regularly spaced nodes along the axis, with piecewise linear weight functions. We
apply an extension force to the beam and verify that the force-extension law pre-
cisely matches the theoretical St. Venant-Kirchhoff model f = ε + 3ε2/2 + ε/2,
independently of the number of frames and the volume sample densities. Bending is
more complex because it simultaneously involves extension–compression and shear,
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Fig. 7 Comparison with FEM on the extension of a plate. Left with a stiffness gradient. Right
uniform stiffness and rigid part. Top compliance distance field within each Voronoi cell, left 500×
200 grid, right 100× 40 grid

Fig. 8 Comparison of our
models (solid colors) with
FEM (wireframe). Blue with
two affine frames. Green three
affine frames. Red five affine
frames. Yellow nine affine
frames

especially with large displacements as shown in the example in Fig. 8. This confirms
that accurate continuum mechanics can be performed using our model. The behaviors
converge as we increase the number of nodes. As usual, fewer degrees of freedom
result in more stiffness.

6.2 Performance

Computation times are difficult to compare rigorously because we use an iterative
solver based on the conjugate gradient algorithm. In the test on heterogeneous mate-
rial shown in Fig. 7, we measured the total number of CG iterations applied to reach
their final state with less than 1 % of precision. The frame-based models converged
from one to three orders of magnitude faster, thanks to the reduced number of DOFs.
We used a regular FEM mesh. A more sophisticated meshing strategy taking the
stiffness into account would certainly be more efficient, unfortunately implementa-
tions of these are not easily available. Carefully designed meshes can greatly enhance
the speed of the FEM method. However, resolving geometrical details requires fine
meshes with a large number of DOFs, and in case of large variations of stiffness,
numerical issues considerably slow down the convergence, even using precondition-
ing. The ability of our method to encode the stiffness in the shape functions not
only reduces the number of necessary DOFs, but also seems to reduce the condi-
tioning problems. The pre-computation times range from less than one second for
10 frames in a 100 × 40 voxel grid to 10 min for 200 frames in a 500 × 200 grid.
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Table 2 Timings

Model # frames # samples # vertices (K) # voxels tini (s) FPS

Steak 3 10 5 67 K 3 500
Steak 10 53 5 67 K 8 100
Steak 20 140 5 67 K 12 40
Dragon 3 6 20 7 M 100 300
Dragon 10 41 20 7 M 220 150
Dragon 20 158 20 7 M 360 27
Ribbon 5 9 4 60 K 4 200
Knee 10 200 35 500 K 11 10
Rat 30 230 600 1.5 M 90 8

Our implementation is straightforward and there is plenty of room for optimization
and parallelization.

Table 2 presents frame rates achieved on a common PC (2.67 Hz processor, 8 GB,
Nvidia 295GTx). They include all the computations, including rendering and colli-
sion detection. The dragon and the ribbon demos are shown in the video. The com-
putation times strongly depend on the number of integration points, which suggests
that a GPU implementation of the force computations may dramatically increase
the speed. A faster node relaxation [23] would speed up the precomputations in fine
grids.

Corotational strain is about 1.5 times faster than Green-Lagrange strain due to
the lower degree integration. However, in our implementation, it is not as robust
because the rotation part of F is not differentiated to compute forces (Eq. 2). Their
accuracy on static solutions is comparable in our tests. Rigid and affine primitives
exhibit similar computational time. Quadratic primitives are about 15 % slower with
the same number of integration points of the same degree. We believe that the best
compromise between accuracy and performance is achieved using affine primitives:
they have more DOFs than rigid frames so can capture more deformation modes, and
they require significantly fewer integration points than quadratic primitives if we limit
the expansion of the deformation gradient to the first order, and the integration degree
to 4 (= 30 polynomial terms). In theory, quadratic primitives would need a second
order expansion of F and an eighth order integration (=165 polynomial terms), which
would be more costly. Affine and rigid frames require only one integration point per
region with linear shape function, providing the main deformation modes of a rod
using only two frames and one integration point (see Fig. 2). In our implementation,
linear blend skinning of rigid frames is about five times faster than dual quaternion
skinning [13] with the same number of integration points. Dual quaternion skinning
is more accurate in large bending (no volume loss) but requires more integration
points due to the non-linear blending function and is significantly more complex to
implement.

We found that sampling integration points in the overlapping influence regions was
a suitable strategy, since it allowed a good linear approximation of the fine grained
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Fig. 9 An object with asymmetric stiffness automatically computed based on its asymmetric shape

shape function defined in the voxel grid: in our test, the average difference was
0.05 (the shape function being defined between 0 and 1, making the approximation
error less than 5 %). This result also shows that the normalization of the kernel
function does not significantly change the linearity. Uniformly distributed sample
points unrealistically increase the stiffness because soft parts are assigned with a
high stiffness due to averaging in the sample region.

6.3 Simulations

The most appealing feature of our method is probably its ability to easily model
deformable objects using a reduced number of control nodes. The T-shaped rub-
ber object shown in Fig. 9 (Young’s modulus E = 200 kPa, Poisson’s ratio ν = 0.3)
exhibits compression, shear, bending and torsion using only two frames, correspond-
ing to a total of 12 DOF. The same number of DOF only allows to model a single linear
tetrahedron in FEM, which can not exhibit torsion and bending! The object automat-
ically exhibits an asymmetric stiffness reflecting its asymmetric shape (Fig. 9).

Figure 11 shows a close-up of the high speed simulation presented in Fig. 10, which
runs at haptic rates. The fat undergoes more deformation than the flesh because it
is more compliant, even though they are interpolated between the two same control
frames. The method of [32] also realistically resolves heterogeneous materials, but
a rigid bone across several elements would result in high stiffnesses and generate
numerical problems. In contrast, our method handles the rigid parts straightforwardly,
independently of their shape.

Our method allows the interactive simulation of complex biological systems such
as the knee joint shown in Fig. 12. In this model, we have integrated four differ-
ent tissues: bones, muscles, fat and ligaments. With only 10 nodes, we are able to
realistically simulate flexion and fine movements such as the motion of the patella
(knee cap) at ten frames per second, without any prior knowledge of the kinematic
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(a) T-Bone Steak (b) (c) (d) (e)DeformationDistance mapDiscretizationStiffness

Fig. 10 The T-bone steak (a) has a rigid bone and softer muscle and fat, as seen in the volumetric
stiffness map (b). Our method can simulate it using only three moving frames and ten integration
points (c), running at 500 Hz on an ordinary PC. The frame placement is automatically generated
using a novel compliance-scaled distance (d). Observe that when one side of the meat is pulled (e),
the bone remains rigid and the two meaty parts are correctly decoupled

Fig. 11 The flesh and the fat, although interpolated between the same two control frames, pulled
at the black point, exhibit different strains due to different stiffnesses

Fig. 12 Interactive knee simulation using 10 nodes. Pulling the quadriceps lifts the tibia

skeleton. Forces are transmitted from the quadriceps to the tibia suggesting that accu-
rate dynamic models of the anatomy, taking into account muscle actuation, could be
built. A few modifications in the voxelization and material modules would allow
motion discontinuity between tissues in contact and a more accurate simulation of
the highly anisotropic non-linear fibrous biological tissues.

Adding mechanical degrees of freedom during the simulation by inserting new
frames with custom radial-basis shape functions is dramatically simpler than editing
the mesh of an FEM model. In Fig. 13, we show that a dynamically inserted frame
at the contact point with an object can be used to generate a local deformation. The
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Fig. 13 More or less global deformation produced by dynamically inserting a frame with two
different weight functions

Fig. 14 Mix of animation and simulation. Left model subset animated using motion capture and
added physical nodes. Right result, with flesh and tail animated using physics

range of the local deformation can be tuned using the shape function of the inserted
frame. Such a high level of adaptivity in a physical model is straightforward with
our model, while it is difficult to implement using previous methods.

Our method can also be used to easily simulate physically-based secondary
motions from skeleton-based animation or motion capture, as illustrated in Fig. 14.
The skin and the complete skeleton of a rat were acquired from micro-CT data. We
applied our method to automatically sample the intermediate soft tissues and the tail
with additional nodes. Optical motion capture was used to capture the movements
of the limbs, head and three bones on the back.

7 Conclusion

In this chapter, we have presented a new type of deformable model using con-
tinuum mechanics applied to objects undergoing skinning deformation fields. Our
approach allows the creation of sparse meshless models with arbitrary constitutive
laws, and we have demonstrated it using St. Venant-Kirchhoff materials. Moreover,
we have introduced novel, anisotropic kernel functions using a new definition of dis-
tance based on compliance, which allow the encoding of detailed stiffness maps in
coarse meshless models. We have shown that the behavior of heterogeneous objects
with complex materials and geometries can be simulated using a small number of
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control nodes and small computation times. The models are robust to large displace-
ments and deformations.

In contrast with classical FEM and with the methods using geometrical shape
functions, our approach decouples the resolution of the material from the resolution
of the displacement function. The ability of setting an arbitrarily low number of
frames, combined with a compliance-based distribution strategy, allows fast mod-
els to capture the most relevant deformation modes. Sampling is easier than with
traditional particle-based meshless methods because there is no constraint on the
number and on the placement of the nodes. Compared with FEM, adaptivity is easier
because no volumetric mesh is used. However, due to computational time issues, the
shape functions of the dynamically inserted nodes are currently limited to analytic
radial-basis functions with local support. A faster computation of material-aware
shape functions and hardware implementations are currently under investigation.
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Robust Deformable Models for 2D
and 3D Shape Estimation

Jorge S. Marques, Jacinto C. Nascimento and Carlos Santiago

Abstract Deformable models are useful tools to extract shape information from
images and video sequences. However, the model has to be initialized in the vicinity
of the object boundary, in order to foster convergence towards the desired features.
This chapter describes four methods which alleviate this restriction. Despite their
differences, they share three common features: (i) they use middle level features (edge
segments) instead of low level ones; (ii) they explicitly assume that the measured
features contain outliers and assign confidence degrees to the detected features and
(iii) they adopt robust model updates, taking the confidence degrees into account.
These four methods are reviewed and their performance is illustrated with selected
examples.

1 Introduction

The automatic estimation of object boundaries in images and video sequences is a key
operation in many computer vision systems. However, several factors make this task
difficult namely, the high variety of objects shape and appearance, partial occlusion
and the presence of clutter in the background image. Deformable models are popular
techniques for dealing with this kind of problems [3, 11, 12]. They assume that
object boundaries can be approximated by elastic curves or surfaces. The model is
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(a) (b)

Fig. 1 Convergence difficulties in the estimation of the mug boundary with poor initialization:
a initial contour and b final contour estimate obtained with the Snake algorithm

initialized close to the object boundary and it is automatically attracted towards the
boundary by features detected in the image.

Despite the simplicity of this approach, model adaptation is not an easy task
due to the following difficulties: (i) boundary cues (e.g., edge lines) are often subtle
and incomplete, (ii) they are mixed with cues produced by other objects and by
the cluttered background and (iii) the object is often partially occluded. There-
fore, image noise, occlusion and cluttered background degrade the performance of
deformable models. Figure 1 shows typical difficulties found in practice.

Classic deformable models deal with such difficulties by initializing the
deformable contour in the vicinity the object boundary and by reducing its attraction
range, to decrease the influence of outliers. This is often considered as a myopic
behavior, since in such approaches, the model only “sees” the features located in a
small neighborhood of the deformable contour [10].

Several attempts have been made to improve classic methods by using more infor-
mative features such as color [15], motion [6, 19] or gradient vector field [23]. Other
approaches use prior information about the object shape by characterizing their sta-
tistics e.g., mean shape and main deformation modes [5]. The main problem remains
unsolved, however: these algorithms are unable to separate valid features from out-
liers. They require a careful contour initialization, close to the object boundary, and
myopic estimation algorithms.

The estimation of models in the presence of invalid data (outliers) is an old chal-
lenge in Computer Vision and has been addressed using robust estimation methods
[14]. A popular approach (RANSAC) is based on the generation of multiple hypothe-
ses, each of them based on different subset of data, considered as valid [7]. The model
is estimated from the subset of data considered as valid and applied to all the data.
The model which achieves the best fit is selected. This approach performs well if the
number of parameters to estimate is small (<10) but it cannot be extended to flexible
models that depend on tens or hundreds of parameters.

This chapter reviews four methods developed by the authors (Adaptive Snakes,
S-PDAF, MMDAT, 3DS-PDAF) which allow a robust estimation of deformable
curves and surfaces from image data, corrupted by outliers [8, 13, 16–18]. Instead of
assuming that all the features are valid, we assume that some of them are outliers and
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Table 1 Structure of robust adaptation methods

initialization: curve or surface initialization in the vicinity of the object boundary;
cycle

feature extraction
weights calculation
model update

end

assign a confidence degree to each detected feature. Model update is accomplished
by taking the confidence degrees into account. The second main idea concerns feature
extraction: the proposed methods extract middle level features (curve segments or
surface patches) from the image instead of low level ones (e.g., edge points). Both
strategies contribute to improve the robustness of the algorithms. Table 1 summarizes
the main steps of the robust model update algorithms. The methods discussed in this
paper fit into this structure with one exception. In Adaptive Snakes, feature extraction
is done once for all at the beginning and it is not repeated in each iteration.

The paper is organized as follows. Section 2 reviews two classic algorithms which
fail in the presence of outliers. Section 3 describes Adaptive Snakes for the estimation
of static objects. Section 4 describes the S-PDAF method for object estimation and
tracking. Sections 5 and 6 extend S-PDAF to cope with multiple dynamics and 3D
images. Section 7 concludes the paper.

2 Two Classic Algorithms

The Snake algorithm proposed in [11] estimates a deformable curve, called snake,
x(s) : [0, 1] → R

2 by minimizing an energy functional E(x) = Eint (x)+ Eimg(x),
where Eint (x) is an internal energy which prevents the snake from taking unusual
configurations, and Eimg(x) is an image energy that attracts the model towards the
object boundary. The image energy is defined by

Eimg(x) =
∫

P(x(s))ds (1)

where P(x) : R2 → R stands for an image potential function, chosen in such a way
that some of its valleys are located on the object boundary.

Several image potential functions have been proposed e.g., P(x) = ‖∇ I (x)‖
where I (x) denotes the image intensity at point x and ∇ I (x) is the image gradient
[11]. Another alternative is the edge-based potential [4]

P(x) = −
∑

k

G(x − ek) (2)
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(a) (b)

Fig. 2 Bottom-up and top-down image analysis: a image potential and b model guided feature
extraction

where G(x) is a Gaussian kernel and ek denotes the kth edge point detected in
the image. This potential function attracts the contour towards regions with high
concentration of edge points. An example of an edge-based potential is shown Fig. 2a.
The Snake algorithm equipped with this potential function performs well, if the edge
points are located at the object contour and there are no other edges in the vicinity
of the object. However, it performs poorly otherwise.

The Snake algorithm is slow and tends to get trapped in textured regions. In
order to speed up convergence, top down algorithms were proposed [3]. Instead
of computing a potential function, they extract feature points in the vicinity of the
deformable curve i.e., the model is used to extract information from the image in a
top-down way. Typically, the deformable contour is sampled at equally spaced points.
Features points are detected by searching intensity transitions along lines orthogonal
to the contour (see Fig. 2b). In tracking applications, the contour model and the set
of measurements are characterized by vectors x ∈ R

n , y ∈ R
m , respectively, whose

evolution is described by a linear dynamical system

x(t) = Ax(t − 1)+ w(t) (3)

y(t) = Cx(t)+ v(t) (4)

where t denotes the frame number, A ∈ R
n×n,C ∈ R

m×n characterize the dynami-
cal behavior of the curve and the relationship between the curve parameters and the
observations; w(t) ∼ N (0, Q), v(t) ∼ N (0, R) are uncorrelated random perturba-
tions, with zero mean and covariance matrices Q, R. The estimation of the curve
parameters from the observed measurements y(t) can be performed by Kalman fil-
tering and this method is called Kalman Snakes [21]. This approach is fast and well
suited to real-time tracking applications. However the robustness difficulties remain
unsolved: after a few frames, the deformable contour gets stuck in the outlier features.

It should be mentioning that several models are used to represent deformable
curves. In some works, the deformable curve is represented by a sequence of 2D
points (curve samples), (x1, . . . , xN ), or by a spline curve, x(s), whose shape is
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modified by a set of control points. Some works, however assume that the observed
shape, x(s), is obtained from a known reference shape, xr (s), modified by a global
transformation Tθ (e.g., affine transform) and local deformation [3]. Therefore,

x(s) = Tθ [xr (s)] + xd(s) , (5)

where θ is the set of global parameters and xd(s) is the deformation spline. Both the
global parameters, θ , and the deformation parameters have to be estimated from the
input images.

3 Adaptive Snakes

As discussed in Sect. 2, the classic Snake algorithm gets easily trapped in wrong
image features i.e., features associated to other objects or to the textured background,
which are considered as outliers. Ideally, we would like to assign a binary label
(valid/invalid) to each feature (edge point) and let the model be attracted by valid
features only. This strategy inspired the Adaptive Snake algorithm proposed in [18].
It must be stressed, however, that some difficulties must be addressed as the feature
labels are unknown.

The Adaptive Snakes algorithm follows a bottom-up approach to shape estima-
tion. It starts by detecting edge points in the image using a standard edge detection
algorithm. The edge points are then organized in connected line segments, called
strokes in this paper. The set of strokes is denoted by E = (e1, . . . , eM ) where the
j th stroke e j = (e j

1 , . . . , e j
L j ) is a sequence of edge points e j

p ∈ R
2 and L j is the

stroke length. Let K = (k1, . . . , k M ) be a sequence of binary labels associated to
the strokes in which k j ∈ {0, 1} is the label associated with the j th stroke e j .

The ideal potential function is the sum of valid and invalid stroke potentials. We
will assume that the potential function associated to valid strokes is given by (2)
while the potential associated to the outliers is constant C . Therefore,

P(x, E, K ) = −
∑

j

(

k j
∑

p

G(x − e j
p)+ (1− k j )L j C

)

. (6)

Unfortunately, we do not know the labels k j and cannot use this ideal potential
function to directly estimate the deformable contour. To overcome this difficulty, the
problem will be stated in a probabilistic framework.

Let X = (x1, . . . , xN ), xi ∈ R
2, be N samples of the deformable contour. We

will assume that the strokes and labels, E, K , given the contour samples X , follow
a Gibbs distribution,

p(E, K |X) = α
N∏

i=1

e−P(xi ,E,K ). (7)



174 J. S. Marques et al.

We want to estimate X given the observed strokes E . This is a statistical infer-
ence problem which can be tackled by the Maximum Likelihood method. However,
the binary labels are not observed and make this problem difficult since we must
resort to p(K | X) and a marginalization of the joint distribution p(E, K | X) is
required.

This difficulty can be circumvented by using the Expectation-Maximization (EM)
method. The expressions for the E and M steps are derived in [18] and will not be
repeated here. The E-step computes the confidence degrees associated to each stroke

w j = Pr(k j = 1|e j , X̂) (8)

where X̂ denotes the most recent deformable model estimate and the M-step mini-
mizes the snake energy

E(X) = Eint (X)+
N∑

i=1

Pa(xi ) (9)

where

Pa(x) = −
∑

j

w j
∑

p

G(e j
p − x), (10)

changes in every iteration of the EM method and is called an adaptive potential
function. The EM method leads to a recursive estimation algorithm similar to the
Classic Snakes. However, the stroke potentials are multiplied by their confidence
degrees, updated in each new iteration. All the strokes contribute to the estimation
of the object contour. Although, the strokes with low confidence degrees have a
negligible influence on the final contour estimates.

Figures 3, 4, illustrate the performance of Classic and Adaptive Snakes in the esti-
mation of the mug boundary, using a deformable model represented by a sequence
of 2D points. While in Classic Snakes, the potential function remains invariant dur-
ing the convergence process and the contour is attracted towards outlier valleys, in
Adaptive Snakes the potential changes as the contour deforms. After 20 iterations (see
Fig. 4c), only the potential valleys associated to the mug receive a high confidence
degree and the model converges towards the mug boundary.

Adaptive Snakes have been successfully used in several problems, e.g., in the
segmentation of skin lesions displayed in dermoscopic images. A comparison
among several segmentation algorithms was carried out in [20], using a data-
base of dermoscopic images annotated by a medical expert. The Adaptive Snakes
were selected as the best method (ex-aequo) in this study. Figure 5 shows an exam-
ple of the Adaptive Snakes performance in the segmentation of a melanocytic skin
lesion.
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(a) (b) (c)

Fig. 3 Classic Snakes performance: a edge points and initial contour, b edge potential and c final
snake configuration

(a) (b) (c)

Fig. 4 Convergence of Adaptive Snakes; Snake configuration at iterations 1, 8 and 20 (1st row)
and corresponding adaptive potential functions (2nd row)

4 Robust Tracking with S-PDAF

As mentioned before (Sect. 2), Kalman Snakes extract image features in the vicinity
of the current contour estimate using directional search [3]. This strategy is very fast
and tailored to object tracking in video sequences. However, some of the features
detected by directional search are outliers and jeopardize the contour estimates after
a few frames. Figure 2b illustrates feature extraction guided by the model estimate.

The method described in this section tries to alleviate this difficulty by using two
complementary strategies. First, it replaces feature points by strokes i.e., sequences
of points detected by directional search at consecutive samples of the deformable
contour and such that their distances to the model boundary change smoothly
(see Fig. 6a). Strokes are more informative and reliable than isolated points. Sec-
ond, we will explicitly assume that some of the strokes are outliers (we do not know
which) and should not be considered by the tracker.
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(a) (b) (c)

Fig. 5 Convergence of Adaptive Snakes in skin lesion segmentation: image features and evolution
of the elastic curve in iterations 1, 8 and 20 (1st line); evolution of the adaptive potential (2nd line)

(a) (b)

Fig. 6 a Strokes detected in an ultrasound image of the left ventricle (each color represents a
different stroke). In this example 32 interpretations are possible. One of these interpretations is
illustrated in b where strokes with the filled dot lines are considered as valid and the dashed stroke
as invalid

We will assume that there is a binary label associated to each stroke (valid/invalid)
and consider all the admissible label sequences. Each binary sequence will be
denoted as a data interpretation. Thus, the i th data interpretation is defined by
Ii = (I 1

i , . . . , I M
i ) where I j

i ∈ {0, 1} is the label of the j th stroke in the i th inter-
pretation.

If all the observations were valid, we could use the dynamical model (3, 4) to
describe shape and observations evolution. However, this model does not hold in the
case of invalid observations. Specifically, if the i th interpretation, Ii , is true, only a
subset of the observations, yi , is valid and all the other measurements are considered
as outliers. Therefore, the model associated to the i th interpretation is
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x(t) = Ax(t − 1)+ w(t) (11)

yi (t) = Ci x(t)+ vi (t) , (12)

where matrix Ci is obtained from matrix C by removing the rows associated to
the invalid observations. This makes the inference problem more difficult since we
cannot apply Kalman filtering based on the correct interpretation of the data, as we
do not know which interpretation is true. There are multiple observation models and
we do not know which is the correct one at time t .

The a posteriori distribution of the state vector x(t), given all the observations
until the time instant t , Y t = {y(1), . . . , y(t)}, is a mixture of Gaussians. Unfortu-
nately the number of Gaussians exponentially increases with t and exact inference is
unfeasible.

A similar problem occurs in the tracking of moving point targets from Radar
measurements. Although the radar system detects multiple echoes at each instant
of time, only one of them, at most, corresponds to the target to be tracked. All
the others echoes are produced by clutter or by other targets. In this case, exact
inference is also unfeasible, since the number of hypotheses exponentially grows
with the operation time and the number of detected echoes in each frame. This
difficulty has been addressed by using approximate methods. Remarkable results
have been obtained by the probabilistic data association filter (PDAF) [1, 2], used
to compute the a posteriori distribution of the state vector x(t), given a sequence of
observations, most of them being outliers. This filter approximates the distribution
of the state vector x(t), given past observations Y t−1 = (y(1), . . . , y(t − 1)), by a
normal distribution

p(x(t)|Y t−1) = N (x(t); x̂(t|t − 1), P(t|t − 1)) (13)

where x̂(t|t−1), P(t|t−1) are the mean vector and covariance matrix of x(t) given
past observations until time t − 1, Y t−1 [1].

The PDAF can be modified to cope with multiple observation models in the context
of robust shape tracking and the presence of multiple sensor models [17]. Using (13),
it can be shown that the a posteriori distribution of x(t), given Y t , with multiple
observation models is still Gaussian, i.e., p(x(t) |Y t ) = N (x(t); x̂(t | t), P(t | t)),
with mean vector being updated by

x̂(t|t) =
M∑

i=1

αi (t)x̂i (t|t) (14)

where x̂i (t |t) is the mean vector obtained by Kalman filtering tailored to the i th
interpretation of data, and αi = p(Ii (t) |Y t ) is the corresponding data association
probability. Similarly, the covariance matrix is updated by combining the Kalman
filters associated to each interpretation of the data
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P(t|t) =
[

I −
M∑

i=1

αi (t)Ki (t)Ci

]

P(t|t − 1)+
M∑

i=1

αi (t)x̂i (t|t)x̂i (t|t)T − x̂(t|t)x̂(t|t)T

(15)
where Ki is the Kalman gain associated to the i th interpretation. These equations
show that the contour estimate considers all data interpretations, each of them
weighted by the corresponding association probability.

The association probabilities play an important role in this algorithm and they are
computed using the Bayes law,

αi (t) = βp(y(t)|Ii (t), Y t−1)p(Ii (t)) , (16)

where β is a normalization constant. Equation (16) requires the distribution of the
data associated to the i th interpretation, given previous observations, and the prior
distribution for the interpretations. The first factor is computed as follows. Assuming
that the observed features y(t) are conditionally independent, we obtain

p(y(t), |Ii (t), Y t−1) =
M∏

j=1

L j∏

p=1

p(y j
p|Ii (t), Y t−1) . (17)

where p(y j
p | Ii (t), Y t−1) is a Gaussian density function, if the observation is valid,

and a uniform density function, if the observation is invalid [17]. The prior, p(Ii (t)),
is defined according to two main assumptions: (i) interpretations with long valid
strokes are more probable than interpretations with small valid strokes, and (ii) if
two valid strokes overlap, the interpretation has zero probability.

Figure 7 shows the operation of the S-PDAF tracker in the analysis of facial
expressions (lips and eyebrows). A large number of outliers are detected since the
search window along each direction is large. The tracker successfully manages to
discard the outliers and to correctly update the deformable contours in this example.

5 Dealing with Multiple Motion Models

Sometimes, the object shape deforms according to different motion regimes (e.g.,
vehicles moving in streets, heart deformation in systole and diastole phases) and a
single dynamical system (3, 4) is not enough to the describe the evolution of an object
shape in the video sequence. In this case we should resort to multiple motion models

x(t) = Ak(t)x(t − 1)+ w(t) (18)

y(t) = Cx(t)+ v(t) (19)

where k(t) ∈ {1, . . . , O} is the label of the active model at time t , matrices A1,
. . . , AO ∈ R

n×n define O dynamical behaviors of the state vector x(t) ∈ R
n
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Fig. 7 Robust model tracking with S-PDAF. The tracker manages to discard the influence of
outliers

and matrix C ∈ R
m×n characterizes the relationship between the state vector

and the observations y(t) ∈ R
m ; w(t), v(t) are uncorrelated random sequences

with normal distributions, w(t) ∼ N (0, Qk(t)), v(t) ∼ N (0, R). Furthermore, it
is assumed that the label sequence k(t) is a first order Markov process with transition
probabilities

P(k(t) = j |k(t − 1) = i) = Ti j . (20)

Equations (18–20) define a switched dynamical model with a hybrid state (x(t), k(t)).
The most probable estimate of the hybrid state given the observations until time

t , is obtained by solving the optimization problem

(x̂(t), k̂(t)) = arg max
x(t),k(t)

p(x(t), k(t)|Y t ) . (21)
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Fig. 8 Multi-model tracking: tree of Kalman filters

Using the law of total probabilities, the a posteriori distribution becomes

p(x(t), k(t)|Y t ) =
∑

K t−1

p(x(t), K t |Y t ) (22)

=
∑

K t−1

p(x(t)|K t ,Y t )p(K t |Y t ) (23)

=
∑

K t−1

cK t p(x(t)|K t ,Y t ) (24)

where cK t = p(K t |Y t ) is one mixture coefficient and p(x(t)|K t ,Y t ) is a normal den-
sity function whose parameters can be obtained by Kalman filtering. Equation (24)
shows that the a posteriori distribution of the hybrid state is a mixture of Gaussians
each of them associated to a different label sequence K t . Although, each Gaussian
can be computed by Kalman filtering on a tree structure (see Fig. 8), the number of
hypothesis, K t exponentially increases, making a direct computation unfeasible.

This difficulty can be overcome by mode merging and elimination. If the prob-
ability cK t , for a specific label sequence K t , becomes too small, the associated
mode will be eliminated. In addition, if a pair of Gaussians have similar parameters
(the similarity being measured by the Kullback-Leibler divergence) the two modes
are merged and replaced by a single mode [13]. After performing mode merging and
elimination, the estimation of the best shape estimate is determined by maximizing
the a posteriori distribution, according to (21). This involves finding the maximum
value of a multivariate mixture of Gaussians.
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Fig. 9 Tracking of the left ventricle using the MMDAT, during systole and diastole phases. The
contour color displays the label of the selected model: contraction (red line) or expansion (green
line) models. Notice that whenever the mitral valve is closed (open) the cardiac cycle is in systole
(diastole) phase

This algorithm can be used to track moving objects under different motion regimes
and will be denoted as Multi-model tracker (MMT). However, the MMT is not robust
since the state estimates are strongly affected by outlier measurements. To deal with
this problem, we will extend the robust S-PDAF tracker to this multi-model context.
We assume that the observations are organized in strokes and some of them may be
outliers. A binary label will be associated to each stroke as we did in Sect. 4. The
sequence of all binary labels, Ii = (I 1

i , . . . , I M
i ) , is called a data interpretation.

The dynamical model associated to the model label k(t) and data interpretation
Ii is given by

x(t) = Ak(t)x(t − 1)+ w(t) (25)

yi (t) = Ci x(t)+ vi (t) (26)

where yi (t) denotes the vector of valid observations according to interpretation Ii .
The true data interpretation is unknown, however, and the estimation of the hybrid
state based on this model can be done in a similar way to the one used in the MMT.
However, the tree of Kalman filters is replaced by a tree of robust S-PDAF filters.
This multi-model tracker with robust state estimate will be denoted Multi-model
Data Association Tracker (MMDAT).

Figure 9 shows the application of the MMDAT in a sequence of ultrasound images
of the heart. Two dynamical models are used to represent the evolution of the left
ventricle during systole (contraction) and diastole (expansion) phases. Figure 9 shows
the contour estimates obtained with this algorithm and the contour color represents
the label of the active model, k(t), which was automatically selected by the algorithm
in each frame (see (21)).
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6 From 2D to 3D

This section considers the segmentation of 3D objects in 3D images, I : [0, 1]3 → R

e.g., ultrasound, MRI or PET images. The previous methods can be used in this
context, specially the S-PDAF method which combines fast feature extraction, low
memory requirements and robust model update. Memory and computational time
play important roles in this context since the models typically depend on hundreds
or thousands of parameters.

Four issues must be considered in order to extend the S-PDAF method to 3D shape
estimation: (i) the surface model, (ii) model initialization, (iii) feature extraction and
(iv) robust model update. Each of these issues is discussed in the sequel.

Surface model: we wish to approximate the object boundary by a deformable
surface in 3D space. The choice of the surface model is an important issue since
there is a tradeoff between model accuracy and number of free parameters. Popular
solutions range from parametric models, such as superquadrics, with a small number
of parameters and limited representation capability, to non-parametric models with
many hundreds of parameters [22]. We adopted a non-parametric simplex mesh [9]
which consist of a set of nodes, associated to 3D points, and edges among neighboring
nodes. The model is constructed in such a way that each node has 3 neighbors which
define a tangent plane to the surface. The normal vector is therefore available for
each node.

Model initialization: this is an important step since we wish to create a simplex
mesh close to the object boundary as a starting point for adaptation. We adopt a space
carving approach. We discretize the region of interest (data volume) and intersect
the region of interest by several inspection planes (e.g., three orthogonal planes as
shown in Fig. 10). We then define a 2D contour in each plane using a graphical
editor. All the voxels in the data volume are projected onto the inspection plane and
those outside the contour are zeroed. At the end, we obtain a binary 3D mask which
is then approximated by a simplex mesh. The simplex mesh is initialized with a
spherical shape and deformed until it fits the binary mask. This is an easy task for the
deformable simplex mesh since we are dealing with a binary object without clutter
or noise.

Patch extraction: this operation is done in two steps. First, we detect transitions
along straight lines orthogonal to the surface model. This task is repeated for each
node and may lead to multiple detections in each direction (see Fig. 11a). Then the
nodes are grouped in surface patches. Neighboring nodes receive the same label if
their distances to the surface are similar. Patch construction depends on the order by
which nodes are visited. Figure 11b shows an example of two patches.

Robust model update: model update is done using the S-PDAF Eqs. (14, 15) but
there are two important differences. First the dimension of the state space is much
higher. Instead of a few tens of parameters needed to represent a deformable curve,
we typically need a few thousands of coordinates to represent the nodes positions.
The update iteration is therefore much more demanding and slow. Second, the middle
level features (surface patches) also have a large number of observations (sometimes
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Fig. 10 Model initialization by space carving: image data is observed along three or more planes
and the object boundary is approximated by a 2D contour in each plane. All voxels are projected
onto the planes and those who project outside the contour are zeroed

(a) (b)

Fig. 11 Feature extraction: a directional search; b patch creation by region growing

(a) (b) (c)

Fig. 12 Segmentation of the left ventricle in an ultrasound 3D volume: a estimated 3D model
using 3DS-PDAF; b, c pair of observed images and model cross sections obtained by intersecting
the deformable mesh by the inspection planes

hundreds of transitions are detected in the 3D volume of data). It is no longer possible
to assume that all the observations in the same patch are statistically independent.
The confidence degrees under these hypotheses are almost binary: patches closest to
the surface have confidence degrees equal to 1, while other patches have 0 confidence
degree. We therefore adopted a different probabilistic model which takes into account
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the average distance of the valid features to the surface along the normal direction,
dav. The association probabilities are given by (16) as before but with

p(y(t)|Ii (t), Y t−1) = Ce−γ d2
av . (27)

This algorithm will be called the 3DS-PDAF. Figure 12 shows the results obtained
by the 3DS-PDAF method in the segmentation of the left ventricle in an ultrasound
volume of data. This is a difficult problem due to the low signal-to-noise ratio, the
presence of speckle noise and lack of visual boundary information (edge dropout) in
some regions of the heart boundary. Figure 12a shows an example of a deformable
surface estimated by the 3DS-PDAF method. Figure 12b, c shows cross sections of
the 3D volume of data and of the estimated model.

7 Conclusions

This chapter presents a set of robust shape estimation algorithms based on robust
feature extraction and robust model update techniques. These methods can be applied
in a variety of problems ranging from static shape estimation, to object tracking in
2D and 3D applications.

The proposed algorithms exhibit an improved performance when compared
with the classical deformable model techniques. The key ideas explored in these
approaches are: (i) the use of more reliable features (line segments or surface patches)
and (ii) explicit modeling of outlier observations by assigning a binary label to each
of them. Formulated in this way, the estimation of the object shape is an inference
problem with unobserved variables (labels) which can be tackled by the Expectation-
Maximization method or by Data Association filtering algorithms.
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Deformable Face Alignment via Local
Measurements and Global Constraints

Jason M. Saragih

Abstract This chapter will review a particular approach to deformable face
alignment coined constrained local models (CLM). The approach leverages the
excellent generalisation properties of local appearance representations of parts and
the strong global constraints imposed by the geometrical relationships between part
locations. We begin by posing CLM in the general context of deformable face align-
ment, highlighting its similarities and differences with other approaches and moti-
vating its benefits. An overview of the approach is then presented, explicating its
various components and touching briefly on the interrelated issues of optimisation,
feature representation and geometry regularisation. The following three sections dis-
cuss each of these three components in detail. The chapter concludes with a general
discussion and directions of future work.

1 Introduction

Deformable face alignment has had a long history, starting from the seminal works
of Cootes and Taylor with their active shape model (ASM) [5] and active appear-
ance model (AAM) [7]. A particular feature of ASM and AAM that distinguishes
them from earlier work is the use of annotated data to build statistical models of the
face’s appearance and geometry rather than human-defined or biologically inspired
attributes. Since then, a tremendous amount of work has been invested in improving
this basic paradigm and applications of its underlying techniques have been seen in
fields as diverse as human-computer interaction [22, 47, 49], medical image analy-
sis [17, 36, 53], industrial vision [6, 13, 30] and graphics [19, 43, 45].

The ASM/AAM paradigm is to statistically model all sources of variation that
the face exhibits, namely that of geometry and appearance. ASM and AAM share a
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(a) (b) (c) (d)

Fig. 1 AAM and ASM both represent a face in an image (a) using a statistical shape model (b) but
AAMs represent appearance holistically (c) and ASM in parts (d)

common representation of facial geometry as a statistical model of joint variations in
facial feature locations. A 2D linear model is most commonly used for this purpose
and its utility for modelling dense 3D facial shapes has also been demonstrated in 3D
morphable models (3DMM) [2]. Extensions that employ mixture models [21] and
kernel based methods [37] have also been proposed for handling large pose variations
in a 2D representation. The core difference between ASM and AAM is in how the
appearance of the face is modelled. In AAMs, the appearance of the whole face is
modelled jointly, whereas in ASM, each facial feature is modelled independently
of all others (see Fig. 1). As such, AAMs can potentially capture a more faithful
representation of the underlying statistics of facial appearance. However, in practice,
due to the large space of appearance variability of the face and its high dimensionality,
a compact representation that generalise well can only be afforded in highly restricted
settings such as in the person-specific case [18, 34].

The primary use of ASM/AAM is to infer the locations of facial features in
an image. Thus, discourse on ASM/AAM techniques in the literature often cou-
ples their representation with the particular inference strategy employed, herein
referred to as deformable face alignment. Major advancements on this aspect of
ASM/AAM have been proposed since the original works of Cootes and Taylor, with
notable improvements in accuracy, computational complexity and generalisation.
These inference algorithms can be broadly categorised into two groups; regression-
based and optimisation-based. Regression-based approaches learn a regression model
that predicts the location of facial features in an image from a set of features extracted
from it. Improvements to the original regression approach in [8] include the use of
more sophisticated feature representations [11, 14, 52], averaging multiple predic-
tions [33, 50] and leveraging successive regression iterations [39, 40, 46]. The main
advantage of the regression-based approach is its simplicity and efficiency; one sim-
ply extracts features from the image and applies the regression model to them. The
main drawback of this approach is that the relationship between the image features
and the location of facial features in an image is often highly nonlinear, requir-
ing high-capacity regression models that are difficult to train and often generalise
poorly. In contrast, optimisation-based approaches design/learn an objective func-
tion that encodes the degree of misalignment between the model and face in the
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image [21, 28, 25]. To reduce sensitivity to local minima, one can either learn an
objective function that exhibits fewer local minima [26, 32] or simplify components
of the problem such that the objective is amendable to exact inference methods [16,
48]. The main drawback of these provisions against local minima is that they often
come at the cost of perturbing the global solution away from the true configuration
in the image.

Despite substantial progress in all aspects of the ASM/AAM paradigm, the prob-
lem of real-time deformable face alignment in the presence of pose, identity, expres-
sion and lighting variations as well as image noise, resolution and partial occlusions,
remains unresolved. Nonetheless, the space of variations that state-of-the-art meth-
ods can handle is such that their application in real-world settings has started to be
realised.

In this chapter, one such method will be discussed in detail. It shares a common
representation with the original ASM, but is referred to as a constrained local model
(CLM) to emphasise its adoption of the various lessons learned about deformable
face alignment since ASM was first proposed over two decades ago.1 The remainder
of this chapter is structured as follows; an overview of CLM is presented in Sect. 2,
where motivations for its form are given and the three interrelated components of
feature detection, regularisation and optimisation are identified. In Sect. 3, issues
pertaining to the choice of facial feature detectors, their training and employment are
discussed. The role of regularising geometry is discussed in Sect. 4, where a method
for a highly compact image-specific regulariser is presented. In Sect. 5 an efficient
and accurate optimisation procedure that leverages the forms of the feature detectors
and regularisation described in the preceding sections is discussed in detail. This
chapter concludes in Sect. 6 with a discussion and mention of promising directions
for future work.

2 Overview

Posing deformable face alignment probabilistically, all existing algorithms strive to
maximise the posterior over the location of facial features in an image:

p(x|I ) ∝ p(x) p(I |x); x = [x1; . . . ; xn], xi ∈ �2. (1)

Here, I denotes the image and x is a vector of concatenated 2D-coordinates of the
facial features. The term p(I |x) denotes the likelihood that the face in the image
has its features configured according to x and p(x) denotes the prior distribution of
plausible facial shapes.

A distinguishing feature of CLM, compared to other approaches, is that the likeli-
hood of a particular location in the image corresponding to a particular facial feature

1 The term CLM was first coined in [10].
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(a) (b)

Fig. 2 A geometrically plausible composition of facial parts of different individuals in (a) con-
stitutes a valid face, whereas a facial parts from the same individual arranged in a geometrically
unlikely configuration in (b) does not

is assumed to be conditionally independent of all other facial features:

p(I |x) =
∏

i

p(Ii |xi ). (2)

Here, Ii denotes a spatially-coherent region in the image centred around xi (i.e. an
image patch). An illustration of the effects of this assumption on the alignment model
is illustrated in Fig. 2. Although this assumption may appear restrictive, the advantage
of this parameterisation is two-fold. First, modelling each facial part independently
of all others is far easier; it requires less data to generalise well compared to holistic
representations that model the appearance of all parts jointly together. The second
advantage of this form is that the likelihood of each part over all locations in the
image can be computed independently, admitting an efficient implementation through
parallelisation. Having a lookup-table of the likelihood of part locations in the image
is also advantageous as it allows posing alignment as a generic graph inference
problem.

Maximising the posterior in Eq. (1) is equivalent to minimising its negative log-
arithm, which leads to an objective of the following form:

min
x

R(x)︸ ︷︷ ︸
regulariser

+
∑

i

Di (xi )︸ ︷︷ ︸
data terms

. (3)

The form of the objective in Eq. (3) is not unique to CLM. In fact, its use in vision
can be traced back to the seminal work on optical-flow by Horn and Schunck [23].
Differences between problems that utilise an objective of this form stem primarily
from how the regularisation and data terms are modelled, which often restricts the
types of optimisation strategies one can employ. The original Horn-Schunck method
for optical flow uses the Lucas-Kanade appearence-constancy objective [27] as the
data term along with a Laplacian regulariser, which leads to a sparse-linear system
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Fig. 3 The two boxes on the left illustrate the likelihood functions for two facial feature locations
(i.e. x1 and x2). By constraining the configuration of the features via a low-dimensional subspace
(i.e. x = xc + Jp), spurious detections that are not geometrically consistent are attenuated

that can be solved efficiently. More recently, pictorial structure models [16], which
were popularised in the context of body alignment and pose estimation, use a tree-
structured gaussian markov random field as a regulariser, which admits a global
solution through dynamic programming. For deformable face alignment, the regu-
lariser of choice is still the linear deformation model of ASM. Despite its simplicity,
it has been shown to adequately span the space of human faces while affording a
substantial constraint over the space of plausible solutions, removing the ambiguity
in part detections to a large extent (an illustration of this is shown in Fig. 3). In the
sections that follow, the specific forms of the data- and regularisation-terms used in
CLM face alignment will be discussed.

3 Facial Feature Detectors

Modelling the local appearance of facial features independently of the rest of the face
often exhibits better generalisation properties than holistic representations largely
because the dimensionality of the data is much lower and some degree of invariance
towards lighting variation can be obtained by a simple power normalisation [48].
One of the main problems with patch based methods is that the appearance of facial
features can vary greatly between people, pose, lighting and expression. Thus, to
account for these variations, it may be necessary to use high-capacity models, which
tend to have poorer generalisation and higher evaluation costs. The second, and
perhaps, more pressing issue, is the aperture problem; the local appearance of some
facial features are inherently ambiguous. By observing only a small patch around
a facial feature, it can be very difficult to pin-point where within an image a facial
feature is located as many locations can share a similar local appearance (see Fig. 4a).
This is complicated further when one has to account for inter-personal variabilities.
As such, even the use of highly sophisticated models that account for inter-personal
variations may not help resolve these ambiguities.
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(a) (b) (c)

Fig. 4 a Examples of the aperture problem for points on the eyebrows and lips in two images
from [20]. b The likelihood of facial features at all locations in the image (i.e. response-maps)
for three different facial features. The scaled SVM template (i.e. wi in Eq. (4)) for each feature is
shown at the corners of their respective response map. The three features exhibit different degrees
of detection ambiguities. c Visualisation of the relative quality of facial feature detectors. In the top
image, the quality of each facial feature detector is colour coded (blue is high and red is low). A plot
of the relative quality of each detector is shown in the graph below, ordered from highest to lowest
quality. As one would expect, facial features that exhibit small inter/extra-personal variations, such
as the eyes and nose, admit better feature detectors than those with large variations, such as those
on the mouth and the periphery of the face

Faced with these difficulties, a pragmatic approach is to use a simple feature detec-
tor that is easy to train and efficient to employ, relying instead on global constraints
over geometry and the inference strategy to find the best solution over their locations.
Perhaps the simplest of all feature detectors is the linear-SVM [9]:

C (d) : �D → Z =
{

1 if wT d+ b ≥ 0
0 otherwise

. (4)

Here, d denotes the features extracted from an image patch centred around the hypoth-
esised facial feature location,2 w is the SVM gain vector and b is the bias. Linear-
SVMs have the advantage that the likelihood of feature locations in an image can be
evaluated extremely rapidly using efficient convolution operations.

In order to use a linear-SVM for the feature detector in CLM alignment, a few
issues must first be addressed. The first issue is how to choose the negative data
for training the SVM. Unlike conventional detection tasks, the role of the SVM in
CLM alignment is to generate the likelihood scores in Eq. (2) at each location in
the image. As such, the negative data should consist of features extracted from the

2 In [48], choosing d as the mean- and power-normalised raw pixel values was shown to work well
for facial features. For body parts in articulated pose estimation, HoG features [12] were shown
in [16] to give good results.
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image at locations other than that corresponding to the facial feature. A question then
naturally arises: how close to a feature location in an image can a negative sample
be? Choosing negative samples too close the feature location can limit the accuracy
of the classifier, while choosing only negative samples that are far away may limit
its spatial precision. A practical approach to resolve this dilemma is through cross-
validation, whereby a number of settings for the minimum proximity to the positive
sample in each image are used to generate the negative set, and the efficacy of each
choice is evaluated by using the detectors, in conjunction with the global constraints
over geometry, in the inference process (i.e. solving Eq. (3)).

Another issue with using a linear-SVM to model the likelihood function is the
great imbalance between positive and negative samples. For each image, there is only
a single positive sample (i.e. that centred at the facial feature of interest), where as
there are potentially an infinite number of negative samples that can be generated from
anywhere outside the positive-proximity region. One way to address this problem is to
use a bootstrapping procedure [12] to retain only the difficult negative samples. The
idea here is that since the decision hyperplane of an SVM is described entirely by its
support-vectors, the solution is not changed by training only with data that consists
entirely of samples pertaining to the support vectors. In practice, this bootstrapping
process can be approximated efficiently by simply choosing the negative samples
which are most correlated with the positive one.

Finally, there is the issue of how to choose the best regularisation constant used
for training the SVM. Unlike conventional applications of SVMs, where one desires
a binary classification score, here, the linear-SVM is used to generate the likelihood
that a location in an image corresponds to a particular facial feature. Specifically, the
likelihood of a particular location in the image in Eq. (2) can be obtained by passing
the classification score through a sigmoid function:

p(Ii | xi ) = 1

1+ exp{α(wT dxi + b)+ β} , (5)

where (α, β) are learned through a calibration process [35]. Ideally, the likelihood at
the feature location should be higher than at all other locations. If it is assumed that
the facial feature is located somewhere in the image, then the probabilities in Eq. (5)
must sum to one. Thus, the entity of interest is not the SVM’s binary classification
score (or even its regressed value), but rather, the relative scores and their distribution
in the image (i.e. a large likelihood close to the true feature location is better than
one farther away). This is not reflected in the SVM objective as it penalises all miss-
classifications equally. A heuristic to overcome this problem is to evaluate the efficacy
of an SVM by a weighted sum of feature likelihoods over the whole image, where the
weights are chosen to decay as one moves away from the true facial feature location in
the image, using, for example, a gaussian distribution. Assuming isotropic Gaussian
noise over the facial feature annotations, this is equivalent to measuring the marginal
likelihood over the entire image (see discussion on optimisation in Sect. 5). One can
use this measure in cross-validation to choose the best setting for the regularisation
constant in SVM training.
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Some examples of typical response maps for three facial features using a linear
SVM are shown in Fig. 4b. It is evident that the simple linear-SVM can not adequately
discriminate between the true feature locations and many other locations in the image.
In the ideal case, there would be a single large response at the true location and small
values everywhere else. Instead, a multimodal distribution of responses is evident.
This reflects the difficulty in accounting for inter-personal variabilities as well the
aperture problem stemming from local appearance ambiguities. Nonetheless, each of
the response-maps contains some information about the true location of the feature
and the ambiguities are often non-complementary. Thus, the simple linear-SVM
detector can be sufficient for CLM alignment when coupled with an optimisation
strategies that finds a solution through consensus between the different response
maps and a strong global constraint over facial geometry.

4 Global Shape Constraints

The regularisation term in Eq. (3) serves to restrict the space over which consen-
sus between facial feature detections is to be found through optimisation. Most
deformable face alignment methods employ a linear approximation to how the shape
of facial features deform, coined the point distribution model (PDM) by [5]:

x = x̄ +Φp. (6)

Here, x̄ denotes the mean shape,Φ denotes the basis of deformation and p denotes the
deformation parameters. A common choice for the PDM is that learned by applying
principal component analysis (PCA) to manually annotated facial feature locations
in a set of training images. This model is both simple and efficient, and has been
shown to adequately span the deformation space of objects such as the human face [5]
and organs in medical image analysis [51]. Although PCA affords a significant com-
paction of the space of plausible facial shapes, the dimensionality of the deformation
basis that accounts for a major portion (i.e. 95–98 %) of variations is rarely suffi-
cient to eliminate enough spurious configurations. That is, the employment of the
PCA prior over facial shapes in Eq. (3) does not eliminate a sufficient number of
local minima such that local optimisation strategies converge to the global solution
at acceptable rates.

In this section, we will review a method for multivariate regression that recognises
the limitations of the conventional approach in building a deformation basis for face
alignment. Through a method named principal regression analysis (PRA) [38], a
basis is learned that spans the space of sample-specific regressors. In a departure
from the standard notion of regression, this model does not, in itself, generate a
specific prediction for a given input. Rather, it predicts a low dimensional subspace
thought to contain the solution. As such, it is not devised to replace optimisation
based alignment, but to enhance it by administering a strong prior over the space of
plausible solutions.
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(a) (b)

Fig. 5 Illustration of regression versus principal regression. a Regression maps points in input
space to points in target space. b Principal regression maps points in input space to a specialised
subspace containing the target

4.1 Principal Regression Analysis

Given a training set of input/output pairs3 {xi , yi }Ni=1, where xi ∈ �d and yi ∈
�n , regression learns a function F that maps input variables to their target output.
Conventionally, F is a static function that enables the prediction of responses for
new input. The main idea in PRA is to use a predictor of the following form:

F : �d ×�h → �n =
h∑

i=1

pi Fi (x), (7)

where Fi : �d → �n and p ∈ �h is an additional variable that serves to linearly
combine the predictions from {Fi }hi=1. In general, the value of p for a given x is
typically unknown. As such, rather than mapping the input to a point in �n as in
conventional regression, the form in Eq. (7) maps the input to a linear subspace
containing the target output (see Fig. 5 for an illustration). The coordinates of the
target output within this subspace are then found by other means. The idea is that
if h � n, then the space of plausible target configurations is reduced considerably,
simplifying the task of finding the correct one.

In the case where Fi is linear:

Fi (x) =WT
i x, (8)

Equation (7) reduces to a bilinear function:

F(x;p) = (I⊗ xT )Φp; Φ = [vec{Wi } . . . vec{Wh}], (9)

3 In this section, we follow the usual convention in the regression literature and denote x as the
input variable, rather than the facial feature locations as in preceding sections.



196 J. M. Saragih

and for a given input x we have:

y ∈ span{(I⊗ xT )Φ}. (10)

Learning, then, involves minimising the regularised out-of-subspace component of
the training targets:

min
pi ,Φ

N∑

i=1

‖yi − (I⊗ xT
i )Φpi‖2 + β‖Φpi‖2. (11)

Here, Φpi can be thought of as a conventional linear regressor specialised to the
ith training example. As such, the second term in Eq. (11) is simply the Tikhonov
regulariser applied separately to the predictors of each sample. The user defined
parameter β trades off prediction error against each sample’s regressor complexity.
The affine ambiguity between Φ and pi can be removed by, for example, enforcing
the orthonormality constraint: ΦTΦ = I.

Drawing parallels with PCA, Fi are called principal regressors since they define a
subspace over regressors. Similarly, the process of learning the principal regressors
(i.e. solving Eq. (11)) is denoted principle regression analysis.

4.2 Kernel PRA

A common ‘trick’ in machine learning is to kernelise problems that involve only inner
products between their input variables. This has the advantage of expanding mod-
elling capacity whilst preserving the algorithmic properties and training complexity
of linear models.

PRA belongs to a class of methods that admit a kernelisation via their adherence
to Mercer’s theorem [29]. That is, for Φ = [Φ1; . . . ;Φn], each column of Φ j is
spanned by the columns of X = [x1 . . . xN ]. To see this, consider the objective in
Eq. (11), where the basis is replaced by its components within, and orthogonal to,
the column space of X:Φ = ΦX+Φ⊥X. SinceΦ influences the first term in Eq. (11)
only through inner products with xi , Φ⊥X has no effect on it. Therefore, a solution
will have components outside the span of X only if the second term is reduced as
a result. However, since for any p we have: ‖(ΦX + Φ⊥X)p‖2 ≥ ‖ΦXp‖2, without
loss of generality the optimal basis admits the following decomposition:

Φ = (I⊗ X)B. (12)

Letting K = XT X, Eq. (11) can be written:
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(a) (b)

Fig. 6 When considering the use of PRA as a prior for face alignment, it can be interpreted in one
of two ways. a PRA predicts an image-specific subspace containing the target facial shape. b PRA
describes the subspace that spans all the image-specific regressors

min
B,pi

N∑

i=1

∥
∥
∥yi −

(
I⊗KT

(i)

)
Bpi

∥
∥
∥

2 + β ‖Bpi‖2(I⊗K). (13)

For B = [B1; . . . ;Bn], the prediction for the jth output dimension given a new input
takes the form:

f j (x) = pT BT
j [k(x; x1); . . . ; k(x, xN )], (14)

where k is the kernel function. For a particular choice of p, the form reduces to that
of conventional kernel regression.

4.3 PRA Regularisation for Face Alignment

The effect of the regularisation term in Eq. (11) is that the output data does not
typically lie entirely within the predicted subspaces. As such, restricting search to
within the predicted subspace may be suboptimal. Instead, it may be more beneficial
to treat the predicted subspace as a soft constraint during search. One way to do this
is by introducing it as an image-specific prior over the space of facial shapes for that
image.

The variable p in Eq. (7) has a dual interpretation. For a given x, p denotes
coordinates of y within the image-specific (non-orthonormal) subspace in Eq. (10)
(see Fig. 6a). It can also be interpreted as the coordinates of regressors withinΦ (see
Fig. 6b). Analogous to how the distribution of coordinates in PCA space is often
modelled as a Gaussian distribution [31], one can similarly model the distribution of
regressors in Φ:

p ∼ N (μp, �p). (15)
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Fig. 7 Examples of the subspaces for regularising face alignment predicted using PRA with h = 2
on images from the Faces in the Wild dataset [24]. The red and green arrows denote the first and
second direction of variation respectively. The white ellipses denote the (2 × 2)-block diagonal
components of the covariance of the PRA-prior in Eq. (16)

For use as a prior over the coordinates of y ∈ �n , the regression basis Φ and the
current observation x can be used to transform the regressor prior to an image-specific
prior y ∼ N (μy, �y), with:

μy = x̂Φμp and �y = x̂Φ�pΦ
T x̂T + σ 2I. (16)

Here, x̂ = (
I⊗ xT

)
and σ 2 is the variance of the estimation error (i.e. the first term

in Eq. (11)).
Incorporating the prior in Eq. (16) into a search procedure entails setting the

regularisation term in Eq. (3) as the negative log of the Gaussian distribution:

R(y) = 1

2
‖y− μy‖2

�−1
y
. (17)

Since this regulariser is quadratic in y, it preserves the properties of most search
objectives, allowing the same search strategy to be used with or without the prior.
The application of PRA in this way is closely related to regularisation with a PCA
prior. The main difference is that in PCA, the prior is static as it constitutes the
marginal likelihood of the output. In contrast, PRA prescribes a prior specialised
to the current input that is much more compact (i.e. close to low rank when σ 2

is small).
Some examples of the predicted subspace constraints using PRA are shown in

Fig. 7. The first thing to notice is that the priors are different for each image
and are, in a way, specialised to the face they contain. For example, in the first
two images, the predicted subspaces appear to capture the fact that the sub-
jects are displaying facial expressions, where the directions of variability per-
tain to intensifying/attenuating those specific expressions (i.e. surprise and smile).
Similarly, for the other two images, the subspaces appear to capture the fact that
the faces are not in a frontal pose and, thus, encode uncertainty about pose of the
face.
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5 Optimisation

With the descriptions of the feature detectors in Sect. 3 and the PRA induced prior
over facial geometry in Sect. 4, the components of the objective in Eq. (3) can now
be fully described.

5.1 Formulation

As described in Sect. 4, the way in which the locations of facial features in an image
can vary is governed by a linear deformation model (PDM):

x = x̄ +Φp; x = [x1; . . . ; xn]. (18)

The deformation basis, Φ, can be found by applying a low-rank decomposition to
the sample covariance matrix. In the case where PRA is used, the mean and covariance
of this deformation space is described by Eq. (16).4 In CLM alignment, the true facial
feature locations are assumed to be at one of the locations where the detector was
evaluated:

xi ∈ Ωi ; Di (xi ) = − log{p(Ii |xi )}. (19)

Due to the truncation used in PCA, or the prediction error in PRA, the deformation
model can not perfectly reconstruct the true feature locations in an image. That is,
there may be no combination of x = [x1; . . . ; xn] that is spanned by the PDM. To
account for this, it is often assumed that the reconstruction error over facial feature
locations is homoscedastic isotropic Gaussian distributed:

xi = (x̄i +Φi p)+ εi ; εi ∼ N (0, σ 2I). (20)

Here, σ denotes the standard deviation of the noise on feature locations. Assuming
the training set of facial feature locations were all located at integer pixel locations,
and that Ωi denotes all integer pixel locations in the image, σ can be inferred from
the covariance matrix as follows [31]:

σ 2 = 1

2n − h

2n∑

i=h+1

λi ; � = [Φ | Ψ ] diag{λ} [Φ | Ψ ]T , (21)

which is simply the arithmetic average of the eigenvalues in Ψ ; the subspace orthog-
onal to Φ.

4 Note that in this section we revert back to the convention of denoting by x the concatenated
coordinates of facial features, which corresponds to y in Sect. 4, andΦ again refers to the deformation
basis rather than the regression basis as in Sect. 4.



200 J. M. Saragih

Describing the relationship between the PDM and the feature detections in this
way leads to a decomposition of the regulariser in Eq. (3) into two terms:

R(x) = 1

2σ 2 ‖x − (x̄ +Φp)‖2 + 1

2
‖p‖2

Λ−1; Λ = diag{[λ1; . . . ; λh]}, (22)

where λi denotes the eigenvalue of the ith mode of deformation. When assuming
a non-informative (uniform) prior over the PDM parameters (i.e. λi → ∞), the
formulation in Eq. (3) leads to a Maximum Likelihood (ML) estimate [41], otherwise
it leads to a Maximum a-posterior (MAP) estimate.

The final objective for CLM alignment takes the form:

min
p∈�h ,xi∈Ωi

1

2σ 2 ‖x − (x̄ +Φp)‖2 + 1

2
‖p‖2

Λ−1 −
∑

i

log{πxi }; πxi = p(Ii | xi ).

(23)

This is a mixed integer programming problem which is well known to be intractable.
Common strategies for solving this problem include parameterising the detector
responses using simpler forms [48] or relaxing the prior over facial geometry to one
that admits exact inference [16]. The main drawback of these approaches is that, the
optimal solution they afford does not necessarily correspond to the global solution of
the original problem. Recently, an exact method for solving Eq. (23) was proposed
in [1]. However, as it is an instance of the branch-and-bound (BnB) approach to
optimisation, it relies on a sparse set of candidate facial feature locations (i.e. using
non-maximum suppression etc.) in order for the BnB strategy to terminate rapidly.
As such, it is difficult to incorporate characteristics of the response maps that reflect
the aperture effect.5

Face alignment usually plays the role as a front end process for higher level
inference process. Thus, the computational complexity of its inference must be kept
to a minimum. Given inherent intractability of the problem in Eq. (23) one must rely
on local optimisation strategies in order to afford rapid alignment. The main problem
with most local optimisation strategies is their sensitivity towards local minima of
the objective. In the following section, a method that aims to reduce the effects of
local minima whilst preserving computational efficiency will be discussed.

5.2 Subspace Constrained Mean-Shifts

A common approach for reducing sensitivity of local optimisation strategies against
local minima is the so called coarse-to-fine method (also called the continuation
method). This approach involves minimising a successively less smoothed version

5 The specific application of the method in [1] was for initialising a 3DMM. As such, a highly
precise solution was of less importance.
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of the original problem, where the solution at the coarser level is used as an initial
estimate at the finer scale. One way to smooth the CLM objective is to marginalise
over the facial feature locations in the image:

p(p|I ) ∝ p(p)
∏

i

∑

xi∈Ωi

p(Ii |xi ) p(xi |p) (24)

= p(p)
∏

i

∑

xi∈Ωi

πxi N (x̂i ; xi , σ
2I); x̂i = x̄i +Φi p. (25)

This can be interpreted as making a non-parametric estimate of the response map in
the form of a homoscedastic isotropic Gaussian kernel density estimate (KDE) [44].

The quality of this nonparametric estimate of the response map depends largely
on the choice of candidate feature location sets {Ωi }ni=1. If the candidates are sam-
pled too sparsely, they may not adequately cover the space of variations and σ ,
which is learned from training data using Eq. (21), will be underestimated. However,
since the space of xi is the 2D image plane, it is computationally tractable to compute
the likelihood of a dense set of candidates locally around the current PDM estimate
through an exhaustive local search over all integer pixel locations.

In [42], it was shown that Eq. (25) can be maximised using the EM algorithm.
Treating the true facial feature locations {xi }ni=1 as hidden variables, in the E-step
the posterior over the candidates are evaluated:

ωxi = p(x̂i | xi , Ii ) = πxi N (x̂i ; xi , σ
2I)

∑
zi
∈ Ωiπzi N (x̂i ; zi , σ 2I)

(26)

Then, the M-step involves minimising:

Q(p) = E

[

− log

{

p(p)
∏

i

p(x̂i xi , Ii )

}]

(27)

∝ ‖p‖2
Λ−1 +

∑

i

∑

xi∈Ωi

ωxi

σ 2

∥
∥xi − x̂i

∥
∥2
. (28)

Using the relationship:
∑

xi∈Ωi
ωxi = 1, the solution for the linear deformation

model can be written:

Δp =
(
σ 2Λ−1 +ΦTΦ

)−1 (
ΦT v − σ 2Λ−1α

)
; p← p+Δp, (29)

where v = [v1; . . . ; vn] is the concatenation of the mean-shift vectors for each facial
feature:

vi =
⎛

⎝
∑

xi∈Ωi

ωxi xi

⎞

⎠− x̂i (30)
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Fig. 8 Visualisation of the marginalised objective for three response maps locally around three
facial features in an image from [20]. The first row denotes the raw response maps computed using
the facial feature detector in Eq. (5), and the other three are their non-parametric estimates using
different settings for σ 2

Notice that in the case that a ML solution is desired (i.e. p(p) is non-informative),
the solution for the parameter update Δp is simply the projection of the mean-
shift vectors onto the deformation subspace Φ. Thus, this strategy was coined the
name subspace constrained mean-shift (SCMS). In either case, the form in Eq. (29)
suggests a simple and efficient implementation, consisting of an alternation between
computing the mean shift-vectors and their regularisation by the deformation model.

In [15] it was previously shown that mean-shift is a bound optimisation. This was
later extended in [3] by showing that for Gaussian kernels, mean-shift is equivalent
to employing the EM algorithm as an optimisation strategy. With the derivation
of presented in [42], it was show that such an interpretation can be generalised
further to problems with conditionally independent likelihoods. As such, the desirable
properties of the EM algorithm, namely provably convergent and improving, are
adopted by this optimisation strategy.

5.3 Smoothing, Subspaces and Local Minima

SCMS provides a convenient way to implement a coarse-to-fine fitting strategy over
the objective in Eq. (23). Specifically, the variance of the kernel, σ 2, used in the
non-parametric estimate of the response maps defines the degree of smoothing one
applies over the response maps (see Fig. 8). The guiding principle here is similar to
that of optimising on a Gaussian pyramid. It can be shown that when using Gaussian
kernels, there exists a σ < ∞ such that the KDE is unimodal, regardless of the
distribution of samples [4]. As σ is reduced, modes divide and smoothness of the
objective’s terrain decreases. However, it is likely that the optimum of the objective at
a larger ρ is closest to the desired mode of the objective with a smaller σ , promoting
its convergence to the correct mode. As such, the policy under which σ is reduced
acts to guide optimisation towards the global optimum of the true objective.
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Fig. 9 Illustration of the effects of smoothing on the posterior likelihood in the predicted PRA
subspace. a SCMS alignment result using a PCA subspace (h = 20). b SCMS alignment result
using a PRA subspace (h = 2). c Posterior likelihood within the PRA predicted subspace (h = 1)
between ±3λ for different settings of the smoothing parameter ρ. d–f Posterior likelihood within
the PRA predicted subspace (h = 2) between ±3λi for different settings of the smoothing
parametre ρ

It should be noted that in formulating SCMS, the Gaussian kernel is in fact a
particular incarnation of the likelihood of selecting a feature candidate given the
PDM’s feature estimate. As such, given sufficient granularity in the local search (i.e.
the choice of {Ωi }ni=1), then the variance of the kernel, σ , that best represents the
likelihood is given by Eq. (21). However, since PCA retains the majority of total
variance of the shape, typically in the order of 95–98 %, σ will generally be quite
small, which results in a highly multimodal objective terrain. When initialisation is far
from the global maximum, optimisation over this terrain is susceptible to terminating
in local maxima. The variance tightening policy described above essentially replaces
the optimal objective terrain with a smoothed estimate of itself, for which local
maxima are reduced, but the global optimum is perturbed, the magnitude of which
is directly related to the choice of σ .

One aspect of optimisation to consider here is wether smoothing is necessary
given the substantial reduction of the space of plausible solutions afforded by the
PRA predicted subspace. As discussed previously, restricting the solution to a low
dimensional subspace can substantially reduce the likelihood of the optimisation
strategy terminating in a local minimum since the space in which consensus between
strong facial feature detections is possible is greatly reduced. In Fig. 9, the terrain
of the posterior likelihood in Eq. (25) over the PDM parameters for one- and two-
dimensional PRA basis are shown at different settings for the smoothing parameter
ρ. One notices that for ρ = σ 2, calculated using Eq. (21), the terrain is smooth
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with a single dominant mode. In fact, when h = 1, the posterior exhibits only a
single stationary point. However, for h = 2, the terrain exhibits a (shallow) spurious
mode. Thus, when poorly initialised, a local optimisation strategy may converge to
that sub-optimal solution. When using ρ = 10 σ 2, this spurious mode is eliminated.
Thus, even with the substantial constraint afforded by PRA, a coarse-to-fine strategy
is still beneficial. Although coarse-to-fine strategies is only a heuristic that can not
guarantee convergence to the optimal solution, the removal of many of the strong
spurious modes by the PRA subspace constraint greatly increases its efficacy. As a
comparison, Fig. 9a, b shows the solutions found by applying the SCMS algorithm
to the same image using the PCA and PRA priors respectively. The reason why PCA
fails in this case is because there are still many strong spurious modes within the PCA
subspace. Many of these have been eliminated in the much smaller space predicted
by PRA, promoting convergence to the optimal solution.

Finally, for extremely small dimensional PRA (i.e. h = 1 or 2), it may be possible
to perform an exhaustive search for the best solution within the predicted subspace.
However, questions still remain about how to best tessellate the space within this
subspace. Furthermore, despite being computationally tractable, the computational
complexity of such an approach is typically much higher than a the local optimisation
strategy described in this section. Furthermore, results from experiments in [38] sug-
gest that for general pseudo-frontal face alignment, PRA performs the best for h = 3,
which can be computationally expensive to explore exhaustively. Thus, for practical
applications that require an efficient face alignment algorithm, the combination of
PRA and SCMS constitutes a good balance between computational complexity and
accuracy.

6 Conclusion

In this chapter we have reviewed a method for deformable face alignment that lever-
ages the excellent generalisation properties of local appearance representations of
parts and the strong global constraints imposed by the geometrical relationships
between part locations. The utility of simple linear support vector machines for facial
feature detectors was motivated primarily from the perspective that high-capacity
models are unlikely to be capable of distinguishing regions with similar local appear-
ance in an image. In order to eliminate a large portion of strong spurious candidate
configurations, the employment of a highly compact prior over possible face shapes
was shown to be necessary. For this, the method of principal regression analysis
was shown to perform well, capable of reducing the search space to a few direc-
tions of uncertainty. Finally, an efficient local optimisation algorithm that admits an
elegant coarse-to-fine strategy called subspace constrained mean-shifts was shown
to be capable of steering away from the spurious configurations remained within
the PRA predicted subspace. In summary, the combination of simple feature detec-
tors, a strong global prior over allowable facial shapes, and a robust and efficient
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optimisation has been shown to be a combination that work well together, with each
component complementing the weaknesses of the others.

Directions of future work will involve extending the applications of these methods
to more general settings, including large pose variations, extreme lighting conditions
and partial occlusions. Given the difficulty of this problem, it is unlikely that a single
solution will solve the problem in all cases. A more promising direction would be to
leverage the strengths of various disparate methods in a complementary fashion.
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Abstract Medical image processing tools are playing an increasingly important role
in assisting the clinicians in diagnosis, therapy planning and image-guided interven-
tions. Accurate, robust and fast tracking of deformable anatomical objects, such as
the heart, is a crucial task in medical image analysis. One of the main challenges
is to maintain an anatomically consistent representation of target appearance that is
robust enough to cope with inherent changes due to target movement, imaging device
movement, varying imaging conditions, and is consistent with the domain expert
clinical knowledge. To address these challenges, this chapter presents a probabilis-
tic framework that relies on anatomically indexed component-based object models
which integrate several sources of information to determine the temporal trajectory
of the deformable target. Large annotated imaging databases are exploited to encode
the domain knowledge in shape models and motion models and to learn discrim-
inative image classifiers for the target appearance. The framework robustly fuses
the prior information with traditional tracking approaches based on template match-
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ing and registration. We demonstrate various medical image analysis applications
with focus on cardiology such as 2D auto left heart, catheter detection and tracking,
3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking,
in multiple modalities including Ultrasound (US), cardiac Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.

1 Introduction

Cardiovascular diseases such as cardiomyopathy and heart failure are the leading
causes of morbidity and mortality, which account for 1 of every 2.9 deathes and
require over 100,000 surgeries in the United States alone every year [22]. To assist
diagnosis and evaluation of the progression of diseases, recent advances in medical
imaging technologies allow cardiologists to capture morphological and functional
information of complex structures, such as heart anatomies, in two, three, and four
dimensional dynamic scans. For instance, in real-time echocardiography unstitched
volumetric data can be captured in a high volume rate and permit quantification of
cardiac strain in a non-invasive manner [10, 12, 40]. Cardiac Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) allow morphological characteriza-
tion of heart structures with precision [23, 30, 37, 46], and provide a wide topological
field of view with visualization of the heart, its internal morphology, and the sur-
rounding mediastinal structures. The X-ray angiography is the primary modality
in image-guided interventions, such as percutaneous coronary interventions (PCI)
and catheter-based electrical physiology (EP) therapies [38, 41, 42], to precisely
visualize and target the surgical site.

As medical imaging becomes more sophisticated and more central to clinical
decision-making, there is an evolving need to provide objective, quantitative results
for diagnosis, therapy planning, and disease monitoring. However, it remains a time-
consuming task for clinicians to extract comprehensive structural and dynamic infor-
mation from medical imaging. In order to exploit such time-resolved data, fast and
precise image processing tools become a crucial part of the analysis workflow.

One of the challenging problems on visual tracking of deformable objects is
to maintain a representation of target appearance, which is robust enough to cope
with inherent changes due to target movement and/or imaging device movement.
Traditional methods based on template matching have to adapt the model tem-
plate in order to successfully locate and track the target [27, 28]. Without adap-
tation, tracking is reliable only over short periods of time when the appearance
does not change significantly. However, in most applications the target appearance
undergoes considerable changes after a long time period and furthermore, accumu-
lated motion error and rapid visual changes make the model to drift away from the
tracked target. To improve tracking performance, one can also impose object spe-
cific subspace constraints [3, 13] or maintain a statistical representation of the model
[20, 29, 31]. This representation, often modeled as a probability distribution func-
tion, can be determined a priori or ideally computed online. More sophisticated
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…

…

Fig. 1 A block diagram of the probabilistic motion estimation framework including the likelihood
measurement and shape prediction processes

approaches, such as adaptive mixture models, have also been proposed to cope with
outliers and sudden appearance changes [20].

Recent progress in discriminative learning, along with availability of large medical
databases with expert annotation of the structures of interest, make a learning-based
approach attractive to achieve robust object detection and tracking in medical imag-
ing. In this chapter, a probabilistic approach is presented to combine learning-based
and conventional approaches to obtain the best of both worlds. As illustrated in Fig. 1,
a set of component-based models are maintained to determine the next position of
the target by combining several sources of information. This approach is a flexi-
ble framework to integrate model information across frames through component-
based object representations. It can be tailored to perform tracking-by-detection
by leveraging domain knowledge encoded in shape models and image based dis-
criminative classifiers, as well as dynamic information encoded in motion models.
Alternatively, it can also be tailored towards traditional methods with template based
matching/registration, such as optical-flow tracking.

Compared to the existing methods, such as image registration [10, 14, 17] and
optical flow [12], this presented framework has the following advantages:

1. Information from multiple cues, such as feature patterns, image gradients, bound-
ary detection, and motion prediction, are fused into a single probabilistic objective
function to improve tracking accuracy and robustness.

2. Expert annotations are exploited to learn discriminative image classifiers as well
as shape and motion models which encode the domain knowledge.

3. Image quality measurements based on image intensities and feature scores are
integrated in a probabilistic framework to handle noise and signal dropouts in the
medical imaging data.

4. Efficient optimization is proposed to achieve high speed performance.
5. This system provides a fully automatic solution to track the deformable targets

and to provide quantitative analysis of the non-rigid motion.
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To demonstrate the performance, we apply this framework in various medical
imaging applications with a focus in cardiology, including 2D heart and device
(e.g., catheter and guidewire) detection and tracking, 3D cardiac chamber surface
tracking in multiple modalities including CT, US, and MRI, and 4D complex cardiac
structure tracking, e.g., on heart valves.

2 A Probabilistic Framework for Model-Based Detection
and Tracking

In this section a unified framework is introduced for fusing motion estimates from
multiple appearance models and fusing a subspace shape model with the system
dynamics and measurements with point-dependent noise. The appearance variability
is modeled by maintaining several models over time, which can be both learned offline
and updated online. This leads to a nonparametric representation of the probability
density function that characterizes the object appearance. Inspired by [7], tracking
is performed by obtaining independently from each model a motion estimate and its
uncertainty through a single probabilistic framework as follows,

arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )p(Xt |Z0:t−1) (1)

where Z0:t = Z0, . . . ,Zt are the image observations from the input image sequence
I0:t = I0, . . . , It . In this framework, an anatomy-indexed mesh model is built to
represent the object of interest. An example of the underlying anatomy representation
is illustrated in Fig. 10. For clarity, we use Xt to denote a concatenation of the mesh
point positions, Xt = [X1, . . . , Xn], which need to be estimated at the current time
instance t , and n is the total number of points in the mesh model.

As illustrated in Fig. 1, the probabilistic framework includes the likelihood estima-
tion and shape prediction processes, which leverages the domain knowledge encoded
in image based discriminative classifiers and shape and motion models to obtain the
final shape estimate. When measurement noise is anisotropic and inhomogeneous,
which is often presented in image sequences of deformable objects, joint fusion of
all information sources becomes critical for achieving robust and accurate tracking
performance.

2.1 Learning-Based Appearance and Shape Models

Given recent advances in medical imaging devices, large databases become avail-
able with expert annotation of the structures of interest. Figure 2 shows examples of
annotated 2D ultrasound images. This information can be exploited to learn domain
knowledge, encoded in the form of shape models and discriminative image classifiers
for target appearance.
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Fig. 2 Examples of 2D ultrasound images with the endocardium boundaries annotated by clinical
experts. The images are captured in the apical four chamber view. The annotated endocardium
boundaries are highlighted in the green color
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Fig. 4 An example showing the basic idea of a learning-based 3D object detection method: a the
parameter space is quantized into a large number of discrete hypotheses and the classifier is used to
select the best hypotheses in exhaustive search. b A few hypotheses of the left ventricle (represented
as boxes) embedded in an ultrasound image. The red box shows the ground truth and the yellow
boxes show only a few hypotheses
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In the presented framework, we apply a learning-based approach for object local-
ization, using marginal space learning (MSL) [46] and the probabilistic boosting-tree
(PBT) [33], as illustrated in Fig. 3. Unlike the gradient based search in deformable
models or active appearance models (AAM) [9], the full object parameter space is
quantized into a large number of hypotheses and the best ones are selected by the
image-based classifiers trained in this framework. Figure 4 shows the basic idea of
learning-based model estimation in this section.

More specifically, to detect the model pose θ for a target object we need to solve
for the similarity transformation, including translation, orientation, and scale, i.e.,

θ =
{

T d , Rd , Sd
}

(2)

where T d , Rd , Sd are the position, orientation and scale parameters in the d dimen-
sional input data, respectively. Therefore, the object localization can be formulated
as a classification problem which estimates θ(t) for each time step t from the corre-
sponding image I (t). The probability p(θ(t)|I (t)) is modeled by a learned detector
D, which evaluates and scores a large number of hypotheses for θ(t). D is trained
using the Probabilistic Boosting Tree (PBT) [33] based on positive and negative
samples extracted from the ground-truth annotations. For fast computation, efficient
3D Haar wavelet [35] and steerable features [46] can be extracted at each sampling
point based on the intensity and gradient from the training data.

The object localization task is then performed by scanning the trained detector
D exhaustively over all hypotheses to find the most plausible values for θ in an
input data. As the number of hypotheses to be tested increases exponentially with
the dimensionality of the search space, a sequential scan in the corresponding trans-
formation parameters might be computationally unfeasible. For example, to find a
3D similarity transform, suppose each dimension in θ(t) is discretized to n values,
the total number of hypotheses is n9 and even for a small n = 15 it becomes extreme
3.98e+10. To overcome this limitation, we apply a marginal space search (MSL)
strategy [46], which groups the original parameter space into subsets of increasing
marginal spaces:

Σ1 = (T d),Σ2 = (T d , Rd),Σ3 = (T d , Rd , Sd).

Consequently, the target posterior probability can be expressed as:

p(θt |It ) = p(T d |It )p(R
d |T d , It )p(S

d |Rd , T d , It ). (3)

We train a series of detectors that estimate parameters at a number of sequential
stages in the order of complexity, i.e., Σ1,Σ2,Σ3. Different stages utilize different
features computed from the input data. Multiple hypotheses are maintained between
stages, which quickly removes false hypotheses at the earlier stages while propagates
the right hypothesis to the final stage. Only one hypothesis is selected as the final
detection result.
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With the object pose estimated, we align the mean shape (an average model of
all annotations) with data to get an initial estimate of the object shape. To capture
the true anatomical morphology of the target object (e.g., LV myocardium), we
deform the mean shape by searching the boundary for each vertex of the model.
The boundary hypotheses are taken along the normal directions at each vertex of
the mean model. Detection is achieved using a boundary detector using PBT with
steerable features [33, 46]. The detected boundaries are constrained by project-
ing the detected model onto a shape subspace obtained by the annotated dataset.
As defined in Eq. (1), the shape vectors are formed by concatenating the coordi-
nates of all control points [8, 19]. Thus, the shape space can be constructed using
Procrustes analysis and principal component analysis (PCA) [11]. Although more
sophisticated representations, such as local affine models [26, 47], can also be applied
to constrain shape deformations, we choose the global PCA shape model due to its
efficiency during online detection. In particular, the nonrigid deformation has three
steps as shown in Fig. 3. First we estimate the deformation of control points which
are selected based on image characteristics. The thin-plate-spline (TPS) model [4]
is then used to warp the initial mesh toward the refined control points for better
alignment. Last, the normal mesh points are deformed to fit the image boundary.

2.2 Motion Manifold Learning

Motion characteristics of an anatomical structure encodes morphological and func-
tional properties of the object, which are important in clinical diagnosis and can
be used to constrain the deformable tracking process. To obtain these motion char-
acteristics from the pre-annotated databases, we use manifold learning to extract a
compact form of the dynamic information [43].

Given a set of training sequences, we first resample a cardiac cycle of each
sequence to a fixed number F (typically F = 16) of frames through temporal inter-
polation, and construct motion vectors M = {m0, . . . ,mi , . . . ,mn} with mi ∈ Rm ,
where m = N f ×d× F , N f is the number of annotation points, and d represents the
dimensionality of the input data. Generalized Procrustes analysis (GPA) is then used
to align all resampled motion vectors to remove the similarity transformation, includ-
ing translation, rotation and scaling [11]. Because the actual number of constraints
that control the LV motion are much less than its original dimensionality, the aligned
3D shape vectors lie on a low-dimensional manifold, where geodesic distance has to
be used to measure the similarities. This property can be exploited by unsupervised
manifold learning to discover the nonlinear degrees of freedom that underlie com-
plex natural observations [32]. Figure 5a shows two annotated LV motion sequences.
Figure 5b shows several LV motion representations in a low-dimensional manifold.
An interesting but expected observation is illustrated in Fig. 5b. The LV motion is
almost periodic because one cycle of heart beat starts from ED and returns to ED.

Given the whole set of 3D training shape vectors M , we apply ISOMAP [32] to
find a mapping � which represents mi in the low-dimensions as mi = �(vi )+ ui ,
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(b)(a)

Fig. 5 Examples of manifold embedding for heart motion patterns. a Two left ventricle surface
mesh sequences. b 11 sequences embedded in a 2D subspace. Note the end diastolic (ED) phase
has larger volumes and represented as stars in (b), while the end systolic (ES) phase has smaller
volumes and represented as squares in (b)

i = 1, . . . , n, where ui ∈ Rm is the sampling noise and vi ∈ Rq denotes the original
ith shape mi in the low-dimensional manifold. In the prediction step, the motion
prior (state model) p(Xt |Xt−1) is computed using the learned motion modes [43].

3 2D Motion Tracking

Accurate and robust tracking of 2D motion of deformable objects is an important
topic in medical imaging. In this section, we apply the probabilistic framework to
2D non-rigid motion estimation in various medical imaging modalities, such as 2D
ultrasound in Sect. 3.1 and X-ray fluoroscopy in Sect. 3.2.

3.1 Endocardium Contour Tracking in 2D
Echocardiography

Automatic myocardial wall motion tracking in ultrasound images is an important
step in analysis of the heart function, such as computing the left ventricle (LV) cavity
volume and ejection fraction (EF). This task is difficult due to image noise as well
as fast motion of the heart muscle and respiratory interferences. Figure 6 illustrates
the difficulties of the tracking task due to signal drop-out, poor signal-to-noise ratio
or significant appearance changes. Notice that the endocardium is not always on the
strongest edge. Sometimes it manifests itself only by a faint line; sometimes it is
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Fig. 6 Two tracking examples in rows, with five snapshots per sequence. The top row shows the
apical four chamber view, which is along the long axis of the left ventricle and passes through the
apex tip and the mitral valve. The bottom row shows the short axis view, which is perpendicular to
the long axis of the left ventricle

completely invisible or buried in heavy noise; sometimes it will cut through the root
of the papillary muscles where no edge is present.

To handle occlusions and appearance variations in 2D visual tracking, we apply the
learning-based fusion framework presented in Sect. 2, by exploiting expert annotation
of the structure of interest in large databases. More specifically, the appearance and
shape models are learned by a two-step approach [16]. The first step is to learn
a discriminative function between the appearance of the object of interest and the
background. The second step is to learn the discriminative features that best associates
the shapes to different appearances of the object, and to infer the most likely shape.
Consequently, several representatives for the 2D appearance model are maintained to
obtain a robust estimate of the target object [15]. When a new image is available, the
location x̂i j and its uncertainty Ĉi j are estimated for each model. Thus, the current
location x̂ can be computed in an iterative manner, e.g., using the Variable-Bandwidth
Density-based Fusion (VBDF) method [6]. The optimization process yields a hill-
climbing procedure which converges to a stationary point of the underlying density.

To demonstrate the performance of the learning-based fusion method, we apply
and evaluate the above framework to track heart contours using very noisy echocar-
diography data. The tracker was implemented in C++ and is running at about 20
frames per second on a single 2GHz Pentium 4 PC. Our data were selected by a
cardiologist to represent normals as well as various types of cardiomyopathies, with
sequences varying in length from 18 to 90 frames. Both training and test data were
traced by experts, and confirmed by one cardiologist. We used both apical two-
or four-chamber views (open contour with 17 control points) and parasternal short
axis views (closed contour with 18 control points) for training and testing. PCA
is performed and the original dimensionality of 34 and 36 is reduced to 7 and 8,
respectively. For the appearance models we maintain 20 templates to capture the
appearance variability.
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Methods MSSD MSSD MAD MAD MSSD MSSD MAD MAD
Flow 38.1 82.9 4.3 3.6 147.9 325.0 8.8 8.2

FlowShapeSpace 24.7 35.5 3.8 2.4 106.0 181.2 7.9 6.3

Fusion 8.3 14.3 1.7 1.6 25.8 34.8 4.1 2.8
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Fig. 7 Comparison experiments: mean distances (a Mean sum of squared distance (MSSD) [1],
b Mean absolute distance (MAD) [24]) between tracked points and the ground truth. c Shows the
error analysis “All Cases” and “Most Difficult Cases”. The learning-based fusion method (“Fusion”)
significantly outperforms others, with lower average distances and lower standard deviations for
such distances

For systematic evaluation, we use a set of 32 echocardiogram sequences outside
of the training set for testing, with 18 parasternal short-axis (PS) views and 14 apical
two- or four-chamber (AC) views, all with expert-annotated ground-truth contours.
Figure 6 shows snapshots from two tracked sequences. Figure 7 reports performance
comparison to other existing methods. The learning-based fusion method (“Fusion”)
is compared with a tracking algorithm without shape constraint (“Flow”) or with the
same tracker with orthogonal PCA shape space constraints (“FlowShapeSpace”).

It should be noted that our results are not indicative for border localization accu-
racies, but rather for motion tracking performances given an initial contour. We have
set our goal to track control points on the endocardium, with anisotropic confidence
estimated at each point at any given time step by using multiple appearance models,
and exploit this information when consulting a prior shape model as a constraint.
Our framework is general and can be applied to other modalities, including the 2D
X-ray fluoroscopy demonstrated in the next section.

3.2 2D Device Tracking in Fluoroscopy

During interventions a medical device might undergo non-rigid deformation due
to patients’ breathing and cardiac motions, and such 3D motions are complicated
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(b)(a)

Fig. 8 Examples of coronary sinus (CS) catheters and the tracking results in 2D X-ray fluoroscopy.
a CS catheters in 2D X-ray fluoroscopic images, which exhibit various appearance and shapes
as well as low visibility in different contexts. For clarity the catheter tip and the most proximal
electrode (PCS) are highlighted by cyan and red arrows, respectively. b Catheter tracking results
in four different sequences. Cyan, yellow, and red circles indicate the catheter tip, intermediate
electrodes, and PCSs, respectively

when being projected onto the 2D fluoroscopy. Furthermore, in fluoroscopy there
exist severe image artifacts and other wire-like structures. Figure 8a shows several
examples of catheters in 2D X-ray fluoroscopy.To tackle the above challenges, the
tracking is formalized in the probabilistic inference framework introduced in Sect. 2,
to maximize the posterior probability of a tracked target object, i.e.,

X̂t = arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )p(Xt |Xt−1)p(Xt−1|Z0:t−1) (4)

The above formula essentially combines two parts: the likelihood term, P(Zt |Xt ),
which is computed as combination of detection probability and template match-
ing score and the transition term, P(Xt |Xt−1), which captures the motion smooth-
ness. To maximize tracking robustness, the likelihood term P(Zt |Xt ) is estimated
by learning-based part detectors and appearance-based template matching as
follows:

P(Zt |Xt ) = pd(Zt |Xt )pd + pa(Zt |Xt )pa (5)

where pd(Zt |Xt ) and pa(Zt |Xt ) represents the learning-based and appearance-
based measurement models respectively, and pd and pa are corresponding pri-
ors for the two types of measurement models. In particular, the learning-based
measurement model is trained using the probabilistic boosting tree (PBT) [33].
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The two measurement models in Eq. (5) can be defined in the following manner
as in [38],

pd(Zt |Xt ) ∝ e f (Zt ,Xt )

e− f (Zt ,Xt ) + e f (Zt ,Xt )
, where f (Zt ,Xt ) =

∑

k

αk Hk(Zt ,Xt )

pa(Zt |Xt ) ∝ exp

{

−
∑

X′t∈S(Xt )
|ρ(Zt (X′t )− I 0(X′t ); σa)|2

2σ 2
a

}

(6)

A good empirical choice for pd and pa proposed in [42] is pd = 1 − λ and
pa = λ, with the weighting parameter λ defined as:

λ = 1

1+ e− f (T s
o ,D(Xt ))

, f (T s
o , D(Xt )) = cov(T s

o , D(Xt ))

σ (T s
o ) · σ(D(Xt ))

, (7)

where cov(T s
o , D(Xt )) is the intensity cross-correlation between the catheter model

template T s
o and the image band expanded by Xt . σ(T s

o ) and σ(D(Xt )) are the
intensity variance.

Moreover, foreground and background structures in fluoroscopy are constantly
changing and moving. In order to cope with it dynamically, the catheter model is
updated online by:

T s
o,t = (1− ϕw)T

s
o,t−1 + ϕw D(Xt ), i f p(Zt |Xt ) > ϕt (8)

where T s
o,t represents the model template in frame t. D(Xt ) is the model obtained at

frame t based on the output Xt . ϕw and ϕt are typically set as 0.1 and 0.4 respectively
in the experiments.

The tracking algorithm is evaluated on a large database including 1073 sequences
collected from Electrophysiology (EP) Afib procedures. The image resolutions vary
from 1024× 1024 to 1440× 1440 with pixel spacing between 0.154 and 0.183 mm.
The test sequences cover a variety of interventional conditions, including low image
contrast and contrast injection. Some example frames in the test set are displayed in
Fig. 8b.

Quantitative evaluation of the tracking accuracy is reported in Table 1. While
the tracking power of the proposed algorithm comes from the robust and efficient
measurement models and information fusion, we illustrate and compare the impact of
other important components in Table 1 as well. DON is the method by settingλ = 0 in
Eq. (5), which essentially only considers the detection term; ADD is the method using
Eq. (5); ARO is ADD with online template update. ARO is the final complete version
of our algorithm. During comparison, the number of detected electrode candidates
per frame is set as 15 and all other settings are exactly the same. We have tried
other options of fusing detection probability and template matching score, such as
multiplication of the two terms in Eq. (5). The effectiveness of Eq. (5) is validated
through our batch evaluation on 1000+ sequences.
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Table 1 CS catheter tracking performance

Mean Median p85 p90 p95 p98

DON 1.16 0.66 0.98 1.12 1.67 4.26
ADD 0.91 0.45 0.72 0.86 1.56 4.45
ADR 0.78 0.48 0.72 0.81 1.10 2.40
ARO 0.76 0.50 0.73 0.82 1.04 2.14

The frame errors are in millimeter (mm) and computed at mean, median, percentile 85th (p85), 90th
(p90), 95th (p95) and 98th (p98). Although tracking catheters in real fluoroscopic sequences is a
non-trivial task, our algorithm turns out to be very robust against different challenging scenarios
and has an error less than 2 mm in 97.8 % of the total evaluated frames. The last row shows the best
performance including all essential components

...

3D Image Data Detection Motion Tracking Quantitative Analysis

Fig. 9 Diagram of our learning-based 3D detection and tracking framework

4 3D Motion Tracking

To extract dynamic information of anatomical structures from volumetric time-
resolved data, such as US, CT, and MRI, a robust tracking system is needed to
estimate the 3D non-rigid deformation of the target object. Based on the proba-
bilistic framework introduced in Sect. 2, we present an learning-based detection and
tracking approach which includes the following main steps, automatic initialization,
dense motion tracking, and 3D measurement computation as illustrated in Fig. 9.
We apply and evaluate the presented framework to estimate 3D motion in various
modalities, including 3D myocardial mechanics on volume ultrasound in Sect. 4.3,
quantification of cardiac flow volume on volume Doppler in Sect. 4.4, joint delin-
eation of left and right ventricles in cardiac MRI in Sect. 4.5, and four chamber
tracking in cardiac CT in Sect. 4.6.

4.1 Unified 3D Anatomical Model

To facilitate comprehensive motion estimation and anatomical measurements, an
anatomically indexed heart model used in this chapter is illustrated in Fig. 10. The
mesh model for the right atrium is shown in Fig. 10b. The left atrium is represented
by an open mesh separated by the mitral valve, shown in Fig. 10c. The right ven-
tricle has a more complicated shape and is represented by an open mesh shown in
Fig. 10d. Figure 10e shows the left ventricle including both epicardium (magenta)
and endocardium (green). The detailed anatomical models can be found in [46].
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(a)

(b) (c)

(d) (e)

Fig. 10 The anatomically indexed heart model for comprehensive motion estimation and quan-
titative measurements. a The unified heart model with all four chambers. b The mesh model for
the right atrium (RA). c The mesh model for the left atrium (LA). d The mesh model for the right
ventricle (RV). e The mesh model for the left ventricle (LV), with green for the LV endocardium
and magenta for the LV epicardium

4.2 Learning-Based Detection and Motion Estimation

In order to obtain precise morphological and functional quantification, dense tracking
of the cardiac motion is required to establish the inter-frame correspondences for
each point on the 3D mesh in Sect. 4.1. To initialize the tracking process, we fit
the 3D model automatically in the starting frame (typically the end-systole or end-
diastole cardiac phase), using the learning-based detection in Sect. 2.1. Then, we
fuse information from multiple cues into the probabilistic framework introduced in
Sect. 2, i.e.,

arg max
Xt

p(Xt |Z0:t ) = arg max
Xt

p(Zt |Xt )︸ ︷︷ ︸
likelihood

∫
p(Xt |Xt−1)︸ ︷︷ ︸

prediction

p(Xt−1|Z0:t−1) (9)

where Z0:t = Z0, . . . ,Zt are the measurements from the input image sequence
I0:t = I0, . . . , It . For clarity, we use Xt to denote a concatenation of the mesh point
positions, Xt = [X1, . . . , Xn], which need to be estimated at the current time instant
t and n is the total number of points in the mesh model.

To maximize the accuracy and robustness of the tracking performance, the likeli-
hood term p(Zt |Xt ) is computed from both boundary detection and image template
matching as proposed in [39, 40], p(Zt |Xt ) = (1 − λk)p(yb|Xt ) + λk p(Tt |Xt ),

where Tt is the image pattern template and λk is the weighting coefficient of the
matching term. The first term p(yb|Xt ) is the posterior distribution of the endo-
cardial boundary learned in Sect. 2.1, using the steerable features and the prob-
abilistic boosting-tree (PBT) [33]. The second term p(Tt |Xt ) is obtained by a
logistic function, 1

1+e−‖It (Xt )−Tt ‖2 , based on image matching: ‖It (Xt ) − Tt‖2 =
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Table 2 In-vitro experiments on both (a) rotation and (b) displacement data

(a) Rotation (degrees) 10 15 20 25 (b) Displacement (mm) 0.82 1.29 2.02
Estimation 9.3 13.5 18.1 21.8 Estimation 0.9 1.54 2.31
Accuracy (%) 93 90 91 87 Accuracy (%) 90 81 91

The ground-truth motion was generated by a rotation device and a water pump controlling the
stroke volume. Two crystals were implanted in the apical and middle regions of the left ventricle
respectively to measure the myocardial movement. The displacements in (b) were computed based
on a 30 mm reference length. Our tracking results are consistent with the ground-truth measurements
on both rotation and displacement data

∑
i, j,k(It (Xt + (i, j, k)) − Tt (i, j, k))2, where i, j , and k are the pixel-wise shift

in the x, y, and z directions, respectively. λk is computed based on the feature mea-
sure as follows,

λk = 1

1+ e− f c(It (Xt ),Tt )
, f c(It (Xt ), Tt ) = cov(It (Xt ), Tt )

σ (It (Xt ))σ (Tt )
(10)

cov(It (Xt ), Tt ) is the intensity covariance between the image block It (Xt ) centered
at Xt and the image template Tt . σ 2(It (Xt )) and σ 2(Tt ) are the intensity variance of
the image block It (Xt ) and the image template Tt , respectively. In our experiments,
the typical image block size is 11× 11× 11 voxels, while the typical search range
is 7× 7× 7 voxels. To handle the temporal image variation, the image template Tt

is also updated online using the image intensities It (Xt−1) from the previous frame
t − 1.

The prediction term in Eq. (9), p(Xt |Xt−1), is the transition probability function
p̂(Xt |Xt−1) learned directly from the training data set, as explained in Sect. 2.2.

4.3 Myocardial Mechanics on Volume Echocardiography
Data

Global and regional cardiac deformation provides important information on myocar-
dial (dys-)function in a variety of clinical settings. Given the recent progress on real-
time ultrasound imaging, unstitched volumetric data can be captured at a high volume
rate, which allows to quantify cardiac strain in a non-invasive manner. In this section,
we demonstrate the performance of the automatic detection and tracking method as
well as the myocardial mechanics estimation. In our experiments, high frame-rate
3D+t ultrasound sequences were acquired by a Siemens SC2000 system with the
average volume size of 200 × 200 × 140 voxels. The average spatial resolution is
1 mm in the x , y, and z directions, and the average temporal resolution is 44 frames
per second.

In Vitro Study: To evaluate the accuracy of the automatic tracking method, we
performed an in vitro experiment on animals. The ground-truth motion was generated
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Table 3 Comparison of the longitudinal strain estimation between the deformable tracking method
and the crystal measurements in the in vitro study

Longitudinal strain (%) 2.63 4.11 6.68
Estimation (%) 3.43 5.19 8.25
Difference (%) 0.8 1.08 1.57

The two crystals were implanted in the apical and middle regions of the left ventricle, such that
the longitudinal Lagrangian strain can be computed based on the displacement as the ground-truth
measurement in the top row. The estimation results in the middle row are computed from the 3D
strain tensor using our method. The low difference values in the bottom row show clearly that the
estimation from the deformable tracking method is consistent with the clinical measurements

Table 4 Performance analysis on a large data set including 503 3D+t ultrasound sequences

Measure(mm) Training (239) Testing (264) Training (434) Testing (69)

Mean/std 2.21/1.57 2.68/2.63 2.26/1.42 2.64/2.23

In the first experiment, the data set was evenly split into a training set with 239 sequences and a
testing set with the remaining 264 sequences, while in the second experiment the training set (434)
and the testing set (69) were not balanced. The error measurements were computed as the average
point distance between the estimated mesh and the ground-truth annotations by experts on both the
end-diastolic and end-systolic frames. The consistent evaluation results demonstrate the robustness
of the learning-based detection and tracking method

by a rotation device and a water pump controlling the stroke volume. Two crystals
were implanted in the apical and middle regions of the left ventricle, respectively,
to measure the myocardial movement. Table 2 reports the error analysis on four
volumetric ultrasound sequences acquired with 10, 15, 20, and 25 rotation degrees,
respectively, and three sequences with different stroke volumes.

Furthermore, to evaluate the results of our myocardial strain estimation, we com-
pare them against the crystal measurements for the same subjects in the in vitro
study. The ground-truth longitudinal Lagrangian strain can be computed based on
the displacement reported in Table 2b. Table 3 reports the comparison between the
estimated strain values and the ones from crystal measurements.

In Vivo Study: To evaluate the robustness of the learning-based detection and tracking
method, we tested it on a large data set including 503 volumetric ultrasound sequences
from human subjects. The data set was randomly split into a training set and a testing
set, where the training set was used to learn the detectors in Sect. 2.1 and the prior
distributions in Sect. 2.2, while the testing set reflected the performance for unseen
data. The results on both the training and testing sets are reported in Table 4.

Comparison Study: Finally to demonstrate the advantage of the learning-based
fusion framework, we compared this method against tracking by 3D optical flow
and tracking by detection. The accuracy is measured by the point-to-mesh error [43]
reported in Table 5 for all three methods.
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Table 5 Comparison between the 3D optical flow, tracking by detection, and learning-based fusion
methods

Error (mm) Mean Std Median Min Max

3D optical flow 2.68 1.28 2.39 0.94 10.38
Tracking by detection 1.61 1.24 1.31 0.59 9.89
Learning-based fusion 1.28 1.11 1.03 0.38 9.80

The point-to-mesh errors are measured in millimeters. The learning-based fusion method achieved
the best accuracy among compared to the other two approaches

4.4 Flow Quantification on 3D Volume Color Doppler
Data

The quantification of flow volume is important for evaluation of patients with car-
diac dysfunction and cardiovascular disease. However, accurate flow quantification
remains a significant challenge for cardiologists [21]. In this section, we apply our
automatic tracking framework in cardiac flow volume quantification using instanta-
neous 3D+t ultrasound data.

To evaluate the performance of the learning-based fusion method, a set of 3D full-
volume ultrasound sequences were acquired by a Siemens SC2000 scanner with an
average volume rate of 15 vps at the Ohio State University Medical Center. Twenty-
two subjects with normal valves were enrolled with the Institutional Review Board
(IRB) approval.

Table 6 reports the comparison between the expert measurements using 2D pulsed
wave (PW) Doppler and the flow volumes estimated by our method. The LV stroke
volume (LVSV) was very close to the volume from LVOT-PW (70.1 ± 20.8 ml,
69.7±16.7 ml) with good correlation (r = 0.78). 3D LV inflow and outflow volumes
(73.6 ± 16.3 ml, 67.6 ± 14.6 ml) were correlated well with LVSV and LVOT-PW
respectively (r = 0.77, 0.91).

4.5 Joint Delineation of LV and RV in Cardiac
MRI Sequences

Cardiac Magnetic Resonance Imaging (MRI) is now an established, although still
rapidly advancing, technique providing information on morphology and function
of the cardiovascular system. A typical cardiac MR scan to examine the LV/RV
morphology and function contains a short axis stack, which consists of image slices
captured at the different positions along the short axis of heart chambers (e.g., the
LV). These image slices can be aligned using the physical coordinates (location and
orientation) recorded during acquisition. A 3D volume is reconstructed from this
stack of aligned image slices. If each image slice is captured in a time sequence and
synchronized to each other, a 3D volume sequence is obtained, which is used for
3D chamber segmentation and dynamics extraction in our system. In this section,
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Table 6 Flow volume quantification on 22 normal patients

Measure (ml) Mean STD

(a) LVOT-PW 69.7 16.7
LVSV 70.1 20.8
3D CD mitral inflow 73.6 16.3
3D CD LVOT outflow 67.6 14.6
Measure 1 Measure 2 Correlation p-value
(b) LVOT-PW LVSV 0.78 <0.001
3D CD mitral inflow LVSV 0.77 <0.001
3D CD LVOT outflow LVOT-PW 0.91 <0.001

(a) Flow measure comparison. The first row shows the LVOT outflow volume measured by a clinical
expert using 2D pulsed wave (PW) Doppler. The second row is the estimated LV stroke volume
using the delineated LV endocardial boundary on the volumetric b-mode ultrasound data. The last
two rows are the de-aliased mitral inflow and LVOT outflow based on the sampled volumetric color
Doppler data by our method. (b) Correlation and statistical significance testing of flow measure
on 22 normal patients between (1) the LVOT outflow volume measured using 2D pulsed wave
(PW) Doppler and the estimated LV stroke volume; (2) the LVOT and the de-aliased Mitral inflow
by our method; and (3) the LVOT-PW and the LVOT outflow by our method. The estimated flow
volumes are consistent between all four measurements and close to the expert measurements, which
demonstrates the accuracy and robustness of the learning-based fusion method

(a)

(b) (c)

Fig. 11 Models of LV/RV fitted to a 3D reconstructed cardiac MRI volume sequence. a Estimated
3D model. b Volume measurement across time computed based on the fitted models. C 2D views
of frame 1, 11, 21 of a single heartbeat cycle (25 frames in total)

we apply the probabilistic framework from Sect. 4.2 to detect the joint LV and RV
model and estimate the dynamic motion and quantitative measurements, as illustrated
in Fig. 11.
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Table 7 Point-to-mesh distance measurements obtained by a 4-fold cross validation

Measure (mm) Mean Std Median

LV endocardium 2.95 4.85 1.84
LV epicardium 3.23 3.94 2.12
RV main 2.99 1.18 2.66

We collected 100 reconstructed volumes from 70 patients with left ventricles anno-
tated, among which 93 reconstructed volumes from 63 patients were also annotated
on right ventricles. Volumes were selected to cover a large range of dynamic heart
motion, including both end diastole and end systole. The original short-axis stack
images have an average in-plane resolution of 1.35 mm, and the distance between
slices is around 10 mm.

A 4-fold cross-validation scheme was applied for evaluation. The entire dataset
was randomly partitioned into four quarters. For each fold evaluation, three quarters
were combined for training and the remaining one was used as unseen data for testing.
This procedure was repeated four times so that each volume has been used once for
testing. For each segmented mesh, the distance from each vertex to the groundtruth
mesh (manual annotation) was computed as point-to-mesh distance. The average
distance from all vertices of the segmented mesh was used as the measurement.
Three major components, i.e., LV endocardium, LV epicardium, and RV main cavity
as illustrated in Fig. 10d, e, were considered in our evaluation as listed in Table 7.
Automatic delineation examples are provided in Fig. 11. On average, it took about 3 s
to segment both the LV and RV from a single volume (e.g, 256×256×70 voxels),
and about 40 s to fully extract dynamics of the entire sequence (typically 20 frames)
on a duo core 2.8 GHz CPU.

4.6 Four Chamber Tracking in Cardiac CT Data

The 3D tracking framework presented in Sect. 4.2 is generic and can be extended to
different modalities. In this section we also apply it to tracking all four chambers of
the heart, including left ventricle (LV), right ventricle (RV), left atrium (LA), and
right atrium (RA), in cardiac Computed Tomography (CT) data, collected from 27
institutes over the world using Siemens Somatom Sensation and Definition scanners.
The imaging protocols are heterogeneous with different capture ranges and resolu-
tions. A volume may contain 80 to 350 slices, while the size of each slice is the
same with 512×512 pixels. The resolution inside a slice is isotropic and varies from
0.28 to 0.74 mm for different volumes. The ED detector and boundary classifier were
trained on 323 static cardiac CT volumes from 137 patients with various cardiovas-
cular diseases. The cardiac motion model was trained on additional 20 sequences
(each with ten frames).

During the tracking stage, the learning-based fusion in Sect. 4.2 is applied to cal-
culate the motion displacements. Figure 12 shows the detection and tracking results
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Examples of heart chamber detection and tracking in 3D CT data. The heart chambers are
highlighted in green for the LV endocardium, magenta for the LV epicardium, cyan for the LA,
brown for the RV, and blue for the RA. The top row shows example tracking results on a dynamic
3D sequence with 10 frames. Four frames (1, 2, 3, and 6) are shown in a,b,c,d, respectively. The
bottom row includes more results on various CT volumes in our dataset

Table 8 The ejection fraction (EF) estimation accuracy for six dynamic sequences in our dataset

Patient Patient Patient Patient Patient Patient Mean Standard
#1 #2 #3 #4 #5 #6 error deviation

Ground truth (%) 68.7 49.7 45.8 62.9 47.4 38.9 2.3 1.6
Estimation (%) 66.8 51.8 42.8 64.4 42.3 38.5

of 3D cardiac CT four chambers (LV-epicardium, LV-endocardium, LA, RV, and RA)
in CT volumes. Furthermore, given the tracking result, we can calculate the ejection
fraction (EF) as, EF = (VE D − VE S)/VE D , where VE D and VE S are the vol-
ume measures of the end-diastolic (ED) and end-systolic (ES) phases, respectively.
Table 8 reports the EF estimation accuracy for six CT sequences. The estimated EFs
are close to the ground truth with a mean error of 2.3 %.

5 4D Trajectory Spectrum Tracking

To extend discriminative learning algorithms for time dependent four-dimensional
problems, trajectory-based features have increasingly attracted attention in motion
analysis and recognition [36]. It has been shown that the inherent representative
power of both shape and trajectory projections of non-rigid motion are equal, but the
representation in the trajectory space can significantly reduce the number of para-
meters to be optimized [2]. This duality has been exploited in motion reconstruction
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and segmentation [44], structure from motion [2]. In particular, for periodic motion,
frequency domain analysis shows promising results in motion estimation and recog-
nition [5, 25]. Although the compact parameterization and duality property are crucial
in the context of learning-based object detection and motion estimation, this synergy
has not been fully exploited yet.

In this section, we extend the learning-based model estimation in Sect. 2 to the
trajectory spectrum learning (TSL) with local-spatio-temporal (LST) features [18].
It includes three main steps: (1) global location and rigid motion estimation which
is obtained by the learning-based model fitting technique presented in Sect. 2.1, (2)
non-rigid landmark motion estimation using the trajectory spectrum learning (TSL)
with local-spatio-temporal (LST) features [18], and (3) non-rigid shape estimation
in the same learning-based fusion framework as in Sect. 4.2.

Based on the determined global location and rigid motion from Sect. 2.1, a trajec-
tory spectrum learning algorithm is applied to estimate the non-linear valve move-
ments from volumetric sequences [18]. The objective is to find for each landmark
j its trajectory aj, with the maximum posterior probability from a series of vol-
umes I , given the rigid motion θ . In particular, a trajectory aj can be uniquely
represented by the concatenation of its discrete Fourier transform (DFT) coeffi-
cients, sj = [sj(0), . . . , sj(n − 1)], obtained through the DFT equation, sj( f ) =
∑n−1

t=0 aj(t)e
− j2π t f

n , where sj( f ) ∈ C
3 is the frequency spectrum of the x , y, and z

components of the trajectory aj(t), and f = 0, 1, . . . , n − 1. Therefore, instead of
estimating the motion trajectory directly, we apply discriminative learning to detect
the spectrum sj in the frequency domain by optimizing the following equation:

arg maxsj p(sj|I, θ) = arg maxsj p(sj(0), . . . , sj(n − 1)|
I (0), . . . , I (n − 1), θ(0), . . . , θ(n − 1))

(11)

Inspired by the MSL approach [46], we efficiently perform trajectory spectrum
learning and detection in DFT subspaces with gradually increased dimensionality.
The intuition is to perform a spectral coarse-to-fine motion estimation, where the
detection of coarse level motion (low frequency) is incrementally refined with high
frequency components representing fine deformations. More specifically, to obtain
object localization and motion estimation in unseen volumetric sequences, the motion
parameters are searched in the marginalized spaces Σ0, . . . , Σr−1 using the trained
spectrum detectors D0, . . . , Dr−1. Starting from an initial zero-spectrum, we incre-
mentally estimate the magnitude and phase of each frequency component s(k). At
the stage k, the corresponding robust classifier Dk is exhaustively scanned over the
potential candidates. The probability of a candidate Ck is computed by the following
objective function from the inversed DFT (IDFT):

p(Ck) =
n−1∏

t=0

Dk(IDFT(Ck), I, t) (12)
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(a)

(d)(c)(b) (e)

(f) (g) (g) (i)

Fig. 13 Examples of estimated patient-specific models from CT and TEE data: a healthy valves
from three different cardiac phases in the four chamber view. Pathologic valves with b bicuspid
aortic valve, c aortic root dilation and regurgitation, d moderate aortic stenosis, e mitral stenosis,
f mitral prolapse, g bicuspid aortic valve with prolapsing leaflets, h aortic stenosis with severe
calcification and i dilated aortic root

where t = 0, . . . , n− 1 is the time instance (frame index). After each step k, the top
50 trajectory candidates with high probability values are preserved for the next step
k + 1. The procedure is repeated until a final set of trajectory candidates Cr−1 are
computed. The final trajectory is reported as the average of all elements in Cr−1.

Furthermore, to improve learning performance, a Local-Spatial-Temporal (LST)
feature is used to incorporate both the spatial and temporal context, by aligning
contextual spatial features in time [18]:

F4D(θ(t), T |I, s) = τ(F3D(I, θ(t + i ∗ s)), i = −T, . . . , T ) (13)

Three-dimensional F3D() features extract simple gradient and intensity information
from steerable pattern spatially align with θ(t) as defined in Eq. (2). The final value
of a Local-Spatial-Temporal (LST) feature is the result of time integration using a set
of linear kernels τ , which weight spatial features F3D() according to their distance
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Table 9 Errors for each estimation stage in TEE and CT

Measure (mm) TEE Mean Std. Median 80 % CT Mean Std. Median 80 %

Global location and rigid motion 6.95 4.12 5.96 8.72 8.09 3.32 7.57 10.4
Non-rigid landmark motion 3.78 1.55 3.43 4.85 2.93 1.36 2.59 3.38
Comprehensive aortic-mitral 1.54 1.17 1.16 1.78 1.36 0.93 1.30 1.53

The “80 %” column represents the 80th percentile of the error values

from the current frame t . A simple example for τ , also used in our implementation, is
the uniform kernel over the interval [−T, T ], τ = 1/(2T +1)

∑T
i=−T (F

3D(I, θ(t+
i ∗ s)). For this choice of τ , each F3D contributes equally to the F4D .

To demonstrate the performance of the 4D trajectory spectrum tracking method,
we test it on a large and comprehensive data set. More specifically, 690 CT and
1516 TEE volumes were acquired from 134 patients affected by various cardio-
vascular diseases such as, bicuspid aortic valve, dilated aortic root, stenotic aor-
tic/mitral, regurgitant aortic/mitral as well as prolapsed valves. Example images
are shown in Fig. 13. The electrocardiogram (ECG) gated cardiac CT sequences
include ten volumes per cardiac cycle, where each volume contains 80–350 slices
with 512 × 512 pixels. The in-slice resolution is isotropic and varies between 0.28
to 1.00 mm with a slice thickness from 0.4 to 2.0 mm. TEE data includes an equal
amount of rotational (3–5◦) and matrix array acquisitions. A complete cardiac cycle
is captured in a series of 7–39 volumes, depending on the patient’s heart beat rate
and scanning protocol. Image resolution and size vary for the TEE data set from 0.6
to 1 mm and 136× 128× 112 to 160× 160× 120 voxels, respectively.

The performance evaluation was conducted using 3-fold cross-validation in the
similar manner as in Sect. 4.5. Table 9 summarizes the model estimation perfor-
mance averaged over the three evaluation runs. On a standard PC with a quad-core
3.2 GHz processor and 2.0 GB memory, the total computation time for the three
estimation stages is 4.8 s per volume (approximately 120 s for an average length vol-
ume sequence). Figure 13 shows estimation results on various pathologies for both
valves and imaging modalities. Furthermore, we compare the 4D trajectory spec-
trum tracking method to traditional tracking methods, such as optical flow [12] and
tracking-by-detection [45], and report the results in Fig. 14.

Given the tracking results, we can compute quantitative measurements and eval-
uate them against manual expert measurements. Table 10 shows the accuracy for
the Ventriculoarterial Junction, Valsava Sinuses and Sinotubular Junction aortic root
diameters as well as for Annular Circumference, Annular-Posterior Diameter and
Anterolateral-Posteromedial Diameter of the mitral valve. From a subset of 19 TEE
patients, we computed measurements of the aortic-mitral complex and compared
those to literature reported values [34]. Distances between the centroids of the aortic
and mitral annulae as well as interannular angles were computed. The latter is the
angle between the vectors, which point from the highest point of the anterior mitral
annulus to the aortic and mitral annular centroids respectively. The mean interannular
angle and interannular centroid distance were 137.0±12.2 and 26.5±4.2, respectively
compared to 136.2±12.6 and 25.0±3.2 reported in the literature [34].
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(a) (b)

Fig. 14 Error comparison between the optical flow, tracking-by-detection and our trajectory-
spectrum approach distributed over (a) time and (b) detected anatomical landmarks. The curve
in black shows the performance of our approach, which has the lowest error among all
three methods

Table 10 System-precision for various measurements of the aortic-mitral apparatus

Mean STD

Ventriculoarterial junct. � (mm) 1.37 0.17
Valsava sinuses � (mm) 1.66 0.43

Sinotubular junct. � (mm) 0.98 0.29
Annular ∨ (mm) 8.46 3.0

Annular-posterior � (mm) 3.25 2.19
Anterolateral–posteromedial � (mm) 5.09 3.7

� diameter, ∨ circumferential length

6 Conclusions

This chapter presented a probabilistic framework for fast and accurate detection and
tracking of deformable objects, with various applications in the medical imaging
field. To handle shape and appearance variations in visual tracking, a set of offline
and online component-based models are maintained to obtain multiple estimates of
the target object, which allows us to combine several sources of information, includ-
ing domain knowledge encoded in image-based discriminative classifiers, domain
knowledge encoded in shape models and motion models, and traditional tracking
with template-based matching/registration. The model estimation is automatically
performed by applying robust and efficient learning-based algorithms on 2D, 3D and
4D data in various modalities, including US, CT, MRI and X-ray fluoroscopy. Valida-
tion experiments on clinical datasets demonstrated the good accuracy and robustness
of the presented framework and showed a strong inter-modality and inter-subject
correlation for a comprehensive set of model-based measurements. The resulting
patient-specific model provides precise morphological and functional quantification
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of the anatomies to be analyzed, which is a prerequisite during the entire clinical
workflow including diagnosis, therapy-planning, surgery or percutaneous interven-
tion as well as patient monitoring and follow-up.
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In particular, information concerning the intensity and geometry is exploited, and
supervised energies based on contextual brain structures are added. Furthermore,
boundary detection is reinforced using a new multi-scale edgeness measure. The
method is applied to the segmentation of the brain caudate nucleus in a set of 39
pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control
children, as well as in a public database of 18 subjects. We evaluate the quality of
the segmentation using several volumetric and voxel by voxel measures, and present
a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD. The
obtained results show improved performance in terms of segmentation accuracy
compared to state-of-the-art approaches.

1 Introduction

Most of the analyses of brain MRI structures, as well as much research in neuro-
science, lack an appropriate automated segmentation system, and therefore require
physicians to manually segment brain structures (e.g. the caudate) on a slice by slice
basis. This process is extremely time consuming, tedious, and prone to inter-rater
discrepancies, limiting the statistical power of the analysis. An automated approach
would accelerate the analysis and make the procedure feasible for large amounts of
data. Automatic segmentation of subcortical structures in the brain is currently an
active research area. In contrast to the problem of tissue segmentation (GM, WM,
and CSF) in brain MRI, for which acceptable solutions can be found, the issue of sub-
cortical structure segmentation has yet to be satisfactorily addressed. Structures such
as the putamen and caudate nucleus are difficult to correctly segment even manually,
since they are small and their intensity is non-uniform and non-contrasted. Figure 1 is
an example of some brain MRI transversal planes with the caudate nucleus boundary
depicted.

Semi-automatic methods for segmenting subcortical structures have been pro-
posed, such as the method developed specifically for neuroanatomical segmentation
[46], in which the user specifies two coordinates of the AC-PC line for the segmen-
tation of the caudate. This method is a knowledge-driven two-step algorithm. In the
first step, lateral ventricles are extracted to help position a bounding box that con-
tains the caudate nucleus. Region growing of gray matter seed points is performed
inside the box to estimate an initial segmentation. A set of anatomical constraints
is also defined, based on previous knowledge, and is subsequently imposed on the
first result. In the second step, the caudate boundaries are refined outside the bound-
ing box by imposing new anatomical constraints. In [9], the authors use an SPM
tool to segment and compute voxel-based morphometry measures. Significant effort
has been put into automated segmentation of different structures in brain MRI (see
reviews [6, 13]). A good example of these efforts can be found in the Caudate
Segmentation Evaluation Challenge (CAUSE07) [40]. In this competition, different
algorithms designed to segment the caudate nucleus from brain MRI scans were
compared. From among the methods adopted, atlas-based segmentation approaches
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Fig. 1 Example of brain MRI scans. Caudate nucleus are marked in white

stand out as a powerful generic technique for automatic delineation of structures in
volumetric images. These approaches use data obtained from different subjects to
construct an atlas, which acts as a common anatomy for the area (of the brain) and
apply it to further segmentations. The results of the CAUSE07 competition show that
multi-atlas segmentation methods can outperform schemes based on a single atlas.
However, on one hand, running multiple registrations on volumetric data requires a
lot of time, and it is difficult to determine the optimum number of atlases to be con-
sidered [42]. On the other hand, an important disadvantage of atlas-based methods
is that the target object is not necessarily correctly represented by the atlas shapes.
In this case, a more flexible and adaptive technique can be useful in order to ensure
accurate segmentation results.

The method considered in this work, CaudateCut, combines the power of atlas-
based segmentation with a deformable model based on the Graph-cut (GC) frame-
work, to obtain a globally optimal segmentation of the caudate structure in MRI.
The GC theory has been used in many computer vision problems [26]. In particular,
it has been successfully applied to binary segmentation of images, and has yielded
a solution which corresponds to the global minimum of an energy function [7, 8].
The goodness of the solution depends on the suitability of the unary and boundary
energy terms and their reliable computation. The original GC definition is limited
to image information, and can fail when the caudate structure in MRI is subtle and
contrast is low. In order to overcome this problem, supervised contextual information
of the caudate nucleus is added and a new multi-scale edgeness measure is used for
reinforcing boundary detection.
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Segmentation results from two different datasets are presented, and abnormalities
in pediatric Attention-Deficit/Hyperactivity Disorder (ADHD) are analyzed. Studies
of volumetric brain MRI show neuroanatomical abnormalities in pediatric ADHD
[9, 15, 33]. ADHD is a developmental disorder characterized by inattentiveness,
motor hyperactivity and impulsiveness, and it represents the most prevalent child-
hood psychiatric disorder. It is also estimated that half the children with ADHD
will display the disorder in adulthood. As stated in several reviews and metanalyses,
diminished right caudate volume is one of the most replicated findings among ADHD
samples in morphometric MRI studies [39]. As a result of these studies, in [35], the
authors proposed a diagnostic test based on the ratio between the volume of parts of
the caudate. The first dataset, considered in this work, consists on an MRI dataset of
thirty nine children/adolescents with ADHD (ages 6–18) and forty healthy control
subjects matched for age, gender, and handedness. The second is a public dataset of
18 healthy controls from the Internet Brain Segmentations Repository provided by
the Center for Morphometric Analysis at Massachusetts General Hospital. We show
that CaudateCut model, improves segmentation performance with respect to a clas-
sical atlas-based approach and a multi-atlas approach proposed recently. Moreover,
a quantitative volumetric analysis of pediatric ADHD is provided, and specifications
and obtained results are comparable to manual analysis based on caudate nucleus
appearance.

The rest of the chapter is organized as follows: Sect. 2 goes through the related
work. Section 3 introduces the CaudateCut model and algorithm. Section 4 reports
and discusses the results of experiments on caudate nucleus segmentation, as well as
the ADHD volumetric quantitative analysis. Finally, Sect. 5 presents the conclusions
and describes future lines of research.

2 Related Work

Different strategies can be adopted for fully-automatic segmentation of subcortical
structures. Recent techniques can be summarized in four groups: (a) anatomical
atlas-based and multi-atlas-based algorithms, (b) supervised learning techniques, (c)
statistical model approaches, and (d) energy-based segmentation techniques.

Anatomical atlas-based methods rely on a registration of the query image with a
pre-computed anatomical atlas of the brain. After registration, atlas labeling is prop-
agated to give an estimation of the segmentation in the query subject [10, 21, 31].
The main advantage of these methods is that the atlas provides a priori information
about the spatial distribution of tissue types or structures. Thus, methods directly use
knowledge about the structure of the brain. Some techniques for atlas construction
can be found in [34]. Automatic methods have been devised to segment any structure
of an anatomical image in the native space that had been predefined in an anatomi-
cal atlas in a stereotaxic—or normalized—space. These approaches rely on accurate
non-linear deformations to find spatial correspondence between either images. In
[10], Collins et al. developed a fully automatic procedure, baptised ANIMAL, to
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segment any structure of an anatomical image in a native space that had been prede-
fined in an anatomical atlas in a stereotaxic—or normalized—space. In that work, it
was observed that since the deformation field is bandlimited, irregular structures such
as cortical gyri and sulci could not be accurately segmented. It was in their next work
ANIMAL+INSECT [11] where the problem was addressed by introducing a post-
processing that required tissue classification of the subject, carried out by INSECT,
to refine the final segmentation of any labeled structure. Departing from sequential
processes like ANIMAL+INSECT, other authors have exploited the benefit of gen-
erative models with the aim of reaching optimal solutions. [17] and [3] combined
tissue classification, bias correction, and nonlinear warping within the same frame-
work. The latest version of SPM [37] already includes the unified approach of [3]
and incorporates scalp extraction into the process.

The main disadvantage of these methods is the computational cost necessary to
build an atlas from different subjects, which requires from complex rigid registra-
tion. Behind registration with an atlas is time consuming, it might not find a globally
optimal solution or even fail completely in the case of strong anatomical anomalies.
Moreover, training set selection to build atlas is a difficult issue and most of the meth-
ods in Challenge CAUSE07 [40] manually select different training sets to segment
the different groups of test data. This converts these methods in semi-automatic. In
[31], the influence of the atlas selection is analyzed by comparing different atlases
on the segmentation of tissue for brain MRI of young children. In this case, stan-
dard expectation-maximization algorithm with registration based segmentation was
used [41]. In [16] the authors incorporate structure-specific models using Markov
Random Fields and [23] improves the results produced by [16] using diffeomorphic
warps. To take advantage of the atlas information in the segmentation process, the
image should be registered to the atlas. In this sense, accurate techniques for image
registration are crucial for the segmentation procedure [25, 28].

Atlas-based algorithms were first conceived as based on a single mean atlas, as in
[21] where subcortical brain structures are segmented using a registration algorithm
and a single ad-hoc atlas applied to 14 schizophrenia patients and 14 control patients.
Progressively, atlas-based methods evolved to multi-atlases strategies where besides
label propagation, decision fusion strategies are involved [2, 19, 42]. When multiple
atlases are considered, labels from each atlas are aligned with the query image and
treated as classifiers. Classifier fusion, based on the majority vote rule, has been
shown to be accurate to segment brain structures. This strategy can be more robust
and increasingly accurate with increasing numbers of classifiers. However, it suffers
from problems of scale when the number of atlases is large. In [2] the authors compare
different classifier selection strategies which are applied to a group of 275 subjects
with manually labeled brain MR images. An Adaptive Multi-Atlas Segmentation
method (AMAS) was presented in [42]. AMAS includes an automatic decision to
select the most appropriate atlases for a target image and stop criterion for registering
atlases when no further improvement is expected. This method obtained the best mark
in the challenge CAUSE07.

Different ways of exploiting supervised learning in segmentation methods have
been incorporated. In [24], the atlas-based segmentation method presented uses
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segmentation confidence maps, which are learned from a small manually-segmented
training set, and incorporated into the cost term. This cost is responsible for weighting
the influence of initial segmentations in the multi-structure registration. Moreover,
multiple atlases are used both in a supervised atlas-correction step, and multiple atlas
propagation. In [29], a two-stage method is presented, which benefits from capabil-
ities of mathematical feature extractors and artificial neural networks. In the first
stage, Geometric Moment Invariants (GMIs) are applied at different scales to extract
features that represent the shape of the structures. Next, multi-dimensional feature
vectors are constructed that contain the GMIs along with image intensity values,
Probability Atlas Values (PAVs), and voxel coordinates. These feature vectors are
used to estimate Signed Distance Maps (SDMs) of the desired structures. To this end,
Multi-Layer Perceptron Neural Networks (MLP-NN) are designed to approximate
the SDMs of the target structures. In the second stage, the estimated SDM of each
structure is used to design another MLP-NN to classify the image voxels into two
classes: inside and outside the structure.

Shape and appearance models involve establishing correspondence across a train-
ing set and learning the statistics of shape and intensity variation using PCA models.
To segment an image being studied, model parameters which best approximate the
structures have to be computed. [4] applies an Active Appearance Model (AAM)-
based method to segment the caudate nucleus. A “composite” 3D profile AAM is
constructed from the surfaces of several subcortical structures using a training set,
and individual AAMs of the left and right caudate are constructed from a different
training set. Segmentation starts with affine registration to initialize the composite
model within the image. Then, a search is performed using the composite model. This
provides a reliable but coarse segmentation, used to initialize a search with the indi-
vidual caudate models. In [22], the authors use a statistical shape model with elastic
deformations to segment the hippocampus, thalamus, putamen, and pallidum. In [5],
a comparison of four different strategies of brain subcortical structure segmentation
is presented: two of them are atlas-based strategies ([2, 31]) and the other two are
based on statistical models of shape and appearance ([4, 32]). The best results are
achieved by the multi-atlas classifier fusion and labeling approach [2] which treats
atlases as classifiers and combines them using a majority voting rule.

With reference to energy-minimization methods, [38] uses a deformable mesh fol-
lowed by normalized cuts criterion to segment the caudate and the putamen from PET
images. [43] proposes a multiphase level set framework for image segmentation using
the Mumford-Shah model, as a generalization of an active contour model. In [27],
a method is presented for the segmentation of anatomical structures, which incor-
porates prior information about the intensity and curvature profile of the structure
from a training set of images and boundaries. The intensity distribution is modeled
as a function of signed distance from the object boundary instead of modeling only
the intensity of the object as a whole. A curvature profile acts as a boundary regular-
ization term specific to the shape being extracted, as opposed to simply penalizing
high curvature. Using the prior model, the segmentation process estimates a maxi-
mum a posteriori higher dimensional surface whose zero level set converges on the
boundary of the object to be segmented. In [36], a graph based method is presented
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for brain tissue segmentation. In [45], the GC strategy is adapted for segmenting
anatomical brain regions of interest in Diffusion Tensor MRI (DT-MRI). An open
source application called ITK-SNAP was developed [47] for level set segmentation.

Finally, there exist some libraries, such as Freesurfer [18], Slicer [1], and
SPM [37], which have been developed to address the MRI segmentation problem.
However, all of them are limited to atlas-based algorithms which lack robustness
when dealing with different types of subjects. Hence, constructing an hybrid approach
that combines atlas-based and energy-based strategies is a natural extension of state-
of-the-art algorithms. The combination presented in this work exploits atlas structure
information and an ad hoc deformable model. Moreover, the proposed model also
takes advantage of supervised learning techniques.

3 CaudateCut

In this section, the GC framework is reviewed and the CaudateCut segmentation
presented in [20] is described.

3.1 Graph-Cut Framework

Let us define X = (x1, . . . , xp, . . . , x|P|) as the set of pixels for a given grayscale
image I ; P = (1, . . . , p, . . . , |P|) as the set of indexes for I ; N as the set
of unordered pairs {p, q} of neighboring pixels of P under a 4-(8-) neighborhood
system, and L = (L1, . . . , L p, . . . , L |P|) as a binary vector whose components
L p specify assignments to pixels p ∈ P . Each L p can be either “foreground”
or “background”, or equivalently “cau” or “back” for our problem (abbreviations
for caudate and background), indicating whether pixel p belongs to the caudate or
background, respectively. Thus, the array L defines a segmentation of image I . The
GC model defines the cost function E(L) which describes soft constraints imposed
on boundary and region properties of L ,

E(L) = U (L)+ δB(L), (1)

where U (L) is the unary term (or region properties term),

U (L) =
∑

p∈P
Up(L p), (2)

and B(L) is the boundary property term,

B(L) =
∑

{p,q}∈N
B{p,q} Ω(L p, Lq ), where Ω(L p, Lq ) =

{
0, if L p �= Lq

1, otherwise.
(3)
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The GC method imposes hard constraints on the segmentation results by means of
the definition of seed points where labels are predefined and cannot be modified. The
subsets C ⊂P,B ⊂P,C ∩B = ∅ denote the subsets of caudate and background
seeds, respectively. The goal of GC is to compute the global minimum of Eq. (1)
from all segmentations L satisfying the hard constraints ∀p ∈ C , L p = “cau”,
∀p ∈ B, L p = “back”.

3.2 CaudateCut Segmentation

The steps in the CaudateCut algorithm are described in detail in the following sub-
sections. The CaudateCut algorithm is summarized in Algorithm 5.

Algorithm 5 Automatic CaudateCut Segmentation algorithm
1: Initial segmentation using AB method.
2: Set background and caudate seeds from AB mask information.
3: Initialize unsupervised unary potentials UUp(“cau”) and UUp(“back”) based on local greylevel

intensities.
4: Initialize supervised unary potentials SUp(“cau”) and SUp(“back”) based on SVM correlogram

classifier.
5: Initialize unary term based on combined unary potentials.
6: Initialize boundary term B(L) based on first and second derivatives of intensities and multi-scale

edge map.
7: Estimate caudate segmentation using GC.

3.2.1 Atlas-Based Segmentation

The atlas-based segmentation of the caudate largely follows the strategy proposed by
[11], (1) First, a non-uniformity image intensity correction is computed. Then, the
corrected image is classified into WM, GM, and CSF. (2) In the next step, the GM
image is elastically registered from its original geometrical space to match a template
image (which represents the expected distribution of gray matter in the subjects under
study) in the so-called normalized space. The deformation field obtained is inverted
to map the normalized space onto the original space. (3) This inverted deformation
is applied to the caudate segmentation in the normalized space, thus yielding a first
segmentation of the caudate nucleus of the subject. (4) Finally, in order to refine
this first segmentation, the GM mask of the subject under study is combined with
the mask obtained by unwarping the normalized caudate segmentation. They are
combined as follows: the GM and caudate probability maps are multiplied and a
threshold Tp is imposed over the result: it is considered that a voxel belongs to the
caudate only where the product map is larger than Tp.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 a Original MRI scan, b Up Crop from the MRI scan, Down Atlas-based segmentation (blue)
and GT (green), c Unsupervised probability values Pu(L p = “cau”) and GT (green), d Supervised
probability values Ps(L p = “cau”) and GT (green), e Boundary potentials B(L), f image crop, GT
(green) and CaudateCut result (red)

This atlas-based segmentation method depends strongly on the atlas definition. In
some situations, this can result in a solution that does not fit the target structure well,
and a further refinement may be necessary. However, the segmentation obtained may
be useful for roughly locating the region of interest, and thus, it can be used to define
the seeds for GC application. Figure 2b shows the result of AB segmentation for the
input image in Fig. 2a.

3.2.2 Seed Initialization

The segmentation result of the atlas-based method is used to define initial segmen-
tation seeds in order to achieve a fully automatic method. Caudate and background
seeds are defined by performing morphological operations on the ROI obtained R0
in the atlas-based mask. Caudate seeds C , are defined by computing C = R0�STke ,
where � denotes the erosion operator, and STke is a structural element of ke pixels.
In the case of background seeds, the region R0 is dilated and the complementary set
is kept, B =P \ (R0 ⊕ STkd ), where ⊕ denotes the dilation operator, and STkd is
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a structural element of kd pixels. In the example shown in Fig. 2a, the selection of C
and B seeds is obtained from erosion and dilation of the AB segmentation shown in
Fig. 2b.

3.2.3 Unary Energy Term

The unary energy term for the GC energy function is divided into two: an unsuper-
vised part and a supervised part.

Unsupervised unary term. The unary potentials at each pixel p are initialized
as,

UUp(“cau”) = − ln(Pu(L p = “cau”)), UUp(“back”) = − ln(Pu(L p = “back”)).

The probability of a pixel p being marked as “cau”, Pu(L p = “cau”), is computed
using the histogram of graylevels of caudate seeds. The probability of a pixel being
marked as “back” is computed using the inverse probability, as Pu(L p = “back”) =
1 − Pu(L p = “cau”), since background seeds contain GM, WM and CSF and it
is difficult to extract a model directly from them. Figure 2c shows the unsupervised
probability values Pu(L p = “cau”), for the image in Fig. 2a.

The unsupervised unary term estimates image-dependent caudate pixel probabil-
ities based on caudate seeds. However, given the noisy information of MRI images
and the small number of caudate seed pixels, a high generalization based on this
term is not always guaranteed. In this context, a combination of the unsupervised
and supervised energies is proposed, which is based on learning contextual caudate
derivatives from Ground Truth (GT) data.

Supervised unary term. A binary classifier is trained using a set of MRI slices
as a training set. In particular, a pixel descriptor using a correlogram structure is
extracted. The correlogram structure captures contextual intensity relations from
circular bins around the pixel analyzed [14].

Given a pixel p, a correlogram Cc×r is defined, where c and r define the number
of circles and radius of the structure. Then, each bin b from the set of n bins, with
n = c · r , is defined as the area delimited by two consecutive circles of the given
radius. Given the pixel p and its correlogram structure C p

c×r , its supervised caudate
descriptor is defined as: dp = {∂1, . . . , ∂k, . . . , ∂n·(n−1)/2}, where ∂k is the signed
substraction of graylevel information within a pair of bins in Cc×r . In this sense, the
descriptor contains the n · (n − 1)/2 graylevel derivatives of all pairs of bins within
Cc×r , which captures all spatial relations of graylevel intensities in the neighborhood
of p. An example of a correlogram structure estimated for a caudate pixel is shown
in Fig. 2d.

The descriptors are extracted for a subset of pixels on C and B from the train-
ing set data. Given the set of descriptors, a linear support vector machines (SVM)
classifier is trained in order to predict caudate confidence on image pixels from new
test data. In our case, the output confidence of the classifier is used as a measure
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of the “probability” of a pixel belonging to the caudate. Then, the supervised unary
potentials at each pixel p are:

SUp(“cau”) = − ln(Ps(L p = “cau”)), SUp(“back”) = − ln(Ps(L p = “back”)).

The probability of a pixel being marked as “cau” is computed using the confidence
of the SVM classifier over its correlogram descriptor Ps(L p = “cau”) = SVM(p).
The probability of a pixel being marked as “back” is computed as the negative of the
output margin of the classifier Ps(L p = “back”) = −SVM(p). Figure 2d shows the
supervised caudate probability values, Ps(L p = “cau”), for the image in Fig 2b.

Combined unary term. The final unary term is defined as the addition of the
unsupervised and supervised values at pixel p as follows:

Up(“cau”) = UUp(“cau”)+ SUp(“cau”), Up(“back”)

= UUp(“back”)+ SUp(“back”).

3.2.4 Boundary Energy Term

To define boundary potentials, first and second intensity derivatives of the image
are used to exploit intensity and geometric information. Moreover, given the high
variability in contrast between the caudate and background in different parts of
the images, the boundary term is weighted using an image-dependent multi-scale
edgeness measure.

Specifically, the boundary potentials are defined as the following convex linear
combination:

B{p,q} = J (αN{p,q} + (1− α)O{p,q}).

First, N{p,q} and O{p,q} is defined as:

N{p,q} = 1

‖xp − xq‖2 exp

(
− (Ip − Iq)

2

2σ 2

)
, O{p,q} = 1

‖xp − xq‖2 exp

(

−θ
2{p,q}
2β2

)

.

(4)

The term θ{p,q} denotes the angle between two unitary vectors codifying the directions
of minimum gradient variation in pixel p and q based on the Hessian eigenvectors.
In particular, the direction of the eigenvector of the Hessian matrix with the smallest
eigenvalue which gives the direction of the smallest variation at each pixel is chosen.
The parameter α is empirically set by cross-validation, while σ and β are computed
by adapting the image distribution to Ip and θ{p,q}, respectively.

Second, the J term is defined as the multi-scale edgeness measure at each pixel:
J = (J ∗1 , . . . , J ∗p , . . . , J ∗|P|). In order to compute J ∗p , the Canny edge detector
algorithm is first run on the observed image at different threshold levels. Then, the
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edge probability is computed at each pixel by linear averaging of the edge thresholds
for different scales as follows:

J ∗p = min
j

1

n

n∑

k=1

Jp,γk ,s j ,

where Jp,γk ,s j is the binary edge map using threshold γk and scale s j for pixel p. If
pixel p is labeled as an edge pixel for most of the threshold levels at a significant
scale, it has a high probability of being an edge pixel. In order to decrease the
smoothness effect at the regions near a boundary, the probability map is convolved
with a Gaussian kernel. Figure 2e shows the boundary potential values B(L) for the
image in Fig. 2a.

Finally, by applying the min-cut algorithm over the defined energy function and
image graph, the final caudate segmentation is obtained. Figure 2f shows the seg-
mentation resulting from applying the CaudateCut algorithm.

4 Experimental Section

Before presenting the results, the material and methods of comparison are firstly
described, as well as the validation protocol for the experiments.

4.1 Material

Two different databases were considered, named URNC database and IBSR database,
in order to validate the proposed CaudateCut method.

• URNC database. This is a new database, which includes 39 children (35 boys
and 4 girls) with ADHD, according to DSM-IV, referred from the Unit of Child
Psychiatry at the “Vall d H́ebron” Hospital in Barcelona, Spain, and coordinated
by the Unit of Research in Cognitive Neuroscience (URNC) at the IMIM Foun-
dation, together with 39 control subjects (27 boys and 12 girls) recruited from the
community. The mean age of the groups was 10.8 (S.D.: 2.9) and 11.7 (S.D.: 3),
respectively. The groups were matched for handedness and IQ. The 1.5-T system
was used to acquire brain MRI scans. The resolution of the scan is 256×256×60
pixels with 2-mm thick slices. Expert segmentation of the 79 individual caudate
nuclei was obtained. MRIcro software1 was used for volume labeling and manip-
ulation.
• IBSR database. This dataset is part of a public database released by CAUSE07

Challenge [40]. It is composed by 18 T1-weighted MRI scans from the Internet

1 www.cabiatl.com/mricro/

www.cabiatl.com/mricro/
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(a) (b) (c)

Fig. 3 Control a and ADHD b MRI slice example of URNC-database and MRI slice example of
IBSR-database c

Brain Segmentation Repository (IBSR). It also contains expert segmentations of
caudate structure. The MRI scans are of 1.5 mm thickness. Originally, the data size
was 256×128×256 pixels, but in order to prepare data for the later application of
the CaudateCut algorithm, they were re-oriented by X -axis rotation and converted
it into 256×256×128 pixels. For more details of the acquisition, visit CAUSE07
Challenge website 2 from where the data were downloaded.

Figure 3 displays a sample control (a) and ADHD (b) MRI from the URNC data-
base and a sample MRI from the IBSR database, (c). As can be appreciated, the
quality of the ADHD image is worse than that of the control image, probably due
to the movement of the children during image acquisition. Anisotropic filtering [44]
was performed on all the slices before CaudateCut was applied.

4.2 Methods

We compared the CaudateCut method to two state-of-the-art methods: a classical
atlas-based method, and a multi-atlas segmentation method. We also compared the
results with the inter-observer (IO) variability of the expert GT.

AB method: We implemented atlas-based segmentation of the caudate following
the strategy presented in [11]. To this end the SPM toolbox implementation of the
unified non-linear normalization and tissue segmentation were used. The parameters
of the method were set by default as in the SPM8 implementation, except for the
threshold Tp, which was estimated using a subset of 5 control subjects from the URNC
database and set to Tp = 0.1. The method was implemented using Matlab2008.

AMAS method: AMAS, was implemented as presented in [42]. For the atlas selec-
tion strategy, the absolute voxelwise difference between the target image and the reg-

2 www.cause07.org/

www.cause07.org/
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istered images from the atlases were computed and they were ordered from smallest
to largest. Then, the atlas information was propagated until the stopping criterion
was reached. The stopping criterion was defined by the percentage of voxels that
change their segmentation label after a new atlas propagation. This threshold was set
to 0.05 for all experiments. The rest of the parameters in the AMAS method were set
as described in [42]. The method was implemented using Matlab2008, and elastix6
version 3.93 was used for volume registration, as suggested in [42].

CaudateCut method: The CaudateCut method was implemented using Mat-
lab2008 and the SPM toolbox. In all the experiments, the parameters were set to
ke = 4, kd = 10, c = 3, r = 5, α = 0.5, Sp = [1, 1.5, . . . , 6], 
 = 0,
γk ∈ [0.02, 0.03, . . . , 0.3] and s j ∈ [0.5, 1, . . . , 5]. The parameters σ and β were
estimated for each image, as explained above. The parameter δ was tuned by cross-
validation and was set to 50 for the URNC dataset and 100 for the IBSR database.
In order to train the SVM classifiers for computation of the supervised unary term,
a subsampling of pixels from each slice was performed. In particular, all the pixels
labeled as caudate in the GT were taken, and the same number of background pixels.
The background pixels were subsampled in a stratified way, trying to select pixels
from all parts of the background.

Manual method: Experts use MRIcro [30] to manually delineate the caudate
boundaries slice by slice. See [9] for more details of the procedure.

4.3 Validation

In order to be sufficiently general, several volumetric measures, as well as voxel by
voxel comparison measures were evaluated. We focused on the six metrics detailed
below, as proposed in [40]. In all of them, R corresponds to the estimated segmen-
tation, G to the GT segmentation and | · | denotes the cardinal of a set.

1. Volumetric similarity index error, in percent SIE =
∣
∣
∣1− 2 R∩G

R+G

∣
∣
∣ · 100.

2. Volumetric union overlap error, in percent VOE = ∣
∣1− R∩G

R∪G

∣
∣ · 100.

3. Relative absolute volume difference, in percent VD =
∣
∣
∣VOLR−VOLG

VOLG

∣
∣
∣ ·100, where

VOLR and VOLG correspond to the total volume of the R and G segmentations,
respectively.

4. Average symmetric surface distance, in millimeters

AD =

(
N∑

i=1
d(BSi ,BR)

2 +
M∑

i=1
d(BS,BRi )

2
)

|BS| · |BR | ,

3 http://elastix.isi.uu.nl

http://elastix.isi.uu.nl
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where BS and BR correspond to the set of border voxels in R and G, respectively,
and d(·, ·) returns the minimum Euclidean distance between two sets of voxels.

5. Root Mean Square (RMS) symmetric surface distance, in millimeters RMSD =√
AD.

6. Maximum symmetric surface distance, in millimeters

MD = max
i, j

(
d(BSi ,BR), d(BS,BR j )

)
.

Note that for all the volumetric and voxel measures, the perfect value is 0. SIE and
VOE have 0 as a perfect segmentation and 100 as the lowest possible value, when
there is no overlap at all between the estimated segmentation and GT. In the case of
VD, the perfect value is 0, which can also be obtained for a non-perfect segmentation,
as long as the volume of that segmentation is equal to the volume of the reference.

In order to validate the AMAS and CaudateCut methods (SVM classifiers for
supervised unary term computation), a leave-one-out strategy was followed. Finally,
Student’s paired t-test [12] was used to evaluate the statistical significance between
pairs of segmentation algorithms with a particular dataset (threshold of p < 0.05).
The null hypothesis corresponds to the hypothesis that the two groups belong to the
same distribution and is called H0. Matlab2008 was used to perform this test.

4.4 Results and Discussion

The results are divided into two sections corresponding to two related experiments:
segmentation evaluation and ADHD volumetric quantitative analysis.

4.4.1 Segmentation Evaluation

(A) Quantitative segmentation results. The performance of the CaudateCut, AMAS
and AB methods is compared. Figure 4 shows the results obtained in the experiments
on both URNC and IBSR datasets for the six validation measures. SIE, VOE and
VD are measured in %, AD, RMSD amd MD are measured in mm, and all the
measures are displayed in base 10 logarithm. For all validation measures, CaudateCut
produced better results than both AB and AMAS for both databases. With regard
to the volumetric measures, CaudateCut achieved good mean rates of 19.25 % for
SIE (equivalently, 80.75 % SI), 31.98 % for VOE (equivalently, 68.02 % VO), and
16.22 for VD. Voxel by voxel mean measures are also acceptable, with 0.0024 mm
for AD, 0.0733 mm for RMSD, and 35.70 mm for MD. The large MD values are
due to the recurrent errors present in the internal boundaries of the caudate defined
between caudate head and body, as is clarified in the visual results below. For the
IBSR database, the AMAS method obtained larger VO and SI values than the AB
method, whereas, in the URNC database, the AB method improved on the result of
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Fig. 4 Quantitative results of AB, AMAS and CaudateCut methods applied to URNC a and IBSR
b databases. Validation measures are, SIE volumetric similarity index error (in %); VOE volumetric
overlap error (in %); VD relative absolute volume difference (in %); AD average symmetric surface
distance (in mm); RMSD root mean square symmetric surface distance (in mm); MD maximum
symmetric surface distance (in mm)

the AMAS method. This could be due to the fact that the AB parameters were tuned
in the URNC database. In this sense, CaudateCut was able to properly overcome
this inconvenience and improve on the AMAS results in the IBSR database. It is
important to note that CaudateCut showed robustness to AB

(B) Qualitative segmentation results. Figure 5 shows qualitative CaudateCut
results for the MRI slices of a control subject. In most of the slices, the CaudateCut
segmentation result (red line) is highly comparable to the GT (green line). However,
segmentation differences occur in the first and last caudate frames, where some vox-
els are classified as caudate by CaudateCut, but not by the GT (false positives). The
inherent ambiguity of the caudate boundaries makes the expert’s task of manually
defining the caudate start and end slices arduous. This introduces variability and pro-
duces errors in MRI atlas information corresponding to the end slices. It is difficult
for CaudateCut to rectify this kind of error. The AB method introduces fake seeds
in these positions and CaudateCut propagates these errors, since it can not remove
the seeds. In the second column of the second row, some voxels are not classified
as caudate, while they should be, according to GT (false negatives). This particular
sample slice corresponds to the transition between caudate head and body, where the
caudate shape changes abruptly from the rounded head to the elongated body [35].

Figure 6 compares qualitative results of left caudate segmentation of URNC data-
base MRI slices using the AMAS (second column), AB (third column) and Caudate-
Cut (fourth column) methods. Note that the best segmentation results were obtained
by the novel CaudateCut segmentation method, followed by AB, and finally, by the
AMAS strategy. In general, CaudateCut improves AB segmentation and obtains
a better fit to the caudate boundaries. Only in a few cases (examples in rows
2 and 3), CaudateCut agrees with the AB segmentation, and the GC strategy did



A Supervised Graph-Cut Deformable Model 253

Fig. 5 Some left caudate segmentation results of URNC-database. First column Original image
crop. Second column AMAS result. Third column AB result. Forth column CaudateCut result. GT
is shown in green and automatic segmentation result in red

not apply changes to the final segmentation. It can be seen that the registration strat-
egy applied for the AMAS method was unable to correctly fit the caudate boundaries.

(C) Computational differences. Concerning the computational time, AMAS was
the most costly method in terms of testing time, since multiple registration had to
be performed for each subject segmentation. On average, 2–3 registrations were
performed for each volume segmentation and each registration took 7 min on a stan-
dard high-end PC, thus making 17.5 min for the whole volume segmentation. The
AB method was the fastest, taking around 5 min on average for the whole volume
segmentation. CaudateCut involves applying the AB method and later the GC min-
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Fig. 6 Example of CaudateCut results. GT is shown in green and CaudateCut segmentation in red

imization process method. The total time was around 6 min for the whole volume
segmentation.

(D) Inter-observer variability. Finally, the inter-observer variability was com-
puted using manual left caudate segmentations from the URNC database by means
of two different experts. The validation measures computed using these two GT seg-
mentations are, SIE: 19.44 %, VOE: 32.20 % VD: 22.84 %, AD: 0.003 mm, RMSD:
0.092 mm and MD: 92.54 mm. These results show that obtaining an accurate manual
segmentation is difficult even for experts, because of the low contrast and resolution
of the caudate regions.

4.4.2 ADHD Volumetric Quantitative Analysis

The a priori hypothesis that developmental anomalies exist in the caudate nucleus of
people with ADHD is generally accepted. Previous imaging studies have analyzed
this hypothesis [15, 33, 39]. In this work, right and left caudate volumetric differences
between ADHD and control subjects were analyzed in the URNC database. To this
end, we performed a comparison of mean volume values applying Student’s t-test for
independent samples (with a threshold of p < 0.05). The aim of this experiment was
to show that the analysis performed using automatic CaudateCut segmentation was
coherent with the results of manual analysis. To carry out the manual and automated
statistical analysis GT and CaudateCut segmentations were considered, respectively.
ROI measures in voxels were transformed into cubic millimeters, mm3 (ROI total
number of voxels multiplied by voxel dimensions). Tables 1 and 2 shows the results
of the manual and automatic analyses, respectively. Both tables contain mean volume
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Table 1 Manual analysis of control and ADHD volume statistical differences for right and left
caudate volume

Manual analysis Group N M Std d t-test t p CI ( 95 % )

Control 39 5031.44 660.18
R caudate 312.29 False 1.9983 0.0493 1.03 to 623.56

ADHD 39 4719.15 718.81
Control 39 4882.45 643.81

L caudate 195.11 True 1.1946 0.2360 −130.19 to 520.42
ADHD 39 4687.34 791.17

N, sample size; M, mean volume (in mm3); std, standard deviation, d mean difference; t-test, t-test
result; t , Student’s t statistic;p, p-value; CI, confidence interval of mean difference

Table 2 Automatic analysis of control and ADHD volume statistical differences for right and left
caudate volume

Automatic analysis Group N M Std d t-test t p CI (95 % )

Control 39 4636.72 596.66
R caudate 430.19 False 2.74 0.0075 118.05 to 742.35

ADHD 39 4206.52 775.86
Control 39 4426.24 615.69

L caudate 288.14 True 1.93 0.0571 −8.90 to 585.19
ADHD 39 4138.10 698.89

N, sample size; M, mean volume (in mm3); std, standard deviation, d mean difference; t , Student’s
t statistic; p, p-value; CI, confidence interval of mean difference

measures, and standard deviation of control and ADHD groups for the right and left
caudate, separately. Moreover, the results of Student’s t-tests are presented: the t-test
corresponds to a true (accept H0) or false (reject H0) result, t is Student’s t statistic,
p represents the p-value, and CI means the confidence interval of differences. As
can be observed, the ADHD group has lower right and left mean caudate volume
than the control group in both the manual and automatic analysis. Moreover, the
results of the statistical test were the same in the manual and automatic analysis:
the volume measure was found to be statistically different between the groups for
the right caudate but not for the left. Comparing volume values, it can be seen
that the automatic CaudateCut segmentation method under-segments the caudate
nucleus compared with the manual delineation. However, these discrepancies in
the segmentations do not prevent coherent results between the two methods in the
statistical analysis of the groups considered.

Finally, the manual and CaudateCut automatic analysis were qualitatively com-
pared. Figure 7 shows both control and ADHD caudate volume distributions using
GT segmentation (a, b) and CaudateCut segmentation (c, d). First column plots (a,
c) correspond to right caudate volume measures and second column plots (b, d)
to left caudate volume measures. The histogram of caudate volume for the ADHD
and control groups are depicted in dashed black and solid red lines, respectively.
Two Gaussian functions were fitted to the histograms. It can be appreciated that the
differences between the ADHD and control distributions were larger for the right
caudate in both the manual and the automatic analysis. The immediate conclusion
is that CaudateCut generates results that are comparable to gold-standard analyses
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(a) (b)

(d)(c)

Fig. 7 Control and ADHD caudate volume distributions for right (a, c) and left (b, d) caudate vol-
ume measures. First row corresponds to the manual analysis and second row to automatic analysis.
Control (red solid line) and ADHD (black dashed line) histograms are shown together with two
Gaussian functions fitted to the histograms

in differentiating neuroanatomical abnormalities between healthy controls and the
group of individuals with ADHD.

5 Conclusion

In this work, a new model for structure segmentation in brain MRI was presented.
The method combines the power of atlas-based strategy and Graph Cut energy-
minimization framework to adapt the final segmentation to the small and low-contrast
brain structures. A new energy function was defined with data potentials exploit-
ing intensity and geometry information, as well as using supervised learned local
brain structures. Boundary potentials were also redefined using a new multi-scale
edgeness measure. The method has different advantages for different neuroimaging
researchers. First of all, it is fully automatic, and secondly, the algorithm is reliable.
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The results are 100 % reproducible in subsequent runs with the same data, avoiding
the inaccuracies of intra-rate and inter-rater drift.

The method was tested on two different datasets. Although the method was tuned
on the novel URNC dataset, it provided outstanding results on IBSR, showing
the inherent robustness of the approach. Moreover, comparable results to manual
volumetric analysis of ADHD children were obtained based on automatic caudate
nucleus volume measures.

Future lines of research include the use of multiple-hypotheses for seed initial-
ization in order to increase robustness to possible errors of atlas application and
the incorporation of 3D information in the caudate segmentation. From the clinical
point of view, new features based on the caudate appearance can be added to analyze
ADHD abnormalities in an automatic way.
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Abstract In this work, edge sets are mapped one to the other by representing these
zero area sets as diffuse images which have positive measure supports that can be
registered elastically. The driving application for this work is to map a Purkinje
fiber network in the endocardium of one heart to the endocardium of another heart.
The approach is to register sufficiently accurate diffuse surface representations of
two endocardia and then to apply the resulting transformation to the points of the
Purkinje fiber network. To create a diffuse image from a given edge set, a region
growing method is used to approximate diffusion of brightness from an edge set to
a given point. To be minimized is the sum of squared differences of the transformed
diffuse images along with a linear elastic penalty for the registration transformation.
A Newton iteration is employed to solve the optimality system, and the degree of
diffusion is larger in initial iterations while smaller in later iterations so that a desired
local minimum is selected by means of vanishing diffusion. Favorable results are
shown for registering highly detailed cardiac geometries.
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1 Introduction

The heart is an electrically controlled mechanical organ whose main function is
to pump blood around the circulatory system. Under healthy conditions the heart
fulfills this vital objective with remarkable efficiency thanks to a highly organized
sequence of events referred to as electro-mechanical coupling. The fast and regular
distribution of the electrical impulse which leads to electrical activation of the car-
diac tissue is of critical importance in this context. The Purkinje system (PS), that
is the specialized conduction system of the main pumping chambers of the heart
referred to as ventricles, plays an essential role in this process by conducting electri-
cal excitation wavefronts from the atrio-ventricular node to the endocardium, i.e. the
inner surfaces of the ventricular cavities. Due to the high conduction velocities and
the network-like topology of the PS the entire endocardium is electrically activated
almost simultaneously, thus triggering a highly synchronized mechanical action of
the heart.

Histological investigations revealed that the PS consists of a highly ramified net-
work of thin cable-like structures beneath the epithelial layer of the endocardium.
The PS is electrically isolated from the ventricular muscle, except at discrete end-
points referred to as Purkinje-Ventricular junctions (PVJs) [27]. Transmission of the
electrical signals at these discrete junctional sites is essential to excite the ventricular
mass [15], since a loss of electrical synchronicity may entail a severe impairment
of cardiac function, which, ultimately, may even lead to sudden cardiac death. The
electro-anatomical characteristics of the PS varies significantly between species, but
may also vary inter-individually. For instance, the location of PVJs within the ventric-
ular wall is quite distinct between species. In sheep [2] and pig [14] the penetration
depth of the PS appears almost fully transmural, whereas in the ventricles of dogs,
humans and rabbits [27] PVJs tend to be located rather in sub-endocardial layers.

While recent advances in experimental methodology have allowed more detailed
characterizations of cardiac function, quite often further progress is hampered by
the inability of current experimental techniques to resolve, with sufficient accuracy,
electrical behavior confined to the depth of the ventricles or within the PS. Computer
models quite naturally suggest themselves as a surrogate technique to bridge the
gap between experimental observations, typically recorded from the surfaces of the
heart, and electrical events occurring within the PS or in the depth of ventricular
walls. Owing to the physiological importance of the PS it is therefore crucial to
account for its role in cardiac function in health and disease, however, despite major
recent advancements in modeling technology [24, 25], the integration of the complex
PS topology with anatomically realistic and biophysically detailed models of the
ventricles remains a challenge.

The main goal of the presented work is the development of a mathematical frame-
work suitable for mapping the endocardial PS between different ventricular surface
geometries. Since detailed experimental characterizations of the network topology
of the PS were not available, a reduced model of the PS based on data from liter-
ature [29], was constructed and integrated with the San Diego rabbit heart model
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[28] which served as a template model. For the sake of developing and testing the
mapping technique, a recent anatomically realistic model of the rabbit ventricles [4]
served as a reference geometry (see models in Fig. 2). We first seek a geometric
transformation to match the template heart model to the given reference model. In
the context of mathematical image processing this can be seen as 3D registration
problem. Once the transformation is found it can be applied to map structures (like
the PS) within the template model onto the reference model. This approach guaran-
tees that not only topological features of the PS but also its position relative to the
ventricle are preserved and projected onto the reference heart.

Given the sheer size of the models considered here would necessitate a massive
computational effort to calculate only simple transformations. Hence we developed
a method that is capable of computing even highly non-linear transformations within
reasonable time frames while requiring only moderate computational resources. We
reduced the dimensionality of the problem by treating the 3D models as sequence
of 2D edges. This strategy reduces memory consumption considerably while simul-
taneously allowing us to use very efficient techniques to solve the occurring 2D
registration problems.

2 Edges as Binary Images

We slice up 3D models and thus obtain two-dimensional cuts. From a mathematical
point of view these cuts can be seen as curves. Hence let Γ0 and Γ1 denote two
curves in R

2. Depending on the chosen cutting direction these curves are potentially
very non-smooth. However, we may safely assume that both curves are not infinitely
long which in mathematical terms means that their Hausdorff-measure is finite, i.e.,
H 1(Γi ) < ∞ for i = 0, 1. Since we want to approach the problem using image
processing techniques we interprete Γ0 and Γ1 not as curves but as edges. In doing
so let Ω := (0, 1)2 ⊂ R

2 denote our image domain and define I0 and I1 to be the
characteristic functions of Γ0 and Γ1 respectively. In this manner I0 and I1 can be
seen as edge maps since Rg(Ii ) = {0, 1}. In other words I0 and I1 are binary images
on Ω . As stated above the objective is to find a transformation to match one heart
model to another. Since we do no longer consider 3D models but rather 2D cuts of
those models the reformulated objective is now to find a displacement w : R2 → R

2

such that I0(x + w(x)) ≈ I1(x) for all x ∈ Ω .
One approach to the computation of the desired displacement is to treat points on

Γ0 as if connected to one another by elastic springs which are perturbed minimally
in order to meet the target set Γ1. However, the computational complexity of such a
formulation is very high in relation to the conceptually comparable strategy pursued
here. The present strategy is to embed the edges into images which are then registered
elastically. Minimizing a linear elastic potential in the registration scheme involving
Γ0 and Γ1 can be seen as an approximation to the afore mentioned approach. Fur-
thermore, elastic potential energy being used by many authors to regularize image
registration is well established and investigated; see, e.g., [16, 23] and particularly
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the review in [18]. Such regularization is particularly natural when used to register
images of tissues having undergone relatively small displacements. However, in the
present context, the required displacement field is highly nonlinear, owing partly to
the complex geometry of the heart and partly to the great difference in regularity of
the two given edge sets. Nevertheless elastic registration is employed here, but with
considerable precautions.

Besides choosing an appropriate regularization for the deformation field a suitable
notion of similarity of binary images has to be selected as well. Assuming that
{Ii }i=0,1 ⊂ L2(Ω), a standard choice (see for instance [9]) is the sum of squared
intensity differences (SSID) which in this case is given by

1

2

∫

Ω

|I0 ◦ (Id+ w)− I1|2 . (1)

However, in this form the SSID-measure is not feasible for the problem: due to the
assumption H 1(Γi ) <∞ both Γ0 and Γ1 are sets of Lebesgue-measure zero in Ω
and supp(Ii ) = Γi for i = 0, 1. Hence the trivial deformation w ≡ 0 minimizes the
SSID measure (1). A more natural approach to measure the difference of edges is
employing the Hausdorff-distance:

dH (Γ0, Γ1) := max

(

sup
x∈Γ0

dΓ1(x), sup
x∈Γ1

dΓ0(x)

)

, (2)

where
dΓi (x) := inf

y∈Γi
|x − y|2 , i = 0, 1,

and |·|2 denotes the standard Euclidean norm in R
2. In image processing and com-

puter graphics the Hausdorff-distance mainly appears in shape recognition problems.
For instance, Knauer et al. [17] developed a method for minimizing the Hausdorff-
distance under translations and rigid motions to determine a registration in the context
of neurosurgical operations. Though their proposed algorithm is efficient, it is limited
to rigid transformations. Fuchs et al. [10] introduced an elastic deformation distance
in a shape space; however, calculating the shortest path between shapes proved to be
computationally expensive. Droske and Ring [8] developed a regularized shape gra-
dient descent algorithm within a level-set framework for simultaneous registration
and segmentation. However, the present problem still lacks sufficient structure to be
treated directly by such approaches.

We present here a technique that combines the simplicity of the SSID-measure
(1) with the accuracy of the Hausdorff-distance (2). Instead of working with the raw
binary edge maps I0 and I1 we approximate those edge-sets by diffuse regions in
images. In other words we use fuzzy edge maps. Note that this approach is not new:
Yang et al. [30] employed a similar technique to perform a non-rigid registration
of cell nuclei. However, the mathematical idea originates in the famous paper by
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Ambrosio and Tortorelli [1] who used fuzzy edge-maps (called phase functions) to
approximate the Mumford-Shah functional [19]. To obtain fuzzy edges based on the
given raw binary images let ε > 0 denote a blurring parameter and define I ε

i for
i = 0, 1 by

I ε
i (x) :=

{
1− dΓi (x)/ε, if dΓi (x) ≤ ε,
0, otherwise.

(3)

Then I ε
i = 1 where Ii = 1 (i.e., on edges) and smoothly decreases from there. That

means the nonzero regions of I ε
i are diffuse extensions of the edges Γi . Note that

in practice we do not explicitly calculate the computationally expensive distance
function appearing in (3) but rather employ a marching procedure in which the
distance dΓi (x) is approximated by successive discrete convolutions. The extent
of this “region-growing” depends on the magnitude of ε: the smaller ε the less
pronounced is the blurring around the edges. In the image processing community
this procedure is known as a distance transform (for an overview on the use of distance
transforms in image processing see e.g. [26]). Its use in the context of registration
problems is also well established: for instance in [13] the authors used constrained
distances in the context of interactive non-rigid registration. A variational approach
to match distance functions was presented in [22].

Since supp(I ε
i ) has positive Lebesgue-measure for any ε > 0 for i = 0, 1 the

SSID-measure (1) is applicable:

Sε(w) := 1

2

∫

Ω

∣
∣I ε

0 ◦ (Id+ w)−I ε
1

∣
∣2 . (4)

Thus we obtain an adapted distance measure for the edges I0 and I1 which forms
the first part of our cost functional. For computing a deformation field w meeting
the present problem’s requirements an additional regularization term is needed. As
indicated above, we seek elastic deformations. Thus we employ the following linear
elastic potential (compare for instance [18])

E(w) := λ

2

∫

Ω

(∇ · w)2 dx + μ
4

∫

Ω

∣
∣
∣∇w� + ∇w

∣
∣
∣
2

F
, (5)

where |·|F denotes the Frobenius-norm andμ and λ are positive constants describing
the elastic properties of the body, the so-called Navier–Lamé constants. Thus we
obtain the following cost functional

J ε(w) :=Sε(w)+ E(w)

=1

2

∥
∥I ε

0 ◦ (Id+ w)−I ε
1

∥
∥2

L2(Ω)
+ λ

2
‖∇ · w‖2L2(Ω)

+ μ
4

∥
∥
∥∇w� + ∇w

∥
∥
∥

2

L2(Ω)
,
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for a fixed ε > 0. The cost J is well defined for w ∈ H1(Ω). Thus we want to solve
the minimization problem

min
w∈H1(Ω)

J ε(w). (6)

Here several important observations should be made. The fuzzy edges I εi vary with
the value of ε. Hence for each ε, (6) forms a stand-alone minimization problem. This
immediately gives rise to the following questions. For fixed ε > 0, does (6) have a
solution, i.e., is the use of min instead of inf justified? Assuming that the first question
can be answered positively, what are the asymptotic properties of these solutions as
ε→ 0? We devote ourselves to both questions in the following subsection.

2.1 Properties of Jε

Due to the lack of space the first question concerning the existence of solutions to
(6) for a given ε > 0 cannot be answered in full detail. However, in the following
we will outline the basic idea of the proof.

Below, we use the notation A : B = ∑
i j Ai j Bi j for matrices A = {Ai j } and

B = {Bi j }. We introduce the space of infinitesimal rigid motions

RM =
{

w = c+W x : c ∈ R
d ,W ∈ S

d
}
,

where
S

d =
{

W ∈ R
d×d : W +WT = 0

}
.

Furthermore, we define the following closed linear subspace of H1(Ω):

H =
⎧
⎨

⎩
w ∈ H1(Ω) :

∫

Ω

w(x)dx = 0,
∫

Ω

[
w(x)xT − xw(x)T

]
dx = 0

⎫
⎬

⎭
.

Straight forward calculations show that J ε is bounded on H1(Ω). However, it is
easy to see that the whole of RM is in the kernel of the elastic penalty E in (5), i.e.,
RM ⊂ ker(E). Thus

c‖u‖2H1(Ω)
≤ J ε(u) = Sε(u) ≤ 2|Ω|, ∀u ∈ RM,

which means that J ε is not coercive on H1(Ω). However, it can be shown that the
cost J ε is coercive and bounded on H . Therefore we established the following direct
sum decomposition of H1(Ω).
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Theorem 0.1 H1(Ω) = RM⊕H .

Proof A rigorous proof is given in [11].

This decomposition is key to proving existence of a minimizing element of (6) in
H1(Ω). Under further assumptions existence of (in a certain sense) minimizing rigid
motions can be shown. Conversely, given u ∈ RM there exists a v∗ ∈H such that

J ε(u + v∗) = inf
v∈H

J ε(u + v).

For the proof we also refer to [11]. Following Theorem 0.1 and using these two
results existence of a minimizer of J ε for ε > 0 fixed is guaranteed by the following

Theorem 0.2 Let ε > 0 be fixed, I ε
0 ∈ W 1,∞(Ω), I ε

1 ∈ L∞(Ω) and λ,μ > 0.
Then there exists a w� ∈ H1(Ω) such that

J ε(w�) = min
w∈H1(Ω)

J ε(w). (7)

Proof A rigorous proof is given in [11].

Note that by definition (3) both fuzzy edges I ε
i satisfy the regularity assumptions

stated in Theorem 0.2, provided the edge sets Γi are sufficiently regular. Under such
assumptions, (6) is a well posed minimization problem for each ε > 0.

Having guaranteed existence of minimizers for each fixed ε we may now address
the question of asymptotic behavior of solutions to (6) as ε→ 0. Looking at definition
(3) it is easy to see that the fuzzy edges I ε

i converge pointwise to the binary images
Ii as ε → 0. However, as pointed out above for ε = 0 the trivial deformation
w = 0 minimizes the similarity measure (4). Indeed, we could show the following
convergence of minimizers as ε→ 0.

Theorem 0.3 Assume the conditions of Theorem 0.2. For every ε > 0, let wε ∈
H1(Ω) denote the minimizer of J ε(w). Let uε and vε denote the projections of wε
onto RM and H , respectively. Then

lim
ε→0

vε = 0. (8)

Also, there exists a u0 ∈ RM such that

lim
ε→0

Sε(u0 + vε) = lim
ε→0

Sε(uε + vε) = 0. (9)

Proof A rigorous proof is given in [11].

For a better understanding of the behavior of the minimization problem (6) as ε→ 0
we present a simplified 1D-example.
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(a) (b)

Fig. 1 a Sketch of the simplified 1D-example discussed in Remark 0.1. b Graph of G(ε, b) on
[0, 1

4 ] × [0, 2] for μ = 1
4

Remark 0.1 Let Ω := (0, 1) ⊂ R and consider the “binary images” I0 and I1
defined by

I0(x) :=
{

1, x = 1
4 ,

0, otherwise,
I1(x) :=

{
1, x = 1

2 ,

0, otherwise.

The objective is to find a deformation w such that I0(x +w(x)) ≈ I1(x). In analogy
to the approach presented above we start with the cost functional

J (w) :=
1∫

0

|I0 (x + w(x))− I1(x)|2 dx + μ
1∫

0

∣
∣w′(x)

∣
∣2 dx

=S (I0, I1;w)+P(w),

with a regularization parameter μ > 0. Similar to the 2D case described above
S (I0, I1; 0) = 0 since supp(Ii ) consists only of discrete points. Employing the
same strategy as in 2D we proceed to fuzzy “edges” by defining

I ε
0 (x) :=

{
1, 1

4 ≤ x ≤ 1
4 + ε,

0, otherwise,
I ε

1 (x) :=
{

1, 1
2 ≤ x ≤ 1

2 + 2ε,

0, otherwise,
0 < ε ≤ 1

4
,

and thus modify the cost accordingly:

J ε(w) := S (I ε
0 ,I

ε
1 ;w)+P(w).

Since I ε
i are step functions (see Fig. 1a) we obviously look for deformations of the

form wε(x) := bx with some non-negative scalar b and a fixed 0 < ε ≤ 1
4 . In this

very simple case it is possible to explicitly write down what the desired deformation
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should be in order to get a perfect registration: w�ε(x) := x , thus b� = 1. In the
following we investigate the properties of the modified cost J ε given the desired
solution w�ε(x) = x versus the trivial deformation w = 0.

First note that the penalty P for deformations of the form wε = bx is given by

P(wε) = μ
1∫

0

|b|2 dx = μb2,

thus
P(w�ε) = μ, and P(0) = 0. (10)

Furthermore, the desired solution minimizes the (adapted) similarity measure

S (I ε
0 ,I

ε
1 ;w�ε) = 0. (11)

On the other hand for the trivial deformation we compute

S (I ε
0 ,I

ε
1 ; 0) =

((
1

4
+ ε

)
− 1

4

)
+
(

1

2
+ 2ε − 1

2

)
= 3ε. (12)

Now choose 0 < ε < min( 1
4 ,

μ
3 ). Then relations (10–12) imply

J ε(0) = S (I ε
0 ,I

ε
1 ; 0)+P(0) = 3ε + 0

< 0+ 3 · μ
3

= S (I ε
0 ,I

ε
1 ;w�ε)+P(w�ε) = J ε(w�ε).

The crucial observation to make here is that although ε > 0 the trivial deformation
minimizes the cost J ε. A closer look at the calculations shows that there is an impor-
tant relation between the constant μ and ε: in the above example ε was chosen “too
small” compared to the regularization parameterμ so that the similarity measure was
minimized by w = 0 instead of the desired deformation. To illustrate this phenom-
enon Fig. 1b shows the graph of G(ε, b) := J ε(bx) for ε ∈ [0, 1

4 ], b ∈ [0, 2] and
μ = 1

4 . It can be seen that for small values of ε the global minimizer of J ε is b = 0
(and hence w = 0) whereas for even very large values of ε the cost J ε is (globally)
minimized by b = 1, i.e., the desired deformation.

Note that the behavior manifested in the 1D example can be seen in 2D as well.
For vanishingly small values of ε (small compared to the Navier–Lamé constants) J ε

is minimized by w = 0. On the other hand, local minima provide a better registration
of the edge sets. This knowledge has led us to the development of an iterative solution
strategy that allows to compute first global minima for ε large, which become desired
local minima as ε gets smaller. Starting with sufficiently diffuse images, we use the
computed minimizer for larger values of ε as an initial guess to solve the registration
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problem for smaller values of ε. By doing so the computed transformations are
refined in the course of the iteration but simultaneously do not get close to zero as
ε→ 0 (details are given in Sect. 3.1). This strategy proved to be remarkably robust
in practice and produced very promising results.

2.2 Optimality Conditions

We start by deducing the necessary optimality conditions for the minimization prob-
lem (6). The Gâteaux derivative of J ε in an arbitrary direction v ∈ C∞(Ω̄) is defined
by

δ J ε

δw
(w; v) := d

ds
J ε(w+ sv)

∣
∣
∣
∣
s=0

.

For the sake of clarity we compute the derivatives of Sε and E separately. Starting
with Sε we get

δSε

δw
(w; v) =

∫

Ω

(I ε
0 ◦ (Id+ w)−I ε

1 )v · ∇I ε
0 ◦ (Id+ w), (13)

and for E(w) we obtain

δE

δw
(w; v) =

∫

Ω

μ
(
∇w� + ∇w

)
:
(
∇v� + ∇v

)
dx

+
∫

Ω

λ (∇ · w) (∇ · v) . (14)

Assuming sufficient regularity of w we will deduce a strong optimality formulation
for (6). Therefore we first use partial integration in (14)

δE

δw
(w; v) =μ

∫

∂Ω

2∑

	=1

v	
(∇w	 + ∂x	w

) · n− μ
∫

Ω

(Δw+ ∇ (∇ · w)) · v

+ λ
∫

∂Ω

(∇ · w) (v · n)− λ
∫

Ω

v · ∇ (∇ · w) , (15)

where n denotes the outer unit normal vector on ∂Ω . The (weak) necessary optimality
condition associated to (6) is given by

δ J

δw
(w; v) = δSε

δw
(w; v)+ δE

δw
(w; v) = 0, ∀v ∈ C∞(Ω̄). (16)
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Since (16) holds for any variation v ∈ C∞(Ω̄)we may apply the fundamental Lemma
of calculus of variations. Thus using (13) and (15) we obtain the Euler–Lagrange
equations, i.e., the strong optimality formulation, associated to the minimization
problem (6) {

E w− f (x,w;I ε
0 ,I

ε
1 ) = 0, in Ω,

λn	∇ · w+ μ
(∇w	 + ∂x	w

) · n = 0, on ∂Ω,
(17)

where E is the elasticity operator defined by

E w := μΔw+ (μ+ λ)∇ (∇ · w) , (18)

and
f (x,w;I ε

0 ,I
ε

1 ) := (I ε
0 ◦ (Id+ w)−I ε

1 )∇I ε
0 ◦ (Id+ w), (19)

is the driving force of the registration. Here several important observations should
be made. First note that the strength of the driving force f determines the magnitude
of a deformation field w that satisfies (17). Furthermore, f is the Gâteaux derivative
of the adapted SSID distance measure (4). Thus if we use a very small ε (or the raw
binary edge maps Ii instead of the fuzzy edges I ε

i in the SSID-distance) the resulting
driving force of the registration is zero, a.e., and hence the trivial deformation solves
the Euler–Lagrange equations (17) (compare the 1D-example given in Remark 0.1).

On the other hand large values of ε indeed generate a sufficiently big driving force
in order to prevent the trivial deformation from solving (17). However, choosing ε
too large leads to blurred fuzzy edges I ε

i and thus a loss of potentially important
features of the original edges Γi .

The vanishing diffusion strategy proposed here (see Algorithm 6) is designed to
address both problems. Starting with ε large the driving force in (17) provokes a
non trivial initial solution w. By iteratively refining the initial deformation field w
we are able to preserve characteristic features of the original edges Γi . Thus our
solution strategy is robust against the initial choice of (a possibly large) ε > 0 while
simultaneously allowing us to compute only the desired local minima of J ε as ε gets
smaller.

2.3 Solution Strategy

The strong optimality conditions (17) are a system of nonlinear partial differential
equations (PDEs) in w. Thus we linearize (17) by employing Newton’s method on
the functional J which takes the form

⎧
⎪⎨

⎪⎩

δ2 J

δw2 (wk; v, δwk) = −δ J

δw
(wk; v), ∀v ∈ C∞(Ω̄),

wk+1 = wk + τδwk,

(20)
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where τ > 0 denotes a given step-size and k = 1, 2, . . . is the iteration index. The
Lax–Milgram Lemma [5] may be used to show that (20) admits an unique solution
for each fixed k.

Theorem 0.4 Let v ∈ C∞(Ω̄), I ε
0 ∈ W 1,∞(Ω), I ε

1 ∈ L∞(Ω) and λ,μ > 0. If
for given w ∈ H1(Ω)

∫

Ω

∣
∣(a + M x) · ∇I ε

0 ◦ (Id+ w)
∣
∣2 dx = 0 implies a + M x = 0, (21)

for every skew-symmetric matrix M ∈ R
N×N and every vector a ∈ R

N then there
exists a unique u ∈ H1(Ω) satisfying (20).

Proof A rigorous proof is given in [11].

Assumption (21) essentially says that the image I ε
0 ◦(Id+wk)manifests sufficiently

few symmetries. Convergence of Newton’s method (20) as k →∞ for a fixed ε > 0
and a suitable initial guess can be shown using the Newton–Kantorovich Theorem
(see e.g. [21]).

Similar to the strategy presented in the previous section we will now deduce a
strong formulation of (20). For the sake of clarity we compute again the derivatives
of Sε and E separately. Starting with Sε we get

δ2Sε

δw2 (wk; v, δwk) =
∫

Ω

v[∇I ε
0 ◦ (Id+ wk)][∇I ε

0 ◦ (Id+ wk)]�δwk .

By using the first variational derivative (14) of the linear elastic potential we obtain
further

δ2 E

δw2 (wk; v, δwk) =
∫

Ω

μ(∇v� + ∇v) : (∇δw�k +∇δwk)

+
∫

Ω

λ(∇ · v)(∇ · δwk) dx,

Under stronger regularity assumptions on w we may again use partial integration
and apply the fundamental Lemma of calculus of variations to obtain the strong
formulation of (20)

⎧
⎨

⎩

(
−E + [∇I ε

0 ◦ (Id+ wk)][∇I ε
0 ◦ (Id+ wk)]�

)
δwk =E wk − f (x,wk;I ε

0 ,I
ε
1 ), Ω,

λn	∇ · wk + μ
(∇wk	 + ∂x	wk

) · n = 0, ∂Ω.

(22)
which is the desired linear PDE-system for the unknown function δwk .
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3 Numerical Approximation

We will first introduce a discretization scheme for the strong formulation (22) of the
Newton step and then explain the discrete realization of Newton’s method (20). Let
from now on w(x) := (u(x), v(x))�, and x = (x, y) ∈ Ω . Then we may rewrite the
elasticity operator E

E w =μ
(
∂2w
∂x2 +

∂2w
∂y2

)
+ (μ+ λ)∇

(
∂u

∂x
+ ∂v

∂y

)

=
⎛

⎝
(λ+ 2μ) ∂

2

∂x2 + μ ∂2

∂y2 (λ+ μ) ∂2

∂x∂y

(λ+ μ) ∂2

∂x∂y μ ∂2

∂x2 + (λ+ 2μ) ∂
2

∂y2

⎞

⎠
(

u
v

)
=:

(
E11 E12
E21 E22

)(
u
v

)
.

For the sake of simplicity we drop the iteration index k here. Since we are working
with digital images we define a grid Ωh := {1, . . . , N }2, where N denotes the
resolution of the images. We use a unit step size h := 1, i.e., the width of a cell is
one, and employ standard central finite differences to discretize the Newton step (22).
In particular let j := ( j1, . . . , jN ) ∈ R

N be an integer component multi index, 1 :=
(1, . . . , 1)� ∈ R

N and the cell centroids be given by x j := j , 1 ≤ j ≤ N · 1. We
denote the array arising from evaluating e.g. u at each grid point by u(Ωh) ∈ R

N×N .
Hence U j ≈ u(x j ) and u ∈ R

N 2
denotes the vector of values {U j } corresponding

to the lexicographic ordering in which j1 increments first from 1 to N , then j2 and
so on. Further, let D(u) ∈ R

N 2×N 2
be the diagonal matrix arising from situating the

values {U j } along the diagonal according to lexicographic ordering.
Due to the lack of space we cannot give the discretization of the elasticity operator

E in full detail. Thus we show, for instance, the discretization of E11 near the lower
left corner of Ωh

...
...

⎛

⎝
0 0 −2μ
0 8μ+ 4λ −4μ− 4λ
0 0 −2μ

⎞

⎠

⎛

⎝
−2μ 0 −2μ

−4μ− 4λ 16μ+ 8λ −4μ− 4λ
−2μ 0 −2μ

⎞

⎠ · · ·
⎛

⎝
0 0 −2μ
0 2λ+ 4μ −2μ− 2λ
0 0 0

⎞

⎠

⎛

⎝
−2μ 0 −2μ

−2μ− 2λ 8μ+ 4λ −2μ− 2λ
0 0 0

⎞

⎠ · · ·

(23)

The upper right block represents the stencil weights for neighbors of a field cell.
Similarly the other blocks show for boundary cells the stencil weights for their
neighbors. With the same format we represent the stencils of E12:
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...
...

⎛

⎝
0 μ− λ −μ− λ
0 0 0
0 −μ− λ μ+ λ

⎞

⎠

⎛

⎝
μ+ λ 0 −μ− λ

0 0 0
−μ− λ 0 μ+ λ

⎞

⎠ · · ·
⎛

⎝
0 μ− λ −μ− λ
0 μ+ λ −μ+ λ
0 0 0

⎞

⎠

⎛

⎝
μ+ λ 0 −μ− λ
μ− λ 0 −μ− λ

0 0 0

⎞

⎠ · · ·

(24)

The stencils forE22 andE21 are constructed by adequate copying and mirroring of (23)
and (24) respectively. This gives rise to matrices Ek.	 ∈ R

N 2×N 2
with 1 ≤ k, 	 ≤ 2

which form the discrete version of the operator E under lexicographic ordering, i.e.,

E (u(Ωh), v(Ωh)) ≈
(

E11u+ E12v
E21u+ E22v

)
,

so that we may write

Ew :=
(

E11 E12
E21 E22

)(
u
v

)
.

The discrete version Ĩ1 ∈ R
N×N of I ε

1 is readily established by setting Ĩ1, j :=
I ε

1 (x j ). For approximating I ε
0 (x + w) and ∇I ε

0 ◦ (Id + w) we use a bilinear
interpolation scheme whenever I ε

0 is evaluated at non-grid points and assign the
extrapolation value zero if x + w(x) lies outside of Ω . Thus we obtain a matrix
Ĩ0 ∈ R

N×N . Let G(Ĩ0) ∈ R
2N 2×2N 2

denote the approximation to [∇I ε
0 ◦ (Id +

w)][∇I ε
0 ◦ (Id + w)]� and define f ∈ R

2N 2
to be the discrete version of the force

field f (x,wk;I ε
0 ,I

ε
1 ) (further details are given in [11] and [12]). Then the Newton

step (22) is discretized by

(
−E + G(Ĩ0)

)
δw = −Ew − f, (25)

which is a linear equation system in the unknown δw ∈ R
2N 2

.

3.1 The Discrete Newton Iteration

We use w1 := 0 ∈ R
2N 2

as initial guess and employ the discrete Newton step (25) to
obtain the following iteration

{(
−E + G(Ĩ0,k)

)
δwk = −Ewk − fk,

wk+1 = wk + τkδwk,
k = 1, 2, . . . (26)
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We use a backtracking-like line search [7] to determine the step size τk . Let Jh denote
a discrete approximation of the cost J then τk is computed as follows

⎧
⎪⎪⎨

⎪⎪⎩

τk = min
τ∈T

Jh(wk + τδwk),

T :=
{
τ = 2	

L
|	 = 1, . . . , L

}
,

(27)

where wk denotes the current iterate and δwk the currently computed Newton
direction. This method has proven to provide good performance and less total com-
putational cost than standard Armijo–Goldstein or Wolfe–Powell techniques [20]
(especially since no expensive evaluations of G(Ĩ0,k) are needed).

A combination of residual error and smallest change of iterates is used as stopping
criterion in (26). The right hand side of (25) corresponds to the discretized Euler–
Lagrange equations (17) of the original minimization problem (6). This motivates
stopping the iteration (26) if the (relative) residual error rb := | − Ewk − fk |/
| − Ew1 − f1| is smaller than some tolerance. Additionally we compute the relative
change of iterates re := |wk −wk−1|/|wk | (where re := 0 if |wk | = 0) and combine
these two notions in a stopping criterion.

As mentioned above the choice of ε may have negative effects on the outcome of
the registration. Too small values of εmay produce a trivial solution. Very large values
of ε can lead to a loss of potentially important information on the original edges Γi .
Thus we developed a solution strategy of the registration problem (6) which is robust
against the choice of ε. To compensate for the approximation error introduced by
replacing the binary edges Ii with the fuzzy edge maps Ii we augmented Newton’s
method (26) with an outer loop that reduces blurring in Ii and thus iteratively
refines the computed deformations. We start by computing a “rough” initial guess
w� by using a low number of maximal iterations kmax in (26). Then we compute the
element-wise-squared of Ĩ ε

i . According to definition (3) the fuzzy edge maps have
intensity one at all points where the raw edges Ii are nonzero, i.e., on Γi , and have an
intensity less than one everywhere else. Thus by computing the element-wise squared
of Ĩ ε

i edge-set-pixels still have intensity one whereas their blurred surroundings end
up having a lower intensity. Hence the original edge sets Γi are accentuated. Then
we restart Newton’s method using the images Ĩ ε

i (x j )
2, the initial guess w1 = w�

and increase kmax. Repeating this procedure sufficiently many times yields fuzzy
edges that are very close approximations to the raw edges. Details are given in
Algorithm 6.
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(a) (b)

Fig. 2 3D surface representations of the ventricular cavities: a The San Diego rabbit ventricles [28]
with a spatial discretizationΔx of∼250µm serves as template geometry. b An anatomically highly
realistic model of the ventricular cavities [4] with a Δx of ∼100µm provides the target geometry
during the mapping process

Algorithm 6 Iterative method to solve the elastic registration problem (6).

1: Choose: ε > 0, kinc ∈ N : kinc ≥ 2, tol > 0 and w ∈ R
2N 2

.
2:
3: Given the edge-sets Γ0 and Γ1 embed them in the center of images I0 and I1.
4: Compute diffuse versions I ε

i of Ii .
5: for κ = 1, . . . K do
6: Set kmax = kinc · κ
7: Compute w� using (26) with the line search (27) until either min(rb, re) < tol or k > kmax.
8: Set Ĩ ε

i (x j ) := Ĩ ε
i (x j )

2 and w1 = w�.
9: end for
10: Set w = w�.

4 Computational Results

All computations were carried out on a 64bit Linux workstation in MatlabTM 2009b
running on a Dell Optiplex 745 equipped with 8 GB of RAM.

The objective of this work was to map a literature-based PS available for the San
Diego rabbit ventricles [28, 29] onto the endocardial surfaces of an anatomically
highly realistic heart model [4] (referred to as “Oxford-heart”). Both models are
shown in Fig. 2. Following an elastic registration approach, we were able to determine
the transformation field between the complex endocardial surfaces of both hearts.
Since the PS was embedded in the surfaces of the template heart model, it was
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(a) (b) (c)

Fig. 3 Illustration of the dissection of the 3D heart models. a shows the surface point cloud (left
cavity) of the San Diego rabbit heart with a cutting plane present. First the model is cut in horizontal
direction (a) to generate a 2D edge set (b). We center the image and apply our region-growing
algorithm (c)

self-evident to apply this transformation to the given PS to map the network-like
structure onto the endocardial surfaces of the Oxford-heart. In this way topological
features as well as the relative position of single network nodes on the ventricular
surfaces could be preserved.

Following steps were pursued to apply the proposed solution strategy presented
above: the 3D models were sliced to obtain sets of edges in 2D. Each slice was then
registered consecutively employing Algorithm 6. The deformation fields computed
for each slice were used to map the literature-based Purkinje fiber network onto the
endocardium of the Oxford-heart.

Prior to slicing the hearts we applied a (linear) translation to the models to get
a maximal spatial overlap. Furthermore, to ensure a clear discrimination between
left and right cavity we separated the 3D heart models accordingly. Once left and
right cavities were separated, the z-axis was the obvious choice for the normal of the
cutting plane.

In this fashion we generated a stack of binary images onto which Algorithm 6
was applied. After centering the edges within the binary images we employed our
“region-growing” method to obtain blurred approximationsI ε

i . Note that we approx-
imated the distance function dΓi appearing in the definition (3) of I ε

i by a marching
procedure using successive discrete convolutions with a 3 × 3 kernel of ones. A
representative result of this region-growing is depicted in Fig. 3c. Thus we gener-
ated two image stacks: the blurred San Diego rabbit ventricle slices

{
I ε,m

0

}M
m=1

(the template image stack) and the blurred Oxford-heart-cuts
{
I ε,m

1

}M
m=1 (the refer-

ence image stack). The next step was to compute elastic deformations wm such that
I ε,m

0 (x + wm) ≈ I ε,m
1 (x) for m = 1, . . . ,M which was done by using a Mat-

lab-implementation of the augmented Newton method depicted in Algorithm 6.
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(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 4 The different stages of Algorithm 6 for the template image I0 (top row) and the reference
image I1 (bottom row). Panels a and e show the centered and region grown versions of the images.
Panel b presents the resulting image I ε

0 (x + w)2
K

after completion of Algorithm 6 versus the

final reference I ε2K

1 (x) (f). Panel c depicts the original binary image I0 after application of the
computed transformation w versus the original binary target I1 (g). The original binary template is
given in panel d. Panel h shows the computed deformation field w(x)

(a) (b) (c) (d)

Fig. 5 3D Reconstruction of the registered San Diego rabbit ventricle slices for the left (a) and right
(c) cavity and the left (b) and right (d) cavity of the Oxford heart reference geometry, respectively

The computed deformations wm were then applied to the raw binary images I m
0 to

register the edges Γ m
0 to Γ m

1 . Figure 4 sketches the procedure. Figure 5 shows the
3D reconstruction of the registered San Diego rabbit ventricle slices in comparison
to the 3D reference, i.e. the Oxford heart, for both left and right cavities. Finally
we used the computed deformation fields to map the literature-based Purkinje fiber
network (given as Cartesian coordinates of points representing the spatial locations
of the nodes of a 3D graph) from the San Diego heart model onto the Oxford heart.
The result is depicted in Fig. 6. A list of all parameters used and their values is given
in Table 1.
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(a) (b)

(c) (d)

Fig. 6 The artificial Purkinje fiber network in the San Diego rabbit ventricle model (a, b) and the
registered network in the Oxford heart (c, d)

Table 1 The used parameter
values

Parameter Value Meaning

λ 1e-2 see (5)
μ 1e-2 see (5)
L 10 see (27)
tol 1e-3 see Algorithm 6
K 4 see Algorithm 6
kinc 5 see Algorithm 6

5 Discussion and Conclusion

The application addressed here required the registered PS to be a subset of the
Oxford heart, i.e. the computed deformations had to be sufficiently accurate to avoid
network nodes being projected off the endocardial walls. This requirement together
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with the very complex geometries of the considered heart models made the construc-
tion of affine linear mappings to project the network infeasible. The computed elastic
deformations guarantee that despite even large differences in the endocardial geome-
tries of both models the artificial Purkinje fiber network is mapped sufficiently close
to the Oxford endocardium. The disadvantage of using a linear elastic regularization
in this context is that the computed deformations are highly nonlinear (compare for
instance Fig. 4h). In a linear elastic registration scheme the principal assumption is,
however, that the reference image and the template image are two observations of
the same elastic body before and after a deformation. The linear elastic potential is
thus a model for the displacement of the body that is only valid for sufficiently small
deformations (compare [18]). This assumption is clearly violated in our context.
However, here the elastic registration framework is embedded into our vanishing
diffusion strategy; the most pronounced non linearities in the deformation fields are
due to the first (outer) loop of Algorithm 6. But in the first loop we only use a very
low number of maximal iterations kmax in (25). This together with a suitable choice
of the Navier–Lamé constants allowed us to circumvent the restrictions of the linear
elastic penalizer.

Though our results have been positively evaluated by experts, the lack of exper-
imental observations makes a rigorous validation difficult. While our 2D approach
depends strongly upon the pre-registrations performed in 3D and in 2D, this depen-
dence might be relaxed by a full 3D registration at considerably higher cost. Our
simulations confirmed that separating the cavities of the heart models is crucial. By
cutting the hearts in vertical direction one obtains slices containing edges from both
the left and right cavities. This fact seriously impairs the outcome of the registration:
the computed deformation fields may “pull” edges corresponding to the left cavity
to an edge arising from a cut through the right cavity and vice versa. Hence we
separated the 3D hearts into left and right cavities.

Despite the application presented here our method proved to be a highly efficient
and reliable technique to register 2D edges. Forthcoming work even shows that
our vanishing diffusion strategy is a really promising method in the very general
context of edge set registration problems. In contrast to methods employing the
Hausdorff–distance our approach allows us to use the much simpler SSID-distance
which is computationally very cheap. Due to the plain structure of the associated cost
functional the derivation of necessary optimality conditions by means of variational
calculus is straight forward. The use of variational derivatives further enables us to
employ fast and theoretically well-founded optimization routines such as Newton’s
method. Furthermore, the driving force of the registration can be quickly evaluated
and is easy to interpret. In relation to other works employing blurring strategies
in registration problems we want to emphasize that our novel vanishing diffusion
strategy described in Algorithm 6 still proves to be very robust in practical use.
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Errors in Estimates of Motion and Strain-Tensor
in Ultrasound Elastography

Mehmet Bilgen

Abstract Error analysis was performed for quantifying noise in ultrasound elas-
tography images of biologically soft tissue. The interaction of ultrasonic bean with
tissue was modeled in 3D. Static tissue deformation applied by an external mechani-
cal source was represented by a second order strain tensor. Complex motion induced
in response to deformation was tracked using standard cross correlation based esti-
mator. Pre- and postcompression echo signals were windowed by the same kernel
and cross correlated. The amount of shift where the cross correlation function peaked
was considered as the estimate of the local tissue motion. Covariance matrix of the
errors made in estimating motions within two windows with certain amount of over-
lap was derived analytically. The components of the covariance matrix were related
to the variances of the displacement errors and the errors made in estimating the
elements of the strain tensor. The results were combined to investigate the depen-
dencies of these errors on the experimental and signal-processing parameters as well
as to determine the effects of one strain component on the estimation of the other.
The expressions were evaluated for special cases of axial strain estimation in the
presence of axial, axial-shear and lateral-shear type deformations. The signals were
shown to decorrelate with any of these deformations; with strengths depending on
the reorganization and interaction of the tissue scatterers with the ultrasonic point
spread function following the deformation. The loss of signal coherence resulted in
more degradation in the estimation performance. The precision of the estimates was
sensitive to the direction of the motion. Motion parallel to the transducer array axis
produced more error than the motion perpendicular to this axis, and axial shear type
deformation introduced more error than that of the lateral shear depending on the
features of ultrasonic point spread function as it was defined by its width, length
and wavelength. Conditions that favor the improvements in the motion estimation
performance were discussed, and advantages gained by signal companding and pulse
compression were also illustrated.
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1 Introduction

This chapter summarizes the work published in the original article [2] and briefly
reviews the developments that followed. Estimation of motion is required in many
biomedical applications including strain-tensor imaging which can be considered
as a subset of broader elastography imaging developed for detecting pathologically
abnormal growths in the tissues of interest. Recent articles provide extensive reviews
on elastography imaging [7, 8, 11]. In elastography imaging modality, spatial distrib-
ution of bioelasticity (also called tissue stiffness, elasticity, compliance or shear mod-
ulus) constitutes the image contrast and displayed as elastogram [6]. Constructing an
elastogram requires signals acquired with one of the many existing physical princi-
ples, such as ultrasound, magnetic resonance or optical. During the data acquisition
process, tissue elements are made to move in response to either static or dynamic
deformation. In ultrasound elastography, static deformation applied through a plate
that housed an ultrasound array transducer while the compression of the underly-
ing tissue was controlled by an instrument. But later, for producing elastograms in
real time, compressing a transducer with a larger front face against the tissue with
a simple hand movement was shown to be sufficient [5]. This approach was subse-
quently adapted by several manufacturers who markets devices for clinical practice
of free hand elastography. Breathing or pulsation of an artery was also considered as
a natural source of deformation as in the case of evaluating thyroid masses [1]. The
tissue was initially compressed in axial direction, but later subjected to shear type
deformation for producing additional image contrast [4, 10]. Before and after apply-
ing deformation, ultrasonic radio-frequency (rf) echo signals were acquired and the
spatial variation of motion was estimated by tracking the acquired signals using post-
processing algorithms including cross-correlation and companding. From the esti-
mated motion field, the components of strain tensor were subsequently calculated in
the elastostatic regime [3].

1.1 Limitations of 1D Echo Signal Model

Research prior to the publication of the referenced article was mainly focused on
estimating the axial strain component along the compression direction and dis-
played it as a map of bioelasticity variation under the assumption of uniform stress
condition in the tissue. Estimation errors were characterized and verified by mea-
surements that closely simulated 1D motion. The boundaries of objects or phan-
toms were specifically set to restrict the motion in lateral or elevational direction.
Otherwise, the axial strain images suffered from signal decorrelation artifacts. To
simplify the mathematics, theoretical analyses were also initially performed using
1D models of the ultrasound echo signals before and after the compression. This
helped understanding the fundamentals of the errors in motion estimates, determin-
ing the optimal conditions on the amount applied compression to produce maximum
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contrast-to-noise ratio is axial stain images and thus improving the target detectabil-
ity. But, 1D models were far from being complete in appropriately describing the
full nature of the realistic tissue and ultrasonic beam interaction in the presence
of compression in 3D, and consequently provided limited information. In addition,
changes in the boundary conditions altered the strain contrast between the target
and background regions. Therefore, such an image alone did not allow correctly
interpreting the biolelasticity profile of the tissue media and hence would lead to
false classification of lesion. Inversion algorithms were developed to predict the
true bioelasticity distribution. But, the availability of accurate information about
the 3D motion and boundary conditions was the key for the success of these algo-
rithms in producing elastograms useful for clinical diagnosis. The lengthy inversion
process provided little extra information when the image contains small contrast
lesion, because the contrast transfer efficiency for the axial strains is less sensitive to
the lesion geometry.

2 Echo Signal Model in 3D

Based on the above considerations, the 1D signal model was extended to 3D with
the help of Lagrangian description of the tissue motion. Ultrasonic rf echo signal
formed from the interaction of the acoustic-pulse with the tissue was modeled by
considering the transducer as transmitting a broadband pulse and receiving echoes
from small size weak scatterers within the volume occupied by the pulse. These
scatterers were due to random fluctuations in the density and compressibility of the
tissue, and their variations were represented by a reflectivity function f I (x). The
vector x = (x, y, z) defined a spatial coordinate in 3D Euclidean space. Larger
scale variations were due to the existing pathological inhomogeneities in the tissue
and were associated with the bioelasticity determining the internal deformation pro-
file induced by an external compression (for brevity compression hereafter refers
to any type of external source including compression, shear etc., generating the
internal tissue deformation). The local motion induced internally was complex and
nonlinear depending on the amount of compression, but when the deformation was
small, it could be described in Lagrangian sense by a linear combination of affine-
type coordinate transformation and translation operations as it has been practiced in
computer vision applications. The combination of these operations was defined by
x = ((I+A)x+D.Here, I denotes an identity matrix, A is a second rank tensor with
components ai j for i, j = x, y, z and D = (Dx, Dy, Dz) is the displacement vector.
Since such transformation moves the scatterers into new positions, the reflectivity
profile in the deformed state f I I (x) takes the from f I I (x) = f I ((I + A)x + D). In
general, the tensor components, ai j s, can assume any value to map a unit volume into
an arbitrary shape and size after the transformation. However, if the transformation
is physically to represent tissue motion, certain restrictions apply on the range of
values that ai j s can take. These restrictions are mainly determined by the under-
lying tissue structure [e.g. isotropy, homogeneity and incompressibility (Poisson
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Ratio 0.5)] and the applied boundary conditions on the tissue surfaces. In any case,
the tensor A can be decomposed into its symmetric and asymmetric parts. Elasticity
theory in classical mechanics calls the symmetric part as strain tensor defining the
true deformation while the asymmetric part as pure rotation or translation. Mathe-
matically, the noise-free echo signals received before and after the compression are
the signals f I and f I I filtered by the pulse-echo impulse response function of the
ultrasonic imaging system h (PSF). In general, h is time dependent and spatially
variant as the shape of the PSF can change with depth. With focusing, the curvature
of the phase front and width of the PSF also change due to the near-field and farfield
effects. By focusing on a specific region of interest located at depth x, the time
dependence of the PSF can be absorbed into the spatial description of the function h.
The signals received from this region before and after the compression can then
be written as

rI (x) = pI (x)+ nI (x),
rI I (x) = pI I (x)+ nI I (x).

(1)

where pI (x) = hI (x) ∗ f I (x) and pI I (x) = hI I (x) ∗ f I I (x) are the noise free
signals, ∗ denotes convolution, and nI (x) and nI I (x) are the signal independent
additive noise. Here, we allowed the properties of PSF to change during the acqui-
sition of the postcompression echo signal and thus indicated the PSF before and
after the compression by different subscripts. Equation (1) represents continuous
signals acquired with an ultrasonic linear array. In elevational and lateral direc-
tions, the sampled echo field has lower resolution due to coarser spacing between
the array elements and higher temporal resolution is obtained along the axial
direction due to finer digital sampling. Consequences of sampling on motion esti-
mation performance can be minimized by employing subsample interpolation at
the crosscorrelation peak. The analysis in the following was performed with the
continuous signals.

3 Correlation Coefficient and Covariance Matrix of Motion
Estimates

The strain tensor components, ai j s, are calculated from the differential motion esti-
mated from the pre- and postcompression signals in Eq. (1). For this purpose, win-
dow functions w1(x) and w2(x) were used for segmenting the echo signal field
over volume in 3D and areas in 2D. The functions were separated by a vector
ΔZ = (ΔZx ,ΔZ y,ΔZz) between their centers and were made to overlap by choos-
ing the length of ΔZ small compared to the window size. Since the windows were
separated, the displacement vectors affecting the signals under each window were
different and denoted respectively by D1 and D2. The motion in tissue was obtained
by crosscorrelating the windowed waveforms via
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φi (τi ) =
∫

dxwi (x + τi )rI (x + τi )wi (x)rI I (x) (2)

where the subscript i = 1 and 2 was used to identify the windows from which
the displacement vector was estimated. The shift vector τi maximizing the cross-
correlation function was considered as the estimate of the displacement vector Di ,
i.e.,

φi (D̂i ) = max
τi
φi (τi ). (3)

Signal decorrelation was measured from the attenuation of the correlation coefficient
at its peak

ρ =
E

[
φ1

(
D̂1

)]

√
φI−IφI I−I I

, (4)

where the terms in the denominator were given by

φ j− j = E

[∫
dxw1(x)r2

j (x)
]
, for j = I and I I. (5)

Taylor series expansion of the cross correlation function at its peak in Eq. (3) allows
writing the error between the true displacement D and its estimate D̂ in matrix-vector
representation as

D̂i − Di ≈ −H−1
i ∇φN (τi )|τi=D̂i

. (6)

Here ∇ = (∂/∂x, ∂/∂y, ∂/∂z) denotes the gradient operation and

Hi = ∇∇�E
[
φi p(τi )

]
τi=Di

, (7)

(7) is the expected value of the Hessian matrix of the cross-correlation function of
the noise free signals

φi p(τi ) =
∫

dxw1(x + τi )pI (x + τi )w2(x)pI I (x). (8)

The function

φN (τi ) =
∫

dxw1(x + τi )w2(x) (pI (x + τi )nI I (x)

+nI (x + τi )pI I (x)+ nI (x + τi )nI I (x)) , (9)

is the contribution from the cross terms associated with the signals and the noise.
Equation (6) was reached by making the following assumptions:
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1. Variations in φi p(τi ) about the ensemble mean E
[
φi p(τi )

]
are small, so that

its gradient and Hessian matrix can be approximated by ∇φi p(τi ) ≈ 0 and
∇∇�φi p(τi ) ≈ E

[∇∇�φi p(τi )
]
.

2. Contributions from the third and higher terms of the Taylor series expansion of
the correlation function are small.

3. Components of the strain tensor A are small so that the displacement estimates
are unbiased and the PSF is spatially invariant under each window.

4. nI (x) and nI I (x) in Eq. (1) are zero mean random noise processes that are signal-
independent and uncorrelated.

With these assumptions, the expected deviation of the displacement estimates
becomes zero, i.e.,

E
[
D̂i − D

]
≈ 0, (10)

indicating that D̂i is an unbiased estimate of Di . E[·] in the above equation denotes
the expectation operation. The covariance matrix of the displacement estimates can
be derived from the above expressions as

cov(D̂1, D̂2) = E
[
(D̂1 − D1)(D̂2 − D2)

�]

≈ H−1
1 ∇∇�E [φ1N (τ1)φ2N (τ2)] |τ1=D̂1,τ2=D̂2

H−�2 . (11)

The correlation coefficient in Eq. (4) and the covariance matrix in Eq. (11) were
calculated explicitly. The window functions w1(x) and w2(x) were chosen as
Gaussian

w1(x) = w(x) = exp(−4x�Z−1x), and (12)

w2(x) = w(x −ΔZ) = exp(−4(x −ΔZ)�Z−1(x −ΔZ)). (13)

Here the matrix Z determines the size of the window functions and ΔZ is
the window shift vector defined in the previous section. To make the mathe-
matical analysis tractable, we further assume that w(x + τ)w(x) ≈ w2(x) and
w(x1 + τ1)w(x1)w(x2 + τ2 − ΔZ)w(x2 − ΔZ) ≈ w2(x1)w2(x2 − ΔZ). These are
valid approximations when |τ |, |τ1| and |τ2| � |Z|.

The PSF hI in Eq. (1) was modeled by a Gaussian modulated sinusoid

HI (k,L,k0) = exp
(
−(k + k0)

�L(k + k0)/2
)
+exp

(
−(k − k0)

�L(k − k0)/2
)
,

(14)
which represents a band-pass spectrum in the 3D domain. The matrix L deter-
mines the size of the PSF while k0 is the center frequency and direction of
ultrasound propagation. The PSF hI I assumes the same functional form as hI

but defined by different parameters L′ and k′0. This primed notation was conve-
niently used to distinguish the PSF shaping effect during the acquisition of the
postcompression signals. The reflectivity function f I and the additive noise n
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components in echo signals were considered to be Gaussian white noise processes
with variances σ 2

f and σ 2
n , respectively. The signal-to-noise ratio was defined as

SNR = σ 2
f /σ

2
n 	 1. The above considerations lead to the following derivations.

Based on Eq. (8),

E
[
φi p(τi )

] = σ 2
f |Z||L|1/2|L′|1/2

8
√

2|Σ |1/2
× Re

[
exp

(
−(k�0 Lk + k′�0 L′k′0)/2+ ( j (τi − Di )+ b)�

Σ−1( j (τi − Di )+ b)/4
)]
, (15)

where Re[·] denotes the real part of its argument and

Σ = [
Lk0 + (I+ A)L′(I+ A)

]
/2+ AZA�/32, and, (16)

b = Lk0 + (I+ A)Lk′0. (17)

And based on Eq. (11) and SNR	 1,

E[φ1N (τ1)φ2N (τ2)] =
σ 2

f σ
2
n |Z|1/2
SNR

exp(−4ΔZ�Z−1ΔZ)

× Re

[
exp(−c�1 L−1c1 + jc1k0)

|L| + exp(−c�2 L′−1c2 + jc2k′0)
|I+ A||L|

]

(18)

where
c1 = τ1 − τ2, (19)

c2 = τ1 − τ2 − (I+ A)−1(D1 − D2). (20)

The calculation of the covariance matrix in Eq. (11) further requires the Hessian
matrices H1 and H2 through Eqs. (7) and (15). Notice that Eq. (18) is a function of
unknown displacements D1 and D2 through Eq. (20). The algebraic complexity in
evaluating Eq. (11) can further be reduced by the approximation c2 ≈ τ1 − τ2 . The
error committed with this substitution into the calculation of the covariance matrix
was negligible since the displacements introduce shift effect via Eq. (20), but the
partial derivatives in the gradient operations are taken with respect to the variables
τ1 and τ2 in Eq. (11).

Based on the observation that, the shift dependent term in the first line of Eq. (18)
is not affected by the gradient operations and therefore it can be factored out to render
the displacement covariance matrix

cov(D̂1, D̂2) = exp(−ΔZ�Z−1ΔZ)var(D̂1), (21)
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where var(D̂1) = cov(D̂1, D̂1) is the displacement variance matrix. Equation (21)
relates the displacement covariance to the displacement variance in a simple fashion
through multiplication by an exponential with window shift and size dependency.
The correlation coefficient in Eq. (4) can be expressed in closed form as

ρ = |L|
1/4|L′|1/4|I+ A|1/2
|Σ |1/2 exp

(
−(k�0 Lk + k′�0 L′k′0)/2+ b�Σ−1b/4

)
. (22)

4 Errors in Strain Tensor Estimates

The diagonal term E
[
(D̂1z − D2z)

2
]

of the covariance matrix in Eq. (11) is essential

for predicting the variance of the axial strain estimates, i.e., azz component of the
tensor A,

âz z = (D̂2z − D̂1z)

ΔZz
. (23)

The other diagonal terms can similarly be used to predict the variances of the lateral
and elevational strain estimates âi i = (D̂2i − D̂1i )/ΔZi for i = x, y. The off-
diagonal elements are related to the variances for the estimates of the off-diagonal
components of A. For example, the estimate of the shear strain axz are calculated
from the displacement estimates according to

âxz = 1

2

(
∂Dz

∂x
+ ∂Dx

∂z

)
= (D̂2z − D̂1z)

2ΔZx
+ (D̂2x − D̂1x )

2ΔZz
= ΔZz

2ΔZx
âzz+ ΔZx

2ΔZz
âxx .

(24)
The variance of this estimate can explicitly be written as

var(âxz) = ΔZ2
x

4ΔZ2
z

var(âxx )+ ΔZ2
z

4ΔZ2
x

var(âzz)

+ 2cov(D̂1x , D̂1z)− cov(D̂1x , D̂2z)− cov(D̂2x , D̂1z)

4ΔZxΔZz
, (25)

where

var(âi i ) = 2
(

cov(D̂1i , D̂1i )− cov(D̂1i , D̂2i )
)
/ΔZ2

i for i = x, z, and (26)

equalities cov(D̂1i , D̂1i ) = cov(D̂2i , D̂2i ), cov(D̂1x , D̂1z) = cov(D̂2x , D̂2z) hold.
The cov(·, ·) terms in the right hand side of Eq. (25) are determined from the off
diagonal x − z and z − x elements of the covariance matrix via Eq. (11).
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5 Calculation Results

In the following, the utilities of the formulas derived in the previous section are illus-
trated with examples. The geometry was restricted to 2D to reduce the complexity of
computations while, at the same time, providing basic understanding of the interac-
tions between the experimental and signal processing parameters. The extension to
3D can be carried out trivially by invoking the elevational parameters into the calcu-
lations. Three 2D strain tensors were considered to represent the basic deformations
in the forms of axial compression, pure axial shear, and pure lateral shear that are
respectively defined by the following matrices

A =
(

axx 0
0 azz

)
,

(
axx 0
aaz azz

)
and

(
axx axz

0 azz

)
(27)

The last two can be combined to obtain a rotation tensor. The condition |I+ A| = 1
simulates an incompressible tissue, which leads to the substitution axx = −azz since
a2

zz � 1 for small axial strains. When dealing with other types of tissue, e.g. poroelas-
tic tissue, the values for the individual tensor components are determined from the
Poisson ratio and boundary conditions. Unlike the convention used in classical elas-
todynamics, the positive strain values in this paper represented compression along
the axial z-direction and negative strains were expansion along the lateral x-direction.
The PSF was described by a diagonal matrix

L =
(

L2
x 0

0 L2
z

)
, (28)

where the terms Lx and Lz , respectively, define the width and length of PSF. The vec-
tor k0 was considered as (0, k0) to represent ultrasound beam propagating along the
z-direction. The corresponding parameters were indicated by primed variables, i.e.,
L and k′0, for the PSF that is shaped during the postcompression signal acquisition.

The parameters in the calculations were set to simulate 5 MHz transducer, no
PSF shaping and large signal-to-noise ratio (SNR = 100). The PSF parameters were
Lz = 300µm, k0 Lz = 2π , L ′z = Lz and k0 = k0.

Figures 1, 2 and 3 illustrate the changes in the axial displacement variance
var(D̂1z) and the behaviour of the correlation coefficient ρ as the experimental
conditions are varied for a range of parameter values described in the figure cap-
tions. Figure 1 depicts the dependence of the variance on the ratio Zz/Lz (equivalent
to time-bandwidth product) when the axial- and lateral-shear strains were absent in
the tissue volume (i.e., axz = azx = 0). For the condition of zero axial strain, a unit
volume translates with its dimensions unchanged as shown in Fig. 1a. According
to Fig. 1b, the variance of estimating the axial component of the motion decreases
linearly with the ratio Zz/Lz in the log scale as in the case of the Cramer-Rao lower
bound. This decreasing trend can be represented by the formula
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(a) (b)

Fig. 1 Shows a the deformation of a unit volume with axial compression and b the variations of
axial displacement estimation variance for azz = 0 (solid lines) and azz = 0.025 (dotted lines) when
(1) Lx = Lz, dx = 2Lx , (2) Lx = Lz, dx = 0 and (3) Lx = Lz/4, dx = 0. The other parameter
values used in the calculations are axz = azx = 0, Lz = 300 µm, k0 Lz = 2π, Lz = Lz, k′0 = k0
and SNR = 100

var(D̂1z) =
{

8L3
z

SNRZz(1+ 2k2
0 L2

z )

}

Lx exp(d2
x /2L2

x ), for azz = 0. (29)

The parameters Lx (PSF width) and dx (lateral motion induced in the tissue after
the compression) scale the variance, as illustrated in the figure.

For nonzero axial strains azz 
= 0, the unit volume in Fig. 1a is subjected to a
deformation and consequently its dimension changes depending on the amount of
axial strain. The displacement variance curves attain a minimum at

Zz

Lz
=

√
10

azz

√
1+ k2

0 L2
z

. (30)

Conditions simulating Zz/Lz larger than this optimal value produce less precise
displacement estimates.

The effects of shear strain components (both axial and lateral) and the width of
PSF on the axial displacement error and the correlation coefficient are illustrated
effectively and compactly in Figs. 2 and 3. Figure 2a shows the associated deforma-
tions and axial motions of a unit volume under the mentioned shear strain conditions.
Figure 2b and c are plotted as a function of axial strain with data points corresponding
to two different Lx values under three combinations of shear strains. The results in
Fig. 2b indicates that wide PSF favors larger errors and the presence of shear strain
may alter the estimation performance. For example, for Lx = 4Lz (dotted lines),
the variances represented by the symbols + and Δ overlap and, at the same time,
attain lower values compared to those indicated by the symbol �. For the case of
Lx = Lz/4 (solid lines), the curves with the symbols + and � overlap while crossed
by the curve with symbol Δ at 5 %. Displacement errors are larger when azz < 5 %
and lower when azz > 5 %. All the overlapping data points in Fig. 2b produce
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(a)

(b) (c)

Fig. 2 Shows a deformations of a unit volume under lateral- and axial-shear strains, and variations
of b axial displacement estimation variance and c signal decorrelation with axial strain for Lx =
Lz/4 (solid lines) and Lx = 4Lz (dotted lines). The symbols represent; + : axz = azx = 0,Δ :
axz = 0.05, azx = 0, and axz = 0, azx = 0.05. The other parameter values used in the calculations
are Lz = 300 µm, k0 Lz = 2π, L ′z = Lz, k′0 = k0, Zz = 20Lz and SNR = 100. Notice that in b,
solid lines with + and � overlap, indicating minimal azx effect for Lx = Lz/4, and dotted lines
with + and Δ overlap, indicating minimal axz effect for Lx = 4Lz . All the lines overlapping in b
also overlap in c

identical correlation coefficient as seen in Fig. 2c. From these results, it is clear that
the accuracy of displacement estimates are determined by the complex interactions
of underlying strain parameters. To further investigate these interactions, similar cal-
culations were repeated in Fig. 3a and b, but this time, the horizontal axis represented
either axz or azx , and the data points were for the two different values of Lx and
azz . According to this data, the errors exhibited varying degrees of sensitivity to the
strain components axz and azx and also the PSF width. The origins of this sensitivity
variation is explained in the next section.

6 Discussions

The most common axial strain estimator is based on Eq. (23) where the axial dis-
placements are estimated according to Eq. (3). The pre- and postcompression A-lines
acquired by the same array element are crosscorrelated after segmented by overlapped
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(a) (b)

Fig. 3 Shows variations of a axial displacement estimation variance and b signal decorrelation
with axial- or lateral-shear strains for Lx = Lz/2 (solid lines) and Lx = 2Lz (dotted lines). The
symbols represent; +: azz = 0 and × : azz = 0.015. The other parameter values used in the
calculations are Lz = 300 µm, k0 Lz = 2π, L ′z = Lz, k′0 = k0, Zz = 20Lz and SNR = 100

and shifted window functions. When single A-lines used, the matrix Z describing the
window function reduces to a scalar quantity Z = Z2

z . Combining (21) and Eq. (26),
the estimation performance can be measured from the variance formula

var(âzz) = var(D̂1z)
{

2
(

1− exp(−4ΔZ2
z /Z2

z )
)}
. (31)

This expression is simple in the sense that the axial displacement variance and the
window-shift dependent term in the curly brackets are separated, allowing better
interpretation of how the window overlap contributes to the axial strain variance.
The ratio ΔZz/Zz is called the percentage window shift or overlap and is associ-
ated with the spatial resolution of axial strain estimates. It is usually kept small for
improving the resolution and for these cases (i.e., ΔZz/Zz < 25 %), Eqs. (24–26)
reduces to

var(âzz) ≈ 8
var(D̂1z)

Z2
z

. (32)

Speckle decorrelation was defined as the attenuation of the correlation coefficient.
In this paper, we presented similar results using Eq. (22), but for the rf-signals. Band-
pass rf signals offer displacement estimates with higher precision due to the preserved
phase information, but also decorrelate rapidly with deformation as compared to
the base-band envelop signals. According to Eqs. (22) and (23), the displacement
estimation variance increases with both of these parameters Lx and dx , as illustrated
in Fig. 1. This primarily occurs due to the signals being decorrelated by the lateral
tissue motion and larger number of independent tissue scatterers contained in wider
PSF. The last statement is correct provided that the amplifier gains are unchanged
so that the SNR stays constant. Therefore, best estimation performance is achieved
with pulses with small widths and when dx = 0. This corresponds to the analysis of
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A-lines coinciding with the axis of symmetry in the lateral motion, i.e., the center
axis of the compressor. As the line of sight is moved away from this symmetry, the
lateral motion increases according to dx = axx x for a uniform tissue, where x is the
distance from the center axis, and thus significantly increase the variances for small
width PSFs. This relationship indicates a tradeoff between the selection of PSF width
and tolerable lateral motion. In order to compensate this effect, signal-processing
strategies involving lateral search in the echo field can be implemented to employ
highly coherent signal pairs received by two nearby transducer array elements in the
motion estimation process.

The lateral motion can be estimated by tracking the changes in signals across
the echo field. The error analysis for these estimates can be performed using the
displacement covariance matrix derived above. Unlike axial signals, the signals in
the lateral direction lack phase modulation and consequently the resulting estimates
become less precise. This directional dependence of the errors induces anisotropy in
the performance of the motion estimation.

Any type of deformation monotonically decorrelates the pre- and postcompres-
sion signals and subsequently reduces the accuracy of the motion estimates. As for
the conditions that led to the calculations in Figs. 2 and 3, the sensitivity of the
errors varied with the type of deformation and the width of the PSF. This sensitiv-
ity variation can be explained by analyzing the motion of tissue relative to the PSF
profile after the deformation. Figure 4 graphically depicts two PSFs with different
widths and a unit volume deforming in the presence of axial- and lateral shear strains.
Both PSF profiles have the same axial length 2Lz and wavelength λ. In response to
the strains, two hypothetical points (representing tissue scatterers) move along the
directions indicated by the arrows. The strength of ultrasonic backscatter from each
scatterer is determined by its position with respect to the PSF profile. Before and
after the deformation, the scatterer on the left moves to different phase of the PSF but
the scatterer on the right stays on the same phase. At their new positions, the scat-
terers experience different PSF amplitudes that change the amount of contribution
to the backscattered echo. The difference in the amount of backscatter contribu-
tion before and after the deformation makes the pre- and post-compression signals
decorrelate. For the scatterer on the left, the signals before and after the deformation
completely loose phase coherence if the axial-shear strain satisfies azx > λ/2Lx .

The scatterer on the right moves out of the beam when the lateral-shear strain is
axz > Lx/Lz and does not contribute to the post-compression signal at all. Under
these conditions, the most severe decorrelation occurs. By generalizing this simple
analysis, it can be stated that the axial-shear strains become more effective for wide
pulses Lx 	 Lz with short wavelength, and the lateral-shear strains become more
important for long or narrow pulses Lx � Lz . Clearly, it is essential to investi-
gate the communality of the deformation types in tissues so that appropriate PSF
offering best compromise in image quality can be designed for different tissues
(e.g, breast versus prostate tissue).

Signal companding was successfully shown to improve the performance of axial
strain estimation. Signal warping is a generalized form of signal companding in
3D and produces a maximum-likelihood estimate for the motion. Therefore, it is
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Fig. 4 Shows the interaction of PSF with the tissue deformation under axial- and lateral-shear
strain conditions. On the left side, PSF with large width and axial-shear strain; and on the right side,
PSF with small width and lateral-shear strain are illustrated. Notice that both PSF profiles have the
same axial length 2Lz and wavelength λ. The applied strains move the two hypothetical scatters
(points) along the directions indicated by the arrows. Gray scale values represent the amplitude of
the PSF. Please refer to the main text for further explanations regarding the figures

Fig. 5 Shows improvements in signal decorrelation (solid line) with signal companding by
(1 + azz) alone (dotted line) and PSF compression followed by companding L ′z = Lz/(1 + azz),

k′0 = k0(1+ azz), (dashed line). The parameter values used in the calculations are Lz = 300 µm,
k0 Lz = 2π, Zz = 20Lz and SNR = 100

advisable to apply these post-processing strategies to the pre- and post-compression
signals. In addition, if possible, PSF shaping should be carried out during data acqui-
sition to reduce the signal decorrelation. Figure 5 illustrates the improvements in the
signal decorrelation with each of these attempts using 1D signal model. Although
companding alone was effective, best restoration of the signal decorrelation was
achieved with the acquisitions that employ PSF compression followed by signal
companding as illustrated in the figure. These results together suggest better strate-
gies for designing and developing new data acquisitions and instrumentation, and
evaluating the elastography image formation algorithms, as appeared later in the
literature [6, 7, 9, 10].
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7 Conclusion

Given the experimental conditions, achieving accurate and precise motion estimates
in elastography imaging is very challenging. Obtaining clinically useful elastograms
requires careful adjustment of the experimental and signal processing parameters
that interact in complex fashion. The analysis presented in this paper enhanced the
basic understanding of some key elements and their effects on the performance of
3D motion estimation in elastography with the help of expressions derived for the
correlation coefficient and displacement covariance matrix. It served as a guidance
to determine the range of appropriate parameter settings that offer improved image
quality for any elastography system and also to evaluate and design new systems
with better performances. This paper did not consider phase aberration, curvature
of motion and curvature of the PSF. Therefore, investigating their effects on motion
estimation errors still remains for future studies.
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