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Abstract Conceived as an extended homogenization procedure, a multiphase ap-
proach for ascertaining the macroscopic behavior of reinforced soil structures has
been developed in the last years. This contribution is dedicated to the evaluation of
the yield strength properties of soils reinforced by linear inclusions by making use
of a homogenization procedure, in which the reinforced soil is regarded as a peri-
odic composite, as a first calculation, and using the multiphase model. It appears
from such a calculation that only the multiphase model is able to capture scale and
boundary effects, which may play an important role in the yield design of reinforced
structures. The decisive element is the introduction of a parameter characterizing the
strength of the interaction between two continuous media (“phases”) representing
the soil and the reinforcing inclusions, respectively. A preliminary analysis suggests
that such a parameter varies in direct proportion to the inverse of a scale factor.

1 Introduction

A large range of soil reinforcement techniques used to improve soil structures stiff-
ness and strength consist in incorporating into the soil mass a distribution of uni-
directional inclusions made of steel or concrete. Beyond the differences as regards
the construction mode of such reinforced structures, they undeniably exhibit some
common futures which can be summarized as follows:

• The reinforcing inclusions usually take the form of linear structural elements
(metal or polymeric strips or bars, concrete piles, . . . ) incorporated into the soil
mass following a regular (periodic) arrangement and one or several preferential
orientations, in much the same way as for industrial fibre composite materials,
although at a quite different scale.
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• The mechanical properties of the reinforcing material are considerably higher
than those of the native soil: concrete or steel yield strength is 1000–10000 times
greater than that of a soft clay or a sand.

• The volume fraction of the reinforcing material is quite small, remaining in most
cases lower than few percents.

The strong heterogeneity of the composite reinforced soil associated with the
relatively high number of the reinforcing inclusions involved in such reinforcement
techniques, makes it very difficult to set up appropriate design-oriented calculation
methods in which the inclusions would be treated as individual elements embedded
in the soil. Indeed, a fully three dimensional analysis to take into account the cylin-
drical shape of the reinforcements and a locally refined mesh to capture with suf-
ficient accuracy the complex interaction between the soil and the inclusions would
be required. This would lead to oversized numerical problems and thus a time con-
suming calculation methods incompatible with an engineering design approach.

As an alternative approach to direct numerical simulations, the periodic homog-
enization technique [1, 2] appears to be a good alternative since the heterogeneous
composite material is replaced by a homogeneous anisotropic medium. Another
way to set up design methods for soil structures reinforced with linear inclusions
consists in the application of the multiphase model, which has been developed in
the last decade.

The objective of this paper is to point out the shortcomings of such a homoge-
nization procedure and to show how a multiphase approach, perceived as an exten-
sion of the homogenization concept, is able to capture “scale” as well as “boundary
effects”, which may have important consequences in the yield design of reinforced
soils structures.

2 Macroscopic Strength Condition of a Unidirectionally
Reinforced Soil

The determination of the macroscopic strength condition of a material reinforced by
one single family of parallel cylindrical inclusions could be performed by making
use of the homogenization theory for periodic media implemented in the context of
yield design (limit analysis). It relies upon the solution to a yield design boundary
value problem defined over the reinforced soil’s representative unit cell sketched in
Fig. 1 [1, 2].

Denoting by s the spacing between two neighboring inclusions, and by R and
t the radius and the thickness of the reinforcing inclusions, respectively, the rein-
forcement volume fraction is equal to the ratio between the inclusion and the unit
cell cross sectional areas:

η = 2πRt

s2
(1)
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Fig. 1 Representative unit cell of a soil reinforced by tubular inclusions

As regards most types of reinforced soil structures, the volume fraction η is very
small, rarely exceeding 5 %, whereas the strength of the reinforcing material is con-
siderably higher than that of the soil. This situation can be mathematically obtained
by making the volume fraction tend to zero while the product of this volume fraction
by the reinforcing material’s uniaxial yield strength σY

r is kept constant:

η → 0 as ησ Y
r = σ0 = ct (2)

where σ0 may be interpreted as the tensile (compressive) resistance of the rein-
forcing inclusions per unit transverse area. Under such circumstances, it can be
shown [3] that, assuming perfect bonding at the interface between the inclusion
and the surrounding soil, the macroscopic strength condition of the reinforced soil
simply reduces to:

F(Σ) ≤ 0 ⇔
{

Σ = σ s + σe1 ⊗ e1

f (σ s) ≤ 0, |σ | ≤ σ0
(3)

where f (.) denotes the soil’s strength condition. The above simplified criterion
proves also valid for plane strain-loaded multilayered materials under the same
condition as (2) [4, 5]. For a purely cohesive soil (soft clay) characterized by a
cohesion or undrained shear strength equal to C, the macroscopic strength condi-
tion, expressed under plane strain conditions parallel to the reinforcement direction,
writes [2]:

F(Σ) ≤ 0 ⇔ ΣM − Σm ≤ 2Chom(α) (4)

where ΣM (resp. Σm) is the major (resp. minor) principal stress and α its orientation
with respect to the reinforcement direction. The reinforced soil thus appears to be a
purely cohesive anisotropic medium, with its cohesion, represented in Fig. 2(b) in
the form of a polar diagram, varying from that of the native soil (C) for α = ±45◦
to a maximum value equal to C + σ0/2 for α = 0◦, 90◦.
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Fig. 2 (a) Representative unit cell of reinforced soil. (b) Polar diagram for a unidirectionally
reinforced purely cohesive soil

Fig. 3 Compressive strength of a purely cohesive reinforced block: initial and auxiliary problems

3 A Partial Validation of the Homogenization Approach

The problem under consideration is that of a block of height H and half-width L,
subjected to a compression test in plane strain conditions in the Oxy-plane. This
block has been reinforced with regularly placed horizontal inclusions (Fig. 3) and
placed between two rigid planes in smooth contact with its upper and bottom sec-
tions. The upper plane is moving down and then applying a compressive loading Q

to the block whereas the lower plane is fixed. The two lateral sides are stress free.
According to the homogenization procedure, the composite material is modeled

as a homogeneous anisotropic purely cohesive medium for which the corresponding
yield function is expressed by (4). Referring to the lower bound static approach of
yield design for the above problem, a homogeneous stress field of the form:

Σ = Σ22e2 ⊗ e2 + Σ33e3 ⊗ e3, Σ22 ≤ Σ33 ≤ 0 (5)
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Fig. 4 Results of elastoplastic simulation for ε = 0.15: (a) finite element mesh; (b) computed
load–displacement curve; (c) “at failure” stress distribution in the reinforcement

is considered, where the major principal stress is then equal to zero (Σ11 = ΣM = 0)

while the minimum (maximum compressive stress) is Σm = Σ22, so that α = 0. The
strength condition (4) may thus be written:

ΣM − Σm = 0 − Σ22 ≤ 2Chom(
α = 0◦) = σ0 + 2C (6)

It follows immediately that a lower bound value to the compressive strength of the
reinforced block is:

Q+
hom ≥ 4CL[1 + σ0/2C] (7)

which turns out to be the exact value upon applying the upper bound kinematic
approach.

The validity of such a procedure is now assessed by comparing the obtained
compressive strength (7) with a direct numerical simulation of the same problem,
where for the sake of simplicity, but without any loss of generality, the reinforced
soil is modeled as a multilayered material in which the reinforcements are treated
as 1D beam elements, equally spaced by a distance s throughout the block, so that
a “scale factor” defined by the spacing to half-width ratio, may be introduced:

ε = s/L (8)

Making use of the symmetry and the periodicity conditions, it could be easily
proved that the numerical simulation of the plane strain compression test could
be performed by solving the boundary value problem attached to a representative
“slice” of the reinforced block (Fig. 2). The corresponding limit loads Q+ have been
evaluated numerically by means of the finite element computer code PLAXIS [6].
As sketched in Fig. 4, the soil mass is discretized into 6-noded triangular elements
whereas the reinforcing inclusion is modeled as a beam. An elastoplastic calculation
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Fig. 5 Homogenization vs.
f.e.m. numerical simulations

is performed, until failure, for several values of the scale factor ε ranging between
0.05 and 0.5. It is worth noting that the computational time for each elastoplastic
calculation up to failure, represented by a load-displacement curve (Fig. 4(b)), does
not exceed one minute on any standard PC.

Figure 4(c) displays the uniaxial stress distribution in the inclusion at failure
and the corresponding distribution predicted by the homogenization theory. This
comparison shows a perfect agreement of the results obtained by both methods in
the central part of the reinforced structure. However, the f.e.m. and homogenization
results strongly diverge when approaching the lateral sides of the block.

The variation of the non-dimensional parameter Q+/4CL as a function of the
scale factor is represented in Fig. 5. The comparison between the numerical and ho-
mogenization method results clearly shows that the latter fails to capture the “scale
effect” due to the variation of the scale factor. Indeed, the f.e.m numerical results
converge to that predicted by the homogenization method as the scale factor tends
to zero:

lim
ε→0

Q+(ε) = Q+
hom (9)

thus confirming the well known convergence result of the homogenization approach,
but the latter may significantly overestimate the actual value of the compressive re-
sistance if the scale factor is not sufficiently small. Such a “scale effect” is obviously
of no consequence as far as industrial composite materials are concerned (leaving
aside purely local effects associated with brittle failure, such as delamination phe-
nomena), but remains a relevant question for reinforced soils, since the scale factor
is generally of the order of 0.1–0.3 for this kind of composite material.

4 Multiphase Model as an Extended Homogenization Method

An extension of the classical periodic homogenization method, namely the multi-
phase model, has been proposed in the last decade, allowing to assess the macro-
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Fig. 6 Principle of the multiphase model for reinforced soils

scopic behavior of reinforced soil structures taking “scale” as well as “boundary”
effects into account.

The intuitive idea of the multiphase model is to homogenize separately the soil
on the one hand and the array of reinforcing inclusions, on the other hand. The thus
obtained interacting continuous media, called the “matrix” and the “reinforcement”
phases, are given two different kinematics, namely a velocity field Us for the ma-
trix, representing the soil mass, and Ur for the reinforcement phase (Fig. 6). The
multiphase model could be derived from the virtual work method (see [7] for more
details) and leads to the decomposition of the macroscopic total stress Σ as a sum
of the “partial” stresses relating to the soil and the reinforcement.

A more detailed presentation of the multiphase model may be found in [7] or
[8], in the context of an elastic behavior of the different constituents. The general
governing equations of the model, will now be presented in the context of the yield
design theory.

The equilibrium equations are written for each phase separately, that is in the
absence of any external body force, as:

divσ s + Ie1 = 0 (10)

for the matrix phase, representing the soil, and:

div(σe1 ⊗ e1) − Ie1 = 0 (11)

for the reinforcement phase, where I denotes the interaction body force density.
These equations are completed by stress conditions defined on the boundary surface
of each phase independently. Referring to a yield design boundary problem for any
such two-phase system, it is necessary to specify the strength condition at any point
of each phase, namely:

f
(
σ s

) ≤ 0 and |σ | ≤ σ0 (12)

for the individual phases, along with an interaction strength condition of the form:

|I | ≤ I0 (13)
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In the situation of “perfect bonding”, characterized by the fact that the interaction
strength parameter I0 takes an infinite value, it is quite apparent from summing up
Eqs. (10) and (11), and thus eliminating the interaction force density, that the yield
design homogenization method is recovered.

The stability analysis of a block of reinforced soil, previously considered in the
light of the homogenization method, is now revisited within the context of the mul-
tiphase model. The compressive strength of the reinforced block is thus defined as
the maximum value of Q for which it is possible to exhibit a couple of stress fields,
σ s in the matrix phase and σ in the reinforcement phase, along with an interaction
force density I , satisfying both the equilibrium equations (10) and (11) along with
the boundary conditions specified for each phase independently, and the respective
strength conditions (12) and (13).

It is to be noted that the strength properties of the multiphase system depend on
the strength properties of the different constituents: the soil’s cohesion C for the ma-
trix and the reinforcement uniaxial strength density σ0 for the reinforcement phase,
whereas the interaction strength parameter I0 depends on several parameters and
could be determined through a numerical procedure which is presented in Sect. 5.

The kinematic approach of yield design is based on the “dualization” of the equi-
librium equations of the multiphase system by making use of the virtual work prin-
ciple. Denoting by {Û s

, Û
r} any virtual velocity field, kinematically admissible for

the boundary value problem, this principle writes:

We

(
Us,Ur

) = Wi

(
Us,Ur

)
(14)

where We (resp. Wi ) represents the virtual work of external (resp. internal) efforts
for the two-phase system. It is worth noting that the interaction body force density
I exerted on the matrix phase must be considered as an external effort for the latter
but, as regards the multiphase system as a whole, this volume density is an internal
effort since it corresponds to an interaction between two subsystems (matrix and
reinforcement phases) of the reinforced volume Ω .

In the case of a loading depending on n parameters, the virtual work of external
forces writes:

We

(
Us,Ur

) =
∫

∂Ω

(
T s.Us + T r .Ur

)
dS = Q.q̇ (15)

where Q is the vector of the loading parameters (compressive resultant force in the
above problem) and q̇ the associated kinematic parameters (vertical velocity of the
reinforced block upper section).

On the other hand, the virtual work of internal forces is equal to the sum of the
contribution of each phase and the interaction prevailing between them:

Wi

(
Us,Ur

) =
∫

Ω

(
σ s : ds + σd + I
̇

)
dΩ (16)
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where ds , d and 
̇ are the strain rate variables, defined as:

ds = 1

2

(
gradUs + T gradUs

)
, d = ∂Û r

1

∂x1
, 
̇ = Û r

1 − Û s
1 (17)

The maximum resisting work defined as the maximum of the work of internal
efforts, satisfying the strength conditions (12) and (13), in the virtual velocity field
{Û s

, Û
r}:

Wmr

(
Us,Ur

) =
∫

Ω

(
πs

(
ds

) + πr(d) + πI (
̇)
)

dΩ (18)

where πm,πr and πI denote the support functions of the matrix, the reinforcement
phase and the interaction, respectively:

πs(ds) = sup
{
σ s : ds;f (

σ s
) ≤ 0

}
πr(d) = sup

{
σd; |σ | ≤ σ0

}
(19)

πI (
̇) = sup
{
I
̇; |I | ≤ I0

}
Combining the virtual work principle (14) and (15) with the definition of the

maximum resisting work given by Eqs. (18) and (19), the necessary condition of
stability may be written:

∀{
Us,Ur

}
K.A., Q.q̇ ≤ Wmr

(
Us,Ur

)
(20)

4.1 Lower Bound Static Approach

The lower bound static approach is implemented by making use of the following
stress field in the reinforced block modeled as a two-phase system:

σ = σ(x1) with σ(x1 = ±L) = 0 (21)

for the reinforcement phase,⎧⎪⎨
⎪⎩

σ s
11(x1) = −σ(x1)

σ s
22(x1) = σ s

33(x1) = −2C − σ(x1)

σ s
ij = 0 if i 	= j

(22)

for the matrix phase, and

I = dσ

dx1
= σ ′(x1) (23)

for the interaction.
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Fig. 7 Stress distribution in
the reinforcement phase
(χ ≤ 1)

It can be easily shown that this stress field complies with the equilibrium equa-
tions (10) and (11), along with the strength conditions (12) and (13). The corre-
sponding compressive force in equilibrium with such a stress field is given by:

Q = −
∫ L

−L

σ s
22(x1)dx1 = 4CL +

∫ L

−L

σ(x1) dx1 (24)

The optimal (i.e. maximum) value of this compressive force depends on the rela-
tive importance of the reinforcement phase uniaxial strength density with respect to
the interaction strength parameter. Introducing the non dimensional parameter:

χ = I0L

σ0
(25)

the following two different cases, depending on the value of χ , are considered:

• χ ≤ 1 (I0L ≤ σ0). The interaction force density I is chosen so as to be equal
to the corresponding strength I0. Combining Eqs. (21), (22) and (23), it comes
out that the internal efforts in the multiphase system are of the following form
(Fig. 7): {

σ(x1) = −σ s
11(x1) = 2C − σ s

22(x1) = I0(L − |x1|)
|I | = I0

(26)

which comply with the equilibrium and the strength conditions. It follows that:

Q+
mult. ≥ 4CL + I0L

2 (27)

• χ ≥ 1 (I0L ≥ σ0). The generalized stress field defined on the reinforced block
given by (Fig. 8):

σ(x1) = −σ s
11(x1) = 2C − σ s

22(x1) = Min
{
I0(L − x1);σ0

}
(28)

which complies with the above equilibrium and strength requirements, leading to
the following lower bound for the reinforced block compressive resistance:

Q+
mult. ≥ 4CL + 2σ0L

[
1 − σ0

2I0L

]
(29)
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Fig. 8 Stress distribution in
the reinforcement phase
(χ ≥ 1)

4.2 Upper Bound Kinematic Approach

The upper bound kinematic approach is implemented by considering the following
virtual velocity field defined for each phase separately:

Û
s = U

H
(x1e1 − x2e2) (30)

for the matrix phase, and

Û
r =

⎧⎪⎪⎨
⎪⎪⎩

− U
H

x2e2 if χ ≤ 1{
U
H

(x1e1 − x2e2) |x1| ≤ L(1 − χ−1)

U
H

(L(1 − χ−1)e1 − x2e2) |x1| ≥ L(1 − χ−1)
if χ ≥ 1

(31)

for the reinforcement phase.
The calculation of the maximum resisting work leads to the following expression:

Wmr

(
Û

s
, Û

r) = 4CLU +
{

I0L
2U if σ0 ≥ I0L

2σ0LU [1 − σ0
2I0L

] if σ0 ≤ I0L
(32)

On the other hand, the work of the external forces in the considered mechanism
is equal to the product of the applied effort Q by the corresponding velocity U of
the upper section of the block. The upper bound kinematic approach of yield design
finally leads to the following upper bound value for

Q+
mult. ≤ 4CL +

{
I0L

2 if σ0 ≥ I0L

2σ0L[1 − σ0
2I0L

] if σ0 ≤ I0L
(33)

hence the exact value of the compressive resistance predicted by the multiphase
model.

It can be observed that in the situation of perfect bonding the above expressions
reduce to that derived from the homogenization approach:

Q+
mult.(χ → ∞) = Q+

hom = 4CL[1 + σ0/2C] (34)
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Fig. 9 Identification procedure for the interaction strength parameters (σ0 = 4C)

5 Identification of the Interaction Strength Parameter

The curve sketched on the right-hand side of Fig. 9 represents the results of the
multiphase approach expressed in terms of variation of the non dimensional com-
pressive resistance Q+/4CL as a function of the parameter χ , for σ0 = 4C. On the
left-hand side of the same figure, are reported the results of the f.e.m.-based numer-
ical simulations performed by using Plaxis, expressed in terms of the variation of
Q+/4CL as a function of the scale factor ε.

Starting from these representations, the relationship between the scale factor ε

and the parameter χ can be established. The first step of this procedure consists in
representing the evolution of χ(ε) which could be then approximated by an analyti-
cal expression (Fig. 10). It appears that the obtained series of points is best fitted by
an analytical curve which obeys the following approximate equation:

χ ∼= 0.4ε−1 (35)

which means that χ , and hence the interaction strength parameter I0, is inversely
proportional to the scale factor. It is important to notice that the coefficient of pro-
portionality (equal to 0.4 in the present case), and then the interaction strength
parameter I0, can therefore be determined from one single numerical simulation.
A more thorough and detailed analysis (which is beyond the scope of the present
paper) would certainly show that this coefficient of proportionality depends on the
soil’s cohesion, since no failure is considered at the soil-inclusion interface at the
microscopic scale.

The combination of the relationships (33) and (35) finally leads to the following
expression of the compressive strength as a function of the scale factor:

Q+
mult.

4CL
= Q+

num.

4CL
=

{
3 − 2.5ε if ε ≤ 0.4

1 + 0.4/ε if ε ≥ 0.4
(36)

This prediction, obtained from the application of the multiphase approach in the
field of yield design, tends to the results of the homogenization approach for very
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Fig. 10 Identification of the interaction strength parameter and comparison between the numerical
results and the multiphase model-based predictions

small values of ε and appears to linearly decrease down to a value of the scale factor
equal to 0.4 (Fig. 10).

6 Concluding Remarks

It has been shown in this contribution that the multiphase model, developed in the
context of yield design, is not subject to the limitations of the classical periodic ho-
mogenization method, since it allows to capture scale and boundary effects, which
may play a decisive role in the reinforced-soil structures design. This is achieved
through the introduction of a matrix-reinforcement interaction strength parameter,
accounting, at the macroscopic scale, for a possible slippage between the reinforc-
ing inclusion and the surrounding ground. Such a parameter could be identified,
as shown in Sect. 5, through one f.e.m.-based elastoplastic calculation performed
on a unit cell. The homogenization results could be recovered as a particular case
of the multiphase approach, when the interaction strength parameter I0 tends to
infinity (perfect bonding assumption), which corresponds to a vanishing scale fac-
tor ε.

It is worth noting that a limited interaction strength between phases, at the macro-
scopic scale, should be taken into account even in the case of perfect bonding at the
microscopic scale, that is unlimited strength, at the soil-inclusion interface, thus
assuming that the soil is perfectly adherent to the reinforcement.

From an engineering design and optimization viewpoint, the multiphase model
is a robust tool, combining the decisive advantages of the classical homogenization
method with its ability to capture scale and boundary effects, in order to analyse
the stability of reinforced soil structures, as illustrated in [9] for reinforced earth
retaining walls.
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