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Abstract The strength as well as the ductility of a structure may be estimated by
performing an elastoplastic analysis. In such an analysis structural loading is incre-
mentally applied through a proportional loading factor in accordance to a predefined
loading pattern. During this process we have continuous plasticizations of various
parts of the structure. For a more accurate description of the physical process, pos-
sible deplasticizations should also be taken into account. Thus a nonholonomic ma-
terial behavior should be followed. In this work such an analysis is performed in an
efficient way. The basis of the approach is the formulation of the incremental prob-
lem as a convex parametric quadratic programming (PQP) problem between two
successive plastic hinges. The solution of this problem is done by assuming a ficti-
tious load factor which establishes a search direction for the next plasticization. The
true load factor is established when the plastic hinge that is closest to open really
opens. An example of application, which serves as benchmark, is also included.

1 Introduction

The capacity of a structure beyond its elastic limits may be estimated by perform-
ing a step-by-step elastoplastic analysis. During this process the loading is applied
sequentially with consecutive parts of the structure being plasticized. Between two
plasticizations an elastic analysis is performed. Thus a series of elastic analyses is
carried out before reaching either a limit load state or a predefined load state. In
this way, one may have a good estimate of the structure’s strength as well as of its
ductility. The above described procedure is called holonomic plasticity.

A more realistic material behavior is to take into account any local unloading
(plastic unstressing) in the course of the analysis. This approach, which is much
more involved computationally, is called nonholonomic plasticity.
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Maier [1] was the first to show that mathematical programming (MP) and espe-
cially parametric quadratic programming (PQP) provides a unified formalism for
the problem of elastoplastic analysis with the load factor being the parameter of
the program. In this work holonomic plasticity has been addressed. The alternative
formulation as a parametric complementarity problem (PLCP) has also been given
by Maier [2]. The framework for this problem is linear programming (LP) with the
Simplex method employed for its solution (de Donato and Maier [3]). Smith [4]
extended this approach to nonholonomic plasticity proposing a numerical solution
based on the Simplex method that restricts the variables that enter the basis. The
methodology was applied to a simple frame. In an attempt to produce a PLCP based
general purpose computer program for nonholonomic plasticity Franchi and Cohn
[5] and Kaneko [6] proposed a rather involved algorithm. PLCP based solutions
of problems with a softening material behavior have also appeared recently (Tan-
garamvong and Tin-Loi [7, 8]).

Besides the compact MP formulation of an elastoplastic problem, all the above
PLCP based solutions generally involve a large number of variables and constraints
(Tin-Loi and Wong [9]). At the same time computer implementation of these algo-
rithms is quite difficult. Thus an alternative approach, the direct stiffness method has
almost exclusively been used. This is based on the displacement method and when-
ever a plasticization occurs, an elastic prediction—plastic correction takes place
by re-formulating and re-decomposing the stiffness matrix. Re-formulation and re-
decomposition, must also take place if nonholonomicity is considered. These two
tasks increase the computational time quite considerably.

The present work presents a methodology that was proposed by Spiliopoulos and
Patsios [10]. The main ingredient of the procedure is to cast the problem in the form
of an incremental PQP and solve it directly in this form. A numerical strategy was
developed that employs a fictitious load factor and solves the resulting QP program
by standard algorithms (e.g. Goldfarb and Idnani [11]). The solution of the fictitious
program will automatically detect a possible unstressing and, at the same time, it
establishes a solution direction which searches for the formation of the next plastic
hinge which is closest to open. When it opens, the load factor receives its true value.

The approach appears to be numerically stable and very fast. Although it may
be formulated either with respect to a displacement based or a force based MP, the
force based one is preferred, due to the less number of unknowns and to the accurate
way that equilibrium is expressed through this method. An approach (Spiliopoulos
[12]) may be used to automatically establish this equilibrium both with respect to
the hyperstatic forces and the applied loading.

2 Problem Formulation

Let a frame, whose material is elastic-perfectly plastic, be subjected to a loading
pattern which changes in a proportional way:

P = Pin + γ · rP (1)
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Fig. 1 Proportional loading: (a) limit load analysis, (b) prescribed loading analysis

Fig. 2 (a) Rotations and moments, (b) plastic axial deformations and axial force

where bold letters represent vectors and matrices, Pin represents an initial load state,
γ is a proportional load factor and rp is the unit vector along the direction of the
loading pattern (Fig. 1). This vector is always known either in limit or prescribed
loading analysis. If the final loading state in the prescribed loading case is given by
Pf then rP = (1/‖PL‖) · PL, with PL = Pf − Pin.

If we consider plasticity to be lumped at the two ends of a member, we may de-
compose the rotations and the axial deformations into elastic and plastic components
(Fig. 2).

The elastic rotations are related to the moments through the flexibility matrix:
{
θel

1
θel

2

}
= �

6EI
·
[

2 1
1 2

]
·
{
m1
m2

}
(2)

At the same time the two elastic axial deformations at the two ends are given by:

δel
1,2 = n�/EA (3)

where �, EI and EA are the member’s length, bending and axial stiffness respec-
tively.

By grouping all the bending and axial deformations of all the critical sections of
the structure one may write:

{
θel = Fm · m
δel = Fn · n

}
→

{
θel

δel

}
=

[
Fm ∅
∅ Fn

]
·
{

m
n

}
→ qel = F̄ · Q (4)
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where Fm and Fn are the block-diagonal bending flexibility and axial flexibility
matrices respectively. Q are the stress resultant pairs (m,n) at each critical section.

A plastic hinge opens if any of these pairs touch an interaction surface. This
surface may be written for rectangular sections:

|m|
m∗

+
(

n

n∗

)2

= 1 (5)

where m∗, n∗ are the section’s bending and axial plastic capacities.
The above yield surface is doubly symmetric with respect to the four quadrants

with ordinates (m/m∗), (n/n∗). We may use a finite set of ζ linear equations to
approximate it. So we may write:

f (m,n) = (±)s1 · m

m∗
+ (±)s2 · n

n∗
− 1 = 0 (6)

There are ζ distinct couples of (s1, s2).
The simplest linearization consists of four lines (ζ = 1) and we will call it “M +

N = 1”, whereas the AISC criterion [13] consists of 8 lines (ζ = 2).
Due to the nonlinear nature of the problem, the solution will be acquired incre-

mentally.
Let us suppose we have completed the incremental step k − 1. If we apply the

next increment of loading the structure will respond with increments of moments
and axial forces. Thus by grouping all the moments and axial forces of the structure
one may write for the increment k:

{
mk = mk−1 + �m
nk = nk−1 + �n

}
→ Qk = Qk−1 + �Q (7)

where �Q denotes the increments of the force vector.
In the framework of the force method of analysis one may write these increments

as:
{

�m = Bm · �p + (�γk) · Bo,m · rp

�n = Bn · �p + (�γk) · Bo,n · rp

}
→ �Q = B̄ · �p + �γk · B̄o · rp (8)

where

B̄ =
[

Bm

Bn

]
, B̄o =

[
Bo,m

Bo,n

]

The first terms of the above equations are due to the indeterminacy of the struc-
ture, with p being a set of hyperstatic forces which is called statical basis. These
forces may be found by introducing cuts around the structure so that it is made
statically determinate.

The second terms are due to the equilibrium with the increments of the applied
loading which is expressed through the increment of the loading factor �γ .
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Using an equivalent piecewise linear form (i.e. Eq. (6)) of the yield surface (5),
we may write the plastic counterparts of the rotation and the axial deformation at a
critical section i:

�qpl
i =

[
�θ

pl
i

�δ
pl
i

]
= �λi · ∂f

∂Q i

= �λi ·
[
s1/m∗i

s2/n∗i

]
(9)

Thus the vector of the total deformations of the critical sections of the structure
may now be written as:

�q = �qel + �qpl (10)

From the principle of static kinematic duality (SKD), the conjugate to the hy-
perstatic forces discontinuities at the cuts induced around the structure are related
through B̄T . If we close these cuts we may write down the compatibility conditions:

B̄T · �q = 0 (11)

The condition of static admissibility states that the total generalized force Qk =
Qk−1 + �Q at the step k stays within the yield surface. With the complementarity
condition holding between �λi and the section’s generalized potential which marks
the distance from a yield plane, Eqs. (7)–(11), with also the use of (4) lead to the
solution of the following PQP program:

Minimize z(�p) = 1

2
· �pT · (B̄T · F̄ · B̄

) · �p + �γk · (B̄T · F̄ · B̄o · rp

)T · �p

Subject to:
(
N̄T · B̄

) · �p ≤ e − N̄T · Qk−1 − �γk · (N̄T · B̄o · rp

)
(12)

where N̄ contains the different coefficients of the left-hand side of the constraints
of (6). It may be written in the form [10]:

N̄ =
[

(s11,s21)︷ ︸︸ ︷[
N̄I N̄II N̄III N̄IV

] (s12,s22)︷ ︸︸ ︷[
N̄I N̄II N̄III N̄IV

]
. . .

(s1ζ ,s2ζ )︷ ︸︸ ︷[
N̄I N̄II N̄III N̄IV

]
]

with the various submatrices given by:

N̄I =
[
s1 · [diag(m+∗ )]−1 ∅

∅ s2 · [diag(n+∗ )]−1

]

N̄II =
[
s1 · [diag(m+∗ )]−1 ∅

∅ s2 · [−diag(n−∗ )]−1

]

N̄III =
[
s1 · [−diag(m−∗ )]−1 ∅

∅ s2 · [diag(n+∗ )]−1

]

N̄IV =
[
s1 · [−diag(m−∗ )]−1 ∅

∅ s2 · [−diag(n−∗ )]−1

]
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Fig. 3 (a) Graph representation, a cycle basis and shortest path cantilevers, (b) Self-equilibrating
system of forces

where the diagonal matrices m∗ and n∗ contain the bending and axial capacities of
the critical sections of the frame, with the superscripts ± denoting the corresponding
ones in tension or compression.

We may have ζ couples of (s1, s2) = {(s11, s21), (s12, s22), . . . , (s1ζ , s2ζ )}, de-
pending on the number of yield planes considered for a particular yield criterion.
For the simple “M + N = 1” criterion ζ = 1, s11 = s21 = 1, whereas for the AISC
criterion ζ = 2, s11 = 8/9, s21 = 1, s12 = 1, s22 = 1/2.

The solution of this program will be discussed analytically in Sect. 4.
Once the optimum solution of (12) is obtained, its Lagrange multipliers provides

us with the various �λi .

3 Methodology to Obtain Equilibrium Matrices

3.1 Construction of B̄

It is recalled that this matrix has to do with the indeterminacy of the structure. This
may be accomplished using an algorithm that was originally presented by Spiliopou-
los [12]. It is based on the graph representation of a frame. One may see such a
graph in Fig. 3. In this graph the ground is represented by an extra node and extra
additional members connecting each foundation node with this ground node. This
algorithm selects a set of independent cycles using a minimum path technique from
graph theory and the fact that the number of these cycles that constitutes a cycle
basis is known and equal to μ − ν + 1 where μ, ν are the total number of members
and nodes that compose the graph.

For the compactness of the present work the algorithm is briefly presented here.
It is based on giving to each member of the graph an initial value of its “length”
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Fig. 4 Formation of a cycle basis

equal to 1. Of course this length has nothing to do with its Euclidean length but
rather refers to an existence of a member between two nodes.

The procedure then starts from the node that is incident to the maximum num-
ber of members. Each of these members are chosen as generator members and the
minimum path between its ends is found not by traveling along the member but
going around it. This minimum path together with the generator member forms a
cycle which is a candidate to enter the cycle basis. It will enter the basis only if the
following admissibility rule is satisfied:

“The length of the path is less than 2* (nodes along the path-1)”

If this rule is satisfied it means that the cycle is independent from the ones already
found, enters the basis and at the same time to all the members of the cycle we give
the value of 2. This last action guarantees that this particular cycle will not enter the
cycle again.

The procedure may be understood if we consider the cycle formation in a sub
graph extracted from a main graph (Fig. 4(a)). Staring from the node k, we may
pick up the member km as a generator member. Then the cycle klmk is selected
and the lengths of the members of the cycle take the value of 2 (Fig. 4(b)). Then
a next member, e.g. mn may be selected to serve as a generator member and a
next cycle may be selected to enter the cycle basis (Fig. 4(c)). There can be cases
of complicated graphs where this simple procedure may break down and leave
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some cycles unidentified. There are remedies, however, to overcome this prob-
lem [12].

If we make a cut at each cycle one may establish a pair of two unknown forces
Xo, Yo along the x and y directions and an unknown bending moment Mo at the
point of the cut, with coordinates xo and yo. These may be considered as the three
hyperstatic quantities of the cycle (Fig. 3(b)). The bending moment as well as the
axial force at a critical section i may be shown to be:

{
mi

ni

}
= (±)

[
(y0 − yi) (xi − x0) −1
− cosϕ − sinϕ 0

]
·
⎡
⎣X0

Y0
M0

⎤
⎦ (13)

with:

cosϕ = xf − xs√
(xf − xs)2 + (yf − ys)2

and sinϕ = yf − ys√
(xf − xs)2 + (yf − ys)2

with (xs, ys) and (xf , yf ) being the coordinates of the two ends of the member that
the critical section i belongs to. The positive or the negative sign of the parenthesis
in (13) depends on whether the mesh orientation coincides or not with the mesh
orientation. By filling in the appropriate positions, the matrix B̄ may be formed.

3.2 Construction of B̄0

The minimum path technique may be also used to substantiate equilibrium with
respect to the applied loading, which is considered concentrated. Thus one may
establish the quickest way to the ground of the load through the use of a cantilever
which may be formed between the point of application of the load and the ground
(Fig. 3(a)). Thus the following equation may be written:

{
mi

ni

}
= (±)

[
(xa − xi) (ya − yi)

cosϕ − sinϕ

]
·
[
Px

Py

]
(14)

where (xa, ya) are the coordinates of the point of application of the concentrated
load. The sign of the parenthesis is positive if the direction of the member, that a
particular cross section i belongs to, coincides with the direction of the cantilever.

4 Numerical Solution of the PQP Program

The following numerical steps that have been suggested in [10], will be briefly de-
scribed here:

Beginning of the incremental procedure with γ = 0 and k = 1

1. Suppose a “fictitious” small initial value for �γk = ρ (see Fig. 6)
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2. Solve the resulting QP program (12) and obtain a “fictitious” set of increments
of the hyperstatic forces �p̃ and a set of fictitious increments of the general-
ized plastic displacements �q̃pl through the Lagrange multipliers of the optimal
solution �λ̃i . Any efficient algorithm [11] may be used.

3. A first correction to the fictitious set of the hyperstatic forces and the length of
the plastic vectors is made:

�p′ = 1

ρ
· �p̃ and �λ′ = 1

ρ
· �λ̃ → �q′pl

i = �λ′
i ·

[
s1/m∗i

s2/n∗i

]
(15)

4. Fictitious increments of bending and axial forces are evaluated using (8):

�Q′ = B̄ · �p′ + B̄o · rp

In this way, a search direction �Q′
i , for each critical section is established. It is

this direction that will determine the next possible plasticization at the intersec-
tion with one of the yield planes (Fig. 5(a))

5. Find the correct �γk as the minimum �γi,k among the non-active constraints
that produces a new plastic hinge (Fig. 5(a)):

�γi,k = (αi · ni,k−1 + βi) − mi,k−1

�m′
i − αi · �n′

i

(16)

where i = 1,2, . . .Nc, with Nc being the total number of critical sections. The
parameters (ai, βi) may be evaluated with the aid of (6) and turn out to be:

αi = − s2

s1
· m∗,i

n∗,i

and βi = m∗,i

s1

A search is made for each critical section for all the possible intersections with
the yield planes for all the four quadrants. The minimum positive among all
numbers one may get using (16), is the sought �γi,k .

6. Find the increments of the bending moments, axial forces and plastic displace-
ments as:

�m = �γk · �m′, �n = �γk · �n′, �qpl = �γk · �q′pl (17)

7. The load factor, the various static and kinematic variables may be now updated:

γk = γk−1 + �γk

mk = mk−1 + �m
nk = nk−1 + �n

}
�→ Qk

θel
k = Fm · mk

δel
k = Fn · nk

}
�→ qel

k = F̄ · Qk

qpl
k = qpl

k−1 + �qpl

qk = qel
k + qpl

k

(18)
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Fig. 5 (a) Search direction and plasticization from elastic state, (b) Further plasticization (1) or
unloading (2)

The displacements at the points of the load application may be found from SKD:

uk = B̄T
0 · qk

8. Return to step 1 and repeat the process for k = k + 1, until either
i. No solution of the QP may be found, meaning a collapse state has been

reached and if it were for a limit analysis case γk is the limit load factor,
or

ii. For a prescribed loading the process stops if (i) has not occurred and |γk −
‖PL‖| ≤ ρ, meaning we have reached the end of the specific loading case.

If we have an already plasticized critical section, the algorithm automatically
detects at the beginning of the incremental step whether we are going to move along
the directions (1) (Fig. 5(b) or (c)), meaning we get further plasticization, or move
along the directions (2), meaning we have plastic unloading. Moving along either
the direction (1) or (2) depends on whether the corresponding Lagrange multiplier
of the active constraint becomes positive or zero, respectively.

There is always going to be one active constraint for a particular critical section.
Even in the case of Fig. 5(c) when further plasticization continues along a neighbor-
ing constraint the previously active one now becomes inactive. In the very unlikely
case when the search direction meets the point of intersection of the two constraints,
then two nonzero Lagrange multipliers �λi will appear, rendering both the con-
straints active. Thus, because of (9), two plastic vectors will appear. Each of them is
perpendicular to the corresponding plane. In this case the plastic deformation will
be the composition of these two vectors.
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Fig. 6 Search direction with
fictitious (ρ), and true
incremental load factors
(�γ )

A physical interpretation of the fictitious load factor that is used at the beginning
of the incremental step is to find a feasible direction on which the prospective solu-
tion lies taking into account all the previous plasticization that have occurred before
the current incremental step. The true length of the step is then found on the demand
to capture the next plasticization. The procedure may be depicted for two steps on a
force-displacement diagram of the Fig. 6.

5 Numerical Example

The numerical example has been chosen in order to demonstrate the efficiency of
the approach. This example was found difficult to converge when using standard
commercial packages that use the direct stiffness as the solution method [14, 15].

The structure is a three-storey one-bay frame shown in Fig. 7. The original frame
has appeared with Imperial units [16] which herein have been converted to SI.

This frame was experimentally tested by Yarimci [17] and the results of the ex-
periments have been taken from [16]. The members of the frame were assigned
mechanical properties, which are shown in Table 1, so that they match the ones that
were measured. A pure bending behavior was considered for the beams.

The loading scenario is the following: First the vertical loads were applied up
to their final values that may be seen in Fig. 7 and then the horizontal loads were
proportionally increased from zero. These loads were applied up to a certain value,
then unloading of the structure took place, following a reversed loading and then
reloading up to zeros so that a full cycle of loading was completed.
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Fig. 7 Geometry of the
analyzed frame

Table 1 Mechanical properties used for the analysis

Section E (kN/m2) I (m4) m∗ (kNm) n∗ (kN)

8W20 2 × 108 2.90 × 10−5 76.83 ∞
6W25 2 × 108 2.68 × 10−5 83.61 1015

Three different constitutive relations were considered: (a) a pure bending behav-
ior (to all the members a big value for n∗ was given as input), (b) a moment/axial
interaction using the “M + N = 1” criterion and (c) a moment/axial interaction us-
ing the AISC LRFD criterion [13].

For all the three different cases of constitutive modeling, the numerical appli-
cation of loading, unloading and reloading tried to follow the experiment that was
performed [16].

Results of the three analyses are shown in Fig. 8.
One may see that the pure bending behavior simulates better the loading part of

the cycle. This supports the assumption that for low rise buildings moment/axial
force interaction need not be considered. The residual bending moment diagram at
the end of the load cycle may be seen in Fig. 9.
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Fig. 8 Horizontal load in kN (vertical axis) vs. Roof Displacement in m (horizontal axis)

Fig. 9 Bending moment
distribution at the end of the
load cycle under pure bending
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Fig. 10 Bending moment
distributions at the end of the
cycle under bending and axial
force interactions

Although the conditions of the experiment are not known in great detail, it seems
that, under the assumptions of an elastic-perfectly plastic material and first order
theory, the analytical results underestimate, in terms of the load, the unloading part
of the cycle.

On the other hand, when moment/axial force interaction under any of the two cri-
teria is considered, the hysteresis loop shrinks. This supports the fact of the reduced
ductility of a frame in the presence of axial forces.

In Figs. 10 & 11 one may see the residual bending moment and axial force dis-
tributions at the end of the loading cycle for the two criteria.

5.1 Computational Considerations

The fictitious factor ρ is the basis of the presented method. In this way we may have
the conversion of the PQP problem to a QP one. It is a pure number and in order
to capture all the events, one has to use a small value. In all the examples that were
tried, a value of 10−3 or 10−4 has proved to be sufficient.

6 Conclusions

The nonholonomic elastoplastic analysis is performed with the aid of the force
method of analysis. The framework of the exposed method is mathematical pro-
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Fig. 11 Axial force
distributions at the end of the
cycle under bending and axial
force interactions

gramming with a strategy to convert the resulting program which is originally a
parametric quadratic program to a pure quadratic program.

As demonstrated from the presented example and also from other examples that
were tested [10] the method proves to be a very stable and robust numerical proce-
dure.

It is also computationally efficient because the only matrix that needs to be
formed and decomposed once and for all is the flexibility matrix. The quadratic
program is solved only once at the beginning of each incremental step and the step
length that determines the next plasticization is determined automatically without
the need to perform unnecessary intermediate elastic steps that have fixed length as
is the case in any computer program that has the direct stiffness method as the ba-
sis for its formulation. No elastic prediction-plastic correction and no reformulation
or re-decomposition of any matrix, as it would be the case for the stiffness matrix
in a direct stiffness method, is needed. This operation, which is well known to be
quite time consuming, is also avoided in the case of plastic unstressing since this
information is contained directly inside the solution of the quadratic program and
no extra work needs to be done. Thus from comparisons that have been made with
the orthodox time stepping direct stiffness methods it has proved to be much more
reliable and efficient [10].
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The method although is certainly a step-by-step procedure it may be classified
as a direct method as it is formulated within mathematical programming. These
methods are known to be better suited than the direct stiffness method based ones if
one seeks for a limit state of a structure. It is hoped that such methods will also be
used more and more in the future as they seem to be a better alternative, even for a
historical deformation analysis of a structure.
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