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Abstract In this work, non-conforming three-dimensional finite elements are used
for the limit and shakedown analysis of periodic metal-matrix composites. The op-
timal design variables, such as fiber distribution and various volume fractions are
investigated. Combined with homogenization theory, the global safe loading do-
mains for the composites, as well as the global homogenized material parameters
are determined, which opens the way for global structural design.

1 Introduction

The prediction of structure failure behavior under variable loads with unknown time
history is very difficult. Direct methods, namely limit and shakedown analysis, can
help to overcome this difficulty. Application of shakedown analysis to composites,
especially long fiber-reinforced metal matrix composites, upsurge these years. For
heterogeneous materials, there are generally two scales concerned. On the micro-
scopic level, local stress and strain analysis are performed and the influence of
each phase (fiber or matrix) is investigated. On the macroscopic scale, the global
response of the composite is analyzed with the help of homogenization theory. This
methodology was first proposed for the case of limit analysis of heterogeneous me-
dia in [37, 39]. In a similar way, some authors carried out shakedown analysis of
periodic composites with static approach [46, 47], as well as the kinematic ap-
proach [9, 31, 32]. Furthermore, some scholars also considered geometrical effects
and damage in micro-level [14, 19, 20, 45].
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Besides the issue of optimization, the implementation of lower bound direct
methods includes also the finite element method. Finite elements are used to ob-
tain local stress or local strain, as well as the equilibrium matrix. Previously, two-
dimensional finite elements have usually been used to deal with plane strain or plane
stress cases [5, 8, 33]. The disadvantage of the plane element is in the restriction of
the applied load. Recently, work concerned with metal matrix composites has been
extended to solid elements, which makes loads perpendicular to the transverse di-
rection of composites possible [49]. However, the 20-node solid elements usually
lead to large numbers of variables, because the scale of the optimization problem
depends mainly on the type of finite element.

Moreover, combined with homogenization theory, the material performances as
a whole are discussed, such as the influence of fiber distribution and volume frac-
tion [15, 33, 50]. From the knowledge of the local (or microscopic) material proper-
ties, the global (or macroscopic) mechanical response of fiber-reinforced composites
is predicted. The evaluation of elastic properties involves classical constitutive laws
and homogenization theory [10, 35]. The prediction of nonlinear macroscopic be-
havior has been mostly performed by using 3-D models based on limit analysis for
periodic heterogeneous material [40, 41].

In this work, a non-conforming three-dimensional finite element coupled with
direct methods and homogenization technique is presented for the limit and shake-
down analysis of periodic metal-matrix composites.

2 Analytical Model on Micro-level

2.1 Multi-scale Approach

Periodic composites, especially fiber-reinforced metal matrix composites (MMCs),
are investigated in our work. There is at least one ductile phase. For the interface,
perfect bonding is assumed. For the ductile phase, we use the theory of elasto-
plasticity.

Figure 1 shows the procedure of homogenization theory, which is composed
mainly into two steps:

• Localization: Any macroscopic point in a heterogeneous structure is investigated
in a representative volume element (RVE). This process is termed localization or
representation.

• Globalization: The inverse procedure, by which microscopic properties origi-
nating in the RVE are idealized at the marco level is called globalization or homo-
genization.

Each periodic micro structural block is usually called a Representative Volume
Element (RVE) or Unit Cell, denoted by V . We introduce a small parameter δ [2],
e.g. the “slow” variables x, y (or global coordinates), and the “fast” variables ξ , η
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Fig. 1 Homogenization theory

(or local coordinates). The relationship between the two coordinates are as follows:

ξ = x

δ
, η = y

δ
(1)

δ determines the size of the RVE, which plays an important role in studying the het-
erogeneous material, especially for non-uniform structure. There has been much re-
search about how to determine a representative volume element. The various classes
and definitions of RVE and the main practical approaches can be referred to in [29].
Briefly, the RVE of a heterogeneous material with random spatial distribution is in-
vestigated through the “Window” technique [34]. For a heterogeneous material with
periodic distribution, the smallest unit is normally defined as the RVE.

The macroscopic strain E and stress Σ are linked to the microscopic strain ε and
stress σ by the following relationships [37]:

E(x, y, z) = 1

V

∫∫∫
ε(ξ, η, ζ )dV = 〈ε(ξ, η, ζ )

〉
(2)

Σ(x, y, z) = 1

V

∫∫∫
Σ(ξ, η, ζ )dV = 〈Σ(ξ, η, ζ )

〉
(3)

Here, 〈·〉 stands for the averaging operator.
In the static shakedown theory for composite materials with periodic microstruc-

ture, the macroscopic stress is decomposed into a purely elastic part σE and a time-
independent residual one ρ̄:

Σ(x, y, z) = 1

V

∫
V

(
ασE + ρ̄

)
dV = 1

V

∫
V

ασEdV + 1

V

∫
V

ρ̄dV (4)

On the basis of homogenization theory, the first step is to obtain the local stress
and strain in the RVE. According to the type of the prescribed loading condition,
either a strain approach or a stress approach can be used.
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2.2 Stress and Strain Approaches

For heterogeneous materials, especially random ones, it is impossible to determine
the material characteristics precisely. This results from an incomplete knowledge
of the material structure, such as the spatial distribution of different phases or
the strength of interface coherence. Therefore, effective (or homogenized) material
properties are studied to replace the actual ones. Combined with homogenization
theory, the stress approach and the strain approach are mainly used [25, 26, 37].

2.2.1 Strain Approach

As the name implies, the macroscopic strain E is imposed at the boundary of a
representative volume element. In practice, the macroscopic strain is amounted to
displacement loading. Let the displacement u be decomposed as [6, 24]:

u = E · x + uper (5)

where uper is the periodic displacement field. Then, the local strain ε can be derived
as:

ε = E + εper (6)

where εper is the fluctuating part in every representative volume element. Note that
the periodicity of uper implies that the average of εper on the RVE vanishes and
therefore the average of ε is E.

To find σE and εper , the elastic localization problem can be written as:

Pstrain =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divσE = 0 in V

σE = d : (E + εper) in V

σE · n anti-periodic on ∂V

uper periodic on ∂V

(7)

Here, V is the domain of the representative volume element in R3. Furthermore, σE

is the purely elastic stress and n is the out-normal vector on the surface of the RVE
under consideration. The anti-periodicity of σE · n on ∂V implies that σE · n has
opposite values on opposite sides of ∂V . The periodicity of uper means that uper is
the same at two opposite points of the boundary.

In our work, we consider the particular case that a uniform displacement is im-
posed on the boundary. After deformation, the edges of each element are still straight
(Fig. 2). Considering symmetry, the investigated model can be simplified to one
quarter of the representative volume element.
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Fig. 2 Strain method

Fig. 3 Stress method

Thus, the problem can be formulated as [37]:

P ∗
strain =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divσE = 0 in V

σE = d : E in V

us symetric condition on ∂V

uper = 0 on ∂V

(8)

For the shakedown analysis of composites, we still need to consider the residual
stress field ρ̄, which should satisfy the self-equilibrated condition and periodicity
conditions.

P res
strain =

{
div ρ̄ = 0 in V

ρ̄ · n anti-periodic on ∂V
(9)

2.2.2 Stress Approach

In this approach, the macroscopic stress Σ is imposed at the boundary. After defor-
mation, the boundary displacement is not uniform anymore (Fig. 3).
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Fig. 4 2D homogeneous
material under plane stress

The elastic localization problem can then be written as [37]:

Pstress =

⎧⎪⎨
⎪⎩

divσE = 0 in V

σE = d : ε in V

σE · n = Σ · n on ∂V

(10)

The residual stress field ρ̄ is also self-equilibrated and satisfies the periodicity
condition. However, in the stress method, we need an additional condition, that the
average value of ρ̄ should equal zero.

P res
stress =

{
div ρ̄ = 0 in V

ρ̄ · n = 0 on ∂V
(11)

For the finite element solution, this requirement could be satisfied by adding a
fictive node in each element of the meshed RVE [12, 25, 40].

2.3 Transformation Between Two Scales

After analysis on the level of a representative volume element, we may transfer
the local displacement domain to a global stress domain in the principal direc-
tion with the help of the particular case of the homogenization theory presented
in Sect. 2.2.1 [33]. Take the case of two-dimensional plane stress as an example
(Fig. 4). The material is homogeneous, with Young’s modulus E and Poisson’s ra-
tio ν. In terms of Hooke’s law:⎧⎪⎨

⎪⎩
εx = 1

E
(σx − νσy)

εy = 1
E

(σy − νσx)

γxy = 2(1+ν)
E

τxy

=⇒

⎧⎪⎨
⎪⎩

σx = E

1−ν2 (εx + νεy)

σy = E

1−ν2 (εy + νεx)

τxy = 0

(12)

The case of homogeneous plane stress is characterized by the fact that there is no
residual stress field and all the local stresses have the same value.

With this, we obtain: {
Σe

1 = σx

Σe
2 = σy

(13)
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Fig. 5 Transformation
relationship

Consider four points in the shakedown displacement load domain (Fig. 5).
For P2:
{

U1 = αSDU0
1

U2 = 0
=⇒

{
εx = U0

1 /L

εy = 0
=⇒

{
σx = Eεx

1−ν2

σy = νEεx

1−ν2 = νσx

(14)

Therefore, the point P2 in the shakedown macroscopic stress domain has the
value: {

Σ1 = αSDΣe
1

Σ2 = αSDνΣe
1

(15)

After transformation, P2 in the local displacement domain rotated through an
angle ϕ1 in the macroscopic stress domain:

ϕ1 = arctan
Σ2

Σ1
= arctan(ν) (16)

Similarly, for P4: {
Σ1 = αSDνΣe

2

Σ2 = αSDΣe
2

(17)

The rotated angle ϕ2 is:

ϕ2 = arctan
Σ1

Σ2
= arctan(ν) (18)

According to the constitutive law (12), we may obtain the macroscopic elastic
stress for P3 as: ⎧⎨

⎩
Σe∗

1 = E

1−ν2 (εx − νεy)

Σe∗
2 = E

1−ν2 (νεx − εy)
(19)

Also the angle ϕ∗ between the X-axis and a line from the origin to P3 is:

ϕ∗ = arctan
Σ∗

2

Σ∗
1

(20)
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Table 1 The positions of
points in different domains

Note: α could be the safety
factors for elastic, alternating
plasticity, shakedown or limit
state

Points Displacement load domain Stress load domain

P1 0 0 0 0

P2 αU0
1 0 αΣe

1 ανΣe
1

P3 αU0
1 αU0

2 αΣe∗
1 αΣe∗

1

P4 0 αU0
2 ανΣe

2 αΣe
2

The positions of load vertexes in different domains are listed in Table 1.
For composite materials, we need to keep in mind that the macroscopic stress

is obtained basing on the particular case of homogenization theory by using strain
approach. Since the average of the residual stresses equals to zero, the macroscopic
stress at different states can be defined as:

• Elastic state: ΣEL = αELΣe

• Shakedown state: ΣSD = αSDΣe

• Limit state: ΣLM = αLMΣe

• Alternating plasticity state: ΣAP = αAP Σe

A numerical example will be illustrated in Sect. 4.2.

3 Numerical Solution

The implementation of lower bound direct methods mainly involves two numerical
tools: finite element method and large scale nonlinear optimization method.

Any discretized version of lower bound direct methods preserves the relevant
bounding properties only if the following conditions are satisfied simultaneously:
(i) the solution of the purely elastic response is exact; (ii) the residual stress field
satisfies pointwise the homogeneous equilibrium equations; (iii) the yield condition
is satisfied in each point of the considered material.

The existence of these bounding properties was the reason why many authors
used the finite element stress method with a discretization of the stress field. More-
over, since the lower bound direct methods is formulated in static quantities, it is
meaningful to discretize the stress field rather than the displacement field. However,
most of the available finite element codes are based on displacement formulations.
On the other hand, it is very difficult to preserve in this case the bounding prop-
erties. Especially the first condition can hardly be satisfied, if other than particular
structures are studied. Thus, to use the proposed method with commercial codes, we
prefer here the displacement method. In this case all the well-known displacement
element formulations can be used. For that purpose it is necessary to transform the
statical equations from their local form into the equivalent weak form.
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3.1 Non-conforming Finite Element Discretization

The accuracy of a finite element analysis can be improved by using higher order
elements. For instance, an 8 node element can be replaced with a 20 node element,
which costs more computer time and storage. Wilson et al. [48] introduced non-
conforming elements by including additional incompatible displacement modes,
which increase the basic accuracy still using a simple (first order) element and avoid
the “shear locking” numerical problem [36, 38].

The scale of the optimization problem is mainly determined by the number of
elements and the used element type. Therefore non-conforming element is adopted
here. Comparative study using different element types is presented in Sect. 4.1.

In terms of the principle of virtual work, the external virtual work is equal to the
internal virtual work, when equilibrated forces and stresses undergo unrelated but
consistent displacements and strains:

∫
V

{
ε∗}T {ασE + ρ̄

}
dV =

∫
∂V

{
δ∗}T {p∗}dS +

∫
V

{
δ∗}T {f ∗}dV (21)

Here, ε∗ is the virtual strain, and δ∗ is the virtual displacement. These discretiza-
tions have to be carried out for both the purely elastic stress field σE and the residual
stress field ρ̄.

Let u, v and w be displacements in the x, y and z-directions, respectively, then:
⎧⎨
⎩

u

v

w

⎫⎬
⎭=

8∑
i=1

Ni

⎧⎨
⎩

ui

vi

wi

⎫⎬
⎭+

⎡
⎣P1 P2 P3 0 0 0 0 0 0

0 0 0 P1 P2 P3 0 0 0
0 0 0 0 0 0 P1 P2 P3

⎤
⎦ {a} (22)

Here, Ni is the shape function, Ni = 1
8 (1 + rri)(1 + ssi)(1 + t ti ); r , s, t are nat-

ural coordinates, and ri , si , ti are the values of the natural coordinates of node i.
P1 = 1 − r2, P2 = 1 − s2 and P3 = 1 − t2. One important feature is that P1, P2 and
P3 are zero at eight nodes, which maintains the displacement compatibility at nodes.
{a} is the vector of additional degrees of freedom.

{a} = {a1 a2 a3 a4 a5 a6 a7 a8 a9}T

The element stiffness matrix is defined as follows:

Ke =
∫

Ve

BT D−1B dx dy dz =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT D−1B|J |dr ds dt

=
ngl1∑
i=1

ngl2∑
j=1

ngl3∑
k=1

|J |BT D−1Bwi
rw

j
s wk

t (23)

Here, B is the strain matrix, computed from the derivatives of shape functions; D

is the fourth-order tensor of elastic modulus; |J | is the determinant of the Jacobian
matrix, which is evaluated at the centre of the element [22], i.e. r = s = t = 0; w
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are weighting factors; ngl1, ngl2, ngl3 are the number of Gauss points along r , s,
t directions, respectively. Using Gauss quadrature, the 2 × 2 × 2 scheme has found
to be adequate. The dimension of element stiffness matrix is 33 × 33, instead of
24 × 24 for standard 8 node finite element. For 20-node solid element, the stiff-
ness matrix can be evaluated using 3 × 3 × 3 Gauss points. However, a reduced 14
points integration rule is also used, since this rule gives the same accuracy with less
computational effort [22].

In a similar way, the residual stress can be discretized as follows (see e.g. [28]):

∫
Ve

BT {ρ̄}dV =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT {ρ̄}|J |dr ds dt

=
ngl1∑
i=1

ngl2∑
j=1

ngl3∑
k=1

|J |BT {ρ̄}wi
rw

j
s wk

t (24)

The weighting factors wr = ws = wt = 1, when using 2 Gauss points at each
axis direction. Therefore, we obtain:

[C]e =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT =

NGE∑
m=1

|J |
[
BO

T

BA
T

]
=

NGE∑
n=1

[
Ce

m

]
(25)

NGE is the total number of Gauss points in each element: NGE = ngl1 × ngl2 ×
ngl3 = 8. For the whole system,

[C] =
NE∑
n=1

NGE∑
m=1

|J |BT =
NE∑
n=1

[C]e =
NE∑
n=1

[
CO

e

CA
e

]
=
[
CO

CA

]
(26)

NE is the total number of elements. The equilibrium matrix [C] is composed of
two parts: [CO ], with the dimension 3NK × 6NGS and the additional matrix [CA],
with the dimension 9NE × 6NGS, corresponding to the extra shape function of non-
conforming finite element.

Finally, the shakedown problem can be formulated as the following mathematical
problem:

maxα⎧⎪⎨
⎪⎩

[C]{ρ̄} = 0

F
[
ασ e

i (Pk) + ρ̄i , σY i

]≤ 0

i ∈ [1,NGS], k ∈ [1,2n
] (27)

Here, ρ̄ is the time-independent periodic residual stress field; F is the von-Mises
yield condition; NGS is the number of Gauss points of the considered representative
element; n is the number of independent loads; [C] is the constant equilibrium ma-
trix, uniquely defined by the discretized representative volume element with respect
to boundary conditions; σYi is the yield stress; Pk is the load vertex.
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3.2 Interior Point Method

The static shakedown problem is finally reduced to a large-scale nonlinear optimiza-
tion problem after discretization by using finite elements. Nowadays, different meth-
ods are developed to solve large-scale nonlinear optimization problems [16, 17],
such as sequential quadratic programming (SQP), augmented Lagrangian method
and interior point method. Correspondingly, different software packages are avail-
able. Here, we focus on the interior-point-method-based software packages IPDCA
and IPOPT.

IPDCA (Interior Point with DC regularization Algorithm), is a C-programming
package, using quasi-definite matrix techniques [1], which is specially designed for
shakedown and limit analysis, and characterized by high speed and large scale num-
ber of variables [27, 28].

IPOPT (Interior Point Optimizer) is an open source software package for large-
scale nonlinear optimization [44]. It implements an interior-point line-search filter
method. However, the algorithm is only trying to find the local minimizer of the
problem [43]. For non-convex problems, many stationary points may exist. As a
matter of fact, the static shakedown problem is convex, and thus any local min-
imizer is also global minimizer as well. IPOPT is designed to solve the general
mathematical optimization forms:

minf (x)

s.t. cL ≤ c(x) ≤ cU

xL ≤ x ≤ xU

(28)

Note that the equality constraints can be formulated by setting cL = cU . To sim-
plify the notation, the following problem formulation is considered:

minf (x)

s.t. c(x) = 0, i = 1, . . . ,m

x ≥ 0

(29)

where f : Rn → R, and c : Rn → Rm are twice continuously differentiable func-
tions. As an interior point (or barrier) method, the proposed algorithm computes
solutions for a sequence of barrier problems, with the barrier parameter μ > 0.

min ϕμ(x) := f (x) − μ

n∑
i=1

log(xi)

s.t. c(x) = 0

(30)

The KKT conditions for (30) are:

∇ϕμ(x) + λ∇c(x) = 0

c(x) = 0
(31)
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Solving this system directly by a Newton-type method leads to a so-called primal
method, which treats only the primal variables x and the multipliers λ. However, the
term ∇ϕμ(x) includes components μ/xi . It indicates, that system (31) is not defined
at the optimal solution x∗ of system (29) with bound x∗

(i) = 0, i.e. an optimal solution
will be in the interior of the region defined by x ≥ 0.

The amount of influence of barrier term relies on the size of μ. Under certain
conditions, the optimal solution x∗(μ) of system (31) converges to x∗ of the original
system (29): As xi → 0, log(xi) → ∞; As μ → 0, x∗(μ) → x∗.

Instead of using this primal approach, dual variables z are introduced: zi = μ/xi .
Therefore, the KKT conditions (31) are equivalent to the perturbed KKT conditions
or primal-dual equations [42]:

∇f (x) + λ∇c(x) = 0

c(x) = 0 (32)

XZe − μe = 0

where X = Diag(x), Z = Diag(z) and e = (1, . . . ,1)T . Note, that Eqs. (32) for
μ = 0 together with (x ≥ 0, z ≥ 0) are KKT conditions for original system (36).
The optimality error for the above barrier problem is defined as:

Eμ(x,λ, z) = max

{‖∇f (x) + λ∇c(x)‖∞
sd

,
∥∥c(x)

∥∥∞,
‖XZe − μe‖∞

sc

}
(33)

sd and sc are scaling factors, under the definition:

sd = max

{
smax,

‖λ‖1 + ‖z‖1

m + n

}/
smax, sc = max

{
smax,

‖z‖1

n

}/
smax (34)

smax is a fixed number, in IPOPT smax = 100. Let E0 = (x, λ, , z) denote the opti-
mality error for the original problem. The overall algorithm terminates if an approx-
imate solution satisfies:

Eμ

(
x̃∗, λ̃∗, z̃∗)≤ θtol (35)

θtol is the user provided convergence tolerance. In order to solve the barrier problem
for a given fixed value μj , a Newton method is applied to nonlinear systems of
equation (32):

⎡
⎣Wk Ak −I

AT
k 0 0

Zk 0 Xk

⎤
⎦
⎛
⎜⎝

dx
k

dλ
k

dz
k

⎞
⎟⎠= −

⎛
⎝∇f (xk) + Akλk − zk

c(x)

XkZke − μje

⎞
⎠ (36)

Here Ak := ∇c(xk); Wk := ∇x(∇f (xk) + Ak) = ∇2
xxL(xk, λk, zk); L(x,λ, z) :=

f (x) + c(x)T λ − z; dx
k := xk+1 − xk ; dλ

k := λk+1 − λk ; dz
k := zk+1 − zk .



Shakedown and Optimization Analysis of Periodic Composites 57

Reformulating Eqs. (36) into a symmetric system:
⎧⎪⎨
⎪⎩

Wkd
x
k + Akd

λ
k − Idz

k = −(∇f (xk) + Akλk − zk)

AT
k dx

k = −c(xk)

Zkd
x
k + Xkd

z
k = −(XkZke − μje)

=⇒
{

dz
k = μjX

−1
k e − X−1

k Zkd
x
k − zk

(Wk + X−1
k Zk)d

x
k + Akd

λ
k = −(∇f (xk) − μjX

−1
k e + Akλk)

=⇒
[
Wk + Σk Ak

AT
k 0

](
dx
k

dλ
k

)
= −

(∇ϕμj (xk) + Akλk

c(x)

)
(37)

Here ∇ϕμj (xk) = ∇f (xk) − μjX
−1
k e; Σk = X−1

k Zk .
In order to avoid a singularity or ill-conditioned problem, the iteration matrix is

modified by adding a diagonal correction, i.e. regularization:
[
Wk + Σk + δwI Ak

AT
k −δcI

](
dx
k

dλ
k

)
= −

(∇ϕμj (xk) + Akλk

c(x)

)
(38)

δw and δc are two scalars, called “numeric damping coefficient”. These choices for
each iteration can be determined by Algorithm IC (Inertia Correction) [44]. The
next iteration is then determined by:

xk+1 := xk + αkd
x
k

λk+1 := λk + αkd
λ
k (39)

zk+1 := zk + αz
kd

z
k

αk is primal step length; αz
k is dual step length.

From the above description, one may observe, that either the Newton method
or the damped Newton method uses the first and second derivatives (gradient and
Hessian) to find the stationary point. Meanwhile, IPOPT also offers an option to
approximate the Hessian of the Lagrangian by a limited-memory quasi-Newton
method (L-BFGS) [7]. L-BFGS stands for “limited memory BFGS”, which uses
the Broyden-Fletcher-Goldfarb-Shanno update to approximate the Hessian matrix.
That is, by using quasi-Newton method, the Hessian matrix of second derivatives of
function does not need to be computed, which can be updated by analyzing succes-
sive gradient vectors instead.

4 Results and Discussion

To show the validity of the proposed methods, several numerical results are pre-
sented. The input data for the optimization procedure are obtained from customized
ANSYS and Matlab, and the optimization is carried out with IPOPT.



58 M. Chen et al.

Table 2 Material properties
Al/Al2O3

E (GPa) ν σY (MPa)

Matrix (Al) 70 0.3 80

Fiber (Al2O3) 370 0.3 2000

4.1 Comparison of Different Elements

To show the advantage of non-conforming element, we tested the limit analysis of
MMCs by step-by-step method using the following element types: (a) 8-node brick
element with bilinear shape function (LSF); (b) 8-node brick element with extra
shape function (ESF), i.e. non-conforming element; (c) 20-node brick element with
quadratic shape function. Square pattern of periodicity (Fig. 8, Left) under plane
strain condition is considered and subjected to the uniaxial stress Σ11. Material
properties is shown in Table 2, with the assumption that each phase is isotropic and
elastic-perfectly plastic.

Using an 8-node solid element with a bilinear shape function, we can observe that
in the limit uniaxial stress Σ11 is extremely large (Fig. 6). However, an 8-node solid
element with extra shape function produces reasonable results, similar to the 20-
node solid element. Because 8-node element with bilinear shape functions can not
represent flexural response.Therefore, the key point of the non-conforming element
is to add quadratic terms on the basis of linear shape function.

4.2 Illustration of Transformation

The transformation given in Sect. 2.1 is illustrated by considering a thin plate with
square pattern (Fig. 8, Left). The side of RVE is 100 mm, the width is 2 mm and
the fiber radius is 15 mm. Material model is the same as in Sect. 4.1. It is subjected
to two independent displacement loadings: U0

1 = U0; U0
2 = U0. The elastic and

Fig. 6 Limit state of macroscopic stress with fiber volume fraction
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Fig. 7 Transformation between two scales

Table 3 Characteristic angle for uniaxial macroscopic stress under plane strain conditions

η % ϕ∗ [15] ϕ (this work) Σ11 Σ22 Ue
1 /U0

1 Ue
2 /U0

2

0 −23.20 −23.20 28.281 0 0.1838 −0.0788

10 −22.89 −22.88 31.918 0 0.1843 −0.0778

20 −22.34 −22.33 36.613 0 0.1850 −0.0760

30 −21.61 −21.58 42.642 0 0.1860 −0.0736

40 −20.80 −20.74 50.259 0 0.1870 −0.0708

50 −20.05 −19.99 59.718 0 0.1880 −0.0684

shakedown domains are normally scaled (Fig. 7). Benchmark U0 is 0.02 mm and
σY is the yield stress of the matrix.

According to Eq. (16) in Sect. 2.3, the characteristic angle here is ϕ = −16.65◦
and the elastic and shakedown safety factors are: αEL = 2.06 and αSD = 2.71.

For the same pattern and material properties, but under plane strain conditions,
the change of characteristic angles ϕ in terms of the fiber volume fraction is shown
in Table 3.

4.3 Fiber Distribution and Volume Fraction

The influence of fiber distribution and fiber volume fraction is investigated under
plane strain condition (Fig. 8). The dimensions of RVEs are given in Table 4.
They are subjected to two independent displacement loadings, U0

1 = U0
2 = U0 =

0.02 mm.
Figure 9 presents the admissible displacement domain (left side) and the corre-

sponding transformed macroscopic stress domain (right side) for periodic compos-
ites under plane strain case. The fiber ratio is 40 %. From top to bottom are square,
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Fig. 8 Fiber distribution: (Left) Square pattern (SQ); (Middle) Rotated square pattern (TS);
(Right) Hexagonal pattern (HEX)

Table 4 Dimensions of RVEs

Dimension of whole RVE Square pattern Rotated pattern Hexagonal pattern

2a/mm 100 100 131.607

2b/mm 100 100 75.984

rotated square and hexagonal pattern, respectively. Note that, the quadratic and ro-
tated composites are anisotropic. We use the transformation described in Sect. 2.3 to
obtain stresses along the principal direction. After transformation, the macroscopic
stress domain of hexagonal pattern also becomes symmetric in the principal direc-
tions. It satisfies the reality that the unidirectional continuous fiber with hexagonal
periodicity is approximately isotropic in transverse direction.

Figure 10 shows the variation of the macroscopic limit stress in one axial direc-
tion with fiber volume fraction. For square pattern, the axial limit stress increases
remarkably from around 35 %. For hexagonal pattern, the axial limit stress increases
stably from 10 % to 50 %. While for the rotated pattern, the axial limit stress varies
quite slightly, i.e. the fiber volume fraction has almost no influence on the macro-
scopic performance.

Figure 11 shows that the square pattern has the biggest macroscopic stress do-
main when the fiber volume fraction is 50 %. In macroscopic view, choose which
kind of fiber pattern depends on the external loading.

In principle, the square pattern and rotated square pattern are the same. However,
the loading domains, either in local level or global level, are different. It illustrates
that periodic composites with square pattern is essentially not transversely isotropic,
although in the traditional micromechanics of laminate they are treated as such [13].

4.4 Homogenized Elastic Material Properties

The homogenized elastic properties are determined for fiber reinforced composite
given in Sect. 4.3. For square pattern and rotated square pattern, the characteristic
angles ϕ1 and ϕ2 should equal to each other because of the geometric symmetry. It
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Fig. 9 Admissible displacement domain (Left) and related maximal macroscopic stress domain
(Right) for periodic composites with different fiber pattern

is also verified in our numerical calculation. The unit cell of hexagonal distributed
periodic composites is not symmetric. The characteristic angles at two directions
are different. However, in macroscopic view, the homogenized material properties
for all three patterns should be the same, in restrict words, that same in X and Y
directions. According to the former methods, the homogenized transverse Young’s
modulus (Fig. 12) and Poisson ratios (Fig. 13) of different patterns with variation of
fiber volume fraction can be obtained.
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Fig. 10 Axial macroscopic
limit stress

Fig. 11 Macroscopic limit
stress domain for different
patterns

Fig. 12 Homogenized Young’s modulus

Figure 12 presents the homogenized transverse Young’s modulus for the three
patterns. Generally, with the increment of fiber ratio, the transverse modulus in-
creases, and among three patterns, the square one increased a little stronger than
other two.

Their Poisson ratios are assumed the same value 0.3. Figure 13 presents the dif-
ference among three patterns. For the hexagonal pattern, with the variation of fiber
volume fraction, Poisson’s ratio is almost constant, while for the square pattern, it
decreases, and for the rotated square pattern, it increases slightly.

From Fig. 12 and Fig. 13 we may conclude, that the fiber distributed pattern
affects the transversely effective material properties. And after the transformation,
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Fig. 13 Homogenized Poisson ratio

the hexagonal pattern shows the transversely isotropic characteristics on the macro-
scopic level.

4.5 Homogenized Plastic Material Properties

Based on the homogenization theory and mechanical constitute law, we may give a
prediction of the effective elastic material properties of the composites. The biggest
difficulty consists in how to define the plastic material properties, such as yield
strength. During numerical simulation, we observed that the yielding process can be
regarded as three states: firstly, it begins to yield, then the debonding of the inter-
face, finally, the ductile phase exhibits overall plastic flow. By combination of lower
bound direct methods and homogenization technique, the yield strength of periodic
composites can be defined in three states [11, 18]:

1. Onset of plasticity: ΣYEL = αELΣV

2. Shakedown state: ΣYSD = αSDΣV

3. Limit state: ΣYLM = αLMΣV

Here, ΣYEL, ΣYSD and ΣYLM are the yield strengths corresponding to purely
elastic, shakedown and limit states, respectively; ΣV is the macroscopic equivalent
stress. Admissible macroscopic stress domains from beginning of plasticity to the
limit state are obtained with the help of homogenization theory. Since three states
are defined, for a uniaxial macroscopic stress Σ1 (Σ2 = Σ3 = 0), we therefore get
even for the elastic-perfectly matrix a “structural hardening” effect, due to the mi-
croscopic inhomogeneous stress distribution in the composite.

The stress components Σij depend on the orientation of the coordinate system.
Nevertheless, there are certain invariants associated with every tensor which are
independent of the coordinate system. By solving the characteristic equation, we
may obtain three principal stresses. For plane stress case, Σ3 is zero. Therefore,
yield curve fitting is carried out only in plane. This is one of the reasons, that why
the yield criterion for sheets are developed a lot. For plane strain case, or general
stress state, the principal stresses are distributed in the space.
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Numerous anisotropic yield criteria have been developed and tested for anisotropic
plastic deformation [3, 4, 30]. The simplest, however, is the quadratic Hill yield cri-
terion [21], which is a straightforward extension of the von Mises yield criterion. It
has the form:

F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2

+ 2
(
Lσ 2

23 + Mσ 2
31 + Nσ 2

12

)− 1 = 0 (40)

Here F , G, H , L, M , N are constants that have to be determined by experiments.
The expressions of these parameters are defined as:

F = 1
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(
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Y 2
+ 1

Z2
+ 1
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)
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2

(
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Z2
+ 1
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+ 1

Y 2

)
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H = 1

2

(
1

X2
+ 1

Y 2
+ 1
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)

L = 1

2P 2
, M = 1

2S2
, N = 1

2T 2

(41)

Here X, Y , Z are the normal yield stress with respect to the axes of anisotropy in
1, 2 and 3 directions; P , S, T are the shear yield stresses in 23, 13 and 12 directions,
respectively. By choosing the reference system in principle stress directions, we get:

F(σ2 − σ3)
2 + G(σ3 − σ1)

2 + H(σ1 − σ2)
2 − 1 = 0 (42)

Under the assumption, that the investigated material is isotropic in transverse
direction, i.e. F = G. As defined above, X and Z are the tensile equivalent stress in
and along the normal to the sheet plane, respectively. This implies:

X2 + H

F
X2 = 1

F
⇒ X = 1√

F + H
(43)

2Z2 = 1

F
⇒ Z = 1√

2F
(44)

From (43) and (44):

(
Z

X

)2

= F + H

2F
⇒ H

F
= 2

(
Z

X

)2

− 1 (45)

Substitute (44) and (45) into (42), we may obtain the criterion in terms of the
equivalent stresses:

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2
[

2

(
Z

X

)2

− 1

]
= 2Z2 (46)
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According to the associated flow rule, we have:

ε
p
i = λ

∂f

∂σi

⇒ dε
p
i

dλ
= ∂f

∂σi

(47)

For plane stress σ3 = 0, which gives:

dε
p
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(48)

Import the R-value [23] which is a measure of the plastic anisotropy of a rolled
metal sheet. Let R0 and R90 are the ratio of the in-plane and out-of plane plastic
strains under uniaxial stress σ1 and σ2, respectively:

R0 = dε
p

2

dε
p

3

= 2

(
Z

X
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− 1

R90 = dε
p

1
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3

= 2

(
Z
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− 1

(49)

Thus,

R = R0 = R90 = 2

(
Z

X

)2

− 1 (50)

Substitute Eq. (50) into (46), we have:

σ 2
1 + σ 2

2 −
(

R + 1

2

)
σ1σ2 = X2 (51)

From mathematical point of view, Eq. (51) represents an ellipse by a 45 degrees
rotation of a canonical ellipse with the centre (0, 0). Assume that the semimajor and
semiminor are a and b, respectively. Take composites with square pattern fiber vol-
ume fraction 7.07 % as an illustrative example, and with the dimension as reported
in Sect. 4.1. Material parameters of two phases, as well as homogenized parame-
ters are shown in Table 5. The macroscopic admissible domain of the composites,
transformed in principal stress directions, is shown in Fig. 14, where the bounds of
the elastic (EL), limit (LM) and shakedown (SD) domains are represented. Based
on least-square method, Hill_1 and Hill_2 are fitted yield surface according to the
limit and shakedown domain, respectively.

Hill_1: with R-value 1.0194, which means, it can be treated as von Mises yield
criterion approximately. Hill_2: with R-value 1.3204. The other related parameters
are shown in Table 5.
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Table 5 Parameters by yield surface fitting

R a b X Z F H

Hill_1 1.0194 381.13 218.64 268.20 269.50 6.8842e-6 7.0177e-6

Hill_2 1.3204 328.65 172.24 215.75 232.39 9.2583e-6 1.2225e-5

Fig. 14 Admissible
macroscopic stress domain
and yield surface fitting

Table 6 Homogenized
material parameters Material property Matrix Fiber Homogenized

Young’s modulus (GPa) 2.1 210 174.52

Poisson ratio 0.3 0.2 0.2966

Yield strength (MPa) 280 140 269.50

If we fit the yield surface with von Mises yield criterion (R = 1) according to
macroscopic stress under limit state, the homogenized elastic and plastic properties
of periodic composite material are shown in Table 6.

We note that the yield surface fitting according to shakedown domain is only
suitable for a specific loading domain.
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5 Conclusion

This paper shows how the lower bound shakedown analysis combined with homog-
enization theory can be used to determine safe loading domains for composites and
how to calculate global homogenized material parameters. We conclude that a three-
dimensional non-conforming element will fit for the direct methods with the same
accuracy as second order element but with much less computational cost. The yield
surface fitting according to shakedown domain is only suitable for arbitrarily chosen
but specific loading domains.
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