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Abstract In his famous 1977-paper, Gurson used the kinematic approach of Limit
Analysis (LA) about the hollow sphere model with a von Mises solid matrix. The
computation led to a macroscopic yield function of the “Porous von Mises”-type
materials. Several extensions have been further proposed in the literature, such as
those accounting for void shape effects by Gologanu et al. (J. Eng. Mater. Technol.
116:290–297, 1994; Continuum Micromechanics, Springer, Berlin, 1997), among
others. To obtain pertinent lower and upper bounds to the exact solutions in terms of
LA, we have revisited our existing kinematic and static 3D-FEM codes for spherical
cavities to take into account the model with confocal spheroid cavity and boundary.
In both cases, the optimized formulations have allowed to obtain an excellent effi-
ciency of the resulting codes. A first comparison with the Gurson criterion does not
only show an improvement of the previous results but points out that the real solu-
tion to the hollow sphere model problem depends on the third invariant of the stress
tensor. A second series of tests is presented for oblate cavities, in order to analyze
the above-mentioned works in terms of bound and efficiency.
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1 Introduction

As regards the ductile failure of porous materials, the celebrated plasticity crite-
rion of Gurson [8] is based on a micro-macro approach and on limit analysis (LA).
Gurson’s model treats a hollow von Mises sphere or cylinder with macroscopic
strain imposed on its boundary. The computation, performed under uniform strain
rate boundary conditions, leads to a macroscopic yield function for the “Porous
von Mises”-type materials.

Gurson’s analysis consists in the use of the LA kinematic approach in order to ob-
tain an upper bound to the macroscopic criterion of the spherically porous material,
at least in the sense of the Composite Sphere Assemblage of Hashin. An efficient
parametric refinement of Gurson’s model has been proposed in [24] and [25] to de-
fine the widely used Gurson-Tvergaard-Needleman (GTN) model. More recently,
several extensions of the Gurson model have been proposed, the probably most im-
portant developments being those accounting for void-shape effects [4, 7, 14]. Men-
tion can also be made of models taking into account plastic anisotropy [1, 13].

On the other hand, using a finite element discretization of the mechanical sys-
tems, both static and kinematic methods of LA have been elaborated to obtain rigor-
ous lower and upper bounds in order to control Gurson’s kinematic approaches for
cylindrical as well as spherical cavities, first reported in [20]. In [3] and [19], these
two LA approaches made it possible to numerically determine the yield criteria of a
cylindrically porous material, also proving that the Gurson criterion is approximate,
and does not exhibit the corner of the exact criterion on the mean stress axis in
plane strain. On the contrary, in the subsequent work [23] the Gurson criterion ap-
pears to be satisfactory for materials with spherical cavities, unfortunately without
considering the dissymmetry as in the present work.

The main advantage of these LA numerical approaches is that they give rigorous
lower and upper bounds to the macroscopic criterion together with their controllabil-
ity a posteriori from the final optimal solution. This capability to control numerical
or analytical results is central and was used in [18], and in [22] for example.

In the present paper, we briefly present the extension in [15] of the 3D static and
kinematic codes of [23] for von Mises matrices to the spheroid (confocal) cavity
case. Then, comparisons with previously mentioned works for spherical and oblate
cavites conditions are presented and discussed.

2 The Hollow Spheroid Model

The considered hollow spheroid model is made up of a single spheroidal cavity
embedded in a confocal spheroidal cell. The solid matrix is an isotropic, homo-
geneous, and rigid-plastic von Mises material. Figure 1 presents the geometrical
model, where the given aspect ratio a1/b1 and porosity f allow to determine the
characteristics a2 and b2 of the confocal spheroidal boundary. Let us consider the
three-dimensional point of view, and denote Σ and E the macroscopic stress and
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Fig. 1 The hollow spheroid model (a1/b1 = 0.5, f = 0.1)

strain rate tensors. These quantities are classically related to the microscopic fields
by their average over the model of volume V :

Σij = 1

V

∫
V

σij dV ; Eij = 1

2V

∫
∂V

(uinj + ujni) dS, (1)

where ∂V denotes the external boundary of the model, and u the velocity vector.
Under the Hill-Mandel boundary conditions, here ui = Eijxj on the external

boundary, the overall virtual dissipated power Ptot = ΣijEij can be written as fol-
lows:

Ptot = V (ΣmEm + ΣpsEps + ΣgpsEgps + Σyz2Eyz + Σzx2Ezx + Σxy2Exy), (2)

where the macroscopic stresses (the loading parameters in terms of limit analysis)
and the associated strain rates are here defined as:

Σm = 1

3
(Σx + Σy + Σz); Σgps = (Σx + Σy)

2
− Σz;

Σps =
√

3

2
(Σx − Σy);

(3)

Σyz; Σzx; Σxy; (4)

Em = (Ex + Ey + Ez); Egps = 2

3

(
(Ex + Ey)

2
− Ez

)
;

Eps = 1√
3
(Ex − Ey);

(5)

2Eyz; 2Ezx; 2Exy. (6)

In these definitions the subscripts (gps for generalized plane strain, and ps for
plane strain) were defined in [19], as Σgps = 0 is the usual relation in plane strain
for the von Mises material. From the matrix isotropy and the spheroidal geometry
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of the model, the resulting material is transversally isotropic around the axis z. Here
is investigated the macroscopic criterion g(Σ) in the (Oxyz) anisotropy frame.

To compare with Gologanu’s axisymmetric results, we search for the projection
of g(Σ) on the (Σgps,Σm) plane by optimizing Σgps for fixed uniform stresses Σm,

the other stress components defined in (4) being free. Then ∂g
∂Σij

= 0 = 2Eij for

i �= j , and ∂g
∂Σps

= 0 = Eps since the macroscopic material verifies the normality
law. As a final result, loadings can be restricted to the principal macroscopic strain
rates E (as well as Σ since (Oxyz) is a transverse-isotropy frame) with Eps = 0.

Moreover, all the axes in the horizontal plane of Fig. 1 are equivalent; therefore,
in the above-mentioned projection problem we also impose, although this is not
mandatory, Σx = Σy as well as Ex = Ey in fact. Indeed, when non imposed a pri-
ori, these equalities are always verified in the optimal solutions, giving by the way
a good control of the mesh quality.

Finally, the overall external power Ptot here reduces to:

Ptot = V (ΣmEm + ΣgpsEgps). (7)

Therefore, the one-eighth of the hollow spheroid is meshed into tetrahedral ele-
ments as shown in Fig. 2. This mesh respects the symmetries of the problem since
the vertical coordinate planes are equivalent regarding the distribution of elements,
giving rise to a well-conditioned numerical problem. Note that the macroscopic
equivalent stress Σeqv is, in the present case, linked to Σgps by:

Σ2
eqv = 3

2
dev(Σ) : dev(Σ) = Σ2

gps = (Σx − Σz)
2, (8)

where dev(Σ) is the deviatoric part of Σ .
Hereafter, we first briefly present both lower/upper limit analysis approaches

which have recently been detailed in [15]. The basis of the development of these
numerical tools are their versions presented in [23] for spherical cavities; there-
fore we only detail here the modifications and improvements implemented for the
present case. In a second step, results are analyzed and compared to those provided
in [6] and [7] for oblate models under uniform strain rate boundary conditions.

3 Limit Analysis: The Static Method

3.1 The von Mises Criterion

As classically, the criterion is written as:

f (σ ) = √
J2 with J2 = 1

2
tr
(
s2) and s = σ − 1

3
tr(σ )δ, (9)

where δ is the second order unit tensor.
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Then in an (x, y, z) reference frame, the full 3D criterion reads:

√[
2√
3

(
σx + σy

2
− σz

)]2

+ (σx − σy)2 + (2τyz)2 + (2τzx)2 + (2τxy)2 ≤ 2k.

(10)
The constant k is the limit in pure shear, also given by σ0/

√
3 where σ0 is the tensile

strength of the von Mises material. It should be noted that (10) can be written, after
obvious changes of variables, as a conic constraint for the conic optimizer MOSEK

[12]: √√√√√
5∑

j=1

x2
j ≤ x6 = 2k. (11)

3.2 Numerical Implementation

For each aspect ratio a1/b1, the inner and outer matrix boundaries of the spheroid
mesh are adapted from the spherical case to obtain their confocal forms in the final
mesh. Each triangle of a polyhedral surface n is the top basis of a prism whose the
bottom basis is the corresponding triangle of the surface n − 1, and so on going to
the cavity. Each prism is divided into two tetrahedrons and three pyramids. Each
pyramid is also divided into four tetrahedrons. Hence, each prism is meshed using
14 tetrahedral elements. For example the mesh of Fig. 2 involves 4 concentric layers
(nlay = 4) of 4 × 4 prisms (ndiv × ndiv, ndiv = 4) each, resulting finally in nlay ×
ndiv2 × 14 = 896 tetrahedrons As the model boundaries are not homothetic and the
practical number of triangles forming the resulting polyhedral mesh boundaries is
not infinite, the resulting mesh porosity does not exactly equal the input porosity.
Then, in a first step for each case of porosity and aspect ratio, the distribution of
the angle α (see Fig. 2 right) is optimized to precisely retrieve the desired porosity
by progressively concentrating this distribution towards the most curved zone. In a
final step the radial distribution of the spheroid layers is also optimized to obtain the
best value for the isotropic loading (Σgps = 0) with the static code.

The local stress field is chosen as linearly varying in x, y, z in each tetrahedral
element, and represented by a 6-component tensor σ for each vertex of this tetrahe-
dral element. Consequently this stress field can be discontinuous across any element
boundary, which has been proven to be indispensable in the finite element static ap-
proach [17]. Finally, to reduce the size of the constraint matrix of the numerical
problem, a change of variables σ → (x0, . . . , x5) is performed, where x0 = trσ and
x1 to x5 defined in (11), so that only the definition of x6 is needed as a new constraint
(and a new auxiliary variable) for each tetrahedron vertex.

To get a statically admissible microscopic stress field, the definition of the macro-
scopic stresses and of the selected loading parameters, the equilibrium equations
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Fig. 2 General view and Oxz plane of a 896-tetrahedron mesh (a1/b1 = 0.5, f = 0.1)

and the stress vector continuity across the inter element triangles, the boundary and
symmetry conditions give rise to a final matrix of equality constraints.

To enforce the stress field to be plastically admissible, the criterion (10) is im-
posed at each apex of the tetrahedron; hence, due to its convexity, the criterion is
fulfilled anywhere in the element. For each tetrahedron the four conic inequalities
are directly handled by MOSEK by simply indicating the names of the variables xi

involved in the criteria (11). The final numerical problem is a constrained conic
programming one, which is a specificity of MOSEK.

Finally, concerning the objective functional to be optimized, Σm is given succes-
sive desired values and Σgps is minimized; when Σm is close to its maximum value,
then Σgps is fixed and Σm is maximized for better convergence of the optimization
process.

4 Limit Analysis: The Kinematic Method

4.1 Dissipated powers

Let us recall that, from the virtual power principle, the total dissipated power Ptot
here reads:

ΣmEm + ΣgpsEgps = (Pvol + Pdisc)/V = Ptot/V, (12)

where the volumic dissipated power Pvol = ∫
Vm

π(d)dV and π(d) is now defined
as:

π(d) = 2k

√(√
3

2
(dxx + dyy)

)2

+
(

1

2
(dxx − dyy)

)2

+ d2
yz + d2

zx + d2
xy. (13)

The power dissipated by the velocity jump [u] on the discontinuities is given by:

Pdisc =
∫

Sd

π
([u])dS =

∫
Sd

k
∣∣[ut ]

∣∣dS =
∫

Sd

k

√
[ut1 ]2 + [ut2 ]2 dS, (14)
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where Sd is the set of discontinuity surfaces; for each discontinuity surface, [ut1 ]
and [ut2 ] are the tangential displacement velocity jumps in an orthonormal frame
(n, t1, t2) whose n is normal to this discontinuity surface.

4.2 Numerical Implementation

The above-mentioned mesh type is also used for the kinematic approach. The dis-
placement velocity field is chosen as linearly varying in x, y, z in each tetrahedral
element, and any triangular surface common to two contiguous tetrahedrons is a po-
tential surface of velocity discontinuity. Then the variables are (ux,uy,uz) velocity
vectors located at the apices of each tetrahedron.

To get a kinematically admissible velocity field, the definition of the selected
macroscopic variables Em, Egps, Eps from Exx , Eyy , Ezz, the incompressibility and
symmetry conditions, and the strain rate loading ones (i.e. ui = Eijxj on each apex
on the boundary triangles) form a final constraint matrix.

Concerning the definition of the functional to be optimized, by taking into ac-
count (13), we can upper bound the volumetric dissipated power in the tetrahedron
by writing:

π(d) ≤ Y ; P el
vol ≤ V el Y (15)

for each tetrahedron whose volume is denoted V el. The first inequality in (15) gives
one conic constraint and one non-negative auxiliary variable Y for each element.

As the velocity jump [u] is linear on each triangular discontinuity side, whose
surface is denoted Sside, we use the convexity of π([u]) to upper bound Pdisc by
writing at each apex i of the side (i = 1 to 3):

π
([u]i

) ≤ Zi, (16)

where the Zi are new non-negative auxiliary variables, and P side
disc ≤ Sside (Z1 +Z2 +

Z3)/3, resulting in three conic constraints for each discontinuity side. Then, using
these definitions and after integrations over the mesh, we substitute the final upper
bound P ub

tot for Ptot in the following.
In the present case of two loading parameters, Σm and Σgps, the following func-

tional is used to define the points of the macroscopic criterion for zero or small
absolute values of Σgps:

Σm = min
(
P ub

tot /V − Σ0
gps Egps

)
/E0

m, with E0
m = 1. (17)

To obtain other non-zero (Σ0
m,Σgps) points, we chose the following functional,

for better convergence, as in the static case:

Σgps = min
(
P ub

tot /V − Σ0
m Em

)
/E0

gps, with E0
gps = ±1. (18)
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Fig. 3 Comparison with the
Gurson criterion (a1/b1 = 1,
f = 0.1)

Remark For both static and kinematic methods the final conic problem is solved
using MOSEK, and the admissible character of the optimal solution field is checked
a posteriori.

5 The Tests

Under uniform strain rate on the boundary, in the static case the mesh involves
13 layers of 12 × 12 prisms (with triangular basis) composed of 14 tetrahedrons,
resulting in a conic programming problem handling about 730,000 variables and
658,000 constraints. In the kinematic case the mesh is the same, but with 11 ×
11 × 11 prisms resulting in 663,000 variables and 445,000 constraints. CPU times
are about 3,000 seconds in the static case and 5,000 seconds in the kinematic one,
with the release 5 of MOSEK on a recent Apple Mac Pro (using one core). For
uniform stress loading, the figures are similar. In both cases the memory limitation
of this release does not allow to consider more refined meshes. These CPU times
also explain that obtaining the full numerical yield criterion, (then with meshes not
limited to the one-eighth of the spheroid) and for various other geometries, does not
seem realistic without defining a specific decomposition of the problem as in [16]
and [9], at least for the moment.

Since the von Mises criterion is an even function in terms of stress, we limit the
study to nonnegative values of Σm. In this section, the loading is axisymmetric for
all tests and Σeqv = |Σgps|. We begin by testing the codes in the spherical cavity
case to compare with the Gurson criterion in the whole Σm ≥ 0 half plane. Then we
analyze the oblate case with a ratio a1/b1 = 0.2 (see Fig. 1) for the case of uniform
strain rate (E) on the boundary to compare the solutions with the analytical results
of [6, 7] where the results are given in terms of Σz − Σρ = −Σgps.
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Table 1 Comparison of
Gurson criterion and present
kinematic results for negative
Σgps and f = 0.3

Σm -(Gurson Σeqv) -(3D-kine Σgps)

0.0 1.21244 1.17101

0.2 1.20122 1.15328

0.4 1.16658 1.10820

0.6 1.10521 1.03030

0.8 1.01017 0.91075

1.0 0.86703 0.73865

1.2 0.63821 0.49854

1.26587 0.52497 0.4

1.32245 0.39332 0.3

1.36344 0.24993 0.2

1.38674 0.09075 0.1

1.39023 0.0 0.07634

1.39432 – 0.0

5.1 Spherical Cavity, Uniform Strain Rate Loading

The celebrated Gurson criterion reads:

Σ2
eqv

3k2
+ 2f cosh

(√
3Σm

2k

)
= 1 + f 2. (19)

Figure 3 gives the lower bounds (green color) and upper bounds (red color) together
with the graph of Gurson’s criterion. The numerical bounds are very close to each
other and the Gurson graph is always beyond the kinematical approach, except at
the vicinity of the Σm axis, as expected from the exact nature of the solution of
Gurson on this axis.

More surprisingly, it can be seen that the real criterion is not really symmetric
with respect to the horizontal axis; this means (from (8)) that, even for spherical
cavities, the criterion depends on the third invariant of the macroscopic stress; this
feature has been observed by Danas et al. [2] using a non linear homogenization
method and recently confirmed in [21]. Up to our knowledge a possible small influ-
ence of the third stress invariant for “porous von Mises” materials was first noted in
[5], through an only kinematic numerical approach based on some of the continuous
velocity fields of Lee and Mear [11].

It can also be concluded that using the Gurson criterion in the usual (Σeqv =
|Σgps|,Σm) frame is not pertinent; indeed, for a porosity of 0.3 (usual value in
geotechnics and polymers) the results of Table 1 show that the difference between
Gurson’s values and our present 3D-kinematic results for negative Σgps becomes
really significant.

Remark For Σm = 0 and f = 0.1, the Hashin-Strikmann (H-S) upper bound given
by Willis and others (see [10]) (here 1.5093 = √

3(1 − f )/
√

1 + 2f/3), is lower
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Table 2 Comparison of
Gurson and 3D-FEM results
to Hashin-Strikman bounds
(Σm = 0)

f ΣGurson
eqv Σstat

gps Σkine
gps H-S bound

0.01 1.71473 1.70501 1.70832 1.70904

0.1 1.55885 1.51393 1.52016 1.50935

0.2 1.38564 1.33165 1.34035 1.30158

0.3 1.21244 1.16114 1.17101 1.10680

0.4 1.03923 0.98765 1.00029 0.92338

0.5 0.86602 0.80637 0.82311 0.75

Fig. 4 Comparison of the
1994-Gologanu criterion with
numerical bounds. The aspect
ratio is taken as a1/b1 = 0.2
and the porosity f equal
to 0.1

than the present static value, 1.5139. This static bound is obtained by using a mesh
of 13 layers of 12 × 12 triangles generating 26,208 discontinuous linear tetrahe-
drons, i.e., a very refined 3D-mesh for the discretized one-eighth of sphere. Taking
into account the fact that the exact value on the horizontal axis is just situated be-
tween the very close static and kinematic values, this should indicate that the hollow
sphere model does not strictly account for the randomly porous hypothesis of the
H-S bounds. Finally the results of Table 2 confirm this conclusion, since the static
results are no longer close to the H-S bounds for greater porosity values.

5.2 Confocal Oblate Cavity, Uniform Strain Rate Loading

In this section we compare our results with the analytic criterion of Gologanu [6]
and its improved version in [7], under uniform strain rate at the boundary. Figures 4
and 5 give the present results together with those of Gologanu et al. for f = 0.1.
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Fig. 5 Comparison of the
1997-Gologanu criterion with
numerical bounds.
a1/b1 = 0.2, f = 0.1

It first appears that the numerical bounds provide yield surfaces satisfactorily
close to each other, in particular for the lowest porosity. Moreover, for this low
porosity, the first approximate yield surface given by Gologanu et al. in 1994, based
on axisymmetric fields proposed by Lee and Mear [11], is largely beyond our up-
per bound and overestimates the exact criterion in a large part of the stress domain.
A contrario the second criterion of Gologanu et al. denotes a significant improve-
ment of the previous Gologanu approach, with a slight localized violation of the
numerical static approach possibly due to the loss of the upper bound character,
resulting from the approximations done by these authors.

6 Conclusion

In the present paper, we have presented the extension of our previous 3D static
and kinematic FEM codes for von Mises matrices to the spheroid (confocal) cavity
case. On purpose of validation the first applications concern the Gurson model, and
reveal that this criterion is not so near to the real solution, which depends on the
third stress invariant in a non-negligible manner. The following tests concern the
spheroid confocal cavity case and the last Gologanu criterion should be preferred in
the case of uniform strain rate on the boundary.
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