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Abstract We extend the classical Gurson model for ductile porous media by incor-
porating the surface/interface stresses effect which characterizes pores at nanoscale.
For interface stresses obeying a von Mises criterion, we derive closed-form expres-
sions of the parametric equations defining the yield surface. The magnitude of the
interface effect is proved to be controlled by a non dimensional parameter depend-
ing on the voids characteristic size. It is observed that nanoporous materials can be
made more strengthened than non-porous counterparts.

Keywords Ductile nanoporous materials · Micromechanics · Surface stress ·
Interfaces · Nanovoids · Yield function · Gurson model

1 Introduction

Investigation of size-dependent effects in nanomaterials including materials contain-
ing nano-voids has focused the attention of many researchers during the last decade.
Early works have tried to model the transition zone between the nano-inclusion
and the surrounding matrix as a thin but still three-dimensional layer [1, 2]. An
alternative approach consists in adopting an interface description which is two-
dimensional in nature. Concerning inclusion size effects on the effective elastic
properties, some progresses have been gained in their understanding. Classical ho-
mogenization schemes as well as first order bounds in the theory of elastic hetero-
geneous media have been extended in order to incorporate interface and interface
stresses (see e.g. [3–5]). Recent studies by [6] and [7] extended Hashin-Shtrikman
bound to the above class of materials.

In contrast, it seems that few attention has been paid so far to the question of the
effective strength of nanomaterials with account for interface effects. Mention can
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be made of recent works by [8] who used the modified secant moduli approach. In
the context of the ductile failure of porous materials, the Gurson model [9] is well
known to provide an efficient approach of the strength reduction due to the porosity.
The purpose of the present paper is to extend this model in order to capture the
influence of interface stresses.

To begin with, in view of subsequent extensions, the basic features of the clas-
sical Gurson approach are recalled. Then, the mechanical model of interface stress
is introduced. Finally, the case of interface stresses obeying a von Mises failure
criterion is considered.

2 Ductile Failure of Porous Media and Gurson Model

Let us consider a r.e.v. Ω of a porous material with porosity f . The solid domain is
Ωs ⊂ Ω . The average on Ω (resp. Ωs ) of a field a(z) is denoted by a (resp. as ):

a = 1

|Ω|
∫

Ω

a(z) dV ; as = 1

|Ωs |
∫

Ωs

a(z) dV (1)

Let Σ and D respectively denote the macroscopic stress and strain rate tensors.
V (D) is the set of microscopic velocity fields, v(z) being kinematically admissible
with D. The latter are defined by uniform strain boundary conditions:

V (D) = {
v, (∀z ∈ ∂Ω) v(z) = D · z} (2)

Let us consider a microscopic stress field σ (z) in equilibrium with Σ in the sense
of the average rule Σ = σ . Hill’s lemma states that:

Σ : D = 1

|Ω|
∫

Ω

σ : ddV (3)

The strength of the solid phase is characterized by the convex set Gs of admissible
stress states, which in turn is defined by a convex strength criterion f s(σ ):

Gs = {
σ,f s(σ ) ≤ 0

}
(4)

The dual definition of the strength criterion consists in introducing the support func-
tion πs(d) of Gs , which is defined on the set of symmetric second order tensors d
and is convex w.r.t. d:

πs(d) = sup
(
σ : d,σ ∈ Gs

)
(5)

πs(d) represents the maximum “plastic” dissipation capacity the material can af-
ford. In the absence of interface effect, the macroscopic counterpart of πs(d) is
defined as:

Πhom(D) = (1 − f ) inf
v∈V (D)

πs(d)
s

with d = 1

2

(
gradv +t gradv

)
(6)
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Using Eq. (3) together with the definition equation (6), it can be shown that Πhom

is the support function of the domain Ghom of macroscopic admissible stresses:

Πhom(D) = sup
(
Σ : D,Σ ∈ Ghom

)
(7)

The limit stress states at the macroscopic scale are shown to be of the form Σ =
∂Πhom/∂D.

Starting from this general framework, the classical Gurson approach devoted to
porous media deals with the case of a von Mises solid phase:

f s(σ ) = 3

2
σ d : σ d − σ 2

o (8)

where σ d is the deviatoric part of σ . The support function πs(d) accordingly reads:

tr d = 0 : πs(d) = σodeq with deq =
√

2

3
d : d

tr d �= 0 : πs(d) = +∞
(9)

The Gurson model introduces two simplifications. It first consists in representing the
morphology of the porous material by a hollow sphere instead of the r.e.v. Let Re

(resp. Ri ) denote the external (resp. cavity) radius. The volume fraction of the cavity
in the sphere is equal to the porosity f = (Ri/Re)

3. Then, instead of seeking the
infimum in Eq. (6), Πhom(D) is estimated by a particular microscopic velocity field
v(z). In the solid, the latter is defined as the sum of a linear part involving a second
order tensor A and of the solution to an isotropic expansion in an incompressible
medium. In spherical coordinates, it thus reads:

vG(z) = A · z + α
R3

i

r2
er (10)

In the pore, the strain rate is defined from the velocity at the cavity wall:

dI = A + α1 (11)

The local condition tr d = 0 has to be satisfied in the case of a von Mises material
(see Eq. (9)). It follows then that A is a deviatoric tensor: tr A = 0. Furthermore, the
boundary condition equation (2) at r = Re yields:

D = A + αf 1 (12)

which reveals that A is the deviatoric part Dd of D, while α is related to its spherical
part:

A = Dd; α = 1

3f
tr D (13)
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The combination of Eq. (11) and Eq. (13) also yields:

dI = Dd + tr D
3f

1 (14)

Recalling Eq. (6), the use of vG (giving strain rate dG) provides an upper bound of
Πhom:

Πhom(D) ≤ (1 − f )πs
(
dG

)s
(15)

Using Eq. (9), the derivation of the right hand side in Eq. (15) requires to deter-
mine the average of deq over Ωs . In order to obtain an analytical expression, it is
convenient to apply the following inequality to G = d : d = 3d2

eq/2 [9]:

∫
Ωs

√
G (r, θ,ϕ)dV ≤ 4π

∫ Re

Ri

r2(〈G 〉S (r)

)1/2
dr (16)

where S (r) is the sphere of radius r and 〈G 〉S (r) is the average of G (r, θ,ϕ) over
all the orientations:

〈G 〉S (r) = 1

4πr2

∫
S (r)

G (r, θ,ϕ) dS (17)

This eventually yields the following upper bound of Πhom(D):

Πhom
G (D) = σof Deq

(
ξ
(
arcsinh(ξ) − arcsinh(f ξ)

) +
√

1 + f 2ξ2

f
−

√
1 + ξ2

)

(18)
with Deq = √

2Dd : Dd/3 and ξ = 2α/Deq . In the standard case (no interface ef-
fect), it is emphasized that the pore size Ri does not matter by itself since only the
ratio Ri/Re = f 1/3 intervenes in the expression Eq. (18).

The last step is the derivation of the limit states Σ = ∂Πhom
G /∂D. It is first ob-

served that Πhom
G (D) is in fact a function of D through α and Deq :

Σ = ∂Πhom
G

∂α

∂α

∂D
+ ∂Πhom

G

∂Deq

∂Deq

∂D
(19)

where

∂α

∂D
= 1

3f
1; ∂Deq

∂D
= 2

3Deq

Dd (20)

The combination of Eq. (19) and Eq. (20) also yields:

trΣ = 1

f

∂Πhom
G

∂α
; Σeq = √

3Σd : Σd/2 = ∂Πhom
G

∂Deq

(21)
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In turn, Eq. (18) leads to:

trΣ = 2σo

(
arcsinh(ξ) − arcsinh(f ξ)

)

Σeq = σo

(√
1 + f 2ξ2 − f

√
1 + ξ2

) (22)

Eliminating ξ between the spherical and deviatoric parts of Σ eventually leads to
the well known Gurson strength criterion:

Σ2
eq

σ 2
o

+ 2f cosh

(
trΣ

2σo

)
− 1 − f 2 = 0 (23)

This equation characterizes the boundary of the domain Ghom
G which support func-

tion is Πhom
G . This domain is in fact an upper bound of the exact domain Ghom of

macroscopic admissible stresses, that is, Ghom ⊂ Ghom
G .

3 Interfaces and Interface Stresses

The recent literature devoted to nanocomposites has extensively presented the con-
cepts of interface and interface stresses [4, 10–13]. In fact, these concepts are already
present in the modeling of capillary forces [14]. The interface itself is a mathemat-
ical model for a thin layer between two phases across which the traction vector
undergoes a discontinuity. In contrast, the displacement and the tangential strain
components are continuous (see [3]). Introducing the local unit normal vector n to
the interface S, the stress discontinuity [σ ] · n is related to the interface stresses τ

by the generalized Laplace equations which physically represent the condition for
the mechanical equilibrium of the interface [15]:

n · [σ ] · n = −τ : κ
P · n = −∇S · τ (24)

where ∇S · denotes the divergence operator defined on the interface S; tensor P =
1 − n ⊗ n and κ is the curvature tensor. The stress state τ locally meets the plane
stress conditions w.r.t. the tangent plane to the interface. We herein consider that the
pore/solid boundary is such an interface.

The interface stresses also manifest themselves by a specific contribution to the
energy W developed by the internal forces in the strain rate field d:

W =
∫

Ω

σ : ddV =
∫

Ωs

σ : ddV +
∫

S

τ : ddS (25)

From a mathematical point of view, Eq. (25) amounts to saying that the internal
forces can be represented by the sum of a standard Cauchy stress field σ in the solid
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and by a Dirac distribution τ of stresses of support S. Hence, the integral in the
left-hand side of Eq. (25) must be understood in the sense of the distribution theory.

Since the interface stress state is a plane stress one, the work it develops in the
strain rate d only depends on the projection dint of d on the local tangent plane,
which is defined as [5]:

dint = T : d with T = P⊗P (26)

with A⊗Bijkl = (AikBjl + AilBjk)/2.
The surface integral in the expression of W has a counterpart in the homogenized

support function Πhom(D) which now reads:

Πhom
int (D) = inf

v∈V (D)

(
(1 − f )πs(d)

s + 1

|Ω|
∫

S

πint (T : d) dS

)
(27)

πint denotes the support function of the domain Gint of admissible surface stresses
(see also Eq. (5)):

πint (T : d) = sup
(
τ : T : d,τ ∈ Gint

)
(28)

It is emphasized that the latter meet the local plane stress conditions.
The extension of the Gurson model to interface effects simply consists in esti-

mating the support function Πhom(D) by the upper bound obtained for the velocity
field vG introduced in Eq. (10):

Πhom
G, int (D) = Πhom

G (D) + 1

|Ω|
∫

S

πint
(
T : dG

)
dS (29)

Clearly, we are left with the determination of the interface correcting term, which
has to be added to the standard expression (18).

4 Extension of the Gurson Model: The von Mises Interface

We now assume that the strength of the interface can be described by a von Mises
criterion

3

2
τ d : τ d − k2

int ≤ 0 (30)

in plane stress condition, where τ d denotes the deviatoric part of the interface stress
τ . The strength of the interface is then similar in nature to that of the matrix, up to
the fact that it has a bidimensional character. In the local tangent plane which unit
normal vector is n = er , the support function of the domain Gint then reads (see
[16]):

π(T : d) = 2kint

√
1

3

(
d2
θθ + d2

ϕϕ + d2
ϕθ + dθθdϕϕ

)
(31)
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where kint has the physical dimension of a membrane stress, that is, a force per unit
length. The tensor d whose components appear in Eq. (31) is the pore strain rate dI

given in Eq. (14), which is then projected on the tangent plane by the operator T.
The projection operator T(θ,ϕ) depends on the location on the spherical cavity wall
(see Eq. (26)):

T = P⊗P with P = 1 − er ⊗ er (32)

The components of the strain rate tensor appearing in Eq. (31) are then given by

dαβ = eα

s⊗ eβ : T : dI (33)

with α, β = θ or ϕ, that is:

dαβ = Tαβ : dI (34)

with Tαβ = eα

s⊗ eβ : T. It is therefore convenient to introduce the fourth-order
tensor M:

M = Tϕϕ ⊗ Tϕϕ + Tθθ ⊗ Tθθ + Tϕθ ⊗ Tϕθ + Tϕϕ ⊗ Tθθ (35)

such that

πint (T : d) = 2kint

√
1

3
dI : M : dI (36)

In order to determine the contribution Πint of the interface to Πhom(D) (see
Eq. (27)), we are left with the integration over the spherical interface:

Πint = 2kint

|Ω|
∫

S

√
1

3
dI :M : dI dS (37)

As in the classical derivation of the Gurson criterion, we have to replace Πint by an
upper bound in order to obtain an analytical expression:

Πint ≤ 2kintR
2
i

|Ω|

√
4π

3

∫
So

dI : M : dI dS (38)

where So is the (boundary of the) unit sphere. Since dI is a constant, the right hand
side in Eq. (38) can be put in the form:

Πint ≤ 2kintR
2
i

|Ω|

√
4π

3
dI :

(∫
So

M(θ,φ)dS

)
: dI (39)

Noting from Eq. (35) that:
∫

So

Mdσ = π

(
6

5
K+ 4J

)
(40)
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the contribution of the interface to Πhom(D) can be estimated by the following upper
bound:

Πint ≤ 6f
kint

Ri

√
dI :

(
1

10
K+ 1

3
J

)
: dI

= 3f
kint

Ri

Deq

√
ξ2 + 3

5
with ξ = 2α/Deq (41)

in which it is recalled that Ri represents the radius of the pores. The term provided
by (41) is to be added to Eq. (18) in view of the derivation of the strength criterion.
The comparison of the respective contributions of the solid equation (18) and of the
interface equation (41) is controlled by the nondimensional parameter

Γ = kint /(Riσo) (42)

which is pore size-dependent. The smaller the pores the greater the influence of the
interface effects on the strength.

We note that Eq. (19) and Eq. (21) are still valid provided that Πhom
G is replaced

by Πhom
G,int = Πhom

G + Πint . This leads to the parametric equations

trΣ = σo

(
2
(
arcsinh(ξ) − arcsinh(f ξ)

) + Γ
6ξ√

ξ2 + 3/5

)

Σeq = σo

(√
1 + f 2ξ2 − f

√
1 + ξ2 + Γ

9f

5
√

ξ2 + 3/5

) (43)

Note that this boundary is symmetric w.r.t. the trΣ = 0 axis. Let us emphasize
that, by the presence of term Γ = kint /(Riσo), (43) explicitly shows that the yield
strength depends on the voids size. In order to get a closer insight into the influ-
ence of the interface on the effective strength, it is useful to provide an analyti-
cal approximation of the boundary of the domain defined by Eq. (43) in the form
F (Σeq, trΣ) = 0. This can be done by means of expansions of Eq. (43) in the vicin-
ity of ξ = 0 and ξ = ∞. First, in the vicinity of the maximum deviatoric strength
(ξ = 0, low stress triaxiality), the boundary can be approximated by a parabola in
the (trΣ,Σeq) plane:

Σeq

σo

= 1 − f + Γ
9f√

15
− f

8(1 − f + Γ
√

15)

(
trΣ

σ 2
o

)2

(44)

In turn, in the vicinity of the pure isotropic tensile/compression loading (ξ = ±∞),
the boundary can be approximated by another parabola:

Σ2
eq

σ 2
o

= 3

2

(
1 − f 2 + 18

5
Γf 2

)(
−2

3
logf + 2Γ ± trΣ

3σo

)
(45)
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Fig. 1 (1): classical Gurson
model; (2): extended Gurson
model with f = 0.1 and
Γ = 0.2; (3): parabola of
(44); (4): parabola of (45)

Illustrations of the results are provided on Fig. 1. Continuous lines correspond to
the parametric formulation of the macroscopic yield function (see (43)) while dis-
continuous lines are associated to the two above expansions derived in the form of
parabola. First, the results clearly show a significant effect of the void size. Note
that kint being fixed, a decrease of Ri is represented by an increase of Γ . Moreover,
the two proposed expansions appear accurate for a large range of triaxiality.

5 Isotropic Tensile/Compressive Strength

In the framework of the geometrical model of hollow sphere, the classical Gur-
son model (no interface stress) is known to provide an exact result as regards the
isotropic tensile/compressive strength.

With Σeq = 0, the solutions to Eq. (23) are the isotropic stress tensors ±Σ+1
with Σ+ = −2σo logf/3. As a matter of fact, the Gurson approach shows that an
admissible isotropic macroscopic stress state Σ = Σ1 is subjected to the condition
|Σ | ≤ Σ+. Conversely, let us consider the microscopic stress state defined in the
solid in spherical coordinates by:

σ = ε
3Σ+

2 logf

(
2 log

Ri

r
1 − P

)
with ε = ±1 (46)

It is readily seen that the latter is in equilibrium with the macroscopic stress state
εΣ+1 since it satisfies the momentum balance condition divσ = 0 and the boundary
conditions σ · er = 0 at r = Ri and σ · er = εΣ+er at r = Re. Furthermore, it meets
the von Mises criterion equation (8). This proves that such a macroscopic stress state
is admissible and furthermore, that Σ+ is indeed the isotropic tensile/compressive
strength.

Let us now examine the effect of interface stresses on the isotropic ten-
sile/compressive strength. Consider the case of the von Mises interface. According
to the extended Gurson model equation (45), the necessary condition for an isotropic
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macroscopic stress state Σ = Σ1 to be admissible reads |Σ | ≤ Σ+ + 2Γ σo. Con-
versely, let us consider the microscopic stress state defined in the solid in spherical
coordinates by:

σ = ε

(
3Σ+

2 logf

(
2 log

Ri

r
1 − P

)
+ 2Γ σo1

)
with ε = ±1 (47)

and on the interface S by τ = εkintP (recall that kint = Γ σoRi ). It satisfies the mo-
mentum balance equation divσ = 0 and the boundary condition σ · er = ε(Σ+ +
2Γ σo)er at r = Re. It also satisfies the generalized Laplace equations (24). Further-
more, it meets the von Mises interface criterion equation (30). This establishes that
Σ+ + 2Γ σo is the isotropic tensile/compressive strength.
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