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Abstract The behavior of soils reinforced by micropile networks is still not fully
understood due to the lack of accurate modelling capabilities. Particularly, the com-
plex geometry of large soil-micropile systems makes accurate calculation of the
bearing capacity of the reinforced soil a computational challenge. This complexity
requires highly detailed and finely discretized models to achieve reasonable accu-
racy using direct numerical methods. Such models lead to large scale numerical
optimization problems that are hardly tractable using a personal computer.

Recently a decomposition strategy with domain overlap has proved successful in
solving very large kinematic and static limit analysis problems with limited com-
puting resources. It consists of splitting the original problem into limit analysis sub-
problems that are smaller in size.

The present paper reports enhancements made to the original decomposition
method. In particular, the method is made capable of solving the classical punch
problem with Tresca or Coulomb soils. This benchmark problem is considered as a
limit case of a soil reinforced by micropiles.

The paper then describes the application of the decomposition method to deter-
mine rigorous kinematic and static bounds to the bearing capacity of a soil rein-
forced by a micropile group according to a 2D plane strain model.

1 Introduction

A micropile is a pile with a diameter no greater than 250 mm, generally in the range
75 to 200 mm, usually with an aspect ratio of 200. Micropile technique was initially
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developed by the Fondedile company under the authority of F. Lizzi [5] as early as
1952. Micropiles were used for the first time in Italy in soil reinforcement of existing
buildings and were then named root piles (pali radice). Within the timeframe of half
a century, the technique has been applied all over the world [2].

The ease of their execution makes micropiles suitable for foundation works be-
neath existing buildings. Landmark examples are the Orsay railway station works
for the development of a museum, “la Maladière” stadium in Neuchâtel in Switzer-
land (1100 micropiles) and the international airport of Boston (800 micropiles).

The complex geometry of large soil-micropile systems makes accurate calcula-
tion of the bearing capacity of the reinforced soil difficult because of the large size
of the associated finite element model. As a strategy to handle problem sizes beyond
available machine capacities, it is common to split the original problem into limit
analysis (LA) subproblems that are smaller in size or simpler to solve.

In the present paper, the decomposition method, proposed in [7] and [8] in the
framework of mixed kinematic limit analysis and extended in [3] and [4] to the static
limit analysis problem, is adapted and applied to determine upper and lower bounds
for the bearing capacity of micropile groups. The paper begins with a brief presenta-
tion of limit analysis followed by a description of the decomposition method. Next,
the decomposition is applied to the punch problem (with Tresca or Coulomb soil),
a representation of Prandtl’s classical problem with finite domain. This benchmark
example is considered here for (i) being a simple problem for which the solution
is known a priori, (ii) being interpretable as a limit case of a soil reinforced by mi-
cropiles, that is the case with no reinforcement, (iii) exhibiting a feature that has not
been tested so far in decomposition, that is the absence of a loaded zone in some
subproblems.

Finally, the decomposition is exploited in the calculation of lower and upper
bounds for the bearing capacity of examples of micropile groups.

2 Succinct Presentation of Limit Analysis

For the sake of clarity, without any loss in generality, we consider here that the
velocity fields are continuous.

According to Salençon [9], a stress tensor field σ is said to be admissible if it
is both statically admissible (SA, i.e., equilibrium equations, stress vector continu-
ity, and stress boundary conditions are verified) and plastically admissible (PA, i.e.,
f (σ ) ≤ 0, where f (σ ) is the (convex) plasticity criterion of the material). Similarly,
a strain rate tensor field v is admissible if it is kinematically admissible (KA, i.e.,
derived from a piecewise continuous velocity vector field u, with bounded discon-
tinuities [u], such that the velocity boundary conditions are verified) and plastically
admissible (PA, i.e., the associated flow rules (2a), (2b) are verified).

A solution to the LA problem is a pair of fields (σ, v) where σ and v are both
admissible and associated by the normality law. Classically, these solutions can be
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found or approached using two methods. The first one, involving only the stresses
as variables, is the statical (or lower bound) method. The second one, involving only
the displacement velocities as variables, is the classical kinematic (or upper bound)
method.

2.1 The Kinematic Method

Let us assume, as in [9], that the virtual power rate of the external loads Pext can be
written as the scalar product of a loading vector Q, whose components are called
here loading parameters; and a generalized velocity vector q = q(u), the compo-
nents of which are called kinematic parameters. Following [1], let us consider a KA
virtual velocity field u; the virtual power principle (VPP) states that the stress ten-
sor fields σ , the stress vector field T (on the velocity discontinuity surfaces), and
the vector Q are in equilibrium if, for any KA u, the following variational equation
holds:

Pext = Q · q(u) =
∫

V

σ : v dV +
∫

Sd

T · [u]dS. (1)

In (1), V is the volume of the mechanical system, and Sd is the union of the
velocity discontinuity surfaces. The results in terms of Q will be interpreted as a
kinematic bound if, at the appropriate points of V , the variables verify the following
conditions, where u is KA and qd is a fixed value of q(u):

v = λ
∂f

∂σ
, λf (σ ) = 0, λ ≥ 0, f (σ ) ≤ 0; (2a)

[u] = ξ
∂fnt

∂T
, ξfnt (T ) = 0, ξ ≥ 0, fnt (T ) ≤ 0; (2b)

q(u) = qd. (2c)

The criterion fnt (T ) results from the projection of the plasticity criterion f (σ ) on
the Mohr plane, where n is the normal to the element of the velocity discontinu-
ity surface and T = (σnn, σnt ) is the stress vector on this element. More precisely,
fnt (T ) is the solution of the following system:

f (σnn, σtt , σnt ) = 0; ∂f

∂σtt

= 0. (3)

It is worth noting that, if (2a) and (2b) are verified, the quantities σ : v and T · [u]
become the convex unit dissipated powers πV (v) and πd([u]) of LA, respectively,
i.e.:

πV (v) = σ : v; πd

([u]) = T · [u]. (4)
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Fig. 1 The punch problem

2.2 The Statical Method

The set of admissible loadings Q = Q(σ), i.e. which are linearly associated with
SA stress fields σ , forms a convex K in R

n and the n components of Q are called
loading parameters.

Finding the solution of the static LA problem consists in finding an admissible
field σ at the boundary ∂K of K by solving the following optimization problem

Qlim = (
Qd

1 , . . . , λ0Q
d
i , . . . ,Qd

n

)
(5a)

λ0 = max
{
λ,Q(σ) = (

Qd
1 , . . . , λQd

i , . . . ,Qd
n

)}
(5b)

where σ is an admissible stress field and Qd a given admissible loading. This is the
static, or lower bound method of LA that will be used here.

3 Decomposition of the LA Problem

3.1 The Kinematic Problem

For ease of presentation the decomposition of the kinematic problem is illustrated
by applying it to the punch problem (Fig. 1).

A rigid plate, of width b supported by a soil, undergoes a downward motion with
a uniform vertical velocity U0 caused by a vertical force F applied at its center.
Taking symmetry into account, only the left half of the plate, denoted V , is modeled.
The domain V is meshed into 8 × 2 rectangles divided each into four triangles
(Fig. 2). In the sequel, this mesh will be referred to as the target mesh (the mesh
size will be defined by the number of its rectangular cells). The material of the soil
is homogeneous, isotropic and is governed by the von Mises (or Tresca) criterion
with cohesion c or by Coulomb’s law with cohesion c and a friction angle ϕ. At
the soil-plate interface, perfect bonding is assumed. This translates into kinematic
boundary conditions in the soil given by prescribed vertical velocities equal to U0
and zero tangential velocities. The static boundary conditions in the soil in contact
with the plate are defined by unrestricted tangential stresses and by a normal stress
resultant equal to the applied load F .
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Fig. 2 Target mesh for
domain V

The limit analysis problem associated with the load F applied to the soil domain
V , discretized according to the target mesh, will be called the target problem and
denoted P . It is defined by a unique loading parameter Q = F

bc
associated with the

kinematic parameter qd = U0.

3.1.1 The Starting Problem

The decomposition procedure is initiated by solving a preliminary problem P0,
called the starting problem, which is small enough in size to be solvable using the
available solution means. This problem is considered exclusively in the first iteration
to provide an initial admissible velocity field for problem P .

A convenient choice for problem P0 consists in replacing the target mesh by a
coarser mesh made of a quarter (4 × 1) of the target number of rectangular cells, as
shown in Fig. 3.

The solution of the starting problem provides an estimate of the velocities uA

and uC at nodes A and C, respectively. The velocity uB at B is deduced by linear
interpolation. These three velocities are collected to form a vector U11 to be used in
writing the boundary conditions for the subproblems in Step 2.

3.1.2 The Second Step

In Step 2 of the first iteration, the domain V is partitioned into 2 sub-domains,
denoted V2i (i = 1,2), bounded by the interface ABC (Fig. 3). To each sub-
domain V2i , meshed into 4 cells, is associated an independent limit analysis sub-
problem denoted P2i . The functional to be minimized in each of these subproblems
is the power dissipated within the corresponding subdomain. The assembly of the
optimal subproblem solutions gives an admissible solution for the target problem P

over the complete domain V . Therefore, the sum of the subproblem powers can be
set equal to FU0. At this Step, the dissipated power is less than or equal to that of the
starting problem. For the solution process to proceed from one iteration to another,
the velocities (U11) at the interface need to be updated. It should be noted that, in
subsequent iterations, Step 2 will be repeated in the same way as presented above.
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Fig. 3 Decomposition flow diagram

3.1.3 The Iterative Process

In subsequent iterations, the aim of the first step, labeled Step 1, is to improve the
values of the velocities at the interface. For this purpose, the domain V is parti-
tioned, without change in the discretization, into different sets of subdomains, de-
noted V1i (Fig. 3), such that the interfaces between subdomains V2i lie in the interior
of subdomains V1i . In an analogous way to Step 2, to each set V1i is associated a LA
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Fig. 4 The two partitions of
the punch problem

subproblem P1i . The velocities U2i (i = 1,2) imposed at the interfaces are provided
from the preceding step. The interface in Step 2 being in the interior of subdomain
V12, solving subproblem P12 allows the interface velocities to evolve. From the sec-
ond iteration onward, all iterations are similar. The iterative process terminates when
the progress in the solution from one iteration to another becomes small.

3.1.4 Partition into Many Subdomains

In general, the domain is partitioned into as many sub-domains as needed to bring
the sub-problem down to a desired size. For instance, in the next section the decom-
position is applied to the punch problem using a five sub-domain partition in Step 1
(Fig. 4).

For the first Step of the second and following iterations, solving only the three
subproblems P12, P13 and P14 is sufficient for updating the interface velocities pre-
viously blocked during Step 2.

3.2 Decomposition of the Static Problem

Using the punch problem again as an example, with a single loading parameter
Q = F

b c
associated with the kinematic parameter qd = U0, the decomposition of

the static problem proceeds in a manner basically similar to the decomposition of
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Fig. 5 Geometric data for
the punch problem

the kinematic problem. In the first iteration, a starting problem P0 is constructed.
The domain V0 associated to problem P0 is discretized into four times fewer finite
elements than the target problem domain V . As shown in Fig. 4, the domain V

is partitioned alternatively into four sub-domains denoted V2i or five sub-domains
denoted V1i . Solving problem P0 constitutes the first step in this first iteration. The
solution of problem P0 provides a statically admissible first approximation of the
stress field, including at the interfaces between sub-domains V2i , as well as a lower
bound for the limit load.

In the second step of the present iteration, stress components at the interfaces,
obtained from the solution of problem P0, are collected into so called interface
stress vectors T1j . The latter will serve in defining the boundary conditions for sub-
problems (P2i ).

To cause changes in the stress field when solving these sub-problems, an alter-
native sub-problem formulation definition is proposed as follows. For each of sub-
problems (P21) to (P23), the cohesion is treated as a variable parameter and solving
problem P2i consists in minimizing the corresponding cohesion subject to static ad-
missibility constraints. This leads to solutions that are plastically admissible with
maximal strength reserve. The solution of problem (P24) provides the load resulting
from the sub-problems of Step 1. The above process is repeated in the subsequent
steps while alternating the domain partitions V1i and V2i .

4 Numerical Results for the Punch Problem

To assess the performance of the decomposition approach in solving the kinematic
problem, the punch problem is solved using the data given in Fig. 5. For a Tresca
soil with cohesion c the exact solution should be identical to that of a punch over
a semi-infinite medium, known to be F/(bc) = π + 2. This is because Prandtl’s
mechanism, which corresponds to the exact solution of the semi-infinite soil, can be
fitted in the selected volume. This allows comparison of results to a known exact
solution.
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Table 1 Kinematic bound F
b c

for the punch problem with a Tresca soil

Mesh Number of
elements

Direct Decomp. (1 iter.)

F/(bc) Accuracy CPU(s) F/(bc) Accuracy CPU(s)

40 × 18 2880 5.1787 3.5 × 10−7 578 5.2681 3.6 × 10−7 15

80 × 36 11520 5.1607 4.4 × 10−7 3595 5.1629 4.6 × 10−7 1985

160 × 72 46080 5.1519 7.1 × 10−7 38211 5.1526 5.5 × 10−7 21912

320 × 144 184320 — — — 5.1476 3.8 × 10−7 184550

Fig. 6 Velocity field in the punched soil. First iteration of the decomposition

4.1 Kinematic Solution

Upper bounds for the punch problem are determined based on different levels of
discretization and using both the direct approach and a single iteration of the decom-
position method for solving the kinematic problem. The decomposition is applied
based on the domain partitions shown in Fig. 4.

The numerical optimization problems arising from the limit analysis (sub)prob-
lems involved in the present example, as well as all subsequent examples treated in
this paper, are all solved using the conic programming code MOSEK [6] and run on
a Mac Pro 3 GHz machine with 12 Gb of RAM.

Table 1 shows the upper bounds obtained for the punch problem based on various
discretizations. In a first series of runs the soil is characterized by a Tresca criterion
with cohesion c = 1. For large mesh size (184 320 elements), the problem can only
be solved using decomposition, giving the upper bound 5.1476 and a relative error
of 0.12 % with respect to the exact solution.

The velocity field resulting from the first iteration is visualized in Fig. 6 for an
80 × 36 mesh (Tresca, c = 1). The failure mechanism can be clearly seen, with the
velocities gradually decreasing downward until they vanish at the substrate. Consid-
ering a soil governed by a Coulomb criterion with the same cohesion c = 1 and a
friction angle ϕ, the upper bound is determined for various friction angles, based on
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Table 2 Kinematic bound
F
b c

for the punch problem
(Coulomb soil, 11520
elements)

ϕ (°) Decomp. it1 Direct Relative err.

0 5.1628 5.1607 0.04 %

5 6.5075 6.5062 0.02 %

10 8.3773 8.3752 0.03 %

15 11.0497 11.043 0.06 %

20 15.1819 15.1621 0.13 %

25 22.3637 22.3236 0.18 %

30 36.6335 36.5231 0.30 %

Fig. 7 Decomposition
iteration history

an 80 × 36 mesh (11 520 finite elements). Table 2 shows the upper bounds obtained
using direct problem solution and using a single iteration of the decomposition for
different values of the friction angle. The relative error of the decomposition result
with respect to the direct solution is less than 0.3 %.

The iteration history displayed in Fig. 7 for the Tresca soil shows that a few
iterations are needed to converge to the target value known from the direct solution.

4.2 Static Solution

The static problem is solved to determine lower bounds for the punch problem
with a Tresca soil. Different mesh sizes are considered. Calculations are carried
out by solving the problem both directly and using one iteration of the decomposi-
tion method based on the same domain partitions as in the kinematic case (Fig. 4).
All (sub)problems are solved using the MOSEK code run on the Mac Pro 3 GHz
machine.

Post analysis verification of constraint violation shows that accuracy of the solu-
tion varies from 10−9 for a 1600 element to 10−5 for a 102400 element mesh. With
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Table 3 Static bound F/bc for punch problem (Tresca soil)

Mesh Number of elem. Decomp. it1 Direct Error/direct Error/theoretical

40 × 10 1600 5.0989 5.1094 0.21 % 0.83 %

80 × 20 6400 5.1185 5.1236 0.1 % 0.45 %

160 × 40 25600 5.1277 5.1329 0.1 % 0.27 %

360 × 80 102400 5.1358 5.1372 0.03 % 0.11 %

720 × 160 409600 5.1387 — — 0.06 %

Fig. 8 Visualization of failure zones in the soil

a 409600 element discretization, the direct solution appears to be impossible using
the same machine with 12 Gb of RAM.

For this run, the decomposition result is within 0.06 % of the theoretical solution
(Table 3). For the 80 × 40 mesh, the decomposition is exceptionally carried out up
to the 18th iteration and the evolution of the failure zone throughout the iterations
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Table 4 Static bounds
(F/(b c)) for the punch
problem (Tresca and
Coulomb)

ϕ (°) Initial Decomp. it1 Direct

0 5.125 5.128 5.133

5 6.462 6.467 6.468

10 8.304 8.308 8.316

15 10.910 10.920 10.928

20 14.884 14.903 14.934

25 21.710 21.759 21.867

30 34.920 35.094 35.402

is visualized in Figs. 8 ((a)–(g)). These figures show the zones where the failure
criterion lies in the narrow range −0.005 to 0. A Prandtl like mechanism is clearly
exhibited as early as the first iteration except in the neighborhood of the interface.
The disturbance in the stress field near the interface is seen to gradually diminish
and eventually vanish. Next, a Coulomb soil is considered and a series of problems
are solved with the same 80×40 mesh and different values of friction angle. Table 4
displays the static bounds for the Tresca and Coulomb criteria with cohesion c = 1
and friction angle ϕ varying from 5 to 30.

It is noted that, as observed with the Tresca criterion, a large improvement in the
bound is achieved at the first iteration for all the tested friction angles.

The iteration history of the lower bound is plotted in Fig. 9 for the Tresca soil
based on an 80 × 40 mesh. It shows that a few iterations only are needed to closely
approach the target solution.

5 Bearing Capacity of Micropile Groups

5.1 Problem Description

The problem addressed in this work is that of a soil, bounded below by a substrate
at depth H , to be reinforced by a group of micropiles, as shown in Fig. 10, with the
purpose of supporting a load F . In the two dimensional representation adopted here
the problem is interpreted as a plane strain one.

The numerical limit analysis (sub)problems are all solved using the same MOSEK

code and Mac Pro machine as in the punch problem example.

5.2 Soil Reinforced with 9 Micropiles

Let us consider the following example of a soil reinforced with 9 micropiles. The
soil is characterized by a Coulomb criterion with a cohesion of 10 kPa and friction



Limit Analysis of a Soil Reinforced by Micropile Group: A Decomposition 191

Fig. 9 Iteration history for
the Tresca criterion

Fig. 10 Soil reinforced by a
micropile group

Table 5 Geometric data of
the reinforced soil (in meters) H h B d Number of micropiles

10 5 24 0.1 9

angle ϕ = 10◦. It is reinforced with micropiles characterized by a Tresca material
with a cohesion of 10 MPa.

The geometry of the problem is summarized in Table 5.
It should be noted that the total load applied to the base is equal to F . Since

the problem is symmetric, only half of the domain is modeled and the load to be
maximized is reduced to F

2 .
Table 6 shows the solutions obtained for different spacings between micropiles

(e in Fig. 10) using the direct approach and the decomposition limited to the first
iteration.

For meshes composed of more than 80.000 triangles for the static approach and
20.000 triangles for the kinematic approach, the MOSEK code fails to give fully
optimal and admissible post-analyzed solutions. Beyond this limit, decomposition
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Table 6 Soil reinforced with 9 micropiles

Spacing (m) Mesh F
2 (kN) Accuracy CPU (s) Relative gap (%)

0.9 direct static 480 × 30 482.21 1.6 × 10−7 106 39.69

kinem. 480 × 10 673.58 0.004 188

decomp. static 960 × 60 486.23 3.4 × 10−5 780 16.33

kinem. 480 × 40 565.64 7.2 × 10−5 2227

0.7 direct static 480 × 30 398.75 8.8 × 10−8 119 49.02

kinem. 480 × 10 594.20 7.9 × 10−5 203

decomp. static 960 × 60 403.27 1.6 × 10−4 1043 20.46

kinem. 480 × 40 485.79 9.3 × 10−4 2637

0.5 direct static 480 × 30 322.39 5.4 × 10−8 131 41.34

kinem. 480 × 10 455.68 9.2 × 10−4 207

decomp. static 960 × 60 325.56 4.5 × 10−5 980 16.98

kinem. 480 × 40 380.84 5.2 × 10−5 1672

0.3 direct static 480 × 30 247.13 1.8 × 10−8 99 31.17

kinem. 480 × 10 324.15 7.1 × 10−6 99

decomp. static 960 × 60 249.32 3.4 × 10−5 757 11.51

kinem. 480 × 40 278.01 2.7 × 10−5 1474

Fig. 11 Bounds for direct
approach and decomposition

using 4-sub-domain partitions still converges using up to 300.000 triangles for the
static approach and 80.000 triangles for the kinematic approach.

Decomposition has made possible a reduction by half of the gap between the
upper and the lower bounds relative to the static bound with some improvement in
the quality of the kinematic solution.

Figure 11 shows that the gap between static and kinematic bounds increases with
spacing between micropiles.

Visualization of the failure zone (failure criterion) shows that the failure mech-
anism varies with spacing. For small spacing (Fig. 13), the failure zone in the soil
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Fig. 12 Failure zone for 0.9 m spacing

Fig. 13 Failure zone for 0.3 m spacing

is limited to the lower third of the reinforced zone, whereas for a 0.9 m spacing
(Fig. 12), the failure zone covers two thirds of the depth of the reinforced zone.

5.3 Soil Reinforced by 17 Micropiles

In this example a Tresca soil with cohesion c = 10 kPa is reinforced with 17 mi-
cropiles made out of a Tresca material with cohesion c = 5000 kPa. The geometric
data of the problem are given in Table 7.

Consider target problems modeled with an 800× 16 mesh for the static approach
and an 800 × 24 mesh for the kinematic approach. The solutions of all subproblems
of the first iteration of the decomposition algorithm are reported in Table 8. In the
static problem, the sub-problems (P21), (P22) and (P23) need not be treated if the
process is to be terminated at the first iteration. Their actual involvement in the



194 Z. Kammoun et al.

Table 7 Geometric data for a
soil reinforced with 17
micropiles

H h B d e

20 15 80 0.2 0.8

Table 8 Bounds for bearing capacity of soil reinforced with 17 micropiles (Coarse discretization)

Sub-probl. Q = F
2 (kN) Accuracy CPU (s)

Stat. kinem. Stat. kinem. Stat. kinem.

0 736.2 1142.8 1.0 × 10−6 2.3 × 10−5 23 1169

11 – 1.6 4.7 × 10−7 2.2 × 10−6 49 1533

12 – 82.2 4.3 × 10−7 5.7 × 10−6 48 148

13 – 290.3 9.1 × 10−6 6.7 × 10−6 33 1878

14 781.7 709.6 6.1 × 10−5 6.1 × 10−5 32 1909

1st it. 781.7 1083.8 6.1 × 10−5 6.1 × 10−5 183 6636

process begins at the second iteration because the associated sub-domains are not
directly subjected to the applied load.

Conducting a single iteration of the decomposition algorithm, the relative differ-
ence between upper and lower bounds decreases from 55.23 % to 38.64 %.

Further improvement in the upper and lower bounds requires finer discretization,
which leads to problem size that cannot be handled using the same domain parti-
tions. A decomposition into smaller sub-domains would be needed to solve such a
large problem. Using a finer partition, say with 9 (resp. 8) subdomains in Step 1
(resp. Step 2), the decomposition can be carried out at a single level, similarly to the
example with 5 (resp. 4) subdomains. An alternative strategy is a multilevel scheme
where each subproblem at one level of the decomposition is solved recursively by
another level decomposition.

6 Conclusion

Rational sizing of soil reinforcement by micropile groups requires proper modeling
of the soil-micropile system. Numerical methods for limit analysis are suitable for
handling the geometric and behavioral complexities of the soil-micropiles system,
however, they give rise to large size numerical nonlinear optimization problems. In
the presented work, the decomposition approach has been adapted to the case of
a Coulomb soil. Furthermore, for a Tresca as well as a Coulomb soil, the decom-
position made it possible to solve larger problems than the direct method would
allow, using the same machine. This led to an improvement of the lower and upper
bounds for the bearing capacity of a soil reinforced by micropile groups. The gap
between upper and lower bounds has been reduced by half compared to the best
possible direct solution. The success of the decomposition method paves the way
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to the treatment of the three dimensional problem which allows a far more realistic
representation of the real soil-micropile system.
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