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Foreword

To determine limit loads for structures and structural elements operating beyond
the elastic limit is since ever one of the most important tasks of engineers. For
this purpose, “Direct Methods”, embracing Limit Load and Shakedown Analysis,
play an increasing role due to the fact that they allow rapid access to the requested
information in mathematically constructive manners.

This book reports on recent progress in this exciting field of research and is the
outcome of an international workshop dedicated to this subject held at the University
of Sciences and Technology of Lille in October 2009. This event gathered about 30
scientists from 6 countries and was a follow-up of a similar meeting at Aachen
University of Technology in November 2007.

The contributions in this book stem in particular from the areas of new numer-
ical developments rendering the methods more attractive for industrial design, ex-
tensions of the general methodology to new horizons of application, probabilistic
approaches and concrete technological applications.

The papers are arranged according to the order of the presentations in the work-
shop and give an excellent insight into state-of-the-art developments in this broad
and growing field of research.

We warmly thank all the scientists, who have contributed by their outstanding
contributions to the quality of this edition. Special thanks go to Géry de Saxcé,
Abdelbacet Oueslati, Eric Charkaluk and Jean-Bernard Tritsch for their great work
in editing this book and putting together the manuscript to its final shape. We hope
you may enjoy reading this book!

A. Ponter
D. Weichert

Leicester, UK
Aachen, Germany
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The Ratchet Limit—A Coupled Dual
Minimisation Problem

Alan R.S. Ponter

Abstract Ponter and Chen have developed methods for the evaluating of the shake-
down limit and ratchet limit for a elastic-perfectly plastic body subjected to cyclic
thermal and mechanical loading. The procedure, the Linear Matching Method, was
derived from a general minimum theorem and a minimisation process based on
the solution of a sequence of linear problems with spatially varying linear moduli.
In this paper the fundamentals of these methods are readdressed for elastic/perfect
plasticity with two objectives in mind; the first to provide a more general approach
for wider classes of problems and potential procedures, and the second to discuss
existing methods within this more general context. A von Mises yield condition is
assumed. This results in a dual coupled minimisation process. The method is illus-
trated by the solution of the Bree problem. Issues of convergence are discussed.

1 Introduction

Ponter et al. [1, 2] and Ponter and Chen [3, 4] developed methods for the evaluating
the shakedown limit and ratchet limit for a elastic-perfectly plastic body subjected to
cyclic thermal and mechanical loading. The procedure was derived upon a general
minimum theorem and a minimisation process based on the solution of a sequence
of linear problems with spatially varying linear moduli. For each linear problem,
conditions of compatibility and equilibrium are satisfied and convergence to the
cyclic state corresponding to each limit was achieved by iteratively matching the
material properties so that the objective functional was reduced. The derivation for
the ratchet limit was restricted to problems with two distinct extremes of the linearly
elastic stress history with an additional constant load [4].

These methods, termed Linear Matching Methods, have been extensively applied
to problems involving thermo mechanical loading and, through various adaptations,
extended to the calculation required for the stages of the UK structure life assess-
ment method R5 [5, 6], including extensions to high temperature creep problems.

A.R.S. Ponter (�)
University of Leicester, Leicester, UK
e-mail: asp@le.ac.uk

G. Saxcé et al. (eds.), Limit State of Materials and Structures,
DOI 10.1007/978-94-007-5425-6_1, © Springer Science+Business Media Dordrecht 2013
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2 A.R.S. Ponter

In this paper the fundamentals of these methods are readdressed for elas-
tic/perfect plasticity with two objectives in mind. The first is to provide a more
general approach for wider classes of problems and potential procedures. The sec-
ond objective is to discuss existing method within this more general context. A von
Mises yield condition is assumed and the main emphasis of the paper is on methods
for the ratchet limit.

An elastic perfectly plastic body is capable of exhibiting a range of modes of
behaviour, elastic behaviour, shakedown, reverse plasticity (or plastic accommoda-
tion), ratcheting and plastic collapse. Within the ranges of loading corresponding
to each of these modes, the plastic strain rate history has certain well defined kine-
matic properties. At the interface between these ranges, the kinematic properties are
a combination of those found in the adjacent regions. Irrespective of the mode of
behaviour, the cyclic state has the property of minimising a certain objective func-
tional [3].

The approach adopted in this paper first defines the classes of kinematic histories
that correspond to the shakedown, ratchet and collapse limits. The kinematic his-
tories are further subdivided, for the ratchet limit, into components that correspond
to either reverse plasticity (no displacement growth) or ratcheting (displacement
growth). The objective function may then be minimised for each of the defined
kinematics classes and hence the characteristics corresponding to each boundary.
The minimisation process is achieved by the Linear Matching Method as described
by Ponter and Chen [3, 4]. For the ratcheting limit this defines a coupled dual min-
imisation problem.

A theory is developed for an arbitrary history of load and temperature scaled
by a single load parameter. The special case of a combination of a variable load
and a constant load is then considered, recovering earlier results. The method is
demonstrated through the classic Bree problem and questions of convergence are
considered.

2 The General Cyclic Problem

Consider a body with volume V with surface S. Within V a cyclic history of tem-
perature λθ(xi, t) occurs within a typical cycle 0 ≤ t ≤ �t . Over ST , part of S, a
cyclic history of load λPi(xi, t) is applied. Here λ denotes a scalar load multiplier.
Over the remainder of S, Su, zero displacements are maintained. Hence we are con-
cerned with a class of loading histories defined by the magnitude of λ. The material
is elastic, perfectly plastic. The von Mises yield condition f (σij )= σ̄ (σij )−σy = 0
is assumed, where σ̄ denotes the von Mises effective stress and σy is the uniaxial
yield stress. An associated flow rule is also assumed. An arbitrary asymptotic cyclic
history is of the form;

σij = λσ̂ij + ρ̄ij + ρr
ij (1)
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Table 1 Cyclic variables and
their relationships 0≤ t ≤�t typical cycle

λ—load multiplier

λσ̂ij —linear elastic solution 0≤ t ≤�t

ρ̄ij —constant residual stress field ε̄′Tij = (1/2μ)ρ̄′kl + ε̄
′p
ij

ε̄T
kk = (1/3K)ρ̄kk

ρr
ij —varying residual stress field

ε̇′rTij = (1/2μ)ρ̇′rkl + ε̇
′pr
ij and ε̇rT

kk = (1/3K)ρ̇r
kk

ε
p
ij = ε̄

p
ij + ε

pr
ij total plastic strain

ρr
ij (0)= ρr

ij (�t)

�ε
pr
ij =

∫ �t

0 ε̇
pr
ij dt compatible with �u

p
i , the ratchet

displacement/cycle

where λσ̂ij denotes the linear elastic solution, ρ̄ij denote the residual stress field
at the beginning and end of the cycle and ρr

ij the deviation from this initial value,
where ρr

ij (0)= ρr
ij (�t).

The corresponding plastic strain history is given by;

ε
p
ij = ε̄

p
ij + ε

pr
ij (2)

where ε̄
p
ij denotes the plastic strain at the beginning of the cycle and ε

pr
ij denotes the

variation from this value during the cycle. The relationships between these quanti-
ties is given in Table 1 where μ and K denotes the (isotropic) linear elastic shear
modulus and bulk modulus respectively, assumed temperature independent. Note
that the dash, e.g. ρ′ij , denotes the deviatoric component.

The primary variable in the following discussion is the variation of the plastic
strain rate during the cycle ε̇

pr
ij . Although this strain rate generally does not sat-

isfy compatibility equations, the accumulation over the cycle �ε
pr
ij =

∫ �t

0 ε̇
pr
ij dt is

compatible with a displacement increment �u
p
i , the ratchet displacement.

3 Kinematic Minimum Theorem

The cyclic solution can be characterised by the following minimum theorem in
terms of the plastic strain rate history ε̇

pr
ij [3]. A kinematically admissible plastic

strain rate history ε̇c
ij is defined as any strain rate history, generally not compatible,

that accumulates over the cycle to an increment of strain �εc
ij =

∫ �t

0 ε̇c
ij dt compat-

ible with a displacement increment �uc
i which is zero over Su. With this definition,

the following functional is minimised by the cyclic solution;

I
(
ε̇c
ij , λ

)=
∫

V

∫ �t

0

{
σ c

ij −
(
λσ̂ij + ρc

ij + ρ̄c
ij

)}
ε̇c
ij dtdV ≥ I

(
ε̇
pr
ij , λ

)= 0 (3)
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Fig. 1 Schematic of load interaction diagram showing regions characterised by the form of the
cyclic strain rate history

The residual stress history ρc
ij is derived from ε̇c

ij through the relationships

ε̇′cTij = (1/2μ)ρ̇′cij + ε̇′cij , ε̇cT
kk = (1/3K)ρ̇c

kk and ρc
ij (0)= 0 (4)

where ε̇cT
ij is a compatible strain rate history. Here σ c

ij denotes the stress at yield
associated with ε̇c

ij . A further condition requires that the constant residual stress
field ρ̄c

ij satisfies the condition,

f
(
λσ̂ij + ρc

ij + ρ̄c
ij

)≤ 0 (5)

for 0≤ t ≤�t . Note that ρ̄c
ij may be eliminated from I (ε̇c

ij , λ), (3), due to the com-
patibility of the �εc

ij [3].

4 The Cyclic Histories

It is useful to consider a problem with two distinct load histories each of which may
involve load and temperature changes, referred to as load history 1 and 2. Hence a
particular load history can be considered as a point in an interaction diagram de-
fined by the proportion of the two histories and the linear scaling factor λ as shown
schematically in Fig. 1. For fixed proportions of the load histories and increasing λ

a radial line is described. As λ increases the load point will pass through regions
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of the diagram where distinct modes of behaviour occur, bounded by values of λ

that define limits of behaviour. The behaviour within each of these regions is char-
acterised by the following properties of the steady state cyclic stress and strain rate
fields;

E—Elastic 0≤ λ≤ λE f (λσ̂ij )≤ 0 ε̇
pr
ij = 0 (6)

S—Shakedown λE ≤ λ≤ λS f (λσ̂ij + ρ̄ij )≤ 0 ε̇
pr
ij = 0 (7)

P —Reverse Plasticity λS ≤ λ≤ λR f (λσ̂ij + ρ̄ij + ρr
ij )≤ 0 ε̇

pr
ij �= 0

�ε
pr
ij =

∫ �t

0
ε̇
pr
ij dt = 0 (8)

R—Ratcheting λR ≤ λ≤ λC f (λσ̂ij + ρ̄ij + ρr
ij )≤ 0 ε̇

pr
ij �= 0

�ε
pr
ij =

∫ �t

0
ε̇
pr
ij dt compatible with �u

pr
ij �= 0 (9)

C—Collapse λ= λC, �ε
pr
ij compatible with �u

pr
ij at an instant

during the cycle (10)

5 Kinematic Conditions at the Plasticity Limits

The limits, therefore, form the interface between these regions where the properties
of the cyclic state share those of adjacent regions. Hence the cyclic state has the
properties of lower values of λ but gathers infinitesimally properties of the region
for higher values of λ.

Shakedown Limit At this limit the stress history possesses the properties of the
shakedown region, i.e. σ s

ij = λσ̂ij + ρ̄ij , f (σ s
ij )≤ 0 and but there exists an infinites-

imal kinematically admissible strain rate ε̇
pr
ij history that makes no contribution to

the residual stress history.

Ratchet Limit Similarly at the ratchet limit the stress history has the form
σR

ij = λσ̂ij + ρ̄ij + ρ1r
ij , where ρ1r

ij arises from ε̇
p1r
ij which satisfies

∫ �t

0 ε̇
p1r
ij dt =

�ε
p1r
ij = 0. In addition there is an infinitesimal additional strain rate history ε̇

p2r
ij ,

(i.e. ε̇
pr
ij = ε̇

p1r
ij + ε̇

p2r
ij ), that gives rise to a ratchet displacement but makes no con-

tribution to the residual stress field.

Collapse Limit At the collapse limit there exists an increment of plastic train
�ε

pr
ij compatible with �u

pr
ij at an instant during the cycle. This limit will not be

discussed further in this paper.
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The strategy for identifying each of these limits consists of defining an appro-
priate class of kinematically admissible strain rate histories ε̇c

ij then defining a cor-
responding minimising process for I (ε̇c

ij , λ). In the next section the processes for
minimisation of I (ε̇c

ij , λ) is discusses and this is followed by the application to each
of the limits.

6 Minimisation Processes

Consider the incremental form of the functional I (λ, ε̇c
ij ), where ε̇c

ij is replaced by

a sequence of increments of strain �εl
ij occurring at a sequence of n times tl , l = 1

to n, during the cycle;

I
(
λ,�εl

ij

)=
∑

l

�Il,

�Ii =
∫

V

{
σ l

ij −
(
λσ̂ij (tl)+ ρl

ij (tl)+ ρ̄ij

)}
�εl

ij dV

(11)

where

ρl
ij (tl)=

l∑

m=1

�ρm
ij (tm),

�ε′T m
ij = 1

2μ
�ρ′mij +�ε′mij and �εT m

kk =
1

3K
�ρm

kk

(12)

Strategies for evaluating the limits, discussed in the next section, relies upon
strategies for incrementally reducing the functional I (λ,�εl

ij ). Beginning with

a set of plastic strain increments �εlk
ij the objective is to determine a new set

�ε
l(k+1)
ij such that I (λ,�ε

l(k+1)
ij )≤ I (λ,�εlk

ij ). However, practically, this may only

be achieved by disconnecting the relationship between �εl
ij and ρl

ij (tl) as the later
depends on the sum of the increments of residual stress prior to time t = tl ; it is not
possible to evaluate a sequence of residual stress and strain increments simultane-
ously. Hence two distinct minimisation processes are considered:

Global Minimisation: The minimisation of I (λ,�εl
ij ) =

∑
l �Il with respect to

�εl
ij , assuming that ρl

ij is known.
Incremental Minimisation: The minimisation of �Im with respect to �εm

ij assum-

ing ρm−1
ij + ρ̄ij is known.

The global minimisation of I (λ,�εl
ij ) makes use of the compatibility of the sum

of the increments of plastic strain over the cycle, whereas the minimisation of incre-
ments assumes the prior history of the residual stress is known and compatibility of
the total strain (elastic and plastic) in the increment is used. Each processes relies on



The Ratchet Limit—A Coupled Dual Minimisation Problem 7

a Linear Matching Method, the replacement of the non-linear plasticity behaviour
by linear behaviour, resulting in the solution of a linear problem that generates a
solution that lowers the value of either I (λ,�εl

ij ) or �Im.

7 Global Minimisation

A set of increments �εlk
ij are assumed known. A linear material is defined so that

linear shear modulus μ̄lk ensures that the resulting deviatoric stress is at yield i.e.

2

3
μ̄lkε̄

(
�εlk

ij

)= σy (13)

where ε̄ denotes the von Mises effective strain. A set of linear incremental relation-
ships are then defined by

�ε
l(k+1)
ij = 1

2μ̄lk

[(
λσ̂ ′ij (tl)+ ρ′kij (tl)

)+ ρ̄
(k+1)
ij

]
�ε

l(k+1)
kk = 0 (14)

where ρ′kij (t) is assumed to be known and ρ̄
(k+1)
ij is a residual stress field that remains

constant during the cycle. Summing over the cycle produces a relationship between
the compatible strain �ε

(k+1)
ij =∑l �ε

l(k+1)
ij and the constant residual stress ρ̄

(k+1)
ij

with an initial stress state;

�ε
(k+1)
ij = 1

2μ̄k

[
σ initial

ij + ρ̄
(k+1)
ij

]
�ε

(k+1)
kk = 0 (15)

where

1

μ̄k
=
∑

l

1

μ̄lk
and

σ initial
ij

μ̄k
=
∑

l

(λσ̂ ′ij (tl)+ ρ′kij (tl))

μ̄lk
(16)

The solution of the continuum problem corresponding to Eq. (16) has the prop-
erty that I (�ε

l(k+1)
ij , λ)≤ I (�εlk

ij , λ). The formal proof is given in [3] for the case

of ρ′kij (t) = 0, but, as ρ′kij (t) is assumed to be known, the extension to the present
case is trivial.

8 Incremental Minimisation

In this case, we begin, as before, with an initial strain increment �εlk
ij and a linear

modulus defined by 2
3 μ̄lkε̄(�εlk

ij ) = σy . An incremental linear equation is defined
by Eq. (12);

�ε
′T l(k+1)
ij = 1

2μ
�ρ
′l(k+1)
ij +�ε

′l(k+1)
ij (17)
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where �ε
′l(k+1)
ij = 1

2μ̄lk (λσ̂ (tl)+ ρ′lkij + ρ̄k
ij +�ρ

′l(k+1)
ij )

i.e.

�ε
′T l(k+1)
ij =

(
1

2μ
+ 1

2μ̄lk

)

�ρ
′l(k+1)
ij + 1

2μ̄lk

(
λσ̂ (tl)+ ρ′lkij (tl)+ ρ̄k

ij

)
and

�ε
T l(k+1)
kk = 1

3K
�ρ

l(k+1)
kk

(18)

Again this defines a soluble continuum problem as �ε
T l(k+1)
ij is compatible and

�ρ
l(k+1)
ij is an equilibrium residual stress field. The property of this solution is that

�Il(λ,�ε
l(k+1)
ij )≤�Il(λ,�εlk

ij ), assuming that (ρ′lkij (tl)+ ρ̄k
ij ) is known.

9 Evaluation of the Elastic and Shakedown Limits

The definition of the kinematic properties of the strain history and the minimisation
process now allows the development of processes capable of evaluating each of the
plasticity limits.

Elastic Limit At the interface λ = λE,f (λσ̂ij ) ≤ 0 for a maximum value of λ

and no further properties are required.

Shakedown Limit Approaching the interface λ = λS from the shakedown re-
gion S, f (λσ̂ij + ρ̄ij ) ≤ 0 and ε̇

pr
ij = 0. However, approaching λ= λS from either

the ratcheting region R or reverse plasticity region P, there exists a finite ε̇
pr
ij which

becomes infinitesimally small in the limit when λ = λS i.e. ρ̇r
ij = 0. Hence at the

boundary λ= λS we consider a class of kinematically admissible strain rate histo-
ries so that ρc

ij = 0 and ε̇c
ij is infinitesimally small. Hence with ρ̄c

ij eliminated and

λ= λS inequality (3) becomes,

I
(
ε̇c
ij , λ

S
)=

∫

V

∫ �t

0

{
σ c

ij − λSσ̂ij

}
ε̇c
ij dtdV ≥ I

(
ε̇
pS
ij , λS

)= 0 (19)

i.e.

λS ≤
∫
V

∫ �t

0 σ c
ij ε̇

c
ij dtdV

∫
V

∫ �t

0 σ̂ij ε̇
c
ij dtdV

= λS
UB (20)

Equation (20) can be recognised as the upper bound to the shakedown limit.
An alternatively expression of this property allows us to connect the upper bound
shakedown value to the minimisation process [2]. If there are two kinematically
admissible strain rate histories, ε̇

c(k+1)
ij and ε̇ck

ij such that,

I
(
ε̇
c(k+1)
ij , λSk

UB

)≤ I
(
ε̇ck
ij , λ

Sk)
UB

)
(21)
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then

λ
S(k+1)
UB ≤ λSk

UB (22)

where λ
S(k+1)
UB and λSk

UB are the upper bounds (20) associated with ε̇
c(k+1)
ij and ε̇ck

ij ,
respectively. Hence in the discrete form, the global minimisation process, may be
used to produce a monotonically reducing sequence of upper bound to the shake-
down limit by, at each stage identifying λ with the upper bound from current solu-
tion. This method was originally discussed in [2] and has been extensive applied in
the literature.

10 Evaluation of the Ratchet Limit—A Dual Coupled
Minimisation Process

Approaching λ= λR from the reverse plasticity region P f (λσ̂ij+ ρ̄ij+ρr
ij )≤ 0 and

there exists a finite ε̇
pr
ij = ε̇

p1
ij so that

∫ �t

0 ε̇
p1
ij dt = 0. However when the boundary

λ= λR is approached from the ratchet region there exists in the limit an additional
infinitesimal ε̇

pr
ij = ε̇

p2
ij so that

∫ �t

0 ε̇
p2
ij dt =�ε

p2
ij where �ε

p2
ij is compatible with

�u
p2
i , a non-zero ratchet mechanism. Hence ε̇

pr
ij = ε̇

p1
ij + ε̇

p2
ij , and the associated

cyclic stress history is of the form σij = λσ̂ij + ρ̄ij + ρr1
ij where ρr1

ij is the changing

residual stress field arising only from ε̇
pr
ij = ε̇

p1
ij .

The kinematically admissible strain rate history is, therefore, subdivided into a
finite and additional infinitesimal parts ε̇c

ij = ε̇c1
ij + ε̇c2

ij with the properties;

ε̇c1
ij finite and

∫ �t

0
ε̇c1
ij dt = 0 (23)

ε̇c2
ij infinitesimal and

∫ �t

0
ε̇c2
ij dt =�εc2

ij compatible with �uc2
i . (24)

Similarly

I
(
ε̇c
ij , λ

)= I 1(ε̇c1
ij , λ

)+ I 2(ε̇c2
ij , λ

)
(25)

where

I 1(ε̇c
ij , λ

)=
∫

V

∫ �t

0

{
σ c1

ij −
(
λσ̂ij + ρc1

ij + ρ̄c
ij

)}
ε̇c1
ij dtdV (26)

ε̇′cT 1
ij = (1/2μ)ρ̇′c1

kl + ε̇′c1
ij and ε̇cT 1

kk = (1/3K)ρ̇c1
kk (27)

and

I 2(ε̇c2
ij , λ

)=
∫

V

∫ �t

0

{
σ c2

ij −
(
λσ̂ij + ρc1

ij + ρ̄c
ij

)}
ε̇c2
ij dtdV (28)
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where σ c2
ij = σ c1

ij at those instants when both ε̇c1
ij and ε̇c2

ij occur at the same material
point.

This poses a dual coupled minimisation problem for I 1 and I 2 where the co-
incident minima correspond to the same value of λ = λR . The dual problems are
coupled through the residual stress field ρc1

ij arising from the finite reverse plastic-

ity mechanism ε̇c1
ij , the initial residual stress field ρ̄c

ij and also the associated yield

stresses σ c1
ij and σ c2

ij . This process can be subdivided into two phases. The first is

the minimising of the increments of I 1 to generate ρ̇c1
ij for constant λ, assuming ρ̄c

ij

is known, and the second a global minimisation of I 2 to generate ρ̄c
ij , assuming ρ̇c1

ij

is known. At each stage an upper bound on λ is evaluated. This is described in detail
in the following sections for n= 3 in the incremental form.

10.1 Phase 1—Minimisation of I 1 for Constant λ

Consider the case of three instants during the cycle. In the following, the superscript
1 is dropped and the remaining superscripts correspond to the instant in the cycle
l = 1,2,3 and the iteration numbers k and k + 1. The Linear Matching equations
(17) and (18) are given for the kth iteration by;

l = 1

�ε
′(k+1)1
ij = 1

2μ
�ρ
′(k+1)1
ij + 1

2μ̄1k

(
λσ̂ij (t1)+�ρ

(k+1)1
ij + ρ̄k

ij

)′

�ε
(k+1)1
kk = 1

3K
�ρ

(k+1)1
kk

(29)

l = 2

�ε
′(k+1)2
ij = 1

2μ
�ρ
′(k+1)2
ij + 1

2μ̄2k

(
λσ̂ij (t2)+�ρ

(k+1)1
ij

+�ρ
(k+1)2
ij + ρ̄k

ij

)′ (30)

�ε
(k+1)2
kk = 1

3K
�ρ

(k+1)2
kk

l = 3

�ε
′(k+1)3
ij = 1

2μ
�ρ′k3

ij +
1

2μ̄3k

(
λσ̂ij (t2)+�ρ

(k+1)1
ij +�ρ

(k+1)2
ij

+�ρ
(k+1)3
ij + ρ̄k

ij

)′ (31)

�ε
(k+1)3
kk = 1

3K
�ρ

(k+1)3
kk

with

0=�ρ
(k+1)1
ij +�ρ

(k+1)2
ij +�ρ

(k+1)3
ij (32)
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and

0=�ε
(k+1)1
ij +�ε

(k+1)2
ij +�ε

(k+1)3
ij (33)

The linear shear moduli μkl = 3σy/2ε̄(�εkl
ij ) are generated from �εkl

ij , the strain
increments from the previous iteration. The sequence of Eqs. (29) to (33) are solu-
ble, sequentially, when ρ̄k

ij has been defined. Note that a set of solutions generated

by a particular ρ̄k
ij does not necessarily satisfy the cyclic conditions (32) and (33).

However, in certain conditions Eq. (32) may be used to simplify the procedure.
Consider the case n= 2. In this case �ρk1

ij =−�ρk2
ij and the equations for l = 1

and l = 2 reduces to the single equation;

�ε
(k+1)1
ij = 1

2μ
�ρ

(k+1)1
ij + 1

2μk1

(
λ
[
σ̂ij (t2)− σ̂ij (t1)

]+�ρ
(k+1)1
ij

)

�ε
(k+1)1
kk = 1

3K
�ρ

(k+1)1
kk and μk1 = 3(2σy)/2ε̄

(
�ε

(k−1)1
ij

)
(34)

Note that Eqs. (34) are independent of ρ̄k
ij and may be solved directly for a pre-

scribed λ. This case was first discussed by Chen and Ponter [4].

10.2 Phase 2—Global Minimisation of I 2

In the following argument we use the form of I 2 with ρ̄k
ij removed. The minimisa-

tion of I 2 is required for prescribed λ;

I 2 =
∫

V

∑

l

{
σ l2

ij −
(
λσ̂ij (tl)+ ρl1

ij (tl)
)}

�εl2
ij dV ≥ 0 (35)

Note that �εc2
ij =

∑
l �εl2

ij forms a ratchet mechanism, i.e. �εc2
ij is compatible with

a non-zero displacement increment �uc2
i . For an arbitrary �εl2

ij (35) gives the fol-
lowing upper bound on any allowable λ,

λ≤
∫
V

∑
l σ

l2
ij �εl2

ij dV
∫
V

∑
l(λσ̂ij (tl)+ ρl1

ij (tl))�εl2
ij dV

= λR
UB

(
�εl2

ij , ρl1
ij (tl)

)
(36)

where λR
UB(�εl2

ij , ρl1
ij (tl)) is an upper bound on the smallest value of λ for which

there exists a constant residual stress field ρ̄ij so that f (λσ̂ij + ρ̄ij + ρ1
ij )≤ 0. Note

that λR
UB is not necessarily an upper bound on the ratchet limit itself, except when

ρ1
ij is the correct changing residual stress field.

For a known ρl1
ij (tl), global minimisation is carried out by the procedure dis-

cussed in Sect. 7 with a significant adaptation. It is necessary to eliminate the pos-
sibility of a reverse plasticity mechanism occurring. This is achieved by assuming
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Fig. 2 Schematic
representation of the choice
of time instant during the
cycle associated with the
ratchet mechanism

that at each point in the body the increment of compatible strain occurs at single
instance. This instance is identified as tj so that,

{
σ 2

ij −
(
λσ̂ij (tj )+ ρl1

ij (tj )
)}

�ε2
ij ≤

{
σ 2

ij −
(
λσ̂ij (tl)+ ρl1

ij (tl)
)}

�ε2
ij

l = 1,2, . . . , n (37)

This ensures that the resultant mechanism is a ratchet mechanism and that the upper
bound (36) is minimised. This construction is shown schematically in Fig. 2. It is
possible to show that this procedure includes the exact cyclic solution.

11 Evaluation of the Ratchet Limit—Two Extremes

For n = 2, incremental minimisation reduces to the solution of a single problem
for �ρk1

ij = −�ρk2
ij , Eqs. (34), which is independent of ρ̄ij . For a certain class of

problems it is possible to define two independent stages. Consider the case where
the loading history consists of a prescribed history defined by a load parameter λ,
with an additional constant load λP Pi . In this case the global minimisation becomes
a shakedown problem for the unknown load parameter λP . This is the method dis-
cussed by Ponter and Chen [4] and has been extensive applied to practical problems
in structural integrity.

12 Evaluation of the Ratchet Limit—Coupled Minimisation

In the general case the incremental and global minimisation processes are inter-
dependent. Consider the case of n = 3, Eqs. (29) to (31) of phase 1. For fixed
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λ, �ρ
(k+1)1
ij , �ρ

(k+1)1
ij and �ρ

(k+1)1
ij can be evaluated by sequential solution of

these equations only if ρ̄k
ij is known. Similarly phase (2), global minimisation, may

be used to evaluate ρ̄k
ij if the �ρkl

ij are known, by the solution of Eqs. (13), (15)
and (16). Hence a convergent procedure requires iteration between phase (1) and
phase (2). The following methodology is proposed;

(1) Phase (2): An initial value of distribution ρ̄0
ij is evaluated from Eq. (13), (15)

and (16) assuming �ρl
ij = 0, an arbitrary value of λ0 and for arbitrary constant

values of μ̄0l = μ̄0. This gives an initial distribution of ρ̄0
ij expressed in terms

of the average of the elastic solutions.
(2) Phase (1): Equations (29) to (31) are solved sequentially for these initial choices

λ0, μ̄0l = μ̄0 and ρ̄0
ij , generating solutions �ρ1l

ij and �ε1l
ij .

(3) Phase (2): Equations (13), (15) and (16) are now solved for ρ̄1
ij and �ε2l

ij with

λ1 = λR
UB(ρ̄1

ij ,�ε2l
ij ) evaluated from Eq. (36).

(4) Phase (1) is now repeated with λ= λ1′ , ρ̄1
ij and μ1l derived from �ε1l

ij .

(5) Phase (2) is repeated to evaluate ρ̄2
ij ,�ε2l

ij and λ2′ .

Stages (4) and (5) are repeated to convergence. The process may be varied by
repeating phase (1) n1 times at constant λ′, followed by n2 repeats of phase (2)
where λ′ is updated for each repeat. An entire cycle of phase (1) and phase (2) then
consists of n1 linear solutions of phase (1) and n2 linear solutions of phase (2).

13 Numerical Examples

13.1 Cylindrical Tube with Circumferential Crack, Two Extremes

Of the many problems solved by this simplified process discussed in Sect. 11, a class
of particular interest involves bodies with cracks subjected to variable temperature
and constant load. The elastic stress fields have singularities at the crack tip in the
exact solution. Hence no elastic or shakedown region exists and the primary limit of
interest is the ratchet limit. For all loads below the ratchet limit, regions of reverse
plasticity exist.

Figure 3 shows an example of such a problem [7] where a cylindrical tube is sub-
jected to a constant average axial stress σp and a radial temperature field that varies
between a uniform temperature and a temperature difference of �θ . A circumfer-
ential part-through-thickness crack of depth a penetrates into the tube thickness w

from the inner surface. The thermal loading is characterised by σt , the maximum
von Mises effective value of the thermo-elastic stress away from the crack, i.e. the
value associated with a crack free cylinder. The resulting interaction diagram is
shown in Fig. 4 where converged values of the ratchet boundary are shown, cal-
culated for a range of values of σt/σy (phase 1) and associated values of σp/σy

(phase 2). The ratchet boundary is shown for a range of crack length, including the
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Fig. 3 A cylinder is
subjected to an axial constant
stress σp and a
through-thickness varying
temperature distribution,
varying between a uniform
temperature θ0 and a
temperature difference of �θ .
A circumferential crack of
length a penetrates from the
inner surface of the cylinder

Fig. 4 Ratchet boundaries
for the problem of (3) for a
range of normalised crack
lengths w/a

ratchet boundary for a crack free tube. For a very short crack, the stress σp at the
ratchet boundary is changed roughly proportionately. When the crack depth reaches
a value of a/w = 0.6, σp decreases to near zero for σt/σy > 2. The value σt/σy = 2
is the reverse plasticity shakedown limit for the uncracked cylinder when reverse
plastic strains first occur at the surface at positions remote from the crack. Hence
for crack lengths a/w ≤ 0.4 the cylinder retains some capacity to withstand an ax-
ial load for a wide range of σt/σy . For a/w ≥ 0.6, the cylinder can withstand an
axial load without ratcheting only for a very limited range of σt/σy . This solution
demonstrates the broad insight into structural behaviour that may be obtained from
ratchet limit solutions.
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Fig. 5 A Bree problem.
A plate is subjected to
uniform uniaxial stress σp

and a varying temperature
across the width of the plate,
and constrained to prevent
in-plane bending

Fig. 6 Convergence of Bree
problem of Fig. 5 for differing
initial λ0 when each iteration
consists of convergence in
phase (1) followed by a single
solution in phase (2)

13.2 Ratchet Limit for the Bree Problem—Application of the
Coupled Minimisation Process

Consider the Bree problem shown in Fig. 5 where a plate is subjected to an axial
stress σp and varying temperature difference across its width. The plate is con-
strained against in plane bending. In the first example σp remains constant and a
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Fig. 7 Convergence of Bree
problem of Fig. 5 for differing
initial λ0 when each iteration
consists of convergence in
phase (2) following a single
solution in phase (1)

Fig. 8 Convergence of Bree
problem of Fig. 5 with
differing values of n1 for
n2 = 1

temperature difference across the width of the plate varies cyclically between zero
and �θ . The temperature difference of �θ results in a maximum thermo-elastic
stress of σt . The general couple minimisation process is used where λ = 1 cor-
responds to σp/σy = 0.25 and σt/σy = 2. Figures 6 and 7 show the convergence
process for λ with iterations N . Each iteration consists of n1 iterations of Phase (1)
and n2 iterations of Phase (2). Figure 6 shows convergence for a range of values of
initial values λ= λ0 with a sufficient number of iterations in phase (1), n1 = 60, to
give convergence, followed by a single iteration n2 = 1 of phase (2). After the first
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Fig. 9 Converged solutions
for the ratchet boundary for
the Bree problem of Fig. 5. In
all cases, the converged
solution is independent of the
details of the iterative process

Fig. 10 Converged solutions
for case when the applied
stress varies between zero and
σp , while the temperature
difference simultaneously
varies between zero and �θ

complete cycle, N = 1, all solutions give the same value of λ. Subsequently con-
vergence with N takes place with increasing values of λ. Figure 7 shows the con-
vergence process for the opposite extreme, again for a range of values of λ0 where
n1 = 1 and n2 = 60. In all cases convergence is monotonic, converging to the same
value in approximately the same number of iterations. Figure 8 shows convergence
for a range of values of n1, retaining n2 = 1. In this case there is some divergence
in λ values in the initial iterations, but convergence rapidly becomes monotonic in
all cases. Although convergence with respect to N for n1 = 5 is the most rapid, the
total number of linear solutions n1 + n2 is least for n1 = 1 i.e. repeated cycling be-
tween phase (1) and phase (2). In all cases convergences is stable and insensitive to
initial conditions. Figure 9 shows converged values in both these cases for N = 60,
which are identical. The same set of solutions are shown in Fig. 10 for the case when
the applied stress varies between zero and σp at the same time as the temperature
variation, showing consistent convergent properties. Although this example is very
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simple, it demonstrates that convergence can be achieved and that the process is
relatively insensitive to the way the two phases are applied.

14 Conclusions

The evaluation of the ratchet boundary for an elastic perfectly plastic problem can
be posed as a coupled minimisation problems consisting of phase 1 (evaluation of
the changing residual stress field) and phase 2 (adapted shakedown limit, evaluation
of the initial residual stress field). Both processes are achieved by a Linear Matching
method where the non-linear material behaviour is replaced by a spatially varying
linear material. At each iteration of the method, equilibrium and compatibility are
satisfied and the matching process ensures that the matching linear material and
the yield properties are matched for the previous strain rate history. The key to the
solution method lies in placing very specific restrictions on the classes of kinemati-
cally admissible incremental plastic strains involved. Essentially the shakedown and
ratchet limits are found by the same process but for differing classes of kinematically
admissible strain rate histories. The application of the new ratcheting procedure to a
simple Bree problem indicates that the combined process yields is stable numerical
method.
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Decomposition Methods and Strain Driven
Algorithms for Limit and Shakedown Analysis

Giovanni Garcea and Leonardo Leonetti

Abstract A mathematical programming formulation of strain-driven path-following
strategies to perform shakedown and limit analysis for perfectly elastoplastic mate-
rials in a FEM context, is presented. From the optimization point of view, standard
arc–length strain driven elastoplastic analysis, recently extended to shakedown, are
identified as particular decomposition strategies used to solve a proximal point al-
gorithm applied to the static shakedown theorem that is then solved by means of
a convergent sequence of safe states. The mathematical programming approach al-
lows: a direct comparison with other nonlinear programming methods, simpler con-
vergence proofs and duality to be exploited. Due to the unified approach in terms of
total stresses, the strain driven algorithms become more effective and less nonlin-
ear with respect to a self equilibrated stress formulation and easier to implement in
existing codes performing elastoplastic analysis.

1 Introduction

The static and kinematic shakedown theorems, including the limit analysis as a spe-
cial case, furnish, in a direct and elegant fashion, a reliable safety factor against
plastic collapse, loss in functionality due to excessive deformation (ratcheting) or
collapse due to low cycle fatigue (plastic shakedown) [1]. Based on these theorems
the so called direct methods evaluate the safety factor solving a nonlinear convex
optimization problem that usually involves hundreds of thousands of unknowns and
constraints when real structures are discretized by means of finite elements.

Nowadays this kind of problems could be efficiently solved using interior point
methods (IPM) especially when the problem is formulated as a conic programming
one and the solution is obtained using primal dual formulations. The work done
in this field is impressive and in rapid development: significant references can be

G. Garcea (�) · L. Leonetti
Dipartimento di Modellistica per l’Ingegneria, Università della Calabria, Rende, Italy
e-mail: giovanni.garcea@unical.it

L. Leonetti
e-mail: leonetti.leonardo@gmail.com

G. Saxcé et al. (eds.), Limit State of Materials and Structures,
DOI 10.1007/978-94-007-5425-6_2, © Springer Science+Business Media Dordrecht 2013

19

mailto:giovanni.garcea@unical.it
mailto:leonetti.leonardo@gmail.com
http://dx.doi.org/10.1007/978-94-007-5425-6_2


20 G. Garcea and L. Leonetti

found in the works of Boyd [5], Bertsekas [7], Nemirosky and Todd [8] and Wright
[6, 9] among others. As a great number of yield constraints are described as second
order cones efficient interior point algorithms for shakedown and limit analysis have
been proposed (see [11–17] and references therein). Alternatively the limit load
can also be obtained by means of the complete reconstruction of the elasto-plastic
equilibrium path, using standard path-following strain driven strategies (see Armero
[2] for a review). An extension of these consolidated and widely used algorithms for
shakedown analysis was proposed in [3, 4].

In this work it will be show how strain driven elastoplastic analysis based on clos-
est point projection return mapping schemes and Riks arc-length solution, can be
obtained from a mathematical programming problem, consisting in the application
of the proximal point algorithm to the static shakedown theorem and in the solution
of this problem by means of dual decomposition methods [7, 18, 19]. In particular
the pseudo elasto-plastic step coincides with a step of the proximal point algorithm
(see also [10] for a similar formulation) while the optimization subproblems, deriv-
ing from the decomposition techniques, correspond exactly to the standard return
mapping by closest point projection scheme used to evaluate the plastically admis-
sible stress.

To obtain a unified formulation for limit and shakedown analysis, the problem
is formulated in terms of global stress and equivalent reference load. This choice is
particularly advantageous in the strain driven case because it allows a less nonlinear
formulation of the problem and makes it easy to fulfill some convergence require-
ments of the algorithm. The proposed formulation is similar to that presented in
[3] and, due to the requirement, in the shakedown case, of a Multi-Surface Return
Mapping process, will be called MS-RM. The mathematical programming point of
view also enables the formulation of a new decomposition strategy based on a Sin-
gle Surface Return Mapping which will be called SS-RM. It requires the solution of
the same closest point projection problem as in the standard limit analysis case.

Apart from the mathematical programming reformulation, strain driven incre-
mental analysis due to its classical mechanical interpretation, gives other important
information in addition to the shakedown or limit load multiplier evaluation. For
the fixed load case, the extremal paths theory of Ponter and Martin [20], gives a
coherent justification for the holonomic transformation of the incremental constitu-
tive elasto-plastic relationships obtained by means of a backward Euler integration
scheme (closest point return mapping algorithm) and a mechanical sense to the so
evaluated equilibrium path allowing the reuse of the static and kinematic parts of
the solution at each equilibrium point. A similar interpretation also holds for shake-
down where the solution algorithm can be viewed as a step-by-step incremental
process aiming to simulate the case of a proportional increase in the domain of the
loads such that, for each new point of the equilibrium path, the load recycles within
all admissible combinations, up to the achievement of elastic adaptation. This in-
terpretation also allows a possible extension of the strain driven algorithms to the
shakedown analysis of more complex materials.

Strain driven algorithms are compared, in terms of performance, accuracy and
robustness with the solution obtained with the commercial code MOSEK [24] im-
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plementing an Interior Point solution method. The application regards plane stress
problems with von Mises yield functions.

The work is organized as follows: in Sect. 2 shakedown theory is presented and
rewritten in a discrete FEM form for simpler use in a mathematical programming
context; in Sect. 3 shakedown theorems and a mathematical programming version
of the elastoplastic step and its relation with proximal point methods is presented;
in Sect. 4 we illustrate the numerical methods used to evaluate the shakedown load;
in Sect. 5 we give some details on the numerical implementations of the algorithms
proposed; in Sect. 6 the finite element discretization is presented; finally in Sect. 7
an extensive series of numerical tests showing the reliability and effectiveness of the
proposed formulation is reported.

2 The Discrete Equation for Shakedown and Limit Analysis

In the following, limit and shakedown problems are reformulated in terms of finite
element algebraic equations for a better framing in the usual mathematical program-
ming notation.

2.1 The Discrete Representation of Static and Kinematic Fields

Using a mixed finite element format and a vector notation, we assume that the dis-
placement d[x] ∈ �nu and the stress σ [x] ∈ �nσ of a point x of the body domain B
are interpolated as:

σ [x] =Nσ [x]t, d[x] =Nu[x]u (1)

where Nσ [x] and Nu[x] collect the interpolation functions while global vectors u
and t collect the Nσ stress node vectors σ g := σ [xg] and Nu displacement node
vectors di := d[xi] in a finite numbers of points as:

t=
⎡

⎢
⎣

σ 1
...

σNσ

⎤

⎥
⎦ , u=

⎡

⎢
⎣

d1
...

dNu

⎤

⎥
⎦

Making D[x] the kinematical operator, the relationship between strain ε[x] ∈ �nσ

and displacements d[x] can be written as:

ε[x] =Nε[x]d, Nε =D[x]Nu[x]
Using the virtual work expression, the finite element representation of the equilib-
rium equations becomes:

QT t= λp with QT ≡
∫

B

Nε[x]T Nσ [x] dV (2)
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and the external force vector, when only mechanical actions are considered, is

p=
∫

B
NT

u b[x]dV +
∫

∂f B
NT

u f[x]dA

b[x] being the external body forces and f[x] the surface force on the boundary ∂f B.
The discrete form of the compatibility condition is

ρ =Qu (3)

where ρ = [ε1, . . . ,εNσ ]T collects the discrete strain conjugate, in the virtual work
sense, to t. Finally linear elastic constitutive law is defined by the elastic operator
E[x] so that

σ [x] = E[x]ε[x], ε[x] = E[x]−1σ [x] (4)

From now on the dependence of quantities on x will be omitted for an easier reading.

2.2 The Elastic Envelope of the Stresses

We assume that the external actions p are expressed as a combination of basic loads
pi belonging to the admissible closed and convex load domain

P :=
{

p≡
p∑

i=1

aipi : amin
i ≤ ai ≤ amax

i

}

(5)

Denoting with tei the elastic stress solution for pi , the elastic envelope Se

Se :=
{

te ≡
p∑

i=1

aitei : amin
i ≤ ai ≤ amax

i

}

(6)

defines the set of the elastic stresses te produced by each load path contained in P.
By construction Se and P are convex polytopes and each te ∈ Se can be expressed

as a convex combination of the Nv elastic envelope vertexes tEα that can be usefully
referred to the reference stress tE0 so obtaining:

te = tE0 +
Nv∑

α=1

tαtEα, tα ≥ 0,

Nv∑

α=1

tα = 1 (7)

If the external loads increase by a real number λ the elastic envelope becomes
λSe := {λte : te ∈ Se}.

Note that the vertexes of the stress envelope could be a subset of the 2p vertexes
of P, however, to simplify the presentation we assume, from now on, Nv = 2p .
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2.3 The Shakedown Elastic Domain

Assuming elastic perfectly plastic material the stress σ will be plastically admissible
if

f
[
σ [x]]≡ φ

[
σ [x]]− σy[x] ≤ 0 ∀x ∈B (8)

where the yield function f is a sum of the homogeneous convex function φ and of
the yield stress σy ∈ R. In a FEM context of analysis the previous condition could
be expressed in a weighted sense on the element, as proposed for example in [22],
or tested in a finite number of points. For the sake of simplicity we assume control
of plastic admissibility in the Nσ stress nodes so that t will be plastically admissible
if

f[t] ≤ 0 ⇐⇒ f [σ g] ≤ 0 ∀g = 1, . . . ,Nσ (9)

where, from now on, vector inequality will be considered in a componentwise fash-
ion and

f[t] = [f [σ 1] f [σ 2] . . . f [σNσ ]
]T

, f [σ g] ≡ φ[σ g] − σgy (10)

with σgy := σy[xg].
Finally it is useful to express the plastically admissible condition for all the

stresses contained in the amplified elastic envelope λSe translated by t̄. Due to the
convexity of f and Se this can be easily expressed in terms of the plastic admissibility
of all vertex stresses tα = λ(tEα + tE0)+ t̄

f[λte + t̄] ≤ 0, ∀te ∈ Se ⇐⇒ f
[
tα
]≤ 0, ∀α (11)

From now on we denote with a Greek superscript vertex quantities.

3 Shakedown and Limit Analysis Multipliers

Shakedown theorems used for the evaluation of the larger multiplier λa , called
shakedown safety factor, amplifying the load domain P are rewritten in a unified
format. A particular mathematical programming technique, the proximal point al-
gorithm, to solve the static shakedown theorem will also be introduced. We always
refer to shakedown analysis, the limit analysis case being simply obtained when the
elastic envelope collapses in a single point.

3.1 Shakedown Theorems

Sufficient and necessary conditions for shakedown are given in the classic shake-
down theorems [1] that will be written in a form suitable for FEM numerical imple-
mentations. In particular the Bleich–Melan static theorem is formulated in terms of
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total stress, instead of self-equilibrated ones, making a unified notation for shake-
down and limit analysis possible. The Koiter kinematical theorem is obtained as the
dual, from the optimization point of view, of the primal static theorem so as to en-
sure an easy extension, to these discrete forms, of a series of properties regarding
existence, uniqueness, duality gap, etc.

3.1.1 Static Theorem, Safe Multipliers and Multipliers Bounds

The static theorem states that a load domain multiplier λs will be safe if there exists
a time-independent self-equilibrated stress field t̄ so that each stress in λsSe + {t̄} is
plastically admissible. The multiplier λa can be evaluated as the maximum of these
safe multipliers recasting the static theorems in terms of the reference stress tE0:

maximize λs

subject to QT t= λsp

tα = t+ λstEα, α = 1, . . . ,Nv

f
[
tα
]≤ 0, α = 1, . . . ,Nv

(12a)

with p≡QT tE0 and t≡ t̄+λstE0. When tE0 = 0 we have the classic form in terms
of the self-equilibrated stress. Furthermore, without any loss in generality, we can set
tE0 as a generic vertex of Se so t becomes the total stress of this vertex. We assume
tE1 ≡ 0 so deleting in (12a) the constraint t ≡ t1. An equivalent formulation for
(12a) is obtained eliminating all the variables tα using the linear equality constraints
and so the admissible conditions become:

fα[t, λ] ≡ f
[
t+ λtEα

]≤ 0. (12b)

When the external load domain collapses in a single point (amin
i = amax

i )
Eqs. (12a) directly transform into the standard form of the static theorem of limit
analysis. From (12a) we have that λa will be no greater than the values of the limit
load multiplier obtained for a generic p ∈ P, and then also of the limit load of each
vertex of P. It is worth noting that the plastic shakedown multiplier λ̄, simply ob-
tained by deleting the equilibrium constraints in Eq. (12a), is not less than λa . Its
evaluation, as will be better shown in the sequel, is obtained by solving a series of
small optimization subproblems.

Finally Eq. (12a) can be rewritten, using a compact notation, in a format similar
to that of the static theorem of the limit analysis:

maximize λs

subject to Q̃T t̃= λs p̃

f̃[t̃] ≤ 0

(12c)
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where the following quantities have been defined

t̃ :=
⎡

⎢
⎣

t1

...

tNv

⎤

⎥
⎦ , f̃[t̃] :=

⎡

⎢
⎣

f[t1]
...

f[tNv ]

⎤

⎥
⎦ , p̃ :=

[
p
tE

]

, tE :=
⎡

⎢
⎣

tE2

...

tENv

⎤

⎥
⎦ (13)

and

Q̃T :=
[

QT ·
−ΣT Iα

]

, Σ := − [I · · · I
]

(14)

where ·, I and Iα are respectively zero and identity matrices of the appropriate di-
mension. From now on we denote with a Greek superscript the vertex components
of a ( .̃ ) vector or matrix. The superscript 1, that denotes quantities of the reference
vertex, will be omitted when inessential.

3.1.2 The Dual Problem: The Kinematical Theorem

Static theorem is a primal nonlinear convex optimization problem. The Lagrangian
associated to it is

L [λ, t̃, μ̃,�ũ] = λ+�ũT
(
Q̃T t̃− λp̃

)− μ̃T f̃[t̃]
where the Lagrange multipliers assume the following expression

μ̃ :=
⎡

⎢
⎣

μ1

...

μNv

⎤

⎥
⎦ , μα :=

⎡

⎢
⎣

μα
1
...

μα
Nσ

⎤

⎥
⎦ , ũ :=

[
�u
�ρ

]

, �ρ :=
⎡

⎢
⎣

�ρ2

...

�ρNv

⎤

⎥
⎦

with each μα ≥ 0. In the optimal values the Lagrangian has a saddle point [5, 7]
making it possible to obtain the following dual problem that, with simple algebra,
becomes the discrete form of the Koiter kinematical theorem:

minimize λc ≡ σ̃ T
y μ̃

subject to μ̃≥ 0

ũT p̃= 1

Q̃ũ− Ã[t̃]μ̃= 0

(15a)

where σ̃ y collect the yield stress values

σ̃ y =
⎡

⎢
⎣

σ y

...

σ y

⎤

⎥
⎦ , σ y =

⎡

⎢
⎣

σy1
...

σyNσ

⎤

⎥
⎦
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and

Ã[t̃] :=
(

∂f[t̃]
∂ t̃

)T

= blockdiag
[
A1 · · · ANv

]
(15b)

Aα = ( ∂f[tα]
∂tα )T being a diagonal matrix.

In the previous equations the Euler theorem for the homogeneous functions of
order one has been used while the extension to homogeneous functions of order n

is simple. Also for kinematical theorem (15a) we have the same format as the limit
analysis case.

The saddle point property of the Lagrangian shows that the primal problem is
convex and the dual is concave. When the first one has an admissible solution, that
is when the elastic limit multiplier is other than zero, both problems have the same
optimal value λa = maxλs = minλc. Due to the convexity of the problem the ob-
tained optimum is global such that the shakedown (limit) load factor is unique.

3.2 The Mathematical Programming Formulation of the Finite
Step Elasto-plastic Analysis

The shakedown multipliers can also be obtained by evaluating a sequence of states,
z(k) := {λ(k), t(k),u(k), . . .} solving a series of problems so defined:

maximize �ξ(k)λ(k) − 1

2
�t̃T F̃�t̃

subject to Q̃T t̃(k) = λ(k)p̃

f̃
[
t̃(k)
]≤ 0

(16a)

where the superscript (·)(k) will denote quantities evaluated in the kth of problems
(16a) called the kth step, the symbol �(·) = (·)(k) − (·)(k−1) is the increment of a
quantity from the previous step and �ξ(k) > 0 is a real positive number. In the block-
diagonal semi-definite positive matrix F̃ := blockdiag[F1 · · · FNv ] only F1 must be
definite positive and can be evaluated through the following energy equivalence

F1 ≡ F=
∫

B

Nσ [x]T E−1[x]Nσ [x] dV (16b)

Note that, due to the local nature of the stress interpolation in Eq. (1), F also has
a block diagonal structure that, usually, couples only the local finite element stress
variables. In the following we assume, to simplify the notation and according to the
finite element used, each block Fα

g of Fα to be defined at the stress node level.
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Table 1 First order conditions for the proximal point algorithm

Local level:

Kinem. compatib.:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q�u−
Nv∑

β=2

�ρβ − F�t1 −A1μ1 = 0

�ρβ = Fβ�tβ +Aβ(k)μβ(k)

β := 2 · · ·Nv

Yielding: f
[
tα(k)

]≤ 0 α := 1 · · ·Nv

Consistency:
(
μα(k)

)T f
[
tα(k)

]= 0 α := 1 · · ·Nv

Dual feasibility μα(k) ≥ 0 α := 1 · · ·Nv

Elastic domain: tα(k) = t(k) + λ(k)tEα α := 1 · · ·Nv

Global level:

Equilibrium: QT t(k) = λ(k)p0

Normalization: �uT p+
Nv∑

β=2

(
�ρβ

)T tEβ =�ξ(k)

The first order Kunh–Tucker conditions of (16a) are:

Kinematical compat.: Q̃�ũ= F̃�t̃+ Ã(k)μ̃(k)

Yielding: f̃
[
t̃(k)
]≤ 0

Consistency: f̃
[
t̃(k)
]T

μ̃(k) = 0

Dual feasibility μ̃(k) ≥ 0

Extended equilibrium: Q̃T t̃(k) − λ(k)p̃= 0

Arc-length constraint: p̃T �ũ=�ξ(k)

(16c)

which are also explicitly reported in Table 1. Equations (16c), for F̃�t̃ = 0, apart
from the inessential scaling for �ξ(k), are the primal–dual conditions of the shake-
down theorems. Problem (16a) is similar to that presented in [10].

Note as, for assigned values of u and λ, the first group of equations in Table 1, due
to the block structures of f and F, can be solved at the local level (stress node) of the
analysis. Conversely, equilibrium equations and normalization condition, coupling
all the variables of the problem, define the global level of the analysis.
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3.2.1 Convergence Properties of the Sequence of Elasto-plastic Steps

Starting from the known elastic limit z(0), the sequence z(k) generated from suc-
cessive solutions of Eq. (16a) is safe in the sense of the static theorem and
monotonously increasing in λ(k). In fact, due to Eq. (16c), subtracting the equi-
librium equation of the two steps (k) and (k− 1) and multiplying the results by �ũ
we have

�λ�ξ(k) =�t̃T Q̃�ũ

where the condition �ũT p̃=�ξ(k) was used. Due to the kinematical compatibility
equations, we obtain

�ξ(k)�λ=�t̃T F̃�t̃+�t̃T Ã(k)μ̃(k)

=�t̃T F̃�t̃︸ ︷︷ ︸
≥0

+
Nv∑

α=1

(
�tα

)T Aα(k)μα(k))
︸ ︷︷ ︸

≥0

≥ 0 (17)

The last two terms on the right hand side of Eq. (17) are not negative, the former
due to the semi-definite positiveness of F̃ and the latter due to the convexity of the
elastic domain. As also �ξ(k) > 0 the sequence so generated does not decrease in
λ. In the case λ(k) = λ(k−1) with �ũ �= 0 Eq. (17) implies �t̃ = 0 and then also
the requirements of the dual theorems (15a) are satisfied from Eq. (16c), that is
the convergence to the desired shakedown multiplier. We call this kind of analysis
pseudo elastoplastic, due to its meaning in the case of fixed loads.

3.2.2 The Mathematical Programming and Mechanical Interpretation of the
Pseudo-elastoplastic Analysis

Each step in Eq. (16a) is obtained, apart from the inessential scaling of λ(k), by sub-
tracting from the objective function of the static theorem a quadratic positive func-
tion in �t̃. In this respect it can be seen as a particular application of the proximal
point algorithm (see Bertesekas [7] pp. 248 and [18, 19]) for solving Eq. (12c), i.e.
the optimum solution of the static theorem is obtained by generating a convergent
sequence of primal admissible solutions. The algorithm becomes competitive with
direct methods if the sequence of steps is efficiently and robustly solved. This is pos-
sible by reusing the consolidated strain driven path-following algorithms adopted in
elasto-plasticity [3].

Independently of this mathematical programming point of view, first order con-
ditions in Eq. (16c) also have an important mechanical sense: in the fixed load case
they define the standard finite step holonomic problem obtained by using a back-
ward Euler scheme for integrating the constitutive elasto-plastic relationships. In
this case �u(k) can be identified with the displacement step increment and the suc-
cession of point z(k) with the equilibrium path. This holonomic transformation, with
the irreversible phenomena that can now occur only at the beginning of each new
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step, is widely adopted in elasto-plastic analysis. Its use is theoretically justified by
the Ponter and Martin [20] extremal path theory that gives a clear mechanical sense
to the so evaluated equilibrium path, allowing also the use of the kinematical part of
the solution. A similar meaning can also be given for the shakedown case when the
following expression of F̃ is used

F̃ := blockdiag
[
F, 0, . . . , 0

]
(18)

In this case Eq. (16c) corresponds to a backward Euler integration scheme of the
elasto-plastic equations for a load moving for all vertexes of the monotonously am-
plified load domain at each step of the analysis so allowing elastic adaptation. In
this sense pseudo elasto-plastic analysis, apart from its mathematical programming
interpretation, assumes a more general meaning overreaching the shakedown theo-
rems and making the extension to more complex materials simple.

Finally note that, when interest is only in the shakedown multiplier, matrices
Fα , according to the global semi-definite property of F̃, can be selected in order to
simplify the computations.

4 Numerical Methods for the Evaluation of the Shakedown
Multiplier

The proximal point algorithm in Eq. (16a)–(16c) can be efficiently solved by means
of decomposition techniques, similar to that employed by Kaneko and Ha [19]. In
this way a standard strain driven arc length formulation based on a return mapping
by closest point projection scheme, such as that currently used to evaluate the equi-
librium path of elasto-plastic structures, is obtained. This mathematical program-
ming approach allows a direct comparison between the strain driven algorithm and
direct global solvers in terms of performance and robustness. For a review of de-
composition methods in optimization refer to Chap. 6 of Bertsekas [7] and Boyd’s
course lectures EE364b [5].

4.1 The Multisurface Decomposition

By selecting F̃ as in Eq. (18) and omitting the index k and dependence on z(k−1) to
simplify the notation, the proximal point algorithm in Eq. (16a) becomes:

max �ξλ− 1

2

Nσ∑

g=1

�σ T
g Fg�σ g

subj. QT t= λp

f α[σ g, λ] ≤ 0 ∀α,g

(19a)

where the linear equality constraints have been directly substituted.
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The complicating equilibrium equation constraints can be eliminated using a dual
decomposition strategy, that is by adding them to the objective function forming the
following partial Lagrangian:

max L ≡Lλ[λ,u] +
Nσ∑

g=1

Lg[σ g,u]

subj. f α[σ g, λ] ≤ 0 ∀α,g

(19b)

where

Lλ ≡ λ
(
�ξ − pT �u

)
, Lg ≡ σ T

g εg[�u] − 1

2
�σ T

g Fg�σ g

with �u the vector of the Lagrange multiplier and εg[�u] the gth component of
Q�u.

The dual of problem (19b) is obtained maximizing L with respect to the primal
variables:

D[u] :=max
λ

(

Lλ[λ,u] +
Nσ∑

g=1

max
σ g,

f α[σ g,λ]≤0

Lg[σ g,u]
)

(19c)

that is now separated for limit analysis while it still has the complicating variables
λ that prevent its decomposition for shakedown. The dual function is evaluated by
fixing λ and performing the maximization with respect to σ g so obtaining the fol-
lowing, strictly convex, minimization problems for each stress point g

Dg[λ,u] :=

⎧
⎪⎨

⎪⎩

min
(σ g)

1

2

(
σ g − σ ∗g

)T Fg

(
σ g − σ ∗g

)

subj. fs[σ g, λ] :=
[
f 1[σ g, λ], . . . , f Nv [σ g, λ]

]T ≤ 0

(19d)

where the trial stress defined as σ ∗g = σ
(k−1)
g + F−1

g εg . Equation (19d) is a small
convex problem in nσ := dim{σ g} variables subject to Nv nonlinear constraints and
its solution can be easily performed by means of a Sequential Quadratic Program-
ming method (SQP). Each QP problem is, in this work, efficiently solved with the
Goldfarb-Idnani dual active set method [25] already used in [4].

Finally the solution of (19a) is obtained by solving the following unconstrained
problem:

D :=min
�u

D[u] =min
�u

max
λ

(

Lλ[λ,u] −
Nσ∑

g=1

Dg[λ,u]
)

(19e)

In the limit analysis case the objective function is independent of λ and the mini-
mization is performed only with respect to u.

The initial problem in (16a) is solved through its dual (19e) that is a free opti-
mization problem nested within a series of simple convex projections (19d) of the
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trial stresses in the admissible domain. Denoting with a comma the derivation with
respect to the quantity that follows as subscript, and referring to Sect. 6.1 of [7]
for the evaluation of the gradient of the dual function, the first order conditions of
Eq. (19e) are

req ≡QT t[λ,u] − λp= 0, rλ ≡ pT �u+
∑

g

μT
sgfs[σ g, λ],λ−�ξ = 0 (19f)

where t[λ,u] collects all σ g[λ,u] solutions of problems (19d) while μsg =
[μ1

sg, . . . ,μ
Nv
sg ] are the Lagrange multipliers associated with the inequality con-

straints. The stress is univocally defined in terms of �u and λ, using Eq. (19d) that
so represents an implicit nonlinear elastic constitutive law, the past history being
contained in z(k−1). The strict convexity of the problems (19d) makes the dual func-
tion differentiable and then solvable using a Newton method expressed only in terms
of the configuration variables λ and u. Equations (19f) are the standard equilibrium
equations and the arc-length constraints in Table 1, making it easy to show that

∑

g

μT
sgfs ,λ=

Nv∑

β=2

(�ρ)β tEβ

Finally note that an alternative equivalent formulation for Eq. (19e) is
⎧
⎪⎪⎨

⎪⎪⎩

min
�u

D[u]

subj. pT �u+
∑

g

μT
g fs ,λ−�ξ = 0

(19g)

4.2 A Further Decomposition Technique

Another possible decomposition technique is obtained relaxing all the complicating
constraints defined, in Eq. (16c), by the extended equilibrium equations. Letting �ũ
be the Lagrange multiplier associated with the relaxed constraint and now making
Fα = F for all vertexes, with c ∈R+ a suitable scale factor, we obtain

maximize Lλ[λ,�ũ] +
Nv∑

α=1

Nσ∑

g=1

L α
g [t̃,�ũ]

subject to f α
[
σ α

g

]≤ 0 ∀α,g

(20a)

where now

Lλ := λ
(
�ξ −�ũT p̃

)
, L α

g [t̃,�ũ] := 1

2

(
σα

g

)T Fgσ
α
g −

(
σ α

g

)T
εα

g
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σ α
g and εα

g are the gth component of tα and �ρα respectively and �ρ1 =Q�u.
In this case too the problem is separable and it is possible to maximize function

Lgα , at each stress point sub-level and for each α, as follows

Dα
g [�ũ] :=

⎧
⎪⎨

⎪⎩

min
(σα

g )

1

2

(
σ α

g − σ α ∗
g

)T Fg

(
σ α

g − σα ∗
g

)

subj. f
[
σ α

g

]≤ 0

(20b)

where the trial stress is now defined as σ α ∗
g = (σ α

g )(k−1) + F−1
g �εα

g .
The initial problem in (16a) is then transformed into the following free minimiza-

tion problem

D[ũ] :

⎧
⎪⎪⎨

⎪⎪⎩

min
�ũ

{∑

g,α

Dα
g [�ũ]

}

subj. �ũT p̃=�ξ

(20c)

nested within a series of simple convex projections (20b) of the trial stresses in
the admissible domain. The first order conditions for (20c) represent the extended
equilibrium equation plus the arc–length constraint and are

r̃eq [λ, ũ] := Q̃T t̃[�ũ] − λp̃= 0, rλ[λ, ũ] :=�ξ −�ũT p̃= 0 (20d)

with the stress t[ũ] univocally defined in terms of �ũ by using (20b). They can
be solved iteratively using a Newton scheme. The other equations in Table 1 are
solved exactly using Eq. (20b) for each assigned value of �ũ. Note also that this
formulation is more decoupled with respect to the previous one and will be called
SS-SD.

4.3 Final Considerations

Strain driven methods, apart from their classic interpretation, can be seen as decom-
position strategies well suited for use within the proximal point algorithm. They
solve, through a Newton method, the free dual problem obtained by means of a se-
ries of very small optimization subproblems (the closest point projection schemes)
for each new estimate of the configuration variables. Stresses and other locally de-
fined quantities then become functions of the configuration variables and the prob-
lem description is always compatible and usually highly nonlinear, even when the
finite element is mixed. For a deeper discussion of how the problem description af-
fects the convergence in Newton methods the reader is referred to [23]. The method
fully exploits the information gained from the previously evaluated step handling
the problem nonlinearity by means of adaptive arc-length selections. In the fixed
load case both the above decomposition strategies are exactly the same.
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5 Numerical Implementation of Strain Driven Methods

The implementational aspects of the numerical strategies previously proposed are
now discussed. Readers are referred to [3, 4, 23] for details of the arc-length path-
following strategies.

5.1 The Global Solution Scheme

Equations (19f) and (20d) are solved using a Newton method that, by means of block
elimination of the local defined variables, can be expressed in a common pseudo-
compatible format in terms of (u, λ) alone:

[
Kj −yj

−yT
j hj

][
u̇
λ̇

]

=−
[

r̂eq

r̂λ

]

(21a)

where subscript j denotes quantities evaluated in the current iteration and

Kj =QT EtQ, yj = p+QT tλ, r̂eq = reqj + rc
eq, r̂λ = rλj + rc

λ (21b)

with Et , tλ, hj , rc
eq and rc

λ having a different expression depending on the algorithm
in use. Et always maintains the following local level block diagonal structure

Et = blockdiag[Et1, . . . ,EtNσ ] (21c)

and is obtained by means of a standard FEM assemblage of local contributions.
The solution of Eq. (21a) is

u̇= λ̇û+ ū, λ̇= r̂λ − yT
j ū

(yT
j û− hj )

where

⎧
⎨

⎩

û=K−1
j yj

ū=−K−1
j r̂eq

(21d)

Equations in (21a)–(21d) have the same format as a standard arc length nonlinear
analysis [3, 23], its solution having the same computational cost for both methods
and in both cases of shakedown or limit analysis. The differences lie only in the
local level operations which, involving only few variables, are cheaper to perform.

5.2 Numerical Implementation of the MS-RM Formulation

Letting z0 := z(k−1), the scheme produces a sequence of plastically admissible esti-
mates zj , convergent to the new state z(k), by recursively updating the configuration
variables as:

uj+1 := uj + u̇j , λj+1 := λj + λ̇j (22)
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with u̇j and λ̇j evaluated according to (21a)–(21d) and the other local variables
using the return mapping process Eq. (19d). From the linearization of the first order
conditions Eq. (19f) with respect to λ and u we obtain:

Et = ∂t
∂ρ
= blockdiag[Et1, . . . ,EtNσ ], Etg := ∂σ g

∂εg

tλ := − ∂t
∂λ
=−

⎡

⎢
⎣

σ 1,λ

...

σNσ ,λ

⎤

⎥
⎦

σ g,λ := ∂σ g

∂λ
, hj =−

Nσ∑

g=1

(
μT

g fsg,λλ+fsg,Tλ μg,λ
)

(23)

where ρ =Q�uj and εg is its gth component and both rc
eq ≡ 0, rc

λ = 0.
The sequence so generated is locally convergent due to the presence of the arc-

length condition that allows (21a) to be solved even when Kj becomes singular as
happens near the shakedown or the limit load multiplier [3, 23]. For global conver-
gence we can set Kj as equal to the initial elastic matrix KE . In this way while
the quadratic convergence rate of the Newton method is lost we avoid the matrix
decomposition for each zj . Alternatively a line search algorithm can be useful.

5.2.1 Evaluation of the Incremental Quantities for MS-RM

The algorithmic tangent moduli can be obtained from the second derivatives of the
dual function once the internal variables are eliminated or, following an approach
more common in the computational mechanics community, by the consistent lin-
earization of the return mapping process. Making na > 0 the number of active con-
straints, and keeping the notation used to indicate quantities in this active subset
unchanged, the first order condition defined by (19d) can be rewritten as

⎧
⎨

⎩

σ̇ g =H−1
g (ε̇g −Asgμ̇sg − λ̇Asg,λ μsg)

AT
sgσ̇ g + λ̇fsg,λ= 0

where μT
sg = [μ1

sg, . . . ,μ
na
sg ] and

Asg =
[

∂f 1

∂σ g

· · · ∂f
na

∂σ g

]

, Hg[σ g] = Fg +
na∑

α=1

μα
sg

∂2f α

∂σ 2
g

(24)

Making Wg = (AT
sgH−1

g Asg)
−1 we obtain the required quantities

Etg =H−1
g −H−1

g AsgWgAT
sgH−1

g

σ g,λ=−H−1
g AsgWgfsg,λ−EtgAsg,λ μsg

(25)
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Note that Etg and H−1
j AsgWg are directly furnished by the QP solution scheme

used to solve Eq. (19d) so only fgs,λ, fgs,λλ and Asg,λ need to be evaluated. Also
note that for na = 0, we have the elastic step.

5.3 Numerical Implementation of the SS-RM Algorithm

Starting from z0 := z(k−1), the scheme produces once more a sequence of estimates
zj updating the configuration variables as:

ũj+1 := ũj + ˙̃uj , λj+1 := λj + λ̇j (26a)

where ˙̃uj and λ̇j now satisfy, the first order approximation of (20d):

[
K̃j −p̃
−p̃T 0

][ ˜̇u
λ̇

]

=−
[

r̃c
eq

rλj

]

(26b)

In the previous equation r̃c
eq = r̃eqj and

K̃j = Q̃T Ẽt Q̃, Ẽt := blockdiag
{
E1

t , . . . ,ENv
t

}

where, letting ρ1 =Q�uj , we have:

Eα
t :=

∂tα

∂ρα
= blockdiag

{
E1

t1, . . . ,ENv

tNσ

}
, Eα

tg =
∂σ α

g

∂εα
g

Ẽt is a block diagonal matrix with each block Eα
t in turn blockdiagonal and defined

by the consistent linearization of the return mapping algorithm (20b) (or of the dual
function) as:

Eα
tg :=

⎧
⎨

⎩

(Hα
g )−1(I− aαaαT (Hα

g )−1

h+(aα)T (Hα
g )−1aα ) if μα

g > 0

F−1
g otherwise

(26c)

where now

aα = ∂f [σα
g ]

∂σ α
g

, Hα
g = Fg +μα

∂2f [σ α
g ]

∂(σ α
g)2

and h 1.0−4–1.0−6 is used to avoid singularity.
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5.3.1 The Partitioned Solution Scheme

Recalling the definition of Q̃ and of p̃ in Eqs. (13), (14), the system in (26b) becomes

⎡

⎣
Kρρ KT

uρ −tρ
Kuρ Kuu −p
−tTρ −pT 0

⎤

⎦

⎡

⎣
ρ̇

u̇
λ̇

⎤

⎦=−
⎡

⎣
reqρ

req

rλ

⎤

⎦ (27a)

where

req =QT tj − λj p, rλ =�ξ − pT �uj −�ρT
j tE (27b)

reqρ =
⎡

⎢
⎣

t2 − t− λtE2

...

tNv − t− λtENv

⎤

⎥
⎦=

⎡

⎢
⎣

r2
eq

...

rNv
eq

⎤

⎥
⎦ (27c)

and

Kuu =QT E1
t Q, Kuρ =−QT E1

t Σ, Kρρ =ΣT E1
t Σ +Eρ (27d)

with

Eρ := blockdiag
[
E2

t · · · ENv
t

]
. (27e)

By a block elimination of ρ̇, performed at the local level due to the block diagonal
structure of Kρρ we obtain the global scheme in the form of Eqs. (21a)–(21d). To
avoid the inversion of Kρρ , that could be computationally expensive for high values
of Nv , it is convenient to use the Woodbury matrix identity so obtaining:

K−1
ρρ = E−1

ρ −E−1
ρ ΣT F−1

t ΣE−1
ρ with Ft =

Nv∑

α=1

Fα
t

where

Fα
t ≡

(
Eα

t

)−1 = blockdiag
{(

Eα
t1

)−1
, . . . ,

(
Eα

tNσ

)−1}

Letting

q=
Nv∑

β=2

Fβ
t tEβ, rq =

Nv∑

β=2

Fβ
t rβ

eq (28)
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with some substitutions we obtain the following expression for the quantities in
Eqs. (21a)–(21d)

Et = F−1
t , tλ = Etq, hj = qT Etq−

Nv∑

β=2

(
tEβ

)T Fβ
t tEβ

rc
eq =QT Etrq, rc

λ =
∑

β

(
rβ
eqρ

)T Fβ
t tEβ − qT Etrq

(29)

and from back-substitution

ρ̇β = Fβ
t

(
λ̇tEβ − rβ

eq −Et

(
λ̇q− ρ1 − rq

))

Finally note that for a purely elastic behavior we obtain

Et = 1

c
F−1, c=Nv

that is, with an appropriate selection of F we can use, at the global level, KE as
iteration matrix obtaining, also in this case, a global convergent scheme.

6 The Finite Element Discretization

A finite element suitable for shakedown analysis needs to be accurate with respect
to both the evaluation of the elastic envelope stress tEα necessary for the correct
evaluation of λ̄ and with respect to the description of the ratcheting mechanism that
usually require fine meshes. In this work these rules have been satisfied by using
two finite elements on different discretization grids. In particular, stresses tEα are
evaluated using the standard eight node compatible quadrilateral isoparametric ele-
ment Q8 [26] while the complete shakedown analysis exploits the mixed SIMPLEX
(S) finite element [4], free of volumetric locking and sufficiently simple to be used
with fine mesh. Note that, apart from the mixed interpolation, the element is similar
to that recently proposed in [21].

6.1 The Simplex Finite Element

We briefly recall the SIMPLEX element while referring readers to [4] for details.
Body domain B is subdivided into triangular elements of area Ae and thickness he

with three nodes, located at the vertices of a triangle. A simple bilinear interpolation
for the displacements was adopted while the stresses are kept constant on the nodal
influence area Ag =∑e Age/3, sum of the contributions Age/3 of each element
linked to the node g (see Fig. 1).
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Fig. 1 The Simplex finite
element

The compatible strain εge for each of the nge elements linked to the stress node
g is constant and coincident with that of the compatible linear triangle T3. It can be
expressed as

εge =Dede (30)

de = [u1,u2,u3]T being the displacement element vector collecting the element
node displacement vector uk . Denoting with uT

g = [ug1, ug2, . . . ,ugne ] the stress
node displacement vector, collecting the displacement vectors ugi of all the ele-
ments linked to the stress node g and letting Ae be the matrix extracting the element
displacements from dg

de =Agedg

we obtain the following algebraic form for the quantities required in the analysis:

1

2

∫

V

σ T E−1σ dV = 1

2

Ng∑

g=1

σ T
g Fgσ g,

∫

V

σ T ε dV =
Ng∑

g=1

σ T
g Dgug (31)

and the strain work conjugate with σ g is now defined by the compatibility matrix

Qg =
nge∑

e=1

DeAgeVge/3

where Vge =Agehge is the volume of the eth element linked with the stress node g

and Vg =∑nge

e=1 Vge/3 the total volume related to the stress node and Fg = E−1Vg .
Letting t = [σ 1, . . . ,σNσ ]T and u = [u1, . . . ,uNu ]T be the global vectors col-

lecting the Nσ nodal stresses and the Nu displacements and denoting with

dg = Tugu, σ g = Tσgt

the operators linking local and global quantities we obtain

QT t≡
∑

g

QT
g σ g, F=

∑

g

TT
σgFgTσg with Qg = TT

ugDg.



Decomposition Methods for Limit and Shakedown Analysis 39

Fig. 2 Geometry and finite element mesh for the square plate

7 Numerical Results

The algorithms presented are compared in terms of accuracy, robustness and effec-
tiveness with the interior point method implemented in the commercial software
MOSEK, using both a SOCP and a quadratic description (QP) of the constraints. We
denote with MS-RM and SS-RM the strain driven return mapping analysis results,
the name of the method is followed by Ke to indicate that the initial elastic stiffness
matrix for each iteration was used (modified Newton method). Due to the linear
convergence rate of the modified Newton method, the tolerance on the equilibrium

equation is set equal to 1.0−3 × (λe

√∑
i pT

i K−1
e pi/Nv), that is not too strict but

adequate to produce results affected by an error in λa no greater than 0.05 %.
For all tests we will denote with λi

c the limit load multiplier for the load com-
bination obtained, for fixed values of αi

k and corresponding to a given load domain
vertex vi . In this case, due to the coincidence of the formulations, we obtain the
same behavior for the MS-RM and SS-RM algorithms.

7.1 Square Plate with a Central Circular Hole

The first test is the classic plate subject to the biaxial uniform loads p1 and p2 (see
Fig. 2) considered in numerical shakedown analysis [27–29]. Letting 0 ≤ α1 ≤ 1
and 0≤ α2 ≤ 1, some limit analysis and shakedown cases were investigated.

The (6× 3), (12× 6), (24× 12) and (48× 24) grids denoted as meshes 1, 2, 3
and 4 respectively were used. The first term indicates the number of elements along
the hole, the second that on the opposite boundary.
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Table 2 Square plate:
discretization error on
different meshes. The λc

values are relative to vertex
v3 = (1,0) while (λa = λ̄).
Results are multiplied by 10

mesh 1 mesh 2 mesh 3 mesh 4

λ3
c λ̄ λ3

c λa λ3
c λa λ3

c λa

Q8 8.060 4.333 8.020 4.315 8.008 4.305 8.003 4.302

Table 3 Comparison of λc and λa values for the square plate

(p1,p2) λc λa

(1, 1) (1, 0.5) (1, 0) (1, 1) (1, 0.5) (1, 0)

Stein et al. [29] – – 0.802 0.453 0.539 0.624

Zhang et al. [30] 0.893 0.907 0.789 0.477 0.549 0.647

Gross-Weege [27] 0.882 0.891 0.782 0.446 0.524 0.614

Silveira [28] 0.894 0.911 0.803 0.429 0.500 0.594

Krabbenhøft et al. [11] 0.430 0.499 0.595

Garcea et al. [4] 0.902 0.912 0.806 0.438 0.508 0.604

Present (mesh 4) 0.895 0.911 0.800 0.430 0.499 0.595

Table 4 Square Plate: comparison of performance between the algorithms. Limit analysis is per-
formed for vertex load v4 = (1.0,1.0). In parentheses the number of steps

MESH 3 MESH 4

λ4
c λa λ4

c λa

CPU loop CPU loop CPU loop CPU loop

MS-RM 5.25 118(31) 0.27 9(2) 31.55 146(39) 1.72 5(2)

MS-RM-Ke 11.26 786(64) 0.10 16(2) 23.19 755(68) 0.38 14(2)

SS-RM 5.25 118(31) 0.40 10(3) 31.55 146(39) 1.96 7(3)

SS-RM-Ke 11.26 786(64) 0.73 32(3) 23.19 755(68) 1.87 31(3)

MOSEK 0.44 15 1.73 14 2.20 13 8.14 10

MOSEK QP 0.62 19 2.02 10 4.64 22 33.70 12

In Table 4 the CPU time, the number of iterations and the number of values of
safe state z(k) (step), evaluated by the proximal point algorithm, are reported. In all
cases the values of both the static and kinematic multiplier are coincident and some
of them are reported in Table 2. A comparison with some of the results existing in
literature is reported in Table 3.

In this example, due to the occurrence λ= λ̄, we have practically the same per-
formance between the MS-RM and SS-RM analysis also in the shakedown case, with
the strain driven procedures more effective than IPM. Obviously this is only due to
the practically elastic behavior of the structures for such values of the multiplier.
With respect to CPU, at least in the evaluation of the limit analysis multiplier, our
implementation pays the greater cost of the single iteration, in MOSEK performed
using carefully tuned and very efficient routines for sparse linear algebra.
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Fig. 3 Geometry and finite element grid for continuous beam

Table 5 Values of the collapse and shakedown multipliers for continuous beam. v2 = (0.6,1),
v3 = (1,0)

mesh 1 mesh 2

λe λa λ̄ λ2
c λ3

c λe λa λ̄ λ2
c λ3

c

1.281 3.143 5.995 5.330 3.198 1.276 3.166 5.971 5.368 3.221

7.2 A Symmetric Continuous Beam

The analysis regards the structure, whose geometry, load domain, material proper-
ties and the two discretization meshes used (mesh 1 and mesh 2) are reported in
Fig. 3. In this case we have ratcheting collapse, that is λa < λi

c < λ̄. Shakedown and
the lower limit load multipliers for the two different meshes are reported in Table 5.

In Table 6 performances of the various implementations are reported. Shakedown
or limit load multipliers are more effectively evaluated using MOSEK and the MS-
RM has an overall better behavior with respect to the SS-RM that exhibits its worst
performances when the tangent matrix is used. Finally the cost of each iteration is
highly affected by the number of constraints when using MOSEK.

8 Conclusions

In this work, it has been shown how standard incremental elastoplastic analysis
based on closest point projection return mapping schemes, can be obtained from a
mathematical programming problem, consisting in the application of the proximal
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Table 6 Continuous beam: comparison of performance between the algorithms. Limit analysis is
performed for vertex load v2 = (0.6,1.0). In parentheses the number of steps

MESH 1 MESH 2

λ2
c λa λ2

c λa

CPU loop CPU loop CPU loop CPU loop

MS-RM 7.68 81(23) 9.75 99(26) 23.22 97(25) 27.55 108(27)

MS-RM-Ke 14.70 892(92) 25.0 1441(144) 32.00 800(84) 60.21 1409(145)

SS-RM 7.68 81(23) 20.14 184(47) 23.22 97(25) 63.40 230(52)

SS-RM-Ke 14.70 892(92) 55.60 1841(185) 32.00 800(84) 136.07 1915(194)

MOSEK 0.96 15 2.52 17 2.75 15 5.37 16

MOSEK QP 2.36 25 11.42 28 7.61 26 30.70 40

point algorithm to the static shakedown theorem and in its solution by means of dual
decomposition methods.

Two decomposition procedures, called respectively MS-RM and SS-RM have
been presented. The first scheme, that proves to be the more effective, corresponds
to the mathematical programming formulation of that used in [3, 4]. With respect
to the previous proposal it proves to be more efficient also due to the use of a refer-
ence load formulation that makes the problem less nonlinear. The multisurface re-
turn mapping process is performed avoiding any linearization of the elastic domain
exploiting an efficient sequential quadratic programming method and an active set
strategy, so improving both accuracy and performance. The SS-RM is based on a
standard return mapping process but requires a greater number of iterations each of
which is almost as expensive as in the MS-RM case. For both the decomposition
methods the elastic stiffness matrix can be exploited to obtain global convergent
algorithms and to reduce the computational cost for very large dimension problems.

The shakedown strain driven analysis is easy to implement in existing commer-
cial software performing nonlinear incremental elasto-plastic analysis. The lower
efficiency with respect to IPM methods is compensated by its more significant me-
chanical interpretation that allows the reuse of the kinematical part of the solution
and by, nowadays, a greater generality and robustness due to its consolidated and
extensive use in this context of analysis.
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Shakedown and Optimization Analysis
of Periodic Composites

M. Chen, A. Hachemi, and D. Weichert

Abstract In this work, non-conforming three-dimensional finite elements are used
for the limit and shakedown analysis of periodic metal-matrix composites. The op-
timal design variables, such as fiber distribution and various volume fractions are
investigated. Combined with homogenization theory, the global safe loading do-
mains for the composites, as well as the global homogenized material parameters
are determined, which opens the way for global structural design.

1 Introduction

The prediction of structure failure behavior under variable loads with unknown time
history is very difficult. Direct methods, namely limit and shakedown analysis, can
help to overcome this difficulty. Application of shakedown analysis to composites,
especially long fiber-reinforced metal matrix composites, upsurge these years. For
heterogeneous materials, there are generally two scales concerned. On the micro-
scopic level, local stress and strain analysis are performed and the influence of
each phase (fiber or matrix) is investigated. On the macroscopic scale, the global
response of the composite is analyzed with the help of homogenization theory. This
methodology was first proposed for the case of limit analysis of heterogeneous me-
dia in [37, 39]. In a similar way, some authors carried out shakedown analysis of
periodic composites with static approach [46, 47], as well as the kinematic ap-
proach [9, 31, 32]. Furthermore, some scholars also considered geometrical effects
and damage in micro-level [14, 19, 20, 45].
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Besides the issue of optimization, the implementation of lower bound direct
methods includes also the finite element method. Finite elements are used to ob-
tain local stress or local strain, as well as the equilibrium matrix. Previously, two-
dimensional finite elements have usually been used to deal with plane strain or plane
stress cases [5, 8, 33]. The disadvantage of the plane element is in the restriction of
the applied load. Recently, work concerned with metal matrix composites has been
extended to solid elements, which makes loads perpendicular to the transverse di-
rection of composites possible [49]. However, the 20-node solid elements usually
lead to large numbers of variables, because the scale of the optimization problem
depends mainly on the type of finite element.

Moreover, combined with homogenization theory, the material performances as
a whole are discussed, such as the influence of fiber distribution and volume frac-
tion [15, 33, 50]. From the knowledge of the local (or microscopic) material proper-
ties, the global (or macroscopic) mechanical response of fiber-reinforced composites
is predicted. The evaluation of elastic properties involves classical constitutive laws
and homogenization theory [10, 35]. The prediction of nonlinear macroscopic be-
havior has been mostly performed by using 3-D models based on limit analysis for
periodic heterogeneous material [40, 41].

In this work, a non-conforming three-dimensional finite element coupled with
direct methods and homogenization technique is presented for the limit and shake-
down analysis of periodic metal-matrix composites.

2 Analytical Model on Micro-level

2.1 Multi-scale Approach

Periodic composites, especially fiber-reinforced metal matrix composites (MMCs),
are investigated in our work. There is at least one ductile phase. For the interface,
perfect bonding is assumed. For the ductile phase, we use the theory of elasto-
plasticity.

Figure 1 shows the procedure of homogenization theory, which is composed
mainly into two steps:

• Localization: Any macroscopic point in a heterogeneous structure is investigated
in a representative volume element (RVE). This process is termed localization or
representation.
• Globalization: The inverse procedure, by which microscopic properties origi-

nating in the RVE are idealized at the marco level is called globalization or homo-
genization.

Each periodic micro structural block is usually called a Representative Volume
Element (RVE) or Unit Cell, denoted by V . We introduce a small parameter δ [2],
e.g. the “slow” variables x, y (or global coordinates), and the “fast” variables ξ , η
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Fig. 1 Homogenization theory

(or local coordinates). The relationship between the two coordinates are as follows:

ξ = x

δ
, η= y

δ
(1)

δ determines the size of the RVE, which plays an important role in studying the het-
erogeneous material, especially for non-uniform structure. There has been much re-
search about how to determine a representative volume element. The various classes
and definitions of RVE and the main practical approaches can be referred to in [29].
Briefly, the RVE of a heterogeneous material with random spatial distribution is in-
vestigated through the “Window” technique [34]. For a heterogeneous material with
periodic distribution, the smallest unit is normally defined as the RVE.

The macroscopic strain E and stress Σ are linked to the microscopic strain ε and
stress σ by the following relationships [37]:

E(x, y, z) = 1

V

∫∫∫
ε(ξ, η, ζ )dV = 〈ε(ξ, η, ζ )

〉
(2)

Σ(x, y, z) = 1

V

∫∫∫
Σ(ξ, η, ζ )dV = 〈Σ(ξ, η, ζ )

〉
(3)

Here, 〈·〉 stands for the averaging operator.
In the static shakedown theory for composite materials with periodic microstruc-

ture, the macroscopic stress is decomposed into a purely elastic part σE and a time-
independent residual one ρ̄:

Σ(x, y, z)= 1

V

∫

V

(
ασE + ρ̄

)
dV = 1

V

∫

V

ασEdV + 1

V

∫

V

ρ̄dV (4)

On the basis of homogenization theory, the first step is to obtain the local stress
and strain in the RVE. According to the type of the prescribed loading condition,
either a strain approach or a stress approach can be used.
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2.2 Stress and Strain Approaches

For heterogeneous materials, especially random ones, it is impossible to determine
the material characteristics precisely. This results from an incomplete knowledge
of the material structure, such as the spatial distribution of different phases or
the strength of interface coherence. Therefore, effective (or homogenized) material
properties are studied to replace the actual ones. Combined with homogenization
theory, the stress approach and the strain approach are mainly used [25, 26, 37].

2.2.1 Strain Approach

As the name implies, the macroscopic strain E is imposed at the boundary of a
representative volume element. In practice, the macroscopic strain is amounted to
displacement loading. Let the displacement u be decomposed as [6, 24]:

u=E · x + uper (5)

where uper is the periodic displacement field. Then, the local strain ε can be derived
as:

ε =E + εper (6)

where εper is the fluctuating part in every representative volume element. Note that
the periodicity of uper implies that the average of εper on the RVE vanishes and
therefore the average of ε is E.

To find σE and εper , the elastic localization problem can be written as:

Pstrain =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

divσE = 0 in V

σE = d : (E + εper) in V

σE · n anti-periodic on ∂V

uper periodic on ∂V

(7)

Here, V is the domain of the representative volume element in R3. Furthermore, σE

is the purely elastic stress and n is the out-normal vector on the surface of the RVE
under consideration. The anti-periodicity of σE · n on ∂V implies that σE · n has
opposite values on opposite sides of ∂V . The periodicity of uper means that uper is
the same at two opposite points of the boundary.

In our work, we consider the particular case that a uniform displacement is im-
posed on the boundary. After deformation, the edges of each element are still straight
(Fig. 2). Considering symmetry, the investigated model can be simplified to one
quarter of the representative volume element.
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Fig. 2 Strain method

Fig. 3 Stress method

Thus, the problem can be formulated as [37]:

P ∗strain =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

divσE = 0 in V

σE = d :E in V

us symetric condition on ∂V

uper = 0 on ∂V

(8)

For the shakedown analysis of composites, we still need to consider the residual
stress field ρ̄, which should satisfy the self-equilibrated condition and periodicity
conditions.

P res
strain =

{
div ρ̄ = 0 in V

ρ̄ · n anti-periodic on ∂V
(9)

2.2.2 Stress Approach

In this approach, the macroscopic stress Σ is imposed at the boundary. After defor-
mation, the boundary displacement is not uniform anymore (Fig. 3).
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Fig. 4 2D homogeneous
material under plane stress

The elastic localization problem can then be written as [37]:

Pstress =

⎧
⎪⎨

⎪⎩

divσE = 0 in V

σE = d : ε in V

σE · n=Σ · n on ∂V

(10)

The residual stress field ρ̄ is also self-equilibrated and satisfies the periodicity
condition. However, in the stress method, we need an additional condition, that the
average value of ρ̄ should equal zero.

P res
stress =

{
div ρ̄ = 0 in V

ρ̄ · n= 0 on ∂V
(11)

For the finite element solution, this requirement could be satisfied by adding a
fictive node in each element of the meshed RVE [12, 25, 40].

2.3 Transformation Between Two Scales

After analysis on the level of a representative volume element, we may transfer
the local displacement domain to a global stress domain in the principal direc-
tion with the help of the particular case of the homogenization theory presented
in Sect. 2.2.1 [33]. Take the case of two-dimensional plane stress as an example
(Fig. 4). The material is homogeneous, with Young’s modulus E and Poisson’s ra-
tio ν. In terms of Hooke’s law:

⎧
⎪⎨

⎪⎩

εx = 1
E

(σx − νσy)

εy = 1
E

(σy − νσx)

γxy = 2(1+ν)
E

τxy

=⇒

⎧
⎪⎨

⎪⎩

σx = E

1−ν2 (εx + νεy)

σy = E

1−ν2 (εy + νεx)

τxy = 0

(12)

The case of homogeneous plane stress is characterized by the fact that there is no
residual stress field and all the local stresses have the same value.

With this, we obtain:
{

Σe
1 = σx

Σe
2 = σy

(13)
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Fig. 5 Transformation
relationship

Consider four points in the shakedown displacement load domain (Fig. 5).
For P2:
{

U1 = αSDU0
1

U2 = 0
=⇒

{
εx =U0

1 /L

εy = 0
=⇒

{
σx = Eεx

1−ν2

σy = νEεx

1−ν2 = νσx

(14)

Therefore, the point P2 in the shakedown macroscopic stress domain has the
value:

{
Σ1 = αSDΣe

1

Σ2 = αSDνΣe
1

(15)

After transformation, P2 in the local displacement domain rotated through an
angle ϕ1 in the macroscopic stress domain:

ϕ1 = arctan
Σ2

Σ1
= arctan(ν) (16)

Similarly, for P4:
{

Σ1 = αSDνΣe
2

Σ2 = αSDΣe
2

(17)

The rotated angle ϕ2 is:

ϕ2 = arctan
Σ1

Σ2
= arctan(ν) (18)

According to the constitutive law (12), we may obtain the macroscopic elastic
stress for P3 as:

⎧
⎨

⎩

Σe∗
1 = E

1−ν2 (εx − νεy)

Σe∗
2 = E

1−ν2 (νεx − εy)
(19)

Also the angle ϕ∗ between the X-axis and a line from the origin to P3 is:

ϕ∗ = arctan
Σ∗2
Σ∗1

(20)
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Table 1 The positions of
points in different domains

Note: α could be the safety
factors for elastic, alternating
plasticity, shakedown or limit
state

Points Displacement load domain Stress load domain

P1 0 0 0 0

P2 αU0
1 0 αΣe

1 ανΣe
1

P3 αU0
1 αU0

2 αΣe∗
1 αΣe∗

1

P4 0 αU0
2 ανΣe

2 αΣe
2

The positions of load vertexes in different domains are listed in Table 1.
For composite materials, we need to keep in mind that the macroscopic stress

is obtained basing on the particular case of homogenization theory by using strain
approach. Since the average of the residual stresses equals to zero, the macroscopic
stress at different states can be defined as:

• Elastic state: ΣEL = αELΣe

• Shakedown state: ΣSD = αSDΣe

• Limit state: ΣLM = αLMΣe

• Alternating plasticity state: ΣAP = αAP Σe

A numerical example will be illustrated in Sect. 4.2.

3 Numerical Solution

The implementation of lower bound direct methods mainly involves two numerical
tools: finite element method and large scale nonlinear optimization method.

Any discretized version of lower bound direct methods preserves the relevant
bounding properties only if the following conditions are satisfied simultaneously:
(i) the solution of the purely elastic response is exact; (ii) the residual stress field
satisfies pointwise the homogeneous equilibrium equations; (iii) the yield condition
is satisfied in each point of the considered material.

The existence of these bounding properties was the reason why many authors
used the finite element stress method with a discretization of the stress field. More-
over, since the lower bound direct methods is formulated in static quantities, it is
meaningful to discretize the stress field rather than the displacement field. However,
most of the available finite element codes are based on displacement formulations.
On the other hand, it is very difficult to preserve in this case the bounding prop-
erties. Especially the first condition can hardly be satisfied, if other than particular
structures are studied. Thus, to use the proposed method with commercial codes, we
prefer here the displacement method. In this case all the well-known displacement
element formulations can be used. For that purpose it is necessary to transform the
statical equations from their local form into the equivalent weak form.
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3.1 Non-conforming Finite Element Discretization

The accuracy of a finite element analysis can be improved by using higher order
elements. For instance, an 8 node element can be replaced with a 20 node element,
which costs more computer time and storage. Wilson et al. [48] introduced non-
conforming elements by including additional incompatible displacement modes,
which increase the basic accuracy still using a simple (first order) element and avoid
the “shear locking” numerical problem [36, 38].

The scale of the optimization problem is mainly determined by the number of
elements and the used element type. Therefore non-conforming element is adopted
here. Comparative study using different element types is presented in Sect. 4.1.

In terms of the principle of virtual work, the external virtual work is equal to the
internal virtual work, when equilibrated forces and stresses undergo unrelated but
consistent displacements and strains:

∫

V

{
ε∗
}T {

ασE + ρ̄
}

dV =
∫

∂V

{
δ∗
}T {

p∗
}

dS +
∫

V

{
δ∗
}T {

f ∗
}

dV (21)

Here, ε∗ is the virtual strain, and δ∗ is the virtual displacement. These discretiza-
tions have to be carried out for both the purely elastic stress field σE and the residual
stress field ρ̄.

Let u, v and w be displacements in the x, y and z-directions, respectively, then:
⎧
⎨

⎩

u

v

w

⎫
⎬

⎭
=

8∑

i=1

Ni

⎧
⎨

⎩

ui

vi

wi

⎫
⎬

⎭
+
⎡

⎣
P1 P2 P3 0 0 0 0 0 0
0 0 0 P1 P2 P3 0 0 0
0 0 0 0 0 0 P1 P2 P3

⎤

⎦ {a} (22)

Here, Ni is the shape function, Ni = 1
8 (1 + rri)(1 + ssi)(1 + t ti ); r , s, t are nat-

ural coordinates, and ri , si , ti are the values of the natural coordinates of node i.
P1 = 1− r2, P2 = 1− s2 and P3 = 1− t2. One important feature is that P1, P2 and
P3 are zero at eight nodes, which maintains the displacement compatibility at nodes.
{a} is the vector of additional degrees of freedom.

{a} = {a1 a2 a3 a4 a5 a6 a7 a8 a9}T

The element stiffness matrix is defined as follows:

Ke =
∫

Ve

BT D−1B dx dy dz=
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT D−1B|J |dr ds dt

=
ngl1∑

i=1

ngl2∑

j=1

ngl3∑

k=1

|J |BT D−1Bwi
rw

j
s wk

t (23)

Here, B is the strain matrix, computed from the derivatives of shape functions; D

is the fourth-order tensor of elastic modulus; |J | is the determinant of the Jacobian
matrix, which is evaluated at the centre of the element [22], i.e. r = s = t = 0; w
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are weighting factors; ngl1, ngl2, ngl3 are the number of Gauss points along r , s,
t directions, respectively. Using Gauss quadrature, the 2× 2× 2 scheme has found
to be adequate. The dimension of element stiffness matrix is 33 × 33, instead of
24 × 24 for standard 8 node finite element. For 20-node solid element, the stiff-
ness matrix can be evaluated using 3× 3× 3 Gauss points. However, a reduced 14
points integration rule is also used, since this rule gives the same accuracy with less
computational effort [22].

In a similar way, the residual stress can be discretized as follows (see e.g. [28]):

∫

Ve

BT {ρ̄}dV =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT {ρ̄}|J |dr ds dt

=
ngl1∑

i=1

ngl2∑

j=1

ngl3∑

k=1

|J |BT {ρ̄}wi
rw

j
s wk

t (24)

The weighting factors wr = ws = wt = 1, when using 2 Gauss points at each
axis direction. Therefore, we obtain:

[C]e =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT =

NGE∑

m=1

|J |
[
BO

T

BA
T

]

=
NGE∑

n=1

[
Ce

m

]
(25)

NGE is the total number of Gauss points in each element: NGE = ngl1 × ngl2 ×
ngl3= 8. For the whole system,

[C] =
NE∑

n=1

NGE∑

m=1

|J |BT =
NE∑

n=1

[C]e =
NE∑

n=1

[
CO

e

CA
e

]

=
[
CO

CA

]

(26)

NE is the total number of elements. The equilibrium matrix [C] is composed of
two parts: [CO ], with the dimension 3NK × 6NGS and the additional matrix [CA],
with the dimension 9NE× 6NGS, corresponding to the extra shape function of non-
conforming finite element.

Finally, the shakedown problem can be formulated as the following mathematical
problem:

maxα
⎧
⎪⎨

⎪⎩

[C]{ρ̄} = 0

F
[
ασ e

i (Pk)+ ρ̄i , σY i

]≤ 0

i ∈ [1,NGS], k ∈ [1,2n
]

(27)

Here, ρ̄ is the time-independent periodic residual stress field; F is the von-Mises
yield condition; NGS is the number of Gauss points of the considered representative
element; n is the number of independent loads; [C] is the constant equilibrium ma-
trix, uniquely defined by the discretized representative volume element with respect
to boundary conditions; σYi is the yield stress; Pk is the load vertex.
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3.2 Interior Point Method

The static shakedown problem is finally reduced to a large-scale nonlinear optimiza-
tion problem after discretization by using finite elements. Nowadays, different meth-
ods are developed to solve large-scale nonlinear optimization problems [16, 17],
such as sequential quadratic programming (SQP), augmented Lagrangian method
and interior point method. Correspondingly, different software packages are avail-
able. Here, we focus on the interior-point-method-based software packages IPDCA
and IPOPT.

IPDCA (Interior Point with DC regularization Algorithm), is a C-programming
package, using quasi-definite matrix techniques [1], which is specially designed for
shakedown and limit analysis, and characterized by high speed and large scale num-
ber of variables [27, 28].

IPOPT (Interior Point Optimizer) is an open source software package for large-
scale nonlinear optimization [44]. It implements an interior-point line-search filter
method. However, the algorithm is only trying to find the local minimizer of the
problem [43]. For non-convex problems, many stationary points may exist. As a
matter of fact, the static shakedown problem is convex, and thus any local min-
imizer is also global minimizer as well. IPOPT is designed to solve the general
mathematical optimization forms:

minf (x)

s.t. cL ≤ c(x)≤ cU

xL ≤ x ≤ xU

(28)

Note that the equality constraints can be formulated by setting cL = cU . To sim-
plify the notation, the following problem formulation is considered:

minf (x)

s.t. c(x)= 0, i = 1, . . . ,m

x ≥ 0

(29)

where f : Rn→ R, and c : Rn→ Rm are twice continuously differentiable func-
tions. As an interior point (or barrier) method, the proposed algorithm computes
solutions for a sequence of barrier problems, with the barrier parameter μ > 0.

min ϕμ(x) := f (x)−μ

n∑

i=1

log(xi)

s.t. c(x)= 0

(30)

The KKT conditions for (30) are:

∇ϕμ(x)+ λ∇c(x)= 0

c(x)= 0
(31)
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Solving this system directly by a Newton-type method leads to a so-called primal
method, which treats only the primal variables x and the multipliers λ. However, the
term ∇ϕμ(x) includes components μ/xi . It indicates, that system (31) is not defined
at the optimal solution x∗ of system (29) with bound x∗(i) = 0, i.e. an optimal solution
will be in the interior of the region defined by x ≥ 0.

The amount of influence of barrier term relies on the size of μ. Under certain
conditions, the optimal solution x∗(μ) of system (31) converges to x∗ of the original
system (29): As xi→ 0, log(xi)→∞; As μ→ 0, x∗(μ)→ x∗.

Instead of using this primal approach, dual variables z are introduced: zi = μ/xi .
Therefore, the KKT conditions (31) are equivalent to the perturbed KKT conditions
or primal-dual equations [42]:

∇f (x)+ λ∇c(x)= 0

c(x)= 0 (32)

XZe−μe= 0

where X = Diag(x), Z = Diag(z) and e = (1, . . . ,1)T . Note, that Eqs. (32) for
μ = 0 together with (x ≥ 0, z ≥ 0) are KKT conditions for original system (36).
The optimality error for the above barrier problem is defined as:

Eμ(x,λ, z)=max

{‖∇f (x)+ λ∇c(x)‖∞
sd

,
∥
∥c(x)

∥
∥∞,
‖XZe−μe‖∞

sc

}

(33)

sd and sc are scaling factors, under the definition:

sd =max

{

smax,
‖λ‖1 + ‖z‖1

m+ n

}/
smax, sc =max

{

smax,
‖z‖1

n

}/
smax (34)

smax is a fixed number, in IPOPT smax = 100. Let E0 = (x, λ, , z) denote the opti-
mality error for the original problem. The overall algorithm terminates if an approx-
imate solution satisfies:

Eμ

(
x̃∗, λ̃∗, z̃∗

)≤ θtol (35)

θtol is the user provided convergence tolerance. In order to solve the barrier problem
for a given fixed value μj , a Newton method is applied to nonlinear systems of
equation (32):

⎡

⎣
Wk Ak −I

AT
k 0 0

Zk 0 Xk

⎤

⎦

⎛

⎜
⎝

dx
k

dλ
k

dz
k

⎞

⎟
⎠=−

⎛

⎝
∇f (xk)+Akλk − zk

c(x)

XkZke−μje

⎞

⎠ (36)

Here Ak := ∇c(xk); Wk := ∇x(∇f (xk) + Ak) = ∇2
xxL(xk, λk, zk); L(x,λ, z) :=

f (x)+ c(x)T λ− z; dx
k := xk+1 − xk ; dλ

k := λk+1 − λk ; dz
k := zk+1 − zk .
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Reformulating Eqs. (36) into a symmetric system:
⎧
⎪⎨

⎪⎩

Wkd
x
k +Akd

λ
k − Idz

k =−(∇f (xk)+Akλk − zk)

AT
k dx

k =−c(xk)

Zkd
x
k +Xkd

z
k =−(XkZke−μje)

=⇒
{

dz
k = μjX

−1
k e−X−1

k Zkd
x
k − zk

(Wk +X−1
k Zk)d

x
k +Akd

λ
k =−(∇f (xk)−μjX

−1
k e+Akλk)

=⇒
[
Wk +Σk Ak

AT
k 0

](
dx
k

dλ
k

)

=−
(∇ϕμj (xk)+Akλk

c(x)

)

(37)

Here ∇ϕμj (xk)=∇f (xk)−μjX
−1
k e; Σk =X−1

k Zk .
In order to avoid a singularity or ill-conditioned problem, the iteration matrix is

modified by adding a diagonal correction, i.e. regularization:
[
Wk +Σk + δwI Ak

AT
k −δcI

](
dx
k

dλ
k

)

=−
(∇ϕμj (xk)+Akλk

c(x)

)

(38)

δw and δc are two scalars, called “numeric damping coefficient”. These choices for
each iteration can be determined by Algorithm IC (Inertia Correction) [44]. The
next iteration is then determined by:

xk+1 := xk + αkd
x
k

λk+1 := λk + αkd
λ
k (39)

zk+1 := zk + αz
kd

z
k

αk is primal step length; αz
k is dual step length.

From the above description, one may observe, that either the Newton method
or the damped Newton method uses the first and second derivatives (gradient and
Hessian) to find the stationary point. Meanwhile, IPOPT also offers an option to
approximate the Hessian of the Lagrangian by a limited-memory quasi-Newton
method (L-BFGS) [7]. L-BFGS stands for “limited memory BFGS”, which uses
the Broyden-Fletcher-Goldfarb-Shanno update to approximate the Hessian matrix.
That is, by using quasi-Newton method, the Hessian matrix of second derivatives of
function does not need to be computed, which can be updated by analyzing succes-
sive gradient vectors instead.

4 Results and Discussion

To show the validity of the proposed methods, several numerical results are pre-
sented. The input data for the optimization procedure are obtained from customized
ANSYS and Matlab, and the optimization is carried out with IPOPT.
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Table 2 Material properties
Al/Al2O3

E (GPa) ν σY (MPa)

Matrix (Al) 70 0.3 80

Fiber (Al2O3) 370 0.3 2000

4.1 Comparison of Different Elements

To show the advantage of non-conforming element, we tested the limit analysis of
MMCs by step-by-step method using the following element types: (a) 8-node brick
element with bilinear shape function (LSF); (b) 8-node brick element with extra
shape function (ESF), i.e. non-conforming element; (c) 20-node brick element with
quadratic shape function. Square pattern of periodicity (Fig. 8, Left) under plane
strain condition is considered and subjected to the uniaxial stress Σ11. Material
properties is shown in Table 2, with the assumption that each phase is isotropic and
elastic-perfectly plastic.

Using an 8-node solid element with a bilinear shape function, we can observe that
in the limit uniaxial stress Σ11 is extremely large (Fig. 6). However, an 8-node solid
element with extra shape function produces reasonable results, similar to the 20-
node solid element. Because 8-node element with bilinear shape functions can not
represent flexural response.Therefore, the key point of the non-conforming element
is to add quadratic terms on the basis of linear shape function.

4.2 Illustration of Transformation

The transformation given in Sect. 2.1 is illustrated by considering a thin plate with
square pattern (Fig. 8, Left). The side of RVE is 100 mm, the width is 2 mm and
the fiber radius is 15 mm. Material model is the same as in Sect. 4.1. It is subjected
to two independent displacement loadings: U0

1 = U0; U0
2 = U0. The elastic and

Fig. 6 Limit state of macroscopic stress with fiber volume fraction
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Fig. 7 Transformation between two scales

Table 3 Characteristic angle for uniaxial macroscopic stress under plane strain conditions

η % ϕ∗ [15] ϕ (this work) Σ11 Σ22 Ue
1 /U0

1 Ue
2 /U0

2

0 −23.20 −23.20 28.281 0 0.1838 −0.0788

10 −22.89 −22.88 31.918 0 0.1843 −0.0778

20 −22.34 −22.33 36.613 0 0.1850 −0.0760

30 −21.61 −21.58 42.642 0 0.1860 −0.0736

40 −20.80 −20.74 50.259 0 0.1870 −0.0708

50 −20.05 −19.99 59.718 0 0.1880 −0.0684

shakedown domains are normally scaled (Fig. 7). Benchmark U0 is 0.02 mm and
σY is the yield stress of the matrix.

According to Eq. (16) in Sect. 2.3, the characteristic angle here is ϕ =−16.65◦
and the elastic and shakedown safety factors are: αEL = 2.06 and αSD = 2.71.

For the same pattern and material properties, but under plane strain conditions,
the change of characteristic angles ϕ in terms of the fiber volume fraction is shown
in Table 3.

4.3 Fiber Distribution and Volume Fraction

The influence of fiber distribution and fiber volume fraction is investigated under
plane strain condition (Fig. 8). The dimensions of RVEs are given in Table 4.
They are subjected to two independent displacement loadings, U0

1 = U0
2 = U0 =

0.02 mm.
Figure 9 presents the admissible displacement domain (left side) and the corre-

sponding transformed macroscopic stress domain (right side) for periodic compos-
ites under plane strain case. The fiber ratio is 40 %. From top to bottom are square,
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Fig. 8 Fiber distribution: (Left) Square pattern (SQ); (Middle) Rotated square pattern (TS);
(Right) Hexagonal pattern (HEX)

Table 4 Dimensions of RVEs

Dimension of whole RVE Square pattern Rotated pattern Hexagonal pattern

2a/mm 100 100 131.607

2b/mm 100 100 75.984

rotated square and hexagonal pattern, respectively. Note that, the quadratic and ro-
tated composites are anisotropic. We use the transformation described in Sect. 2.3 to
obtain stresses along the principal direction. After transformation, the macroscopic
stress domain of hexagonal pattern also becomes symmetric in the principal direc-
tions. It satisfies the reality that the unidirectional continuous fiber with hexagonal
periodicity is approximately isotropic in transverse direction.

Figure 10 shows the variation of the macroscopic limit stress in one axial direc-
tion with fiber volume fraction. For square pattern, the axial limit stress increases
remarkably from around 35 %. For hexagonal pattern, the axial limit stress increases
stably from 10 % to 50 %. While for the rotated pattern, the axial limit stress varies
quite slightly, i.e. the fiber volume fraction has almost no influence on the macro-
scopic performance.

Figure 11 shows that the square pattern has the biggest macroscopic stress do-
main when the fiber volume fraction is 50 %. In macroscopic view, choose which
kind of fiber pattern depends on the external loading.

In principle, the square pattern and rotated square pattern are the same. However,
the loading domains, either in local level or global level, are different. It illustrates
that periodic composites with square pattern is essentially not transversely isotropic,
although in the traditional micromechanics of laminate they are treated as such [13].

4.4 Homogenized Elastic Material Properties

The homogenized elastic properties are determined for fiber reinforced composite
given in Sect. 4.3. For square pattern and rotated square pattern, the characteristic
angles ϕ1 and ϕ2 should equal to each other because of the geometric symmetry. It
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Fig. 9 Admissible displacement domain (Left) and related maximal macroscopic stress domain
(Right) for periodic composites with different fiber pattern

is also verified in our numerical calculation. The unit cell of hexagonal distributed
periodic composites is not symmetric. The characteristic angles at two directions
are different. However, in macroscopic view, the homogenized material properties
for all three patterns should be the same, in restrict words, that same in X and Y
directions. According to the former methods, the homogenized transverse Young’s
modulus (Fig. 12) and Poisson ratios (Fig. 13) of different patterns with variation of
fiber volume fraction can be obtained.
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Fig. 10 Axial macroscopic
limit stress

Fig. 11 Macroscopic limit
stress domain for different
patterns

Fig. 12 Homogenized Young’s modulus

Figure 12 presents the homogenized transverse Young’s modulus for the three
patterns. Generally, with the increment of fiber ratio, the transverse modulus in-
creases, and among three patterns, the square one increased a little stronger than
other two.

Their Poisson ratios are assumed the same value 0.3. Figure 13 presents the dif-
ference among three patterns. For the hexagonal pattern, with the variation of fiber
volume fraction, Poisson’s ratio is almost constant, while for the square pattern, it
decreases, and for the rotated square pattern, it increases slightly.

From Fig. 12 and Fig. 13 we may conclude, that the fiber distributed pattern
affects the transversely effective material properties. And after the transformation,
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Fig. 13 Homogenized Poisson ratio

the hexagonal pattern shows the transversely isotropic characteristics on the macro-
scopic level.

4.5 Homogenized Plastic Material Properties

Based on the homogenization theory and mechanical constitute law, we may give a
prediction of the effective elastic material properties of the composites. The biggest
difficulty consists in how to define the plastic material properties, such as yield
strength. During numerical simulation, we observed that the yielding process can be
regarded as three states: firstly, it begins to yield, then the debonding of the inter-
face, finally, the ductile phase exhibits overall plastic flow. By combination of lower
bound direct methods and homogenization technique, the yield strength of periodic
composites can be defined in three states [11, 18]:

1. Onset of plasticity: ΣYEL = αELΣV

2. Shakedown state: ΣYSD = αSDΣV

3. Limit state: ΣYLM = αLMΣV

Here, ΣYEL, ΣYSD and ΣYLM are the yield strengths corresponding to purely
elastic, shakedown and limit states, respectively; ΣV is the macroscopic equivalent
stress. Admissible macroscopic stress domains from beginning of plasticity to the
limit state are obtained with the help of homogenization theory. Since three states
are defined, for a uniaxial macroscopic stress Σ1 (Σ2 =Σ3 = 0), we therefore get
even for the elastic-perfectly matrix a “structural hardening” effect, due to the mi-
croscopic inhomogeneous stress distribution in the composite.

The stress components Σij depend on the orientation of the coordinate system.
Nevertheless, there are certain invariants associated with every tensor which are
independent of the coordinate system. By solving the characteristic equation, we
may obtain three principal stresses. For plane stress case, Σ3 is zero. Therefore,
yield curve fitting is carried out only in plane. This is one of the reasons, that why
the yield criterion for sheets are developed a lot. For plane strain case, or general
stress state, the principal stresses are distributed in the space.
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Numerous anisotropic yield criteria have been developed and tested for anisotropic
plastic deformation [3, 4, 30]. The simplest, however, is the quadratic Hill yield cri-
terion [21], which is a straightforward extension of the von Mises yield criterion. It
has the form:

F(σ22 − σ33)
2 +G(σ33 − σ11)

2 +H(σ11 − σ22)
2

+ 2
(
Lσ 2

23 +Mσ 2
31 +Nσ 2

12

)− 1= 0 (40)

Here F , G, H , L, M , N are constants that have to be determined by experiments.
The expressions of these parameters are defined as:
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Y 2
+ 1

Z2
+ 1

X2

)

, G= 1

2

(
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(
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L= 1

2P 2
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2S2
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2T 2

(41)

Here X, Y , Z are the normal yield stress with respect to the axes of anisotropy in
1, 2 and 3 directions; P , S, T are the shear yield stresses in 23, 13 and 12 directions,
respectively. By choosing the reference system in principle stress directions, we get:

F(σ2 − σ3)
2 +G(σ3 − σ1)

2 +H(σ1 − σ2)
2 − 1= 0 (42)

Under the assumption, that the investigated material is isotropic in transverse
direction, i.e. F =G. As defined above, X and Z are the tensile equivalent stress in
and along the normal to the sheet plane, respectively. This implies:

X2 + H

F
X2 = 1

F
⇒ X = 1√

F +H
(43)

2Z2 = 1

F
⇒ Z = 1√

2F
(44)

From (43) and (44):

(
Z

X

)2

= F +H

2F
⇒ H

F
= 2

(
Z

X

)2

− 1 (45)

Substitute (44) and (45) into (42), we may obtain the criterion in terms of the
equivalent stresses:

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2
[

2

(
Z

X
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− 1

]

= 2Z2 (46)
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According to the associated flow rule, we have:

ε
p
i = λ

∂f

∂σi

⇒ dε
p
i

dλ
= ∂f

∂σi

(47)

For plane stress σ3 = 0, which gives:
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Import the R-value [23] which is a measure of the plastic anisotropy of a rolled
metal sheet. Let R0 and R90 are the ratio of the in-plane and out-of plane plastic
strains under uniaxial stress σ1 and σ2, respectively:

R0 = dε
p

2
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p

3

= 2

(
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− 1
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p
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= 2
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(49)

Thus,

R =R0 =R90 = 2

(
Z

X

)2

− 1 (50)

Substitute Eq. (50) into (46), we have:

σ 2
1 + σ 2

2 −
(

R+ 1

2

)

σ1σ2 =X2 (51)

From mathematical point of view, Eq. (51) represents an ellipse by a 45 degrees
rotation of a canonical ellipse with the centre (0, 0). Assume that the semimajor and
semiminor are a and b, respectively. Take composites with square pattern fiber vol-
ume fraction 7.07 % as an illustrative example, and with the dimension as reported
in Sect. 4.1. Material parameters of two phases, as well as homogenized parame-
ters are shown in Table 5. The macroscopic admissible domain of the composites,
transformed in principal stress directions, is shown in Fig. 14, where the bounds of
the elastic (EL), limit (LM) and shakedown (SD) domains are represented. Based
on least-square method, Hill_1 and Hill_2 are fitted yield surface according to the
limit and shakedown domain, respectively.

Hill_1: with R-value 1.0194, which means, it can be treated as von Mises yield
criterion approximately. Hill_2: with R-value 1.3204. The other related parameters
are shown in Table 5.
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Table 5 Parameters by yield surface fitting

R a b X Z F H

Hill_1 1.0194 381.13 218.64 268.20 269.50 6.8842e-6 7.0177e-6

Hill_2 1.3204 328.65 172.24 215.75 232.39 9.2583e-6 1.2225e-5

Fig. 14 Admissible
macroscopic stress domain
and yield surface fitting

Table 6 Homogenized
material parameters Material property Matrix Fiber Homogenized

Young’s modulus (GPa) 2.1 210 174.52

Poisson ratio 0.3 0.2 0.2966

Yield strength (MPa) 280 140 269.50

If we fit the yield surface with von Mises yield criterion (R = 1) according to
macroscopic stress under limit state, the homogenized elastic and plastic properties
of periodic composite material are shown in Table 6.

We note that the yield surface fitting according to shakedown domain is only
suitable for a specific loading domain.
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5 Conclusion

This paper shows how the lower bound shakedown analysis combined with homog-
enization theory can be used to determine safe loading domains for composites and
how to calculate global homogenized material parameters. We conclude that a three-
dimensional non-conforming element will fit for the direct methods with the same
accuracy as second order element but with much less computational cost. The yield
surface fitting according to shakedown domain is only suitable for arbitrarily chosen
but specific loading domains.
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An Upper Bound Algorithm for Limit
and Shakedown Analysis of Bounded Linearly
Kinematic Hardening Structures

Phu Tinh Pha.m and Manfred Staat

Abstract The paper develops a new FEM based algorithm for shakedown analysis
of structures made of elastic plastic bounded linearly kinematic hardening material.
The hardening effect is simulated by using a two-surface plastic model to bound
the Melan-Prager model. The initial yield surface can translate inside the bounding
surface, without changing its shape and size. The translated yield surface may touch
the bounding surface and ratcheting may occur with clear benefit of hardening. Or it
may not touch the bounding surface, alternating plasticity may occur and there is no
effect of hardening. The direct calculation of plastic limit and shakedown bounds
is considered as a nonlinear programming problem. The upper bound of the shake-
down load is obtained as the minimum of the plastic dissipation function, which is
based on the von Mises yield criterion.

1 Introduction

The main business of structural engineers is to design structures safely, economi-
cally and efficiently. Elastic analysis does not fully exploit the capacity of structures
made of ductile materials. Direct plastic analysis, also called limit analysis, finds
the ultimate strength capacity (static collapse) with the assumption that the applied
loads on the structure are time-independent and proportional. Actually, applied loads
are often neither monotonic nor proportional, such as wind loads on buildings, traffic
loads on bridges, waves on offshore oil-rigs, cyclic loads on machine parts, internal
pressure in pipes, varying thermal loads, etc. Then the structure may fail by fatigue
or unserviceability before reaching its ultimate strength capacity. Shakedown anal-
ysis is used to define the load bounds for design checks against low cycle fatigue
and incremental plastic collapse. From the engineering point of view, a structure
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which is designed based on the shakedown limit is safer than if based on the plastic
collapse limit.

For a perfectly plastic material the first shakedown theorem was formulated by
Bleich [1], the static theorem was extended by Melan [9], and the kinematic shake-
down theorem was stated by Koiter [5]. There have been many studies on shakedown
for elastic perfectly plastic material so far.

For more realistic materials, resulting in more economic and efficient structures,
the hardening effect should be taken into account. Among hardening models, the
isotropic hardening law is generally not reasonable in situations where structures
are subjected to cyclic loading, it does not account for the Bauschinger effect, and
rejects the possibility of incremental plasticity. The unbounded kinematic hardening
model has already been used by Melan [10] and later by Prager [14]. It cannot de-
fine the plastic collapse and also incremental plasticity, but only low cycle fatigue.
Introducing a bounding surface in Melan-Prager’s model a two-surface model of
plasticity is achieved which appears to be most basic, suitable and simple for shake-
down analysis. Many researchers have investigated the benefit of hardening, using
either analytical methods, such as Bodoville and de Saxcé [2, 3], or numerical meth-
ods based on the lower bound theorem, such as Weichert and Groß-Weege [22],
Staat and Heitzer [6, 7, 16], Stein and Zhang [18–20, 23], Makrodimopoulos and
Bisbos [8], etc.

Nguyễn Q.S. [11], Pha.m Ð.C. [12, 13] have presented upper bound shakedown
theorems in hardening plasticity for both static and kinematic approaches. This
paper develops a FEM based upper bound algorithm to investigate the influence
of hardening on ratcheting by a direct plastic method, using a simple two-surface
model of plasticity with a fixed bounding surface. The initial yield surface can trans-
late inside the bounding surface, so that: (1) it always stays inside the bounding
surface, or (2) its centre cannot move outside the back stress surface. As the two-
surface model is only based on yield stress σy and ultimate strength σu, so it does
not depend on the hardening curve, consequently it is a model of linearly kinematic
hardening.

2 Bounded Kinematic Hardening Model

2.1 Unbounded Kinematic Hardening Model

The original Melan-Prager model is characterized by an unbounded translation of
the loading surface in the multi-axial stress space, see Fig. 1.

According to the von Mises yield condition, the initial yield surface is defined as

f (σ )= F [σ ] − σ 2
y = 0 (1)

and the subsequent or translated surface is defined as

f (σ ,π)= F [σ − π] − σ 2
y = 0, (2)
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Fig. 1 A model for unbounded kinematic hardening

where π is called back stress, π = (σu − σy), and

π̇ = 2

3
Cε̇p, (3)

where C is a material constant, and with the associated plastic flow

ε̇p = λ̇
∂f

∂σ
. (4)

For the unbounded kinematic hardening model, the initial yield surface translates
without constraint, in other words, the ultimate strength σu is infinite and so this
model is not realistic and not suitable for limit analysis. In addition, the struc-
ture made of unbounded kinematic materials can fail only by alternating plasticity
(LCF), i.e. it is impossible for such a structure to be involved in incremental plastic
collapse, while the alternating limit with the kinematical hardening model seems
not to be essentially different from the perfectly plastic model, cf. Gokhfeld and
Cherniavsky [4], Stein and Huang [17].

2.2 Bounded Kinematic Hardening Model

In the so-called bounded kinematic hardening model of two-surface plasticity the
initial yield surface translates with a constraint, so that it cannot move outside the
bounding surface fu (see Fig. 2).

The initial surface is defined in Eq. (1), and the subsequent surface is defined in
Eq. (2). The subsequent surface may or may not touch the bounding surface. It is
bounded in one of two following ways.

– It always stays inside a bounding surface, expressed by the following condition

F [σ ] ≤ σ 2
u . (5a)
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Fig. 2 A two-surface model for bounded kinematic hardening

– Its centre cannot move outside the back stress surface fb, expressed by the fol-
lowing condition

F [π ] ≤ (σu − σy)
2. (5b)

Intuitively, from Fig. 2, we can see that conditions (5a) and (5b) are exactly the
same, which is easily proven.

Firstly, we show that (5a) leads to (5b). From triangle inequality:

√
F [σ ] =

√
F
[
(σ − π)+ π

]≤√F [σ − π] +√F [π ] ≤ σy + (σu− σy)= σu (6)

then
{√

F [σ − π ] = σy, (for the appearance of plastic deformation), and√
F [π ] ≤ (σu − σy) ⇒ F [π ] ≤ (σu − σy)

2. (Q.E.D.)
(7)

Secondly, we show that (5b) leads to (5a).
We choose π = (

σu−σy

σu
)σ so that σ−π = σy

σu
σ . Then for any σ satisfying F [σ ] ≤

σ 2
u we find:

F [π ] = F

[
σu − σy

σu

σ

]

=
(

σu − σy

σu

)2

F [σ ] ≤ (σu − σy)
2 (8)

and

F [σ − π] = F

[
σy

σu

σ

]

=
(

σy

σu

)2

F [σ ] ≤ σ 2
y ⇒ F [σ ] ≤ σ 2

u . (Q.E.D.) (9)

Heitzer, Staat [6] have proven that if σu ≥ 2σy then shakedown limit of bounded
kinematic hardening structures is equal to that of an unbounded kinematic harden-
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ing structure. Gokhfeld and Cherniavsky [4] also stated that the problem of alter-
nating plasticity can be solved directly by using a fictitious elastic field σE . It is
due to the fact that the plastic fatigue limit is determined by the condition that any-
where in the structure, the maximum magnitude of fictitious equivalent (von Mises)
elastic stress cannot exceed two times the yield limit of the material. Moreover, the
Bauschinger effect in metals leads to an evolution of initial yield surface within the
range of 2σy .

3 Upper Bound Algorithm for Limit and Shakedown Analysis

3.1 Statement of the Problem

Based on Koiter’s kinematic theorem, the upper bound of shakedown load multiplier
in normalized form is the solution of following nonlinear programming problem

αsd =min
ε̇p

∫ T

0

∫

V

Dp
(
ε̇p
)
dV dt (a)

s.t.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�εp =
∫ T

0
ε̇pdt (b)

tr(ε̇p)= 0 (c)

�εp = 1

2
(∇u+ (∇u)T ) in V (d)

u= 0 on ∂Vu (e)
∫ T

0

∫

V

σE(x, t) : ε̇pdV dt = 1 (g)

(10)

where (10b) is the definition of plastic strain accumulation over a cycle. �εp must
satisfy the kinematic compatibility conditions (10d) and (10e). Constraint (10c) is
the incompressibility condition and (10g) is the normalized constraint of external
energy.

For perfect plasticity, the plastic dissipation function according to the von Mises
yield criterion in the form of strain rate is

Dp
(
ε̇p
)=√2kv

√
J2(ε̇

p)=
√

2

3
σy

∥
∥ε̇p

∥
∥, (11)

where the constant kv = σy/
√

3 is the yield stress in pure shear and J2(ε̇
p) is the

second invariant of the strain rate tensor.
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For bounded kinematic hardening the plastic dissipation function is [8]

∫ T

0

∫

V

Dp
(
ε̇p
)
dV dt =

∫ T

0

∫

V

√
2

3
σy

∥
∥ε̇p

∥
∥dV dt

+
∫

V

√
2

3
(σu − σy)

∥
∥�εp

∥
∥dV. (12)

The second term on the right hand side of Eq. (12) is the effect of hardening, rep-
resented by the translation of yield surface. If structures fail in alternating plasticity
mode, closed cycles of plastic rates must be considered, �εp = 0, then Eq. (12)
becomes Eq. (11), so there is no difference between perfectly plastic and kinematic
hardening if LCF occurs.

3.2 Numerical Formulation

To solve Eq. (10), we will transform the integration into a summation, by discretiza-
tion of time and space. By load domain discretization the integration over a certain
time interval t[0, T ] is transformed into summation over k = 1,m, where k is a load
vertex, m= 2n, n is number of variable loads. By finite element discretization, the
integration over entire structure V is transformed into the numerical integration for
i = 1,NG, where i is a Gaussian point with weight residual wi , and NG is total
Gaussian points in the structure. With these discretizations, the limit and shake-
down analysis is reduced to checking the restrictions only at all load vertices m and
all Gaussian points NG instead of checking for entire load domain L and whole
structure V . The numerical form of Eq. (10) can be written as

αblkh
sd =min

ε̇p

{√
2

3
σy

m∑

k=1

NG∑

i=1

√
w2

i ε
T
ikDεik +w2

i ε
2
0

+
√

2

3
(σu − σy)

NG∑

i=1

√√
√
√w2

i

m∑

k=1

εT
ikD

m∑

k=1

εik +w2
i ε

2
0

}

(a)

s.t.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

k=1

εik = Biu, ∀i = 1,NG (b)

DMεik = 0, ∀i = 1,NG, ∀k = 1,m (c)

m∑

k=1

NG∑

i=1

wiε
T
ikσ

E
ik = 1 (d)

(13)

where αblkh
sd denotes the shakedown multiplier in bounded linearly kinematic hard-

ening. If the second term in the objective function (13a) is omitted, consequently
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αblkh
sd becomes α

pp
sd , which denotes the shakedown multiplier in perfect plasticity.

εik is strain vector, corresponding to load vertex k, at Gaussian point i

εik =
[
εik

11 εik
22 εik

33 2εik
12 2εik

23 2εik
13

]T

= [εik
11 εik

22 εik
33 γ ik

12 γ ik
23 γ ik

13

]
.T (14)

σE
ik is fictitious elastic stress vector corresponding to load vertex k, at Gaussian point

i, u is the nodal displacement vector, Bi is deformation matrix, ε0 is small number
to avoid singularity. D and DM are square matrices of the form

D=Diag
[
1 1 1 1

2
1
2

1
2

]
, DM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

For the sake of simplicity, we define some new quantities as

eik =wiD1/2εik, tik =D−1/2σE
ik, B̂i =wiD1/2Bi . (16)

Then (13) becomes

αblkh
sd =

√
2

3
σy min

ėik

{
m∑

k=1

NG∑

i=1

√
eT
ikeik + ε2 + a

NG∑

i=1

√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2

}

(a)

s.t.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

k=1

eik = B̂iu, ∀i = 1,NG (b)

1

3
DMeik = 0, ∀i = 1,NG, ∀k = 1,m (c)

m∑

k=1

NG∑

i=1

eT
iktik = 1 (d)

(17)

where

a = (σu − σy)/σy. (18)
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Using penalty function method to eliminate the compatibility constraint (17b)
and incompressibility constraint (17c) the penalty function F̃P is written as

F̃P =
NG∑

i=1

{
m∑

k=1

√
eT
ikeik + ε2 + a

√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2

+ c

2

m∑

k=1

eT
ikDMeik + c

2

(
m∑

k=1

eik − B̂iu

)T( m∑

k=1

eik − B̂iu

)}

(19)

s.t.:
m∑

k=1

NG∑

i=1

eT
iktik = 1,

where c is a penalty parameter such that c� 1. For the sake of simplicity c is chosen
to be constant at every Gaussian point.

Using Lagrange multiplier method to eliminate the normalized constraint (17d)
the Lagrange function FPL is written as

FPL = F̃P + α

(
NG∑

i=1

m∑

k=1

eT
iktik − 1

)

, (20)

where α is the Lagrange multiplier.
To find the minimum of FPL we write the Karush-Kuhn-Tucker condition for

Eq. (20). Then using Newton-Raphson method to solve the KKT condition, we ob-
tain the Newton directions du and deik .

Algorithm

• Step 1: Initialize displacement and strain vectors u0 and e0 such that the normal-
ized condition (17d) is satisfied:

NG∑

i=1

m∑

k=1

tTike0
ik = 1.

• Step 2: Calculate du, deik, (α + dα) from current values of u, e.
Calculate du

du= du1 + (α + dα)du2, (21)

where

{
(du)1 =−u+ S̃−1f̃1 (a)

(du)2 = S̃−1 f̃2 (b)
(22)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̃=
NG∑

i=1

B̂T
i ẼiB̂i , (a)

f̃1 =
NG∑

i=1

B̂T
i Ẽi

m∑

k=1

eik

−
NG∑

i=1

B̂T
i Q−1

i

m∑

k=1

M̃−1
ik

(

a

m∑

k=1

eik

√
eT
ikeik + ε2

+ eik

√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2

)

−
NG∑

i=1

B̂T
i Q−1

i

m∑

k=1

M̃−1
ik cbikDMeik, (b)

f̃2 =−
NG∑

i=1

B̂T
i Q−1

i

m∑

k=1

M̃−1
ik tikbik, (c)

(23)

Ẽi =
(

Ii − cQ−1
i

m∑

k=1

bikM̃−1
ik

)

, (24)

Qi = Ii +
m∑

k=1

M̃−1
ik Nik, (25)

M̃ik ≈
(√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2Iik + cbikDM

)

, (26)

Nik ≈
(
a

√
eT
ikeik + ε2 + cbik

)
Iik, (27)

bik =
√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2
√

eT
ikeik + ε2. (28)

Calculate deik

deik = (deik)1 + (α + dα)(deik)2, (29)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(deik)1 =
(

M̃−1
ik NikQ−1

i

m∑

k=1

M̃−1
ik − M̃−1

ik

)

β1, (a)

(deik)2 =
(

M̃−1
ik NikQ−1

i

m∑

k=1

M̃−1
ik − M̃−1

ik

)

β2, (b)

(30)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β1 = a

m∑

k=1

eik

√
eT
ikeik + ε2 + eik

√√
√
√

m∑

k=1

eT
ik

m∑

k=1

eik + ε2

+ cDMeikbik + c

(
m∑

k=1

eik − B̂iu

)

bik − cbikB̂idu1, (a)

β2 = (tik − cB̂idu2). (b)

(31)

Calculate (α + dα)

(α + dα) = 1−∑NG
i=1

∑m
k=1 tTik(eik + (deik)1)

∑NG
i=1

∑m
k=1 tTik(deik)2

= −
∑NG

i=1
∑m

k=1 tTik(deik)1
∑NG

i=1
∑m

k=1 tTik(deik)2
. (32)

• Step 3: Perform a line search to find λu such that

λu =minFP (u+ λdu, e+ λde). (33)

Update displacement, strain as:

u= u+ λudu, (a)

eik = eik + λudeik. (b)
(34)

• Step 4: Check convergence criteria: if they are all satisfied, then go to step 5,
otherwise go to step 2.
• Step 5: Stop.

4 Validations

In this section, we validate our theory and algorithm by analyzing some examples,
which are available in literature. For shakedown analysis, the results are verified by

{
αblkh

sd = α
pp
sd , for σu = σy

α
pp
sd ≤ αblkh

sd ≤ (σu/σy)α
pp
sd , for σy < σu ≤ 2σy

4.1 Thin Plate Under Tension and Temperature

4.1.1 Problem Definitions

This problem has been investigated in [6], using a numerical approach based on the
lower bound shakedown theorem.
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Fig. 3 Thin plate under
tension and temperature

Geometry: The square plate has the dimensions: B ×L= 400× 400 mm2, simply
supported at two opposite sides, see Fig. 3.

Material: Young’s modulus: E = 2.1 · 105 N/mm2, yield stress: σy = 160 N/mm2,
hardening effect (ultimate strength): σu/σy = 1.5 for bounded hardening, and
σu/σy ≥ 2 for unbounded hardening, Poisson’s ratio: ν = 0.3, coefficient of
thermal expansion: αt = 10−5 K−1.

Loads: Uniform distributed tension p(N/mm) applied on the lateral sides, and uni-
form distributed temperature T (◦C) in the plate, these loads vary in the domain:
p ∈ [0,p0], T ∈ [0, T0], where p0 and T0 is the elastic analytical solution for
pure tension and pure temperature, respectively. See details in [6].

p0 = 1√
1− ν + ν2

σy, T0 = 1

Eαt

σy. (35)

FEM model: Using sixteen 8-node-2D elements with 2 × 2 Gaussian points
whichever to analyze a quarter of the structure. The structure is considered as
plane stress problem.

4.1.2 Numerical Results

The results presented in Fig. 4, are close to the results from the work of Heitzer and
Staat [6].

4.2 Tension-Torsion Experiment

4.2.1 Problem Definitions

A steel hollow section bar is subjected to tension force N and torsional moment M .
This problem has been investigated by Heitzer, Staat by both experiment and FE
analysis, see [7, 16].
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Fig. 4 Interaction diagram for elastic and shakedown limits of thin plate under tension and tem-
perature, normalized by p0 and T0 in formula (34)

Fig. 5 Tension torsion
specimen

Fig. 6 FEM mesh of
tension–torsion experiment

Geometry: the structure of the test specimen is described in Fig. 5.
Material: Young’s modulus: E = 2.07 ·105 N/mm2, yield stress: σy = 485 N/mm2,

ultimate strength: σu = 631 N/mm2, σu/σy = 1.3, Poisson’s ratio: ν = 0.3.
Loads: There are four cases of load domains considered: (a) constant torsion and

cyclic tension with nonzero mean stress, M : dead load, N ∈ [0,1], (b) constant
torsion and cyclic tension with zero mean stress, M : dead load, N ∈ [−1,1],
(c) constant tension and cyclic torsion with zero mean stress, N : dead load,
M ∈ [−1,1], and (d) both tension and torsion are cyclic loads, fully reversed,
N ∈ [−1,1], M ∈ [−1,1].

FEM model: To reduce the computing time we use 360 20-node-3D elements to
model only the critical thinner part of the structure, Fig. 6. This simplification
does not affect the result.
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4.2.2 Results

• Analytical solutions: the analytical solutions for this structure has been obtained
in [7, 16] and is presented hereafter:

Elastic analysis

For pure torsion and axial symmetry, the normal stress vanishes and only shear stress
τ(r) = σθz occurs. The stress for constant moment M at the radius r is calculated
as:

σθz(r)= τ(r)= 2M

π(r4
a − r4

i )
r. (36)

The maximum shear stress occurs at the outer radius. For ra = 4 mm and ri =
2.4 mm then:

τmax = τ(ra)= 2M

π(r4
a − r4

i )
ra = M

87.5
1/mm3. (37)

With the equivalent von Mises stress σeq =
√

3τmax the structure starts yielding at:

Mel = 87.5 mm3 σy√
3
= 87.5

485√
3

N mm= 24501.3 N mm. (38)

Limit analysis

The pure tension capacity is easily calculated.

– for perfectly plastic material:

N
pp

lim =Npl = π
(
r2
a − r2

i

)
σy = 3.14

(
42 − 2.42)485 N= 15602 N. (39)

– for bounded linearly kinematic hardening material:

Nblkh
lim = (σu/σy)N

pp

lim = 1.3 · 15602 N= 20282.6 N. (40)

Pure torsion capacity:

– for perfectly plastic material: M
pp

lim is obtained from elastic moment Mel with
plastic limit factor ηpl

M
pp

lim =Mpl = ηplMel = 1.2 · 24501.3 N mm= 29401.56 N mm, (41)

where Mel is calculated in formula (38) and

ηpl = 4

3
· 1− (d/D)3

1− (d/D)4
= 4

3
· 1− (4.8/8)3

1− (4.8/8)4
= 1.20098. (42)
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Fig. 7a Shakedown interaction diagram for load domain (a), normalized by Nz0 = 15.602 kN and
Mz0 = 27.98 N m

– for bounded linearly kinematic hardening material:

Mblkh
lim = (σu/σy)M

pp

lim = 1.3 · 29401.56 N mm= 38222.0 N mm. (43)

• Numerical solutions: Interaction diagrams are plotted in Figs. 7a, 7b, 7c and 7d,
corresponding to load domains (a) to (d). In the Fig. 7a, for the reason of
comparison, the shakedown bounds are normalized by Nz0 = 15.602 kN and
Mz0 = 27.98 N m, taken from [7, 16]. In the Fig. 7b to 7d, the shakedown bounds
are normalized by analytical solutions of pure tension N

pp

lim = 15.602 kN and pure
torsion M

pp

lim = 29401.56 N mm.

5 Conclusions

A new upper bound algorithm for shakedown analysis of elastic plastic bounded
linearly kinematic hardening structures has been developed. The results are very
close to those in literature. In the present model the shakedown limit does not depend
on the hardening curve, but on the initial yield stress σy and ultimate strength σu. If
σu = σy , then the bounding surface coincides with the initial yield surface, we have
the elastic perfectly plastic model. If σu ≥ 2σy we have the unbounded kinematic
hardening model.

Let αel , α
pp
sd , and αblkh

sd denote respectively elastic limit, shakedown limit for
elastic perfectly plastic, and shakedown limit for bounded kinematic hardening ma-
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Fig. 7b Limit and Shakedown interaction diagram for load domain (b), normalized by
N

pp

lim = 15.6 kN and M
pp

lim = 29.4 N m

Fig. 7c Limit and Shakedown interaction diagram for load domain (c), normalized by
Nlim = 15.6 kN and Mlim = 29.4 N m
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Fig. 7d Limit and Shakedown interaction diagram for load domain (d), normalized by
Nlim = 15.6 kN and Mlim = 29.4 N m

terial, then:

α
pp
sd ≤ αblkh

sd ≤ σu

σy

α
pp
sd ≤ 2αel.

The left equality occurs if the translated surface is inside the bounding surface, the
middle equality occurs if the translated surface is fixed on the bounding surface,
otherwise, for inequalities, the translated surface moves on the bounding surface.
The last equality occurs when yield surface translates unboundedly.

If the structure shakes down in the alternating plasticity mode, then there is no
difference between perfectly plastic and kinematic hardening models.

Acknowledgements The work of Phú Tình Pha.m has been supported by the Ministry of Educa-
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An Edge-Based Smoothed Finite Element
Method for Primal-Dual Shakedown Analysis
of Structures Under Uncertainties

Thanh Ngo.c Trân and Manfred Staat

Abstract This paper deals with the application of a new algorithm of probabilistic
limit and shakedown analysis for 2D structures, in which the loading and strength
of the material are to be considered as random variables. The procedure involves
a deterministic shakedown analysis for each probabilistic iteration, which is based
on the primal-dual approach and the edge-based smoothed finite element method
(ES-FEM). The limit state function separating the safe and failure regions is de-
fined directly as the difference between the obtained shakedown load factor and the
current load factor. A Sequential Quadratic Programming (SQP) is implemented
for finding the design point. Sensitivity analyses are performed numerically from
a mathematical model and the probability of failure is calculated by the First Or-
der Reliability Method. Because of use of constant smoothing functions in the
ES-FEM, only one Gaussian point is required for each smoothing domain ensur-
ing that the total number of variables in the resulting optimization problem is
kept to a minimum compared with standard finite element formulation. Numeri-
cal examples are presented to show the validity and effectiveness of the present
method.

1 Introduction

Recent trends consider the combination of the limit state analysis with the proba-
bilistic approach to safety as a promising point of view, in order to take rational de-
cisions in structural design. For limit state analysis, it has been recognized that the
plastic collapse limit and the shakedown limit have to be accounted in an advanced
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approach since they define the real limit states of structures. Handling with such
kind of problems, well-known direct plasticity methods such as limit and shake-
down analysis becomes a powerful and effective tool. The upper bound shakedown
analysis is based on Koiter’s kinematic theorem to determine the minimum load
factor for non-shakedown, see e.g. [9, 15]. The strategy of computation is initiated
from the unsafe region to calculate the exterior approximation of the shakedown
load domain by supposing a kinematically admissible failure mechanism. On the
contrary, the lower bound shakedown analysis is based on Melan’s static theorem,
and the strategy of computation is begun from the safe region by supposing a stati-
cally admissible stress field to determine the maximum load factor for shakedown,
see e.g. [2, 4]. Duality between these two bounds was proved by the flow rule in-
cluding two main points: (1) the strain rate vector is proportional to the gradient of
the yield function and (2) the plastic multiplier can be non-negative only at points
where the yield function equals to zero.

In fact, no established design standard is able to definitely exclude any occur-
rence of structural malfunctions. All that can be successfully done is to recognize
that both strength of the material and loading have an essential random nature, that
therefore they are described as random variables or processes, and to keep the prob-
ability that such malfunctions occur as small as possible. Structural reliability anal-
ysis deals with these random variables in a rational way. An effective method of
structural reliability analysis is probabilistic limit and shakedown analyses, which
is based on the direct computation of the load-carrying capacity or the safety margin.
Most important, this approach makes the problem time-invariant and therefore re-
duces considerably the needs for uncertain technological input data and computing
costs.

The submitted contribution based on a new algorithm of probabilistic limit and
shakedown analysis for 2D structures, in which the loading and strength of the mate-
rial are to be considered as random variables. The procedure involves a deterministic
shakedown analysis for each probabilistic iteration, which is based on the primal-
dual approach and the edge-based smoothed finite element method (ES-FEM). The
limit state function separating the safe and failure regions is defined directly as the
difference between the obtained shakedown load factor and the current load factor.
A Sequential Quadratic Programming (SQP) is implemented for finding the design
point. Sensitivity analyses are performed numerically from a mathematical model
and the probability of failure is calculated by the First Order Reliability Method.
Because of use of constant smoothing functions in the ES-FEM, only one Gaussian
point is required for each smoothing domain ensuring that the total number of vari-
ables in the resulting optimization problem is kept to a minimum compared with
standard finite element formulation.

2 The Formulation of the ES-FEM

In engineering practice, the 3-node linear triangular element (FEM-T3) and the 4-
node linear quadrilateral element (FEM-Q4) are preferred by many engineers due
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to their simplicity, robustness, lesser demand on the smoothness of the solution, and
efficiency of adaptive mesh refinements for solutions of desired accuracy. However,
the FEM models using FEM-T3 or FEM-Q4 elements still possess inherent draw-
backs such as the overestimation of the system stiffness matrix which leads to poor
accuracy of the solution and they are subjected to locking effects for incompressible
materials. Moreover, mesh distortion due to large deformations may lead to a severe
convergence problem of the analysis.

In order to avoid these drawbacks, Liu et al. [5] have combined the strain smooth-
ing technique used in meshfree methods with the FEM to formulate a so-called
smoothed finite element method (S-FEM or CS-FEM). In the S-FEM, they subdi-
vide each FE element into smoothing cells and do not use the compatible strain
fields. The strain field is projected (smoothed) onto a constant field or set of con-
stant fields based on local smoothing cells (domains) and the domain integration
becomes integration along the boundary of the domain. The derivatives of the shape
functions are not used to calculate the strain matrix, which accordingly reduces the
requirements on the smoothness of the shape functions.

Very recently, Liu et al. [6] also proposed an edge-based smoothed finite element
method (ES-FEM) for static, free and forced vibration analyses of solid 2D me-
chanics problems using triangular elements (T3). Intensive numerical results have
demonstrated that ES-FEM possesses the following excellent properties: (1) ES-
FEM-T3 is much more accurate than the FEM using linear triangular elements
(FEM-T3) and often found even more accurate than those of the FEM using quadri-
lateral elements (FEM-Q4) with the same sets of nodes; (2) there are no spurious
non-zeros energy modes found and hence the method is also temporally stable and
works well for vibration analysis and (3) no penalty parameter is used and the com-
putational efficiency is much better than the FEM using the same sets of elements.
The ES-FEM was then extended successfully to primal-dual limit and shakedown
analysis of structures made of elastic-perfectly plastic material [11].

Suppose that the entire problem domain is discretized by finite elements. In the
ES-FEM, the compatible strains ε = ∇su are smoothed over local smoothing do-
mains Ω(k) associated with edges of the elements by the following operation

ε̃k =
∫

Ω(k)

ε(x)Φk(x)dΩ =
∫

Ω(k)

∇su(x)Φk(x)dΩ, (1)

where Φk(x) is a given smoothing function that satisfies the unity property

∫

Ω(k)

Φk(x)dΩ = 1. (2)

The local smoothing domains Ω(k) are constructed based on edges of elements
such that they cover the entire problem domain Ω =⋃Ne

k=1 Ω(k) and Ω(i)∩Ω(j) = ∅
for i �= j , in which Ne is the total number of edges (sides) in the entire problem do-
main. If triangular elements are used, the smoothing domain Ω(k) associated with
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Fig. 1 Division of domain into triangular elements and smoothing cells Ω(k) connected to edge k

of triangular elements

edge k is created by connecting two endpoints of the edge to two centroids of two
adjacent elements, see Fig. 1. For the mesh consisting of n-sided polygonal ele-
ments, the construction of smoothing domains is straightforward.

Using the constant smoothing function

Φk(x)=
{

1/A(k), x ∈Ω(k),

0, x /∈Ω(k),
(3)

where A(k) is the area of the smoothing domain Ω(k), the smoothed strains ε̃k in (1)
and therefore the stresses are constant in the smoothing domain. Let xk stand for
x ∈Ω(k). In terms of nodal displacement vectors dI , the smoothing strains can be
written as

ε̃k =
N

(k)
n∑

I=1

B̃I (xk)dI , (4)

where N
(k)
n is the total number of nodes of elements containing the common edge k.

For inner edges (see Fig. 1) N
(k)
n = 4, for boundary edges N

(k)
n = 3. B̃I (xk) is the

smoothed strain matrix on the domain Ω(k) which is calculated numerically by an
assembly process similarly as in the standard FEM

B̃I (xk)= 1

A(k)

N
(k)
e∑

j=1

1

3
A

(j)
e Bj , (5)
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in which N
(k)
e , A

(j)
e , Bj are the number of elements, the area and the strain matrix

of the j th element around the edge k, respectively. For inner edges (see Fig. 1)
N

(k)
e = 2, for boundary edges N

(k)
e = 1. The matrix Bj is exactly the strain matrix

of the T3 element in the standard FEM. When linear elements are used, the entries
of Bj and therefore of B̃I (xk) are also constants.

In general, the smoothed strain matrix for 2-dimensional problems consisting of
n-sided polygonal elements can be calculated as follows

B̃I (xk)=
⎡

⎣
b̃Ix(xk) 0

0 b̃Iy(xk)

b̃Iy(xk) b̃Ix(xk)

⎤

⎦ , (6)

in which

b̃Ih(xk)= 1

A(k)

Ns∑

i=1

NI

(
xGP
i

)
n

(k)
ih l

(k)
i , (h= x, y), (7)

where Ns is the total number of the boundary segments ∂Ω
(k)
i of the domain Ω(k),

NI (xGP
i ) is the shape function value at Gaussian point (midpoint) xGP

i on ∂Ω
(k)
i and

n
(k)
ih , l

(k)
i are the outward unit normal and the length of boundary segment ∂Ω

(k)
i .

The smoothed domain stiffness matrix is then calculated by

K̃(k) =
∫

Ω(k)

B̃T
I EB̃I dΩ =A(k)B̃T

I EB̃I , (8)

where E is the matrix of elastic material constants. The global stiffness matrix K̃ is
then assembled over all domain stiffness matrices K̃(k) by a similar process as in the
FEM.

3 A Primal-Dual Shakedown Algorithm Based on the ES-FEM

Let us restrict ourselves to the case of homogeneous material, where the yield limit
σy is the same at every point of the structure. Then we always can write σy = Yσ0

where σ0 is a constant reference value and Y is a random variable. Consider a convex
polyhedral load domain L and a special loading path consisting of all load vertices
P̂i (i = 1, . . . ,m) of L . According to Koiter’s theorem, the upper bound shakedown
limit, which is the smaller one of the low cycle fatigue limit and the ratcheting limit,
may be found by the following minimization



94 T.N. Trân and M. Staat

α+ =min
m∑

i=1

∫

Ω

Dp( ˙̃εik)dΩ (a)

s.t.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ˙̃εk =
m∑

i=1

˙̃εik =∇s(�u̇k), in Ω (b)

�u̇k = 0, on ∂Ωu (c)

Dv
˙̃εik = 0, (d)

m∑

i=1

∫

Ω

˙̃εT
ikσ

E
k (x, P̂i)dΩ = 1, (e)

(9)

in which Dp( ˙̃εik) is the plastic dissipation power per unit domain, σE is the ficti-
tious elastic stress vector, � ˙̃ε is the vector of accumulated strain rates over a load
cycle and u̇ is the vector of nodal velocities. The fictitious elastic stress vector σE

and the starting value of the strain rate vector ˙̃εik are calculated by solving the global
system of equations with the global stiffness matrix K̃ derived from Eq. (8). The
third constraint (Eq. (9d)) ensures that the incompressibility condition is satisfied
on all smoothing domains Ω(k) and at all load vertices i. For plane strain problems,
Dv assumes the form

Dv =
⎡

⎣
1 1 0
1 1 0
0 0 0

⎤

⎦ . (10)

It is noted that only the first row in Eq. (9d) is necessary to ensure the incom-
pressibility. However, we write Dv as a square matrix since it will help to formulate
our optimization procedure conveniently, for example in Eq. (14). By discretizing
the entire problem domain into smoothing domains, applying the strain smoothing
technique described in Sect. 2 and introducing some new notations such as

ėik =A(k)D1/2 ˙̃εik, tik =D−1/2σE
ik , B̂k =A(k)D1/2B̃k, (11)

we obtain a simplified version for the upper bound shakedown analysis (primal prob-
lem)

α+ =min
m∑

i=1

Ne∑

k=1

√
2

3
Yσ0

√
ėT
ik ėik + ε2

0 (a)

s.t.:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

i=1

ėik − B̂ku̇= 0, ∀k = 1,Ne (b)

Dv ėik = 0, ∀k = 1,Ne, ∀i = 1,m (c)

m∑

i=1

Ne∑

k=1

ėT
iktik − 1= 0, (d)

(12)
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where ε2
0 is a small positive number to ensure the objective function to be differen-

tiable everywhere. It has been proved that the numerical result is not sensitive to ε2
0

if it is smaller than 10−14 [14]. D is a diagonal square matrix and has the following
form for two-dimensional problems

D= diag
[
1 1 1

2

]
. (13)

Note that the second constraint in (9) is omitted here since it will be automatically
fulfilled by the shape functions. The Lagrangian associated with the primal problem
(12) can be written as follows

L =
Ne∑

k=1

{
m∑

i=1

√
2

3
Yσ0

√
ėT
ik ėik + ε2

0 −
m∑

i=1

γ T
ikDv ėik − βT

k

(
m∑

i=1

ėik − B̂ku̇

)}

− α

(
Ne∑

k=1

m∑

i=1

ėT
iktik − 1

)

, (14)

where γ ik , βk , α are Lagrange multipliers. The dual problem of (12) which can be
proved by dual theory takes the form [14]

α− =maxα (a)

s.t.:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖γ ik + βk + αtik‖ ≤
√

2

3
Yσ0, (b)

Ne∑

k=1

B̂T
k βk = 0. (c)

(15)

The form (15) is also exactly the discretized form of the lower bound shakedown
limit which is formulated by Melan’s static theorem. Since the stresses are constant
in each smoothing domain, the two constraints in (15) are satisfied at all points in the
entire problem domain. It follows that the lower bound shakedown limit obtained in
(15) dual to the upper bound obtained in (12), for ε2

0→ 0, will have a strict bounding
characteristic. It is noted that when m= 1, the formulations (12) and (15) reduce to
those of limit analysis.

Dealing with the nonlinear constrained optimization problem (12), an iterative
primal-dual algorithm is developed to calculate simultaneously the upper bound and
lower bound of the shakedown limit. Details of this iterative algorithm can be found
in [11].

4 Probabilistic Algorithm

Denote by X = (X1,X1, . . . ,Xn) an n-dimensional random vector characterizing
uncertainties in the structure and load parameters. The limit state function g(x)= 0,
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which is based on the comparison of a structural resistance (threshold) and load-
ing, defines the limit state hyper-surface ∂S which separates the failure region
S = {x|g(x) < 0} from the safe region. The probability of failure Pf is the prob-
ability that g(X) is non-positive, i.e.

Pf = P
(
g(X)≤ 0

)=
∫

S

fX(x)dx, (16)

where fX(x) is the n-dimensional joint probability density function. In general, it
is not possible to calculate Pf analytically since the form of the limit state surface
is very complex. Therefore, approximation approaches should be used. In the First-
Order Reliability Method (FORM), an approximation to the probability of failure
is obtained by linearizing the limit state function at the “design point” (the most
likely failure point or βHL-point). This is the point on the limit state surface that is
nearest to the origin in the space of standard normal random variables. The failure
probability Pf is thus approximated by

Pf =Φ(−βHL)= 1√
2π

∫ −βHL

−∞
e−0.5z2

dz, (17)

where βHL = ‖u∗‖, Φ(.) is the standard normal cumulative distribution function
and u∗ is found from a nonlinear constrained optimization problem as follows

minimize: f (u)= 1

2
‖u‖2

s.t. g(u)≤ 0.

(18)

The main computational task for a reliability analysis problem is to locate the
design point u∗, i.e. to solve the optimization problem (18). Staat and Heitzer [8],
Heitzer and Staat [3] and Bjerager [1] got good results in probabilistic limit anal-
yses with a simple gradient search algorithm, which is based on a linearization of
the limit state function at each step. However, this algorithm is only guaranteed to
converge towards a locally most likely failure point in each sequence of points on
the failure surface if the safe region is quasi-convex or concave. A more general
algorithm is the Sequential Quadratic Programming (SQP). This method has proved
to be suitable for tasks in the area of the reliability theory [7]. Details of an SQP
method stabilized by a simple line search procedure subject to a suitable merit func-
tion for solving the optimization problem (18) can be found in [10]. Details of the
definition of the limit state function and its gradients can be found in [12].

5 Validations

In the following, a number of examples are presented to demonstrate the capabilities
of the proposed algorithm. In all cases, structures are made of elastic-perfectly plas-
tic material and the 3-node triangular elements (FEM-T3) are applied for structural
discretization.
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Fig. 2 FE-mesh and geometrical dimensions of square plate in mm

5.1 Square Plate with a Hole

The first example concerns a square plate with central hole as shown in Fig. 2b.
The plate is subjected to a pressure p which can vary within a range p ∈ [0,pmax].
The geometrical data and material properties are chosen as those used in [14]: E =
200 GPa, ν = 0.3, σy = 10 MPa. Both plane strain and plane stress hypotheses are
analyzed using 500 T3 elements as shown in Fig. 2a.

If both material strength and load (stress) random variables are supposed to be
normally distributed with means μr,μs and standard deviations σr, σs respectively,
then the analytical reliability index may be given [8]

βHL = (1− α)μr −μs√
(1− α)2σ 2

r + σ 2
s

(19)

where α = plim/σy is the load factor. From the deterministic numerical analy-
sis [13], we got the limit load factor α = 0.5573 and the shakedown load factor
α = 0.3626 for the case of plane stress. For plane strain, they are 0.6895 and 0.4331,
respectively.

The numerical probabilities of failure for limit and shakedown analysis and for
both plane stress and plane strain cases are presented in Tables 1 and 2, com-
pared with the semi-analytical solutions, which are calculated by substituting α

in (19). Both random variables have the same standard deviations σr,s = 0.1μr,s .
The present solutions are very close to the semi-analytical ones for both cases. It is
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Table 1 Failure probabilities for normal distributions, plane stress

Limit analysis Shakedown analysis

μs/μr Pf (anal.) Pf (num.) μs/μr Pf (anal.) Pf (num.)

0.20 7.975E-10 7.901E-10 0.10 1.460E-12 1.005E-12

0.25 2.439E-07 2.327E-07 0.15 3.015E-08 2.793E-08

0.30 2.398E-05 2.366E-05 0.20 4.308E-05 4.119E-05

0.35 8.163E-04 8.134E-04 0.25 5.285E-03 5.091E-03

0.40 1.092E-02 1.088E-02 0.30 9.173E-02 9.089E-02

0.45 6.707E-02 6.702E-02 0.35 4.013E-01 3.985E-01

0.50 2.220E-01 2.214E-01 0.3626 5.000E-01 5.017E-01

0.55 4.629E-01 4.622E-01 0.40 7.558E-01 7.584E-01

0.5573 5.000E-01 5.086E-01 0.45 9.348E-01 9.371E-01

0.6 6.989E-01 6.999E-01 0.50 9.869E-01 9.873E-01

0.65 8.605E-01 8.612E-01 0.55 9.978E-01 9.979E-01

0.70 9.446E-01 9.453E-01 0.60 9.996E-01 9.996E-01

0.75 9.804E-01 9.808E-01 0.65 9.999E-01 9.999E-01

Table 2 Failure probabilities for normal distributions, plane strain

Limit analysis Shakedown analysis

μs/μr Pf (anal.) Pf (num.) μs/μr Pf (anal.) Pf (num.)

0.25 1.034E-09 9.981E-10 0.15 3.274E-10 2.898E-10

0.30 1.110E-07 1.003E-07 0.20 5.138E-07 4.983E-07

0.35 5.652E-06 5.434E-06 0.25 1.254E-04 1.009E-04

0.40 1.407E-04 1.248E-04 0.30 5.763E-03 5.537E-03

0.45 1.814E-03 1.594E-03 0.35 6.781E-02 6.483E-02

0.50 1.304E-02 1.217E-02 0.40 2.872E-01 2.567E-01

0.55 5.687E-02 5.606E-02 0.4331 5.000E-01 5.045E-01

0.6 1.637E-01 1.589E-01 0.45 6.066E-01 6.101E-01

0.65 3.384E-01 3.328E-01 0.50 8.441E-01 8.483E-01

0.6895 5.000E-01 5.071E-01 0.55 9.525E-01 9.537E-01

0.70 5.426E-01 5.467E-01 0.60 9.879E-01 9.881E-01

0.80 8.523E-01 8.571E-01 0.65 9.973E-01 9.974E-01

0.90 9.683E-01 9.689E-01 0.7 9.994E-01 9.994E-01

1.00 9.947E-01 9.948E-01 0.75 9.999E-01 9.999E-01

worth to note that the shakedown probabilities of failure are considerably smaller
than those of limit analysis. Thus, the loading conditions should be considered care-
fully when assessing the load-carrying capacity of the structure.
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Fig. 3 FE-mesh and
geometrical dimensions of
simple frame in mm

5.2 Simple Frame

In the second example, we consider a simple frame subjected to a load as shown
in Fig. 3a. Two different boundary conditions are considered: (a) only the hori-
zontal displacement on the left boundary is free and (b) both vertical and horizon-
tal displacements on both boundaries are fixed. The load domain, geometrical data
and material properties are chosen analogously as: p ∈ [0,pmax], E = 2 · 105 GPa,
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Table 3 Failure probabilities for normal distributions, case (a)

Limit analysis Shakedown analysis

μs/μr Pf (anal.) Pf (num.) μs/μr Pf (anal.) Pf (num.)

0.30 5.666E-10 3.898E-10 0.30 1.175E-09 1.022E-09

0.40 9.008E-07 8.322E-07 0.40 1.883E-06 1.447E-06

0.50 2.072E-04 2.014E-04 0.50 3.959E-04 3.670E-04

0.60 8.593E-03 8.187E-03 0.60 1.422E-02 1.211E-02

0.70 8.995E-02 8.637E-02 0.70 1.271E-01 1.165E-01

0.80 3.421E-01 3.223E-01 0.80 4.199E-01 4.087E-01

0.8474 5.000E-01 5.051E-01 0.8232 5.000E-01 5.034E-01

0.85 5.086E-01 5.112E-01 0.85 5.896E-01 5.907E-01

0.90 6.648E-01 6.693E-01 0.90 7.355E-01 7.365E-01

1.00 8.778E-01 8.791E-01 1.00 9.139E-01 9.146E-01

1.10 9.655E-01 9.659E-01 1.10 9.780E-01 9.787E-01

1.20 9.918E-01 9.919E-01 1.20 9.952E-01 9.954E-01

1.30 9.982E-01 9.982E-01 1.30 9.990E-01 9.990E-01

1.40 9.996E-01 9.996E-01 1.40 9.998E-01 9.998E-01

ν = 0.3, σy = 10 MPa. The frame is discretized by 1600 T3 elements as shown
in Fig. 3b.

For case (a), numerical deterministic analyses lead to the limit load factor
α = 0.8474 and the shakedown load factor α = 0.8232. For case (b), they are 1.3487
and 0.9187, respectively. Numerical probabilities of failure for limit and shakedown
analyses for normal distributions are presented in Tables 3 and 4, compared with cor-
responding semi-analytical solutions by (19). Both random variables have standard
deviations σr,s = 0.1μr,s . The numerical error results only from reliability analysis.
It is shown that the present numerical results are very close to the exact ones, even
in the case of very small probabilities.

6 Conclusions

The paper has presented the application of a numerical procedure for probabilis-
tic limit and shakedown analyses of 2D structures made of elastic-perfectly plastic
materials using a novel ES-FEM. The procedure involves a deterministic limit and
shakedown analysis for each probabilistic iteration, which is based on the primal-
dual approach and the use of the von Mises yield criterion. A mesh of three-node
linear triangular elements and constant smoothing functions are used to construct the
ES-FEM formulation. The probabilistic formulation considers the loading and the
material strength as random variables. A nonlinear optimization was implemented,
which is based on the Sequential Quadratic Programming for finding the design
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Table 4 Failure probabilities for normal distributions, case (b)

Limit analysis Shakedown analysis

μs/μr Pf (anal.) Pf (num.) μs/μr Pf (anal.) Pf (num.)

0.50 1.814E-09 1.032E-09 0.30 7.676E-11 4.232E-11

0.60 1.968E-07 1.247E-07 0.40 1.130E-07 9.998E-08

0.70 9.815E-06 9.511E-06 0.50 3.126E-05 2.364E-05

0.80 2.334E-04 2.102E-04 0.60 1.839E-03 1.352E-03

0.90 2.826E-03 2.579E-03 0.70 2.914E-02 2.674E-02

1.00 1.891E-02 1.772E-02 0.80 1.649E-01 1.466E-01

1.10 7.650E-02 7.604E-02 0.90 4.422E-01 4.467E-01

1.20 2.051E-01 2.001E-01 0.9187 5.000E-01 5.023E-01

1.30 3.974E-01 3.921E-01 0.95 5.936E-01 5.976E-01

1.3487 5.000E-01 5.021E-01 1.00 7.253E-01 7.261E-01

1.35 5.027E-01 5.046E-01 1.10 8.971E-01 8.977E-01

1.40 6.041E-01 6.051E-01 1.20 9.687E-01 9.691E-01

1.50 7.734E-01 7.738E-01 1.30 9.917E-01 9.920E-01

1.60 8.851E-01 8.857E-01 1.40 9.980E-01 9.981E-01

1.70 9.473E-01 9.475E-01 1.50 9.995E-01 9.995E-01

point and the probabilities of failure were calculated by FORM. Numerical exam-
ples were tested demonstrating that the proposed method appears to be powerful and
effective for evaluating of the probabilities of failure of 2D structures. The extension
for 3D structures using the face-based smoothed finite element method (FS-FEM)
is straightforward.
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Interior-Point Method for Lower Bound
Shakedown Analysis of von Mises-Type
Materials

J.-W. Simon and D. Weichert

Abstract The lower bound shakedown theorem for the determination of shakedown
loading factors leads to nonlinear convex optimization problems. For their solution,
the use of interior-point methods has become common practice. In this paper, an ex-
tended formulation of the interior-point method for shakedown analysis is presented
for von Mises-type materials. The formulation is generalized for the case of arbi-
trary finite numbers of loading cases. Numerical details of the algorithm are given
and the described methodology is illustrated by a numerical example.

1 Introduction

The design of engineering structures and components requires reliable predictions
of whether or not the system is capable of resisting to the given thermo-mechanical
loading. In case that the loads are varying with time, two different methods can be
used for this.

In the conventional step-by-step methods, the loading path is divided into suffi-
ciently small loading steps and a full analysis of the evolution of stresses and strains
is carried out for each step. Besides the question of running time, the most obvious
disadvantage of these methods is the fact that the exact knowledge of the complete
loading history is essential for the calculation, which is not realistic in many cases.

This disadvantage can be overcome by the use of direct methods [20, 25, 52, 53],
where the loading path is not necessarily given but only its bounding envelope.
The basement of direct methods is constituted by the theorems of Koiter [19] and
Melan [28, 29]. In the present work, only the statical approach by Melan is used,
which gives a lower bound of the loading factor. From practical point of view, the
determination of the lower bound is of special interest because it leads in principle
to conservative solutions.
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Melan’s theorem leads to nonlinear optimization problems, which has handi-
capped the use of direct methods in the past, due to the lack of appropriate numerical
tools. However, the fast advancement in computer technology in recent years has al-
lowed for the development of efficient numerical methods in this field.

In the present work, we focus on the widely used interior-point method [13, 14,
37, 54]. Commonly used codes based on interior-point methods are IPOPT [48–50],
LOQO [9, 17, 44] and KNITRO [12, 51]. Comparative studies can be found in e.g.
[10, 32, 48] and a valuable commented overview of existing optimization codes is
given in [31]. In addition, in the last years the program MOSEK [7, 8] came into
the picture of direct methods and has been applied for both (piecewise) linear and
second-order conic problems, e.g. [11, 16, 22, 26, 36, 43] at least for reference
solutions.

All of the above mentioned programs have already proven their abilities and ro-
bustness. Nonetheless, independent interior-point algorithms have been developed
by several authors, e.g. [2, 18, 21, 23, 34, 35, 46, 47]. Compared to the above
mentioned general codes, these algorithms are distinguished by problem-taylored
solution strategies. Especially in the application to direct methods this is highly
relevant because of the usually high number of variables and subsidiary condi-
tions.

In [40–42] an alternative interior-point algorithm has been presented, focusing on
both the reduction of running time on the one hand side and robustness on the other
one. This is achieved by tayloring the formulation of the problem as well as the
solution procedure to the specific problem of shakedown analysis for von Mises-
type materials. In this paper, the underlying theory of this algorithm is presented,
where the formulation is extended for the general case of arbitrary finite numbers
of loading cases. Here, focus is laid on a closed-form and consistent presentation.
Moreover, some numerical aspects are investigated, which are used to guarantee
convergence of the algorithm.

2 The Statical Shakedown Theorem

In this paper, the statical shakedown approach by Melan [28, 29] is used to deter-
mine the shakedown factor αSD, which is the maximum loading factor α such that
the system does neither fail due to instantaneous or incremental plastic collapse nor
due to alternating plasticity.

Melan’s shakedown theorem states that shakedown occurs if one can find a load-
ing factor α > 1 and a time-independent residual stress field ρ̄ whose superposition
with all possible elastic stress fields ασE within the associated loading domain Ω

satisfies the yield condition F ≤ 0 at any time t and in any point x ∈ V of the
volume V of the structure.

This theorem can be expressed as an optimization problem for the loading fac-
tor α, which can be used for the determination of the shakedown factor αSD .
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(PMelan) maxα
∫

V

δεE : ρ̄ dV = 0 (1a)

F
(
ασE + ρ̄;σY

)≤ 0 (1b)

In the following subsections, the subsidiary conditions Eqs. (1a) and (1b) will be
further investigated.

2.1 Discretization of the Residual Stress Field

As already stated above, the total stresses σ are decomposed into the residual stress
field ρ̄ which is induced by the evolution of plastic deformation and the purely
elastic stress field σE which would occur in a purely elastic reference body under
the same conditions and loading.

σ = σE + ρ̄ (2)

The condition (1a) ensures that the residual stress field ρ̄ is self-equilibrated. This
is necessary, because the external loading is in equilibrium with the elastic reference
stress field σE solely.

Using the Finite Element Method (FEM), the elastic displacement field uE is ex-
pressed by appropriate shape functions N and the vector of nodal displacements uE

K .
In analogy, we express the virtual elastic displacement field δuE by the same shape
functions N and the vector of nodal virtual displacements δuE

K .

uE =N · uE
K and δuE =N · δuE

K (3)

According to Eq. (3), the elastic strain field εE and the virtual elastic strain
field δεE can be expressed by uE

K and δuE
K , respectively, introducing the differ-

entiation matrix B .

εE = 1

2

(∇uE + uE∇)=B · uE
K (4)

δεE = 1

2

(∇δuE + δuE∇)=B · δuE
K (5)

Substituting Eq. (4) into Eq. (1a) reads:
∫

V

δεE : ρ̄ dV = δuE
K ·
∫

V

B(x) : ρ̄ dV
!= 0 =⇒

∫

V

B(x) : ρ̄ dV
!= 0 (6)

Using the Gauss method, the integration in Eq. (6) is carried out numerically. The
residual stresses ρ̄r are then evaluated in the Gaussian points GP. The weighting fac-
tors, the matrix B and the Jacobian of each element are merged into the equilibrium
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matrices Cr , which leads to the following formulation.

∫

V

B(x) : ρ̄ dV =:
NG∑

r=1

Cr · ρ̄r
!= 0 (7)

As can be seen in Eq. (7), the given derivation converts Eq. (1a) into a system of
linear equations for the residual stresses ρ̄r in the Gaussian points. The equilibrium
matrices Cr ∈ RmE×6 depend only on the geometry of the system and the applied
element type and take into account the kinematical boundary conditions. Their di-
mension is mE = 3NK−NBC, where NK is the total number of nodes and NBC the
number of kinematical boundary conditions.

2.2 Description of the Loading Domain

The given loads P�, � ∈ [1,NL], span a convex polyhedral loading domain Ω with
NC = 2NL corners in the NL-dimensional loading space. Each of the loads varies
independently in the range described by the factors μ−� and μ+� .

μ−� P0 ≤ P� ≤ μ+� P0 (8)

The loading domain Ω can thereby be expressed as follows.

Ω =
{

P(x, t)

∣
∣
∣ P(x, t)=

NL∑

�=1

μ�(t)P0(x), ∀μ� ∈
[
μ−� ;μ+�

]
}

(9)

As shown in [20], it is sufficient to only consider the corners of the loading do-
main in order to ensure that the system will shake down for all possible loading
paths contained within Ω . The time-dependence of σE can thus be expressed as a
dependence of the considered corner j ∈ [1,NC] of the loading domain. Thereby,
the optimization problem is transformed into the following one.

(PNC) αSD =maxα

NG∑

r=1

Cr · ρ̄r = 0 (10a)

∀r ∈ [1,NG], ∀j ∈ [1,NC] :
F
(
ασ

E,j
r + ρ̄r , σY,r

)≤ 0 (10b)

In order to solve the optimization problem (PNC), it is necessary to express
the elastic stresses σ

E,j
r in the considered corner j in dependence of the elastic

stresses σE
r,l as a result of the loading case l, which can be computed by standard
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FEM software. This is done by introducing matrices U ∈ RNC×NL with entries Ujl ,
where j ∈ [1,NC] and l ∈ [1,NL].

σ
E,j
r =

NL∑

l=0

Ujlσ
E
r,l (11)

Thereby, each row of the matrices U represents the coordinates of one corner of
the loading domain in the NL-dimensional loading space—scaled with the load P0.
Thus, the introduction of U requires the definition of the corners of the loading
domain with the given factors μ−i and μ+i as introduced in Eq. (8).

Note, that this formulation holds for both mechanical and thermal loading, as
long as all material parameters are considered as temperature-independent. Once
the elastic reference stress field is computed, it is irrelevant by which loading type it
has been induced. The loading domain Ω then contains the domain of mechanical
loading ΩM as well as the domain of thermal loading ΩT , as introduced in [40].

2.3 The von Mises Yield Criterion

For the case of one- and two-dimensional loading spaces, the following transforma-
tions have been already investigated in [1, 2, 18]. For the sake of a generalized and
consistent formulation, we extend these derivations for the case of arbitrary finite
numbers NL.

The yield condition Eq. (1b) has to be satisfied for all Gaussian points r ∈ [1,NG]
and all corners of the loading domain j ∈ [1,NC]. In order to allow for the use
of different materials in the structure the yield stress σY,r can be independently
attributed to each Gaussian point r .

∀r ∈ [1,NG], ∀j ∈ [1,NC] : F
(
ασ

E,j
r + ρ̄r ;σY,r

)≤ 0 (12)

In this work, the von Mises yield criterion is used.

F
(
σ

j
r ;σY,r

) = (σ j

r,1 − σ
j

r,2

)2 + (σ j

r,2 − σ
j

r,3

)2 + (σ j

r,3 − σ
j

r,1

)2

+ 6
(
σ

j

r,4

)2 + 6
(
σ

j

r,5

)2 + 6
(
σ

j

r,6

)2 − 2σ 2
Y,r (13)

We introduce the transformation matrix T and the variables p
j
r .

σ
j
r = T · pj

r , where T = 1

2
√

6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
6

√
6
√

6
−√6

√
6
√

6
−√6 −√6

√
6

2
2

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)
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Then, the yield condition Eq. (13) can be expressed with p
j
r .

F
(
p

j
r ;σY,r

) = (pj

r,1

)2 + (pj

r,2

)2 + (pj

r,1 + p
j

r,2

)2

+ 6
(
p

j

r,4

)2 + 6
(
p

j

r,5

)2 + 6
(
p

j

r,6

)2 − 2σ 2
Y,r (15)

The third component p
j

r,3 of the vector p
j
r does not enter the yield condition in

this form. Thus, it is extracted from the problem, reducing the dimensions of the
vectors from six of p

j
r to five of p̄

j
r .

p̄
j
r =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p̄
j

r,1

p̄
j

r,2

p̄
j

r,3

p̄
j

r,4

p̄
j

r,5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
j

r,1

p
j

r,2

p
j

r,4

p
j

r,5

p
j

r,6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and v
j
r = p

j

r,3 (16)

The extracted values v
j
r = p

j

r,3 of all Gaussian points r ∈ [1,NG] are merged into

the vector vj = v
j
r er .

vj =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v
j

1
...

v
j
r

...

v
j

NG

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
j

1,3
...

p
j

r,3
...

p
j

NG,3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈RNG (17)

Introducing the matrix LT , the yield function can be expressed by the Euclidean
vector norm of the vector u

j
r =LT · p̄j

r .

F
(
u

j
r ;σY,r

)= ∥∥LT · p̄j
r

∥
∥2 − 2σ 2

Y,r =
∥
∥uj

r

∥
∥2 − 2σ 2

Y,r (18a)

where

LT = 1√
2

⎛

⎜
⎜
⎜
⎜
⎝

2 1√
3 √

2 √
2 √

2

⎞

⎟
⎟
⎟
⎟
⎠

(18b)

These transformations lead to a compact formulation of the yield condition, as
one can see from Eq. (18a). Moreover, the yield criterion is expressed in only five
variable components for each corner of the loading domain and for each Gaussian
point instead of six components as in Eq. (13).
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According to the new formulation of the yield condition in the variables u
j
r , the

condition (7) for the residual stresses has to be transformed as well.

NG∑

r=1

Cr · ρ̄r =
NG∑

r=1

Cr ·
(
σ

j
r − ασ

E,j
r

) != 0 (19)

Thereby, the time-independence of the residual stresses is not accounted for any-
more and thus has to be re-injected into the problem. The fact that ρ̄ is constant with
time implies that it is independent of the considered corner j of the loading domain.
Thereby, the stresses in the different corners of the loading domain can be linked to
each other.

ρ̄r = σ
j
r − ασ

E,j
r = const(j)= σ

j+1
r − ασ

E,j+1
r (20a)

σ
j+1
r = σ

j
r − α

(
σ

E,j
r − σ

E,j+1
r

)
, ∀j ∈ [1,NC − 1] (20b)

With Eq. (20b) it is clear that the condition (19) is satisfied for all possible j

if there exists at least one j which satisfies it. Thus, Eq. (19) is rewritten for one
arbitrarily chosen corner of the loading domain j = 1.

NG∑

r=1

Cr ·
(
σ 1

r − ασE,1
r

) != 0 (21)

Recalling Eq. (14), we substitute the stresses σ 1
r from Eq. (21), where T̄ ∈R5×6

denotes the matrix T without the third column T 3 ∈R6.

NG∑

r=1

Cr ·
(
σ 1

r − ασE,1
r

) =
NG∑

r=1

Cr ·
[(

T̄ · p̄1
r + v1

r T 3
)− ασE,1

r

]

=
NG∑

r=1

[
Cr · T̄ ·L−T · u1

r + v1
rCr · T 3 − αCr · σE,1

r

]
(22)

We introduce the vectors u1 and b as well as the matrices Ã and B̃ .

u1 = [u1
1, . . . ,u

1
r , . . . ,u

1
NG

]T ∈R5NG (23)

b =
NG∑

r=1

Cr · σE,1
r ∈RmE (24)

Ã = [C1 · T̄ ·L−T | . . . |Cr · T̄ ·L−T | . . . |CNG · T̄ ·L−T
] ∈RmE×5NG (25)

B̃ = [C1 · T 3| . . . |Cr · T 3| . . . |CNG · T 3
] ∈RmE×NG (26)
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Thereby, we can rewrite Eq. (22) as follows.

NG∑

r=1

Cr ·
(
σ 1

r − ασE,1
r

)= Ã · u1 + B̃ · v1 − αb
!= 0 (27)

For a consistent formulation, Eq. (20b) has to be expressed in the variables u
j
r

and v
j
r as well. Therefore, the stresses σ

j
r are substituted using Eq. (14).

p
j+1
r = p

j
r − αT −1 · (σE,j

r − σ
E,j+1
r

)
(28)

The third component is separated from this equation. Here, T −1
3 denotes the third

row of the matrix T −1.

u
j+1
r = u

j
r − αLT · T̄ −1 · (σE,j

r − σ
E,j+1
r

)
(29)

v
j+1
r = v

j
r − αT −1

3 ·
(
σ

E,j
r − σ

E,j+1
r

)
(30)

Using Eqs. (18a), (27), (29) and (30) together with the definition of (PMelan), the
optimization problem can be represented in the following formulation (PMelan)

∗.

(PMelan)
∗ maxα

Ã · u1 + B̃ · v1 − αb= 0 (31a)

∀r ∈ [1,NG], ∀j ∈ [1,NC− 1] :
u

j+1
r = u

j
r − αLT · T̄ −1 · (σE,j

r − σ
E,j+1
r

)
(31b)

v
j+1
r = v

j
r − αT −1

3 ·
(
σ

E,j
r − σ

E,j+1
r

)
(31c)

∥
∥uj

r

∥
∥2

2 − 2σ 2
Y,r ≤ 0, ∀r ∈ [1,NG], ∀j ∈ [1,NC] (31d)

Since for j > 1 the variables vj occur only in the condition (31c) and are there-
fore independent of any of the other variables, this condition can be removed from
the optimization process. However, once the values v1 are determined by solving the
optimization problem, it can be used to compute the vj . For the sake of simplicity,
we denote v := v1 and omit the upper index in the following.

Moreover, we abbreviate γ
j
r in Eq. (31b) and achieve the generalized formulation

of the optimization problem.

(PIPDCA) maxα

Ã · u1 + B̃ · v− αb= 0 (32a)

u
j+1
r = u

j
r − αγ

j
r , ∀r ∈ [1,NG], ∀j ∈ [1,NC− 1] (32b)

∥
∥uj

r

∥
∥2

2 − 2σ 2
Y,r ≤ 0, ∀r ∈ [1,NG], ∀j ∈ [1,NC] (32c)
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where:

γ
j
r =LT · T̄ −1 · (σE,j

r − σ
E,j+1
r

)
(32d)

2.4 Condensation of the Optimization Problem

The solution vector of the problem (PIPDCA) consists of the (5NG · NC) un-
knowns u

j
r , the NG unknowns v and the shakedown factor α. Thus, the total number

of variables is (5NG ·NC+NG+ 1).
The number of equality constraints from Eq. (32a) and Eq. (32b) is increased

by the presented transformations to the total amount of (mE + 5NG · (NC− 1)),
whereas the number of inequality constraints (32c) remains unchanged mI =
NG ·NC.

This formulation can be condensed through expressing the variables u
j+1
r in de-

pendence of u1
r in the first corner of the loading domain instead of the dependence

of the previous corner u
j
r . As before, it is an arbitrary choice which of the corners

of the loading domain is considered to be the first one, j = 1.

∀r ∈ [1,NG], ∀j ∈ [1,NC− 1] :
u

j+1
r = u1

r − αLT · T̄ −1 · (σE,1
r − σ

E,j+1
r

)
(33)

Since for j > 1 the variables u
j
r occur only in Eq. (32c) and Eq. (33) but not

in Eq. (32a), they can be removed from the optimization process by substituting
Eq. (33) into Eq. (32c). However, once the values u1

r are determined by solving

the optimization problem, Eq. (33) can be used to compute the u
j
r . For the sake of

simplicity, we denote ur := u1
r and omit the upper index in the following.

The optimization problem can thereby be expressed as follows:

(PIPDCA)∗ minf (x)=−α

Ã · u+ B̃ · v− αb= 0 (34a)

∀r ∈ [1,NG], ∀j ∈ [1,NC] :
∥
∥ur − αa

j
r

∥
∥2

2 − 2σ 2
Y,r ≤ 0 (34b)

where:

a
j
r =LT · T̄ −1 · (σE,1

r − σ
E,j
r

) ∈R5 (34c)

x = [u1, . . . ,ur , . . . ,uNG,v, α]T ∈R6NG+1 (34d)

This reformulation leads to a reduction of the dimension of the problem. In par-
ticular, the number of unknowns is reduced to n= 6NG+ 1. Moreover, the number
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of equality constraints is reduced to mE , whereas the number of inequality con-
straints remains unchanged mI . Furthermore, the condensation of the optimization
problem can be used for a more efficient solution strategy, later on, as proposed
in [42].

3 Solution of the Optimization Problem by Interior-Point
Method

For the purpose of clarity of the presentation, the problem (PIPDCA)∗ is rewritten
in the following form.

(PIP) minf (x)=−α

A · x = 0 (35a)

cI (x)≥ 0 (35b)

x ∈Rn (35c)

where:

A= [Ã|B̃| − b
] ∈RmE×n (35d)

cI (x)= 2σ 2
Y,r −

∥
∥ur − αa

j
r

∥
∥2

2 ∈RmI (35e)

The objective function f (x) is linear and therefore both convex and concave at
the same time. The equality constraints (35a) are affine linear, whereas the inequality
constraints (35b) are nonlinear but concave. Thus, the optimization problem (PIP)

is nonlinear convex. In addition, it is regular because the Slater condition is satis-
fied by definition. For the solution of nonlinear convex optimization problems, the
interior-point method has already proven to be efficient, see e.g. the references given
in Sect. 1.

3.1 Introduction of the Barrier Function

The subsidiary conditions define a feasible region for the solution candidates of
the optimization problem. The starting point is chosen to be inside of the feasible
region. Then, the key idea of the interior-point method consists of the introduction
of barriers, which preclude the solution candidate from leaving the interior region
of feasible solutions in the course of the iteration procedure.

The objective function is perturbed by these barrier terms such that the function
value increases the closer the solution tends towards the boundary. The barrier terms
are weighted by the barrier parameter μ which tends to zero during the iteration.
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Before the barriers are introduced, the subsidiary conditions are reformulated.
The inequality constraints (35b) are converted into equality constraints through the
introduction of nonnegative slack variables w ∈RmI+ .

cI (x)≥ 0 −→ cI (x)−w = 0 ∧ w ≥ 0 (36)

In addition, split variables y and z are introduced, because otherwise the un-
boundedness of the free variable x in Eq. (35c) would lead to instabilities as shown
in e.g. [30, 45].

x ∈Rn −→ x − y + z= 0 ∧ y ≥ 0,z≥ 0 (37)

For these reformulated constraints (36) and (37), we introduce logarithmic barrier
terms into the objective function. The slack and split variables lead to the following
barrier objective function fμ(x,y,z,w).

fμ(x,y,z,w)= f (x)−μ

[
n∑

i=1

log(yi)+
n∑

i=1

log(zi)+
mI∑

j=1

log(wj )

]

(38)

The resulting optimization problem taking into account the barrier terms is ex-
pressed in (Pμ).

(Pμ) minfμ(x,y,z,w)=−α−μ

[
n∑

i=1

log(yi)+
n∑

i=1

log(zi)+
mI∑

j=1

log(wj )

]

A · x = 0 (39a)

cI (x)−w = 0 (39b)

x − y + z= 0 (39c)

w > 0, y > 0, z > 0 (39d)

Note, that the use of logarithmic barrier terms Eq. (38) forces the slack and the
split variables to be strictly positive.

3.2 The Karush-Kuhn-Tucker Conditions

For regular convex optimization problems, the Karush-Kuhn-Tucker (KKT) opti-
mality conditions [24] are both necessary and sufficient. The KKT state that a so-
lution is optimal if and only if the Lagrange function L possesses a saddle point,
∇L = 0 in all variables. The Lagrangian of the problem (Pμ) is given by the fol-
lowing formula, where λE ∈ RmE , λI ∈ RmI+ and s ∈ Rn+ are Lagrange multipliers.
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Since λI as well as s are linked to the initial inequality constraints they have to be
nonnegative, whereas the sign of λE is arbitrary.

L = fμ(x,y,z,w)− λE · (A · x)− λI ·
(
cI (x)−w

)− s · (x − y + z) (40)

The saddle point condition leads to the following system of equations (KKTμ):

(KKTμ) ∇xL =∇xf (x)−AT · λE −CT
I (x) · λI − s = 0 (41a)

∇yL =−μY−1 · e+ s = 0 (41b)

∇zL =−μZ−1 · e− s = 0 (41c)

∇wL =−μW−1 · e+ λI = 0 (41d)

∇λE
L =−(A · x)= 0 (41e)

∇λI
L =−(cI (x)−w

)= 0 (41f)

∇sL =−(x − y + z)= 0 (41g)

where:

CI (x)= cI (x)∇x ∈RmI×n

Here and in the following, we denote the vector e = [1,1, . . . ,1]T in proper
dimension and the matrices Y = diag(yi) ∈ Rn×n, Z = diag(zi) ∈ Rn×n and W =
diag(wj ) ∈ RmI×mI . As proposed in [1], we introduce the new variable r and the
according diagonal matrix R = diag(ri) in order to ensure consistency during the
iteration process.

r =−s (42)

Since both variables r and s are non-negative by definition, they are thereby
forced to be sequences tending to zero during the iteration. Furthermore, defining
S = diag(si) and ΛI = diag(λI,j ), the three Eqs. (41b)–(41d) are rearranged and
multiplied by the matrixes Y , Z and W , respectively.

−μe+ Y · S · e = 0 (43a)

−μe+Z ·R · e = 0 (43b)

−μe+W ·ΛI · e = 0 (43c)

Merging all variables of the problem into the vector Π = [x,y,z,w,λE,λI , s,

r]T , the resulting system of optimality constraints can be expressed by the func-
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tion Fμ(Π).

Fμ(Π)=−∇L =−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∇xf (x)+AT · λE +CT
I (x) · λI + s

μe− Y · S · e
μe−Z ·R · e

μe−W ·ΛI · e
A · x

cI (x)−w

x − y + z

r + s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (44)

3.3 Solution of the Nonlinear Equation System

The optimality condition (44) constitutes a system of nonlinear equations, which is
solved by use of Newton’s method for a fixed value of the barrier parameter μ in
each iteration step. The variables Πk+1 of the subsequent iteration step k + 1 are
computed from the variables Πk of the previous one k and the step values �Πk .

Πk+1 =Πk +Υ k ·�Πk (45)

Here, Υ k denotes a diagonal matrix of damping factors which might be necessary
for the convergence of the algorithm. The meaning and construction of appropriate
damping factors will be explained later. However, the step values �Πk are com-
puted as solution of the following system of linearized equations.

J (Πk) ·�Πk =−Fμ(Πk) (46)

where:

J (Πk)= Fμ(Π)∇Π |Π=Πk

The Jacobian J (Π) of the function Fμ(Π) as defined in Eq. (44) can be ex-
pressed as follows, where the subscription with k will be omitted in the following
for the sake of clarity of the presentation.

J (Π)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇2
xL 0 0 0 −AT −CT

I (x) −In 0
0 S 0 0 0 0 Y 0
0 0 R 0 0 0 0 Z

0 0 0 ΛI 0 W 0 0
−A 0 0 0 0 0 0 0
−CI (x) 0 0 ImI

0 0 0 0
−In In −In 0 0 0 0 0

0 0 0 0 0 0 −In −In

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(47)
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Recalling the definition of the Lagrangian L in Eq. (40) and its first deriva-
tive ∇xL with respect to x from Eq. (41a) and considering that the objective func-
tion f (x) is linear, the second derivative ∇2

xL can be expressed as follows.

∇2
xL =−∇2

x

(
cI (x) · λI

)=−
mI∑

k=1

(∇2
xcI,k(x)

)
λI,k =:QI (λI ) (48)

With Eqs. (44) and (46)–(48) the linearized system to be solved is clearly defined.
It will now be condensed by successive elimination of those equations which include
only invertible matrixes. The following variables are eliminated by substitution.

�s = −E1 · b1 −E1 ·�x (49)

�y = μS−1 · e− y − Y · S−1 ·�s (50)

�r = −r − s −�s (51)

�z = μR−1 · e− z−Z ·R−1 ·�r (52)

�w = μΛ−1
I · e−w−E2 ·�λI (53)

where:

b1 = x + z+μ
(
R−1 − S−1) · e+R−1 ·Z · s

E1 =
(
S−1 · Y +R−1 ·Z)−1

E2 =W ·Λ−1
I

The resulting condensed system is given by Eq. (54).
⎛

⎝
−(QI (λI )+E1) AT CT

I (x)

A 0 0
CI (x) 0 E2

⎞

⎠ ·
⎛

⎝
�x

�λE

�λI

⎞

⎠=
⎛

⎝
d1
d2
d3

⎞

⎠ (54)

The right hand side values of this system are as follows.

d1 = ∇xf (x)−AT · λE −CT
I (x) · λI − s +E1 · b1 (55a)

d2 = −A · x (55b)

d3 = −cI (x)+μΛ−1
I · e (55c)

4 Numerical Aspects

The new algorithm based on the improved formulation has already been briefly pre-
sented in [41], and some numerical aspects have been discussed in [40]. Here, we
recapitulate some of these and add some new details.

The algorithm’s mode of operation is illustrated in Fig. 1. As one can see, there
exist two different iterations:
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Fig. 1 Sketch of algorithm’s mode of operation

• The outer iteration is the major loop in Fig. 1, where in each iteration step the
barrier parameter μ is reduced in accordance with the update-rule. Thereby, dur-
ing the outer iteration process, μ is a sequence tending to zero.
• The inner iteration is the minor loop in Fig. 1, which ensures that the approximate

solution of the linearized system is in the close proximity of the exact solution,
such that the KKT conditions are satisfied sufficiently accurate.

Since the full Newton step �Π computed from Eq. (46) may happen to be too
large, it has to be damped in these cases. This is done by a linesearch procedure,
which actually is a third iteration within the outer and the inner one.

4.1 Starting Point Strategy

The choice of an admissible starting point is a critical issue when using interior-
point methods. Fortunately, this does not hold for our specific problem because any
solution vector x representing a stress state within the elastic limit domain is admis-
sible. Thus, we compute the initial solution vector x0 from the elastic limit stresses.
In order to stay inside of the strict interior of the elastic domain, these values are
multiplied by the constant factor α0 = 0.995.

x0 = x(σ = α0σ el) (56)

With this choice for the initial solution vector, the condition (41e) is satisfied a
priori. The other variables can be fitted such that the remaining conditions (41a)–
(41g) are satisfied as well. Note, that one of the variables can be chosen arbitrarily.
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Moreover, the condition (42) can not be satisfied by any choice of positive r0

and s0. This condition is necessary to enforce r and s to be sequences tending to
zero during the iteration, though. Except of this, the starting point Π0 is feasible.

4.2 Solution of the System of Linearized Equations

When trying to solve the system Eq. (59), from numerical point of view there arise
two critical issues linked to the question of definiteness of the coefficient matrix.
The upper left block (QI (λI ) + E1) needs be positive definite in order to use a
Cholesky-like factorization. In case that it is not positive definite, one possibility is
the primal regularization, where perturbation terms are introduced to ensure positive
definiteness, e.g. [17, 38, 39]. In the former formulation with IPDCA the decompo-
sition of the objective function into a difference of convex functions (DC) acts like
a certain primal regularization. The basics of the DC-approach can be followed in
[4–6].

However, we will show in the following that primal regularization is not nec-
essary for the specific class of optimization problems resulting from shakedown
analysis under the mentioned circumstances. To do so, we recall the definition equa-
tion (48) of the matrix QI (λI ).

QI (λI )=−
mI∑

k=1

(∇2
xcI,k(x)

)
λI,k (57)

Since all the inequality constraints cI,k(x) are concave, their Hessians ∇2
xcI,k(x)

are negative semidefinite by definition. The same holds when multiplying with λI,k

because the Lagrange multipliers linked to inequality constraints have to be non-
negative. Thus, the matrix QI (λI ) is positive semidefinite. Since E1 is a diagonal
matrix of only positive values, their sum (QI (λI )+E1) has to be positive definite
in any case. Thus, the primal regularization is not necessary.

The other issue to consider concerns the zero block in the 2-2-component. In
general, the zero values on the diagonal of the matrix can lead to numerical instabil-
ities. These instabilities can be avoided by use of dual regularization, as proposed in
[1, 2] on the basis of e.g. [17, 38, 39]. There, a diagonal matrix with positive pertur-
bations δImE

is added to the 2-2-component such that the system is stabilized. Note,
that the convergence properties of the iterative process may be affected by this per-
turbation. As an option in the solution strategy, we have implemented an alternative
approach as well. On the basis of the condensed formulation (PIPDCA)∗, the system
of linear equations (54) can be further reduced. For this purpose, we eliminate the
third row and column of the coefficient matrix by substitution of �λI .

�λI =E−1
2 · (d3 −CI ·�x) (58)
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Fig. 2 Sparsity pattern of the
matrix H

The reduced system after substituting Eq. (58) into the first row reads as follows.

(−H AT

A 0

)

·
(

�x

�λE

)

=
(

d̄1
d2

)

(59)

where:

H =QI +E1 +CT
I ·E−1

2 ·CI

d̄1 = d1 −CT
I ·E−1

2 · d3

Note, that the matrix CT
I ·E−1

2 ·CI has a quadratic form and therefore is positive
definite by definition. Thus, the matrix H is positive definite as well, following the
reasoning on (QI (λI )+E1) from above. Furthermore, we investigate the specific
sparsity pattern of the matrix H as shown in Fig. 2.

In the range i ∈ [1,5NG] denoted by H u in the following, all entries surround
the diagonal block-wise in 5× 5 blocks, whereas H v in the range i ∈ [5NG,6NG]
is diagonal. Denoting the last column in the range i ∈ [1,5NG] by h and the entry
in the last column and last row by Hα , the matrix H can be presented as follows.

H =
⎛

⎝
H u 0 h

0 H v 0
hT 0 Hα

⎞

⎠ , H v ∈RNG×NG : diag (60)

The shown sparsity pattern of H can be used to further reduce the system (59) by
splitting of the solution vector �x, the right hand side vector d̄1 and the matrix A.

�x =
⎛

⎝
�u

�v

�α

⎞

⎠ , d̄1 =
⎛

⎝
d̄

u

1
d̄

v

1
d̄

α

1

⎞

⎠ , A= [Au|Av|aα], AT =
⎛

⎝
AT

u

AT
v

aT
α

⎞

⎠ (61)

Using Eq. (60) and Eq. (61) the variable �v can be eliminated.

�v =−H−1
v ·

(
d̄

v

1 −AT
v ·�λE

)
(62)
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Finally, the following system of linear equations has to be solved.

⎛

⎝
−H u −h AT

u

−hT −Hα aT
α

Au aα K

⎞

⎠ ·
⎛

⎝
�u

�α

�λE

⎞

⎠=
⎛

⎝
d̄

u

1
d̄

α

1
d̄2

⎞

⎠ (63)

where:

K =Av ·H−1
v ·AT

v

d̄2 = d2 +Av ·H−1
v · d̄v

1

It has to be mentioned that the matrix K is still symmetric and positive defi-
nite. Unfortunately, depending on the structure of Av and thus problem-dependent
it may happen that K appears to be relatively dense. Although the coefficient ma-
trix of the system (63) will remain sparse in total, the density of K might lead to a
less efficient solution procedure. On the other hand the dimension of the problem is
reduced which has a positive influence. Moreover, this disadvantage as a result of
the relative density of K is accepted for the advantage that no regularization is nec-
essary at all. In [42] the described reduction has been shown to lead to a remarkable
decrease of running time. Nevertheless, in some other cases there appeared prob-
lems in the solution of the equation system due to the possible bad conditioning of
the coefficient matrix. However, when using this optional new approach, the system
of linear equations (63) is solved by use of the NAG-library [33]. In particular, the
solver nag_sparse_sym_chol_sol (f11jcc) is used which takes into account both the
symmetry and the sparsity of the coefficient matrix using an incomplete Cholesky
preconditioning.

4.3 Damping of the Newton Step

The full Newton step �Π computed from Eq. (46) may happen to be too large in the
sense that one or more of the Lagrange multipliers, the slack or the split variables
become negative. Since these have to be nonnegative by definition, the Newton step
is damped in these cases.

For this reason, the damping factors αi are introduced, which are merged into
the diagonal matrix Υ k in Eq. (45). In principle, damping factors can be defined
for each of the variables separately. Nonetheless, it is common practice in linear
and nonlinear programs to use two different values αP for the primal variables
ΠP = [x,y,z,w]T and αD for the dual variables ΠD = [λE,λI , s, r]T . The two
according sets of enforced nonnegative variables are denoted by Π∗P = [y,z,w]T
and Π∗D = [λI , s, r]T .

α̃P = max
{
ᾱ
∣
∣Π∗P + ᾱ�Π∗P ≥ 0; Π∗P = [y,z,w]T } (64a)

α̃D = max
{
ᾱ
∣
∣Π∗D + ᾱ�Π∗D ≥ 0; Π∗D = [λI , s, r]T

}
(64b)
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In order to prevent hitting the boundary, these values are multiplied by the constant
factor α0 = 0.99995.

Damping of the Newton step with the nonnegativity condition may still not be
sufficient, because it is possible that the resulting step values do not lead to a descent
direction in both the infeasibilities and the objective function. In order to ensure that
the computed direction is a decreasing one, the following merit function Φμ,ν is
introduced for a linesearch procedure. The term in squared brackets [.] is optional
but should be used in order to avoid the Maratos effect [27].

Φμ,ν(Π)= fμ(x,y,z,w)+ ν

2

∥
∥
∥
∥
∥
∥

⎛

⎝
A · x

cI (x)−w

x − y + z

⎞

⎠

∥
∥
∥
∥
∥
∥

2

2

+ [(A · x) · λE

]
(65)

Here, ν denotes the penalty parameter, which is updated if necessary in each
iteration step before the linesearch starts.

With help of the linesearch, the supplementary damping factor αT is determined.
Starting from the initial value 1, the factor αT is halved as often as is necessary such
that the Armijo condition (66) is satisfied. As proposed in e.g. [51], this reduction
is carried out in dependence of the primal values only. For the Armijo-factor we set
β = 10−3.

Φμ,ν(Π + ᾱ�Π)≤Φμ,ν(Π)+ βᾱΦ ′μ,ν(Π;�Π) (66)

where:

ᾱ = αT α0α̃P

Once the value αT is determined, the total damping factors can be calculated.

αP = αT α0α̃P , αD = αT α0α̃D (67)

Concerning the penalty parameter ν, we use the new update-rule equation (70),
which has been recently developed in [42]. It is based on the necessary condition of
a decreasing direction, Φ ′(Π;�Π) < 0. Here and in the following the subscription
with μ and ν will be omitted for the sake of clarity of the presentation. The total
differential Φ ′(Π;�Π) can be expressed as follows.

Φ ′(Π;�Π)=Φ ′f (Π;�Π)+ νΦ ′f eas(Π;�Π) (68a)

where:

Φ ′f (Π;�Π) = ∇xf ·�x −μ
[
Y−1 ·�y +Z−1 ·�z+W−1 ·�w

]

− [(AT · λE

) · x + (A · x) · λE

]
(68b)

and:

Φ ′f eas(Π;�Π)= (A · x) · (A ·�x)+ (c−w) ·C ·�x − (c−w) ·�w

+ (x − y + z) · (�x −�y +�z) (68c)
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Substituting the analytical expressions for the step values into Eq. (68c) one gets:

Φ ′f eas =−
[
(A · x)2 + (c−w)2 + (x − y + z)2] (69)

With Eq. (69) it is clear that Φ ′f eas is negative in any case. Thus, the following
update-rule is sufficient to guarantee Φ ′(Πk;�Πk) < 0.

IF

(

νk−1 <−γν

Φ ′f
Φ ′f eas

)

: νk =−γν

Φ ′f
Φ ′f eas

(70)

The factor γν = 10 is chosen to avoid problems due to numeric inaccuracy.

4.4 Break Conditions

In general, break conditions in interior-point algorithms have the form ‖F‖ ≤ ε,
where formulations differ in the used norm, the choice of the tolerances ε and εμ

and in the applied scaling.
Scaling should be used to make the convergence criteria reasonable. However,

calculation of scaling factors from the actual step values takes computation time. As
a balance between practicality and scale invariance, we follow [51] and calculate
the scaling factors only once from the values of the starting point, which is denoted
by the subindex (.)0.

The break condition of the inner iteration has to ensure proximity of the lin-
earized solution to the exact solution for the fixed barrier parameter μ and is given
by Eqs. (71a)–(71h).
∥
∥∇xf (x)−AT · λE −CT

I (x) · λI − s
∥
∥∞ ≤max

{
1;∥∥∇xf (x)

∥
∥∞
}
εopt
μ = εopt

μ

(71a)

‖μe− Y · S · e‖∞ ≤max
{
1;∥∥∇xf (x)

∥
∥∞
}
εopt
μ = εopt

μ

(71b)

‖μe−Z ·R · e‖∞ ≤max
{
1;∥∥∇xf (x)

∥
∥∞
}
εopt
μ = εopt

μ

(71c)

‖μe−W ·ΛI · e‖∞ ≤max
{
1;∥∥∇xf (x)

∥
∥∞
}
εopt
μ = εopt

μ

(71d)

‖A · x‖∞ ≤max
{
1; ‖A · x0‖∞

}
εf eas
μ (71e)

∥
∥cI (x)−w

∥
∥∞ ≤max

{
1;∥∥cI (x0)−w0

∥
∥∞
}
εf eas
μ

(71f)
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‖x − y + z‖∞ ≤max
{
1; ‖x0 − y0 + z0‖∞

}
εf eas
μ

(71g)

‖r + s‖∞ ≤max
{
1; ‖r0 + s0‖∞

}
εf eas
μ (71h)

For the tolerances of the inner iteration we use:

εopt
μ = max

{
θμ; εopt −μ

}
(72a)

εf eas
μ = max

{
θμ; εf eas

}
(72b)

By setting μ= 0 in both the conditions and the tolerances, a consistent formula-
tion of break conditions is used for the outer iteration. In addition, the scaled frac-
tional change of the objective is introduced as an additional convergence criterion
for the outer iteration, as proposed in [15].

|f (xk+1)− f (xk)|
1+ |f (xk)| ≤ εobj (73)

The tolerances are set to the following values: εopt = εf eas = εobj = 10−6 and
θ = 1.

4.5 Update-Rule of the Barrier Parameter

Once the inner iteration has converged, the barrier parameter has to be updated. We
modify the update-rule given in [3], which takes into account the distance from the
solution, in order to fit it to the break conditions (71a)–(71h).

IF (μ̄i < 0.1μk) : if
(
μk < 10−4) : μk+1 =min

{
0.85μk;10 · (0.85)k+2σ μ̄o

}

else: μk+1 =min
{
0.85μk;10 · (0.85)k+σ μ̄o

}

ELSE: μk+1 =min
{
0.95μk;10 · (0.95)kμ̄o

}
(74)

where: μ̄i = 1

θ
max

{
scaled infeasibility(μ)

}
and μ̄o = μ̄i |μ=0

The left hand side values in Eqs. (71a)–(71h) are the infeasibilities of the current
iteration step. Thus, the maximum scaled infeasibility can be taken from the com-
putation of the inner and outer break conditions, respectively. As suggested in [3]
we use σ = 5.

5 Numerical Example

The described algorithm is applied to a pipe-junction with an angle of 60◦ between
the main pipe and the nozzle, Fig. 3. The pipe-junction is made of steel, and it is
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Fig. 3 FEM-model and mesh

Table 1 Characteristic
dimensions of pipe-junction Length [mm] Inner radius [mm] Thickness [mm]

Pipe 600.00 53.55 3.6

Nozzle 157.15 18.60 2.6

Table 2 Thermal and
mechanical characteristics Young’s modulus [MPa] 2.1× 105

Yield stress [MPa] 235

Poisson’s ratio 0.3

Density [kg/m3] 7.85× 103

Thermal conductivity [W/(m·K)] 48

Specific heat capacity [J/(kg·K)] 470

Coefficient of thermal expansion 1.2× 10−5

Transfer coefficient at boundary [W/(m2·K)] 200

Transfer coefficient in pipe [W/(m2·K)] 1200

subjected to internal pressure and temperature loading, which vary independently.
Due to the symmetry it is sufficient to consider only one half of the system. The
left end of the tube is clamped, whereas the right end is fixed only in longitudinal
direction of the tube. The nozzle is assumed to be closed without any restriction
on the displacements. The geometrical and mechanical characteristics are given in
Tables 1 and 2, respectively.

For the finite element analysis, the software package ANSYS is used. In particu-
lar, we use the isoparametric solid elements (square with 8 nodes) solid70 for the
thermal analysis and solid45 for the structural analysis. The mesh consists of 510
elements and 1136 nodes and is shown in Fig. 3.

The results of the finite element analysis are presented in Figs. 4 and 5. In par-
ticular, the equivalent stresses resulting from the temperature load and from the
internal pressure are shown. Using the described algorithm, the shakedown loading
factors for different angles ϕ in the two-dimensional loading space are computed.
The resulting domain is presented in Fig. 6 and the according numerical values are
given in Table 3. Note, that in Fig. 6 the value for ϕ ≈ 61.6◦ is plotted addition-
ally, which represents the intersection point between two different regions, which
are both defined by the alternating plasticity criterion.
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Fig. 4 Equivalent stresses
due to temperature load

Fig. 5 Equivalent stresses
due to internal pressure

Fig. 6 Result of shakedown
analysis

Table 3 Numeric result of shakedown analysis

ϕ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

p/σY 0.0292 0.0287 0.0282 0.0277 0.0270 0.0261 0.0249 0.0174 0.0091 0

EαT �T/σY 0 0.1276 0.2589 0.4023 0.5705 0.7847 1.0874 1.2066 1.2939 1.3891

6 Conclusion

We have presented a method to compute the shakedown factors of structures sub-
jected to varying thermal and mechanical loadings using the lower bound approach.
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The formulation has been generalized for the case of arbitrary finite numbers of
loading cases. Furthermore, an improved formulation has been derived for the spe-
cial case of von Mises materials. The described method has been successfully im-
plemented into an interior-point algorithm and the relevant numerical details have
been presented. Finally, the efficiency of the algorithm is illustrated by a practical
example.

Acknowledgements We wish to thank David Huet, who carried out the structural part of the
FEA during his student project work.
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Numerical Analysis of Nonholonomic
Elastoplastic Frames by Mathematical
Programming

Konstantinos V. Spiliopoulos and Theodoros N. Patsios

Abstract The strength as well as the ductility of a structure may be estimated by
performing an elastoplastic analysis. In such an analysis structural loading is incre-
mentally applied through a proportional loading factor in accordance to a predefined
loading pattern. During this process we have continuous plasticizations of various
parts of the structure. For a more accurate description of the physical process, pos-
sible deplasticizations should also be taken into account. Thus a nonholonomic ma-
terial behavior should be followed. In this work such an analysis is performed in an
efficient way. The basis of the approach is the formulation of the incremental prob-
lem as a convex parametric quadratic programming (PQP) problem between two
successive plastic hinges. The solution of this problem is done by assuming a ficti-
tious load factor which establishes a search direction for the next plasticization. The
true load factor is established when the plastic hinge that is closest to open really
opens. An example of application, which serves as benchmark, is also included.

1 Introduction

The capacity of a structure beyond its elastic limits may be estimated by perform-
ing a step-by-step elastoplastic analysis. During this process the loading is applied
sequentially with consecutive parts of the structure being plasticized. Between two
plasticizations an elastic analysis is performed. Thus a series of elastic analyses is
carried out before reaching either a limit load state or a predefined load state. In
this way, one may have a good estimate of the structure’s strength as well as of its
ductility. The above described procedure is called holonomic plasticity.

A more realistic material behavior is to take into account any local unloading
(plastic unstressing) in the course of the analysis. This approach, which is much
more involved computationally, is called nonholonomic plasticity.

K.V. Spiliopoulos (�) · T.N. Patsios
Department of Civil Engineering, Institute of Structural Analysis & Antiseismic Research,
National Technical University of Athens, Zografou Campus, Zografos 157-80, Athens, Greece
e-mail: kvspilio@central.ntua.gr

T.N. Patsios
e-mail: tpatsios@central.ntua.gr

G. Saxcé et al. (eds.), Limit State of Materials and Structures,
DOI 10.1007/978-94-007-5425-6_7, © Springer Science+Business Media Dordrecht 2013

129

mailto:kvspilio@central.ntua.gr
mailto:tpatsios@central.ntua.gr
http://dx.doi.org/10.1007/978-94-007-5425-6_7


130 K.V. Spiliopoulos and T.N. Patsios

Maier [1] was the first to show that mathematical programming (MP) and espe-
cially parametric quadratic programming (PQP) provides a unified formalism for
the problem of elastoplastic analysis with the load factor being the parameter of
the program. In this work holonomic plasticity has been addressed. The alternative
formulation as a parametric complementarity problem (PLCP) has also been given
by Maier [2]. The framework for this problem is linear programming (LP) with the
Simplex method employed for its solution (de Donato and Maier [3]). Smith [4]
extended this approach to nonholonomic plasticity proposing a numerical solution
based on the Simplex method that restricts the variables that enter the basis. The
methodology was applied to a simple frame. In an attempt to produce a PLCP based
general purpose computer program for nonholonomic plasticity Franchi and Cohn
[5] and Kaneko [6] proposed a rather involved algorithm. PLCP based solutions
of problems with a softening material behavior have also appeared recently (Tan-
garamvong and Tin-Loi [7, 8]).

Besides the compact MP formulation of an elastoplastic problem, all the above
PLCP based solutions generally involve a large number of variables and constraints
(Tin-Loi and Wong [9]). At the same time computer implementation of these algo-
rithms is quite difficult. Thus an alternative approach, the direct stiffness method has
almost exclusively been used. This is based on the displacement method and when-
ever a plasticization occurs, an elastic prediction—plastic correction takes place
by re-formulating and re-decomposing the stiffness matrix. Re-formulation and re-
decomposition, must also take place if nonholonomicity is considered. These two
tasks increase the computational time quite considerably.

The present work presents a methodology that was proposed by Spiliopoulos and
Patsios [10]. The main ingredient of the procedure is to cast the problem in the form
of an incremental PQP and solve it directly in this form. A numerical strategy was
developed that employs a fictitious load factor and solves the resulting QP program
by standard algorithms (e.g. Goldfarb and Idnani [11]). The solution of the fictitious
program will automatically detect a possible unstressing and, at the same time, it
establishes a solution direction which searches for the formation of the next plastic
hinge which is closest to open. When it opens, the load factor receives its true value.

The approach appears to be numerically stable and very fast. Although it may
be formulated either with respect to a displacement based or a force based MP, the
force based one is preferred, due to the less number of unknowns and to the accurate
way that equilibrium is expressed through this method. An approach (Spiliopoulos
[12]) may be used to automatically establish this equilibrium both with respect to
the hyperstatic forces and the applied loading.

2 Problem Formulation

Let a frame, whose material is elastic-perfectly plastic, be subjected to a loading
pattern which changes in a proportional way:

P= Pin + γ · rP (1)
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Fig. 1 Proportional loading: (a) limit load analysis, (b) prescribed loading analysis

Fig. 2 (a) Rotations and moments, (b) plastic axial deformations and axial force

where bold letters represent vectors and matrices, Pin represents an initial load state,
γ is a proportional load factor and rp is the unit vector along the direction of the
loading pattern (Fig. 1). This vector is always known either in limit or prescribed
loading analysis. If the final loading state in the prescribed loading case is given by
Pf then rP = (1/‖PL‖) · PL, with PL = Pf − Pin.

If we consider plasticity to be lumped at the two ends of a member, we may de-
compose the rotations and the axial deformations into elastic and plastic components
(Fig. 2).

The elastic rotations are related to the moments through the flexibility matrix:
{
θel

1
θel

2

}

= �

6EI
·
[

2 1
1 2

]

·
{
m1
m2

}

(2)

At the same time the two elastic axial deformations at the two ends are given by:

δel
1,2 = n�/EA (3)

where �, EI and EA are the member’s length, bending and axial stiffness respec-
tively.

By grouping all the bending and axial deformations of all the critical sections of
the structure one may write:

{
θel = Fm ·m
δel = Fn · n

}

→
{
θel

δel

}

=
[

Fm ∅
∅ Fn

]

·
{

m
n

}

→ qel = F̄ ·Q (4)
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where Fm and Fn are the block-diagonal bending flexibility and axial flexibility
matrices respectively. Q are the stress resultant pairs (m,n) at each critical section.

A plastic hinge opens if any of these pairs touch an interaction surface. This
surface may be written for rectangular sections:

|m|
m∗
+
(

n

n∗

)2

= 1 (5)

where m∗, n∗ are the section’s bending and axial plastic capacities.
The above yield surface is doubly symmetric with respect to the four quadrants

with ordinates (m/m∗), (n/n∗). We may use a finite set of ζ linear equations to
approximate it. So we may write:

f (m,n)= (±)s1 · m

m∗
+ (±)s2 · n

n∗
− 1= 0 (6)

There are ζ distinct couples of (s1, s2).
The simplest linearization consists of four lines (ζ = 1) and we will call it “M +

N = 1”, whereas the AISC criterion [13] consists of 8 lines (ζ = 2).
Due to the nonlinear nature of the problem, the solution will be acquired incre-

mentally.
Let us suppose we have completed the incremental step k − 1. If we apply the

next increment of loading the structure will respond with increments of moments
and axial forces. Thus by grouping all the moments and axial forces of the structure
one may write for the increment k:

{
mk =mk−1 +�m
nk = nk−1 +�n

}

→Qk =Qk−1 +�Q (7)

where �Q denotes the increments of the force vector.
In the framework of the force method of analysis one may write these increments

as:
{

�m= Bm ·�p+ (�γk) ·Bo,m · rp

�n= Bn ·�p+ (�γk) ·Bo,n · rp

}

→�Q= B̄ ·�p+�γk · B̄o · rp (8)

where

B̄=
[

Bm

Bn

]

, B̄o =
[

Bo,m

Bo,n

]

The first terms of the above equations are due to the indeterminacy of the struc-
ture, with p being a set of hyperstatic forces which is called statical basis. These
forces may be found by introducing cuts around the structure so that it is made
statically determinate.

The second terms are due to the equilibrium with the increments of the applied
loading which is expressed through the increment of the loading factor �γ .
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Using an equivalent piecewise linear form (i.e. Eq. (6)) of the yield surface (5),
we may write the plastic counterparts of the rotation and the axial deformation at a
critical section i:

�qpl
i =

[
�θ

pl
i

�δ
pl
i

]

=�λi · ∂f

∂Q i

=�λi ·
[
s1/m∗i
s2/n∗i

]

(9)

Thus the vector of the total deformations of the critical sections of the structure
may now be written as:

�q=�qel +�qpl (10)

From the principle of static kinematic duality (SKD), the conjugate to the hy-
perstatic forces discontinuities at the cuts induced around the structure are related
through B̄T . If we close these cuts we may write down the compatibility conditions:

B̄T ·�q= 0 (11)

The condition of static admissibility states that the total generalized force Qk =
Qk−1 +�Q at the step k stays within the yield surface. With the complementarity
condition holding between �λi and the section’s generalized potential which marks
the distance from a yield plane, Eqs. (7)–(11), with also the use of (4) lead to the
solution of the following PQP program:

Minimize z(�p)= 1

2
·�pT · (B̄T · F̄ · B̄) ·�p+�γk ·

(
B̄T · F̄ · B̄o · rp

)T ·�p

Subject to:
(
N̄T · B̄) ·�p≤ e− N̄T ·Qk−1 −�γk ·

(
N̄T · B̄o · rp

)

(12)
where N̄ contains the different coefficients of the left-hand side of the constraints
of (6). It may be written in the form [10]:

N̄=
[

(s11,s21)︷ ︸︸ ︷[
N̄I N̄II N̄III N̄IV

]
(s12,s22)︷ ︸︸ ︷[

N̄I N̄II N̄III N̄IV
]

. . .

(s1ζ ,s2ζ )
︷ ︸︸ ︷[
N̄I N̄II N̄III N̄IV

]

]

with the various submatrices given by:

N̄I =
[
s1 · [diag(m+∗ )]−1 ∅

∅ s2 · [diag(n+∗ )]−1

]

N̄II =
[
s1 · [diag(m+∗ )]−1 ∅

∅ s2 · [−diag(n−∗ )]−1

]

N̄III =
[
s1 · [−diag(m−∗ )]−1 ∅

∅ s2 · [diag(n+∗ )]−1

]

N̄IV =
[
s1 · [−diag(m−∗ )]−1 ∅

∅ s2 · [−diag(n−∗ )]−1

]
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Fig. 3 (a) Graph representation, a cycle basis and shortest path cantilevers, (b) Self-equilibrating
system of forces

where the diagonal matrices m∗ and n∗ contain the bending and axial capacities of
the critical sections of the frame, with the superscripts± denoting the corresponding
ones in tension or compression.

We may have ζ couples of (s1, s2) = {(s11, s21), (s12, s22), . . . , (s1ζ , s2ζ )}, de-
pending on the number of yield planes considered for a particular yield criterion.
For the simple “M +N = 1” criterion ζ = 1, s11 = s21 = 1, whereas for the AISC
criterion ζ = 2, s11 = 8/9, s21 = 1, s12 = 1, s22 = 1/2.

The solution of this program will be discussed analytically in Sect. 4.
Once the optimum solution of (12) is obtained, its Lagrange multipliers provides

us with the various �λi .

3 Methodology to Obtain Equilibrium Matrices

3.1 Construction of B̄

It is recalled that this matrix has to do with the indeterminacy of the structure. This
may be accomplished using an algorithm that was originally presented by Spiliopou-
los [12]. It is based on the graph representation of a frame. One may see such a
graph in Fig. 3. In this graph the ground is represented by an extra node and extra
additional members connecting each foundation node with this ground node. This
algorithm selects a set of independent cycles using a minimum path technique from
graph theory and the fact that the number of these cycles that constitutes a cycle
basis is known and equal to μ− ν + 1 where μ, ν are the total number of members
and nodes that compose the graph.

For the compactness of the present work the algorithm is briefly presented here.
It is based on giving to each member of the graph an initial value of its “length”



Numerical Analysis of Nonholonomic Elastoplastic Frames 135

Fig. 4 Formation of a cycle basis

equal to 1. Of course this length has nothing to do with its Euclidean length but
rather refers to an existence of a member between two nodes.

The procedure then starts from the node that is incident to the maximum num-
ber of members. Each of these members are chosen as generator members and the
minimum path between its ends is found not by traveling along the member but
going around it. This minimum path together with the generator member forms a
cycle which is a candidate to enter the cycle basis. It will enter the basis only if the
following admissibility rule is satisfied:

“The length of the path is less than 2* (nodes along the path-1)”

If this rule is satisfied it means that the cycle is independent from the ones already
found, enters the basis and at the same time to all the members of the cycle we give
the value of 2. This last action guarantees that this particular cycle will not enter the
cycle again.

The procedure may be understood if we consider the cycle formation in a sub
graph extracted from a main graph (Fig. 4(a)). Staring from the node k, we may
pick up the member km as a generator member. Then the cycle klmk is selected
and the lengths of the members of the cycle take the value of 2 (Fig. 4(b)). Then
a next member, e.g. mn may be selected to serve as a generator member and a
next cycle may be selected to enter the cycle basis (Fig. 4(c)). There can be cases
of complicated graphs where this simple procedure may break down and leave
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some cycles unidentified. There are remedies, however, to overcome this prob-
lem [12].

If we make a cut at each cycle one may establish a pair of two unknown forces
Xo, Yo along the x and y directions and an unknown bending moment Mo at the
point of the cut, with coordinates xo and yo. These may be considered as the three
hyperstatic quantities of the cycle (Fig. 3(b)). The bending moment as well as the
axial force at a critical section i may be shown to be:

{
mi

ni

}

= (±)

[
(y0 − yi) (xi − x0) −1
− cosϕ − sinϕ 0

]

·
⎡

⎣
X0
Y0
M0

⎤

⎦ (13)

with:

cosϕ = xf − xs
√

(xf − xs)2 + (yf − ys)2
and sinϕ = yf − ys

√
(xf − xs)2 + (yf − ys)2

with (xs, ys) and (xf , yf ) being the coordinates of the two ends of the member that
the critical section i belongs to. The positive or the negative sign of the parenthesis
in (13) depends on whether the mesh orientation coincides or not with the mesh
orientation. By filling in the appropriate positions, the matrix B̄ may be formed.

3.2 Construction of B̄0

The minimum path technique may be also used to substantiate equilibrium with
respect to the applied loading, which is considered concentrated. Thus one may
establish the quickest way to the ground of the load through the use of a cantilever
which may be formed between the point of application of the load and the ground
(Fig. 3(a)). Thus the following equation may be written:

{
mi

ni

}

= (±)

[
(xa − xi) (ya − yi)

cosϕ − sinϕ

]

·
[
Px

Py

]

(14)

where (xa, ya) are the coordinates of the point of application of the concentrated
load. The sign of the parenthesis is positive if the direction of the member, that a
particular cross section i belongs to, coincides with the direction of the cantilever.

4 Numerical Solution of the PQP Program

The following numerical steps that have been suggested in [10], will be briefly de-
scribed here:

Beginning of the incremental procedure with γ = 0 and k = 1

1. Suppose a “fictitious” small initial value for �γk = ρ (see Fig. 6)
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2. Solve the resulting QP program (12) and obtain a “fictitious” set of increments
of the hyperstatic forces �p̃ and a set of fictitious increments of the general-
ized plastic displacements �q̃pl through the Lagrange multipliers of the optimal
solution �λ̃i . Any efficient algorithm [11] may be used.

3. A first correction to the fictitious set of the hyperstatic forces and the length of
the plastic vectors is made:

�p′ = 1

ρ
·�p̃ and �λ′ = 1

ρ
·�λ̃ → �q′pl

i =�λ′i ·
[
s1/m∗i
s2/n∗i

]

(15)

4. Fictitious increments of bending and axial forces are evaluated using (8):

�Q′ = B̄ ·�p′ + B̄o · rp

In this way, a search direction �Q′i , for each critical section is established. It is
this direction that will determine the next possible plasticization at the intersec-
tion with one of the yield planes (Fig. 5(a))

5. Find the correct �γk as the minimum �γi,k among the non-active constraints
that produces a new plastic hinge (Fig. 5(a)):

�γi,k = (αi · ni,k−1 + βi)−mi,k−1

�m′i − αi ·�n′i
(16)

where i = 1,2, . . .Nc, with Nc being the total number of critical sections. The
parameters (ai, βi) may be evaluated with the aid of (6) and turn out to be:

αi =− s2

s1
· m∗,i

n∗,i
and βi = m∗,i

s1

A search is made for each critical section for all the possible intersections with
the yield planes for all the four quadrants. The minimum positive among all
numbers one may get using (16), is the sought �γi,k .

6. Find the increments of the bending moments, axial forces and plastic displace-
ments as:

�m=�γk ·�m′, �n=�γk ·�n′, �qpl =�γk ·�q′pl (17)

7. The load factor, the various static and kinematic variables may be now updated:

γk = γk−1 +�γk

mk =mk−1 +�m
nk = nk−1 +�n

}

�→ Qk

θel
k = Fm ·mk

δel
k = Fn · nk

}

�→ qel
k = F̄ ·Qk

qpl
k = qpl

k−1 +�qpl

qk = qel
k + qpl

k

(18)
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Fig. 5 (a) Search direction and plasticization from elastic state, (b) Further plasticization (1) or
unloading (2)

The displacements at the points of the load application may be found from SKD:

uk = B̄T
0 · qk

8. Return to step 1 and repeat the process for k = k + 1, until either
i. No solution of the QP may be found, meaning a collapse state has been

reached and if it were for a limit analysis case γk is the limit load factor,
or

ii. For a prescribed loading the process stops if (i) has not occurred and |γk −
‖PL‖| ≤ ρ, meaning we have reached the end of the specific loading case.

If we have an already plasticized critical section, the algorithm automatically
detects at the beginning of the incremental step whether we are going to move along
the directions (1) (Fig. 5(b) or (c)), meaning we get further plasticization, or move
along the directions (2), meaning we have plastic unloading. Moving along either
the direction (1) or (2) depends on whether the corresponding Lagrange multiplier
of the active constraint becomes positive or zero, respectively.

There is always going to be one active constraint for a particular critical section.
Even in the case of Fig. 5(c) when further plasticization continues along a neighbor-
ing constraint the previously active one now becomes inactive. In the very unlikely
case when the search direction meets the point of intersection of the two constraints,
then two nonzero Lagrange multipliers �λi will appear, rendering both the con-
straints active. Thus, because of (9), two plastic vectors will appear. Each of them is
perpendicular to the corresponding plane. In this case the plastic deformation will
be the composition of these two vectors.
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Fig. 6 Search direction with
fictitious (ρ), and true
incremental load factors
(�γ )

A physical interpretation of the fictitious load factor that is used at the beginning
of the incremental step is to find a feasible direction on which the prospective solu-
tion lies taking into account all the previous plasticization that have occurred before
the current incremental step. The true length of the step is then found on the demand
to capture the next plasticization. The procedure may be depicted for two steps on a
force-displacement diagram of the Fig. 6.

5 Numerical Example

The numerical example has been chosen in order to demonstrate the efficiency of
the approach. This example was found difficult to converge when using standard
commercial packages that use the direct stiffness as the solution method [14, 15].

The structure is a three-storey one-bay frame shown in Fig. 7. The original frame
has appeared with Imperial units [16] which herein have been converted to SI.

This frame was experimentally tested by Yarimci [17] and the results of the ex-
periments have been taken from [16]. The members of the frame were assigned
mechanical properties, which are shown in Table 1, so that they match the ones that
were measured. A pure bending behavior was considered for the beams.

The loading scenario is the following: First the vertical loads were applied up
to their final values that may be seen in Fig. 7 and then the horizontal loads were
proportionally increased from zero. These loads were applied up to a certain value,
then unloading of the structure took place, following a reversed loading and then
reloading up to zeros so that a full cycle of loading was completed.
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Fig. 7 Geometry of the
analyzed frame

Table 1 Mechanical properties used for the analysis

Section E (kN/m2) I (m4) m∗ (kNm) n∗ (kN)

8W20 2× 108 2.90× 10−5 76.83 ∞
6W25 2× 108 2.68× 10−5 83.61 1015

Three different constitutive relations were considered: (a) a pure bending behav-
ior (to all the members a big value for n∗ was given as input), (b) a moment/axial
interaction using the “M +N = 1” criterion and (c) a moment/axial interaction us-
ing the AISC LRFD criterion [13].

For all the three different cases of constitutive modeling, the numerical appli-
cation of loading, unloading and reloading tried to follow the experiment that was
performed [16].

Results of the three analyses are shown in Fig. 8.
One may see that the pure bending behavior simulates better the loading part of

the cycle. This supports the assumption that for low rise buildings moment/axial
force interaction need not be considered. The residual bending moment diagram at
the end of the load cycle may be seen in Fig. 9.
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Fig. 8 Horizontal load in kN (vertical axis) vs. Roof Displacement in m (horizontal axis)

Fig. 9 Bending moment
distribution at the end of the
load cycle under pure bending
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Fig. 10 Bending moment
distributions at the end of the
cycle under bending and axial
force interactions

Although the conditions of the experiment are not known in great detail, it seems
that, under the assumptions of an elastic-perfectly plastic material and first order
theory, the analytical results underestimate, in terms of the load, the unloading part
of the cycle.

On the other hand, when moment/axial force interaction under any of the two cri-
teria is considered, the hysteresis loop shrinks. This supports the fact of the reduced
ductility of a frame in the presence of axial forces.

In Figs. 10 & 11 one may see the residual bending moment and axial force dis-
tributions at the end of the loading cycle for the two criteria.

5.1 Computational Considerations

The fictitious factor ρ is the basis of the presented method. In this way we may have
the conversion of the PQP problem to a QP one. It is a pure number and in order
to capture all the events, one has to use a small value. In all the examples that were
tried, a value of 10−3 or 10−4 has proved to be sufficient.

6 Conclusions

The nonholonomic elastoplastic analysis is performed with the aid of the force
method of analysis. The framework of the exposed method is mathematical pro-
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Fig. 11 Axial force
distributions at the end of the
cycle under bending and axial
force interactions

gramming with a strategy to convert the resulting program which is originally a
parametric quadratic program to a pure quadratic program.

As demonstrated from the presented example and also from other examples that
were tested [10] the method proves to be a very stable and robust numerical proce-
dure.

It is also computationally efficient because the only matrix that needs to be
formed and decomposed once and for all is the flexibility matrix. The quadratic
program is solved only once at the beginning of each incremental step and the step
length that determines the next plasticization is determined automatically without
the need to perform unnecessary intermediate elastic steps that have fixed length as
is the case in any computer program that has the direct stiffness method as the ba-
sis for its formulation. No elastic prediction-plastic correction and no reformulation
or re-decomposition of any matrix, as it would be the case for the stiffness matrix
in a direct stiffness method, is needed. This operation, which is well known to be
quite time consuming, is also avoided in the case of plastic unstressing since this
information is contained directly inside the solution of the quadratic program and
no extra work needs to be done. Thus from comparisons that have been made with
the orthodox time stepping direct stiffness methods it has proved to be much more
reliable and efficient [10].
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The method although is certainly a step-by-step procedure it may be classified
as a direct method as it is formulated within mathematical programming. These
methods are known to be better suited than the direct stiffness method based ones if
one seeks for a limit state of a structure. It is hoped that such methods will also be
used more and more in the future as they seem to be a better alternative, even for a
historical deformation analysis of a structure.
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Inelastic Behavior of a Two-Bar System
with Temperature-Dependent Elastic Modulus
Under Cyclic Thermomechanical Loadings

Abdelbacet Oueslati, Géry de Saxcé, and Simon Hasbroucq

Abstract This paper is concerned with the elastic plastic response of a two-bar sys-
tem with temperature-dependent elastic coefficients under cyclic thermomechanical
loadings. Such materials are characterized by lack of results concerning the asymp-
totic behaviors and conditions for shakedown occurrence. This study shows that
the considered simple structure is sufficiently complex to experience different pe-
riodic long term behaviors as in classical elastoplasticity. In order to understand
how Melan-Koiter method works for such materials, the evolution of the structure’s
response until the stabilization of the plastic strain (‘shakedown’) or the asymp-
totic dissipative behavior (‘alternating plasticity’ or ‘ratcheting’) is analytically ad-
dressed and the Bree diagram is then constructed. The main result of this work is
that the residual stress and strain fields are time-dependent even when shakedown
occurs. Incidently, we proved that Halphen’s conjecture (Halphen in C. R. Méc.
33:617–621, 2005) giving a sufficient condition for shakedown occurrence is not a
necessary condition. Finally, numerical results performed by an incremental finite
element procedure are presented.

1 Introduction

The phenomenon of fatigue of solids is deeply related to the inelastic asymptotic
behaviors of structures subjected to cyclic loads in the sense that the prediction
of the lifetime of structures requires the knowledge of the possible stabilized state
(shakedown, alternating plasticity or ratcheting) and the use of an appropriate dam-
age criterion. More precisely, elastic shakedown occurs if the plastic strain stabilizes
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after transient phase and the response of the structure becomes purely elastic. In this
case the failure of the structure could happens after a great number of cycles (sev-
eral hundreds of thousands even several million, for metallic materials); it is the
high-cycle fatigue (or polycyclic fatigue) [1]. Alternating plasticity arises when the
response of the structure converges to hysteresis loop, leading to a stabilized cycle
of plastic strain. The structure may fail with a relatively low number of cycles; it is
the low-cycle fatigue or the oligocyclic fatigue. As the energy dissipated by cycle
(or plastic deformation cumulated by cycle) tends towards a constant value, it can
be used as indicator of the severity of the damage induced by the cyclic loads [1].
Finally, ratcheting occurs if a constant increment of plastic strain is developed at
every cycle during the loading history and consequently the structure will collapse
by plastic strain accumulation (incremental collapse).

The study of the long-term steady responses of inelastic solids is a challenging
topic for both theoretical aspects and industrial applications. Most of work con-
cerns shakedown in the sense of establishing path-independent necessary and suf-
ficient conditions for convergence to an asymptotic elastic response. Since the pi-
oneering works of Bleich [2], Melan [3, 4] and Koiter [5], many extensions of the
static and kinematic shakedown theorems to diverse and complicated constitutive
material behaviors have been derived. Without being exhaustive, one may mention
the extensions of Melan-Koiter shakedown theorems to hardening plasticity, ma-
terials with temperature-dependent yield function, dynamic plasticity, damaged and
cracked bodies, non-associated plasticity, poro-plasticity, gradient plasticity, contact
with friction, shape memory alloy structures, etc. However, in a recent work, Pham
[6] showed that actually shakedown theorems, in Melan-Koiter path-independent
spirit, have been extended successfully only for certain cases. Undoubtedly, the most
accomplished extension concerns diverse hardening laws. It is already known that
the unlimited linear kinematic hardening allows only to predict alternating plasticity
collapse. The limited linear hardening one predicts an alternating and incremental
plasticity collapse: the ultimate yield strength determines the unbounded incremen-
tal collapse pattern and the initial yield stress is responsible for the bounded cyclic
plasticity occurrence [7]. It seems that nonlinear kinematic hardening appears the
more realistic hardening model, however because of its non-associated flow law,
no general shakedown or limit analysis theorems could be derived. It is worth not-
ing that for such materials with non-associative constitutive models, the bipotential
approach, based on a possible generalization of Fenchel’s inequality, allows the re-
covery of the flow rule normality in a weak form of an implicit relation [8].

Classical Melan-Koiter shakedown theorems and their extensions rest on the
assumption that elastic modulus are independent of the temperature. This is rea-
sonable for thermal loading of low amplitude. However, in many industrial do-
mains, for example in boilers of nuclear power plants or in chemical plants and
airplane/automotive motors, the structural elements are subjected to thermal cycles
of large amplitude in such way that the dependence of the elastic coefficients with
respect to the temperature cannot be neglected. The case for which the yield stress
depends on the temperature is well understood [9, 10] and many numerical algo-
rithms where proposed for its study [11]. However, when the compliance elastic
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tensor is temperature-dependent, the question of convergence of the elastic plastic
evolution to a periodic asymptotic state remains open. Recently, Halphen [12] estab-
lished the differential inclusion governing the evolution of the residual stress field
for material with temperature-elastic coefficients but no solutions were derived. To
our best knowledge, only one static shakedown theorem in this field was proposed
by König [13]. Nevertheless, a key point in the proposed proof is questionable and
not convincing.

In the present work we study analytically and numerically the elastic plastic evo-
lution of a simple mechanical system in order to characterize the stabilized asymp-
totic states. The primary motivation is the extension of the Melan-Koiter shakedown
theorems to materials with temperature-dependent coefficients.

2 Evolution of the Residual Stress Field

This section presents the differential inclusion governing the stress field evolution
for elastic perfectly plastic materials with temperature-dependent elastic coefficients
and derived in [12].

Consider an elastic perfectly plastic material occupying a volume Ω of the space
with a smooth boundary ∂Ω . The elastic coefficients are temperature-dependent.
This solid Ω is loaded by given body forces Fv(t) in Ω , a prescribed displacement
ud(t) on Γu, surface tractions Td(t) on ΓT (Γu ∪ ΓT = ∂Ω , Γu ∩ ΓT = ∅) and a
temperature variation θ(t).

Let (σ (t),ε(t),u(t)) denote the quasistatic elastic-plastic response to the path
loading and let (σE(t),εE(t),uE(t)) be the fictitious purely thermo-elastic re-
sponse under the same thermomechanical loads.

Within the framework of the infinitesimal transformation, the strain field is addi-
tively split into elastic, thermal and plastic parts

ε(t)= εe(t)+ εθ (t)+ εp(t) (1)

where elastic strains are related to the stresses through Hooke’s law εe(t)= S(θ(t)) :
σ (t) (S is the fourth order elastic compliance tensor) and the thermal strain is given
for isotropic behavior by εθ (t)= α θ(t) I (α is the coefficient of linear thermal ex-
pansion and I denotes the identity tensor).

The associated flow rule ensures that plastic strain rate obeys to the normality
law

ε̇p = λ̇
∂f

∂σ

(
σ , θ(t)

)
, λ̇≥ 0, λ̇f = 0 (2)

where f (σ , θ) stands for the plasticity yield function and λ̇ denotes the plastic mul-
tiplier.

By definition, the residual stress field is given by

ρ(t)= σ (t)− σE(t) (3)
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Notice that ρ is the stress field subsisting in the structure after complete elastic
unloading of Ω .

In the same manner, one can introduce the residual strain field as follows

η(t)= ε(t)− εE(t)= S
(
θ(t)

) : ρ(t)+ εp(t)= ηe(t)+ εp(t) (4)

where ηe(t) is called the elastic residual strain field.
From the virtual power principle one gets

∫

Ω

(σ − σ̃ ) : ε̇dΩ =
∫

Ω

(σ − σ̃ ) : ε̇EdΩσ̃ (5)

for any plastically admissible stress tensor σ̃ .
Using relation (4) it becomes

∫

Ω

(σ − σ̃ ) :
(

d

dt

(
S(θ) : σ )+ ε̇p

)

dΩ =
∫

Ω

(σ − σ̃ ) :
(

d

dt

(
S(θ) : σE

)
)

dΩ (6)

By use of the normality rule (2) we have

∫

Ω

(σ − σ̃ ) :
(

d

dt

(
S(θ) : σ )

)

dΩ ≤
∫

Ω

(σ − σ̃ ) :
(

d

dt

(
S(θ) : σE

)
)

dΩ (7)

In the convex analysis theory, the last inequality (7) is equivalent to

− d

dt

(
S
(
θ(t)

) : σ (t)
) ∈ ∂ψK(t)

(
σ (t)

)− d

dt

(
S
(
θ(t)

) : σE(t)
)

(8)

where ∂ψK(t)(σ ) is the subgradient at the point σ of the indicator function ψK(t)

of the convex set K(t) of statically and plastically admissible fields at time t , with
respect of the following scalar product of two second order tensor fields 〈a : b〉 =∫
Ω

a : bdΩ .
By introducing the residual stress field ρ we may write

− d

dt

(
S
(
θ(t)

) : ρ(t)
) ∈ ∂ψK0(t)

(
ρ(t)

)
(9)

in which K0(t)=K(t)− σE denotes the convex of the residual stress field ρ̃, such
that σE + ρ̃ is statically and plastically admissible at time t .

Compared to the case when the elastic coefficients are constant there are two
modifications: (i) the scalar product which is used is not defined by the elastic energy
and (ii) the elastic compliance appears in Eq. (9). No rigorous mathematical study
concerning the solutions of this differential inclusion is available in the literature.

Concerning the asymptotic behavior and basing on the relation Eq. (9), Halphen
[14] proposed the following conjecture giving sufficient condition for shakedown:
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Fig. 1 The two-bar problem

If there exists a residual stress field ρ(t), a scalar m > 1 such that

• ηe = S(θ(t)) : ρ(t) is time independent and
• f (mσ (t))= f (m(σE(t)+ ρ(t)))≤ 0

anywhere and at any time t , then shakedown occurs for any initial condition.
These proposed conditions were checked through elementary numerical exam-

ples [14, 15].

3 Description of the Problem

Consider a simple mechanical system composed of two parallel bars of cross-
sections S and S/2 and lengths L and L/2 as shown in Fig. 1. The bars are built-in
at one extremity and linked to a rigid bloc at the other one so that the assemblage
is constraint to deform only in the horizontal direction. The bars are made of an
elastic perfectly plastic material. The elastic coefficients are taken constant except
the Young modulus E1 and the yield stress σy1 of bar �1 which depend on the tem-
perature as follows

E1(θ) = E0 − λθ (10)

σy1(θ) = σy0 − λ2θ (11)

where λ and λ2 are material constants and θ is the temperature field.
Young’s modulus and the yield stress of bar �2 are given by E2 =E0 and σy2 =

σy0 respectively.
This structure is subjected to a constant force F applied to the rigid support, bar

�1 next heated and cooled according a cyclic temperature variation within [θ0, θ0 +
�τ ] (Fig. 2) while bar �2 is maintained at a constant temperature θ0. Without loss
of generality and for seek of simplicity we suppose that θ0 = 0.

The study of the problem is carried out within the framework of the infinitesimal
transformation. Furthermore, we assume that the initial state coincides with a null
strain.
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Fig. 2 Cyclic thermal load

The rigid bloc imposes the same axial displacement for the bars which results in
the following relation

ε1 = 2ε2 (12)

where ε1 and ε2 are the axial strain components in the bar �1 and bar �2 respectively.
By use of Hooke’s law, Eq. (12) becomes

σ1

E1(θ)
+ ε

p

1 + αθ = 2
σ2

E2
+ 2ε

p

2 (13)

where σ1 and σ2 are the stresses, ε
p

1 and ε
p

2 are the plastic strain in the bars, α is the
coefficient of linear thermal expansion and θ is the temperature variation.

The equilibrium of the mechanical system writes

σ1

2
+ σ2 = F

S
(14)

Equations (13), (14) allows a complete investigation of all possible structure’s re-
sponses.

At any instant, the stresses σ1 and σ2 are given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1 =
(

1+ 1

1− λθ
E0

)−1[

2
F

S
− αE0θ + 2E0

(

εP
2 −

εP
1

2

)]

σ2 =
(

1+ 1

1− λθ
E0

)−1[ F
S

1− λθ
E0

+ αE0θ

2
−E0

(

εP
2 −

εP
1

2

)] (15)

It is useful to introduce the stress σT = E0α�τ
2 associated to the temperature vari-

ation, the mechanical stress σA = F
S

and the non dimensional constants A = λσy0

αE2
0

and B = λ2
E0α

. We shall adopt the classical Bree (or Miller) diagram representation
with axis σA/σy0 and σT /σy0.
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Table 1 Elastic response
Middle of a cycle End of a cycle

εP
1 0 0

σ1
(σA−σT )(1−2A

σT
σy0

)

1−A
σT
σy0

σA

εP
2 0 0

σ2
(σA+σT−2A(

σT
σy0

)2σy0)

2−2A
σT
σy0

σA

2

4 Asymptotic Responses

Depending on the amplitude of the given loads, the two-bar system exhibit the four
known long-term behaviors, namely purely elastic response, shakedown, alternating
plasticity and incremental collapse.

4.1 Elastic Behavior

For sufficiently small external loads, the bars are in an elastic state. The stresses are
easily obtained from Eqs. (15) by setting ε

p
i = 0 (i = 1,2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1 =
(

1+ 1

1− λθ
E0

)−1

(2σA − αE0θ)

σ2 =
(

1+ 1

1− λθ
E0

)−1[
σA

1− λθ
E0

+ αE0θ

2

] (16)

The limiting values of stresses corresponding to the middle and the end of cycles
for which respectively θ =�τ and θ = 0 are summarized in Table 1.

Plastic strains appear in the structure as soon as stresses reach the yield limits.
This may arise in different cases: σ1 ≥−σy1 and σ2 ≤ σy2 at the middle of the cycle
or σ1 ≤ σy1 at the end of the first cycle

(σA − σT )

(

1− 2A
σT

σy0

)

≥−σy0

(

1−A
σT

σy0

)(

1− 2B
σT

σy0

)

(17)

σA + σT − 2A

(
σT

σy0

)2

σy0 ≤ 2σy0

(

1−A
σT

σy0

)

(18)

σA ≤ σy0 (19)

Inequalities (17), (18), (19) define the elastic domain in the Bree diagram as
shown in Fig. 3 for some values given in Table 10.

Note that for A= 0 and B = 0, the classical conditions corresponding to constant
Young’s moduli are found.
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Table 2 Shakedown (SD1)

Middle of a cycle End of a cycle

εP
1

2(σy0−(1+A+2B)σT+2A(1+B)
σ2
T

σy0
+σA(1−A

σT
σy0

))

E0(1−A
σT
σy0

)

σ1 −σy0 + 2BσT − σy0−(1+A+2B)σT+2A(1+B)
σ2
T

σy0

(1−2A
σT
σy0

)

εP
2 0 0

σ2
1
2 (σy0 + 2σA − 2BσT ) − σy0−(1+A+2B)σT+2A(1+B)

σ2
T

σy0
+2σA(1−2A

σT
σy0

)

2(1−2A
σT
σy0

)

4.2 Shakedown

Shakedown occurs if the plastic strain stabilizes after transient phase and the re-
sponse of the structure becomes purely elastic. In other words, there is shakedown
if the dissipated plastic energy remains bounded. The failure of the structure could
happens after a great number of cycles (several hundreds of thousands even several
million, for metallic materials): it is the polycyclic fatigue [1].

For the problem under consideration, different modes of shakedown are possible.

4.2.1 First Shakedown Mode (SD1)

Shakedown may arise if bar �1 develops some plastic strains during the first cycle
(at the middle of the cycle) and then, if the loadings σA and σT are not too high, the
structure has an elastic behavior. Thus after the first cycle, the plastic strain in bar
�1 remains constant and the bar �2 evolves elastically.

These conditions are ensured by writing

σ1 <−σy1 (20)

(σA − σT )

(

1− 2A
σT

σy0

)

≤−σy0

(

1−A
σT

σy0

)(

1− 2B
σT

σy0

)

(21)

and

σT ≤ 1+ 3A+ 2B −√1− 10A+ 9A2 + 4B − 4AB + 4B2

4(A+AB)
σy0 (22)

The set of inequations (20), (21), (22) permit one to draw the first shakedown do-
main (SD1) in the Bree diagram, cf. Fig. 3.

The limiting states of stresses and plastic strains are reported in Table 2.



Inelastic Behavior of a Two-Bar System with Temperature-Dependent Elastic 153

Table 3 Shakedown (SD2)
Middle of a cycle End of a cycle

εP
1 0 0

σ1 2(σA − σy0) − 2σy0−(1+2A)σT+2A
σ2
T

σy0
−2σA(1−A

σT
σy0

)

(1−2A
σT
σy0

)

εP
2 − 2σy0−σA−σT (1+2A)+2A

σ2
T

σy0

E0(1−2A
σT
σy0

)

σ2 σy0
2σy0−(1+2A(1+ σA

σy0
))σT+2A

σ2
T

σy0

2(1−2A
σT
σy0

)

4.2.2 Second Shakedown Mode (SD2)

Now bar �2 develops plastic strain during the first cycle (middle of the first cycle)
and then, the structure has an elastic behavior during the subsequent cycles.

The first condition writes

−2σy0 + (1+ 2A)σT − 2A
σ 2

T

σy0
≥−σA (23)

Table 3 summarizes the stress and plastic strain field at the middle and the end of
cycles.

The boundary of this shakedown domain is obtained by setting that bar �1 does
not reach the yield stress in compression at the middle of the cycle and in tensile at
the end of cycle:

σy0 + 2BσT ≤ 2σA (24)

−
3σy0 − (1+ 4A)σT + 2A

σ 2
T

σy0

1−A σT

σy0

≥ 2σA (25)

The second shakedown domain (SD2) is depicted in Bree diagram in Fig. 3.

4.2.3 Third Shakedown Mode (SD3)

Bar �1 develops plastic strain at the end of the first cycle when σA ≥ σy0 while the
two bars evolve elastically during the remainder of cycle. In Table 4, the limiting
states are reported.

In order to obtain the limit of the domain called (SD3) in Fig. 3, we must write
that the stress in bar �2 is less than the yield limit at the middle of cycles:

−
3σy0 − (1+ 4A)σT + 2A

σ 2
T

σy0

1−A σT

σy0

≥ 2σA (26)

Notice that this new condition is the same as (25).
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Table 4 Shakedown (SD3)
Middle of a cycle End of a cycle

εP
1

2(σA−σy0)

E0

2(σA−σy0)

E0

σ1
(σy0−σT )(1−2A

σT
σy0

)

1−A
σT
σy0

σy0

εP
2 0 0

σ2
2σA(1−A

σT
σy0

)+(σT−σy0)(1−2A
σT
σy0

)

2(1−A
σT
σy0

)

1
2 (2σA − σy0)

Table 5 Shakedown (SD4)

Middle of a cycle End of a cycle

εP
1 2εP

2 + εP
1 (SD1) 2εP

2 + εP
1 (SD1)

σ1 −σy0 + 2BσT − σy0−(1+A+2B)σT+2A(1+B)
σ2
T

σy0

(1−2A
σT
σy0

)

εP
2

A((1+2B)σy0−2σA)(2σA−σy)+B(2(1+B)σA−(1+4B)σy0)

2BE0(A+B−2A
σA
σy0

)

σ2
1
2 (σy0 + 2σA − 2BσT ) − σy0−(1+A+2B)σT+2A(1+B)

σ2
T

σy0
+2σA(1−2A

σT
σy0

)

2(1−2A
σT
σy0

)

4.2.4 Fourth Shakedown Mode (SD4)

For certain amplitude of mechanical and thermal loads, it may happen that before
reaching the middle of the first cycle, some plastic strain is generated in bar �2 and
then plastic strains cease developing in bar �2 during the second part of the cycle.
Because of the stress yield decreasing with the temperature, the bar �1 develops
plastic strain ε

p

1 until the middle of the cycle and, after that, behaves elastically
during the thermal unloading until the end of the cycle and during all next loads. In
this shakedown domain referred to us by (SD4) both bars shake down.

Limiting values of stress and plastic strain fields are given in Table 5.
The limit of this domain is obtained when bar �1 reaches the yield stress at the

end of a cycle:

σT ≤ 1+ 3A+ 2B −√1− 10A+ 9A2 + 4B − 4AB + 4B2

4(A+AB)
σy0 (27)

4.3 Alternating Plasticity

Alternating plasticity occurs when the response of the structure converges to hys-
teresis loop, leading to a stabilized cycle of plastic strain. In others words, plastic
strains evolve during the cycle, but at the end of the cycle, they reach their initial
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Table 6 Alternating
plasticity (P1) Middle of a cycle End of a cycle

εP
1 εP

1 (SD1)
2(σA−σy0)

E0

σ1 −σy0 + 2BσT σy0

εP
2 0 0

σ2
1
2 (σy0 + 2σA − 2BσT ) 1

2 (2σA − σy0)

values. The structure may fail with a relatively low number of cycles, it is the low-
cycle fatigue or the oligocyclic fatigue. As the energy dissipated by cycle (or plastic
deformation cumulated by cycle) tends towards a constant value, it can be used as
indicator of the severity of the damage induced by the cyclic loads [1].

4.3.1 First Alternating Plasticity Mode (P1)

Alternating plasticity arises if bar �1 undergoes some plastic strains at the middle
and the end of the cycle in compression and traction respectively while bar �2 is any
time in an elastic state. The limiting values of stresses and plastic strains are given
in Table 6.

The amplitude of the limiting plastic strain loop is given by

�ε
p

1 = ε
p

1max − ε
p

1min =−
4σy0 − 2(1+ 3A+ 2B)σT + 4A(1+B)

σ 2
T

σy0(
1− 2A σT

σy0

)
E0

(28)

and the mean value reads

ε
p

1m =
1

2

(
ε
p

1max + ε
p

1min

)

=
2σA

(
1− 2A σT

σy0

)− (1−A+ 2B)σT + 2A(1+B)
σ 2

T

σy0(
1− 2A σT

σy0

)
E0

(29)

The domain (P1) is plotted in Fig. 3.

4.3.2 Second Alternating Plasticity Mode (P2)

As for the case of the forth shakedown case (SD4), bar �2 shakes down after devel-
oping some plastic strain ε

p

2 before reaching the middle of cycles. On the contrary,
in bar �1 plastic strains are developed at the middle and at the end of the cycles giv-
ing rise to hysteresis loop. Therefore, bar �1 and the whole system are in a reversed
plasticity state.

The limiting states are reported in Table 7.
Notice that the only difference with the domain (P1) is that the bar �2 has devel-

oped some plastic strains during the first cycle.
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Table 7 Alternating
plasticity (P2) Middle of a cycle End of a cycle

εP
1 εP

1 (SD1)
2(σA−σy0)

E0

σ1 −σy0 + 2BσT σy0

εP
2 εP

2 (SD4) εP
2 (SD4)

σ2
1
2 (σy0 + 2σA − 2BσT ) 1

2 (2σA − σy0)

Table 8 Ratcheting
Middle of a cycle End of a cycle

εP
1 εP 0

1 + 2(n− 1)εP
inc εP 0

1 + 2nεP
inc

σ1 2(σA − σy0) σy0

εP
2 εP 0

2 + (n− 1)εP
inc εP 0

2 + (n− 1)εP
inc

σ2 σy0
1
2 (2σA − σy0)

Fig. 3 Bree diagram of the
two-bar system

4.4 Ratcheting (R)

When the load is high enough, stresses in both bars may reach the yield limits and
a constant increment of plastic strain is developed at every cycle. The structure will
collapse by plastic strain accumulation (incremental collapse).

The stresses and the plastic strain are given in Table 8 where

εP
inc =−

3σy0 − (1+ 4A)σT + 2A
σ 2

T

σy0
− 2σA

(
1−A σT

σy0

)

(
1− 2A σT

σy0

)
E0

It is worth noting that the starting values εP 0
1 and εP 0

2 depend on the initial load
and the previous domain, see Fig. 3. For example, if σA ≥ σy0 therefore εP 0

1 =
εP

1 (SD3) and εP 0
2 = 0.
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4.5 Collapse

The structure will collapse if σ1 > σy1 and σ2 > σy2. This can happen when the
temperature is very high. It is found that the first condition is more severe than the
second one and consequently the condition for collapse reads

σ1 > σy1 ⇔ 2(σA − σy0) > σy0 −BσT (30)

5 Residual Stress and Strain Fields

Here, we focus our attention on the evolution of the residual stress and strain fields.
As already mentioned in Sect. 1, the residual stresses are given by

ρ(x, t)= σ (x, t)− σE(x, t)

Recall that in the classical case, Melan-Koiter shakedown theorems ensure that ρ is
time-independent.

For the two-bar truss, closed-form expression of ρ can be easily obtained basing
upon Eqs. (15), (16)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1 = 2E0

(

1+ 1

1− λθ
E0

)−1(

εP
2 −

εP
1

2

)

ρ2 =E0

(

1+ 1

1− λθ
E0

)−1(

εP
2 −

εP
1

2

) (31)

It is obvious from Eq. (31) that even when shakedown occurs (plastic strains
of the two bars are constant), the residual stress field varies with respect to the
temperature because of the presence of the temperature θ in the analytic expressions
of ρi , i ∈ {1,2}.

Let us know examine the evolution of the elastic residual strain field given by the
following relation

ηe(x, t)= S(x, t) : ρ(x, t)

where S is the compliance tensor.
For the problem under consideration, one obtains

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηe
1 =

2

2− λθ
E0

(

εP
2 −

εP
1

2

)

ηe
2 =

(

1+ 1

1− λθ
E0

)−1(

εP
2 −

εP
1

2

) (32)

Observe that neither ηe
1 nor ηe

2 is time-independent even for shakedown.
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Table 9 Elastic response
with initial residual stresses Middle of a cycle End of a cycle

εP
1 εP

1 (0) εP
1 (0)

σ1
(σA−σT−ρ1(0))(1−2A

σT
σy0

)

1−A
σT
σy0

σA − ρ1(0)

εP
2 εP

2 (0) εP
2 (0)

σ2
(σA+σT−2A(

σT
σy0

)2σy0)−2ρ2(0)(1−2A
σT
σy0

)

2−2A
σT
σy0

σA

2 − ρ2(0)

6 Influence of the Initial State

Let us examine the influence of the initial state on the response of the structure. We
suppose that at time t = 0 there exist nonvanishing plastic strains ε

p

1 (0) and ε
p

2 (0) in
bar �1 and bar �2 respectively. The correspondent initial residual stress field induced
in the mechanical system are given by

ρ1(0)= E0

2

(
2ε

p

2 (0)− ε
p

1 (0)
)

(33)

ρ2(0)=−E0

4

(
2ε

p

2 (0)− ε
p

1 (0)
)

(34)

Notice those residual stresses must be plastically admissible:

−σ1y(0)=−σ0 ≤ ρ1(0)≤ σ1y(0)= σ0 (35)

−σy2 =−σ0 ≤ ρ2(0)≤ σy2 = σ0 (36)

The method of solution is the same as the one in the previous section.
The elastic domain is of course modified and Table 9 resumes the limiting values

of stresses with initial residual stresses.
The elastic zone is defined by the same conditions (17), (18), (19) but with the

apparition of the residual stresses:

(
σA − σT − ρ1(0)

)
(

1− 2A
σT

σy0

)

≥−σy0

(

1−A
σT

σy0

)(

1− 2B
σT

σy0

)

σA + σT − 2A

(
σT

σy0

)2

σy0 − 2ρ2(0)

(

1− 2A
σT

σy0

)

≤ 2σy0

(

1−A
σT

σy0

)

σA − ρ1(0)≤ σy0

We must notice that for certain values of the residual stresses some shakedown
domains disappear from the Bree diagram. More precisely, for ρ1(0) ≥ σy0

2 , the
domain (SD3) does not exist in the diagram, and for

ρ1(0)≤ A(−2+B)+B(1+ 2B)−B
√

9A2 + (1+ 2B)2 − 2A(5+ 2B)

4A(1+B)
σy0
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Table 10 Characteristics of
the bars Cross-section area S (m2) 1× 10−5

Length of the bar �1 (cm) 10

E0 (Pa) 2.1× 1011

ν 0.3

α (°C−1) 1.17× 10−5

σy0 (MPa) 200

λ (MPa) 320

λ2 (MPa) 0.2

then the domains (SD2) and (SD4) disappear. Furthermore, the presence of the ini-
tial plastic strains does not change the curves’s shapes which define the shakedown,
ratcheting and alternating plasticity zones. It only introduces additional constant
terms in the limiting values of stresses and in the plastic strains expressions.

It is important to underline that the residual stresses and residual strains are again
time-dependent when shakedown occurs.

7 Numerical Study

In this section, numerical results performed by incremental finite element procedure
are presented. Two numerical simulations are carried out over a number of load-
ing cycles by the software ABAQUS and stored separately: (i) full elastic-plastic
analysis under the thermo-mechanical path loading and (ii) purely elastic results
under the same loads. The status of the response (shakedown or ratcheting or al-
ternating plasticity) is numerically checked by observing the evolution of the plas-
tic strain tensor εp(t) in the whole structure and its cumulative value

∫ t

0 εp(s)ds.
Besides, the residual stress field ρ(t) is simply computed at Gauss-points by the
relation ρ(t) = σ (t) − σE(t) and the elastic residual strain field is obtained by
ηe(t)= ε(t)− εE(t)− εp(t).

Each bar is modeled by one truss/bar element T2D2T of uniform cross-section
bounded by two nodes. The geometric and mechanical characteristics of the trusses
are given in Table 10.

First, we were interested to reproduce numerically the Bree diagram plotted in
Fig. 3. To this end, several computations were carried out in the following manner:
one maintains constant the mechanical load F and increases gradually the ampli-
tude of the thermal load until the response changes the status. Graphically this cor-
responds to run within the Bree diagram in Fig. 3 along a vertical path. It is checked
that numerical bounds of different domains lie exactly on the analytical curves.

Figure 4 illustrates the time-evolution of the stress plastic strain field ε
p

1 in bar
�1 for shakedown (SD1) (F = 2000 N, �τ = 280 °C), reverse plasticity (P1) (F =
2000 N, �τ = 350 °C) and ratcheting (F = 4300 N, �τ = 150 °C). These diagrams
evolution are typical of the three mentioned classical asymptotic behaviors.
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Fig. 4 Evolution of the
plastic strains εP

1 in bar �1

Let us focus our attention now to the zones (SD4) and (P 2). Time-evolution of
the plastic strains in the bars for an arbitrary points in (DS4) domain (F = 2600 N,
�τ = 310 °C) and in P 2 (F = 2600 N, �τ = 335 °C) are reported in Fig. 5. It can
be observed that in (SD2) the plastic strains stabilize in both bars while in domain
(P 2) bar �1 adapts to the loads and the plastic strain in bar �2 is cyclic. Observe
also that in both cases, plastic strain ε

p

1 is generated before the middle of the first
cycle. This scenario was suggested in analytical analysis.

In Fig. 6, we display the time evolution of the elastic residual strain ηe of bar �1.
It is clear that this field is evolves cyclically with the same period as the one of the
loads even in the case of shakedown as it is found analytically.

Finally, it is worth noting that all numerical results presented in this section are
in an excellent agreement with the analytical ones.

Fig. 5 Plastic strain evolution: shakedown (SD4) (left) and alternating plasticity (P 2) (right)



Inelastic Behavior of a Two-Bar System with Temperature-Dependent Elastic 161

Fig. 6 Elastic residual strain
evolution

Fig. 7 Bree diagram of the
two-bar system when the
elastic modulus are constant

8 Discussion

Let us compare the Bree diagrams when the elastic properties are constant (Fig. 7)
and when they are temperature-dependent (Fig. 3). For the last case, two new do-
mains (SD2) and (P2) appear in the diagram. Further, the elastic and shakedown
domains are bigger when the Young modulus and the yield stress change with tem-
perature.

It is worth noting that depending on the coefficients A and B loss of the convex-
ity of the elastic and shakedown domains may by pronounced as shown in Fig. 8.
Recall that the convexity of yield function is the most important ingredient of the
mathematical theory of elastoplasticity. It is our belief that it should be interesting to
revisit the thermodynamic of continuum media with the assumption of temperature-
dependence of elastic modulus and examine the convexity of the elastic domain.

Besides we found that the residual stresses are time-dependent when shakedown
occurs. The explication of this fact is rather simple. In fact it is well known that the
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Fig. 8 Elastic domains (left) and shakedown zones (right) when the elastic modulus are constant
and when they are temperature-dependent

residual stresses are solution of the following problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

divρ = 0 in Ω

εr = gradS ur = S : ρ + εp in Ω

ρ · n= 0 on ΓT

ur = 0 on Γu

Thus, ρ is the solution of an elastic problem with initial strains equal to εp .
Therefore, ρ is linear with respect to εp . Following Zarka et al. [16], one may write
symbolically

ρ = Z0 : εp (37)

where the linear operator Z0 introduced by Zarka et al., is symmetric, non-positive
and generally singular. Furthermore, in our case, Z0 is temperature-dependent and
thus time-dependent. Consequently ρ is time-dependent even if εp is constant
(shakedown).

For the elastic residual strains, one does not dispose of theoretical arguments to
confirm if ηe is constant or not when shakedown occurs. However, inspiring from
the classical case and Eq. (9), Halphen has proposed a conjecture mentioned in Sec-
tion 1 that says a sufficient condition for shakedown is that ηe is time-independent.
Nevertheless, it is found analytically and numerically that this statement is not ful-
filled and ηe is periodic.

9 Conclusion

This chapter attempts to give insight into the asymptotic response of solids sub-
jected to cyclic thermomechanical loadings when the elastic properties vary with
temperature. An academic but instructive example of a two-bar truss has been stud-
ied analytically and numerically. We have shown that the structure converges always
to a periodic state (shakedown, alternating plasticity or ratcheting). Compared to the
classical case, the Bree diagram is considerably modified: (i) the elastic and shake-
down domains are bigger and (ii) new elastic and plastic shakedown appear (SD2
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and P2) when elastic properties vary with the temperature. Further, loss of convexity
of the elastic and shakedown domains may arise. The most important result is that
the residual stress and strain field are time-dependent and are periodic with the same
period as of the thermal load when shakedown occurs. It is also observed that for
this simple structure, analytical and numerical results are in an excellent agreement.
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A Multiphase Model for Assessing the Overall
Yield Strength of Soils Reinforced by Linear
Inclusions

Patrick de Buhan and Ghazi Hassen

Abstract Conceived as an extended homogenization procedure, a multiphase ap-
proach for ascertaining the macroscopic behavior of reinforced soil structures has
been developed in the last years. This contribution is dedicated to the evaluation of
the yield strength properties of soils reinforced by linear inclusions by making use
of a homogenization procedure, in which the reinforced soil is regarded as a peri-
odic composite, as a first calculation, and using the multiphase model. It appears
from such a calculation that only the multiphase model is able to capture scale and
boundary effects, which may play an important role in the yield design of reinforced
structures. The decisive element is the introduction of a parameter characterizing the
strength of the interaction between two continuous media (“phases”) representing
the soil and the reinforcing inclusions, respectively. A preliminary analysis suggests
that such a parameter varies in direct proportion to the inverse of a scale factor.

1 Introduction

A large range of soil reinforcement techniques used to improve soil structures stiff-
ness and strength consist in incorporating into the soil mass a distribution of uni-
directional inclusions made of steel or concrete. Beyond the differences as regards
the construction mode of such reinforced structures, they undeniably exhibit some
common futures which can be summarized as follows:

• The reinforcing inclusions usually take the form of linear structural elements
(metal or polymeric strips or bars, concrete piles, . . . ) incorporated into the soil
mass following a regular (periodic) arrangement and one or several preferential
orientations, in much the same way as for industrial fibre composite materials,
although at a quite different scale.
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• The mechanical properties of the reinforcing material are considerably higher
than those of the native soil: concrete or steel yield strength is 1000–10000 times
greater than that of a soft clay or a sand.
• The volume fraction of the reinforcing material is quite small, remaining in most

cases lower than few percents.

The strong heterogeneity of the composite reinforced soil associated with the
relatively high number of the reinforcing inclusions involved in such reinforcement
techniques, makes it very difficult to set up appropriate design-oriented calculation
methods in which the inclusions would be treated as individual elements embedded
in the soil. Indeed, a fully three dimensional analysis to take into account the cylin-
drical shape of the reinforcements and a locally refined mesh to capture with suf-
ficient accuracy the complex interaction between the soil and the inclusions would
be required. This would lead to oversized numerical problems and thus a time con-
suming calculation methods incompatible with an engineering design approach.

As an alternative approach to direct numerical simulations, the periodic homog-
enization technique [1, 2] appears to be a good alternative since the heterogeneous
composite material is replaced by a homogeneous anisotropic medium. Another
way to set up design methods for soil structures reinforced with linear inclusions
consists in the application of the multiphase model, which has been developed in
the last decade.

The objective of this paper is to point out the shortcomings of such a homoge-
nization procedure and to show how a multiphase approach, perceived as an exten-
sion of the homogenization concept, is able to capture “scale” as well as “boundary
effects”, which may have important consequences in the yield design of reinforced
soils structures.

2 Macroscopic Strength Condition of a Unidirectionally
Reinforced Soil

The determination of the macroscopic strength condition of a material reinforced by
one single family of parallel cylindrical inclusions could be performed by making
use of the homogenization theory for periodic media implemented in the context of
yield design (limit analysis). It relies upon the solution to a yield design boundary
value problem defined over the reinforced soil’s representative unit cell sketched in
Fig. 1 [1, 2].

Denoting by s the spacing between two neighboring inclusions, and by R and
t the radius and the thickness of the reinforcing inclusions, respectively, the rein-
forcement volume fraction is equal to the ratio between the inclusion and the unit
cell cross sectional areas:

η= 2πRt

s2
(1)
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Fig. 1 Representative unit cell of a soil reinforced by tubular inclusions

As regards most types of reinforced soil structures, the volume fraction η is very
small, rarely exceeding 5 %, whereas the strength of the reinforcing material is con-
siderably higher than that of the soil. This situation can be mathematically obtained
by making the volume fraction tend to zero while the product of this volume fraction
by the reinforcing material’s uniaxial yield strength σY

r is kept constant:

η→ 0 as ησ Y
r = σ0 = ct (2)

where σ0 may be interpreted as the tensile (compressive) resistance of the rein-
forcing inclusions per unit transverse area. Under such circumstances, it can be
shown [3] that, assuming perfect bonding at the interface between the inclusion
and the surrounding soil, the macroscopic strength condition of the reinforced soil
simply reduces to:

F(Σ)≤ 0 ⇔
{

Σ = σ s + σe1 ⊗ e1

f (σ s)≤ 0, |σ | ≤ σ0
(3)

where f (.) denotes the soil’s strength condition. The above simplified criterion
proves also valid for plane strain-loaded multilayered materials under the same
condition as (2) [4, 5]. For a purely cohesive soil (soft clay) characterized by a
cohesion or undrained shear strength equal to C, the macroscopic strength condi-
tion, expressed under plane strain conditions parallel to the reinforcement direction,
writes [2]:

F(Σ)≤ 0 ⇔ ΣM −Σm ≤ 2Chom(α) (4)

where ΣM (resp. Σm) is the major (resp. minor) principal stress and α its orientation
with respect to the reinforcement direction. The reinforced soil thus appears to be a
purely cohesive anisotropic medium, with its cohesion, represented in Fig. 2(b) in
the form of a polar diagram, varying from that of the native soil (C) for α =±45◦
to a maximum value equal to C + σ0/2 for α = 0◦, 90◦.



168 P. de Buhan and G. Hassen

Fig. 2 (a) Representative unit cell of reinforced soil. (b) Polar diagram for a unidirectionally
reinforced purely cohesive soil

Fig. 3 Compressive strength of a purely cohesive reinforced block: initial and auxiliary problems

3 A Partial Validation of the Homogenization Approach

The problem under consideration is that of a block of height H and half-width L,
subjected to a compression test in plane strain conditions in the Oxy-plane. This
block has been reinforced with regularly placed horizontal inclusions (Fig. 3) and
placed between two rigid planes in smooth contact with its upper and bottom sec-
tions. The upper plane is moving down and then applying a compressive loading Q

to the block whereas the lower plane is fixed. The two lateral sides are stress free.
According to the homogenization procedure, the composite material is modeled

as a homogeneous anisotropic purely cohesive medium for which the corresponding
yield function is expressed by (4). Referring to the lower bound static approach of
yield design for the above problem, a homogeneous stress field of the form:

Σ =Σ22e2 ⊗ e2 +Σ33e3 ⊗ e3, Σ22 ≤Σ33 ≤ 0 (5)
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Fig. 4 Results of elastoplastic simulation for ε = 0.15: (a) finite element mesh; (b) computed
load–displacement curve; (c) “at failure” stress distribution in the reinforcement

is considered, where the major principal stress is then equal to zero (Σ11 =ΣM = 0)

while the minimum (maximum compressive stress) is Σm =Σ22, so that α = 0. The
strength condition (4) may thus be written:

ΣM −Σm = 0−Σ22 ≤ 2Chom(α = 0◦
)= σ0 + 2C (6)

It follows immediately that a lower bound value to the compressive strength of the
reinforced block is:

Q+hom ≥ 4CL[1+ σ0/2C] (7)

which turns out to be the exact value upon applying the upper bound kinematic
approach.

The validity of such a procedure is now assessed by comparing the obtained
compressive strength (7) with a direct numerical simulation of the same problem,
where for the sake of simplicity, but without any loss of generality, the reinforced
soil is modeled as a multilayered material in which the reinforcements are treated
as 1D beam elements, equally spaced by a distance s throughout the block, so that
a “scale factor” defined by the spacing to half-width ratio, may be introduced:

ε = s/L (8)

Making use of the symmetry and the periodicity conditions, it could be easily
proved that the numerical simulation of the plane strain compression test could
be performed by solving the boundary value problem attached to a representative
“slice” of the reinforced block (Fig. 2). The corresponding limit loads Q+ have been
evaluated numerically by means of the finite element computer code PLAXIS [6].
As sketched in Fig. 4, the soil mass is discretized into 6-noded triangular elements
whereas the reinforcing inclusion is modeled as a beam. An elastoplastic calculation
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Fig. 5 Homogenization vs.
f.e.m. numerical simulations

is performed, until failure, for several values of the scale factor ε ranging between
0.05 and 0.5. It is worth noting that the computational time for each elastoplastic
calculation up to failure, represented by a load-displacement curve (Fig. 4(b)), does
not exceed one minute on any standard PC.

Figure 4(c) displays the uniaxial stress distribution in the inclusion at failure
and the corresponding distribution predicted by the homogenization theory. This
comparison shows a perfect agreement of the results obtained by both methods in
the central part of the reinforced structure. However, the f.e.m. and homogenization
results strongly diverge when approaching the lateral sides of the block.

The variation of the non-dimensional parameter Q+/4CL as a function of the
scale factor is represented in Fig. 5. The comparison between the numerical and ho-
mogenization method results clearly shows that the latter fails to capture the “scale
effect” due to the variation of the scale factor. Indeed, the f.e.m numerical results
converge to that predicted by the homogenization method as the scale factor tends
to zero:

lim
ε→0

Q+(ε)=Q+hom (9)

thus confirming the well known convergence result of the homogenization approach,
but the latter may significantly overestimate the actual value of the compressive re-
sistance if the scale factor is not sufficiently small. Such a “scale effect” is obviously
of no consequence as far as industrial composite materials are concerned (leaving
aside purely local effects associated with brittle failure, such as delamination phe-
nomena), but remains a relevant question for reinforced soils, since the scale factor
is generally of the order of 0.1–0.3 for this kind of composite material.

4 Multiphase Model as an Extended Homogenization Method

An extension of the classical periodic homogenization method, namely the multi-
phase model, has been proposed in the last decade, allowing to assess the macro-
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Fig. 6 Principle of the multiphase model for reinforced soils

scopic behavior of reinforced soil structures taking “scale” as well as “boundary”
effects into account.

The intuitive idea of the multiphase model is to homogenize separately the soil
on the one hand and the array of reinforcing inclusions, on the other hand. The thus
obtained interacting continuous media, called the “matrix” and the “reinforcement”
phases, are given two different kinematics, namely a velocity field Us for the ma-
trix, representing the soil mass, and Ur for the reinforcement phase (Fig. 6). The
multiphase model could be derived from the virtual work method (see [7] for more
details) and leads to the decomposition of the macroscopic total stress Σ as a sum
of the “partial” stresses relating to the soil and the reinforcement.

A more detailed presentation of the multiphase model may be found in [7] or
[8], in the context of an elastic behavior of the different constituents. The general
governing equations of the model, will now be presented in the context of the yield
design theory.

The equilibrium equations are written for each phase separately, that is in the
absence of any external body force, as:

divσ s + Ie1 = 0 (10)

for the matrix phase, representing the soil, and:

div(σe1 ⊗ e1)− Ie1 = 0 (11)

for the reinforcement phase, where I denotes the interaction body force density.
These equations are completed by stress conditions defined on the boundary surface
of each phase independently. Referring to a yield design boundary problem for any
such two-phase system, it is necessary to specify the strength condition at any point
of each phase, namely:

f
(
σ s
)≤ 0 and |σ | ≤ σ0 (12)

for the individual phases, along with an interaction strength condition of the form:

|I | ≤ I0 (13)
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In the situation of “perfect bonding”, characterized by the fact that the interaction
strength parameter I0 takes an infinite value, it is quite apparent from summing up
Eqs. (10) and (11), and thus eliminating the interaction force density, that the yield
design homogenization method is recovered.

The stability analysis of a block of reinforced soil, previously considered in the
light of the homogenization method, is now revisited within the context of the mul-
tiphase model. The compressive strength of the reinforced block is thus defined as
the maximum value of Q for which it is possible to exhibit a couple of stress fields,
σ s in the matrix phase and σ in the reinforcement phase, along with an interaction
force density I , satisfying both the equilibrium equations (10) and (11) along with
the boundary conditions specified for each phase independently, and the respective
strength conditions (12) and (13).

It is to be noted that the strength properties of the multiphase system depend on
the strength properties of the different constituents: the soil’s cohesion C for the ma-
trix and the reinforcement uniaxial strength density σ0 for the reinforcement phase,
whereas the interaction strength parameter I0 depends on several parameters and
could be determined through a numerical procedure which is presented in Sect. 5.

The kinematic approach of yield design is based on the “dualization” of the equi-
librium equations of the multiphase system by making use of the virtual work prin-
ciple. Denoting by {Û s

, Û
r} any virtual velocity field, kinematically admissible for

the boundary value problem, this principle writes:

We

(
Us,Ur

)=Wi

(
Us,Ur

)
(14)

where We (resp. Wi ) represents the virtual work of external (resp. internal) efforts
for the two-phase system. It is worth noting that the interaction body force density
I exerted on the matrix phase must be considered as an external effort for the latter
but, as regards the multiphase system as a whole, this volume density is an internal
effort since it corresponds to an interaction between two subsystems (matrix and
reinforcement phases) of the reinforced volume Ω .

In the case of a loading depending on n parameters, the virtual work of external
forces writes:

We

(
Us,Ur

)=
∫

∂Ω

(
T s.Us + T r .Ur

)
dS =Q.q̇ (15)

where Q is the vector of the loading parameters (compressive resultant force in the
above problem) and q̇ the associated kinematic parameters (vertical velocity of the
reinforced block upper section).

On the other hand, the virtual work of internal forces is equal to the sum of the
contribution of each phase and the interaction prevailing between them:

Wi

(
Us,Ur

)=
∫

Ω

(
σ s : ds + σd + I�̇

)
dΩ (16)
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where ds , d and �̇ are the strain rate variables, defined as:

ds = 1

2

(
gradUs + T gradUs

)
, d = ∂Û r

1

∂x1
, �̇= Û r

1 − Û s
1 (17)

The maximum resisting work defined as the maximum of the work of internal
efforts, satisfying the strength conditions (12) and (13), in the virtual velocity field
{Û s

, Û
r}:

Wmr

(
Us,Ur

)=
∫

Ω

(
πs
(
ds
)+ πr(d)+ πI (�̇)

)
dΩ (18)

where πm,πr and πI denote the support functions of the matrix, the reinforcement
phase and the interaction, respectively:

πs(ds)= sup
{
σ s : ds;f (σ s

)≤ 0
}

πr(d)= sup
{
σd; |σ | ≤ σ0

}
(19)

πI (�̇)= sup
{
I�̇; |I | ≤ I0

}

Combining the virtual work principle (14) and (15) with the definition of the
maximum resisting work given by Eqs. (18) and (19), the necessary condition of
stability may be written:

∀{Us,Ur
}
K.A., Q.q̇ ≤Wmr

(
Us,Ur

)
(20)

4.1 Lower Bound Static Approach

The lower bound static approach is implemented by making use of the following
stress field in the reinforced block modeled as a two-phase system:

σ = σ(x1) with σ(x1 =±L)= 0 (21)

for the reinforcement phase,

⎧
⎪⎨

⎪⎩

σ s
11(x1)=−σ(x1)

σ s
22(x1)= σ s

33(x1)=−2C − σ(x1)

σ s
ij = 0 if i �= j

(22)

for the matrix phase, and

I = dσ

dx1
= σ ′(x1) (23)

for the interaction.
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Fig. 7 Stress distribution in
the reinforcement phase
(χ ≤ 1)

It can be easily shown that this stress field complies with the equilibrium equa-
tions (10) and (11), along with the strength conditions (12) and (13). The corre-
sponding compressive force in equilibrium with such a stress field is given by:

Q=−
∫ L

−L

σ s
22(x1)dx1 = 4CL+

∫ L

−L

σ(x1) dx1 (24)

The optimal (i.e. maximum) value of this compressive force depends on the rela-
tive importance of the reinforcement phase uniaxial strength density with respect to
the interaction strength parameter. Introducing the non dimensional parameter:

χ = I0L

σ0
(25)

the following two different cases, depending on the value of χ , are considered:

• χ ≤ 1 (I0L ≤ σ0). The interaction force density I is chosen so as to be equal
to the corresponding strength I0. Combining Eqs. (21), (22) and (23), it comes
out that the internal efforts in the multiphase system are of the following form
(Fig. 7):

{
σ(x1)=−σ s

11(x1)= 2C − σ s
22(x1)= I0(L− |x1|)

|I | = I0
(26)

which comply with the equilibrium and the strength conditions. It follows that:

Q+mult. ≥ 4CL+ I0L
2 (27)

• χ ≥ 1 (I0L ≥ σ0). The generalized stress field defined on the reinforced block
given by (Fig. 8):

σ(x1)=−σ s
11(x1)= 2C − σ s

22(x1)=Min
{
I0(L− x1);σ0

}
(28)

which complies with the above equilibrium and strength requirements, leading to
the following lower bound for the reinforced block compressive resistance:

Q+mult. ≥ 4CL+ 2σ0L

[

1− σ0

2I0L

]

(29)
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Fig. 8 Stress distribution in
the reinforcement phase
(χ ≥ 1)

4.2 Upper Bound Kinematic Approach

The upper bound kinematic approach is implemented by considering the following
virtual velocity field defined for each phase separately:

Û
s = U

H
(x1e1 − x2e2) (30)

for the matrix phase, and

Û
r =

⎧
⎪⎪⎨

⎪⎪⎩

−U
H

x2e2 if χ ≤ 1
{

U
H

(x1e1 − x2e2) |x1| ≤ L(1− χ−1)

U
H

(L(1− χ−1)e1 − x2e2) |x1| ≥ L(1− χ−1)
if χ ≥ 1

(31)

for the reinforcement phase.
The calculation of the maximum resisting work leads to the following expression:

Wmr

(
Û

s
, Û

r)= 4CLU +
{

I0L
2U if σ0 ≥ I0L

2σ0LU [1− σ0
2I0L
] if σ0 ≤ I0L

(32)

On the other hand, the work of the external forces in the considered mechanism
is equal to the product of the applied effort Q by the corresponding velocity U of
the upper section of the block. The upper bound kinematic approach of yield design
finally leads to the following upper bound value for

Q+mult. ≤ 4CL+
{

I0L
2 if σ0 ≥ I0L

2σ0L[1− σ0
2I0L
] if σ0 ≤ I0L

(33)

hence the exact value of the compressive resistance predicted by the multiphase
model.

It can be observed that in the situation of perfect bonding the above expressions
reduce to that derived from the homogenization approach:

Q+mult.(χ→∞)=Q+hom = 4CL[1+ σ0/2C] (34)
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Fig. 9 Identification procedure for the interaction strength parameters (σ0 = 4C)

5 Identification of the Interaction Strength Parameter

The curve sketched on the right-hand side of Fig. 9 represents the results of the
multiphase approach expressed in terms of variation of the non dimensional com-
pressive resistance Q+/4CL as a function of the parameter χ , for σ0 = 4C. On the
left-hand side of the same figure, are reported the results of the f.e.m.-based numer-
ical simulations performed by using Plaxis, expressed in terms of the variation of
Q+/4CL as a function of the scale factor ε.

Starting from these representations, the relationship between the scale factor ε

and the parameter χ can be established. The first step of this procedure consists in
representing the evolution of χ(ε) which could be then approximated by an analyti-
cal expression (Fig. 10). It appears that the obtained series of points is best fitted by
an analytical curve which obeys the following approximate equation:

χ ∼= 0.4ε−1 (35)

which means that χ , and hence the interaction strength parameter I0, is inversely
proportional to the scale factor. It is important to notice that the coefficient of pro-
portionality (equal to 0.4 in the present case), and then the interaction strength
parameter I0, can therefore be determined from one single numerical simulation.
A more thorough and detailed analysis (which is beyond the scope of the present
paper) would certainly show that this coefficient of proportionality depends on the
soil’s cohesion, since no failure is considered at the soil-inclusion interface at the
microscopic scale.

The combination of the relationships (33) and (35) finally leads to the following
expression of the compressive strength as a function of the scale factor:

Q+mult.

4CL
= Q+num.

4CL
=
{

3− 2.5ε if ε ≤ 0.4

1+ 0.4/ε if ε ≥ 0.4
(36)

This prediction, obtained from the application of the multiphase approach in the
field of yield design, tends to the results of the homogenization approach for very
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Fig. 10 Identification of the interaction strength parameter and comparison between the numerical
results and the multiphase model-based predictions

small values of ε and appears to linearly decrease down to a value of the scale factor
equal to 0.4 (Fig. 10).

6 Concluding Remarks

It has been shown in this contribution that the multiphase model, developed in the
context of yield design, is not subject to the limitations of the classical periodic ho-
mogenization method, since it allows to capture scale and boundary effects, which
may play a decisive role in the reinforced-soil structures design. This is achieved
through the introduction of a matrix-reinforcement interaction strength parameter,
accounting, at the macroscopic scale, for a possible slippage between the reinforc-
ing inclusion and the surrounding ground. Such a parameter could be identified,
as shown in Sect. 5, through one f.e.m.-based elastoplastic calculation performed
on a unit cell. The homogenization results could be recovered as a particular case
of the multiphase approach, when the interaction strength parameter I0 tends to
infinity (perfect bonding assumption), which corresponds to a vanishing scale fac-
tor ε.

It is worth noting that a limited interaction strength between phases, at the macro-
scopic scale, should be taken into account even in the case of perfect bonding at the
microscopic scale, that is unlimited strength, at the soil-inclusion interface, thus
assuming that the soil is perfectly adherent to the reinforcement.

From an engineering design and optimization viewpoint, the multiphase model
is a robust tool, combining the decisive advantages of the classical homogenization
method with its ability to capture scale and boundary effects, in order to analyse
the stability of reinforced soil structures, as illustrated in [9] for reinforced earth
retaining walls.
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Limit Analysis of a Soil Reinforced by Micropile
Group: A Decomposition Approach

Z. Kammoun, J. Pastor, and H. Smaoui

Abstract The behavior of soils reinforced by micropile networks is still not fully
understood due to the lack of accurate modelling capabilities. Particularly, the com-
plex geometry of large soil-micropile systems makes accurate calculation of the
bearing capacity of the reinforced soil a computational challenge. This complexity
requires highly detailed and finely discretized models to achieve reasonable accu-
racy using direct numerical methods. Such models lead to large scale numerical
optimization problems that are hardly tractable using a personal computer.

Recently a decomposition strategy with domain overlap has proved successful in
solving very large kinematic and static limit analysis problems with limited com-
puting resources. It consists of splitting the original problem into limit analysis sub-
problems that are smaller in size.

The present paper reports enhancements made to the original decomposition
method. In particular, the method is made capable of solving the classical punch
problem with Tresca or Coulomb soils. This benchmark problem is considered as a
limit case of a soil reinforced by micropiles.

The paper then describes the application of the decomposition method to deter-
mine rigorous kinematic and static bounds to the bearing capacity of a soil rein-
forced by a micropile group according to a 2D plane strain model.

1 Introduction

A micropile is a pile with a diameter no greater than 250 mm, generally in the range
75 to 200 mm, usually with an aspect ratio of 200. Micropile technique was initially
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developed by the Fondedile company under the authority of F. Lizzi [5] as early as
1952. Micropiles were used for the first time in Italy in soil reinforcement of existing
buildings and were then named root piles (pali radice). Within the timeframe of half
a century, the technique has been applied all over the world [2].

The ease of their execution makes micropiles suitable for foundation works be-
neath existing buildings. Landmark examples are the Orsay railway station works
for the development of a museum, “la Maladière” stadium in Neuchâtel in Switzer-
land (1100 micropiles) and the international airport of Boston (800 micropiles).

The complex geometry of large soil-micropile systems makes accurate calcula-
tion of the bearing capacity of the reinforced soil difficult because of the large size
of the associated finite element model. As a strategy to handle problem sizes beyond
available machine capacities, it is common to split the original problem into limit
analysis (LA) subproblems that are smaller in size or simpler to solve.

In the present paper, the decomposition method, proposed in [7] and [8] in the
framework of mixed kinematic limit analysis and extended in [3] and [4] to the static
limit analysis problem, is adapted and applied to determine upper and lower bounds
for the bearing capacity of micropile groups. The paper begins with a brief presenta-
tion of limit analysis followed by a description of the decomposition method. Next,
the decomposition is applied to the punch problem (with Tresca or Coulomb soil),
a representation of Prandtl’s classical problem with finite domain. This benchmark
example is considered here for (i) being a simple problem for which the solution
is known a priori, (ii) being interpretable as a limit case of a soil reinforced by mi-
cropiles, that is the case with no reinforcement, (iii) exhibiting a feature that has not
been tested so far in decomposition, that is the absence of a loaded zone in some
subproblems.

Finally, the decomposition is exploited in the calculation of lower and upper
bounds for the bearing capacity of examples of micropile groups.

2 Succinct Presentation of Limit Analysis

For the sake of clarity, without any loss in generality, we consider here that the
velocity fields are continuous.

According to Salençon [9], a stress tensor field σ is said to be admissible if it
is both statically admissible (SA, i.e., equilibrium equations, stress vector continu-
ity, and stress boundary conditions are verified) and plastically admissible (PA, i.e.,
f (σ )≤ 0, where f (σ ) is the (convex) plasticity criterion of the material). Similarly,
a strain rate tensor field v is admissible if it is kinematically admissible (KA, i.e.,
derived from a piecewise continuous velocity vector field u, with bounded discon-
tinuities [u], such that the velocity boundary conditions are verified) and plastically
admissible (PA, i.e., the associated flow rules (2a), (2b) are verified).

A solution to the LA problem is a pair of fields (σ, v) where σ and v are both
admissible and associated by the normality law. Classically, these solutions can be
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found or approached using two methods. The first one, involving only the stresses
as variables, is the statical (or lower bound) method. The second one, involving only
the displacement velocities as variables, is the classical kinematic (or upper bound)
method.

2.1 The Kinematic Method

Let us assume, as in [9], that the virtual power rate of the external loads Pext can be
written as the scalar product of a loading vector Q, whose components are called
here loading parameters; and a generalized velocity vector q = q(u), the compo-
nents of which are called kinematic parameters. Following [1], let us consider a KA
virtual velocity field u; the virtual power principle (VPP) states that the stress ten-
sor fields σ , the stress vector field T (on the velocity discontinuity surfaces), and
the vector Q are in equilibrium if, for any KA u, the following variational equation
holds:

Pext =Q · q(u)=
∫

V

σ : v dV +
∫

Sd

T · [u]dS. (1)

In (1), V is the volume of the mechanical system, and Sd is the union of the
velocity discontinuity surfaces. The results in terms of Q will be interpreted as a
kinematic bound if, at the appropriate points of V , the variables verify the following
conditions, where u is KA and qd is a fixed value of q(u):

v = λ
∂f

∂σ
, λf (σ )= 0, λ≥ 0, f (σ )≤ 0; (2a)

[u] = ξ
∂fnt

∂T
, ξfnt (T )= 0, ξ ≥ 0, fnt (T )≤ 0; (2b)

q(u)= qd. (2c)

The criterion fnt (T ) results from the projection of the plasticity criterion f (σ ) on
the Mohr plane, where n is the normal to the element of the velocity discontinu-
ity surface and T = (σnn, σnt ) is the stress vector on this element. More precisely,
fnt (T ) is the solution of the following system:

f (σnn, σtt , σnt )= 0; ∂f

∂σtt

= 0. (3)

It is worth noting that, if (2a) and (2b) are verified, the quantities σ : v and T · [u]
become the convex unit dissipated powers πV (v) and πd([u]) of LA, respectively,
i.e.:

πV (v)= σ : v; πd

([u])= T · [u]. (4)
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Fig. 1 The punch problem

2.2 The Statical Method

The set of admissible loadings Q =Q(σ), i.e. which are linearly associated with
SA stress fields σ , forms a convex K in R

n and the n components of Q are called
loading parameters.

Finding the solution of the static LA problem consists in finding an admissible
field σ at the boundary ∂K of K by solving the following optimization problem

Qlim =
(
Qd

1 , . . . , λ0Q
d
i , . . . ,Qd

n

)
(5a)

λ0 =max
{
λ,Q(σ)= (Qd

1 , . . . , λQd
i , . . . ,Qd

n

)}
(5b)

where σ is an admissible stress field and Qd a given admissible loading. This is the
static, or lower bound method of LA that will be used here.

3 Decomposition of the LA Problem

3.1 The Kinematic Problem

For ease of presentation the decomposition of the kinematic problem is illustrated
by applying it to the punch problem (Fig. 1).

A rigid plate, of width b supported by a soil, undergoes a downward motion with
a uniform vertical velocity U0 caused by a vertical force F applied at its center.
Taking symmetry into account, only the left half of the plate, denoted V , is modeled.
The domain V is meshed into 8 × 2 rectangles divided each into four triangles
(Fig. 2). In the sequel, this mesh will be referred to as the target mesh (the mesh
size will be defined by the number of its rectangular cells). The material of the soil
is homogeneous, isotropic and is governed by the von Mises (or Tresca) criterion
with cohesion c or by Coulomb’s law with cohesion c and a friction angle ϕ. At
the soil-plate interface, perfect bonding is assumed. This translates into kinematic
boundary conditions in the soil given by prescribed vertical velocities equal to U0
and zero tangential velocities. The static boundary conditions in the soil in contact
with the plate are defined by unrestricted tangential stresses and by a normal stress
resultant equal to the applied load F .
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Fig. 2 Target mesh for
domain V

The limit analysis problem associated with the load F applied to the soil domain
V , discretized according to the target mesh, will be called the target problem and
denoted P . It is defined by a unique loading parameter Q= F

bc
associated with the

kinematic parameter qd =U0.

3.1.1 The Starting Problem

The decomposition procedure is initiated by solving a preliminary problem P0,
called the starting problem, which is small enough in size to be solvable using the
available solution means. This problem is considered exclusively in the first iteration
to provide an initial admissible velocity field for problem P .

A convenient choice for problem P0 consists in replacing the target mesh by a
coarser mesh made of a quarter (4× 1) of the target number of rectangular cells, as
shown in Fig. 3.

The solution of the starting problem provides an estimate of the velocities uA

and uC at nodes A and C, respectively. The velocity uB at B is deduced by linear
interpolation. These three velocities are collected to form a vector U11 to be used in
writing the boundary conditions for the subproblems in Step 2.

3.1.2 The Second Step

In Step 2 of the first iteration, the domain V is partitioned into 2 sub-domains,
denoted V2i (i = 1,2), bounded by the interface ABC (Fig. 3). To each sub-
domain V2i , meshed into 4 cells, is associated an independent limit analysis sub-
problem denoted P2i . The functional to be minimized in each of these subproblems
is the power dissipated within the corresponding subdomain. The assembly of the
optimal subproblem solutions gives an admissible solution for the target problem P

over the complete domain V . Therefore, the sum of the subproblem powers can be
set equal to FU0. At this Step, the dissipated power is less than or equal to that of the
starting problem. For the solution process to proceed from one iteration to another,
the velocities (U11) at the interface need to be updated. It should be noted that, in
subsequent iterations, Step 2 will be repeated in the same way as presented above.
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Fig. 3 Decomposition flow diagram

3.1.3 The Iterative Process

In subsequent iterations, the aim of the first step, labeled Step 1, is to improve the
values of the velocities at the interface. For this purpose, the domain V is parti-
tioned, without change in the discretization, into different sets of subdomains, de-
noted V1i (Fig. 3), such that the interfaces between subdomains V2i lie in the interior
of subdomains V1i . In an analogous way to Step 2, to each set V1i is associated a LA
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Fig. 4 The two partitions of
the punch problem

subproblem P1i . The velocities U2i (i = 1,2) imposed at the interfaces are provided
from the preceding step. The interface in Step 2 being in the interior of subdomain
V12, solving subproblem P12 allows the interface velocities to evolve. From the sec-
ond iteration onward, all iterations are similar. The iterative process terminates when
the progress in the solution from one iteration to another becomes small.

3.1.4 Partition into Many Subdomains

In general, the domain is partitioned into as many sub-domains as needed to bring
the sub-problem down to a desired size. For instance, in the next section the decom-
position is applied to the punch problem using a five sub-domain partition in Step 1
(Fig. 4).

For the first Step of the second and following iterations, solving only the three
subproblems P12, P13 and P14 is sufficient for updating the interface velocities pre-
viously blocked during Step 2.

3.2 Decomposition of the Static Problem

Using the punch problem again as an example, with a single loading parameter
Q = F

b c
associated with the kinematic parameter qd = U0, the decomposition of

the static problem proceeds in a manner basically similar to the decomposition of
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Fig. 5 Geometric data for
the punch problem

the kinematic problem. In the first iteration, a starting problem P0 is constructed.
The domain V0 associated to problem P0 is discretized into four times fewer finite
elements than the target problem domain V . As shown in Fig. 4, the domain V

is partitioned alternatively into four sub-domains denoted V2i or five sub-domains
denoted V1i . Solving problem P0 constitutes the first step in this first iteration. The
solution of problem P0 provides a statically admissible first approximation of the
stress field, including at the interfaces between sub-domains V2i , as well as a lower
bound for the limit load.

In the second step of the present iteration, stress components at the interfaces,
obtained from the solution of problem P0, are collected into so called interface
stress vectors T1j . The latter will serve in defining the boundary conditions for sub-
problems (P2i ).

To cause changes in the stress field when solving these sub-problems, an alter-
native sub-problem formulation definition is proposed as follows. For each of sub-
problems (P21) to (P23), the cohesion is treated as a variable parameter and solving
problem P2i consists in minimizing the corresponding cohesion subject to static ad-
missibility constraints. This leads to solutions that are plastically admissible with
maximal strength reserve. The solution of problem (P24) provides the load resulting
from the sub-problems of Step 1. The above process is repeated in the subsequent
steps while alternating the domain partitions V1i and V2i .

4 Numerical Results for the Punch Problem

To assess the performance of the decomposition approach in solving the kinematic
problem, the punch problem is solved using the data given in Fig. 5. For a Tresca
soil with cohesion c the exact solution should be identical to that of a punch over
a semi-infinite medium, known to be F/(bc) = π + 2. This is because Prandtl’s
mechanism, which corresponds to the exact solution of the semi-infinite soil, can be
fitted in the selected volume. This allows comparison of results to a known exact
solution.
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Table 1 Kinematic bound F
b c

for the punch problem with a Tresca soil

Mesh Number of
elements

Direct Decomp. (1 iter.)

F/(bc) Accuracy CPU(s) F/(bc) Accuracy CPU(s)

40× 18 2880 5.1787 3.5× 10−7 578 5.2681 3.6× 10−7 15

80× 36 11520 5.1607 4.4× 10−7 3595 5.1629 4.6× 10−7 1985

160× 72 46080 5.1519 7.1× 10−7 38211 5.1526 5.5× 10−7 21912

320× 144 184320 — — — 5.1476 3.8× 10−7 184550

Fig. 6 Velocity field in the punched soil. First iteration of the decomposition

4.1 Kinematic Solution

Upper bounds for the punch problem are determined based on different levels of
discretization and using both the direct approach and a single iteration of the decom-
position method for solving the kinematic problem. The decomposition is applied
based on the domain partitions shown in Fig. 4.

The numerical optimization problems arising from the limit analysis (sub)prob-
lems involved in the present example, as well as all subsequent examples treated in
this paper, are all solved using the conic programming code MOSEK [6] and run on
a Mac Pro 3 GHz machine with 12 Gb of RAM.

Table 1 shows the upper bounds obtained for the punch problem based on various
discretizations. In a first series of runs the soil is characterized by a Tresca criterion
with cohesion c = 1. For large mesh size (184 320 elements), the problem can only
be solved using decomposition, giving the upper bound 5.1476 and a relative error
of 0.12 % with respect to the exact solution.

The velocity field resulting from the first iteration is visualized in Fig. 6 for an
80× 36 mesh (Tresca, c = 1). The failure mechanism can be clearly seen, with the
velocities gradually decreasing downward until they vanish at the substrate. Consid-
ering a soil governed by a Coulomb criterion with the same cohesion c = 1 and a
friction angle ϕ, the upper bound is determined for various friction angles, based on
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Table 2 Kinematic bound
F
b c

for the punch problem
(Coulomb soil, 11520
elements)

ϕ (°) Decomp. it1 Direct Relative err.

0 5.1628 5.1607 0.04 %

5 6.5075 6.5062 0.02 %

10 8.3773 8.3752 0.03 %

15 11.0497 11.043 0.06 %

20 15.1819 15.1621 0.13 %

25 22.3637 22.3236 0.18 %

30 36.6335 36.5231 0.30 %

Fig. 7 Decomposition
iteration history

an 80× 36 mesh (11 520 finite elements). Table 2 shows the upper bounds obtained
using direct problem solution and using a single iteration of the decomposition for
different values of the friction angle. The relative error of the decomposition result
with respect to the direct solution is less than 0.3 %.

The iteration history displayed in Fig. 7 for the Tresca soil shows that a few
iterations are needed to converge to the target value known from the direct solution.

4.2 Static Solution

The static problem is solved to determine lower bounds for the punch problem
with a Tresca soil. Different mesh sizes are considered. Calculations are carried
out by solving the problem both directly and using one iteration of the decomposi-
tion method based on the same domain partitions as in the kinematic case (Fig. 4).
All (sub)problems are solved using the MOSEK code run on the Mac Pro 3 GHz
machine.

Post analysis verification of constraint violation shows that accuracy of the solu-
tion varies from 10−9 for a 1600 element to 10−5 for a 102400 element mesh. With
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Table 3 Static bound F/bc for punch problem (Tresca soil)

Mesh Number of elem. Decomp. it1 Direct Error/direct Error/theoretical

40× 10 1600 5.0989 5.1094 0.21 % 0.83 %

80× 20 6400 5.1185 5.1236 0.1 % 0.45 %

160× 40 25600 5.1277 5.1329 0.1 % 0.27 %

360× 80 102400 5.1358 5.1372 0.03 % 0.11 %

720× 160 409600 5.1387 — — 0.06 %

Fig. 8 Visualization of failure zones in the soil

a 409600 element discretization, the direct solution appears to be impossible using
the same machine with 12 Gb of RAM.

For this run, the decomposition result is within 0.06 % of the theoretical solution
(Table 3). For the 80× 40 mesh, the decomposition is exceptionally carried out up
to the 18th iteration and the evolution of the failure zone throughout the iterations
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Table 4 Static bounds
(F/(b c)) for the punch
problem (Tresca and
Coulomb)

ϕ (°) Initial Decomp. it1 Direct

0 5.125 5.128 5.133

5 6.462 6.467 6.468

10 8.304 8.308 8.316

15 10.910 10.920 10.928

20 14.884 14.903 14.934

25 21.710 21.759 21.867

30 34.920 35.094 35.402

is visualized in Figs. 8 ((a)–(g)). These figures show the zones where the failure
criterion lies in the narrow range −0.005 to 0. A Prandtl like mechanism is clearly
exhibited as early as the first iteration except in the neighborhood of the interface.
The disturbance in the stress field near the interface is seen to gradually diminish
and eventually vanish. Next, a Coulomb soil is considered and a series of problems
are solved with the same 80×40 mesh and different values of friction angle. Table 4
displays the static bounds for the Tresca and Coulomb criteria with cohesion c = 1
and friction angle ϕ varying from 5 to 30.

It is noted that, as observed with the Tresca criterion, a large improvement in the
bound is achieved at the first iteration for all the tested friction angles.

The iteration history of the lower bound is plotted in Fig. 9 for the Tresca soil
based on an 80× 40 mesh. It shows that a few iterations only are needed to closely
approach the target solution.

5 Bearing Capacity of Micropile Groups

5.1 Problem Description

The problem addressed in this work is that of a soil, bounded below by a substrate
at depth H , to be reinforced by a group of micropiles, as shown in Fig. 10, with the
purpose of supporting a load F . In the two dimensional representation adopted here
the problem is interpreted as a plane strain one.

The numerical limit analysis (sub)problems are all solved using the same MOSEK

code and Mac Pro machine as in the punch problem example.

5.2 Soil Reinforced with 9 Micropiles

Let us consider the following example of a soil reinforced with 9 micropiles. The
soil is characterized by a Coulomb criterion with a cohesion of 10 kPa and friction
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Fig. 9 Iteration history for
the Tresca criterion

Fig. 10 Soil reinforced by a
micropile group

Table 5 Geometric data of
the reinforced soil (in meters) H h B d Number of micropiles

10 5 24 0.1 9

angle ϕ = 10◦. It is reinforced with micropiles characterized by a Tresca material
with a cohesion of 10 MPa.

The geometry of the problem is summarized in Table 5.
It should be noted that the total load applied to the base is equal to F . Since

the problem is symmetric, only half of the domain is modeled and the load to be
maximized is reduced to F

2 .
Table 6 shows the solutions obtained for different spacings between micropiles

(e in Fig. 10) using the direct approach and the decomposition limited to the first
iteration.

For meshes composed of more than 80.000 triangles for the static approach and
20.000 triangles for the kinematic approach, the MOSEK code fails to give fully
optimal and admissible post-analyzed solutions. Beyond this limit, decomposition
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Table 6 Soil reinforced with 9 micropiles

Spacing (m) Mesh F
2 (kN) Accuracy CPU (s) Relative gap (%)

0.9 direct static 480× 30 482.21 1.6× 10−7 106 39.69

kinem. 480× 10 673.58 0.004 188

decomp. static 960× 60 486.23 3.4× 10−5 780 16.33

kinem. 480× 40 565.64 7.2× 10−5 2227

0.7 direct static 480× 30 398.75 8.8× 10−8 119 49.02

kinem. 480× 10 594.20 7.9× 10−5 203

decomp. static 960× 60 403.27 1.6× 10−4 1043 20.46

kinem. 480× 40 485.79 9.3× 10−4 2637

0.5 direct static 480× 30 322.39 5.4× 10−8 131 41.34

kinem. 480× 10 455.68 9.2× 10−4 207

decomp. static 960× 60 325.56 4.5× 10−5 980 16.98

kinem. 480× 40 380.84 5.2× 10−5 1672

0.3 direct static 480× 30 247.13 1.8× 10−8 99 31.17

kinem. 480× 10 324.15 7.1× 10−6 99

decomp. static 960× 60 249.32 3.4× 10−5 757 11.51

kinem. 480× 40 278.01 2.7× 10−5 1474

Fig. 11 Bounds for direct
approach and decomposition

using 4-sub-domain partitions still converges using up to 300.000 triangles for the
static approach and 80.000 triangles for the kinematic approach.

Decomposition has made possible a reduction by half of the gap between the
upper and the lower bounds relative to the static bound with some improvement in
the quality of the kinematic solution.

Figure 11 shows that the gap between static and kinematic bounds increases with
spacing between micropiles.

Visualization of the failure zone (failure criterion) shows that the failure mech-
anism varies with spacing. For small spacing (Fig. 13), the failure zone in the soil
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Fig. 12 Failure zone for 0.9 m spacing

Fig. 13 Failure zone for 0.3 m spacing

is limited to the lower third of the reinforced zone, whereas for a 0.9 m spacing
(Fig. 12), the failure zone covers two thirds of the depth of the reinforced zone.

5.3 Soil Reinforced by 17 Micropiles

In this example a Tresca soil with cohesion c = 10 kPa is reinforced with 17 mi-
cropiles made out of a Tresca material with cohesion c = 5000 kPa. The geometric
data of the problem are given in Table 7.

Consider target problems modeled with an 800×16 mesh for the static approach
and an 800× 24 mesh for the kinematic approach. The solutions of all subproblems
of the first iteration of the decomposition algorithm are reported in Table 8. In the
static problem, the sub-problems (P21), (P22) and (P23) need not be treated if the
process is to be terminated at the first iteration. Their actual involvement in the
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Table 7 Geometric data for a
soil reinforced with 17
micropiles

H h B d e

20 15 80 0.2 0.8

Table 8 Bounds for bearing capacity of soil reinforced with 17 micropiles (Coarse discretization)

Sub-probl. Q= F
2 (kN) Accuracy CPU (s)

Stat. kinem. Stat. kinem. Stat. kinem.

0 736.2 1142.8 1.0× 10−6 2.3× 10−5 23 1169

11 – 1.6 4.7× 10−7 2.2× 10−6 49 1533

12 – 82.2 4.3× 10−7 5.7× 10−6 48 148

13 – 290.3 9.1× 10−6 6.7× 10−6 33 1878

14 781.7 709.6 6.1× 10−5 6.1× 10−5 32 1909

1st it. 781.7 1083.8 6.1× 10−5 6.1× 10−5 183 6636

process begins at the second iteration because the associated sub-domains are not
directly subjected to the applied load.

Conducting a single iteration of the decomposition algorithm, the relative differ-
ence between upper and lower bounds decreases from 55.23 % to 38.64 %.

Further improvement in the upper and lower bounds requires finer discretization,
which leads to problem size that cannot be handled using the same domain parti-
tions. A decomposition into smaller sub-domains would be needed to solve such a
large problem. Using a finer partition, say with 9 (resp. 8) subdomains in Step 1
(resp. Step 2), the decomposition can be carried out at a single level, similarly to the
example with 5 (resp. 4) subdomains. An alternative strategy is a multilevel scheme
where each subproblem at one level of the decomposition is solved recursively by
another level decomposition.

6 Conclusion

Rational sizing of soil reinforcement by micropile groups requires proper modeling
of the soil-micropile system. Numerical methods for limit analysis are suitable for
handling the geometric and behavioral complexities of the soil-micropiles system,
however, they give rise to large size numerical nonlinear optimization problems. In
the presented work, the decomposition approach has been adapted to the case of
a Coulomb soil. Furthermore, for a Tresca as well as a Coulomb soil, the decom-
position made it possible to solve larger problems than the direct method would
allow, using the same machine. This led to an improvement of the lower and upper
bounds for the bearing capacity of a soil reinforced by micropile groups. The gap
between upper and lower bounds has been reduced by half compared to the best
possible direct solution. The success of the decomposition method paves the way
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to the treatment of the three dimensional problem which allows a far more realistic
representation of the real soil-micropile system.
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An Extension of Gurson Model to Ductile
Nanoporous Media

L. Dormieux and D. Kondo

Abstract We extend the classical Gurson model for ductile porous media by incor-
porating the surface/interface stresses effect which characterizes pores at nanoscale.
For interface stresses obeying a von Mises criterion, we derive closed-form expres-
sions of the parametric equations defining the yield surface. The magnitude of the
interface effect is proved to be controlled by a non dimensional parameter depend-
ing on the voids characteristic size. It is observed that nanoporous materials can be
made more strengthened than non-porous counterparts.

Keywords Ductile nanoporous materials ·Micromechanics · Surface stress ·
Interfaces · Nanovoids · Yield function · Gurson model

1 Introduction

Investigation of size-dependent effects in nanomaterials including materials contain-
ing nano-voids has focused the attention of many researchers during the last decade.
Early works have tried to model the transition zone between the nano-inclusion
and the surrounding matrix as a thin but still three-dimensional layer [1, 2]. An
alternative approach consists in adopting an interface description which is two-
dimensional in nature. Concerning inclusion size effects on the effective elastic
properties, some progresses have been gained in their understanding. Classical ho-
mogenization schemes as well as first order bounds in the theory of elastic hetero-
geneous media have been extended in order to incorporate interface and interface
stresses (see e.g. [3–5]). Recent studies by [6] and [7] extended Hashin-Shtrikman
bound to the above class of materials.

In contrast, it seems that few attention has been paid so far to the question of the
effective strength of nanomaterials with account for interface effects. Mention can
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be made of recent works by [8] who used the modified secant moduli approach. In
the context of the ductile failure of porous materials, the Gurson model [9] is well
known to provide an efficient approach of the strength reduction due to the porosity.
The purpose of the present paper is to extend this model in order to capture the
influence of interface stresses.

To begin with, in view of subsequent extensions, the basic features of the clas-
sical Gurson approach are recalled. Then, the mechanical model of interface stress
is introduced. Finally, the case of interface stresses obeying a von Mises failure
criterion is considered.

2 Ductile Failure of Porous Media and Gurson Model

Let us consider a r.e.v. Ω of a porous material with porosity f . The solid domain is
Ωs ⊂Ω . The average on Ω (resp. Ωs ) of a field a(z) is denoted by a (resp. as ):

a = 1

|Ω|
∫

Ω

a(z) dV ; as = 1

|Ωs |
∫

Ωs

a(z) dV (1)

Let Σ and D respectively denote the macroscopic stress and strain rate tensors.
V (D) is the set of microscopic velocity fields, v(z) being kinematically admissible
with D. The latter are defined by uniform strain boundary conditions:

V (D)= {v, (∀z ∈ ∂Ω) v(z)=D · z} (2)

Let us consider a microscopic stress field σ (z) in equilibrium with Σ in the sense
of the average rule Σ = σ . Hill’s lemma states that:

Σ :D= 1

|Ω|
∫

Ω

σ : ddV (3)

The strength of the solid phase is characterized by the convex set Gs of admissible
stress states, which in turn is defined by a convex strength criterion f s(σ ):

Gs = {σ,f s(σ )≤ 0
}

(4)

The dual definition of the strength criterion consists in introducing the support func-
tion πs(d) of Gs , which is defined on the set of symmetric second order tensors d
and is convex w.r.t. d:

πs(d)= sup
(
σ : d,σ ∈Gs

)
(5)

πs(d) represents the maximum “plastic” dissipation capacity the material can af-
ford. In the absence of interface effect, the macroscopic counterpart of πs(d) is
defined as:

Πhom(D)= (1− f ) inf
v∈V (D)

πs(d)
s

with d= 1

2

(
gradv+t gradv

)
(6)
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Using Eq. (3) together with the definition equation (6), it can be shown that Πhom

is the support function of the domain Ghom of macroscopic admissible stresses:

Πhom(D)= sup
(
Σ :D,Σ ∈Ghom

)
(7)

The limit stress states at the macroscopic scale are shown to be of the form Σ =
∂Πhom/∂D.

Starting from this general framework, the classical Gurson approach devoted to
porous media deals with the case of a von Mises solid phase:

f s(σ )= 3

2
σ d : σ d − σ 2

o (8)

where σ d is the deviatoric part of σ . The support function πs(d) accordingly reads:

tr d= 0 : πs(d)= σodeq with deq =
√

2

3
d : d

tr d �= 0 : πs(d)=+∞
(9)

The Gurson model introduces two simplifications. It first consists in representing the
morphology of the porous material by a hollow sphere instead of the r.e.v. Let Re

(resp. Ri ) denote the external (resp. cavity) radius. The volume fraction of the cavity
in the sphere is equal to the porosity f = (Ri/Re)

3. Then, instead of seeking the
infimum in Eq. (6), Πhom(D) is estimated by a particular microscopic velocity field
v(z). In the solid, the latter is defined as the sum of a linear part involving a second
order tensor A and of the solution to an isotropic expansion in an incompressible
medium. In spherical coordinates, it thus reads:

vG(z)=A · z+ α
R3

i

r2
er (10)

In the pore, the strain rate is defined from the velocity at the cavity wall:

dI =A+ α1 (11)

The local condition tr d= 0 has to be satisfied in the case of a von Mises material
(see Eq. (9)). It follows then that A is a deviatoric tensor: tr A= 0. Furthermore, the
boundary condition equation (2) at r =Re yields:

D=A+ αf 1 (12)

which reveals that A is the deviatoric part Dd of D, while α is related to its spherical
part:

A=Dd; α = 1

3f
tr D (13)
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The combination of Eq. (11) and Eq. (13) also yields:

dI =Dd + tr D
3f

1 (14)

Recalling Eq. (6), the use of vG (giving strain rate dG) provides an upper bound of
Πhom:

Πhom(D)≤ (1− f )πs
(
dG
)s

(15)

Using Eq. (9), the derivation of the right hand side in Eq. (15) requires to deter-
mine the average of deq over Ωs . In order to obtain an analytical expression, it is
convenient to apply the following inequality to G = d : d= 3d2

eq/2 [9]:

∫

Ωs

√
G (r, θ,ϕ)dV ≤ 4π

∫ Re

Ri

r2(〈G 〉S (r)

)1/2
dr (16)

where S (r) is the sphere of radius r and 〈G 〉S (r) is the average of G (r, θ,ϕ) over
all the orientations:

〈G 〉S (r) = 1

4πr2

∫

S (r)

G (r, θ,ϕ) dS (17)

This eventually yields the following upper bound of Πhom(D):

Πhom
G (D)= σof Deq

(

ξ
(
arcsinh(ξ)− arcsinh(f ξ)

)+
√

1+ f 2ξ2

f
−
√

1+ ξ2

)

(18)
with Deq = √2Dd :Dd/3 and ξ = 2α/Deq . In the standard case (no interface ef-
fect), it is emphasized that the pore size Ri does not matter by itself since only the
ratio Ri/Re = f 1/3 intervenes in the expression Eq. (18).

The last step is the derivation of the limit states Σ = ∂Πhom
G /∂D. It is first ob-

served that Πhom
G (D) is in fact a function of D through α and Deq :

Σ = ∂Πhom
G

∂α

∂α

∂D
+ ∂Πhom

G

∂Deq

∂Deq

∂D
(19)

where

∂α

∂D
= 1

3f
1; ∂Deq

∂D
= 2

3Deq

Dd (20)

The combination of Eq. (19) and Eq. (20) also yields:

trΣ = 1

f

∂Πhom
G

∂α
; Σeq =

√
3Σd :Σd/2= ∂Πhom

G

∂Deq

(21)
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In turn, Eq. (18) leads to:

trΣ = 2σo

(
arcsinh(ξ)− arcsinh(f ξ)

)

Σeq = σo

(√
1+ f 2ξ2 − f

√
1+ ξ2

) (22)

Eliminating ξ between the spherical and deviatoric parts of Σ eventually leads to
the well known Gurson strength criterion:

Σ2
eq

σ 2
o

+ 2f cosh

(
trΣ

2σo

)

− 1− f 2 = 0 (23)

This equation characterizes the boundary of the domain Ghom
G which support func-

tion is Πhom
G . This domain is in fact an upper bound of the exact domain Ghom of

macroscopic admissible stresses, that is, Ghom ⊂Ghom
G .

3 Interfaces and Interface Stresses

The recent literature devoted to nanocomposites has extensively presented the con-
cepts of interface and interface stresses [4, 10–13]. In fact, these concepts are already
present in the modeling of capillary forces [14]. The interface itself is a mathemat-
ical model for a thin layer between two phases across which the traction vector
undergoes a discontinuity. In contrast, the displacement and the tangential strain
components are continuous (see [3]). Introducing the local unit normal vector n to
the interface S, the stress discontinuity [σ ] · n is related to the interface stresses τ

by the generalized Laplace equations which physically represent the condition for
the mechanical equilibrium of the interface [15]:

n · [σ ] · n=−τ : κ
P · n=−∇S · τ

(24)

where ∇S · denotes the divergence operator defined on the interface S; tensor P =
1− n⊗ n and κ is the curvature tensor. The stress state τ locally meets the plane
stress conditions w.r.t. the tangent plane to the interface. We herein consider that the
pore/solid boundary is such an interface.

The interface stresses also manifest themselves by a specific contribution to the
energy W developed by the internal forces in the strain rate field d:

W =
∫

Ω

σ : ddV =
∫

Ωs

σ : ddV +
∫

S

τ : ddS (25)

From a mathematical point of view, Eq. (25) amounts to saying that the internal
forces can be represented by the sum of a standard Cauchy stress field σ in the solid
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and by a Dirac distribution τ of stresses of support S. Hence, the integral in the
left-hand side of Eq. (25) must be understood in the sense of the distribution theory.

Since the interface stress state is a plane stress one, the work it develops in the
strain rate d only depends on the projection dint of d on the local tangent plane,
which is defined as [5]:

dint = T : d with T= P⊗P (26)

with A⊗Bijkl = (AikBjl +AilBjk)/2.
The surface integral in the expression of W has a counterpart in the homogenized

support function Πhom(D) which now reads:

Πhom
int (D)= inf

v∈V (D)

(

(1− f )πs(d)
s + 1

|Ω|
∫

S

πint (T : d) dS

)

(27)

πint denotes the support function of the domain Gint of admissible surface stresses
(see also Eq. (5)):

πint (T : d)= sup
(
τ : T : d,τ ∈Gint

)
(28)

It is emphasized that the latter meet the local plane stress conditions.
The extension of the Gurson model to interface effects simply consists in esti-

mating the support function Πhom(D) by the upper bound obtained for the velocity
field vG introduced in Eq. (10):

Πhom
G, int (D)=Πhom

G (D) + 1

|Ω|
∫

S

πint
(
T : dG

)
dS (29)

Clearly, we are left with the determination of the interface correcting term, which
has to be added to the standard expression (18).

4 Extension of the Gurson Model: The von Mises Interface

We now assume that the strength of the interface can be described by a von Mises
criterion

3

2
τ d : τ d − k2

int ≤ 0 (30)

in plane stress condition, where τ d denotes the deviatoric part of the interface stress
τ . The strength of the interface is then similar in nature to that of the matrix, up to
the fact that it has a bidimensional character. In the local tangent plane which unit
normal vector is n = er , the support function of the domain Gint then reads (see
[16]):

π(T : d)= 2kint

√
1

3

(
d2
θθ + d2

ϕϕ + d2
ϕθ + dθθdϕϕ

)
(31)
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where kint has the physical dimension of a membrane stress, that is, a force per unit
length. The tensor d whose components appear in Eq. (31) is the pore strain rate dI

given in Eq. (14), which is then projected on the tangent plane by the operator T.
The projection operator T(θ,ϕ) depends on the location on the spherical cavity wall
(see Eq. (26)):

T= P⊗P with P= 1− er ⊗ er (32)

The components of the strain rate tensor appearing in Eq. (31) are then given by

dαβ = eα

s⊗ eβ : T : dI (33)

with α, β = θ or ϕ, that is:

dαβ = Tαβ : dI (34)

with Tαβ = eα

s⊗ eβ : T. It is therefore convenient to introduce the fourth-order
tensor M:

M= Tϕϕ ⊗Tϕϕ +Tθθ ⊗Tθθ +Tϕθ ⊗Tϕθ +Tϕϕ ⊗Tθθ (35)

such that

πint (T : d)= 2kint

√
1

3
dI :M : dI (36)

In order to determine the contribution Πint of the interface to Πhom(D) (see
Eq. (27)), we are left with the integration over the spherical interface:

Πint = 2kint

|Ω|
∫

S

√
1

3
dI :M : dI dS (37)

As in the classical derivation of the Gurson criterion, we have to replace Πint by an
upper bound in order to obtain an analytical expression:

Πint ≤ 2kintR
2
i

|Ω|

√
4π

3

∫

So

dI :M : dI dS (38)

where So is the (boundary of the) unit sphere. Since dI is a constant, the right hand
side in Eq. (38) can be put in the form:

Πint ≤ 2kintR
2
i

|Ω|

√
4π

3
dI :

(∫

So

M(θ,φ)dS

)

: dI (39)

Noting from Eq. (35) that:
∫

So

Mdσ = π

(
6

5
K+ 4J

)

(40)
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the contribution of the interface to Πhom(D) can be estimated by the following upper
bound:

Πint ≤ 6f
kint

Ri

√

dI :
(

1

10
K+ 1

3
J

)

: dI

= 3f
kint

Ri

Deq

√

ξ2 + 3

5
with ξ = 2α/Deq (41)

in which it is recalled that Ri represents the radius of the pores. The term provided
by (41) is to be added to Eq. (18) in view of the derivation of the strength criterion.
The comparison of the respective contributions of the solid equation (18) and of the
interface equation (41) is controlled by the nondimensional parameter

Γ = kint /(Riσo) (42)

which is pore size-dependent. The smaller the pores the greater the influence of the
interface effects on the strength.

We note that Eq. (19) and Eq. (21) are still valid provided that Πhom
G is replaced

by Πhom
G,int =Πhom

G +Πint . This leads to the parametric equations

trΣ = σo

(

2
(
arcsinh(ξ)− arcsinh(f ξ)

)+ Γ
6ξ

√
ξ2 + 3/5

)

Σeq = σo

(√
1+ f 2ξ2 − f

√
1+ ξ2 + Γ

9f

5
√

ξ2 + 3/5

) (43)

Note that this boundary is symmetric w.r.t. the trΣ = 0 axis. Let us emphasize
that, by the presence of term Γ = kint /(Riσo), (43) explicitly shows that the yield
strength depends on the voids size. In order to get a closer insight into the influ-
ence of the interface on the effective strength, it is useful to provide an analyti-
cal approximation of the boundary of the domain defined by Eq. (43) in the form
F (Σeq, trΣ)= 0. This can be done by means of expansions of Eq. (43) in the vicin-
ity of ξ = 0 and ξ =∞. First, in the vicinity of the maximum deviatoric strength
(ξ = 0, low stress triaxiality), the boundary can be approximated by a parabola in
the (trΣ,Σeq) plane:

Σeq

σo

= 1− f + Γ
9f√

15
− f

8(1− f + Γ
√

15)

(
trΣ

σ 2
o

)2

(44)

In turn, in the vicinity of the pure isotropic tensile/compression loading (ξ =±∞),
the boundary can be approximated by another parabola:

Σ2
eq

σ 2
o

= 3

2

(

1− f 2 + 18

5
Γf 2

)(

−2

3
logf + 2Γ ± trΣ

3σo

)

(45)



An Extension of Gurson Model to Ductile Nanoporous Media 205

Fig. 1 (1): classical Gurson
model; (2): extended Gurson
model with f = 0.1 and
Γ = 0.2; (3): parabola of
(44); (4): parabola of (45)

Illustrations of the results are provided on Fig. 1. Continuous lines correspond to
the parametric formulation of the macroscopic yield function (see (43)) while dis-
continuous lines are associated to the two above expansions derived in the form of
parabola. First, the results clearly show a significant effect of the void size. Note
that kint being fixed, a decrease of Ri is represented by an increase of Γ . Moreover,
the two proposed expansions appear accurate for a large range of triaxiality.

5 Isotropic Tensile/Compressive Strength

In the framework of the geometrical model of hollow sphere, the classical Gur-
son model (no interface stress) is known to provide an exact result as regards the
isotropic tensile/compressive strength.

With Σeq = 0, the solutions to Eq. (23) are the isotropic stress tensors ±Σ+1
with Σ+ = −2σo logf/3. As a matter of fact, the Gurson approach shows that an
admissible isotropic macroscopic stress state Σ =Σ1 is subjected to the condition
|Σ | ≤ Σ+. Conversely, let us consider the microscopic stress state defined in the
solid in spherical coordinates by:

σ = ε
3Σ+

2 logf

(

2 log
Ri

r
1− P

)

with ε =±1 (46)

It is readily seen that the latter is in equilibrium with the macroscopic stress state
εΣ+1 since it satisfies the momentum balance condition divσ = 0 and the boundary
conditions σ · er = 0 at r =Ri and σ · er = εΣ+er at r =Re. Furthermore, it meets
the von Mises criterion equation (8). This proves that such a macroscopic stress state
is admissible and furthermore, that Σ+ is indeed the isotropic tensile/compressive
strength.

Let us now examine the effect of interface stresses on the isotropic ten-
sile/compressive strength. Consider the case of the von Mises interface. According
to the extended Gurson model equation (45), the necessary condition for an isotropic
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macroscopic stress state Σ =Σ1 to be admissible reads |Σ | ≤Σ+ + 2Γ σo. Con-
versely, let us consider the microscopic stress state defined in the solid in spherical
coordinates by:

σ = ε

(
3Σ+

2 logf

(

2 log
Ri

r
1− P

)

+ 2Γ σo1
)

with ε =±1 (47)

and on the interface S by τ = εkintP (recall that kint = Γ σoRi ). It satisfies the mo-
mentum balance equation divσ = 0 and the boundary condition σ · er = ε(Σ+ +
2Γ σo)er at r =Re. It also satisfies the generalized Laplace equations (24). Further-
more, it meets the von Mises interface criterion equation (30). This establishes that
Σ+ + 2Γ σo is the isotropic tensile/compressive strength.
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Limit Analysis and Conic Programming
for Gurson-Type Spheroid Problems
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Abstract In his famous 1977-paper, Gurson used the kinematic approach of Limit
Analysis (LA) about the hollow sphere model with a von Mises solid matrix. The
computation led to a macroscopic yield function of the “Porous von Mises”-type
materials. Several extensions have been further proposed in the literature, such as
those accounting for void shape effects by Gologanu et al. (J. Eng. Mater. Technol.
116:290–297, 1994; Continuum Micromechanics, Springer, Berlin, 1997), among
others. To obtain pertinent lower and upper bounds to the exact solutions in terms of
LA, we have revisited our existing kinematic and static 3D-FEM codes for spherical
cavities to take into account the model with confocal spheroid cavity and boundary.
In both cases, the optimized formulations have allowed to obtain an excellent effi-
ciency of the resulting codes. A first comparison with the Gurson criterion does not
only show an improvement of the previous results but points out that the real solu-
tion to the hollow sphere model problem depends on the third invariant of the stress
tensor. A second series of tests is presented for oblate cavities, in order to analyze
the above-mentioned works in terms of bound and efficiency.
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1 Introduction

As regards the ductile failure of porous materials, the celebrated plasticity crite-
rion of Gurson [8] is based on a micro-macro approach and on limit analysis (LA).
Gurson’s model treats a hollow von Mises sphere or cylinder with macroscopic
strain imposed on its boundary. The computation, performed under uniform strain
rate boundary conditions, leads to a macroscopic yield function for the “Porous
von Mises”-type materials.

Gurson’s analysis consists in the use of the LA kinematic approach in order to ob-
tain an upper bound to the macroscopic criterion of the spherically porous material,
at least in the sense of the Composite Sphere Assemblage of Hashin. An efficient
parametric refinement of Gurson’s model has been proposed in [24] and [25] to de-
fine the widely used Gurson-Tvergaard-Needleman (GTN) model. More recently,
several extensions of the Gurson model have been proposed, the probably most im-
portant developments being those accounting for void-shape effects [4, 7, 14]. Men-
tion can also be made of models taking into account plastic anisotropy [1, 13].

On the other hand, using a finite element discretization of the mechanical sys-
tems, both static and kinematic methods of LA have been elaborated to obtain rigor-
ous lower and upper bounds in order to control Gurson’s kinematic approaches for
cylindrical as well as spherical cavities, first reported in [20]. In [3] and [19], these
two LA approaches made it possible to numerically determine the yield criteria of a
cylindrically porous material, also proving that the Gurson criterion is approximate,
and does not exhibit the corner of the exact criterion on the mean stress axis in
plane strain. On the contrary, in the subsequent work [23] the Gurson criterion ap-
pears to be satisfactory for materials with spherical cavities, unfortunately without
considering the dissymmetry as in the present work.

The main advantage of these LA numerical approaches is that they give rigorous
lower and upper bounds to the macroscopic criterion together with their controllabil-
ity a posteriori from the final optimal solution. This capability to control numerical
or analytical results is central and was used in [18], and in [22] for example.

In the present paper, we briefly present the extension in [15] of the 3D static and
kinematic codes of [23] for von Mises matrices to the spheroid (confocal) cavity
case. Then, comparisons with previously mentioned works for spherical and oblate
cavites conditions are presented and discussed.

2 The Hollow Spheroid Model

The considered hollow spheroid model is made up of a single spheroidal cavity
embedded in a confocal spheroidal cell. The solid matrix is an isotropic, homo-
geneous, and rigid-plastic von Mises material. Figure 1 presents the geometrical
model, where the given aspect ratio a1/b1 and porosity f allow to determine the
characteristics a2 and b2 of the confocal spheroidal boundary. Let us consider the
three-dimensional point of view, and denote Σ and E the macroscopic stress and
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Fig. 1 The hollow spheroid model (a1/b1 = 0.5, f = 0.1)

strain rate tensors. These quantities are classically related to the microscopic fields
by their average over the model of volume V :

Σij = 1

V

∫

V

σij dV ; Eij = 1

2V

∫

∂V

(uinj + ujni) dS, (1)

where ∂V denotes the external boundary of the model, and u the velocity vector.
Under the Hill-Mandel boundary conditions, here ui = Eijxj on the external

boundary, the overall virtual dissipated power Ptot =ΣijEij can be written as fol-
lows:

Ptot = V (ΣmEm +ΣpsEps +ΣgpsEgps +Σyz2Eyz +Σzx2Ezx +Σxy2Exy), (2)

where the macroscopic stresses (the loading parameters in terms of limit analysis)
and the associated strain rates are here defined as:

Σm = 1

3
(Σx +Σy +Σz); Σgps = (Σx +Σy)

2
−Σz;

Σps =
√

3

2
(Σx −Σy);

(3)

Σyz; Σzx; Σxy; (4)

Em = (Ex +Ey +Ez); Egps = 2

3

(
(Ex +Ey)

2
−Ez

)

;

Eps = 1√
3
(Ex −Ey);

(5)

2Eyz; 2Ezx; 2Exy. (6)

In these definitions the subscripts (gps for generalized plane strain, and ps for
plane strain) were defined in [19], as Σgps = 0 is the usual relation in plane strain
for the von Mises material. From the matrix isotropy and the spheroidal geometry
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of the model, the resulting material is transversally isotropic around the axis z. Here
is investigated the macroscopic criterion g(Σ) in the (Oxyz) anisotropy frame.

To compare with Gologanu’s axisymmetric results, we search for the projection
of g(Σ) on the (Σgps,Σm) plane by optimizing Σgps for fixed uniform stresses Σm,

the other stress components defined in (4) being free. Then ∂g
∂Σij
= 0 = 2Eij for

i �= j , and ∂g
∂Σps
= 0 = Eps since the macroscopic material verifies the normality

law. As a final result, loadings can be restricted to the principal macroscopic strain
rates E (as well as Σ since (Oxyz) is a transverse-isotropy frame) with Eps = 0.

Moreover, all the axes in the horizontal plane of Fig. 1 are equivalent; therefore,
in the above-mentioned projection problem we also impose, although this is not
mandatory, Σx =Σy as well as Ex = Ey in fact. Indeed, when non imposed a pri-
ori, these equalities are always verified in the optimal solutions, giving by the way
a good control of the mesh quality.

Finally, the overall external power Ptot here reduces to:

Ptot = V (ΣmEm +ΣgpsEgps). (7)

Therefore, the one-eighth of the hollow spheroid is meshed into tetrahedral ele-
ments as shown in Fig. 2. This mesh respects the symmetries of the problem since
the vertical coordinate planes are equivalent regarding the distribution of elements,
giving rise to a well-conditioned numerical problem. Note that the macroscopic
equivalent stress Σeqv is, in the present case, linked to Σgps by:

Σ2
eqv =

3

2
dev(Σ) : dev(Σ)=Σ2

gps = (Σx −Σz)
2, (8)

where dev(Σ) is the deviatoric part of Σ .
Hereafter, we first briefly present both lower/upper limit analysis approaches

which have recently been detailed in [15]. The basis of the development of these
numerical tools are their versions presented in [23] for spherical cavities; there-
fore we only detail here the modifications and improvements implemented for the
present case. In a second step, results are analyzed and compared to those provided
in [6] and [7] for oblate models under uniform strain rate boundary conditions.

3 Limit Analysis: The Static Method

3.1 The von Mises Criterion

As classically, the criterion is written as:

f (σ )=√J2 with J2 = 1

2
tr
(
s2) and s = σ − 1

3
tr(σ )δ, (9)

where δ is the second order unit tensor.
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Then in an (x, y, z) reference frame, the full 3D criterion reads:

√[
2√
3

(
σx + σy

2
− σz

)]2

+ (σx − σy)2 + (2τyz)2 + (2τzx)2 + (2τxy)2 ≤ 2k.

(10)
The constant k is the limit in pure shear, also given by σ0/

√
3 where σ0 is the tensile

strength of the von Mises material. It should be noted that (10) can be written, after
obvious changes of variables, as a conic constraint for the conic optimizer MOSEK

[12]:
√√
√
√
√

5∑

j=1

x2
j ≤ x6 = 2k. (11)

3.2 Numerical Implementation

For each aspect ratio a1/b1, the inner and outer matrix boundaries of the spheroid
mesh are adapted from the spherical case to obtain their confocal forms in the final
mesh. Each triangle of a polyhedral surface n is the top basis of a prism whose the
bottom basis is the corresponding triangle of the surface n− 1, and so on going to
the cavity. Each prism is divided into two tetrahedrons and three pyramids. Each
pyramid is also divided into four tetrahedrons. Hence, each prism is meshed using
14 tetrahedral elements. For example the mesh of Fig. 2 involves 4 concentric layers
(nlay= 4) of 4× 4 prisms (ndiv× ndiv, ndiv= 4) each, resulting finally in nlay×
ndiv2× 14= 896 tetrahedrons As the model boundaries are not homothetic and the
practical number of triangles forming the resulting polyhedral mesh boundaries is
not infinite, the resulting mesh porosity does not exactly equal the input porosity.
Then, in a first step for each case of porosity and aspect ratio, the distribution of
the angle α (see Fig. 2 right) is optimized to precisely retrieve the desired porosity
by progressively concentrating this distribution towards the most curved zone. In a
final step the radial distribution of the spheroid layers is also optimized to obtain the
best value for the isotropic loading (Σgps = 0) with the static code.

The local stress field is chosen as linearly varying in x, y, z in each tetrahedral
element, and represented by a 6-component tensor σ for each vertex of this tetrahe-
dral element. Consequently this stress field can be discontinuous across any element
boundary, which has been proven to be indispensable in the finite element static ap-
proach [17]. Finally, to reduce the size of the constraint matrix of the numerical
problem, a change of variables σ → (x0, . . . , x5) is performed, where x0 = trσ and
x1 to x5 defined in (11), so that only the definition of x6 is needed as a new constraint
(and a new auxiliary variable) for each tetrahedron vertex.

To get a statically admissible microscopic stress field, the definition of the macro-
scopic stresses and of the selected loading parameters, the equilibrium equations
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Fig. 2 General view and Oxz plane of a 896-tetrahedron mesh (a1/b1 = 0.5, f = 0.1)

and the stress vector continuity across the inter element triangles, the boundary and
symmetry conditions give rise to a final matrix of equality constraints.

To enforce the stress field to be plastically admissible, the criterion (10) is im-
posed at each apex of the tetrahedron; hence, due to its convexity, the criterion is
fulfilled anywhere in the element. For each tetrahedron the four conic inequalities
are directly handled by MOSEK by simply indicating the names of the variables xi

involved in the criteria (11). The final numerical problem is a constrained conic
programming one, which is a specificity of MOSEK.

Finally, concerning the objective functional to be optimized, Σm is given succes-
sive desired values and Σgps is minimized; when Σm is close to its maximum value,
then Σgps is fixed and Σm is maximized for better convergence of the optimization
process.

4 Limit Analysis: The Kinematic Method

4.1 Dissipated powers

Let us recall that, from the virtual power principle, the total dissipated power Ptot
here reads:

ΣmEm +ΣgpsEgps = (Pvol + Pdisc)/V = Ptot/V, (12)

where the volumic dissipated power Pvol =
∫
Vm

π(d)dV and π(d) is now defined
as:

π(d)= 2k

√(√
3

2
(dxx + dyy)

)2

+
(

1

2
(dxx − dyy)

)2

+ d2
yz + d2

zx + d2
xy. (13)

The power dissipated by the velocity jump [u] on the discontinuities is given by:

Pdisc =
∫

Sd

π
([u])dS =

∫

Sd

k
∣
∣[ut ]

∣
∣dS =

∫

Sd

k

√
[ut1 ]2 + [ut2 ]2 dS, (14)
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where Sd is the set of discontinuity surfaces; for each discontinuity surface, [ut1 ]
and [ut2 ] are the tangential displacement velocity jumps in an orthonormal frame
(n, t1, t2) whose n is normal to this discontinuity surface.

4.2 Numerical Implementation

The above-mentioned mesh type is also used for the kinematic approach. The dis-
placement velocity field is chosen as linearly varying in x, y, z in each tetrahedral
element, and any triangular surface common to two contiguous tetrahedrons is a po-
tential surface of velocity discontinuity. Then the variables are (ux,uy,uz) velocity
vectors located at the apices of each tetrahedron.

To get a kinematically admissible velocity field, the definition of the selected
macroscopic variables Em, Egps, Eps from Exx , Eyy , Ezz, the incompressibility and
symmetry conditions, and the strain rate loading ones (i.e. ui =Eijxj on each apex
on the boundary triangles) form a final constraint matrix.

Concerning the definition of the functional to be optimized, by taking into ac-
count (13), we can upper bound the volumetric dissipated power in the tetrahedron
by writing:

π(d)≤ Y ; P el
vol ≤ V el Y (15)

for each tetrahedron whose volume is denoted V el. The first inequality in (15) gives
one conic constraint and one non-negative auxiliary variable Y for each element.

As the velocity jump [u] is linear on each triangular discontinuity side, whose
surface is denoted Sside, we use the convexity of π([u]) to upper bound Pdisc by
writing at each apex i of the side (i = 1 to 3):

π
([u]i

)≤ Zi, (16)

where the Zi are new non-negative auxiliary variables, and P side
disc ≤ Sside (Z1+Z2+

Z3)/3, resulting in three conic constraints for each discontinuity side. Then, using
these definitions and after integrations over the mesh, we substitute the final upper
bound P ub

tot for Ptot in the following.
In the present case of two loading parameters, Σm and Σgps, the following func-

tional is used to define the points of the macroscopic criterion for zero or small
absolute values of Σgps:

Σm =min
(
P ub

tot /V −Σ0
gps Egps

)
/E0

m, with E0
m = 1. (17)

To obtain other non-zero (Σ0
m,Σgps) points, we chose the following functional,

for better convergence, as in the static case:

Σgps =min
(
P ub

tot /V −Σ0
m Em

)
/E0

gps, with E0
gps =±1. (18)
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Fig. 3 Comparison with the
Gurson criterion (a1/b1 = 1,
f = 0.1)

Remark For both static and kinematic methods the final conic problem is solved
using MOSEK, and the admissible character of the optimal solution field is checked
a posteriori.

5 The Tests

Under uniform strain rate on the boundary, in the static case the mesh involves
13 layers of 12 × 12 prisms (with triangular basis) composed of 14 tetrahedrons,
resulting in a conic programming problem handling about 730,000 variables and
658,000 constraints. In the kinematic case the mesh is the same, but with 11 ×
11× 11 prisms resulting in 663,000 variables and 445,000 constraints. CPU times
are about 3,000 seconds in the static case and 5,000 seconds in the kinematic one,
with the release 5 of MOSEK on a recent Apple Mac Pro (using one core). For
uniform stress loading, the figures are similar. In both cases the memory limitation
of this release does not allow to consider more refined meshes. These CPU times
also explain that obtaining the full numerical yield criterion, (then with meshes not
limited to the one-eighth of the spheroid) and for various other geometries, does not
seem realistic without defining a specific decomposition of the problem as in [16]
and [9], at least for the moment.

Since the von Mises criterion is an even function in terms of stress, we limit the
study to nonnegative values of Σm. In this section, the loading is axisymmetric for
all tests and Σeqv = |Σgps|. We begin by testing the codes in the spherical cavity
case to compare with the Gurson criterion in the whole Σm ≥ 0 half plane. Then we
analyze the oblate case with a ratio a1/b1 = 0.2 (see Fig. 1) for the case of uniform
strain rate (E) on the boundary to compare the solutions with the analytical results
of [6, 7] where the results are given in terms of Σz −Σρ =−Σgps.
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Table 1 Comparison of
Gurson criterion and present
kinematic results for negative
Σgps and f = 0.3

Σm -(Gurson Σeqv) -(3D-kine Σgps)

0.0 1.21244 1.17101

0.2 1.20122 1.15328

0.4 1.16658 1.10820

0.6 1.10521 1.03030

0.8 1.01017 0.91075

1.0 0.86703 0.73865

1.2 0.63821 0.49854

1.26587 0.52497 0.4

1.32245 0.39332 0.3

1.36344 0.24993 0.2

1.38674 0.09075 0.1

1.39023 0.0 0.07634

1.39432 – 0.0

5.1 Spherical Cavity, Uniform Strain Rate Loading

The celebrated Gurson criterion reads:

Σ2
eqv

3k2
+ 2f cosh

(√
3Σm

2k

)

= 1+ f 2. (19)

Figure 3 gives the lower bounds (green color) and upper bounds (red color) together
with the graph of Gurson’s criterion. The numerical bounds are very close to each
other and the Gurson graph is always beyond the kinematical approach, except at
the vicinity of the Σm axis, as expected from the exact nature of the solution of
Gurson on this axis.

More surprisingly, it can be seen that the real criterion is not really symmetric
with respect to the horizontal axis; this means (from (8)) that, even for spherical
cavities, the criterion depends on the third invariant of the macroscopic stress; this
feature has been observed by Danas et al. [2] using a non linear homogenization
method and recently confirmed in [21]. Up to our knowledge a possible small influ-
ence of the third stress invariant for “porous von Mises” materials was first noted in
[5], through an only kinematic numerical approach based on some of the continuous
velocity fields of Lee and Mear [11].

It can also be concluded that using the Gurson criterion in the usual (Σeqv =
|Σgps|,Σm) frame is not pertinent; indeed, for a porosity of 0.3 (usual value in
geotechnics and polymers) the results of Table 1 show that the difference between
Gurson’s values and our present 3D-kinematic results for negative Σgps becomes
really significant.

Remark For Σm = 0 and f = 0.1, the Hashin-Strikmann (H-S) upper bound given
by Willis and others (see [10]) (here 1.5093 = √3(1 − f )/

√
1+ 2f/3), is lower
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Table 2 Comparison of
Gurson and 3D-FEM results
to Hashin-Strikman bounds
(Σm = 0)

f ΣGurson
eqv Σstat

gps Σkine
gps H-S bound

0.01 1.71473 1.70501 1.70832 1.70904

0.1 1.55885 1.51393 1.52016 1.50935

0.2 1.38564 1.33165 1.34035 1.30158

0.3 1.21244 1.16114 1.17101 1.10680

0.4 1.03923 0.98765 1.00029 0.92338

0.5 0.86602 0.80637 0.82311 0.75

Fig. 4 Comparison of the
1994-Gologanu criterion with
numerical bounds. The aspect
ratio is taken as a1/b1 = 0.2
and the porosity f equal
to 0.1

than the present static value, 1.5139. This static bound is obtained by using a mesh
of 13 layers of 12 × 12 triangles generating 26,208 discontinuous linear tetrahe-
drons, i.e., a very refined 3D-mesh for the discretized one-eighth of sphere. Taking
into account the fact that the exact value on the horizontal axis is just situated be-
tween the very close static and kinematic values, this should indicate that the hollow
sphere model does not strictly account for the randomly porous hypothesis of the
H-S bounds. Finally the results of Table 2 confirm this conclusion, since the static
results are no longer close to the H-S bounds for greater porosity values.

5.2 Confocal Oblate Cavity, Uniform Strain Rate Loading

In this section we compare our results with the analytic criterion of Gologanu [6]
and its improved version in [7], under uniform strain rate at the boundary. Figures 4
and 5 give the present results together with those of Gologanu et al. for f = 0.1.
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Fig. 5 Comparison of the
1997-Gologanu criterion with
numerical bounds.
a1/b1 = 0.2, f = 0.1

It first appears that the numerical bounds provide yield surfaces satisfactorily
close to each other, in particular for the lowest porosity. Moreover, for this low
porosity, the first approximate yield surface given by Gologanu et al. in 1994, based
on axisymmetric fields proposed by Lee and Mear [11], is largely beyond our up-
per bound and overestimates the exact criterion in a large part of the stress domain.
A contrario the second criterion of Gologanu et al. denotes a significant improve-
ment of the previous Gologanu approach, with a slight localized violation of the
numerical static approach possibly due to the loss of the upper bound character,
resulting from the approximations done by these authors.

6 Conclusion

In the present paper, we have presented the extension of our previous 3D static
and kinematic FEM codes for von Mises matrices to the spheroid (confocal) cavity
case. On purpose of validation the first applications concern the Gurson model, and
reveal that this criterion is not so near to the real solution, which depends on the
third stress invariant in a non-negligible manner. The following tests concern the
spheroid confocal cavity case and the last Gologanu criterion should be preferred in
the case of uniform strain rate on the boundary.
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