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  Abstract   In contrast to the human standard for mind established by Alan Turing, 
I search for a “minimal mind,” which is present in animals and even lower-level 
organisms. Mind is a tool for the classi fi cation and modeling of objects. Its origin 
marks an evolutionary transition from protosemiotic agents, whose signs directly 
control actions, to eusemiotic agents, whose signs correspond to ideal objects. The 
hallmark of mind is a holistic perception of objects, which is not reducible to indi-
vidual features or signals. Mind can support true intentionality of agents because 
goals become represented by classes or states of objects. Basic components of mind 
appear in the evolution of protosemiotic agents; thus, the emergence of mind was 
inevitable. The classi fi cation capacity of mind may have originated from the ability 
of organisms to classify states of their own body. Within primary modeling systems, 
ideal objects are not connected with each other and often tailored for speci fi c func-
tions, whereas in the secondary modeling system, ideal objects are independent 
from functions and become interconnected via arbitrarily established links. Testing 
of models can be described by commuting diagrams that integrate measurements, 
model predictions, object tracking, and actions. Language, which is the tertiary 
modeling system, supports ef fi cient communication of models between individuals.      

    1   Introduction 

 Mind is traditionally considered as a human faculty responsible for conscious experi-
ence and intelligent thought. Components of mind include perception, memory, rea-
son, logic, modeling of the world, motivation, emotion, and attention (Premack and 
Woodruff  1978  ) . This list can be easily expanded to other kinds of human mental 
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activities. Defects in mental functions (e.g., in logic, attention, or  communication) are 
considered as a loss of mind, partial or complete. In short, mind is a collection of 
mental functions in humans. However, this de fi nition tells us nothing about the nature 
of mind. Human mental functions are so diverse that it is dif fi cult to evaluate their 
relative importance. The only way to identify the most fundamental components of 
mind is to track its origin in animals, which inevitably leads us to the idea that mind 
exists beyond humans. Animal mental activities (i.e., “animal cognition”) are de fi nitely 
more primitive compared to those of the human mind, but they include many common 
components: perception, memory, modeling of the world, motivation, and attention 
(Grif fi n  1992 ; Sebeok  1972  ) . The lack of abstract reasoning in animals indicates that 
reason is not the most fundamental element of mind but rather a late addition. 

 By accepting the existence of mind in animals, we commit ourselves to answer 
many dif fi cult questions. For example, where is the lower evolutionary threshold for 
mind? Does mind require brain or at least some kind of nervous system? In other 
words, we enter the quest for the “minimal mind,” which is the topic of this chapter. 
This evolutionary approach is opposite to Turing’s criterion for machine intelligence, 
which is based on the ability of a human to distinguish between a computer and a 
human being based solely on communication with them (Turing  1952  ) . To be indis-
tinguishable from a human, a machine should have a “maximal mind” that is func-
tionally equivalent to the human mind. Here, I propose that minimal mind is a tool 
for the classi fi cation and modeling of objects and that its origin marks an evolution-
ary transition from protosemiotic agents, whose signs directly control actions, to 
eusemiotic agents, whose signs correspond to ideal objects.  

    2   Agents 

 Mind is intrinsically related to life because it is a faculty of living systems. However, 
according to cybernetics, it can also exist in arti fi cial devices (Nillson  1998  ) . 
To present a uni fi ed approach to mind, we need  fi rst to discuss brie fl y the nature of 
life and artifacts. Machine metaphor is often perceived as a misleading simpli fi cation 
of the phenomena of life and mind (Deacon  2011 ; Emmeche and Hoffmeyer  1991  ) . 
The motivation to separate life and mind from machines comes from the fact that 
simple machines are manufactured and programmed by humans, whereas organ-
isms are self-produced and develop from eggs into their de fi nite shape (Swan and 
Howard  2012  ) . Also, machines change their state following deterministic rules rather 
than internal goals and values. But, despite these differences, the progress in under-
standing life and mind seems to lie in bridging the gap between life and artifacts 
rather than in building a wall between them. In particular, biological evolution can 
be seen as a sequence of inventions of various instruments that are needed to per-
form living functions (Dennett  1995  ) . Cellular processes are based on molecular 
machines that copy sequences of nucleic acids, synthesize proteins, modify them, 
and assemble them into new molecular machines. Thus, components of organisms 
are manufactured, and living systems are indeed artifacts (Barbieri  2003  ) . Although 
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man-made machines lack some features of living organisms, this de fi ciency should 
be attributed to our insuf fi cient knowledge and experience. Humans only just began 
learning how to make self-programmable and self-repairable mechanisms, whereas 
living cells mastered these skills billions of years ago. 

 One of the heuristics of systems methodology is “functionalism,” which assumes 
that systems should be compared based solely on their functions rather than their 
material composition. This idea was initially proposed as a foundation for “relational 
biology” (Rashevsky  1938 ; Rosen  1970  )  and later was formulated as “functional 
 isomorphism” (Putnam  1975  ) . If an arti fi cial system performs the same (or similar) 
functions as a living organism, then there is good reason to call it “alive.” However, it 
would be confusing to apply the term “living organism” to arti fi cial devices. Instead, 
it is better to use the term “agent” which  fi ts equally well to living organisms and 
arti fi cial devices. Agents should not be viewed only as externally programmed devices, 
as is commonly done in cybernetics. Although all agents carry external programs, the 
majority of agents, including all living organisms, also have self-generated programs. 
An agent is a system with spontaneous activity that selects actions to pursue its goals. 
Goals are considered in a broad sense, including both achievable events (e.g., captur-
ing a resource, reproduction), and sustained values (e.g., energy balance). Some goals 
are externally programmed by parental agents or higher-level agents, and other goals 
emerge within agents. Note that mind is not necessarily present in agents. Simple 
agents can automatically perform goal-directed activities based on a program. 

 In the  fi eld of arti fi cial intelligence, ideas of functionalism are often misinter-
preted as a primacy of the digital program over the body/hardware and environment. 
Internet-based programs like the virtual world of “Second Life” may convince peo-
ple that their functionality can be fully digitized in the future. However, programs 
are not universal but instead tailored for speci fi c bodies and environments and there-
fore can be exchanged without loss of functionality only between similar agents in 
similar environments. Thus, “digital immortality” is a myth (Swan and Howard 
 2012  ) . Self-producing agents have many body-speci fi c functions associated with 
metabolism, assembly of subagents, growth, development, and reproduction. 
Obviously, these functions cannot be realized in a qualitatively different body. But 
functional methodology works even in this case because the body can support a 
large number of alternative activities, and it needs information to organize and con-
trol these activities. In summary, agents require  both  speci fi c material organization 
(body) and functional information to control their actions. 

 Agents are always produced by other agents of comparable or higher functional 
complexity (Sharov  2006  ) . This statement is an informational equivalent of the 
gradualism principle in the theory of evolution (Sharov  2009b  ) . The reason why 
agents cannot self-assemble spontaneously is that they carry substantial functional 
complexity. Long evolutionary (or learning) timelines are required to develop each 
new function via trial and error; therefore, simultaneous and fast emergence of 
numerous novel functions is unlikely. The origin of life does not contradict the prin-
ciple of gradualism because primordial agents were extremely simple and started 
from single functions (Sharov  2009a  ) . The production of arti fi cial agents by humans 
also satis fi es the principle of gradualism because humans have a higher level of 
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functional complexity than any human-made devices. Methods of agent manufac-
turing may include assembly from a set of parts as well as self-organization and 
self-development. Although the majority of human-made agents are assembled, 
some of them use elements of development. For example, satellites can unfold and 
reassemble in space after launch. Self-assembly is a common approach in nanotech-
nology and in synthetic organisms.  

    3   Functional Information 

 Agents are unusual material objects whose dynamics cannot be effectively described 
by physics, although they do not contradict physics. Instead, a semiotic description 
appears more meaningful: agents carry functional information, which is a collection 
of signs that encode and control their functions. The adjective “functional” helps to 
distinguish functional information from quantitative approaches developed by 
Shannon and Kolmogorov (Shannon  1948 ; Kolmogorov  1965  ) . Although signs are 
material objects, they have functions within agents that are not directly associated 
with their physical properties. 

 Semiotics stems from the work of Charles Sanders Peirce, who de fi ned a sign as 
a triadic relationship between a sign vehicle, object, and interpretant, which is a 
product of an interpretive process or a content of interpretation (Peirce  1998  ) . 
However, not all agents can associate signs with content or meaning. Thus, I prefer 
a more generic de fi nition of signs as objects that are used by agents to encode and 
control their functions (Sharov  2010  ) . Most signaling processes that take place 
within the cells of living organisms do not invoke ideal representations, but they 
encode and/or control cellular functions and thus have a semiotic nature. Peirce 
deemphasized the role of agents in informational processes and did not consider the 
agent or organism as a component of the triadic sign relationship. He thought that 
meanings belonged to nature rather than to agents. For example, he wrote about 
nature’s ability to acquire habits, which is consistent with his philosophy of objec-
tive idealism. Similar views were expressed by Jesper Hoffmeyer who assumed 
“minding nature” (Hoffmeyer  2010  ) . In contrast, I view signs only in connection 
with agents who use them and see no reason to consider nature an agent. Although 
it may be hard to refute claims that the universe or Gaia are superorganisms 
(Lovelock  1979  ) , I take a conservative approach and use the notion of “agent” only 
for those systems that clearly show a reproducible goal-directed activity and carry 
functional information to organize this activity (Sharov  2010  ) . 

 Functional information is inseparable from agents who use it. Living organisms 
are products of their genome, which controls their development and growth. In con-
trast, cybernetics often distinguishes information (software) from computational 
devices (hardware). The distinction of software and hardware is meaningful only for 
slave agents like computers, which are produced and externally programmed by 
humans. A computer is similar to a ribosome in a living cell, because ribosomes are 
manufactured and externally programmed to make proteins. Programmed agents 
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are often viewed as nonsemiotic systems (Barbieri  2008  ) . However, this idea appears 
confusing because the execution of a program is a part of the semiotic activity of all 
agents, and agency is not possible without it. We humans are programmed  genetically 
by our ancestors, behaviorally by our parents, and culturally by our society. These 
programs support our identity as a  Homo sapiens  species, as well as our race, sex, 
nationality, personality, and a whole range of physical and mental abilities. In addi-
tion to external programs, humans and most other organisms develop their own 
programs. When we learn new behaviors and skills, we convert them into programs 
that can be executed automatically or with minimal intervention from our con-
sciousness. These self-generated programs comprise our personal identity. Our 
freedom comprises only a tiny fraction of our functional behavior. In fact, freedom 
would be destructive if it were not well balanced with programmed functions that 
can correct mistakes. But evolution would not be possible if all agents were 100% 
externally programmed, and nonevolving agents would perish in changing environ-
ments. Thus, the role of fully programmed agents is limited to supportive functions 
for other agents that are able to evolve and learn. 

 The meaning of functional information is grounded in a communication system, 
which is a set of compatible communicating agents (Sharov  2009c  ) . For example, the 
genome alone does not mean anything; it has meaning only in relation to the organ-
isms that use       it. An egg can be viewed as a minimal interpreter of the genome 
(Hoffmeyer  1997  ) . Although the structure of an egg is encoded by the genome, a real 
egg is needed to interpret the genome correctly. Thus, heredity is based on a combi-
nation of [genome + egg] rather than on the genome alone. This leads us to the idea 
that functional information is not universal but has its meaning only in relation to a 
certain communication system. Even a single agent is involved in a continuous self-
communication through memory and therefore can be viewed as a communication 
system. Memory is a message sent by an agent to its own future state, and its purpose 
is to preserve the agent’s ability to perform certain functions. Heredity is an extended 
self-communication or intergeneration memory (Sharov  2010  ) . Other communica-
tion systems include multiple agents that exchange signals or messages. The most 
common example of such horizontal communication in living organisms is sexual 
reproduction, where the egg encounters an unfamiliar paternal genetic sequence. 
Agents from different communication systems do not exchange functional informa-
tion on a regular basis because their interpretation modules are not fully compatible. 
For example, most interspecies hybrids in mammals are nonviable or sterile as a 
result of misinterpretation of the paternal genome. Communication systems often 
have a hierarchical structure. For example, species are partitioned into populations, 
which in turn are partitioned into colonies or families. Subagents within organisms 
(e.g., cells) make their own communication systems. Communication is often asym-
metric when one kind of agent manipulates the functional information of another 
kind of agent. For example, agents can (re)program their subagents or offspring 
agents. Asymmetric communication often occurs between interacting organisms of 
different species (e.g., parasites reprogram their hosts, or preys mislead predators via 
mimicry and behavioral tricks). Because  communication systems are multiscale and 
interdependent, evolution happens at multiple levels simultaneously.  
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    4   Emergence of Mind from Elementary Signaling Processes 

 Mind is not a necessary component of agents. Bacteria are examples of mindless 
agents that operate via elementary signaling processes such as DNA replication, 
transcription, translation, and molecular sensing. They do not perceive or classify 
objects in the outside world as humans do; instead, they detect signals that directly 
control their actions. Direct control, however, may include multiple steps of signal 
transfer as well as logical gates. Following Prodi, I call this primitive level of semio-
sis “protosemiosis” (Prodi  1988  ) . Protosemiosis does not include classi fi cation or 
modeling of objects; it is “know-how” without “know-what.” Because molecular 
signaling is so different from higher levels of semiosis, Eco excluded it from con-
sideration in semiotics (Eco  1976  ) . However, the analysis of molecular signs in 
bacteria helps us to understand the origin and nature of signs in animals and humans; 
thus, protosemiosis should not be dismissed. Protosigns (i.e., signs used in pro-
tosemiosis) do not correspond to any object, which may seem confusing because 
our brains are trained to think in terms of objects. Although we associate a triplet of 
nucleotides in the mRNA with an amino acid as an object, a cell does not have a 
holistic internal representation of amino acid; thus, it is not an object for a cell. 
Instead, a triplet of nucleotides in the mRNA is associated with an action of tRNA 
and ribosome, which together append an amino acid to the growing protein chain. 

 Mind represents a higher level of information processing compared to pro-
tosemiosis because it includes classi fi cation and modeling of objects and situations 
(e.g., food items, partner agents, and enemies). These classi fi cations and models 
represent the “knowledge” an agent has about itself and its environment, which are 
Innenwelt and Umwelt following the terminology of Uexküll  (  1982  ) . I proposed 
calling this new level of semiosis “eusemiosis” (Sharov  2012  ) . Information pro-
cessing in eusemiosis can no longer be tracked as a sequence of signal exchanges 
between components. Instead, it goes through multiple semi-redundant pathways, 
whose involvement may change from one instance to another but invariantly con-
verge on the same result. Thus, attractor domains are more important for under-
standing the dynamics of mind than individual signaling pathways. The classi fi cation 
of objects can be viewed as a three-step process. The  fi rst step is immediate percep-
tion, when various receptors send their signals to the mind, and these signals 
 collectively reset the mind to a new state (or position in a phase space). The second 
step is the internal dynamics of mind which start with the new state of mind and 
then converge to one of the attractors. This process is equivalent to recognition or 
classi fi cation. Each attractor represents a discrete meaningful category (e.g., fruit 
or predator), which I call “ideal object.” In contrast to real objects that are compo-
nents of the outside world, ideal objects exist within the mind and serve as tools for 
classifying real objects. Finally, at the third step, the ideal object acts as a check-
point to initiate some other function (physical or mental). 

 Ideal objects do not belong to a different parallel universe as claimed by Popper 
 (  1999  ) . Instead, they are tools used by agents to perceive and manipulate the real 
world. Following the “law of the instrument” attributed to Mark Twain, to a man 
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with a hammer, everything looks like a nail. Thus, ideal objects within mind deter-
mine how the outside world is perceived and changed. Ideal objects are implemented 
as functional subunits within complex material systems, for example, as speci fi c 
patterns of neuronal activity or “brain-objects” (Swan and Goldberg  2010  ) . But the 
material implementation of ideal objects is  fl exible whereas the function is stable. 
Similarly, computer programs are functionally stable despite the fact that they are 
loaded each time into a different portion of physical memory and executed by a dif-
ferent processor (if available). 

 “Object” is one of the most complex and abstract notions in human thought. 
However, we should not transfer all this complexity to simple agents like worms 
or shell fi sh. For example, we usually distinguish between objects and their attri-
butes, where attributes are generic (e.g., whiteness) and can be applied to various 
classes of objects. Although we cannot directly assess the minds of simple agents, 
it is unlikely that they can contemplate generic attributes. Simple agents distin-
guish between classes of objects, but they do it unconsciously without considering 
attributes as independent entities. Humans can think of hypothetical ideal objects 
(e.g., unicorns), which include certain combinations of abstract attributes. Obviously, 
simple agents are not able to do that. Another difference is that humans can rec-
ognize individual objects, whereas simple agents cannot distinguish objects within 
the same functional category. Learning and modeling capacities of mind have 
progressed substantially in evolution (see below), and we should not expect that 
simple agents have the same  fl exibility in connecting and manipulating ideal 
objects as humans do. 

 Mind is a necessary tool for intentional behavior, which I consider a higher level 
of goal-directed activity. In contrast to protosemiotic agents, mind-equipped agents 
have holistic representations of their goals, which are perceived as ideal objects and 
integrate a large set of sensorial data. For example, immune cells of eukaryotic 
organisms can recognize a viral infection by the shape of the viral proteins as well 
as by speci fi c features of viral nucleic acids and launch a defense response by pro-
ducing interferon, antibodies, and cytokines. Memory T cells keep information on 
the properties of viral proteins acquired during the previous exposure to the same 
virus. 

 Goals may emerge internally within agents; however, they can also be programmed 
externally. For example, instinctive behaviors of organisms are programmed geneti-
cally by ancestors. In this case, ideal objects develop somehow together with the 
growing brain. External programming of goals is typical for arti fi cial minds in robotic 
devices equipped with automated image processing modules (Cariani  1998,   2011  ) .  
 For example, a self-guided missile is programmed to classify objects into targets 
and nontargets and to follow the target. 

 Agents with an externally programmed mind can support a given static set of 
functions, but they lack adaptability and would not be able to keep a competitive 
advantage in changing environments. Thus, autonomous agents need adaptive minds 
capable of improving existing ideal objects and creating new ones via learning. Mind 
can generate new behaviors by creating novel attractors in the  fi eld of perception 
states and linking them with speci fi c actions. If such behaviors prove useful, they can 
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become habits and contribute to the success of agents. Requirement of learning does 
not imply that mind-carrying agents learn constantly. Minds may persist and func-
tion successfully in a nonlearning state for a long time. Most arti fi cial minds are 
static replicas of some portion of the dynamic human mind. But minds cannot 
improve without learning. 

 The statement “minds cannot improve without learning” is correct if applied to 
individual agents; however, limited improvements of minds are possible in lin-
eages of self-reproducing nonlearning agents via genetic selection. Mutations 
may cause the appearance of new attractors in the dynamic state of nonlearning 
minds or new links between ideal objects and actions. If these heritable represen-
tations help agents to perform some functions, the agents will reproduce and dis-
seminate new behaviors within the population. This process, however, is slow and 
inef fi cient because of several problems. First, genetic selection can hardly pro-
duce any results in such highly redundant systems as minds because most changes 
of individual elements have no effects on the behavior. In other words, the  fi tness 
landscape is almost  fl at. Second, mind is a complex and well-tuned system; thus, 
any heritable change to individual elements that does have a phenotype is likely 
to be disruptive. Third, the functionality of mind has to be assessed in each situa-
tion separately because it may work in some cases but not in others. Genetic selec-
tion depends mostly on the worst outcome from a single life-threatening situation, 
and thus, it is ineffective for improving the performance of mind in individual 
situations. But despite these problems, it is conceivable that limited improvements 
of mind can be achieved by genetic selection. This helps us to explain how most 
primitive nonlearning minds appeared in the evolution of protosemiotic agents. 
Moreover, simple learning algorithms may emerge in the evolution of mind solely 
via genetic selection, making minds adaptable and partially independent from the 
genetic selection (see below). But genetic mechanisms are still important for the 
functionality of mind even in humans because the architecture of the brain is 
heritable.  

    5   Components of Minimal Mind Can Emerge 
Within Protosemiotic Agents 

 Because the emergence of mind is a qualitative change in organisms, it is dif fi cult to 
understand the intermediate steps of this process. Here, I argue that all necessary 
components of mind, which include semi-redundant signaling pathways, stable 
attractors, and adaptive learning, can emerge at the protosemiotic level. Moreover, 
these components emerge not as parts of mind (which does not exist yet) but as tools 
that increase the ef fi ciency of other simpler functions. 

 Redundancy of signaling pathways may seem to be a waste of valuable resources; 
however, it appears bene fi cial for agents in the long run. First, redundancy ensures 
the reliability of signaling. If one pathway is blocked (e.g., as a result of injury, stress, 
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or infection), then normal functions can be restored via alternate pathways. Each 
cell has multiple copies of all kinds of membrane-bound receptors because cells 
cannot predict the direction of incoming signals and thus distribute receptors around 
the whole surface. Second, redundant signaling pathways may generate novel com-
binatorial signals. For example, one photoreceptor can only distinguish different 
intensities of light, but multiple photoreceptors can identify the direction of light 
and even distinguish shapes. Third, redundant signaling pathways increase the 
adaptability of agents because some of them may start controlling novel functions 
in subsequent evolution. 

 Stable attractors are common to most autoregulated systems, including simple 
devices with a negative feedback (e.g., centrifugal governor of the steam engine). 
Stability is necessary for all living organisms to maintain vital functions at opti-
mal rates. Any function that escapes regulation may become harmful and lead to 
disease or death. However, simple stability in the form of steady states is usually 
not suf fi cient for living organisms. Reproduction, growth, and the development of 
organisms require more complex regulation pathways that combine stability with 
change in a form of limit cycles, branching trajectories, and even chaotic attrac-
tors (Waddington  1968  ) . 

 Genetic mechanisms are not suitable for learning because the sequence of 
nucleotides in the DNA is not rewritable (although limited editing is possible). 
In contrast, simple autocatalytic networks can switch between two stable states 
(“on” and “off”) and serve as a dynamic memory for the cell. Moreover, such 
networks can support primitive learning (e.g., sensitization and habituation) as 
well as associative learning as follows from a simple model of two interacting 
genes (Ginsburg and Jablonka  2009  ) . In this model, genes  A  and  B  are activated 
by different signals  S  

 a 
  and  S  

 b 
 , and the product  P  

 a 
  of gene  A  has three functions: 

(1) it induces a speci fi c phenotype or physiological response; (2) it stimulates 
temporarily the expression of gene  A  so that the gene remains active for some 
time after the initial signal  S  

 a 
 ; and (3) it makes the expression of gene  A  depen-

dent on the product  P  
 b 
  of gene  B . If gene  A  is silent, then signal  S  

 b 
  activates gene 

 B , but its activity does not produce any phenotype. However, if signal  S  
 b 
  comes 

shortly after signal  S  
 a 
 , then the  product  P  

 b 
  will activate gene  A  and produce a 

phenotype. This network belongs to the protosemiotic level because it is based 
on  fi xed interactions between few components. 

 Because all components of minimal mind can appear within protosemiotic 
agents, the emergence of mind seems inevitable. But there is still a problem of how 
to combine these components. In particular, agents have to increase the depth of 
their hierarchical organization by making a set of partially independent subagents, 
whose state may switch between multiple attractors with adjustable topology. These 
subagents, which can be viewed as standard building blocks of mind, should then 
become connected via adjustable links. It appears that epigenetic mechanisms can 
convert DNA segments into a network of sub-agents with  fl exible control, as dis-
cussed in the following section.     



352 A.A. Sharov

    6   Epigenetic Regulation May Have Supported 
the Emergence of Minimal Mind 

 It is dif fi cult to pinpoint the emergence of mind on the evolutionary tree of life. 
However, it is certain that mind appeared in eukaryotic organisms with well- developed 
epigenetic regulation. Epigenetic mechanisms include various changes in cells that 
are long-lasting but do not involve alterations of the DNA sequence. I will consider 
only those epigenetic mechanisms that are mediated by chromatin structure because 
they are likely to have facilitated the emergence of mind. Chromatin consists of DNA 
assembled together with histones, which are speci fi c proteins that support the stability 
of DNA and regulate its accessibility to transcription factors. Histones can be modi fi ed 
in many ways (e.g., acetylated, methylated, phosphorylated, or ubiquitinated) by 
molecular agents, and these modi fi cations affect the way histones bind to each other 
and interact with DNA and other proteins. Some modi fi cations convert chromatin to a 
highly condensed state (heterochromatin); other modi fi cations support loose chroma-
tin structure (euchromatin), which allows binding of transcription factors and subse-
quent activation of mRNA synthesis (Jeanteur  2005  ) . Molecular agents can both read 
and edit histone marks. In particular, they can modify newly recruited histones after 
DNA replication in agreement with marks on the partially retained parental histones 
(Jeanteur  2005  ) . As a result, chromatin states survive cell division and are transferred 
to both daughter cells. Thus, chromatin-based memory signs can reliably carry rewrit-
able information through cell lineages and control differentiation of embryos (Markoš 
and Švorcová  2009  ) . The chromatin state depends not only on histone marks but also 
on other proteins that establish links between distal DNA segments, as well as links 
between chromatin and nuclear envelopes. These proteins, which include insulators, 
mediators, cohesions, and lamins, create and maintain a complex 3-dimensional struc-
ture of the chromatin (Millau and Gaudreau  2011  ) . Distal links create new neighbor-
hoods and change the context for chromatin assembly. 

 Epigenetic mechanisms are important for the origin and function of mind because 
(1) they support a practically unlimited number of attractors that are spatially asso-
ciated with different DNA segments, (2) these attractors can be utilized as rewrit-
able memory signs, and (3) chromatin attractors can become interconnected via 
products of colocalized genes. Chromatin structure is repaired after mild perturba-
tions by special molecular agents that edit histone marks. These repair mechanisms 
ensure the stability of attractors in the  fi eld of chromatin states. However, strong 
perturbations may cross the boundary between attractors, and chromatin would con-
verge to another stable (or quasi-stable) state, which means overwriting the chroma-
tin memory. Speci fi c states of chromatin are spatially associated with certain genes, 
and these genes become activated or repressed depending on the chromatin state. 
Active genes produce proteins (e.g., transcription factors) which may regulate chro-
matin state at other genome locations. Association of chromatin with DNA is not 
sequence speci fi c, which gives organisms the  fl exibility to establish regulatory links 
between any subsets of genes. 

 The combination of these three features of chromatin can support adaptive learn-
ing at the cellular level. As a toy model, consider a gene that can be activated via 
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multiple regulatory modules in its promoter. Initially, the chromatin is loose at all 
regulatory modules, and therefore, DNA is accessible to transcription factors. 
Eventually, a successful action of a cell (e.g., capturing food) may become a 
 “memory-triggering event,” which forces the chromatin to condense at all regula-
tory modules except for the one that was functional at the time of the event. Then, 
as the cell encounters a similar pattern of signaling next time, only one regulatory 
module would become active – the one that previously mediated a successful action. 
Modi fi cation of chromatin (i.e., opening or closing) is controlled by the production 
of certain transcription factors that move from the cytoplasm to the nucleus and  fi nd 
speci fi c DNA patterns where they bind. But how can transcription factors differenti-
ate between active and nonactive regulatory modules so that only nonactive mod-
ules become closed? This kind of context-dependent activity is possible, thanks to 
the interaction between multiple transcription factors that are located close enough 
along the DNA sequence. For example, binding of the P300 protein to the regula-
tory module indicates ongoing activity of this module (Visel et al.  2009  ) , and tran-
scription factors may have opposite effects on the chromatin depending on whether 
they are bound to DNA alone or in combination with P300. This kind of mechanism 
may support associative learning at the initial steps of the emergence of mind. 
An important component of this mechanism is the ability of an agent to classify its 
own states as “success” or “failure,” and activate memory in the case of success. 

 The importance of chromatin is supported by the fact that mechanisms of learn-
ing and memory in the nervous system include DNA methylation and histone acety-
lation (Levenson and Sweatt  2005 ; Miller and Sweatt  2007  ) . However, it is plausible 
that mind appeared even before the emergence of the nervous system. For example, 
unicellular ciliates have elements of nonassociative learning (Wood  1992  )  and even 
associative learning (Armus et al.  2006  ) . Plants, fungi, sponges, and other multicel-
lular organisms without nervous systems are all likely to anticipate and learn, 
although their responses are much slower than in animals (Ginsburg and Jablonka 
 2009 ; Krampen  1981  ) . It is reasonable to assume that mind functions were initially 
based on intracellular mechanisms, and only later, they were augmented via com-
munication between cells. Then a multicellular brain should be viewed as a com-
munity of cellular “brains” represented by the nuclei of neurons. The idea that 
cellular semiosis is the basis for the functionality of the brain has been recently 
proposed by Baslow  (  2011  ) . The human brain consists of 100 billion neurons, and 
each neuron has thousands of synaptic links with other neurons. Synapses of single 
neurons are all specialized in various functions; some of them are active, while 
 others are repressed. Thus, a neuron has to “know its synapses” because otherwise 
signals coming in from different synapses would be mixed up. In addition, neurons 
have to distinguish temporal patterns of signals coming from each synapse (Baslow 
 2011  ) . Individual neurons need at least minimal mind capacity to classify these 
complex inputs. 

 Baslow proposed that the “operating system” of neurons is based on metabolism 
(Baslow  2011  ) . Although active metabolism is indeed required for the functioning of 
neurons, it does not seem to be speci fi c for mind and cannot explain how cells learn 
to recognize and process new signaling patterns. The cellular level of mind is more 
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likely to be controlled by epigenetic regulatory mechanisms in the nucleus. In multi-
cellular organisms, however, many additional processes are involved in learning and 
memory, such as the establishment of synaptic connections between neurons and the 
specialization of neural subnetworks for controlling speci fi c behaviors. 

 Mind appears as a new top-level regulator of organism functions, but it does not 
replace already existing hardwired protosemiotic networks. Many low-level functions 
do not require complex regulation; they are well controlled by direct signaling, and 
replacing them with a learning mechanism would be costly and inef fi cient. However, 
some hard-programmed processes like embryo development may acquire partial 
guidance from the minds of individual cells or from the brain. Neurons establish 
functional feedback regulation of growing organs, where nonfunctional cells or cell 
parts (e.g., synapses) are eliminated (Edelman  1988  ) . In other words, cells attempt 
to  fi nd a “job” in the body that  fi ts to an available functional niche and the cell’s 
prehistory. If a job is not found, then the cell goes into apoptosis.  

    7   The First Object Classi fi ed by Minimal Mind Was the Body 

 The initial task of mind was to classify those objects that are most important for the life 
of an organism. Because an agent’s body is most intimately linked with a large number 
of functions, we can hypothesize that the body was the  fi rst object to be classi fi ed by 
mind. The purpose of classifying body states is to assign priorities to various functions, 
such as the search for food, defense from enemies, and reproduction. Functions of 
protosemiotic agents are directly controlled by internal and external signs, and there-
fore, priorities are  fi xed by a heritable signaling network. In contrast, agents with mind 
can learn to distinguish body states and adjust the priority of functions based on previ-
ous experience. 

 Of the two components of mind, Innenwelt (classi fi cations and models of self) 
and Umwelt (classi fi cations and models of external objects), Innenwelt is primary 
and Umwelt is secondary. Simple agents do not distinguish between internal and 
external sensations. It requires additional complexity for agents to realize that there 
are external objects beyond signals that come from receptors. The main difference 
between “internal” and “external” worlds is a higher predictability of the internal 
world and a lower predictability of the external world. Thus, it is reasonable to pre-
sume that Umwelt emerged as a less predictable portion of a former Innenwelt. 
This evolutionary approach to the differentiation of “external” from “internal” is 
profoundly different from cybernetics, where the boundary between the system and 
environment is de fi ned a priori. 

 The capacity of mind to classify and model objects is closely related to the ability 
of agents to track objects. In particular, agents can rely on the assumption that objects 
keep their properties over time. For example, a predator that is chasing an object 
identi fi ed previously as prey does not need to repeat identi fi cation over and over again. 
Similarly, modeling appears most bene fi cial if the agent keeps track of the predicted 
object. Thus, tracking of objects by agents augments the utility of classi fi cation and 
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modeling. The advantage of body as the  fi rst classi fi ed and modeled object is that it is 
always accessible, and thus, agents do not need additional skills for object tracking.  

    8   Modeling Functions of Mind 

 Modeling, which can be de fi ned as prediction or anticipation of something unper-
ceived, is the second major function of mind after the classi fi cation of objects. 
Elements of modeling are present in any classi fi cation, because ideal objects are 
already models. Recognition of an object is based on the anticipated combination of 
traits, as follows from the extensively explored area of image recognition. Some of 
these models are  fi xed, whereas others include parameters that are adjusted to 
increase the likelihood of a match between the model and sensorial data (Perlovsky 
et al.  2011  ) . For example, distance to the object can be used as a parameter which 
affects the size and resolution of the image, as well as its position relative to other 
objects. These simple models belong to the primary modeling system, where ideal 
objects are not connected and therefore not used for prediction or anticipation of 
something different than what is perceived. Some of them are pure sensations, and 
others are integral sensation-actions. As an example of sensation-action, consider a 
moth that by instinct starts laying eggs after recognizing its host plant. 

 Advanced models that establish relationships between ideal objects belong to the 
secondary modeling system (Sebeok  1987  ) . For example, if a bird attempts to eat a 
wasp and gets stung, then it connects the ideal object    of a wasp with pain. As a 
result, this bird will not attempt to eat anything that looks like a wasp because the 
image of a wasp reminds it of pain. It was suggested that the secondary modeling 
system is handled by the interpretive component of the brain, whereas cybernetic 
and instinctive components handle the primary modeling (Barbieri  2011  ) . The sec-
ondary modeling system establishes links between various ideal objects and there-
fore allows agents to develop  fl exible relationships between signs and functions. 
The origin of the secondary modeling system can be associated with the emergence 
of powerful sense organs that provided animals with more information than was 
needed for immediate functions. As a result, the classi fi cation of objects became 
more detailed and partially independent from their utility. Using a combination of a 
large number of traits, animals are able to recognize individual objects, associate 
them with each other, and make a mental map of their living space. Individual objects 
are then united into functionally relevant classes. Animals also can use abstract 
ideal objects that correspond to individual traits (e.g., color, shape, or weight) of 
real objects. Dynamic models associate the current state of an object with future 
states of the same object. They are used by predators to predict the movement of 
their prey. Association models predict the presence of one object from the observa-
tion of another kind of object. For example, animals associate smoke with forest 
 fi res and attempt to escape to a safe location. 

 One of the recent approaches to model building is dynamic logic (Perlovsky 
et al.  2011  ) . The idea is to maximize the likelihood of matching between the set of 
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models with adjustable parameters to the set of empirical data. Each model corre-
sponds to a potential object, which can be added or deleted in the process of optimi-
zation. The accuracy of comparison between object-models increases, and model 
parameters are adjusted as optimization progresses. This approach explains two 
important aspects of modeling. First, detection of objects is not possible without 
models because models specify what we are looking for. And second, objects can be 
measured using optimal parameters of object-models (although this is not the only 
way to measure objects). Because the data are referenced by space and time, models 
include motion equations and yield plausible trajectories of object-models. However, 
all object-models identi fi ed with this method are primary ideal objects (i.e., they 
belong to the primary modeling system). Connections between primary objects 
have to be established at a higher level of the hierarchy of objects (Perlovsky et al. 
 2011  ) . 

 Models are the main subject of Peirce’s semiotics, where the perceived object is a 
sign vehicle that brings into attention the interpretant or associated ideal object. The 
primary modeling system operates with icons, which are associated with isolated 
ideal objects (sensations or sensation-actions), whereas the secondary modeling sys-
tem also includes indexes which are the links between ideal objects (Sebeok and 
Danesi  2000  ) . Peirce, however, viewed sign relationships as components of the world 
rather than models developed by agents. He believed that models were embedded in 
the world. The danger of this philosophy (i.e., objective idealism) is that it easily 
leads to dogmatism as models become overly trusted. But how can we evaluate the 
relationship between a model and reality? Models can be used in two ways: they can 
be trusted and they can be tested. When a bird does not attempt to catch wasps after 
being stung, it trusts the model of a wasp. However, not all models generate repro-
ducible results, and therefore, models need to be tested and modi fi ed if necessary.  

    9   Testing Models 

 Model testing is one of the most important activities in science, and it has direct 
implications for epistemology (Cariani  2011 ; Popper  1999 ; Rosen  1991 ; Turchin 
 1977  ) . Animals also test models, but they do not run experiments for the sake of 
testing hypotheses as humans do. Instead, they evaluate the success rates of their 
behavioral strategies and establish preferences for more successful behaviors. In this 
way, predators learn how to chase and capture prey, and birds learn how to attract 
the attention of predators away from their nests. 

 Model testing is a complex procedure that determines if predictions generated by 
the model match the real world. In the simplest case, an agent measures the initial 
state of the object, and the obtained results are used as input for the model. Then the 
output of the model is compared to the measurement of the  fi nal state of the object, 
and if they match, the test is considered successful (Cariani  2011 ; Rosen  1991 ; 
Turchin  1977  ) . To formalize model testing, we need to generalize our terms. First, 
the expression “initial state of the object” implies that agents have a method for 
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tracking objects. In particular, each object  O  is associated with the  fi nal object  G ( O ), 
where  G  is the tracking function. Second, objects are characterized either quantita-
tively by measurements or qualitatively by the identi fi cation of individual features or 
by classifying whole objects. In result, each object  O  becomes associated with some 
ideal object  M ( O ) in mind, which is interpreted as a measurement of that object. 
In general, agents use multiple measurement methods  M  

1
 ,  M  

2
 , …  M  

 n, 
  which are 

applicable in different situations. Similarly, in science, we use different measurement 
devices and sensors to characterize objects. Finally, the model is a map,  F , between 
ideal objects in mind. For example, a dynamic model associates initial measurements 
of an object with measurements of its  fi nal state. Then successful model testing can 
be represented by a commuting diagram (Fig.  1 ), where measurement of the  fi nal 
state of the object,  M  

2
 ( G ( O )), matches to the model output from the measurement of 

the initial state of the object used as input,  F ( M  
1
 ( O )). Two measurement methods  M  

1
  

and  M  
2
  may be the same, but in the general case, they are different. If the equation 

 M  
2
 ( G ( O )) =  F ( M  

1
 ( O )) is true for all available objects, then the model  F  is universal 

relative to measurement methods  M  
1
  and  M  

2
  and tracking method  G .  

 Commuting diagrams, similar to Fig.  1 , were proposed previously (Cariani 
 2011  ) , but function  G  was interpreted as objective natural dynamics of the world. 
In contrast, I associate function  G  with an agent’s ability to track or manipulate 
objects. An example of nontrivial object tracking is the association of the “morning 
star” with the “evening star” (i.e., planet Venus) on the basis of the model of plan-
etary movement. This example illustrates that all four components of the model 
relation ( F ,  G ,  M  

1
 ,  M  

2
 ) are interdependent epistemic tools, and one component may 

help us to improve another component. 
 Cariani suggested that the manipulation of an object is a mapping from the ideal 

representation to the object itself (Cariani  2011 ), which has the opposite direction 
compared to the measurement. This approach, however, implies that real objects are 
created from ideal objects without any matter. In contrast, I suggest associating the 
manipulation of objects with various tracking functions  G . Some  G  functions may 
represent a passive experiment, where objects are mapped to their natural future state, 
whereas other  G  functions represent active experiments where objects are mapped 
into their products after speci fi c manipulations. If we want to construct meta-models 
that describe multiple methods of object manipulation, then each method  i  should be 
linked with a corresponding model  F  

 i 
  and object tracking method  G  

 i 
 . 

O

F

G
G(O)

M1(O) F(M1(O)) = M2(G(O))

M1 M2

  Fig. 1    Commuting 
diagram of model testing. 
    M  

1
  and  M  

2
  are 

measurement methods for 
the initial object  O  and 
 fi nal object  G ( O ), 
respectively;  G  is the 
object tracking function, 
and  F  is the map between 
ideal objects in the model       
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 Commuting diagrams of model testing capture a very important aspect of episte-
mology: the equivalence is achieved in the domain of ideal objects rather than in the 
domain of real objects. Thus, different models may equally well capture the same 
process or relationship in the real world. The second conclusion is that models are 
always tested together with measurement methods and tracking methods, which are 
usually ignored in physics. As a result, agents from one communication system can-
not take advantage of models developed within another communication system if 
measurement methods and tracking methods do not match. 

 According to the critical rationalism of Popper, a model, whose predictions are 
wrong, should be removed from the domain of science (Popper  1999  ) . However, 
this rarely happens; instead, model components ( F ,  G ,  M  

1
 ,  M  

2
 ) are adjusted to make 

the diagram in Fig.  1  commuting. Popper condemned this practice because it makes 
hypotheses nonfalsi fi able. However, Popper’s argument does not make sense from 
the evolutionary point of view. If animals rejected any model that once had gener-
ated a wrong result, then they would soon run out of models and fail to perform their 
functions. Any model is a product of evolution and learning and integrates long-
term experience of agents. It is better to have a nonaccurate or nonuniversal model 
than no model at all. This explains why models are so persistent both in biological 
evolution and in human culture.  

    10   Model Transfer Between Individuals 

 Most models used by animals are not communicated to other individuals. Thus, 
each animal has to develop its own models based on trial and error as well as heri-
table predispositions. However, social interactions may facilitate the development 
of models in young animals. For example, animals may copy the behavior of their 
parents and eventually acquire their models in a faster way than by pure trial and 
error. However, ef fi cient communication of models is possible only by language, 
which corresponds to the cultural level of semiosis, following the terminology of 
Kull  (  2009  ) . In language, signs do not only correspond to ideal objects, they also 
replicate the structure of relationships between ideal objects in the model. Thus, 
language itself becomes the modeling environment called the tertiary modeling sys-
tem (Sebeok and Danesi  2000  ) . Language is based on symbols which are signs 
whose meanings are established by convention within the communication system. 
Then, a message with two (or more) interconnected symbols is interpreted as a link 
between corresponding ideal objects within the model. Thus, the tertiary modeling 
system is based on symbols (Sebeok and Danesi  2000  ) . 

 In conclusion, minimal mind is a tool used by agents to classify and model the 
objects. Classi fi cation ends up at the ideal object, which serves as a checkpoint to 
initiate certain physical or mental functions. Mind is projected to appear within 
eukaryotic cells with well-developed epigenetic regulation because these mecha-
nisms can convert DNA segments into standard information-processing modules 
with multiple attractor domains and  fl exible control. Classi fi cation and modeling of 
objects started from the body of agent and then expanded to external objects. Modeling 
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functions of mind progressed from primary models that simply support classi fi cation 
of objects to secondary models that interconnect ideal objects and  fi nally to tertiary 
models that can be communicated to other agents.      
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