
Chapter 14
Alzheimer’s Disease
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Abstract Alzheimer’s disease (AD) is a chronic neurodegenerative disease with
well-defined pathophysiological mechanisms, mostly affecting medial temporal lobe
and associative neocortical structures. Neuritic plaques and neurofibrillary tangles
represent the pathological hallmarks of AD, and are respectively related to the ac-
cumulation of the amyloid-beta peptide (Aβ) in brain tissues, and to cytoskeletal
changes that arise from the hyperphosphorylation of microtubule-associated Tau
protein in neurons. According to the amyloid hypothesis of AD, the overproduction
of Aβ is a consequence of the disruption of homeostatic processes that regulate the
proteolytic cleavage of the amyloid precursor protein (APP). Genetic, age-related
and environmental factors contribute to a metabolic shift favoring the amyloidogenic
processing of APP in detriment of the physiological, secretory pathway. Aβ peptides
are generated by the successive cleavage of APP by beta-secretase (BACE-1) and
gamma-secretase, which has been recently characterized as part of the presenilin
complex. Among several beta-amyloid isoforms that bear subtle differences depend-
ing on the number of C-terminal amino acids, Aβ1−42 plays a pivotal role in the
pathogenesis of AD. The neurotoxic potential of the Aβ peptide results from its
biochemical properties that favor aggregation into insoluble oligomers and protofib-
rils. These further originate fibrillary Aβ species that accumulate into senile and
neuritic plaques. These processes, along with a reduction of Aβ clearance from the
brain, leads to the extracellular accumulation of Aβ, and the subsequent activation
of neurotoxic cascades that ultimately lead to cytoskeletal changes, neuronal dys-
function and cellular death. Intracerebral amyloidosis develops in AD patients in an
age-dependent manner, but recent evidence indicate that it may be observed in some
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subjects as early as in the third or fourth decades of life, with increasing magnitude in
late middle age, and highest estimates in old age. According to recent propositions,
three clinical phases of Alzheimer’s disease may be defined: (i) pre-symptomatic (or
pre-clinical) AD, which may last for several years or decades until the overproduc-
tion and accumulation of Aβ in the brain reaches a critical level that triggers the
amyloid cascade; (ii) pre-dementia phase of AD (compatible with the definition of
progressive, amnestic mild cognitive impairment), in which early-stage pathology
is present, ranging from mild neuronal dystrophy to early-stage Braak pathology,
and may last for several years according to individual resilience and brain reserve;
(iii) clinically defined dementia phase of AD, in which cognitive and functional im-
pairment is severe enough to surmount the dementia threshold; at this stage there is
significant accumulation of neuritic plaques and neurofibrillary tangles in affected
brain areas, bearing relationship with the magnitude of global impairment. New tech-
nologies based on structural and functional neuroimaging, and on the biochemical
analysis of cerebrospinal fluid may depict correlates of intracerebral amyloidosis in
individuals with mild, pre-dementia symptoms. These methods are commonly re-
ferred to as AD-related biomarkers, and the combination of clinical and biological
information yields good diagnostic accuracy to identify individuals at high risk of
AD. In other words, the characterization of pathogenic Aβ by means of biochemical
analysis of biological fluids or by molecular neuroimaging are presented as diagnos-
tic tools to help identify AD cases at the earliest stages of the disease process. The
relevance of this early diagnosis of AD relies on the hypothesis that pharmacological
interventions with disease-modifying compounds are more likely to produce clini-
cally relevant benefits if started early enough in the continuum towards dementia.
Therapies targeting the modification of amyloid-related cascades may be viewed as
promising strategies to attenuate or even to prevent dementia. Therefore, the cumu-
lative knowledge on the pathogenesis of AD derived from basic science models will
hopefully be translated into clinical practice in the forthcoming years.
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Abbreviations

APP Amyloid Precursor Protein
AD Alzheimer’s Disease
APOE Apolipoprotein E
Aβ Amyloid-β Peptide
CaMK-ll Calcium calmodulin-kinase ll
CDK5 Cyclin-Dependent Kinases 5
CERAD Consortium to Establish a Registry for Alzheimer’s Disease
CNS Central Nervous System
CSF Cerebrospinal fluid
ER Endoplasmic Reticulum
GSK3β Glycogen Synthase Kinase-3β
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IDE Insulin-Degrading Enzyme
MAPK Microtubule Associated Protein Kinases
MCI Mild Cognitive Impairment
NFT Neurofibrillary Tangle
NIA National Institute of Aging
PHF Paired Helicoidal Filaments
PKA Protein Kinase A
PKC Protein Kinase C
PP Phosphatases Protein
P-Tau Phosphorylated Tau
sAPPα Soluble N-terminal Fragment
TGN Trans-Golgi Network
T-Tau Total Tau

14.1 Key Players in the Pathophysiology of Alzheimer’s
Disease (AD)

14.1.1 Amyloid Precursor Protein (APP)

APP is a transmembrane, type-1, integral glycoprotein of 110–130 kDa (Roberts et al.
1994), and represents one of the most abundant proteins in the central nervous system
(CNS). It is ubiquitously expressed in human tissues and is located in the plasma
membrane as well as in several organelles, such as endoplasmic reticulum (ER), Golgi
apparatus, and mitochondria (Rhein and Eckert 2007). There are several amyloid-β
species that vary according to the number and sequence of amino acids; those with
40 and 42 amino acids (Aβ40 and Aβ42) are the most abundant in the brain (Recuero
et al. 2004). Studies in cell biology have demonstrated that Aβ is generated in the
Golgi, ER and endosomal/lysosomal system. Truncated Aβ peptides (Aβx−42, “x”
generally ranging from 1 to 11) are preferentially generated within the ER, whereas
full-length Aβ peptides (Aβ1−40/42) are predominantly originated in the Golgi/trans-
Golgi network (TGN) and packaged into post-TGN secretory vesicles (Kulandaivelu
and Gopal 2006; Anandatheerthavarada et al. 2003). N-terminal truncation extends
to a maximum length around amino acid 11, which renders Aβ even more insoluble,
and therefore, represent non-secreted forms (Peskind et al. 2006).

APP is metabolized by two distinct and mutually exclusive pathways: the secretory
pathway (or non-amyloidogenic) and the amyloidogenic pathway (Fig. 14.1). In the
former, APP is first cleaved by α-secretase, releasing a soluble N-terminal fragment
(sAPPα) and a C-terminal fragment (C83), which is further cleaved by the γ-secretase
to originate a smaller C-terminal fragment of 3 kDa (C3). The-secretory cleavage of
APP is mediated by a group of membrane-bound proteases, which are members of the
ADAM (a disintegrin and metalloprotease) family, and α-secretase activity has been
attributed to ADAM-10 and ADAM-17 (Buxbaum et al. 1998; Lammich et al. 1999).
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Fig. 14.1 The amyloid precursor protein (APP) is a transmembrane protein cleaved by secretase
enzymes. In the secretory (non-amyloidogenic) pathway, APP is initially cleaved by α-secretase,
which occurs in the moiety of the amyloid domain (in red) and therefore precludes the formation
of Aβ. Alternatively, APP is sequentially cleaved by β- and γ-secretases to originate neurotoxic Aβ

monomers (amyloidogenic pathway), which polymerize into oligomers and aggregate into amyloid
fibrils

The cleavage of APP by α-secretase occurs within the sequence of amino acids that
pertain to the Aβ peptide, and therefore precludes the formation of amyloid peptides
(Braak and Braak 1998). In the amyloidogenic pathway, APP is alternatively cleaved
by β-secretase, releasing a smaller N-terminal fragment (sAPPβ) and a longer C-
terminal fragment (C99) that contains the full amyloidogenic sequence of amino
acids. A further cleavage of APP by γ-secretase yields the amyloid-β peptides (Aβ).

The Aβ species are released as monomers that progressively aggregate into dim-
mers, trimers, oligomers, protofibrils and fibrils, to finally deposit and originate the
amyloid plaques. Despite their similarities, Aβ42 is more prone to aggregation and
fibrilization, being the most neurotoxic Aβ peptide. Therefore, Aβ42 plays a pivotal
in the pathogenesis of AD (Recuero et al. 2004).

Aβ oligomers are considered the most toxic forms of the amyloid derivates
(Roberts et al. 1994). They interact with neurons and glial cells leading to the
activation of pro-inflammatory cascades, mitochondrial dysfunction and increased
oxidative stress (Sanz-Blasco et al. 2008), impairment of intracellular signaling
pathways and synaptic plasticity, increased Tau phosphorylation, increased GSK-3β

activity, deregulation of calcium metabolism, induction of neuronal apoptosis and
cell death (Roberts et al. 1994). These mechanisms altogether give rise to a self-
perpetuating, positive feedback loop in which the production of Aβ peptides leads
to deleterious events to the neuronal cells, which in turn leads to dysfunction of the
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APP metabolism and more production of Aβ peptides. Aβ fibrils deposit in neuritic
plaques in a sequential pattern: diffuse neuritic plaques, mature neuritic plaques, se-
nile plaques and phantoms of senile plaques in more advanced stages of the disease.
The plaque formation has also deleterious impact to the neurons also leading to their
dysfunction and, ultimately, their death (Rhein and Eckert 2007).

Under physiological conditions, theAPP is preferentially metabolized in the secre-
tory pathway and there is equilibrium between Aβ peptide production and clearance
from the brain (Roberts et al. 1994). Currently, two proteins are deemed as intimately
involved in the clearance of Aβ peptides from the brain: apolipoprotein E (APOE)
and the insulin-degrading enzyme (IDE). The exact mechanism or mechanisms by
which Aβ peptides are cleared from the brain has not been totally elucidated, but
a dominant hypothesis is that these proteins bind to the Aβ peptide, inhibiting its
aggregation and promoting its clearance from the brain (Recuero et al. 2004). Disad-
vantageous genetic polymorphisms (such as the ε4 allele of APOE) and pathological
conditions related to abnormal IDE homeostasis (e.g., diabetes mellitus) that may
favor the amyloidogenic cleavage of APP and/or decrease the Aβ clearance from
the brain will therefore facilitate the accumulation of Aβ in the neural tissues and
downstream effects of the amyloid cascade (Schmitt 2006).

14.1.2 Tau Protein

Tau is a microtubule-associated protein found in most tissues and highly expressed
in the peripheral nervous system. In neurons, it is an important component of the
cytoskeleton (Kosik 1993). It interacts withα- andβ-tubulin, and the phosphorylation
state of Tau is critical to stabilize the polymers of tubulin (Fig. 14.2). In neurons,
the microtubules are essential for the maintenance of neuronal structure, axonal
transport, and neuronal plasticity (Lindwall and Cole 1984).

Tau is widely expressed in the central and peripheral nervous system, and there-
fore may be regarded as a neuronal phosphoprotein. In addition to the involvement of
Tau in the maintenance of neuronal structure and in synaptic plasticity, microtubules
are essential for axonal transport of organelles (mitochondria, ER, lysosomes) and
vesicles containing proteins and neurotransmitters, which are displaced from the
cell body (soma) to distal synapses. The neuronal polarity also depends on the prop-
erties of microtubules present in axons and dendrites. In axons, microtubules are
uniformly oriented on account of the role of Tau protein (Kosik 1993; Shahani and
Brandt 2002).

There is a phosphorylation gradient along the axon and in different brain regions,
the distal axon being less phosphorylated, particularly in the white matter (Buée et al.
2000; Hernández and Avila 2007). Changes in the phosphorylation state of Tau occur
in the process of remodeling of the cytoskeleton, in which the regulatory mechanisms
of Tau phosphorylation become critical to promote synaptic plasticity. The abnormal
phosphorylation of Tau negatively affects its ability to bind to tubulin, unsettling
the structure of microtubules. In addition, hyperphosphorylated Tau impairs axonal
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Fig. 14.2 In AD there is a reduction in ability the ability of Tau to bind to tubulin and promote
microtubule assembly. Hyperphosphorylated Tau contributes to the destabilization of microtubules,
impaired axonal transport, and ultimately the formation of neurofibrillary tangle (NFT) and neuronal
death

transport and synaptic metabolism, causing dysfunctions that result in loss of cell
viability and ultimately lead to the collapse of microtubular cytoskeleton and neuronal
death. The phosphorylation and dephosphorylation of Tau at serine and threonine
phosphoepitopes are critical regulatory events in neuronal homeostasis. At these
sites, the substrates of phosphatases include ion channels and G protein receptors,
where the synaptic traffic and are regulated by reversible phosphorylation of proteins
(Wang et al. 2007).

Tau may be found in soluble and insoluble forms, the latter being identified in
paired helicoidal filaments (PHF), which are the main component of neurofibrillary
tangles (NFT). PHF-Tau complexes have six to eight phosphate groups per molecule
of Tau protein, which is much higher than the usual degree of phosphorylation of
Tau protein in the healthy brain (i.e., two phosphate groups per molecule).

Six Tau isoforms have been described in mammals. The main differences between
these isoforms rely on the existence of three or four tubulin-binding domains, and
some minor differences at the N-terminus of the protein (Cleveland and Hoffman
1991; Lovestone and Anderton 1992; Trojanowski et al. 1994; Shahani and Brandt
2002) The interaction between Tau and tubulin is a dynamic process in which Tau
promotes its own polymerization and inhibits the fast depolymerization of tubulin
(Johnson and Stoothoff 2004). Again, this process is regulated by the balance be-
tween phosphorylation and dephosphorylation of its phosphoepitopes. Tau protein
has approximately 79 phosphorylation sites at serine and threonine residues (Sha-
hani and Brandt 2002). Phosphorylation and dephosphorylation of these epitopes
promote conformational changes that influence the ability of Tau to interact with α-
and β-tubulin and stabilize microtubules (Drechsel et al. 1992; Hernández and Avila
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2007). Among several protein kinases and proteases are involved in Tau phospho-
rylation, glycogen synthase kinase-3β (GSK3β) the most important Tau kinase in
neurons (Iqbal et al. 2005).

The expression of phosphatases protein (PP) PP1, PP2A and PP5 was found to
be reduced in cerebral tissues of patients with AD (Buée et al. 2000; Wang et al.
2007). The majority of serine and threonine phosphoepitopes in fetal and in PHF-
Tau is followed by proline residues, suggesting that Tau kinases belong to the family
of proline-directed kinases (Wang et al. 2007), namely cyclin-dependent kinases
(CDK5), MAP kinases (MAPK) and GSK (Lovestone et al. 1997). Such enzymes
are capable to phosphorylate Tau in vitro and have been detected in the AD brain.
Other proline-directed kinases such as protein kinase C (PKC), casein-kinases l and
lI (Drechsel et al. 1992), calcium calmodulin-kinase ll (CaMPK-ll) (Lovestone et al.
1997; Johnson and Stoothoff 2004), and protein kinase A (PKA) have also been
identified in neurofibrillary tangles and are involved in the regulation of the activity
of the former.

In the embryonic stages of development, neuronal Tau is predominantly in hyper-
phosphorylated state. This is due the great demand for neuroplastic changes in neu-
rons and synapses at early developmental stages of the CNS (Lovestone et al. 1997).
In the mature CNS, Tau phosphoepitopes are maintained in a predominantly dephos-
phorylated state, which confers the necessary stability of the cytoskeleton to maintain
neuronal homeostasis (Johnson and Stoothoff 2004). Nevertheless, dynamic changes
in Tau phosphorylation are important for neuronal responses, including neurite out-
growth and synaptic plasticity (Iqbal et al. 2005). Under pathological conditions
such as AD, Tau can be abnormally hyperphosphorylated. This abnormality impairs
its capacity to bind to tubulin, destabilizing the microtubular structure. In addition, it
impairs axonal transport and synaptic metabolism, leading to cytoskeleton collapse,
loss of cellular viability and neuronal death (Drechsel et al. 1992).

14.1.3 The Amyloid Cascade

The amyloid hypothesis of AD was described in the early 1990’s (Hardy and Hig-
gins 1992). According to it, the accumulation of Aβ peptides into senile and neuritic
plaques in the brain, either due to an increased production or decreased clearance,
is the core feature in the pathogenesis of AD. Therefore, Aβ triggers several dele-
terious events that disrupt neuronal homeostasis, e.g., mitochondrial dysfunction,
activation of oxidative stress and inflammatory cascades (Selkoe 1991), impaired
neurotrophic support and response to injury, decreased neuroplasticity and neuroge-
nesis, hyperphosphorylation of Tau protein, apoptosis, and abnormalities in calcium
metabolism. These events are subject to positive feedback, amplifying Aβ-related
neurotoxicity, and culminating with neuronal death (Kulandaivelu and Gopal 2006).
Recent evidence indicated that not only the Aβ peptides per se may act as a trigger
to the amyloid cascade, but rather the oligomeric and fibrillary forms, which are
currently regard the most toxic forms of Aβ (Vieira et al. 2007).
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The amyloid cascade hypothesis was based mostly on findings from in vitro and
in vivo studies, and was further strengthened by the discovery of genetic mutations
associated with early-onset, familial AD. These are severe forms of the disease, in
which massive intracerebral amyloidogenesis occur prematurely as a consequence of
mutations affectingAPP metabolism (i.e., mutations in theAPP gene in chromosome
21, and in presenilin 1 and 2 genes in chromosomes 14 and 1 respectively). The
genetic manipulation of these AD-related mutations was the most important asset
for the development of genetically modified animal models of AD (Kulandaivelu
and Gopal 2006).

There are several caveats regarding the amyloid hypothesis of AD. First, neu-
ropathological studies did not find a significant correlation between amyloid plaque
density in the brain and the severity of dementia. The senile plaques are extracel-
lular deposits consisting of a central core of Aβ peptide surrounded by activated
microglia and reactive astrocytes, which are associated with neuronal degeneration.
AD is the only neurodegenerative disease in which the Aβ peptide is the consid-
ered the pathological cornerstone; in contrast, a significant number of non-demented
elderly subjects have amyloid plaques in the brain in post-mortem examination; in
some cases, plaque counts in non-demented individuals are comparable to those
found in AD patients (Lippa and Morris 2006). Also, most of anti-amyloid based
therapeutic strategies failed to show clinically relevant results either in improving
cognitive performance or in halting the clinical progression of dementia (Lippa and
Morris 2006; Cummings 2006). Finally, the cellular and animal models of AD are
based mostly on the genetic mutation associated with the early-onset AD. Never-
theless, early-onset AD accounts for the minority of the cases of dementia, whereas
late-onset AD is far more common and is not associated with the aforementioned
mutations. As opposed to that, sporadic AD has a multifactorial etiology, involv-
ing multiple genetic polymorphisms with minor risk-effects and other pathological
mechanisms, in addition to the amyloidogenesis per se (Holmes et al. 2008)

14.1.4 Tau-related Hypotheses

One of the neuropathological hallmarks of AD is the presence of intra-neuronal
lesions called neurofibrillary tangles (Swerdlow 2007b). The main components of
NFTs are the paired helicoidal filaments, which are constituted fundamentally of
hyperphosphorylated Tau. At least 25 abnormal phosphorylation sites were described
in PHF-Tau in AD (Braak and Tredici 2004), and the abnormal phosphorylation of
Tau protein is a marker of neuronal degeneration in this disorder (Mazanetz and
Fischer 2007). The phosphorylation of the serine/threonine residues near the binding
region of Tau to tubulin favors Tau disaggregation and their reassembly into PHf
(Iqbal et al. 2005). Due to the importance of Tau in maintaining the neuronal stability
and homeostasis, its abnormal phosphorylation leads to a cascade of neuronal events
that ultimately cause the neuronal dysfunction and death.
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There are several lines of evidence that support the notion that the disruption of
Tau homeostasis is a primary event in AD. Besides AD, Tau abnormalities are
also found in other neurodegenerative disorders, such as frontotemporal demen-
tia, cortico-basal degeneration, multiple system atrophy, and motor neuron disease
(Iqbal et al. 2005). For these reason, these conditions are referred to as tauopathies.
Neuropathological studies have demonstrated that the evolution of the distribution
of NFT in the brain correlates with the clinical progression of cognitive deficits in
AD. Moreover, intra-neuronal hyperphosphorylated Tau can be found in the brain
of subjects with very mild dementia, unaccompanied by Aβ pathology (Braak and
Tredici 2004). Therefore, the hyperphosphorylation of Tau may be the initial step
in the physiopathology of AD; other pathological events, including abnormal APP
metabolism leading to excessive Aβ production, may be secondary to the former dis-
ruption of neuronal homeostasis (Rhein and Eckert 2007). Nevertheless, the larger
body of evidence relating the amyloid pathology in AD and the lack of no genetic
mutations in Tau gene associated to early or late-onset AD weaken the hypothesis
that Tau pathology is the earliest event in AD (Oide et al. 2006).

Despite the strong evidences supporting the primary role of either Aβ peptides
or hyperphosphorylated Tau protein in the pathogenesis of AD, neither of these
hypotheses fully accounts for the wide spectrum of pathological changes in AD.
Therefore, some alternative and complementary hypotheses have been proposed to
explain the physiopathology of AD. Most of these hypotheses involve the activity of
proteins and enzymes that exert their biological functions upstream in the cascades
involved in the regulation of the APP/Aβ and Tau metabolism.

GSK3β is a key enzyme in the regulation cell cycle; in neurons it plays a pivotal
role in the regulation of Tau phosphorylation (i.e., overactive GSK3β leads to hyper-
phosphorylation of Tau). Recent studies have also demonstrated that the deregulation
of GSK3β activity is involved in several other pathological events associated with
AD, for instance, increased production of the Aβ peptide, induction of apoptosis,
and impaired neurogenesis and synaptic plasticity (Lippa and Morris 2006). In vitro
studies have shown that the pharmacological activation of GSK3β leads to neuronal
changes and death in a similar fashion as observed in AD (Cummings 2006; Holmes
et al. 2008). On the other hand, in vitro and in vivo studies have demonstrated that
the pharmacological inhibition of GSK3β (e.g., with lithium salts) protected neurons
against mechanisms of degeneration induced by Aβ and hyperphosphorylated Tau
(Cummings 2006; Swerdlow 2007a).

Few studies have been carried out in humans to determine the activity of GSK3β

in AD patients. One interesting study has shown that GSK3β activity is increased
in leukocyte of patients with AD and mild cognitive impairment (MCI) (Hye A
et al. 2005). According to the GSK3β hypothesis of AD (Braak and Tredici 2004),
increased GSK3β activity is an early pathological event in the pathophysiology of
AD, by triggering a cascade of events culminating both in increased production
of Aβ and Tau hyperphosphorylation. Despite the elegant mechanisms elicited by
the GSK3β hypothesis, which encompasses in a broader sense both amyloid- and
Tau-related mechanisms, it lacks consistent empirical evidences.
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14.2 Clinical-Pathological Aspects

The neuropathology of AD was first described by Alois Alzheimer in two patients
showing diffuse cortical atrophy, neurofibrillary tangles (only in the initial patient)
and senile plaques (in both cases) distributed throughout the cerebral cortex (Moller
and Graeber 1998). Glenner and Wong, in 1984, identified the sequence of the
proteinaceous central component of the senile plaques, by isolating the amyloid
from meningeal vessels from AD patients. The senile (neuritic) plaques are diffusely
distributed in the neocortex and limbic system in patients who have AD (Mesulam
2000). Other forms of Aβ accumulation include diffuse (non-neuritic) plaques and
vascular deposition that may lead to cerebral hemorrhage.

The establishment of a correlation between the neuropathological findings in AD
patients and in middle-aged subjects with Down’s syndrome (who have trisomy of the
chromosome 21) has led to the identification of the gene that encodes the β-amyloid
protein precursor (APP) in the same chromosome (Kang et al. 1987).

In early-onset familial cases of AD, occurring as an autosomal dominant trait,
three distinct mutations are described: the aforementionedAPP gene on chromosome
21 (Murrell et al. 1991), the presenilin 1 gene on chromosome 14 (Sherrington et al.
1995), and the presenilin 2 gene on chromosome 1 (Levy-Lahad et al. 1995). The
fact that the presenilins are related to the γ-secretase complex strongly favored the
amyloid cascade hypothesis in AD pathogenesis (De Strooper 2003).

High levels ofAβ peptide can be found in the brain of individuals without cognitive
decline as early as the age of 40 years, preceding the formation of neuritic plaques
(Funato et al. 1998). This deposition seems to occur earlier in carriers of the ε4 allele
of APOE (Morishima-Kawashima et al. 2000), whose homozygosity constitutes a
well-known risk factor for the development of AD.

Although Alzheimer’s disease is the only neurodegenerative disorder in which
the Aβ peptide is considered by many to be a pathological cornerstone, the question
remains open: is the deposition of Aβ protein a central event in the pathophysiology
of AD or just a biomarker of an underlying process still to be fully understood?

The several issues regarding the Aβ cascade hypothesis, the most important of
all is perhaps the fact that neuropathological studies did not find a strict correlation
between neuritic plaque density and number in the brain and the severity of dementia,
the latter appearing to correlate more significantly with the density of neurofibrillary
tangles (Knopman et al. 2003; Sonnen et al. 2007). It has been thus hypothesized that
this poor relationship between neuritic plaque density and severity of dementia might
be better understood if preamyloid-like soluble aggregates of Aβ (Aβ oligomers) are
the causative agents of neurotoxicity in AD (Lesne and Kotilinek 2005; Eckman and
Eckman 2007)

This lack of clinico-pathological correlation has led to a consensus to distinguish
the clinical term “Alzheimer disease” from “Alzheimer disease neuropathological
alterations”. Clinical AD refers to a set of clinical signs and cognitive/behavioral
symptoms that are present in patients who have substantial AD neuropathologi-
cal changes. AD neuropathology describes the presence and extent of pathological
changes of AD observed at brain autopsy regardless of the clinical picture exhibited
by the patient.
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14.2.1 Neuropathological Diagnosis of AD

The proposed National Institute on Aging—Alzheimer’s Association guidelines for
the neuropathological assessment of AD (NIA—Alzheimer’s Association 2011,
draft) recommends that the diagnosis should be based on an “ABC” score where
A and C stand for amyloid pathology (while “B” stands for neurofibrillary tangles
according to Braak and Braak criteria), as follows:

• A. Presence of amyloid plaques (modified from Thal et al. 2002):

– A0: No Aβ or amyloid plaques
– A1: Neocortical Aβ or amyloid plaques in sections of frontal, temporal, or

parietal lobes
– A2: A1 plus hippocampal Aβ or amyloid plaques
– A3: A2 plus neostriatal Aβ or amyloid plaques

• C. Presence of neuritic plaques (modified from the CERAD protocol, which
employs a semi-quantitative evaluation of neuritic plaques) (Mirra et al. 1991):

– C0: No neuritic plaques
– C1: CERAD score sparse
– C2: CERAD score moderate
– C3: CERAD score frequent

Clinico-pathological correlations guidelines were also proposed: for patients without
cognitive impairment, it should be considered that AD neuropathological changes
may represent a preclinical stage of the disease that may last for years (Sperling et al.
2011, 2003); for individuals with cognitive impairment, the presence of widespread
neurofibrillary tangles with varying degrees ofAβ accumulation and neuritic plaques
should be interpreted as an adequate cause of cognitive impairment or dementia.
However, a low density of neurofibrillary tangles, even when associated with frequent
neuritic plaques most likely indicate other diseases leading to cognitive impairment.

As already stated, the elderly without dementia or those clinically diagnosed as
MCI can harbor AD pathology that may be quite indistinguishable from that of
persons with dementia (Rentz et al. 2010). Moreover, neuritic plaques (as well as
neurofibrillary tangles) may also be present in “normal aging”. Despite this, the
correspondence between clinical and pathological diagnosis in AD ranges from 70
to 90 % (Swerdlow 2007a).

There is much less data on about the underlying neuropathology of MCI; some
studies have suggested that about one half of persons clinically diagnosed as MCI
have sufficient neuropathology to warrant the pathologic diagnosis of AD (Markes-
bery et al. 2006; Schneider et al. 2009a), and, as a group, they tend to display an
intermediate pattern of AD pathology (between subjects no cognitive impairment
and those with dementia), which suggests a gradual accumulation of neuropatholog-
ical changes in the progression from cognitively normal to dementia (Bennett et al.
2005).

One study has showed that up to one third of the subjects considered to cognitively
normal when tested a few months prior to death had neuropathological alterations
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that were sufficient to render them to be diagnosed as AD patients (although in
general these neuropathological alterations tend to be less severe than those found
in subjects clinically diagnosed as MCI or AD). Moreover, a lower performance in
specific cognitive domains, such as episodic memory, was found in normal subjects
presenting neuropathological changes when compared to those who had not such
alterations (Bennett et al. 2006).

The fact that it takes many years for AD to develop may explain the presence of
varying degrees of pathological alterations before subjects start to present clinical
symptoms, especially if we take into account a number of factors that may interfere
with the course of the disease. This becomes particularly evident when we observe the
overlap of neuropathological alterations in patients who are still regarded as MCI and
those with dementia and such observations have given rise to the concept of “cognitive
functional reserve”. The cognitive reserve may be due to several factors such as high
educational level (Roe et al. 2007), the maintenance of intellectual activities across
the life span (Wilson et al. 2002), nutrition habits (Petot and Friedland 2004), lifestyle
and the coexistence of other medical conditions as systemic arterial hypertension,
diabetes, obesity, etc., (Scarmeas and Stern 2003), and genetics (Tupler et al. 2007).

Another source of uncertainty in assessing the exact role of Aβ deposition in
the pathogenesis of AD is the fact that over 50 % of dementia cases are of mixed
etiology (Schneider et al. 2009a, b), with concomitant neuropathological findings of
either vascular or Lewy body’s disease. The coexistence of more than one pathology
decreases brain reserve and increases the likelihood of developing dementia. Also,
the distribution of mixed dementias differs depending on the population studied: in
memory clinics, there is a higher frequency of pathologically proven Lewy body’s
disease and frontotemporal dementia (regardless of the clinical diagnosis), while in
community-based studies, pathologically proven AD and AD with vascular disease
prevail (Schneider et al. 2009a).

It is worthy of note that most anti-amyloid based therapeutic strategies have failed
to show clinically relevant results either in improving cognition or in halting the
clinical progression of dementia (Cummings 2006) and, finally, cellular and animal
models of AD are based largely on genetic mutations associated with familial, early-
onset AD, which accounts for a small proportion of dementia cases. Since late-onset
AD represents the vast majority of cases, that it is not determined by a single gene
mutation (but rather has a multifactorial nature), and considering that amyloidogen-
esis in these patients occurs to a lesser extent compared to the early AD, questions
have been raised concerning the appropriateness of early-onset AD models to aid
understanding of late-onset AD (Swerdlow 2007a).

14.2.2 Clinical Diagnosis of AD

The advances in the understanding of the chain of pathological events that lead to
AD and the acknowledgment of its long pre-clinical stages required a significant
revision of AD diagnostic criteria. The NINCDS-ADRDA diagnostic criteria for AD



14 Alzheimer’s Disease 341

Table 14.1 Revised diagnostic criteria for AD

Clinical stage Criteria Biomarkers Observations

Dermentia of
AD type

Probable AD: insidious
onset of progressive
learning impairment and
memory deficit +
impairment in other
cognitive domains. The
initial presentation can
also be as non-amnestic
impairments (language,
visuospacial and
executive dysfunction)

Possible AD: typical
clinical presentation but
the patients presents
concomitant evidence of
significant
cerebrovascular disease
or feature of other
dementing disorders (e.g.
Lewy Body Dementia)

Amyloid-related
biomarkers

CSF: ↓ Aβ42

Amyloid imaging: high
retention of amyloid
ligands (e.g. PiB)

Neurodegeneration-
related biomarkers

CSF: ↑ T-Tau, ↑ P-Tau
MRI: hippocampal

atrophy
PET: temporoparietal

hypoperfunsion

The criteria acknowledge
the possibility of
atypical presentations
of AD

The clinical diagnosis is
strengthened by the
presence of one or more
positive biomarkers for
cerebral amyloidosis

Prodromal AD Concern regarding
cognitive changes over
time

Lower than expected
performance on one or
more cognitive domains
adjusted for age and
educational status

Independence in activities
of daily living

Not demented

Amyloid-related
biomarkers

CSF: ↓ Aβ42

Amyloid imaging: high
retention of amyloid
ligands (e.g. PiB)

Neurodegeneration-
related biomarkers

CSF: ↑ T-Tau, ↑ P-Tau
MRI: hippocampal

atrophy
PET: temporoparietal

hypoperfunsion

The degree of certainty of
prodromal AD
increases by the
presence of positive
amyloid-related
biomarkers

The presence of
neurodegeneration-
related biomarkers also
increases the
probability of
prodromal AD, but are
more specific to the risk
of imminent
progression to the
dementia of AD type

The absence of positive
amyloid-related
biomarkers indicates of
low risk of AD

Pre-clinical AD Normal cognitive
performance or very
mild cognitive
difficulties (still
compatible with normal
cognition)

Amyloid-related
biomarkers

CSF: ↓ Aβ42

Amyloid imaging: high
retention of amyloid
ligands (e.g. PiB)

No changes in
Neurodegeneration-
related biomarkers

Very few controlled
studies have been
conducted with these
diagnostic criteria.
Thus, these criteria
should be used for
research purpose only
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(McKhann et al. 1984) were based mostly in the clinical presentation of dementia
and were largely exclusionary, i.e., AD was diagnosed after the exclusion of other
possible causes of dementia. Recently, a workgroup launched by the National Insti-
tute of Aging (NIA) and the Alzheimer’s Association proposed an extensive revision
of its diagnostic criteria, including the recognition of its pre-clinical and prodromal
stages (Mckhann et al. 2011; Sperling et al. 2011, 2003; Albert et al. 2011). Ta-
ble 14.1 shows the current diagnostic criteria for clinical AD and its pre-clinical and
prodromal stages.

14.3 Alzheimer’s Disease Biomarkers

A biomarker is a characteristic that can be measured and evaluated as an indicator of
normal or pathological process, or to monitor the effect of therapeutical interventions
on specific biological cascades (Wagner 2009). The ideal diagnostic marker for AD
should meet at least three basic requirements: (i) reflect core neurobiological changes
subsequent to the disease process; (ii) be validated by post-mortem studies, assuming
that the neuropathological findings as gold standards; and (iii) be measurable as
early as possible in the disease continuum—ideally at pre-symptomatic stages (NIA
2011). Additional requirements include being non-invasive and simple to perform,
precise and reliable, and adequate for large-scale screenings. Among many candidate
markers of amyloidogenesis, those with the most promising results and potential to
clinical application are the amyloid-β1−42 (Aβ42) peptide in the cerebrospinal fluid
(CSF) and the in vivo, molecular imaging of Aβ42 deposits in the brain with positron
emission tomography (PET) (Blennow et al. 2010).

14.3.1 Cerebrospinal Fluid (CSF) Biomarkers

The CSF may be considered the ideal source for biomarkers in AD. It is in intimate
contact with the cerebral tissue, and pathological changes in the brain are often re-
flected in the CSF (Reiber 2001). Among several potential diagnostic biomarkers,
the most consistent findings have been obtained with the measurement of CSF con-
centrations of Aβ42, along with total Tau (T-Tau) and phosphorylated Tau (P-Tau)
(Blennow 2004). AD patients characteristically display low concentrations of Aβ42

(Sunderland et al. 2003). The reduction in the CSF Aβ42 is thought to be secondary
to a “sinking” effect of this peptide into plaques during the progression of brain
amyloidogenesis (Bates et al. 2009). Also, these patients show high concentrations
of T-Tau and P-Tau. This pattern of CSF biomarkers is commonly referred to as the
“AD signature” in the CSF (Diniz et al. 2008). This biomarker signature reflects
core pathophysiological features of the disease (Wiltfang et al. 2005), and has been
validated in post-mortem studies (Buerger et al. 2006; Clark et al. 2003; Tapiola et al.
2009).
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Several studies have been published to support the notion that this AD-positive
CSF pattern has good diagnostic accuracy to distinguish between normal ageing and
AD (>85 %) and a positive predictive value (>90 %) to determine the dementia
outcome in patients with MCI (Blennow and Hampel 2003; Hansson et al. 2006).
However, in the differential diagnosis of established dementia syndromes, the sensi-
tivity and specificity profile to differentiate AD from other dementias is significantly
lower (Andreasen et al. 2001). Large-scale longitudinal studies of MCI cohorts con-
sistently demonstrated that the presence of the “AD signature” in the CSF has a good
diagnostic accuracy (i.e. >80 %) to discriminate patients with MCI who progress to
AD (“MCI-converters”) from those who remain cognitively stable (“MCI-stable” pa-
tients) and healthy controls (Hansson et al. 2006), and also from those MCI patients
who progress to non-AD dementias (Riemenschneider et al. 2002; Mattsson et al.
2009). Interestingly, MCI patients with progressive deficits (albeit did not reach the
threshold of dementia diagnosis) have a similar CSF biomarker signature as the MCI-
converters patients. On the other hand, MCI patients who display non-progressive
deficits over time have a CSF biomarker pattern very similar to that found in healthy
older adults. These sets of data have been extensively replicated by different research
groups worldwide and by meta-analytical studies (Arai et al. 2000; Hampel et al.
2004; Shaw et al. 2009; Forlenza et al. 2010a).

Taken together, there is a large bulk of evidence that the “AD signature” in the
CSF is a strong predictor of the dementia outcome. In other words, MCI patients
who will convert to AD have a CSF biomarker pattern indistinguishable of that found
in patients with dementia of the AD-type. Otherwise, MCI subjects with a non-AD
CSF signature have a low probability to develop AD, even upon long-term follow-up.

Yet, methodological limitations need to be overcome before the assessment of
CSF biomarkers can be used in the routine clinical assessment of patients with
cognitive complaints. Although the determinations of CSF concentrations of these
biomarkers using ELISA or multiplex techniques (e.g., xMAP-Luminex) have low
coefficients of intra-laboratory variability (5–10 %), the high inter-laboratorial vari-
ation (20–30 %) is a major obstacle for the comparison of data generated in different
settings (Mattsson et al. 2010). Multiple sources of bias include pre-assay (i.e., lum-
bar puncture protocol, sample handling and aliquot storing prior to experimentation),
intra-assay (different methods and protocols for the determination of the concentra-
tions of biomarkers), and post-assay variations (e.g., definition of norms for patients
and controls to guide the interpretation of results) (Mattsson et al. 2010, 2011). This
situation is a major limitation for the establishment of multicentric cooperation and
the establishment of gold-standard protocols and reference values to be shared by
distinct laboratories.

14.3.2 Amyloid-ββ42 Molecular Imaging

The possibility to visualise in vivo the amyloid pathology in the brain has been a major
advance in AD-related biomarker research. Many compounds have been developed
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and launched so far, including the “Pittsburgh Coumpound B” (PiB) (Mathis et al.
2003; Klunk et al. 2004), the F-BAY94-9172 (Rowe et al. 2008), the FDDNP, a dual,
amyloid and Tau-binding compound (Small et al. 2006), the Florbetapir (Choi et al.
2009), among others.

In AD, there is an increased global cortical and regional retention of PiB and other
compounds, particularly in the cingulate, temporal, parietal and frontal cortices (Edi-
son et al. 2007). Studies with amyloid imaging in mildAD have a very high sensitivity
(over 90 %), but the specificity is age-dependent, due to the increasing deposition of
Aβ overtime in healthy elders. Important studies have shown correlations between
intracerebral amyloid content (as shown by PiB scans) and CSF concentrations of
Aβ42 in patients with mild AD as compared to controls (Fagan et al. 2006; Fagan
et al. 2009).

Patients with amnestic MCI also show increased PiB retention as compared to
healthy older subjects, but to a lesser extent to those observed in AD patients. Posi-
tive PiB scans predict conversion, and PiB retention (global and regional) correlates
with cognitive performance (Kemppainen et al. 2007; Forsberg et al. 2008). In
a prospective study, PiB-positive MCI patients had a higher conversion rate than
PiB-negative patients; in addition, the amyloid load was negatively associated with
time to conversion (Okello et al. 2009). PiB retention was also observed in elderly
subjects without cognitive complaints or dementia; it is noteworthy that a higher
retention at baseline was associated with a worse cognitive performance and pre-
dicted a faster decline (Villemagne et al. 2008; Aizenstein et al. 2008; Resnick et al.
2010; Reiman et al. 2009). These findings are largely compatible with the CSF
biomarkers as predictors of cognitive deterioration in non-demented older adults
(Fagan et al. 2007).

14.3.3 Pre-dementia and Pre-clinical AD: The Role
of Amyloid-Related Biomarkers

Recent evidences derived from biomarkers research strengthen the primary role
of amyloid pathology in AD. Data from CSF and molecular imaging studies re-
inforces the notion that the accumulation of Aβ in the AD brain precedes the
onset of functional and structural changes characteristic of AD (Fellgiebel et al.
2004; Bouwman et al. 2007; Josephs et al. 2008; Hansson et al. 2009; Jack
et al. 2009a). These observations lead to the development of a hypothetical cas-
cade of biological events that begins by the production and accumulation of Aβ42

(i.e. reduced CSF Aβ42 and increased PiB retention) in the brain that triggers
secondary pathological events culminating in synaptic dysfunction and regional
hypometabolism (FDG-PET studies), neurodegeneration (i.e. increased CSF Tau
and phospho-Tau proteins) and structural changes (hippocampal and other re-
gional atrophy). Finally subjects start experiencing cognitive deficits and functional
difficulties, reaching the threshold for dementia diagnosis. (Jack et al. 2009b;
Forlenza et al. 2010b).
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14.4 Amyloid-Based Disease-Modifying Therapies

Given the relevance of cerebral amyloidogenesis in AD, several drugs and therapeu-
tical strategies have been developed to either reduce the production of amyloid-β or
to accelerate its clearance in the brain. The goals are to delay the clinical progres-
sion in patients with AD, but most importantly, to prevent new dementia cases in
older subjects. The most common mechanisms of action of these drugs are the in-
hibition of gamma and beta-secretase activity and immunetherapeutical approaches
(Citron 2010). Despite the sound preclinical rationale, no therapeutical agent so far
has consistently shown a significant/benefit for patients with AD.

The gamma- and beta-secretase inhibitors were the first agents to show promising
disease-modifying effect for AD (Panza et al. 2009). These drugs were able to reduce
cerebral amyloid burden and improving memory deficits in transgenic mice models
of AD (Chang et al. 2004; Lahiri et al. 2007; Imbimbo et al. 2007). Phase I and
II clinical trials showed a mild but significant improvement in cognitive deficits in
subjects with mild to moderate AD (Fleisher et al. 2008; Siemers et al. 2006). These
results encouraged phase III clinical trials with these agents. However, the results
were largely negative, with no improvement in cognition or functional status and
increased risk of serious adverse events in patients with mild to moderate AD (Green
et al. 2009; Carlson et al. 2011).

Immunotherapeutical strategies have been extensively studied for AD since
early 2000. Two main approaches have been developed so far: active and pas-
sive immunotherapy (Brody and Holtzman 2008). The active immunotherapy (i.e.
anti-amyloid vaccine) aims to sensitize the immune system to improve the amyloid
clearance by activating microglial cells (Morgan et al. 2000). This would not only
reduce the amount of soluble amyloid species but also the amyloid plaques in the
brain. Preclinical studies showed a significant improvement of memory deficits along
a drastic reduction of amyloid burden in transgenic mice without a significant local
neuroinflammatory reaction. However, a phase II clinical trial needed to be prema-
turely interrupted due to clinically significant neuroinflammatory reaction that led
to brain oedema and death in patients who received the amyloid vaccine (Orgogozo
et al. 2003; Gilman et al. 2005). Follow-up of patients recruited to this trial showed
that vaccine was not associated to significant clinical improvement in patients receiv-
ing the vaccine; nonetheless, the neuropathological examination of brains of patients
who received the vaccine demonstrated a significant reduction in amyloid plaques
in all brain regions but also increased reactive microglia and perivascular oedema
(Nicoll et al. 2003).

More recently, passive immunotherapy approaches with anti-amyloid antibod-
ies have been developed. This strategy also aims to improve the clearance of brain
amyloid without activating the microglial system and thus reducing the risk of neu-
roinflammation (Lichtlen and Mohajeri 2008; Geylis and Steinitz 2006; Roher et al.
2011; Serrano-Pozo et al. 2010). Phase II clinical trials had promising results, with
patients showing a significant improvement in cognition, without the emergence of
serious adverse events (Salloway et al. 2009; Rinne et al. 2010). Currently, phase
III clinical trials are underway to establish the clinical efficacy and safety of these
agents in mild AD.
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