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Abstract The numerical simulation of highly complex biomolecular systems such
as DNAs, RNAs, and proteins become intractable as the size and fidelity of these
systems increase. Herein, efficient techniques to accelerate multibody-based coarse-
grained simulations of such systems are presented. First, an adaptive coarse-graining
framework is explained which is capable of determining when and where the sys-
tem model needs to change to achieve an optimal combination of speed and ac-
curacy. The metrics to guide these on-the-fly instantaneous model adjustments and
the issues associated with post-transition system’s states are addressed in this book
chapter. Due to its highly modular and parallel nature, the Generalized Divide-and-
Conquer Algorithm (GDCA) forms the bases for a suite of dynamics simulation
tools used in this work. For completeness, the fundamental aspects of the GDCA
are presented herein. Finally, a novel method for the efficient and accurate approx-
imation of far-field force and moment terms are developed. This aspect is key to
the success of any large molecular simulation since more than 90 % of the com-
putational load in such simulations is associated with pairwise force calculations.
The presented approximations are efficient, accurate, and highly compatible with
multibody-based coarse-grained models.

1 Introduction

Development and application of the efficient techniques to model, simulate, and ana-
lyze highly complex biomolecular systems such as DNAs (Deoxyribonucleic acid),
RNAs (Ribonucleic acid), enzymes, and proteins have been gaining attention by
scientists and engineers in an effort to predict and understand different structural,
mechanical, and thermodynamic properties of such systems [17, 22, 44, 56, 71].
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These molecular simulations provide important information about the relationships
between the structure and function of biopolymers, and provide insight into vari-
ous biological processes. Fully atomistic representation of such systems [33, 43]
results in detailed information on the underlying physics of these biopolymers and
captures all scales of the problem. However, these simulations are greatly limited
because they cannot be accomplished in a timely manner for models possessing the
desired size and fidelity. This is due the existence of high frequency motions which
impose a tight constraint on the temporal integration step size (0.5–2 fs) of explicit
integrators [19, 75], while biologically important processes occur on time scales as
slow as milliseconds to seconds [55]. Furthermore, these models with large number
of atoms (na ≈ 106 [23]) suffer from the cumbersome pairwise force field calcu-
lations with the computational complexity of O(na

2) at each time step. As such,
different methods have been developed to improve the temporal integration step
size and reduce the computational cost per integration time step.

In biomolecular systems, high frequency and low amplitude motions of the atoms
are responsible for local motions, while low frequency and high amplitude motions
of the system’s subdomains are dominant in representing the global conformation.
Hence, the simulation performance may be improved significantly via the intelligent
use of specialized coarse-grained models in which high frequency modes of motion
of the system are removed from consideration. These models still capture the overall
conformational motion of the biopolymers while allowing the application of larger
integration time steps (e.g., 20–50 fs [19, 31, 75]).

The coarse-grained model may be realized by treating a group of atoms as a
spherical bead (pseudo-atom) [16, 31, 66]. For instance, each nucleotide in a pro-
tein chain may be modeled using one to six beads [74]. Other applications of such
spherical beads in dissipative particle dynamics and solvent lipid interactions are
reported in [48, 73].

Alternatively, a group of atoms may be represented by a rigid or flexible body
connected to its parent and child bodies via kinematic joints. Using internal co-
ordinates (i.e., generalized coordinates which describe the relative motions of the
child bodies with respect to the parent bodies at the connecting joints), the geo-
metric constraints such as fixing bond lengths can be enforced exactly. In the finest
coarse-grained articulated body model, dihedral angles (torsion dynamics) are used
to describe the dynamics of the system [1, 36, 40, 72], while the bond stretch and
bond angles are frozen. Unlike the spherical beads, the mass distribution and ge-
ometry of each articulated pseudo-atom is expressed in terms of the associated in-
ertia tensor, and the distance from the corresponding mass center to the joints of
the pseudo-atom. In such models, which may be particularly applicable to simulate
the dynamic behavior of polymer chains, both translational and rotational motion
[11, 18] of each cluster [36] are considered in forming the equations of motion. As
such, the effect of Coriolis and centrifugal inertial forcing terms are considered in
the equations of motion. As the length of the polymer chain increases, the role of
these terms becomes more important in capturing the dynamics of the system due
to scaling effects. Since these articulated models address the rotational motion of
the rigid and flexible subdomains of the system in the equations of motion, they
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can capture the geometry of biopolymers more accurately than most of the bead-
based coarse-grained models which ignore the rotational dynamics of the spherical
pseudo-atoms.

It is demonstrated in [57, 63] that the dynamic behavior of biopolymers is highly
nonlinear, and significantly affected by the change in the kinematics and dynamics
of the boundary conditions of the system. As such, static (time-invariant) coarse-
grained models may not appropriately capture the dynamics of the system for the
entire course of the simulation. This requires the development of adaptive machin-
ery to perform such simulations, particularly when the non-equilibrium behavior of
these systems is of interest.

In the adaptive multiscale strategy presented here, some degrees of freedom (in-
ternal coordinates) have their definitions/meanings adjusted “on-the-fly” at different
instants and different locations of the system based on the values of knowledge-,
math-, and/or physics-based metrics. Herein, the appropriate metrics to guide these
model transitions are investigated. Each model adjustment towards the lower or
higher fidelity system model may be viewed as the instantaneous application or
release of system’s internal constraints. As such, the generalized momentum of the
system must be conserved to arrive at the physically meaningful post-transition sys-
tem’s states. It is also demonstrated that within the transitions to the finer-scale mod-
els, some issues arise which are associated with the proper amount and placement
of the energy within the system.

Given the central role that multibody dynamics plays in the presented frame-
work, a suite of Generalized Divide-and-Conquer Algorithm-based approaches is
employed to this end. These methods offer a good combination of computational
efficiency and modular structure. Furthermore, the computational complexity of the
algorithm is O(n) and O(logn) in serial and parallel implementations, respectively,
where n denotes the number of degrees of freedom of the system.

A key aspect of this book chapter is associated with pairwise force calculations
in molecular simulations. More than 90 % of the computational cost per tempo-
ral integration step in modeling biopolymers is associated with calculating these
forcing terms. Focusing on long-range (far-field) interactions in the system, various
methods such as Barnes-Hut [5, 10], Edwald summation [21, 24], and the Fast Mul-
tipole Method [32] have been developed to reduce the cost of these forcing terms
evaluations. A review on these methods is presented in [57]. Herein, a novel ap-
proximation for the far-field force and moment calculations that is well suited for
use in an articulated body modeling of biopolymers is presented. This technique
may be viewed as a generalization and extension of the method presented in [38]
to approximate the gravitational force used in modeling spacecraft dynamics. The
resultant force and moment due to the pairwise interactions are approximated be-
tween: the atoms (particles) embedded in a pseudo-atom (body) in the coarse-scale
region and an atom (particle) which resides in the fine-scale domain; and between
the particles embedded in two different pseudo-atoms (bodies) in the coarse-scale
regions of the system. The value of the moment ignored in bead-based models can
produce significant errors which is more accurately captured using multibody-based
coarse-grained simulations. These low order multipole approximations and Taylor
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expansions are expressed in terms of the geometric and physical properties of the
pseudo-atoms (subdomains). Since these properties are constant for rigid domains
of the system, these approximations significantly accelerate the evaluation of the
far-field forcing terms.

2 The Need for Adaptive Simulation of Molecular Systems

The dynamics of biopolymers is highly nonlinear and chaotic. Although these sys-
tems have highly chaotic components, their coarser scale conformational behavior
may tend towards a specific structure. As such, it may be possible to remove high
frequency modes of motion which contribute little to the final structure, while main-
taining more important lower frequency components. However, given the complex
nature of the system behavior, it may not be possible to identify which modes of
motion can be removed a priori. For instance, the simulations conducted on articu-
lated RNAs with various sequences in [57, 63] show that the dynamic behavior of
each joint angle is highly time variant, and is significantly affected by the changes
in the dynamics of the rest of the system. Those results demonstrate that the cur-
rent coarse-grained model which is potentially correct for a specific time interval
may not provide accurate and reliable information about the conformational motion
of the system for the entire simulation. This results in the inadequacy of the static
coarse graining in which the system model does not change within the course of the
simulation. As such, adaptive multiscale methods which perform the coarse graining
in time and space must be developed to better model the dynamics of biopolymers.

The adaptive machinery is capable of identifying the critical locations of the sys-
tem to remove and/or add fidelity from/to the system model as necessary. In this pro-
cess, some degrees of freedom of the system are adaptively constrained or released
at different instants and different locations of the system. As such, this framework
automatically adjusts the coarseness of the model, in an effort to more optimally in-
crease the simulation speed, while maintaining accuracy. In the following, the nec-
essary machinery to implement the adaptive multiscale simulation of biopolymers
is presented. Development of the metrics to guide the model adjustments, efficiently
modeling the forward dynamics, as well as appropriately handling the dynamics of
the transitions are important aspects in this scheme. More detail on the adaptive
multiscale framework to model biopolymers is found in [13, 57, 63].

3 Metrics to Steer Transitions

In situations where modification of the dynamics model is appropriate, these adjust-
ments should be guided by suitable internal metrics. These metrics may be physics-
based (derived directly from physical laws), knowledge-based (derived empirically)
and/or math-based (derived from strictly mathematical relations). Herein, two dif-
ferent metrics which respectively guide the model transitions to the coarser and finer
models are investigated.
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3.1 Fine-to-Coarse Transitions

The transition to the coarser-scale model can be achieved via removing the less
significant modes of motion of the system. This can be realized by monitoring the
behavior of the individual internal coordinates of the system model to assess which
of them may be removed, while not adversely changing the conformational behav-
ior of the system. In molecular simulations, high frequency modes of motion do
not contribute significantly to the global conformation of the system, while provid-
ing large instantaneous relative velocities and accelerations. As such, velocity- and
acceleration-based metrics are not well-suited for identifying the more significant
degrees of freedom of the system in the overall conformational motion. Further-
more, these complex systems are highly nonlinear and chaotic; therefore, the in-
stantaneous values of the states of the system are not expected to (and have been
shown not to [63]) work well for guiding model transitions.

Monitoring the moving-window statistical properties of the internal coordinates
of the system is proposed in [63] as a math-based metric to assess and guide the
coarse graining process instead of the instantaneous velocity- and acceleration-
based measures described in [67, 70]. The standard deviation of the generalized
coordinates defined at the joints (internal coordinates) collected within the moving
window as given by

Sw =
√∑nw

k=1 (qk − q̄w)2

nw

(1)

is suggested as the metric of choice to determine if an existing joint should be kept
or removed. In this relation, q̄w is the moving-window average of the sequence of
data {qk}nw

k=1 within the window of the size of nw .
It should be mentioned that the overall conformation of the system may be more

sensitive to some specific internal coordinates, while this sensitivity varies with time
[13, 57]. As such, if the scaled (weighted) moving-window standard deviation of
any internal coordinate of the system is less than a predefined threshold, then the
associated degree of freedom is eligible to be frozen.

3.2 Coarse-to-Fine Transitions

Since the static coarse-grained models may not appropriately predict the overall
conformational motion of the biopolymer, it may be necessary to add fidelity to
the system model within the course of the simulation. The system’s constraints and
internal loads as shown in Fig. 1 arise from the kinematic constraints imposed on ad-
jacent body-to-body motions by the connecting joints, the interactions between the
bodies, and the imposed boundary conditions. Furthermore, the constraint load indi-
cates the degree to which the body or joint in question is attempting to be deformed
at its location. Therefore, monitoring the spatial constraint loads (forces and torques)
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Fig. 1 The constraint load F

gives an estimate of the error
introduced because of locking
the joint

acting on all kinematic joints of the system, and intermediate locations within the
rigid and flexible bodies is the proposed metric to assess the validity of the selected
coarse-grained model, and to guide the model refinement. In other words, the joint is
released (or added) if the spatial constraint force at the associated location exceeds
the nominal load which figuratively causes a mechanical failure [63].

4 Generalized Divide-and-Conquer Based Adaptive Framework

The simulation of the biopolymer in an adaptive framework should appropriately
and efficiently addresses the forward dynamics, model adjustments, and dynam-
ics of the transitions. In all of these steps, multibody dynamics plays an impor-
tant role since herein the pseudo-atoms may be viewed as rigid and/or flexible
domains of the system connected together via kinematic joints. As the complex-
ity of these multibody systems (manifesting itself in the form of modes of mo-
tion) increases, a prohibitive computational burden can be imposed on the sim-
ulation due to the kinematic coupling which exists in most articulated multi-
body formulations. Different so-called O(n) algorithms (as opposed to traditional
O(n3) algorithms) in which the simulation turnaround time scales linearly with
the increase in the system’s degrees of freedom (i.e., n) have been developed in
[2, 6, 8, 15, 25, 26, 35, 45, 54, 68, 69, 76, 77] as an effort to reduce this undesir-
able scaling in computational effort with problem size. These O(n) methods are less
costly for large n, but due to their underlying serial recursive under-pinnings, they
generally do not lend themselves well to massive parallelization. As such, differ-
ent algorithms have been designed to model and simulate multibody systems which
better exploit the parallel computing capability [7, 9, 20, 29, 30, 34, 39, 42].

The Divide-and-Conquer Algorithm (DCA) is a recursive method of modeling
multibody systems first demonstrated by Featherstone [27, 28]. Its recursive struc-
ture is not serial, but that of a binary tree. Different extensions and applications of
this method in modeling and sensitivity analysis of the multi-rigid/flexible-body sys-
tems, studying the impulsive behavior and contact problems in such systems, as well
as the parallel implementation of this algorithm are reported in [12–14, 46, 47, 49–
53]. In this scheme, a complete set of both absolute and generalized coordinates
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are used to form the equations of motion. As such, the analyst can select a set of
appropriate coordinates to integrate and work with. Applying both spatial and gen-
eralized coordinates, and directly imposing the constraints describing the kinemat-
ics of the joints to form the equations of motion of the system, the DCA provides
a robust framework to address the dynamics of the kinematically closed-loop sys-
tems in singular configurations [50]. A Generalized Divide-and-Conquer Algorithm
(GDCA) developed in [57, 60] is an extension to the DCA which can be easily used
to model multibody systems in which a part of the forcing information is provided
in a generalized force format. This may occur in modeling the systems in which a
set of known/unknown generalized forces must be considered in the equations of
motion due to the application of the control law or the imposition of the algebraic
constraints [58, 59]. For instance, this method is used in [57, 58] to perform the
constant temperature simulation of biopolymers in which the feedback forces from
the thermostat are provided in the generalized format.

Herein, the GDCA-based methods are suggested to be used in the context of the
large-scale adaptive molecular problems because:

1. They are relatively efficient for the large-scale sequential computer implementa-
tion. The computational complexity of these algorithms for unconstrained sys-
tems is O(n) in the serial implementation.

2. These methods are highly parallelizable which provide a time optimal order logn

computational performance achieved with a processor optimal order n proces-
sors.

3. The implementation and use of these formulations within an adaptive framework
are relatively straightforward due to the algorithm’s highly modular structure.

4.1 Forward Dynamics

Similar to the DCA, the dynamics of each body in the GDCA scheme is expressed in
terms of the handle equations of motion [50]. A handle is a point of the body through
which it has an interaction with its surroundings. Herein, the handle equations in
the GDCA scheme are presented to illustrate how they accommodate generalized
forces.

Consider an arbitrary body k shown in Fig. 2 connected to bodies k −1 and k +1
via kinematic joints J k and J k+1, respectively. Each degree of freedom of this sys-
tem is defined as the relative motion of the child body with respect to its parent body.
Let the column matrix f̂ contain the known/unknown generalized forces associated
with some specific degrees of freedom which must be included in the equations of
motion. The two-handle equations of motion for body k in the GDCA scheme are
presented by the following relations [57, 60]

A k
1 = φk

11

(
F k

1c + PJ k

s f̂k

) + φk
12

(
F k

2c − PJ k+1

s f̂k+1
) + φk

13, (2)

A k
2 = φk

21

(
F k

1c + PJ k

s f̂k

) + φk
22

(
F k

2c − PJ k+1

s f̂k+1
) + φk

23. (3)
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Fig. 2 Interactions between consecutive bodies in a multibody system

In the above equations, A k
i (i = 1,2) represent the spatial accelerations of the han-

dles of the body. The terms F k
ic (i = 1,2) are the spatial constraint forces due to

the kinematic constraint associated with the connecting joint, whiles f̂k is the col-
umn matrix of the generalized forces associated with those degrees of freedom of
the joint which are represented by the normalized subspace of the joint free-motion
map PJ k

s [57]. It is proven in [57, 60] that PJ k

s f̂k is the dynamically equivalent
spatial force [57] due to the corresponding generalized force f̂k . As such, the handle
equations of motion in a Generalized-DCA can accommodate the known/unknown
generalized forces, as well as the unknown spatial forces. Different applications of
these equations are reported in [57].

Similar to the DCA, the Generalized-DCA is implemented using a series of re-
cursive assembly and disassembly processes [50] to respectively form and solve
the equations of motion of the system. The main goal of the assembly pass is to
recursively generate larger encompassing subsystems by assembling the adjacent
articulated bodies/subsystems of a multibody system as shown in Fig. 3. It is seen
that the information flow in the underlying recursive operations is not serial, but in
the structure of a binary tree. In the disassembly process, these equations of mo-
tion are then solved for the spatial accelerations and constraint forces of the handles
of all nodes of the binary tree of Fig. 3. The detailed information on how the new
terms due to the application of the generalized forces are treated in these processes
are explained in [57, 59, 60].

4.2 Model Adjustment

In the adaptive scheme, it may deemed necessary to change the definition (i.e. lock-
ing or releasing) of the joints based on the value of the applied metrics. This model
transition is realized by adjusting the joint free-motion map PJ k

[50] of the as-
sociated joint, and the corresponding orthogonal complement map DJ k

at the leaf
level of the binary tree. For instance, if a revolute joint is to be locked because it is
determined to be making an insignificant contribution to the overall conformation
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Fig. 3 Assembly and disassembly passes to recursively form and solve the equations of motion of
the nodes of the binary tree

of the system, the associated spatial joint free-motion map PJ k = [1 0 0 0 0 0]T
is replace by the null matrix after the transition. Similarly, the current orthogonal
complement of the joint free-motion map

DJk =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (4)

is replaced by the identity matrix if expressed in the joint coordinate system.
Using the appropriate matrices characterizing the kinematics of the joints of the

desired model after the transition, the assembly and disassembly processes are then
performed as described previously to form and solve the forward dynamics equa-
tions of motion of the revised system model. More detail on these model adjustments
is presented in [57, 63].

4.3 Dynamics of the System Within the Transition

All of the adjustments between different system models including coarse-to-fine and
fine-to-coarse transitions are incurred without the influence of any external load.
Furthermore, the configuration of the system does not change within each model
adjustment. Therefore, any violation in the conservation of the generalized momen-
tum of the system in these transitions leads to nonphysical results. In other words,
the integration of the momentum of each differential element projected onto the
space of admissible motions permitted by the more restrictive model (whether pre-
or post-transition) over the entire system must be conserved across the model tran-
sition [37]. For instance, consider the process of instantaneous coarse graining of
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a fine-scale model. The coarse-scale model at t = tc is realized by imposing con-
straints on the fine-scale model at t = tf where |tc − tf | = ε where ε is vanishingly
small. In this transition, the number of generalized speeds of the system reduces
from {uf

i }ni=1 to {uc
i }n−m

i=1 , where n and n − m represent the number of degrees of
freedom of the fine and coarse models, respectively. As such, the conservation of
the generalized momentum of the system is expressed as

L c/c = L f/c, (5)

where L is the generalized momentum of the system. The terms L c/c and L f/c

represent the momenta of the coarse and fine models, respectively, projected onto
the space of admissible motions (partial velocity vectors) of the coarse model at the
time of transition.

Hence, the adaptive framework should be equipped with the machinery to effi-
ciently form the generalized momenta balance equations and solve for the general-
ized speeds corresponding to the new set of degrees of freedom after each model ad-
justment. The formation of these impulse-momentum equations within each transi-
tion can be efficiently performed with a divide-and-conquer based scheme [52, 57].
As with the forward dynamics DCA assembly process, the handle equations which
address the impulse-momentum equations of the bodies/assemblies of the system
are recursively formed and combined together to find the associated equations of
the resulting assemblies. These handle equations are then recursively solved for the
jumps in the spatial velocities of the handles of the assemblies, as well as the con-
straint impulses applied to these locations when the generalized momentum balance
is enforced.

5 Issues in Transitioning to Higher Fidelity Models

The transition towards the coarser-scale model which is effectively solving Eq. (5)
for {uc

i }n−m
i=1 always results in a unique solution. Unlike real mechanical systems, the

conservation of the generalized momentum across the model transition to the finer-
scale model of a biomolecular system may not result in a unique solution. Because,
in the transitions to the coarser model, naturally existing higher modes of motion
are ignored since the internal metric had previously indicated these modes as less
relevant. As such, in the transition to the higher fidelity models, the kinetic energy
of these ignored modes must be estimated and considered appropriately. The gener-
alized momentum conserving distribution (Eq. (5)) of the kinetic energy among the
modes of the fine model is not unique even if the value of the lost kinetic energy
within this transition is known [62]. More specifically, an underdetermined set of
equations must be solved for {uf

i }ni=1 when more than a single degree of freedom of
the system is released to achieve a higher fidelity model [57].

To solve the problem of the transition to the finer fidelity model, an optimization-
based technique may be used to arrive at the “best” solutions from an infinite pool
of possible physically meaningful solutions. This optimization problem which is
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implemented on a knowledge-, math-, or physics-based cost function is heavily
constrained since it must additionally satisfy the impulse-momentum equations i.e.
Eq. (5). For instance, one may minimize the L2 norm of the difference between
the generalized speeds of the fine-scale model and those of the coarse-scale model.
In this situation, the generalized speeds are prevented from deviating greatly from
the ones before unlocking [3, 62]. Alternatively, it may be desired to perform the
optimization on the energy transferred to the solvent [62].

The application of the traditional methods such as Lagrange multipliers to form
and solve this constrained optimization problem is computationally expensive [57].
The computational complexity of this problem reduces via changing the constrained
optimization problem to an unconstrained one which effectively reduces the opti-
mization parameters. However, in this scheme, using the coordinate partitioning to
find the relations between the dependent and independent design parameters (gener-
alized speeds) may become very costly [57, 78] if not performed wisely. The mathe-
matical framework of forming the impulse-momentum equations (constraints), and
efficiently finding the relations between the dependent generalized speeds and the
independent ones in the DCA scheme for rigid and flexible body systems are pre-
sented in [4, 41, 57, 64]. It is demonstrated in these works that the application of this
algorithm can significantly reduce the computational expenses associated with the
manipulations performed to derive the dynamics of the transition, as well as those
performed as parts of the optimization problem.

6 Preliminaries for Efficient Pairwise Force Calculations

1. Consider body B (not necessarily a rigid body) containing N particles, and the
individual particle P̄ shown in Fig. 4. In general, the pairwise force interaction
between an arbitrary particle Pi embedded in B and P̄ may be expressed in the
following format:

FP̄ Pi
= βλ̄λi

(|r′
i |)s er′

i
= βλ̄λir′

i

(
r′2

i

)− s+1
2 , (6)

where, β is the constant associated with the force field of interest, s > 1 is an
integer, er′

i
is the unit vector from P̄ to Pi . Additionally, λi is the quantity cor-

responding to the force field which is associated with particle Pi , and similarly,
λ̄ is the same quantity associated with particle P̄ . This general formulation may
be used to address the gravitational, Coulombic or London forces. For instance,
if one is interested in the pairwise interactions due to the Coulomb’s law [65],
λi represents the charge of the particle, s becomes 2, and β is replaced by the
Coulomb force constant.

2. For body (pseudo-atom) B , the pseudo-center denoted by Cλ is defined as the
center of the body corresponding to the quantity of interest λ provided that the
pseudo-mass (lumped quantity) of the body defined as
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Fig. 4 Pairwise interactions
between the particle P̄ and
the particles embedded in B̄

(particle-body interactions)

Λ �
N∑

i=1

λi (7)

is not zero. The position of this point with respect to the mass center of the body
(i.e., B∗) is calculated using the relation

Rλ =
∑N

i=1 Riλi

Λ
, (8)

where Ri is the position vector of the particle (atom) Pi measured from the center
of mass of the body. Discussions on the subdomains of the system for which the
pseudo-center is not defined (Λ = 0) are provided in Sect. 9.

3. For body B , the pseudo-inertia tensor associated with the quantity λ with respect
to the pseudo-center of the body is defined as

I
B/Cλ

λ �
N∑

i=1

(
U r2

i − riri

)
λi. (9)

In this definition, U denotes the identity tensor, and ri is the position vector of
the particle Pi relative to the pseudo-center of the body. This tensor represents
the dyadic of the moment of inertia (second moment) of the body if one studies
the gravitational force [37]. It should be mentioned that for rigid subdomains of
the system, this dyadic is constant if expressed in the axes fixed in the domain of
interest.

7 Force Approximation

In the following, the approximation of the net force applied to a body due to the
interactions between a single particle and the particles in the body is presented.
Additionally, the resultant force interactions between the particles in two different
domains (bodies) of the system is also approximated.

7.1 Particle-Body Force Interactions

Consider the interaction between particle P̄ and an arbitrary particle Pi embedded
in body B shown in Fig. 4 is expressed by Eq. (6). Also assume that the origin of
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the body-fixed frame is located at the pseudo-center of the body. According to the
geometry shown in Fig. 4, the position vector from r′

i in Eq. (6) can be replaced by
R + ri to arrive at

FP̄ Pi
= βλ̄λi

(
R2 + r2

i + 2R · ri

)− s+1
2 (R + ri ). (10)

The above equation can be rewritten as

FP̄ Pi
= βλ̄λi

Rs

(
1 +

(
ri

R

)2

+ 2a1 · ri

R

)− s+1
2

(
a1 + ri

R

)
, (11)

where, ri , and R are the lengths of the vectors ri and R, respectively. In this relation,
a1 is the unit vector from P̄ to the pseudo-center of body B as shown in Fig. 4.

Using the binomial series expansion, the term (1 + (
ri
R

)2 + 2a1 · ri

R
)− s+1

2 in
Eq. (11) is expanded as

(
1 +

(
ri

R

)2

+ 2a1 · ri

R

)− s+1
2

= 1 − s + 1

2

((
ri

R

)2

+ 2a1 · ri

R

)
+ (s + 1)(s + 3)

8

((
ri

R

)2

+ 2a1 · ri

R

)2

− (s + 1)(s + 3)(s + 5)

48

((
ri

R

)2

+ 2a1 · ri

R

)3

+ · · · (12)

provided that |( ri
R

)2 + 2a1 · ri

R
| < 1.

The total force experienced by body B due to the pairwise interactions between
its own particles and P̄ is expressed as

FP̄ B =
N∑

i=1

FP̄ Pi
. (13)

Using the expression provided in Eq. (12), this net force is rewritten as

FP̄B = βλ̄

Rs

[
N∑

i=1

λia1 −
N∑

i=1

(s + 1)λi

(
a1 · ri

R

)
a1 +

N∑
i=1

λi

ri

R

−
N∑

i=1

(s + 1)

2
λi

(
ri

R

)2

a1 +
N∑

i=1

(s + 1)(s + 3)

2
λi

(
a1 · ri

R

)2

a1

−
N∑

i=1

(s + 1)λi

(
a1 · ri

R

)
ri

R
+ O

(
r

R

)3
]
. (14)

In the above relation, r is the length of the position vector of a generic point on B

with respect to the pseudo-center of the body.
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Elaborating on different terms in the above expression based on their orders with
respect to ri

R
[57, 61], Eq. (14) provides the net force applied to the body as

FP̄B = βλ̄

Rs

{
Λa1 +

[
s(s + 1)

4R2
tr

(
I

B/Cλ

λ

) − (s + 1)(s + 3)

2R2
a1 · I B/Cλ

λ · a1

]
a1

+ s + 1

R2
a1 · I B/Cλ

λ + O

(
r

R

)3}
, (15)

where tr(I B/Cλ

λ ) is the trace of the pseudo-inertia tensor. This equation can be
expressed as

FP̄B = βλ̄Λ

Rs

[
a1 +

∞∑
i=2

fi

(
r

R

)i
]
, (16)

where fi � fi ( r
R

)i is the collection of terms associated with the ith degree of r
R

.
Ignoring the third and higher order terms in this relation, the net force is approx-

imated as

FP̄ B ≈ F̃P̄B = βλ̄Λ

Rs
(a1 + f2), (17)

provided that

max
i∈B

ri � R. (18)

Introducing a dextral, orthogonal set of unit vectors, a1, a2, and a3 with the origin
passing through the pseudo-center of B , and defining the elements of the pseudo-
inertia tensor in a-basis as

Iij = ai · I B/Cλ

λ · aj (i, j = 1,2,3), (19)

the term f2 may be written as

f2 = s + 1

ΛR2

{[
s

4
tr

(
I

B/Cλ

λ

) − s + 1

2
I11

]
a1 + I21a2 + I31a3

}
. (20)

7.2 Body-Body Force Interactions

Due to the pairwise interactions between particles {Pi}Ni=1 belonging to body B

(Fig. 5), and {P̄j }N̄j=1 embedded in body B̄ , the resultant force FB̄B is applied to

B by B̄ . This force can be approximated (F̃B̄B ) by summing over all approximate
forces applied to B by all particles P̄j on B̄ . As such, using the second order ap-
proximation of Eq. (15), this net force is approximated as
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Fig. 5 Pairwise interactions
between the particles
embedded in B and B̄

(body-body interaction)

F̃B̄B =
N̄∑

j=1

βΛλj

R̄s
j

āj

1 + βλj

R̄s
j

N̄∑
j=1

{[
s(s + 1)

4R̄2
j

tr
(
I

B/Cλ

λ

)

− (s + 1)(s + 3)

2R̄2
j

āj

1 · I B/Cλ

λ · āj

1

]
āj

1 + s + 1

R̄2
j

āj

1 · I B/Cλ

λ

}
, (21)

where R̄j denotes the distance from P̄j to Cλ, and āj

1 is the corresponding unit
vector.

Since the second summation involves the terms of second or higher degrees in
ri , R̄j and āj

1 may be replaced by R and a1, respectively. No terms of interest for
the purpose at hand are lost through this replacement. This substitution is effectively
the application of the Taylor series expansion in the approximation.

Let us define a2 and a3 such that a1, a2, and a3 establish a dextral, orthogonal set
of unit vectors. Defining the moments and products of inertia of B and B̄ for axes
parallel to a1, a2, a3, and passing through the pseudo-center of the individual bodies
as

Iij = ai · I B/Cλ

λ · aj (i, j = 1,2,3), (22)

Īij = ai · Ī B̄/C̄λ

λ · aj (i, j = 1,2,3), (23)

and elaborating on the first summation of Eq. (21), this equation is simplified as

F̃B̄B = βΛΛ̄

Rs
(a1 + g2 + ḡ2), (24)

where

g2 = s + 1

ΛR2

{[
s

4
tr

(
I

B/Cλ

λ

) − (s + 1)

2
I11

]
a1 + I21a2 + I31a3

}
, (25)

ḡ2 = s + 1

Λ̄R2

{[
s

4
tr

(
Ī

B̄/C̄λ

λ

) − (s + 1)

2
Ī11

]
a1 + Ī21a2 + Ī31a3

}
. (26)

8 Torque Approximation

Since the resultant forces calculated in Sects. 7.1 and 7.2 do not necessarily act
through the center of mass of the body, they create moments about the mass center.
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In the following, these resultant torques due to the long-range particle-body and
body-body interactions are calculated.

8.1 Particle-Body Torque Interactions

Based on the geometry shown in Fig. 4, the following cross product is used to cal-
culate the torque which body B experiences about its mass center B∗ due to the
interaction between P̄ and Pi

MB∗
P̄ Pi

= Ri × FP̄ Pi
. (27)

Replacing Ri by Rλ − R + r′
i , this torque can be rewritten as

MB∗
P̄ Pi

= (Rλ − R) × FP̄ Pi
+ r′

i × FP̄ Pi︸ ︷︷ ︸
0

. (28)

The last term in the above relation disappears since both r′
i and FP̄ Pi

are collinear
vectors. As such, body B experiences the following moment about B∗ due to the
interactions between its own particles and P̄

MB∗
P̄ B

=
N∑

i=1

(Rλ − R) × FP̄ Pi
= (Rλ − R) × FP̄ B . (29)

Using the second order approximation of the net force from Eq. (15), this moment
is approximated as

M̃B∗
P̄ B

= βΛλ̄

Rs
Rλ ×

{
a1 + s + 1

λ̄R2

{[
s

4
tr

(
I

B/Cλ

λ

) − (s + 3)

2
a1 · I B/Cλ

λ · a1

]
a1

+ a1 · I B/Cλ

λ

}}
− βλ̄(s + 1)

R(s+1)
a1 × (

a1 · I B/Cλ

λ

)
. (30)

Defining the elements of the pseudo-inertia tensor in a-basis as defined in Eq. (19),
and using f2 from Eq. (20), this expression is simplified as

M̃B∗
P̄ B

= βΛλ̄

Rs
Rλ × (a1 + f2) − βλ̄(s + 1)

R(s+1)
(I21a3 − I31a2). (31)

8.2 Body-Body Torque Interactions

Using Eq. (30), the resultant moment applied to B about B∗ from B̄ due to the
interactions between the particles in these bodies can be approximated by summing
over the approximate torques which body B experiences about B∗ by all particles
P̄j on B̄ as
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M̃B∗
B̄B

=
N̄∑

j=1

βλ̄jΛ

R̄s
j

Rλ × āj

1 +
N̄∑

j=1

βλ̄j

R̄s
j

Rλ × s + 1

R̄2
j

{[
s

4
tr

(
I

B/Cλ

λ

)

− (s + 3)

2
āj

1 · I B/Cλ

λ · āj

1

]
āj

1 + āj

1 · I B/Cλ

λ

}

−
N̄∑

j=1

βλ̄j (s + 1)

R̄
(s+1)
j

āj

1 × (
āj

1 · I B/Cλ

λ

)
. (32)

Similar to the argument made in Sect. 7.2, R̄j and āj

1 may be replaced by R and
a1, respectively. Using the same strategy provided in [61], the approximate moment
about B∗ from B̄ due to the pairwise interactions between the particles embedded
in B and B̄ is expressed as

M̃B∗
B̄B

= βΛΛ̄

Rs
Rλ × (a1 + g1 + ḡ2) − βΛ̄(s + 1)

R(s+1)
(I21a3 − I31a2), (33)

where Iij , g1, and ḡ2 have already been defined in Eqs. (22), (25) and (26), respec-
tively.

9 Discussions on the Developed Approximations

1. The presented approximations contain the terms up to the quadrupole moment
(quadrupole-quadrupole interactions). Furthermore, since the origin of the body-
fixed frame is located at its pseudo-center, the first moment

∑N
i=1 λiri does not

appear in these approximations [57, 61].
2. According to Eq. (8), the pseudo-center is not defined when the pseudo-mass Λ

of the body (subdomain) is zero. Similarly, if Λ is very close to zero, the pseudo-
center may be located far away from the body. As such, the center of mass of
the body may be considered as the origin of the body-fixed frame to derive the
resultant forces and torques. In these situations, the pseudo-inertia tensor used in
all the derived approximations is defined about B∗. Furthermore, due to locating
the origin of the body-fixed frame at the mass center rather than the pseudo-
center, the first moment appears in the approximations. However, it is proven in
[57, 61] that the first moment is constant regardless of the choice of the origin.
Consequently, when the pseudo-mass of the pseudo-atom is zero, it is necessary
to express the first moment measured from any reference point defined by the
analyst in the approximate force and torque. Furthermore, for rigid subdomains
of the system, this term becomes time-invariant.

3. For rigid pseudo-atoms, the pseudo-inertia tensor which appears in all the ap-
proximations is a time-invariant quantity if expressed in body-fixed frame. As
such, if this tensor is calculated for a rigid subdomain of the system at some time
either before or during the simulation, no additional cost is incurred to form or
use this dyadic during the course of the simulation. It is only needed to moni-
tor the location and orientation of each pseudo-atom. Moreover, the trace of this
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tensor which appears in these approximations is also a constant scalar for rigid
subdomains.

4. Due to the symmetry observed in the body-body force approximation in
Eqs. (24)–(26), the approximate net force does not violate Newton’s third law
of motion.

5. In the formulation presented for the particle-body and body-body torque approx-
imations in Eqs. (31) and (33), if the pseudo-center and the center of mass of the
body coincide, i.e., Rλ = 0, the last term only contributes to the applied moment.
In this case, the approximate moment formulation provides a zero value if a1

is aligned with one of the principal axes of the pseudo-inertia tensor of body B .
Since the geometry of the system is known at each time step, one can avoid using
these approximations by checking whether the orientation of the body is close to
this specific configuration. In such situations, the analyst may use the exact cal-
culations or a higher order approximation to find the moment. Moreover, in the
body-body torque interaction, one may use the summation of the particle-body
torque approximations over the entire particles of the body to calculate the torque
applied to a body from another body.

6. Poursina and Anderson [61] demonstrate the efficiency of the method by com-
paring the operation counts for particle-body and body-body force interactions
using the exact force calculations and the presented approximations. Addition-
ally, for a system containing np particles, and Nr rigid subdomains (Nr � np),
the computational complexity of the presented approximations is O(Nr)

2 as op-
posed to O(n2) complexity when all atoms are considered in pairwise calcula-
tions. Moreover, it is expected that the computational complexity will improve
to O(Nr logNr) if advanced algorithms are used to implement these approxima-
tions [57]. As such, an efficient implementation of these approximations which
is well-suited in combination with the state-of-the-art multibody algorithms is an
ongoing research by the authors [57].

10 Numerical Results

Consider particles with unit positive charges distributed equidistantly on two
straight lines B and B̄ with the length L as shown in Fig. 6. This could be a
simple model of a rigidified residue of a DNA or an RNA. Since the Coulombic
potential field is active between these charged particles, the values of the parame-
ters in Eq. (6) are selected as β = ke = 8.9885518 × 109 N m2/C2, λi = λ̄ = λ =
1.6021764 × 10−19 C, and s = 2. Due to the symmetry in the mass and charge dis-
tribution, the mass center and the pseudo-center of each body coincide. The dextral
orthogonal unit vectors b1b2b3 and b̄1b̄2b̄3 are attached to the pseudo-centers of
bodies B and B̄ , respectively. The angles θ1 and θ2 as shown in Fig. 6 are used to
describe the orientation of these body-attached reference frames with respect to the
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Fig. 6 Pairwise Coulombic
interactions between the
particles on two rigid bodies
B and B̄

a-frame. Further, the pseudo-inertia tensor of each body with respect to the associ-
ated pseudo-center is expressed in the corresponding body-basis as follows

I
B/Cλ

λ = Ī
B̄/C̄λ

λ =
⎡
⎣ 5λL2

8 0 0
0 0 0
0 0 5λL2

8

⎤
⎦ . (34)

To run the simulations, it is assumed that L = 5 Å which is approximately on
the same order of magnitude of length of an RNA residue. Herein, various config-
urations of this planar system are formed by fixing θ2 = 0, and changing R from L

to 4L and θ1 from 0 to π/2. The resultant electrostatic force applied from B̄ to B

at each configuration is computed using three different methods. First, the exact net
force due to the pairwise interactions is calculated. Then, the resultant force applied
by each particle of B̄ to the entire body B is found using the particle-body approx-
imation derived in Eq. (17), and summed over all particles embedded in B̄ . Finally,
the resultant force applied to B is calculated using the body-body approximation
presented in Eq. (24). The torque experienced by B about B∗ due to the interactions
between the particles embedded in B and B̄ is also calculated using these three
methods.

Using the following definitions

EF
ij �

‖Fapprox.(Ri, θ1j
) − Fexact(Ri, θ1j

)‖2

‖Fexact(Ri, θ1j
)‖2

, (35)

ET
ij �

‖Tapprox.(Ri, θ1j
) − Texact(Ri, θ1j

)‖2

‖Texact(R, θ1)‖∞
, (36)

the values of the percentage error of the approximate resultant force and moment
at each configuration (Ri, θ1j

) are, respectively, calculated and depicted in Fig. 7.
Since for this problem, the resultant force never becomes zero, the percentage error
of the approximate force at each configuration is normalized by L2 norm of the asso-
ciated force. However, the percentage error of the approximate torque is normalized
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Fig. 7 (a) The percentage error of the approximate net force applied to B by summing over parti-
cle-body approximations. (b) The percentage error of the approximate resultant torque about B∗ by
summing over particle-body moment approximations. (c) The percentage error of the approximate
net force applied to B using body-body approximation. (d) The percentage error of the approxi-
mate resultant moment about B∗ using body-body torque approximation

by the maximum of the absolute value of the exact torque among all configurations
since the net moment is zero in some configurations.

The results show that both particle-body and body-body formulas generate the
acceptable approximations for the far-field interactions. Although in the entire con-
figuration space sampled in this example, there exist very tiny regions for which
the approximations provide large errors, these errors decay very quickly as the bod-
ies become more distant. For instance, for a very conservative case with R

L
> 3,

Fig. 7(c) shows that the body-body force approximation provides the relative error
less than 0.1 %. It is also observed that summing over the particle-body approxima-
tion to find the force and moment between two bodies, in general, provides less error
than the application of the body-body approximation. Although the particle-body
approximation is more accurate, the body-body formulation is faster, and provides
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Fig. 8 The percentage
relative error in the
translational acceleration of
P1 when the angular motion
of the body is ignored

acceptable approximation for the exact resultant force and torque for most configu-
rations.

To analyze the importance of the angular motion in the determination of the
configuration of the system, assume that body B is a segment of a very long chain
(of a biopolymer), and the motion is transferred to the outboard handle of this body
through point P1. Without loss of generality and for simplicity, it is assumed that
the angular velocity of B (i.e. NωB ) is zero. Therefore, the rotational motion of
this body is reflected in its angular acceleration measured in the Newtonian frame
of reference i.e. NαB . The exact translational acceleration of P1 in the Newtonian
frame (i.e. N aP1

exact) when the angular motion of the body is not ignored is expressed
as

NaP1
exact = N aB∗ + NωB︸︷︷︸

0

× (
NωB︸︷︷︸

0

× rB∗P1
) + NαB × rB∗P1 . (37)

The term N aB∗
in the above relation is the translational acceleration of B∗ in the

Newtonian frame, and rB∗P1 denotes the position of P1 with respect to B∗. This
relation demonstrates that both P1 and B∗ have the same translational accelerations
if the entire rotational motion of the body is ignored (i.e., NωB = NαB = 0). As
such, the percentage relative error of the translational acceleration of P1 when the
angular motion of this segment is neglected is defined as

Err = ‖NαB × rB∗P1‖2

‖NaP1
exact‖2

× 100. (38)

This error is calculated and depicted in Fig. 8, assuming that the mass of each
particle is 27.026 Daltons which is 1

5 of the mass of the nucleotide Adenine. It is
observed that this error is significant within the majority of the configuration space.
As a result, the angular motion needs to be considered in modeling biopolymers such
as DNAs and RNAs in which the geometry plays an important role in determining
the conformational motion of the system.
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11 Conclusions

Herein, different strategies to improve the computational efficiency of the multi-
body-based coarse-grained simulations of biopolymers have been presented. The
adaptive modeling of these systems in which the model is adjusted within the course
of the simulation has been developed. This scheme which is much more accurate
than traditional static (time-invariant) coarse-grained models is capable of identify-
ing the critical locations of the system to add or remove fidelity to or from the sys-
tem model on-the-fly. Potential metrics to direct these model transitions have been
presented. Furthermore, the important issues associated with the implementation of
these instantaneous model adjustments within the course of the simulation have been
addressed. Since this coarse graining strategy is realized in a multibody dynamics
scheme, a Generalized Divide-and-Conquer (GDCA) which is highly modular and
lends itself well to adaptivity has been presented. The method for rigid body systems
is exact, non-iterative and efficient, providing a time optimal order logn computa-
tional performance achieved with a processor optimal order n processors. Another
aspect of this book chapter has been associated with the development of an efficient
algorithm to approximate far-field interactions. The presented method approximates
particle-body and body-body force and moment terms. The developed formulations
are highly compatible with the state-of-the-art efficient multibody algorithms. The
methods have provided relatively accurate results for the test case with Coulombic
interactions. It has also been illustrated that the torque which is ignored in bead
models plays an important role in more appropriately capturing the conformational
motion of biopolymers.
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