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Abstract Traditional manipulator designs are based on maximized stiffness to sup-
press undesired elastic vibrations. This results in high accuracy in end-effector tra-
jectory tracking, while it usually includes a drastic mass increase, a poor weight-
to-payload ratio and high energy consumption. In contrast, modern light weight
designs result in low energy consumption and allow often high working speeds.
However, due to the light weight design the bodies have a significant flexibility
which yields undesired vibrations. Therefore, in the control design these flexibili-
ties must be taken into account. In this chapter feedforward control designs based
on inverse models are presented and applied to serial and parallel flexible manip-
ulators. Thereby, for a given system output the inverse model provides the control
input for exact reproduction of the desired output trajectory and the trajectories of
the generalized coordinates.

1 Introduction

In order to achieve in modern machines low energy consumption and allowing high
working speeds light weight designs are increasingly often used. However, due to
the light weight design the bodies of the manipulators have a significant flexibility
which yields undesired vibrations. Therefore, the manipulators must be modeled
as flexible multibody system and in the control design these flexibilities must be
taken into account. Flexible manipulators are typical examples of underactuated
multibody systems, since they generally possess less control inputs than degrees of
freedom. In order to obtain a good performance in end-effector trajectory tracking
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an accurate and efficient feedforward control is necessary. This is then supplemented
by additional feedback control to account for small disturbances and uncertainties.
In this chapter the feedforward control design based on inverse models is presented
and applied to serial and parallel flexible manipulators. Thereby for a given system
output the inverse model provides the control input for exact reproduction of the
desired output trajectory. In addition the inverse model provides the trajectories for
all generalized coordinates, which can be used in additional feedback control.

In this chapter, firstly, an exact inverse model using concepts from differential ge-
ometric control theory [8, 12] is presented and applied to serial and parallel flexible
manipulators. The starting point is the explicit symbolic transformation of the equa-
tions of motion into the nonlinear input-output normal-form. From this the inverse
model is derived, consisting of a chain of differentiators, the driven internal dynam-
ics and an algebraic part. The stability properties of the internal dynamics determine
the complexity of the feedforward control design. If the internal dynamics are stable
they can be solved by forward time integration. Otherwise, bounded solutions for
the internal dynamics must be found by the solution of a two-sided boundary value
problem [4, 17]. In order to avoid this, optimization based output relocation is pro-
posed to obtain a system with stable internal dynamics, while keeping the tracking
error of the flexible manipulator small.

In addition an alternative approach for feedforward control based on servo-
constraints is presented. This yields at first a set of differential-algebraic equations.
By using numerical projection into the unconstrained subspace the description of
the internal dynamics is obtained, while its differentiation index is reduced. Using
the methods available for the first approach, the internal dynamics are then solved
in a similar way. This feedforward control concept is applied to a parallel flexible
manipulator, where the loop closing constraints and servo-constraints are treated
concurrently.

2 Feedforward Control Design by Symbolic Coordinate
Transformation

For modeling flexible light weight manipulators the method of flexible multibody
systems is often most suitable to represent large nonlinear working motions coupled
with elastic vibrations. Since for manipulators the elastic deformations are com-
paratively small, the floating frame of reference approach can be used [16]. The
symbolic multibody system research software Neweul-M2 [9] is used to derive the
equations of motion in minimal coordinates based on the Newton-Euler equations
and D’Alembert’s principle. The availability of the symbolic equations of motion is
very convenient for nonlinear controller design.

With the vector of generalized coordinates q ∈ R
f the equations of motion in

minimal coordinates are obtained as

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u. (1)
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Thereby M is the mass matrix, k the vector of generalized Coriolis-, centrifugal-
and gyroscopic-forces and g the vector of applied forces and inner forces due to the
body elasticity. The input matrix B distributes the control inputs u ∈ R

m onto the
directions of the f generalized coordinates. The vector of generalized coordinates
consists of the rigid coordinates qr ∈ R

fr representing the rigid body motion and
the elastic coordinates qe ∈ R

fe . Then, the equations of motion can be partitioned
into [

Mrr (q) Mre(q)

MT
re(q) Mee(q)

][
q̈r

q̈e

]
+

[
kr (q, q̇)

ke(q, q̇)

]
=

[
gr (q, q̇)

ge(q, q̇)

]
+

[
Br

Be

]
u. (2)

For serial flexible manipulators the actuation occurs only at the joints of the sys-
tems. Then, using a tangent frame for the elastic bodies, the control inputs u do not
directly effect the elastic coordinates and it is Be = 0. In addition, using relative
coordinates the inputs act directly on the rigid coordinates and it is Br = I . Since
serial manipulators are considered first, this special choice is used in the remainder
of this section.

Flexible multibody systems are typical underactuated multibody systems, since
they have less control inputs u ∈ R

m than generalized coordinates q ∈ R
f with

m < f . The control goal is tracking of a system output y ∈ R
m, e.g. the end-effector

point. In this section an exact inverse model for feedforward control design is de-
rived using concepts from differential geometric control theory [8, 12]. Thereby the
starting point is the transformation of the flexible multibody system into the nonlin-
ear input-output normal-form. Then, from this the inverse model is derived.

2.1 Coordinate Transformation into Input-Output Normal-Form

For control design it is often helpful to transform the nonlinear system into the
so-called nonlinear input-output normal-form by a diffeomorphic coordinate trans-
formation z = Φ(x). Thereby x = [qT , q̇T ]T are the original coordinates and z are
the new coordinates of the input-output normal-form, which are derived partially
from the system output. The first two derivatives of the system output are

ẏ = H (q)q̇, ÿ = H (q)q̈ + h′′(q, q̇), (3)

where H is the Jacobian matrix of the system output and h′′ = Ḣ q̇ is the local
acceleration. In (3) the second derivative of the generalized coordinates q̈ can be
replaced by the equations of motion (1), yielding

ÿ = Hq̈ + h′′ = HM−1[g − k + Bu] + h′′

= HM−1Bu + HM−1[g − k] + h′′. (4)

If the matrix HM−1B is nonsingular (4) can be solved for the control inputs u. In
this case the matrix HM−1B is called decoupling matrix and the system is said to
have vector relative degree r = {r1, . . . , rm} = {2, . . . ,2}. Following [8] the relative
degree is defined as the minimal number of derivatives of each system output hi(q),
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i = 1, . . . ,m until the inputs u can be computed. Then, no further derivatives are
necessary and the first part of the coordinate transformation is found, which is typ-
ical for many flexible manipulators. Then, the nonlinear coordinate transformation
is given by

z = Φ(x) = Φ(q, q̇) =
[

z1
z2
z3

]
with

z1 = y = h(q) ∈ R
m,

z2 = ẏ = H (q)q̇ ∈R
m,

z3 = Φ3(q, q̇) ∈ R
2(f −m).

(5)

Thereby the coordinates z3 are determined such that (5) forms at least a local
diffeomorphic coordinate transformation, which requires that the Jacobian matrix
J = ∂Φ(x)/∂x is nonsingular.

Applying the coordinate transformation (5) to the equations of motion (1) yields
the nonlinear input-output normal-form. However, the complete symbolic transfor-
mation is often quite difficult. In the following it is shown, that the input-output
normal-form can be established efficiently using a linearly combined system out-
put and the partitioned equations of motion (2). For flexible manipulators a linearly
combined output y = qr +Γ qe of rigid coordinates qr and elastic coordinates qe is
often a suitable choice [11, 15]. With such a system output the end-effector position
of serial flexible manipulators may be approximated such that ref (qr ,qe) ≈ r(y).
The determination of the weighting matrix Γ is discussed in Sect. 3. For the special
case of Γ = 0 the output reduces to y = qr , which is the so-called collocated output.
Thus, for flexible manipulators with linearly combined output a suitable coordinate
transformation is given by

z1 = y = qr + Γ qe, z2 = ẏ = q̇r + Γ q̇e, z3 = [
qT

e , q̇T
e

]T
. (6)

In order to derive the input-output normal-form the rigid coordinates qr are ex-
pressed in terms of the output y and the elastic coordinates qe . Then, after symbolic
manipulations the nonlinear input-output normal-form is obtained

M̃ÿ = g̃ − k̃ + u (7a)(
Mee − MT

reΓ
)
q̈e = ge − ke − MT

reM̃
−1(

g̃ − k̃ + u
)
, (7b)

with the terms summarized according to the convention M̃ = Mrr − (Mre −
MrrΓ )(Mee − MT

reΓ )−1MT
re and g̃ = gr − (Mre − MrrΓ )(Mee − MT

reΓ )−1ge

and k̃ = kr − (Mre − MrrΓ )(Mee − MT
reΓ )−1ke. For details on the performed

symbolic computations see e.g. [15]. Equation (7a) has dimension m and describes
the relationship between the inputs u and outputs y. Equation (7b) has in this case
dimension f − m and is called internal dynamics. Its behavior is crucial for control
design and has to be analyzed carefully. For this task the concept of zero-dynamics
is often very useful. The zero-dynamics of a nonlinear system are the internal dy-
namics of the system under the constraint that the output is kept exactly constant,
e.g. y = 0, ∀t . A nonlinear system is called asymptotically minimum phase if the
equilibrium point of the zero-dynamics is asymptotically stable. Otherwise the sys-
tem is called non-minimum phase [8, 12].
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2.2 Inverse Model

The inverse model follows directly from the input-output normal-form (7a)–(7b).
The inverse model provides the inputs ud which are required for exact reproduction
of a desired system output trajectory y = yd . In addition the corresponding trajec-
tories of all generalized coordinates qd are obtained. The inputs ud follow from
Eq. (7a) as

ud = M̃(yd ,qe)ÿd − g̃(yd ,qe, ẏd , q̇e) + k̃(yd,qe, ẏd , q̇e). (8)

The computation of the inputs ud depends on the desired outputs yd, ẏd and the
elastic states qe, q̇e . The latter are the solution of the internal dynamics given by
Eq. (7b) which is driven by yd, ẏd and ud . Replacing ud in the internal dynam-
ics (7b) by Eq. (8) yields for the values of the elastic states qe, q̇e the differential
equation

[
Mee(yd,qe) − MT

re(yd,qe)Γ
]
q̈e

= ge(yd,qe, ẏd , q̇e) − ke(yd ,qe, ẏd, q̇e) − MT
re(yd,qe)ÿd . (9)

Several methods for model inversion exist which differ in the solution of the internal
dynamics (9):

Classical Inversion In classical inversion [6] the qe, q̇e variables can be found
through forward integration of the internal dynamics (9) from the starting time point
t0 to the final time point tf , using the initial values qe(t0) = qe0

, q̇e(t0) = q̇e0
. How-

ever, depending on the stability of the internal dynamics forward integration might
yield unbounded qe, q̇e values and thus unbounded inputs ud , which cannot be used
as feedforward control. Therefore, this approach can only be used for feedforward
control design if the internal dynamics (9) remain bounded, which implies that the
system is minimum phase. An example is a flexible manipulator with collocated
output y = qr , i.e. Γ = 0.

Stable Inversion Flexible manipulators with the end-effector point as system
output turn out to be often non-minimum phase and classical inversion cannot be
used. However, using stable inversion [4] the inversion problem can be solved, such
that the trajectories qe, q̇e of the internal dynamics (9) and the control inputs ud

remain bounded. However, the solution might be non-causal. The solution of the
stable inversion is formulated as a two-sided boundary value problem, where the
boundary conditions are described by the unstable and stable eigenspaces Eu

0 , Es
f

at the corresponding equilibrium points of the internal dynamics. These are local
approximations of the unstable manifold Wu

0 and stable manifold W s
f at the starting

and ending equilibrium point, respectively, see [12]. This yields for the internal
dynamics bounded trajectories qe, q̇e which start at time t0 on the unstable manifold
Wu

0 and reach the stable manifold W s
f at time tf . Thus the initial conditions qu0

,
q̇u0

at time t0 cannot exactly be pre-designated. A pre-actuation phase [tpr , t0] is
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Fig. 1 Serial flexible manipulator

necessary which drives the system along the unstable manifold to a particular initial
condition qe(t0), q̇e(t0), while maintaining the constant output yd = yd(t0). Also a
post-actuation phase [tf , tpo] is necessary to drive the internal dynamics along the
stable manifold close to its resting position. The two-sided boundary value problem
has to be solved numerically. This can be done by a finite difference method [17],
e.g. using the Matlab solver bvp5c.

3 Determination of the Linearly Combined Output

The presented derivation of the inverse model depends on a linearly combined sys-
tem output. In this section the derivation of the linearly combined output is demon-
strated exemplarily for a serial flexible manipulator which moves in the horizontal
plane. The manipulator consists of two elastic arms with rigid elements attached at
their ends for mounting of the motors and end-effector mass, see Fig. 1. The to-
tal length of the first arm is denoted as l1 and the rigid end parts have length lr11

and lr12. The second arm has length l2 and the rigid end parts have length lr21

and lr22. The two motors produce the applied torques T1 and T2 which act on the
joint angles qr = [α,β]T . The transverse elastic deformations of the two arms are
described by the elastic coordinates q1

e ∈ R
r and q2

e ∈ R
s . In the following the ma-

trix Γ is derived from geometrical considerations and by optimization such that
the outputs y = [y1, y2]T yield a very good approximation of the end-effector posi-
tion,

ref (qr ,qe) ≈ r̄ef (y) =
[

l1 sin(y1) + l2 sin(y1 + y2)

−l1 cos(y1) − l2 cos(y1 + y2)

]
. (10)

Here y1 and y2 can be viewed as auxiliary angles, see Fig. 1. With this approxima-
tion the desired trajectories for the system output yd can be computed by rigid body
inverse kinematics from the desired trajectory r

ef
d of the end-effector point.
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3.1 Choice of System Output Using Geometrical Considerations

Due to the body elasticity the tips of the arms are subjected to the displacements u1
and u2. These are perpendicular to the undeformed axes of the arm. Restricting to
small elastic rotations, these elastic deformations are given by

u1 =
r∑

i=1

Φ1
i q1

ei + lr12

r∑
i=1

Ψ 1
i q1

ei ,

u2 =
s∑

i=1

Φ2
i q2

ei + lr21

s∑
i=1

Ψ 2
i q2

ei .

(11)

The ith elastic coordinate of the first arm is denoted by q1
ei and of the second arm

by q2
ei . The value of the ith displacement shape function at the end of the elastic parts

of the first and second arm are denoted by Φ1
i and Φ2

i , respectively. The values of
the ith shape functions for the elastic rotation evaluated at the end of the elastic parts
of arm one and two are denoted by Ψ 1

i and Ψ 2
i , respectively. Thus, the first terms

of Eq. (11) represent the transverse elastic deformation of the elastic parts of both
bodies. Due to the elastic rotation of these elastic parts, the rigid end parts of the
arms undergo an rotation with respect to their reference frame given by

ᾱ2 =
r∑

i=1

Ψ 1
i q1

ei and β̄2 =
s∑

i=1

Ψ 2
i q2

ei . (12)

The influence of ᾱ2 and β̄2 is represented by the second terms of Eq. (11). These
deformations u1, u2 result in the approximate deformation angles α1, β1, see Fig. 1.
For small displacements these two deformation angles α1, β1 can be determined and
expressed as linear combinations of the elastic coordinates as

α1 ≈ u1

l1
=

r∑
i=1

Φ1
i + lr12Ψ

1
i

l1
q1
ei =

r∑
i=1

Γ1iq
1
ei (13)

and

β1 ≈ u2

l2
=

s∑
i=1

Φ2
i + lr22Ψ

2
i

l2
q2
ei =

s∑
i=1

Γ2(r+i)q
2
ei . (14)

From these two equations the linearly combined system outputs y1 = α +α1 and
ȳ2 = β + β1 can be determined. For flexible manipulators without any rigid parts
similar outputs are used for trajectory tracking by [11] and [18]. However, when
using this output to approximate the end-effector point (10) of a multi-link flexible
manipulator, the elastic rotation of the coordinate system attached to tip of arm 1 is
neglected. Since in this coordinate system the motor angle β is described, the output
ȳ2 is not suitable for end-effector tracking, see [15]. Thus the system output y2 has
to be corrected by the additional angle α2 given by

α2 = ᾱ2 − α1 =
r∑

i=1

(
Ψ 1

i − Γ1i

)
q1
ei =

r∑
i=1

Γ2iq
1
ei . (15)
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From this follows the system output y2 = ȳ2 + α2 = β + β1 + α2, which contains
contributions of the elastic deformation of arm 1 and arm 2. The linearly combined
system output which is suitable to approximate the end-effector point by Eq. (10) is
then given by

y = qr + Γ qe

=
[

α

β

]
+

[
Γ11 . . . Γ1r 0 . . . 0
Γ21 . . . Γ2r Γ2(r+1) . . . Γ2(r+s)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
e1
...

q1
er

q2
e1
...

q2
es

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

3.2 Design of System Output by Optimization

Output relocation is a method where a different system output ŷ is chosen in order
to achieve minimum phase property. In [11] output relocation for a flexible two arm
manipulator is investigated. Thereby a linearly combined system output with block
diagonal matrix Γ is used. It is shown that for the two outputs the entries of Γ can
be scaled with a value between 0 and 1 to obtain minimum phase property. However,
the influence of the elastic rotation (15) of the first body on the second system output
is neglected and might result in large end-effector errors, see [15].

Therefore, an optimization based design procedure for a new system output ŷ is
proposed here to obtain a minimum phase design of underactuated multibody sys-
tems and also a very good approximation of the end-effector point ref . Thereby
the new output ŷ is an artificial output, which does not represent a specific mate-
rial point of the multibody system. For this task the linearly combined output is
very convenient, since it provides an easy way for the parametrization of the design
variables,

ŷ = qr + Γ (p)qe. (17)

Here the design variables p are just the entries of the weighting matrix Γ . Then, it
follows with yd = 0, ∀t from (9) that the zero dynamics, which depend only on the
elastic coordinates qe, q̇e and the design variables p, are given by[

Mee(qe) − MT
re(qr )Γ (p)

]
q̈r = gr (qr , q̇e) − ke(qe, q̇e). (18)

The linearization of the zero dynamics yield the system matrix A(p) which also
depends on the design variables. The design goal is to achieve a stable zero dy-
namics by changing the system output, whereby the new system output should still
yield a good approximation of the end-effector position ref . Therefore, a two-step
computation of the optimization criterion f (p) is proposed, which should be mini-
mized in the course of the optimization. The two steps of the optimization criterion
computation are:
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Step 1 Firstly, local asymptotic stability is checked. Thus, all eigenvalues of the
linearized zero dynamics must be in the left half-plane,

Re
[
λ
(
A(p)

)]
< 0. (19)

If at least one eigenvalue has a non-negative real part, a large default value for the
optimization criterion f (p) is returned. Otherwise, the linearized analysis shows
asymptotic stability of the zero dynamics and it is proceeded with step 2.

Step 2 If all eigenvalues of the zero dynamics are in the left half-plane, the actual
optimization criterion f (p) will be calculated. Therefore a feedforward control for
a test trajectory yd is computed. From this inverse model the end-effector trajectory
ref (qr ,qe) ∈R

m and the effective deviation e(t) from the desired trajectory can be
determined as

e(t) =
√√√√ m∑

i=1

e2
i (t) with e(t) = r

ef
d (t) − ref (qr ,qe). (20)

Then, the optimization criterion is chosen as the maximal effective end-effector de-
viation

f (p) = max
t

e(t). (21)

With the solution for the internal dynamics for the desired trajectory yd the bound-
edness of the internal dynamics is verified. If unbounded states for this design occur
the time integration fails and also a large default value is returned for the optimiza-
tion criterion f (p).

The optimization criterion is discontinuous due to the distinction between stable
and unstable designs. Therefore, gradient based methods cannot be used and the
stochastic particle swarm optimization algorithm is applied, see [13] for details on
the used algorithm. The presented optimization based approach for designing a suit-
able system output yields a good tracking performance for a given desired output
trajectory. If the optimized output Γ (p∗) also yields a good end-effector approxi-
mation for a different trajectory has to be checked for each particular case.

4 Application to a Serial Manipulator

The feedforward control design is first demonstrated for a planar serial flexible ma-
nipulator as shown in Fig. 1. The first arm has length l1 = 351 mm and consists of a
first rigid part of length lr11 = 63.5 mm, an elastic part of length le1 = 209 mm and
a second rigid part of length lr12 = 78.5 mm. The elastic part has thickness 1.27 mm
and height 76.2 mm. The second arm has length l2 = 287.5 mm and consists of a
first rigid part of length lr21 = 62.5 mm, an elastic part of length le = 210 mm and a
rigid end-effector mass of length lr22 = 15 mm. The elastic part of the second arm



62 R. Seifried et al.

Fig. 2 Desired trajectory of the manipulator

has thickness 0.9 mm and height 38.1 mm. The rigid parts of the arms represent the
joints, motor mounting and end-effector mass. All parts of the manipulator are made
out of steel. For the description of the elastic deformation of the arms the first two
bending eigenmodes are used as shape functions for each arm, i.e. qe ∈ R

4. A tan-
gent floating frame of reference is used. The end-effector of the manipulator should
follow a straight test trajectory, whose path is shown in Fig. 2. Along the path, the
trajectory is described by a polynomial of ninth order, such that the velocities and
accelerations are zero at both the start and the end of the trajectory. The path length
is 0.2 m and the time for following the trajectory is 1 s. The trajectory starts from
rest at time 0.2 s and ends in rest at time 1.2 s.

In the following simulation results for this flexible manipulator are presented, see
also [15] for more details. Thereby the computed feedforward control is tested by
simulation, whereby it is combined with PID-feedback control for the joint trajecto-
ries qr . However, since the inverse model is exact, the PID-control has in these tests
only to compensate numerical errors. In reality there are larger uncertainties and
disturbances which the controller has to account for. The presented results should
demonstrate the capacities of the feedforward control, and the maximal achievable
accuracy in the ideal case. In the following the trajectory error in path direction eip ,

orthogonal to the path eop and the absolute error eabs =
√

e2
ip + e2

op are presented.

Firstly, a feedforward control based on a rigid system output is used, i.e. the
elasticities are neglected yielding Γ = 0. This is the so-called collocated output
which yields a minimum phase system and classical inversion can be used. From
the tracking error for this strategy, which is presented in Fig. 3, the strong influence
of body flexibility is seen, yielding an unacceptable behavior and errors of several
centimeters.

The inversion based feedforward control with linearly combined output is con-
sidered next. Using the elastic data of the manipulator and Eqs. (10)–(16) the matrix
Γ is given by
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Fig. 3 Error of the
end-effector trajectory using
exact inversion with
collocated output

Γ =
[

25.779 47.552 0 0
13.500 88.897 32.316 39.470

]
. (22)

An analysis of the zero-dynamics of the flexible manipulator with this output shows,
that the system is non-minimum phase. Thus, stable inversion is necessary and the
Matlab boundary-value solver bvp5c is used. However, it turns out, that for the Γ

values given by (22) no solution can be computed numerically using the bvc5p.
But by slight variations of Γ21 = 13.375 and Γ22 = 92.5, a numerical solution of
the boundary value problem is found. In Fig. 4 the end-effector trajectory error is
shown for this feedforward control. A very high accuracy is achieved. The trajectory
errors are in the magnitude of less than 0.1 mm. After reaching the final position at
time 1.2 s only minor deviations of the end-effector point remain.

The optimization based system output design is applied next. For the optimiza-
tion based design the non-zero entries of the weighting matrix Γ are used as design
variables. Based on the values for Γ derived from geometrical considerations (22),
the bounds for the design variables are defined. These are set such that a variation of
the design variables of +/−20 % around the geometrical case (22) is allowed. For
the optimization 100 particles are used and yields the values

Γ =
[

25.025 45.909 0 0
15.292 90.345 29.296 32.297

]
. (23)

The new system output yields a minimum phase system and feedforward control
design by classical inversion can be applied. The simulation results are presented in
Fig. 4 and show that with this approach high accuracy for the end-effector trajectory
can be obtained. The maximal trajectory error is about 0.28 mm. Compared to the
previous results the achievable accuracy for this minimum phase system is slightly
worse than the output using geometrical considerations yielding a non-minimum
phase system, see Fig. 4, but much better than using the collocated output, see Fig. 3.
Comparing to results for this manipulator presented in [15], the optimization based
output design yields also better results than the so-called quasi-static deformation
compensation, which is an alternative approach for feedforward control design of
flexible manipulators.
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Fig. 4 Error of the end-effector trajectory using stable inversion with Γ from geometrical consid-
erations (left) and optimization (right)

5 Extension to Parallel Manipulators

For multibody systems with kinematic loops and fc degrees of freedom the descrip-
tion of the kinematics using a minimal set of generalized coordinates is in general
not directly possible. Therefore, the kinematic loop is cut at a suitable joint, yielding
a multibody system in tree structure with f > fc degrees of freedom. The equations
of motion of the obtained open loop system are derived in analogy to systems with
tree structure according to Eq. (1). By introducing nc implicit algebraic loop closing
constraint equations

c(q, t) = 0, (24)

the equations of motion of the closed loop system can be formulated as a set of
differential-algebraic equations (DAE)

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u + CT (q)λ (25a)

c(q, t) = 0 (25b)

where the matrix C is the Jacobian matrix of the constraint equations c with respect
to the generalized coordinates q ∈ R

f . The vector λ ∈ R
nc represents the general-

ized reaction forces in the cut joints. In order to derive the input-output normal-form
of the system (25a)–(25b) according to Sect. 2, the set of differential-algebraic equa-
tions has to be transformed into a set of fc = f −nc ordinary differential equations.

There are several ways of rephrasing differential-algebraic equations as purely
differential equations. One way is partitioning the generalized coordinates q ∈ R

f

into a set of independent coordinates q i ∈ R
fc and dependent coordinates qd ∈ R

nc

according to

qT = [
qT

i qT
d

]
(26)
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and expressing the system dynamics in these independent coordinates, see e.g. [10].
The first step is to differentiate the constraint equations c twice with respect to the
time t leading to the constraint equations on acceleration level

c̈(q̈, q̇,q, t) = C(q)q̈ + c′′(q̇,q, t) = 0, (27)

with the vector c′′ representing the local accelerations due to the constraints. For
linear independent constraint equations and a reasonable choice of dependent coor-
dinates, the Jacobian matrix C can be split up in an independent and a dependent
part leading to

c̈(q̈, q̇,q, t) = Cd(q)q̈d + Ci (q)q̈i + c′′(q̇,q, t) = 0, (28)

in which Cd ∈R
nc×nc must be a regular matrix. Solving Eq. (28) for the dependent

accelerations q̈d and dropping the dependencies for better readability, the dependent
accelerations q̈d can be expressed as

q̈d = −C−1
d

(
Ci q̈i + c′′). (29)

Based on this relationship, the generalized accelerations can be written as

q̈ =
[

I

−C−1
d Ci

]
q̈ i +

[
0

−C−1
d c′′

]
= J cq̈i + b′′. (30)

By inserting Eq. (30) into Eq. (25a) and by left-side multiplication with the trans-
posed Jacobian matrix J c the equations of motion in minimal coordinates of the
multibody body system with kinematic loop are obtained,

J T
c M(q)

(
J cq̈i + b′′) + J T

c k(q, q̇) = J T
c g(q, q̇) + J T

c B(q)u + J T
c CT (q)λ.

(31)

Since the relation

J T
c CT = [

I −CT
i C−T

d

][
CT

i

CT
d

]
= CT

i − CT
i C−T

d CT
d = 0 (32)

holds, the Lagrange multipliers λ vanish in Eq. (31) and the equations of motion can
be displayed as

M(q)q̈i + k(q, q̇) = g(q, q̇) + B(q)u. (33)

These equations of motion in minimal form allow the partitioning of the indepen-
dent accelerations q̈i into the rigid accelerations q̈r and the elastic accelerations q̈e

according to Eq. (2).
Based on this representation the equations of motion (33) can be transformed

into the input-output normal-form, which permits the analysis of the internal dy-
namics and the application of the exact model inversion procedures discussed in
the previous sections. This approach is applied to the flexible parallel manipulator
shown in Fig. 5. Using for the coordinate partitioning the independent coordinates
qi = [qr ,qe] with qr = [s1, α], again a linearly combined system output can be
used to approximate the end-effector position

ref (qr ,qe) ≈ ref (y) with y1 = s1, y2 = α + Γ qe. (34)
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Fig. 5 Parallel flexible manipulator

The weighting matrix Γ can be derived similarly to Sect. 3. The transformation into
input-output normal-form shows, that it is again a system of vector relative degree
r = {2, . . . ,2} and the elastic coordinates qe describe the internal dynamics. Also
in this case the weighting matrix Γ derived from geometric considerations yields a
non-minimum phase system and requires a stable inversion. A simulation result is
presented in Sect. 7.

6 Model Inversion Using Servo-Constraints and Projections

In this section an alternative approach for the solution of the exact model inversion
problem is introduced, which is especially appealing for parallel flexible manipula-
tors. Formulating the complete problem as a set of differential-algebraic equations
according to

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u + CT (q)λ (35a)

h(q, t) = y(q) − yd(t) = 0 (35b)

c(q, t) = 0, (35c)

with the vector c ∈ R
nc representing the constraints due to the kinematic loops and

the vector h ∈ R
m describing the so-called servo-constraints [1, 14]. This unifies the

handling of both types of constraints. Due to the fact that the constraint equations
are on position level, it is not guaranteed that a numerical solution can be found
easily. In order to ensure that a solution can be obtained, a formalism to reduce the
index of the system without imposing a numerical drift is presented.

6.1 Differentiation Index

A very important characteristic of differential-algebraic equations is the differentia-
tion index. It describes how a perturbation in the variables effects the solution of the
DAE. The differentiation index is defined as the minimal number of differentiations



Trajectory Control of Serial and Parallel Flexible Manipulators 67

of the constraint equations necessary to obtain ordinary differential equations for all
variables. To ensure a better readability, the constraints in Eq. (35b) and Eq. (35c)
are combined leading to the representation

M(q)q̈ + k(q, q̇) = g(q, q̇) + Θ(q)

[
u

λ

]
(36a)

ξ(q, t) = 0 (36b)

with the matrix Θ = [B CT ] ∈R
f ×(m+nc) and the vector ξT = [hT cT ]T ∈R

(m+nc)

of the constraints. Firstly, the constraint equations are differentiated with respect to
the time

dξ

dt
= ∂ξ

∂q
q̇ + ∂ξ

∂λ
λ̇ + ∂ξ

∂u
u̇ + ∂ξ

∂t
= 0

ξ̇ =
[

H

C

]
q̇ + ξ ′ = Ξq̇ + ξ ′ = 0,

(37)

in which the matrix Ξ = [H T ,CT ]T ∈ R
(m+nc)×ft summarized the Jacobian ma-

trices of the servo-constraints H and geometric constraints C. As the constraint
equations do neither depend on the reaction forces λ nor on the system inputs u, the
Jacobian matrix of the unified constraints ξ with respect to λ and u vanish. Since
Eq. (37) also does not depend on λ or u, the second partial differentiation can be
displayed as

ξ̈ = Ξq̈ + ξ ′′ = 0. (38)

By solving Eq. (36a) for the generalized accelerations q̈ and inserting them into
Eq. (38), the constraint equations on velocity level can be presented as

ξ̈ = Ξ(q)M(q)−1
(

g(q, q̇) − k(q, q̇) + Θ(q)

[
u

λ

])
+ ξ ′′ = 0. (39)

The final differentiation yields to the formulation

...
ξ = ∂ ξ̈

∂q
q̇ + ∂ ξ̈

∂ q̇
q̈ + ∂ ξ̈

∂u
u̇ + ∂ ξ̈

∂λ
λ̇ + ∂ ξ̈

∂t

= ∂ ξ̈

∂q
q̇ + ∂ ξ̈

∂ q̇
q̈ + Ξ(q)M(q)−1Θ(q)

[
u̇

λ̇

]
+ ∂ ξ̈

∂t
= 0 (40)

providing a set of differential equations for the generalized reaction forces λ and
the system inputs u, if the matrix R = ΞM−1Θ is regular. In this case, the system
has a differentiation index of 3. If the matrix R is not invertible, the differentiation
index is accordingly higher. For the special case, that the system has only indepen-
dent geometric constraints, R reduces to R = CM−1CT which is positive definite
and therewith invertible. If only servo-constraints occur it is R = HM−1B . This
is exactly the decoupling matrix occurring in Eq. (4) of the symbolic coordinate
transformation into input-output normal-form. Thus, if R is invertible the system
has differentiation index 3 and vector relative degree r = {2, . . . ,2}. In [2] it is dis-
cussed that the differentiation index is one higher than the relative degree, if the
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internal dynamics are not affected by a constraint. In the following it is assumed,
that servo-constraints and geometric constraints occur and that the matrix R has full
rank, providing differentiation index 3.

6.2 Projections

In order to reduce the index of the system, the equations of motion (36a) and the
constraint equations on acceleration level (39) are taken into account. The first step
is eliminating the generalized reaction forces λ and the system inputs u with a pro-
jection. For classical DAEs this method is sometimes referred as the null space
method, see [7]. For servo-constraint problems, the corresponding projection matri-
ces are obtained with two QR decompositions according to

ΞT = QrRr = [Qr,1 J r ]

[
Rr,1

0

]
= Qr,1Rr,1, (41a)

Θ = QlRl = [Ql,1 J l ]

[
Rl,1

0

]
= Ql,1Rl,1. (41b)

The matrix ΞT is split into an orthogonal Qr ∈R
f ×f and a triangular matrix Rr ∈

R
f ×(m+nc), whose f − (m+nc) lower rows are zero. Therefore, the matrix ΞT can

be displayed as the product of the first (m + nc) columns of Qr , called Qr,1, and
the first (m + nc) rows of Rr , called Rr,1. With this relationship, the matrix Ξ can
be written as

Ξ = RT
r,1Q

T
r,1. (42)

Due to the fact that the matrix Qr is orthogonal, the matrix product

ΞJ r = RT
r,1 QT

r,1J r︸ ︷︷ ︸
=0

(43)

vanishes. Therefore, the columns of the matrix J r span the null space of the ma-
trix Ξ and the columns of the matrix Qr,1 span the row space of the matrix Ξ ,
respectively. Since the dimensions of ΞT and Θ match, an analog procedure shows
that the columns of the matrix J l span the left null space of the matrix Θ and the
columns of the matrix Ql,1 span the column space of the matrix Θ .

The properties of the matrix Qr are used to introduce a new set of generalized
accelerations z̈ according to

q̈ = Qr z̈ = J r z̈i + Qr,1z̈d, (44)

with the independent accelerations z̈i ∈ R
f −(m+nc) and the dependent accelerations

z̈d ∈ R
(m+nc). Substituting the generalized accelerations in Eq. (38) with Eq. (44)

results in
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ξ̈ = Ξ(J r z̈i + Qr,1z̈d) + ξ ′′

= RT
r,1 QT

r,1J r︸ ︷︷ ︸
=0

z̈i + RT
r,1 QT

r,1Qr,1︸ ︷︷ ︸
=I

z̈d + ξ ′′ = 0. (45)

Solving Eq. (45) for the dependent accelerations z̈d leads to

z̈d = −R−T
r,1 ξ ′′. (46)

Therefore, using Eq. (44), the generalized coordinates can be expressed as

q̈ = J r z̈i − Qr,1R
−T
r,1 ξ ′′. (47)

The next step is to eliminate the reaction forces λ and system inputs u and to express
the equations of motion in terms of the independent accelerations z̈i . By substituting
the generalized accelerations q̈ in Eq. (36a) with Eq. (47) and multiplying the arising
equations with the transposed Jacobian matrix J l from the left yields to

J T
l M(q)

(
J r z̈i − Qr,1R

−T
r,1 ξ ′′) + J T

l k(q, q̇) = J T
l g(q, q̇) + J T

l Θ(q)︸ ︷︷ ︸
=0

[
u

λ

]
.

(48)

This leads to the equations of motion in the new, independent coordinates zi . These
equations describe the internal dynamics of the servo-constraint problem given in
Eqs. (35a)–(35c). This corresponds to the internal dynamics given by Eq. (9) using
symbolic coordinate transformation. In order to solve the initial value problem, these
equations have to be transformed back to the original set of coordinates q . Solving
Eq. (48) for independent accelerations z̈i according to

z̈i = (
J T

l M(q)J r

)−1
J T

l

(
g(q, q̇) − k(q, q̇) + M(q)Qr,1R

−T
r,1 ξ ′′) (49)

and inserting the independent accelerations z̈i into Eq. (47) leads to

q̈ = J r

(
J T

l M(q)J r

)−1
J T

l

(
g − k + M(q)Qr,1R

−T
r,1 ξ ′′) − Qr,1R

−T
r,1 ξ ′′. (50)

In order to derive a state space representation, the same procedure is done for the
velocities. Similar to Eq. (47), the independent velocities żi can be expressed as

q̇ = J r żi − Qr,1R
−T
r,1 ξ ′. (51)

Multiplying Eq. (51) with the transposed Jacobian matrix J l from the left and solv-
ing for żi results in

żi = (
J T

l J r

)−1
J T

l

(
q̇ + Qr,1R

−T
r,1 ξ ′). (52)

Inserting this equation into Eq. (51) results in the representation necessary for state
space representation

q̇ = J r

(
J T

l J r

)−1
J T

l

(
q̇ + QrR

−T
r ξ ′) − QrR

−T
r ξ ′, (53)

in which the velocities do not violate the constraint equations. One of the benefits
of this representation is, that the equations of motion no longer dependent on the
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reaction forces nor on the system inputs and at the same time comply with the con-
straints. But the back transformation also introduced 2(m + fc) zero eigenvalues
leading to a numerical drift in the solution [3]. The same effect occurs, when the
Lagrange equations of the first kind are applied to constraint mechanical systems.

A suitable way of avoiding the drift is to reformulate the system given by Eq. (50)
and Eq. (53) as an index 1-DAE by only considering 2(f − (m + nc)) differential
equations, which describe the internal dynamics, and taking the remaining 2(m+fc)

coordinates as algebraic equations into account. The generalized coordinates are
split according to qT = [qT

i qT
d ] with q i being the coordinates describing the inter-

nal dynamics and qd being the coordinates describing the driven dynamics. From
the analysis in Sect. 5 it is known that the internal dynamics can be described by
the elastic coordinates and thus it is qd = qe . Then, the equations of motion of the
servo-constraint problem in state space representation can be expressed as⎡

⎢⎣
I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣

q̇i

q̈i

qd

q̇d

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

P (J r (J
T
l J r )

−1J T
l (q̇ + Qr,1R

−T
r,1 ξ ′) − Qr,1R

−T
r,1 ξ ′)

P (M̂(g − k + M(q)Qr,1R
−T
r,1 ξ ′′) − Qr,1R

−T
r,1 ξ ′′)

ξ(q, t)

ξ̇(q̇,q, t)

⎤
⎥⎥⎥⎦ , (54)

in which the matrix P represents the Jacobian matrix of the vector q i with respect
to the generalized coordinates q and the matrix M̂ equals J r (J

T
l M(q)J r )

−1J T
l .

The numerical integration of these equations as an initial value problem does not
provoke a drift in the solution.

In analogy to Sect. 2.2 the desired system inputs ud together with the reaction
forces λ, which both are eliminated in Eq. (54), can be derived by solving Eq. (36a)
for the generalized accelerations and substituting them with Eq. (47) according to

J r z̈i − Qr,1R
−T
r,1 ξ ′′ = M(q)−1(g(q, q̇) − k(q, q̇)

) + M(q)−1Θ(q)

[
u

λ

]
. (55)

Multiplying this equation from the left with the transposed matrix Qr1
yields, in

case of an index 3 problem, a regular matrix QT
r,1M

−1Θ . Thus solving for the
desired reaction forces and system inputs leads to[

ud

λ

]
= −(

QT
r,1M

−1Θ
)−1(

R−T
r,1 ξ ′′ + QT

r,1M
−1(g − k) − QT

r,1J r︸ ︷︷ ︸
=0

z̈i

)
. (56)

6.3 Solution of the Two-Point Boundary Value Problem

In order to solve the two-point boundary value problem for this approach, some
additional considerations have to be taken into account. Firstly, the question arises
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Fig. 6 Desired trajectory of the parallel manipulator

which representation is supposed to be used to solve the boundary value problem.
There are three qualified candidates providing different advantages and drawbacks.
The first candidate is the representation describing solely the internal dynamics of
the model described by the first two rows of Eq. (54). By using this representation
the formulation of the boundary conditions follows the description in Sect. 2, but it
is necessary to compute the coordinates of the driven dynamics with a root search
at each time step.

If a corresponding solver is available, the differential-algebraic representation ac-
cording to Eq. (54) can be used to obtain a bounded solution. The third possibility
is using the projected dynamics according to Eqs. (50) and (53). In this case, the nu-
merical overhead is considerably reduced. The last two candidates have in common
that the formulation of the boundary conditions has to be modified. In addition to
the already mentioned boundary conditions based on the eigenspaces of the internal
dynamics, it is necessary to use a combination of the constraint equations on posi-
tion and velocity level at the time t0 or tf as well. A reasonable choice is ensuring
that the solution fulfills the constraint equations on position level at t0 and tf .

7 Application to Parallel Manipulators

The model inversion formalisms using coordinate transformation presented in
Sects. 2 and 5 and servo-constraints presented in Sect. 6 are applied to the paral-
lel flexible manipulator shown in Fig. 5. The trajectory presented in Fig. 6 is used.
The system consists of a long and a short arm each mounted on a car. The long arm
is composed of three rigid parts connected with two elastic links and the short arm is
composed of two rigid parts connected with an elastic link. The three identical elas-
tic links, which are made out of steel, have length le = 400 mm, height he = 80 mm
and depth de = 2 mm. The overall length of the long arm is ll = 1081 mm, whereas
the length of the short arm is ls = 560 mm. The end of the short arm is connected
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Fig. 7 Error of the end-effector trajectory with rigid output (left) and using optimized weights and
classical inversion (right)

to the middle of the long arm by a revolute joint. The long arm is modeled as one
elastic body consisting of two beam elements which are connected with rigid bodies.
A model order reduction of the long arm based on proper orthogonal decomposition,
see [5], results in a reduced elastic body with twelve shape functions to describe the
elastic deformations. A similar procedure leads to a reduced model of the short
arm with six shape functions. Due to the revolute joint the elastic deformations of
the long arm are described in a secant floating frame of reference, whereas the de-
formations of the short arm are described in a tangent floating frame of reference.
Therefore, the kinematics of the system with cut kinematic loop can be described
with four rigid coordinates qr = [s1 s2 α β]T and 18 elastic coordinates qe. In anal-
ogy to the serial manipulator, the end-effector of the long arm is supposed to follow
a straight test trajectory, see Fig. 6. The end-effector point is the system output and
can be approximated using the system output

y =
[

s1
0

]
+

[
cos(α) − sin(α)

sin(α) cos(α)

]([
llong

0

]
+

[
0∑fe

i=1 wiΦiqei

])
, (57)

where Φi is the ith shape function evaluated at the end-effector point. For wi = 1
the exact end-effector position is obtained. In this case the system is non-minimum
phase, and an output relocation can be performed for obtaining a minimum phase
system. In this case the weights wi are used as the design parameters for the op-
timization as presented in Sect. 3.2. For the servo-constraint approach the system
output (57) is used, while for the coordinate transformation approach the linearly
combined system output (34) is used.

Four different cases are studied. First of all, the servo-constraint approach is used
and the weights wi are all set to zero leading to an output omitting the elastic de-
formations, corresponding to a rigid output. In this case, the internal dynamics are
stable and the forward integration of Eq. (54) can be used. The resulting error of
the end-effector trajectory tracking is presented in Fig. 7, which shows a very large
deviation of approximately 12 mm.
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Fig. 8 Error of the end-effector trajectory using coordinate transformation (left) and servo con-
straints (right)

In order to improve the achievable accuracy of the trajectory tracking problem,
an optimization of the weights is performed. Therefore, the algorithm presented in
Sect. 3.2 is applied to the system dynamics described in Eq. (54). In this case, the
design parameters p are the weights w, which are varied from −1 to 1. The opti-
mized output yields to a minimum phase system with a minimal trajectory tracking
error. Then, for feedforward control design the servo-constraint approach is used
in combination with forward integration. Figure 8 shows, that the error obtained is
about 0.6 mm and thus less than a tenth of the error obtained with the rigid out-
put.

Next, the stable inversion is applied to the system with end-effector point as sys-
tem output, which has an unbounded internal dynamics. First, the coordinate trans-
formation approach is used with linearly combined output (34), to approximate the
end-effector point. The boundary value problem is solved with the Matlab solver
bvp5c. Figure 8 shows the obtained error of the end-effector trajectory, which is
around 0.03 mm. While the linearly combined system output is reproduced nearly
exactly, this small tracking error of the end-effector point originates form its approx-
imation by the linearly combined output.

Finally, the servo-constraint approach is used with exact output (57). Unlike the
previous computations using the servo-constraint approach, only the differential part
of Eq. (54) is considered, because the boundary value problem solver bvp5c does not
support differential-algebraic equations. The error of the solution obtained by the
boundary value problem is presented in Fig. 8. The maximal discrepancy is about
0.003 mm. Unlike the other cases, this error represents solely the solver tolerance.
In summary, both stable inversion based approaches yield nearly exact reproduction
of the end-effector trajectory.
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8 Summary

The derivation of feedforward control designs for serial and flexible manipulators
were presented. Firstly, exact inverse model based on concepts from differential
geometric control theory were used and applied to serial and parallel flexible ma-
nipulators. It was shown, that the stability properties of the internal dynamics de-
termines the complexity of the feedforward control design. By output optimization
stable internal dynamics can be obtained, while keeping the end-effector tracking
error small. In addition an alternative approach for feedforward control based on
servo-constraints was presented and applied to a parallel flexible manipulator. By
using numerical projection into the unconstrained subspace the description of the
internal dynamics is obtained, while its differentiation index is reduced. Then, for
the solution the same concepts as in the first feedforward control approach can be
used. Both approaches provide powerful tools to design accurate feedforward con-
trol for flexible manipulators
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