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Abstract The present contribution introduces the modelling of elastic contacts by
coupled multibody an boundary element systems. Compared to contacts modelled
by impact laws, physically more accurate results can be obtained. Due to the use
of boundary element systems, the contact stresses are obtained within the contact
calculation.

A new three-dimensional contact element for boundary element systems is devel-
oped. The mortar element uses the mixed formulation of boundary element formu-
lations. The algorithm for the iteration of contact states is based on an DIRICHLET-
to-NEUMANN algorithm. Herein, both contacting bodies are calculated serially. In
the first calculation step one of the contacting bodies represents a rigid obstacle for
the other elastic one. The resulting reaction forces on the elastic body are partially
transferred on the other one, which is for the second calculation step no longer rigid.
As a result, the obstacle is deformed and the next iteration starts. The algorithm con-
verges if the numerical equilibrium in the contact interface is reached.

1 Introduction

Simulation of elastic multibody systems based on a finite element analysis has be-
come usual in commercial multibody programs, such as MSC.Adams or SIMPACK.
To model contacts between elastic bodies, the classical impact laws used in rigid-
body dynamics, such as NEWTON’s kinematical approach or POISSON’s impact law
[29] based on integrated forces, are not suitable. Instead contact models derived
from the elastic body description have to be applied. Typically elastic body models
are formulated by means of a modal approach like the Craig-Bampton method [12].
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Fig. 1 Coupling of multibody system and boundary element models

Modal functions describe the elastic deformations by a superposition of global mode
shapes with static mode shapes or frequency response modes. However, the global
mode shapes are not able to describe the elastic deformations of the bodies in the
contact area. Consequently, the number of modes used for the contacting elastic
bodies has to be increased. Another method to describe elastic contacts is the cou-
pling between a finite element (FE) model and a multibody system (MBS), see [15].
As a FE body has typically a higher degree of freedom (DOF) than a complete MBS,
the coupling of FE models and MBS results in a large computational amount.

The aim of this chapter is to present a method to couple multibody systems with
boundary element systems for contact simulation as shown in Fig. 1. This approach
is seen as an alternative to model contact by coupled multibody/finite element sim-
ulations as presented by [2]. In this chapter three-dimensional problems are consid-
ered only. Due to the fact that three-dimensional contact algorithms for boundary
element systems are sparely described in literature, a new contact element based on
mortar methods has been developed, see [37].

This contribution is organised as follows. In Sect. 2 the fundamentals of multi-
body systems are introduced. The description restricts on differential algebraic equa-
tions. Based on the boundary integral formulation for elastostatics introduced in
Sect. 3, the DIRICHLET-to-NEUMANN algorithm for contact calculation in bound-
ary element systems is described in Sect. 4. This algorithm is based on mortar meth-
ods which are presented in Sect. 5. In Sect. 6 the numerical implementation of the
mortar methods is described. The contact stresses are obtained from the contact cal-
culation in boundary element systems. The calculation of the resulting contact force
from the stresses is described in Sect. 7. As an example the dynamic simulation of
two impacting spheres is presented in Sect. 8.
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Fig. 2 Kinematics of rigid
multibody systems

2 Fundamentals of Multibody Systems

In this section the theoretical background of multibody systems is shortly described.
Due to the fact that the contact acts as a force element inside the multibody envi-
ronment an introduction to constrained systems of rigid bodies is given only. The
equations of motion are formulated as differential-algebraic equations (DAE). This
formulation is typically used in commercial multibody simulation packages. A de-
tailed description of multibody system dynamics is given in [32] and [35].

The position of the ith body of a constrained multibody system is described by
a spatial vector r̂i consisting of the position vector ri from an inertial system K0 to
a body-fixed coordinate system Ki and mi ≥ 3 coordinates γi describing the spatial
orientation of Ki relative to K0 (Fig. 2),

r̂i =
[

ri

γi

]
. (1)

Examples for the definition of γi are EULER angles or EULER parameters (unit
quaternions). Accordingly, the absolute velocity of the ith body is described by the
velocity vi and the angular velocity ωi of Ki put together in the six-dimensional
spatial vector

v̂i =
[

vi

ωi

]
. (2)

To describe the position and velocity of the overall system with N bodies, the vec-
tors

r̂ =
⎡
⎢⎣

r̂1
...

r̂N

⎤
⎥⎦ , v̂ =

⎡
⎢⎣

v̂1
...

v̂N

⎤
⎥⎦ (3)

are introduced. The relation between the time derivatives of r̂i and v̂i is given by
kinematic differential equations of the form

˙̂ri = Ĥi (r̂i )v̂i , i = 1, . . . ,N

or
˙̂r = Ĥ(r̂)v̂, Ĥ = diag(Ĥ1 . . . ĤN).

(4)
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The constraints between the rigid bodies at the position, velocity, and accelera-
tion levels are formulated in the implicit form,

g(r̂, t) = 0, (5)

ġ ≡ G(r̂, t)v̂ + ¯̇g(r̂, t) = 0, (6)

g̈ ≡ G(r̂, t) ˙̂v + ¯̈g(r̂, v̂, t) = 0. (7)

The kinetic differential equations are derived from the principles of linear mo-
mentum and angular momentum. Using spatial force vectors f̂i containing a pair of
a force and a torque the kinetic equations of the ith body are

M̂i
˙̂vi = f̂ c

i + f̂ a
i + f̂ r

i + f̂ cc
i , i = 1, . . . ,N, (8)

with the symmetric, positive definite (6,6) mass matrix M̂i , gyroscopic and CORIO-
LIS forces f̂ c

i , applied forces f̂ a
i , and reaction forces (constraint forces) f̂ r

i . Addition-

ally, the vector f̂ cc
i is introduced to represent the contact forces. Inside the multibody

environment, the contact force is represented by an applied force. The overall kinetic
equations can be written as

M̂ ˙̂v = f̂ c + f̂ a + f̂ r + f̂ cc

with M̂ = diag(M̂1 . . .M̂N), f̂ c/a/r/cc =
⎡
⎢⎣

f̂ c/a/r/cc
1

...

f̂ c/a/r/cc
N

⎤
⎥⎦ . (9)

The reaction forces f̂ r
i have components in the constrained spatial directions only,

given by the row vectors of the constraint matrix G from (6). Accordingly, they can
be expressed by means of the explicit reaction force equations

f̂ r = GTλ (10)

with reaction force coordinates (LAGRANGIAN multipliers) λ. If the positions r̂ and
the velocities v̂, which have to be consistent with the constraints (5) and their first-
order time derivatives (6), are given, (9) with (10) and (7) together represent a set
of linear equations to determine uniquely the accelerations ˙̂v and the reaction force
coordinates λ, [

M̂ GT

G 0

]
·
[ ˙̂v
−λ

]
=

[
f̂ c + f̂ a + f̂ cc

−¯̈g
]

. (11)

Numerical integration of the velocity v̂ obtained from the kinematic differen-
tial equation (4) and of the acceleration ˙̂v obtained from (11) yields the motion of
the system, described by the position r̂(t) and the velocity v̂(t). The reaction force
coordinates λ obtained from (11) yield the reaction forces f̂ r by means of the ex-
plicit reaction force equations (10). During numerical integration, the constraints at
the position and velocity levels may be violated necessitating a constraint stabilisa-
tion [4].
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3 Boundary Integral Formulation in Elastostatics

The boundary integral formulation starts from the partial differential equation rep-
resenting the quasistatic equilibrium inside the volume V ,

σij,j + bi = 0 in V for i = x, y, z. (12)

Herein the variable σij represents the stress tensor inside the volume V and bi the
body forces due to the acceleration of the body. In addition to the equilibrium inside
the volume V , the equilibrium conditions on the surface S,

ti = σijnj on S, (13)

have to be fulfilled. Herein ti is the stress vector, also called traction vector, repre-
senting the equilibrium on the surface S with the outward normal vector nj .

The surface is divided into regions with different types of boundary conditions.
There are regions on the surface S where the DIRICHLET boundary conditions

ui = ūi on Su (14)

have to be fulfilled, and regions with NEUMANN boundary conditions,

ti = t̄i on St . (15)

Due to the fact that each point on the surface S has three degrees of freedom, each di-
rection i = x, y, z has to be treated separately. Thus, the requirements Si = Sui ∪Sti

and Sui ∩ Sti = 0 have to be fulfilled for each coordinate direction i.
By using the weighted residual formulation∫

V

(σij,j + bi)wi dṼ +
∫

Su

(ui − ūi )w̄i dS̃ +
∫

St

(ti − t̄i )w̃i dS̃ = 0 (16)

and introducing the fundamental solutions u∗
ij and t∗ij as weighting functions, the

SOMIGLIANA identity

ui(x) =
∫

S

u∗
ij (x,y)tj (y)dS̃ −

∫
S

t∗ij (x,y)uj (y)dS̃ +
∫

V

u∗
ij (x,y)bj (y)dṼ (17)

is obtained which is valid for an arbitrary load point x inside the volume V . The fun-
damental solutions for elastostatics have been developed by Lord KELVIN, see [33].
They represent the response of the system at any arbitrary field point y due to a unit
load at a chosen load point x. In this chapter, three-dimensional boundary element
formulations are treated only. Because each point has three degrees of freedom, the
coordinate direction has also to be considered. A volume integral with the specific
body forces bj is given on the left hand side of (17).

According to [1], the displacement fundamental solution, also called DIRICHLET

fundamental solution, at a field point y in direction j due to a unit load at a load point
x in direction i is given by

u∗
ij (x,y) = 1 + ν

8πE(1 − ν)r

[
(3 − 4ν)δij + r,i r,j

]
. (18)
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Herein, the variable E represents YOUNG’s modulus, ν POISSON’s ratio, and δij

the KRONECKER delta. The distance r between a load point x and a field point y is
given by the EUCLIDIAN norm

r = ‖y − x‖. (19)

The partial derivatives of the EUCLIDIAN distance r with respect to the coordinate
direction i can easily be obtained by

r,i = yi − xi

r
. (20)

The stress fundamental solution, also known as NEUMANN fundamental solu-
tion, at a field point y in direction j due to a unit load at a load point x in direction i

is given by

t∗ij (x,y) = − 1

8π(1 − ν)r2

[
∂r

∂n

[
(1 − 2ν)δij + 3r,i r,j

] − (1 − 2ν)(nir,i −nj r,j )

]
,

(21)

where ni represents the ith component of the outward normal vector n. Herein, the
derivative in normal direction is calculated by

∂r

∂n
= r,i ni . (22)

According to the third summand in (17), a remaining volume integral with the
specific body forces bj has to be taken into account. There are different procedures
to calculate body forces. A method is the discretisation of the volume by using cells,
see [1]. For a boundary element formulation this method is less appropriate because
an additional volume mesh has to be introduced. A proposal for the transformation
of the body forces from the volume V on the surface S was made in [13]. In the
present chapter, quasistatic body forces are taken into account only. By this, elastic
vibrations of the body are neglected.

Starting from SOMIGLIANA’s identity (17) for a load point x on the surface S,
the integral equation under consideration of the boundary factor cij is given by

cijuj (x) =
∫

S

u∗
ij (x,y)tj (y)dS̃ −

∫
S

t∗ij (x,y)uj (y)dS̃ + Bi(x). (23)

The boundary factor cij is a correction factor to consider load points on the surface S

of the volume V . Due to the introduction of surface elements, the surface integrals
in (23) are evaluated element-wise (summation over all elements e),

cij uj (x) =
∑

e

∫
Se

u∗
ij (x,y)tj (y)dS̃ −

∑
e

∫
Se

t∗ij (x,y)uj (y)dS̃ +
∑

e

Bie(x).

(24)

The continuous functions uj (y) for the displacements and tj (y) for the tractions
can be replaced by discrete nodal values which leads to

uj (y) = Nk

(
y(ξ, η)

)
ukj and tj (y) = Nk

(
y(ξ, η)

)
tkj . (25)
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Herein, ξ and η are the local element coordinates. The index k represents the kth
node of element e and j represents one of the coordinate directions x, y, or z.
Caused by the fact that the values ukj and tkj can belong to more than one element,
it is necessary to replace the summation over all elements e in (24) by an assembly,

cijNk

(
x(ξ, η)

)
ukj =

⋃
e

∫
Se

u∗
ij

(
x,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
x,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(x).

(26)

Within this chapter, collocation methods are applied to obtain a discretised system
of equations from (26). Assuming that the body is discretised by n nodes, the load
point x is set to the location of each node xl with l = 1, . . . , n. That means, instead
of the arbitrary load point x in (26), the nodal coordinates xl of the discretised
geometry are used as collocation points leading to

ciju1j =
⋃
e

∫
Se

u∗
ij

(
x1,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
x1,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(x1),

...

cij ulj =
⋃
e

∫
Se

u∗
ij

(
xl ,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
xl ,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(xl ),

...

cij unj =
⋃
e

∫
Se

u∗
ij

(
xn,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
xn,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(xn).

(27)

The integrals from (27) can be evaluated with respect to the element surface Se. By
assembling (27) over all elements e, the system of equations(

C + H∗)u = Gt + B (28)

is obtained. Herein, the matrix C contains the boundary factors cij . According to
(27), this matrix is block diagonal. Due to the use of the fundamental solutions u∗

ij

and t∗ij , the matrices H∗ and G are fully populated, unsymmetrical and not necessar-
ily positive definite. The vector B contains the projected body forces. The system of
equations (28) can be written as

Hu = Gt + B (29)

which is the form known from literature [1, 5, 17].
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Fig. 3 Principle of DIRICHLET-to-NEUMANN algorithm

4 Contact Calculation by a DIRICHLET-to-NEUMANN

Algorithm

This contribution presents an extension to the LAGRANGIAN multiplier approach
introduced in [42]. The algorithm is introduced to reduce the amount of random
access memory and to decrease the calculation time for large systems. The algo-
rithm presented here is based on [25] and [38]. The principle of this DIRICHLET-
to-NEUMANN algorithm which is called a nonlinear GAUSS-SEIDEL block in [24]
is shown in Fig. 3.

The two contacting bodies are divided into a NEUMANN body and a DIRICHLET

body. In this chapter the mortar and non-mortar are equivalent to the NEUMANN and
DIRICHLET body, respectively. Within each iteration, a linear NEUMANN problem
and a nonlinear DIRICHLET problem is solved. Starting from (29), the system of
equations for the NEUMANN body can be expressed by

HN�uN(j) = GN�tN(j) + BN(j), (30)

where the index j represents the iteration step within the DIRICHLET-to-NEUMANN

algorithm and the upper right index N denotes the NEUMANN body. The system of
equations can be partitioned into degrees of freedom that are in contact and such
that are not,

[
HN

nc HN
cc

][
�uN(j)

nc

�uN(j)
cc

]
= [

GN
nc GN

cc

][
�tN(j)

nc

�tN(j)
cc

]
+ BN(j). (31)

Herein, the degrees of freedom which are not in contact are denoted by the lower
right indices nc and those which are in contact by cc, respectively. The body forces

BN(j) are typically applied within the first iteration, that means BN(j) != 0 for j > 1.
As indicated by the name of the algorithm, the tractions caused by the contact are
applied to the NEUMANN body, where for the first iteration step, thus j = 1, the
contact tractions �tN(1)

cc are assumed to be zero. Considering also the other boundary
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conditions in the non-contact area and sorting the system of equations (31) with
respect to known and unknown values leads to

[−GN
ncD HN

ncN HN
cc

]
⎡
⎢⎢⎣

�tN(j)
ncD

�uN(j)
ncN

�uN(j)
cc

⎤
⎥⎥⎦ = [−HN

ncD GN
ncN GN

cc

]
⎡
⎢⎢⎣

�uN(j)
ncD

�tN(j)
ncN

�tN(j)
cc

⎤
⎥⎥⎦ + BN(j).

(32)

Equation (32) represents a fully populated quadrangular system of equation of the
form ANxN = bN which can be solved by GAUSS or LU decomposition. The de-
formed mesh of the NEUMANN body is stored after each iteration and acts as rigid
obstacle for the DIRICHLET body. In order to obtain the overall deformations and
tractions the incremental deformations �uN(j) and tractions �tN(j) are summarised
over all iterations j . According to [25] a numerical damping parameter δD with
0 < δD ≤ 1 is introduced, resulting in

uN(j) = uN(j−1) + δD�uN(j) and tN(j) = tN(j−1) + δD�tN(j). (33)

The actual nodal coordinates of the NEUMANN body are obtained by

xN(j) = xN(j−1) + δD�uN(j). (34)

The second step within each iteration is the solution of a nonlinear DIRICHLET

problem. The formulation starts from the system of equations

HDuD(j) = GDtD(j) + BD, (35)

where the upper right index D denotes the DIRICHLET body and j the number
of iteration. Comparing (30) and (35) differences can be determined between the
systems of equations of the NEUMANN and the DIRICHLET body. The calculation
of the DIRICHLET body always starts from the reference configuration xD(1) within
each iteration step j , which means in general the undeformed configuration. Hence,
no incremental update has to be done for the displacements uD(j) and tD(j). The
body forces BD have to be applied within each iteration step or by superposition
once in a preprocessing step.

The system of equations (35) can be partitioned and sorted leading to

[−GD
ncD HD

ncN HD
cc −GD

cc

]
⎡
⎢⎢⎢⎢⎢⎣

tD(j)
ncD

uD(j)
ncN

uD(j)
cc

tD(j)
cc

⎤
⎥⎥⎥⎥⎥⎦

= [−HD
ncD GD

ncN

][
uD(j)

ncD

tD(j)
ncN

]
+ BD,

(36)

which represents a system of linear equations of the form ADxD(j) = bD(j). Due
to the fact that within the potential contact area the displacements uD(j)

cc and the
tractions tD(j)

cc are unknown, the system of equations (36) is rectangular, that means
the number of equations is lower than the number of unknown nodal values. This
results in an infinite number of possible solutions.
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To solve (36), a quadratic optimisation problem with equality and inequality con-
straints is formulated,

1

2
xD(j)TQD(j)xD(j) + xD(j)TpD(j) = min

xD(j)

subject to ADxD(j) = bD(j) and ND(j)xD(j) + dD(j)

0 ≥ 0. (37)

Herein QD(j) represents the objective function matrix containing the weighting fac-
tors of the nodal values xD(j), and pD(j) contains the coefficients of the linear part of
the quadratic objective function. Typically, QD(j) is a unit matrix, and the elements
of pD(j) are zero. If the objective function matrix QD(j) is equal to the identity ma-
trix, the result of such an optimisation is identical to the MOORE-PENROSE inverse
of the left-hand side matrix AD given in (36). As equality condition the system of
equations (36) is used. The inequality equations ND(j)xD(j) + dD(j)

0 ≥ 0 represent
the one-sided constraints which are built up with respect to the deformed surface of
the NEUMANN body representing the mortar side of the contacting bodies. The ma-
trix ND(j) containing the normal vectors and the vector dD(j)

0 containing the initial
gaps have to be built up within each iteration step j .

The theoretical background and computational implementation of the quadratic
programming is not explained here. A description and implementation on that topic
is given by [26].

If the optimisation is successful, the reaction forces in form of the tractions tD(j)
cc

are obtained. The sum of the tractions inside the contact area has to vanish,

tD(j)
cc + tN(j)

cc = 0. (38)

Because of the possibility of nonconforming meshes of the contacting bodies,
dynamic constraints based on a mortar method not explained so far are introduced.
This leads to a reformulation of (38),

MD(j)
t tD(j)

cc + MN(j)
t tN(j)

cc = 0, 0 ∈R
N, (39)

where the mortar matrices MD(j)
t and MN(j)

t have to be built up within each iter-
ation based on the actual geometry of the NEUMANN body as it will be shown in
Sect. 5. Due to the fact that mortar matrices are formed with respect to the degrees of
freedom in contact on the NEUMANN body representing the mortar side, the matrix
MN(j)

t is quadratic and has a full rank. Inversion of the matrix MN(j)
t in (39) leads

to

tN(j)
cc = −MN(j)−1

t MD(j)
t tD(j)

cc , (40)

which represents a mapping of the tractions in the contact area from the DIRICHLET

body to the NEUMANN body. Because the system of equations (30) is given in an
incremental form, the incremental tractions �tN(j)

cc are calculated by

�tN(j)
cc = δN

(
tN(j)
cc − tN(j−1)

cc
)
, (41)

where δN is an additional numerical damping parameter with 0 < δN ≤ 1. For further
information on building up mortar matrices see Sect. 5. A summary of the global
solution algorithm is given in Algorithm 1.
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input : A geometric set comprising elements and nodes,
System matrices HD, HN, GD, GN,
Boundary conditions �uN(j)

ncD , �tN(j)
ncN , uD(j)

ncD , tD(j)
ncN

output: Displacements (uD,uN) and tractions (tD, tN) caused by contact

1 for j = 1,2, . . . , until convergence do
2 do collision detection
3 → List of element pairs which are potentially in contact

4 Build-up of mortar matrices for tractions according to Sect. 5

5 → MD(j)
t , MN(j)

t

6 Transfer tractions: tN(j)
cc = −MN(j)−1

t MD(j)
t tD(j−1)

cc , (40)

7 Remark: tD(j−1)
cc = 0 for j = 1

8 Solve linear NEUMANN problem: HN�uN(j) = GN�tN(j) + BN(j), (30)

9 Update geometry of NEUMANN body: xN(j) = xN(j−1) + δD�uN(j), (34)

10 Project nodes from DIRICHLET body on actual geometry of the
NEUMANN body

11 → normal vector matrix ND(j), initial gap vector dD(j)

12 Solve nonlinear DIRICHLET problem:
1
2 xD(j)TQD(j)xD(j) + xD(j)TpD(j) → MIN

13 subject to: ADxD(j) = bD(j) and ND(j)xD(j) + dD(j) ≥ 0, (37)

14 → contact tractions tD(j)
cc

15 Check for convergence: ‖tN(j)
cc − tN(j−1)

cc ‖ ≤ TOL → exit loop
16 end

Algorithm 1: DIRICHLET-to-NEUMANN algorithm

Note that if the damping parameters δD in (36) and δN in (41) are equal to 1, no
convergence will be achieved. In [25] it is suggested to choose 0.7 for δD and δN.
A value of 1.0 for the parameter δD and a value of 0.5 for the parameter δN for the
algorithm described above is recommended. Due to the fact that the surface tractions
are calculated, fast convergence is achieved if the half of the tractions are transferred
from the DIRICHLET body to the NEUMANN body.

5 Build-up of Mortar Matrices

In this section the theoretical background of the mortar methods for contact and the
numerical implementation to create the mortar matrices Mt and Mu from (39) are
described. The aim of the mortar methods is to find a mapping matrix between the
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degrees of freedom of the contacting bodies. The basic concept presented here was
published by [30] for finite elements. It is here adapted for boundary elements. Sim-
ilar to Fig. 3, the contacting bodies are divided into a mortar and non-mortar body,
denoted by the indices m and nm, respectively, that are equivalent to the NEUMANN

body and the DIRICHLET body, respectively.
As mentioned before, mortar contact belongs to the group of contacts which is

based on LAGRANGIAN multipliers. The unilateral constraint for contact formula-
tion can be defined using the KUHN-TUCKER-KARUSH conditions,

1-dimensional d ≥ 0 λ ≤ 0 λd = 0,

2- or 3-dimensional d ≥ 0 λ ≤ 0 λTd = 0.
(42)

The first line of (42) presents the constraints for one-dimensional problems. As the
gap cannot be negative, d ≥ 0, and only pressure forces can be transferred, λ ≤ 0,
the product of the gap d and the LAGRANGIAN multiplier λ always vanishes.

For two- and three-dimensional problems typically a distinction has to be made
between normal and tangential contact. For normal contact, the same constraints
as for one-dimensional contact can be used where vectors of the gap d and of the
LAGRANGIAN multiplier λ have to be projected in normal direction. Stiction and
sliding may occur in tangential direction. In case of sliding, the tangential forces act
as applied forces in opposite directions of the relative motion so that force laws such
as COULOMB’s law can be applied. In case of stiction, no motion in tangential di-
rection occurs. In that case, the tangential contact can also be treated as a constraint
and the resulting tangential tractions have to be treated as reaction stresses. Hence,
the normal and tangential contact can be summarised according to the second line
of (42).

The starting point for building up three-dimensional mortar matrices is the weak
form of the KUHN-TUCKER-KARUSH condition,

ΠLM
c =

∫
Scc

λTd dS. (43)

Due to the weak form, the constraints are fulfilled in an integral meaning over the
potential contact area Scc only. The variation of the weak form from (43) leads to

δΠLM
c ≡ CLM

c =
∫

Scc

δλTd dS +
∫

Scc

λTδd dS = 0. (44)

The first integral in (44) represents the fulfilment of the gap function d choosing
an arbitrary LAGRANGIAN multiplier vector λ. The second integral represents the
fulfilment of the reaction forces for an arbitrary chosen gap function d. In case of
contact the gap between the two contacting bodies is closed, and the gap function d
can be replaced by the displacements of the mortar body mum and of the non-mortar
body munm, and the initial gap mdm

0 ,

CLM
c =

∫
Scc

δλT(
munm − mum − mdm

0

)
dS +

∫
Scc

(
mtnm + mtm

)
δdT dS = 0. (45)

The upper left index m denotes that the displacement vectors are expressed with re-
spect to the body-fixed mortar reference frame Km. Additionally, the LAGRANGIAN
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multiplier λ in the second integral can be replaced by the sum of the tractions of the
mortar body mtm and of the non-mortar body mtnm. Hence, the equilibrium in the
contact area is fulfilled by an integral meaning only.

The LAGRANGIAN multipliers λ and their variations δλ can be discretised in the
same way as it was done for displacements and tractions. This leads to

λ(ξ, η) =
∑

i

Mλ
i (ξ, η)λi , δλ(ξ, η) =

∑
i

Mλ
i (ξ, η)δλi , (46)

where Mλ
i (ξ, η) represents the general shape functions over one element e and λi

and δλi the corresponding nodal values. The same procedure can be applied to the
gap function d and the corresponding variation δd,

d(ξ, η) =
∑

i

Md
i (ξ, η)di , δd(ξ, η) =

∑
i

Md
i (ξ, η)δdi . (47)

Inserting (46) and (47) into (45) leads to the constraint equations for one pair of
contact elements,

CLM
ec =

∑
i

δλT
i

∫
Secc

(∑
j

Mλ
i (ξnm,ηnm)Nj (ξnm,ηnm)munm

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mum

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mdm

0j

)
dS

+
∑

i

δdT
i

∫
Secc

(∑
j

Md
i (ξnm,ηnm)Nj (ξnm,ηnm)mtnm

j

+
∑
j

Md
i (ξm,ηm)Nj (ξm,ηm)mtmj

)
dS = 0. (48)

The nodal values munm
j and mtnm

j for the degrees of freedom on the non-mortar side
are given with respect to the body-fixed reference frame Km, see (48). Typically the
system matrices Hnm and Gnm are calculated with respect to the body-fixed refer-
ence frame Knm. The corresponding displacements and tractions are also given with
respect to Knm. An additional transformation for the current orientation between Km

and Knm is introduced so that

munm
i = mnmT nmunm

i and mtnm
i = mnmT nmtnm

i , (49)

where mnmT is the transformation matrix between body-fixed reference frames on
mortar body m and the non-mortar body nm. If (48) vanishes, the constraints for
displacements and tractions are fulfilled. Considering (49) and using the fact that
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(48) vanishes for arbitrary variations of the LAGRANGIAN multipliers δλ and gap
functions δd, the contact constraints for one pair of contact elements become∫

Secc

(∑
j

Mλ
i (ξnm,ηnm)Nj (ξnm,ηnm)mnmTnmunm

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mum

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mdm

0j

)
dS = 0,

∫
Secc

(∑
j

Md
i (ξnm,ηnm)Nj (ξnm,ηnm)mnmTnmtnm

j

+
∑
j

Md
i (ξm,ηm)Nj (ξm,ηm)mtmj

)
dS = 0.

(50)

For a pair of bilinear elements, the first equation of (50) results for the displacements
on the non-mortar side to the matrix

Mnme
u =

⎡
⎢⎣

∫
Secc Mλ

1 N1 dSmnmT
∫
Secc Mλ

1 N2 dSmnmT
∫
Secc Mλ

1 N3 dSmnmT
∫
Secc Mλ

1 N4 dSmnmT∫
Secc Mλ

2 N1 dSmnmT
∫
Secc Mλ

2 N2 dSmnmT
∫
Secc Mλ

2 N3 dSmnmT
∫
Secc Mλ

2 N4 dSmnmT∫
Secc Mλ

3 N1 dSmnmT
∫
Secc Mλ

3 N2 dSmnmT
∫
Secc Mλ

3 N3 dSmnmT
∫
Secc Mλ

3 N4 dSmnmT∫
Secc Mλ

4 N1 dSmnmT
∫
Secc Mλ

4 N2 dSmnmT
∫
Secc Mλ

4 N3 dSmnmT
∫
Secc Mλ

4 N4 dSmnmT

⎤
⎥⎦

(51)

and for the displacements on the mortar side to the matrix

Mme
u =

⎡
⎢⎣

∫
Secc Mλ

1 N1 dSE
∫
Secc Mλ

1 N2 dSE
∫
Secc Mλ

1 N3 dSE
∫
Secc Mλ

1 N4 dSE∫
Secc Mλ

2 N1 dSE
∫
Secc Mλ

2 N2 dSE
∫
Secc Mλ

2 N3 dSE
∫
Secc Mλ

2 N4 dSE∫
Secc Mλ

3 N1 dSE
∫
Secc Mλ

3 N2 dSE
∫
Secc Mλ

3 N3 dSE
∫
Secc Mλ

3 N4 dSE∫
Secc Mλ

4 N1 dSE
∫
Secc Mλ

4 N2 dSE
∫
Secc Mλ

4 N3 dSE
∫
Secc Mλ

4 N4 dSE

⎤
⎥⎦ (52)

with the 3 × 3 identity matrix E. The compatibility matrices for the tractions Mme
t

and Mnme
t are created with the same procedure. Assembling the matrices of all

element pairs which are possibly in contact leads to

Mm
u =

⋃
e

Mme
u , Mnm

u =
⋃
e

Mnme
u ,

Mm
t =

⋃
e

Mme
t , Mnm

t =
⋃
e

Mnme
t .

(53)

Concluding some remarks on the shape functions Mi(ξ, η) used for the inter-
polation of the gap d and the LAGRANGIAN multipliers λ are given. According
to [18, 37, 39], the shape functions Mλ

i for the interpolation of the LAGRANGIAN

multipliers λ in (46) and Md
i for the interpolation of gap d according to (47) have

to fulfil the BABUŠKA-BREZZI or inf -sup condition. A detailed description on that
topic is provided by [9]. This condition ensures a unique solution and the maximum
rank of the mortar matrices Mnm

u and Mm
t . To realise this condition, the function
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Fig. 4 Approximation of the LAGRANGIAN multiplier λ and the gap function d within the contact
area. a Without boundary conditions. b With DIRICHLET boundary conditions

space of the shape functions Mλ
i and Md

i has to be sufficiently rich. Many research
work has been done to obtain an optimal set of shape functions used for interpola-
tion of LAGRANGIAN multipliers for domain decomposition within finite element
calculations, see [36]. A dual LAGRANGIAN multiplier formulation was proposed
by [36] which leads to diagonal mortar matrices. In the present work the original
approach as described by [6] is implemented. The same interpolation functions are
used for the approximation of the LAGRANGIAN multiplier λ and the gap func-
tion d within the contact area as used for the interpolation of the displacements u
and the tractions t. The use of that shape functions typically ensures the fulfilment
of the BABUŠKA-BREZZI conditions. For two-dimensional contact problems, the
interpolation functions are schematically shown in Fig. 4.

For the interpolation of the LAGRANGIAN multipliers λ the mesh on the non-
mortar side is used, where for the interpolation of the gap function d the mesh on
the mortar side is used, as presented by Mλ

i and Md
i in Fig. 4. Due to that formula-

tion, a construction of an intermediate mesh as described by [34] is not necessary.
Nevertheless to obtain mortar matrices with a maximum rank, the shape functions
have to fulfil the BABUŠKA-BREZZI condition, which leads according to [34] to the
simple requirement

min
(
Nm,Nnm

) ≤ Nλ,Nd ≤ max
(
Nm,Nnm

)
, (54)

where Nm and Nnm represent the number of contact nodes of the mortar and non-
mortar body, respectively. The corresponding numbers of nodes for the interpolation
of the LAGRANGIAN multiplier and the gap function d are given by Nλ and Nd . Due
to the facts that the LAGRANGIAN multipliers are approximated using the potential
contacting elements on the non-mortar side and the gap function is approximated
using contacting elements on the mortar side, the requirement (54) is always ful-
filled if no boundary conditions are applied at the boundary of the contact area. If
DIRICHLET boundary conditions at the boundary of the contact area are applied,
the shape functions Mλ

i and Md
i at the boundary have to be modified, see Fig. 4b.

According to [18, 34], the shape functions are kept constant to ensure the maximum
rank of Mnm

u and Mm
t .
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Fig. 5 Introduction of a mortar layer

6 Numerical Implementation of Mortar Matrices

First, a mortar layer is introduced between the mortar and non-mortar side, see
Fig. 5.

The mortar layer can either be located as an intermediate surface between the
mortar and the non-mortar surface as presented by [27, 28, 31], or one of the con-
tacting surfaces can be chosen as shown in [25, 36]. According to [30], the numerical
integration scheme is shown in Fig. 6 and in Algorithm 2.

First, the element facets are projected onto the common mortar layer, see Fig. 6a.
Therefore, only the corner nodes are taken into account. For bilinear elements, this
consideration is sufficient because two-dimensional bilinear elements consist of four
nodes only, but in case of biquadratic elements where the edges could be curved
errors may occur. For simplification and an easier handle of the projected elements,
this error is neglected. This approach is valid if the differences between the geometry
of the biquadratic element and the corresponding 4-node element facet are not too
large.

In a second step, the common area due to the overlap of the projected elements
is determined, see Fig. 6b. Therefore, a modified version of the SUTHERLAND-
HODGMAN polygon clipping algorithm is used as presented in [16]. The algorithm
described in [16] is valid for an axis parallel clipping only. The algorithm mod-
ifications presented here are valid for clipping with arbitrary 4-point polygons as
presented in Fig. 7a.

The principle of the algorithm is to clip the parts outside of one polygon with re-
spect to another one. This is done by dividing one of the elements into four clipping
edges represented by the four projected edges of the element facet. According to
Fig. 7a, the element 1234 is chosen to be the clipping element. The element 1′2′3′4′
is clipped with respect to the element 1234. Therefore, a flow direction according to
the arrow in Fig. 7a is chosen. In case of the chosen direction the area of the element
1′2′3′4′ located on the right side of the clipping edges is cut off, because they are
outside the element 1234. To create new corner points of the overlap polygon, the
edges of the element 1′2′3′4′ are cut off with respect to the clipping edges.

A calculation whether one point is lying inside or outside with respect to the
clipping edge is necessary. According to Fig. 7b, this is done by a perpendicular
projection of the point with respect to the clipping edge. The distance vector r12
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Fig. 6 Integration scheme for 3D mortar elements. a Projections of the element facets onto the
mortar layer. b Common area of the projected facets. c Centre of area S. d Division of the polygon
into triangles. e Locating GAUSS-RADAU integration points on the triangles

of the two points of the clipping edge and the corresponding normal vector n12 are
given by

r12 =
[
x2 − x1
y2 − y1

]
and n12 =

[
y2 − y1
x1 − x2

]
. (55)

The resulting clipping test is given by

nT
12

[
xP − x1
yP − y1

]{
> 0 → outside
≤ 0 → inside.

(56)

The other parts of the algorithm remain unchanged, compare to [16]. Thereafter
the centre of the area S of the resulting polygon, see Fig. 6c, is calculated by the
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input : List of element pairs Elp(i), which is possibly in contact
output: Mortar matrices Mnm

u , Mm
u , Mnm

t , Mm
t

1 forall the element pairs Elp(i) do

1. projection of the element facets on a common mortar layer,
see Fig. 6a

2. use clipping algorithm to form polygon of the overlap
of the projected element facets, see Fig. 6b

3. locate geometric centre of the polygon, see Fig. 6c
4. divide polygon into nt triangles, see Fig. 6d

forall the nt triangles do

• locate GAUSS-RADAU integration points on the triangle,
see Fig. 6e

• project GAUSS integration points on the mortar and
non-mortar element to obtain ξm, ηm and ξnm, ηnm

• compute integrals over triangles, see (57)
• sum integral contributions, (58), to obtain

Mnme
u , Mme

u , Mnme
t , Mme

t according to (51)

end
2 end

3 assemble the element matrices according to (53)

Algorithm 2: Build-up of mortar matrices

Fig. 7 Scheme of clipping algorithm. a Clipping with 4-point polygons. b Projection of an edge
point P onto the normal of the clipping edge

arithmetic middle of the corner coordinates of the polygon. This results in a division
of the polygon into triangles according to Fig. 6d. In the next step the GAUSS-
RADAU integration points can be determined for each of the triangles according to
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Fig. 8 GAUSS-RADAU

integration points for
triangles

[11, 14]. In [30] a thirteen point GAUSS-RADAU rule is recommended, see Fig. 8,
to overcome the problem that warped meshes can not be integrated exactly.

In contrast to typical numerical integration, not the local but the absolute coordi-
nates are necessary. These coordinates are projected back on the mortar and the non-
mortar elements, respectively. As a result, the local coordinates ξm,ηm and ξnm,ηnm

will be obtained. The integrals over one triangle from (51) can be expressed by

∫
Set

Mi(ξk, ηk)Nj (ξk, ηk)dS =
ng∑
l=1

Mi(ξkl, ηkl)Nj (ξkl, ηkl)Wl, (57)

where Set is the surface of a triangle t of the element e while k represents the
projection on the mortar m and non-mortar side nm, respectively. The variable ng

represents the number of integration points and Wl the corresponding weighting
factors. The integral over the element surface Secc can be evaluated by

∫
Secc

Mi(ξk, ηk)Nj (ξk, ηk)dS =
nt∑

t=1

∫
Set

Mi(ξk, ηk)Nj (ξk, ηk)dS, (58)

which represents the sum over all triangles. Finally, the integrals can be assembled
according to (53).

7 From Contact Tractions to Applied Forces

If the contact calculation inside the boundary element environment has converged,
the tractions and displacements within the contact area are given. However, within
the multibody environment only forces and torques can be treated. Therefore, the
contact tractions tj have to be integrated with respect to the contact area to form the
resulting wrench, consisting of the force f cc

T and torque f cc
R , see Fig. 9.

According to Fig. 9, the contact tractions have to be integrated for each contact-
ing body with respect to the body-fixed reference frame Ki . The upper right index i

denotes the mortar body m and non-mortar body nm, respectively. The body-fixed
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Fig. 9 From contact tractions
to resulting wrench

reference frame Ki within the boundary element system is equal to the force ap-
plication point within the multibody system. The resulting contact force f cc

T can be
calculated by

f cc
T =

nc∑
e

[∑
k

∫
Se

Nktk dS̃

]
, (59)

where ti represents the surface traction vector of the ith node, Ni the corresponding
shape functions, and Se the element surface. The integral in (59) has to be evaluated
over all nc contacting elements. The resulting contact torque f cc

R built up by the
tractions ti can be calculated by

f cc
R =

nc∑
e

[∑
k

∑
l

∫
Se

x̃klNltl dS̃

]
, (60)

where x̃kl are the components of the skew symmetric matrix representing the loca-
tion of a point on the surface Se with respect to the body-fixed reference frame Ki .
The integrals can be evaluated using standard GAUSS integration. The overall con-
tact wrench f̂ cc from (11) is obtained by assembling the calculated contact force f cc

T

and torque f cc
R .

8 Dynamic Simulation of Two Contacting Spheres

To test the functionality of the algorithm, a simple multibody model is considered.
A schematic representation of the dynamic model is given in Fig. 10a.

The one-dimensional model consists of two identical spheres, where the lower
sphere is fixed at its lower side. The upper sphere is suspended at its upper side by
a spring-damper element in vertical direction. The properties of the spring-damper
element are defined by the stiffness coefficient kspring and the damping coefficient
bdamper. Because of the gravity ggrav, the upper sphere moves downwards until the
initial gap d0 is closed. Then elastic contact between both spheres based on the
elastic behaviour of both curves occurs. The multibody model consists of two rigid
spheres, see Fig. 10b. The multibody data of the spheres such as mass are calcu-
lated by the density ρ and the diameter dsph. The calculation of the contact forces
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Fig. 10 Model for dynamic
simulation of two spheres.
a Schematic representation.
b Multibody model

Table 1 Properties of the
dynamic model Property Value

YOUNG’s modulus E 210,000 MPa

POISSON’s ratio ν 0.3

density ρ 7,850.0
kg

m3

diameter dsph 1 m

initial gap d0 0.2 m

gravity ggrav 9.81
m

s2

stiffness coefficient kspring 40,000
N

m

damping coefficient bdamper 110
N s

m

depends mainly on the motion of the reference frames of the spheres, which are
located at the centres of the spheres. The data of the model are summarised in Ta-
ble 1.

For comparison, a reference model with existing force elements of the multibody
program SIMPACK™ was created. Here, the force element containing the devel-
oped BEM contact model is replaced by a HERTZIAN pressure element. Here, the
bodies remain undeformed and body forces are also not considered in the refer-
ence model. The transition between no contact and contact is realised by an event
function. The event function depends on the relative position and on the geometry
of the contacting bodies. If the gap between the spheres is closed, the integrator is
stopped and restarted with new initial conditions. The Sodarst2 integrator from the
multibody program SIMPACK™ is chosen. This integrator is based on an implicit
formulation with automatic step size calculation.

The co-simulation is done by the use of the explicit EULER integrator. The con-
stant step size is equal to 0.0002 s. This step size is chosen to overcome the impact
problem of both spheres. The simulation time is 1 s. In contrast to the reference
model, the body forces are considered. The contact gap of both simulations is shown
in Fig. 11.
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Fig. 11 Contact gap vs. time for BEM co-simulation and HERTZIAN pressure element

Fig. 12 Contact velocity vs. time for BEM co-simulation and HERTZIAN pressure element

The two curves agree well. Only small differences can be denoted at the end of
the simulation time. The corresponding relative contact velocity of the upper contact
point with respect to the lower contact point is shown in Fig. 12.

Herein also small differences between the two curves can be noticed at the end
of the simulation time. The contact forces of both simulations are shown in Fig. 13.

The peaks of the two contact force curves differ from each other. The first peak of
the HERTZIAN reference model reaches a value of −244.942 kN. The correspond-
ing contact force value of the BEM co-simulation is obtained with −276.003 kN,
which means a difference of −12.68 % compared to the reference model. Higher
pressure force are to be expected due to the consideration of body forces. Additional
differences occur due to the integrators chosen. These differences can be seen at the
second peak of both curves. The contact force values are obtained as −223.215 kN
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Fig. 13 Contact force vs. time. a BEM co-simulation. b HERTZIAN pressure element

and −285.308 kN for the reference model and the BEM co-simulation, respectively.
The second peak of the reference model is lower than the first one because of the
modelled damping ddamper. Additional damping occurs due to the implicit integra-
tor. In contrast the second peak of the co-simulation is higher. This results from
the explicit EULER integrator which leads to an excitation of the numerical solu-
tion.

9 Conclusions and Outlook

The present chapter introduces the modelling of elastic contacts by coupled multi-
body and boundary element systems. Compared to contacts modelled by impact
laws, physically more accurate results can be obtained. Due to the use of boundary
element systems, the contact stresses are obtained within the contact calculation.
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The contact formulation is based on mortar methods, which enables the contact
calculation of non-conforming meshes. A new three-dimensional contact element
for boundary element systems is developed. The mortar element uses the mixed
formulation of boundary element formulations. Constraints in a weak form are de-
fined for the displacements in the contact interface. This principle is also known
from mortar formulations of finite elements. Additionally, a weak equilibrium is in-
troduced for the tractions in the contact interface. The algorithm for the iteration
of contact states is based on a DIRICHLET-to-NEUMANN algorithm. Herein, both
contacting bodies are calculated serially. In the first calculation step, one of the
contacting bodies represents a rigid obstacle for the other elastic one. The resulting
reaction forces on the elastic body are partially transferred on the other one, which is
for the second calculation step no longer rigid. As a result the obstacle is deformed
and the next iteration starts. The algorithm converges if the numerical equilibrium
in the contact interface is reached.

The incorporation of the multibody and boundary element program is realised
by interprocess communication. Further details are described in [41]. The multi-
body program stops during the calculation of the contact forces by the boundary
element program. Unix domain sockets are used for communication of both pro-
grams. This coupling scheme is applied because both programs works under the
same operating system on the same computer. The applied communication proto-
col can easily be extended to network sockets. In contrast to Unix domain sockets,
network sockets allow both programs working on different computers. This prop-
erty is very important for the developed BEM co-simulation because the boundary
element program needs more computational resources than the multibody program.
The position data provided by the multibody program are used by the boundary ele-
ment program to calculate the displacements and tractions on the contacting bodies.
The resulting contact tractions are summarised to a contact wrench by numerical
integration.

Altogether the MBS-BEM co-simulation is an appropriate way for contact cal-
culation in multibody systems. The main advantage is that contact stresses are ob-
tained within the dynamic calculation. These data can be used for strength, fatigue
and durability analyses. Despite to the fact that the calculation of complex models
needs a large calculation time the coupled simulation of multibody and boundary
element systems offers various applications.

As an application for the BEM contact algorithm, the femoral-patellar joint with
sliding contact between a human patella and a femur bone is under investigation.
First tests show a good convergence of the BEM contact algorithm, see Fig. 14.

A future task should be the speed-up of the co-simulation. The main advan-
tage of the developed BEM contact algorithm is the possibility to integrate fast
boundary element methods, because the two contacting bodies are treated sepa-
rately. Fast boundary methods are developed to overcome large calculation times
caused by fully populated system matrices. The panel clustering method described
in [19] approximates the matrix-vector multiplication so that instead of a system
matrix A of the size n × n only two vectors of the size n are calculated. Thus,
the memory requirements are strongly reduced. The build-up of a binary tree or
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Fig. 14 Simulation of a patellar joint (in cooperation with Department of Orthopaedics, University
Medicine, Rostock)

octree for the boundary elements is necessary, so that the collision detection al-
gorithms described in [40, 41] can be used. The panel clustering method is ex-
tended to three-dimensional elastostatics in [20, 21] where the integral free term cij

from (23) is assumed to be equal to 1
2δij . From theoretical background this is valid

for flat surfaces only, which is not typical for physical shapes in mechanical engi-
neering. Therefore, these algorithms have to be checked carefully. Panel clustering
uses hierarchical matrices which are explained in detail by [7]. First implementa-
tions of the panel clustering method for temperature distribution problems is shown
in [22].

In the present contribution, quasistatic boundary element formulations are con-
sidered only. To take local vibrations and wave propagation of the elastic bodies
into account dynamic co-simulation is recommended. A possible implementation is
the dual reciprocity method described in [8]. The result of that method are dynamic
system matrices, whereby also a system matrix in analogy to the mass matrix of fi-
nite element systems is obtained. The coupling of multibody and boundary element
systems based on dual reciprocity methods to model flexible bodies is described
by [3].

The integration of dynamic boundary element formulations leads to better results
for elastic impact problems because the energy loss due to wave propagation is taken
into account. The system matrices for that formulation are fully populated and not
necessarily positive definite so that complex eigenfrequencies are obtained. To over-
come these problem internal nodes are included to represent the mass distribution.
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In [23] it is shown that lower eigenfrequencies become real if a sufficient number
of internal nodes is used. For dynamic co-simulation a separate integrator has to be
implemented within the boundary element formulation. In addition other coupling
schemes have to be implemented because the two simulations have to be synchro-
nised. Special coupling schemes for co-simulation of multibody and finite element
systems are described in [10] which are also applicable for the co-simulation of
multibody and boundary element systems.

Acknowledgements Thanks to Prof. Klaus Schittkowski from the University of Bayreuth for
providing the source code of quadratic programming.
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