
Speed Skating Modeling
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Abstract Advice about the optimal coordination pattern for an individual speed
skater to reach their optimal performance, could well be addressed by simulation
and optimization of a biomechanical model of speed skating. But before getting
to this optimization approach one needs a model that matches observed behavior.
In this chapter we present a simple 2-dimensional model of speed skating on the
straights which mimics observed kinematic and force data. The primary features
of the model are: the skater is modeled as three point masses, only motions in the
horizontal plane are considered, air drag forces which are quadratic in the velocity
and coulomb type ice friction forces at the skates are included, and idealized contact
of the skate on the ice is modeled by a holonomic constraint in the vertical direction
and a non-holonomic constraint in the lateral direction. Using the measured leg
extension (relative motions of the skates with respect to the upper body) we are able
to predict reasonable well the speed skater motions, even if we do not fit for that.
The model seems to have the key terms for investigations of speed skating.

1 Introduction

The coordination pattern of speed skating appears to be completely different from
all other types of human propulsion. In most patterns of human locomotion, humans
generate forces by pushing against the environment in the opposite desired direction
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Fig. 1 Phases of a stroke: push-off phase, glide phase and reposition phase [1]

of motion. In speed skating humans generate forces by pushing in sideward direc-
tion. When we take a closer look at speed skating the straights we observe that
a skating stroke can be divided in three phases: the glide, push-off and reposition
phase, see Fig. 1. In the push-off phase the skate moves sidewards with respect to
the center of mass (COM) of the body till near full leg extension. In the reposition
phase the leg is retracted in the direction of the center of mass of the body. During
the glide phase the body is supported over one leg that remains at nearly constant
height (ankle to hip distance). Double support, where both skates are on the ice, only
exists in the first part of the glide phase of one leg and in the second part of push-off
phase of the other leg. This coordination pattern with sideward push-off results in a
sinus-wave like trajectory of the upper body on the ice [4].

From these observations a number of questions arise. Of the many possible co-
ordination patterns, that is position and orientation of the skates with respect to the
upper body, why do skaters use this particular one? What is the optimal coordina-
tion pattern for an individual speed skater to reach their optimal performance? How
do speed skaters create forward power on ice? Why are speed skaters steering back
to their body at the end of the push-off? What is the effect of anthropometric dif-
ferences on the coordination pattern of a speed skater (like the difference between a
tall Dutch skater and a small Japanese skater)? All these questions are highly depen-
dent on the coordination pattern of the speed skater and could well be addressed by
simulation and optimization of a biomechanical model of speed skating. But before
getting to this optimization approach one needs a model that reasonable matches
observed behavior.

Currently, there exist three speed skating models [1, 6, 10]. The first models
of speed skating were initiated by Gerrit Jan van Ingen Schenau [12] and further
developed by researchers at the VU University Amsterdam [6]. By using power
balances of the human and the environment useful information about the posture,
athlete physiology and environmental parameters on the performance is obtained.
Disadvantages of these models are that the validation is difficult and it is impossible
to investigate differences in coordination pattern.

A more recent model was developed by Otten [10], in which forward and inverse
dynamics are combined. The model is complex and includes up to 19 rigid bodies
and 160 muscles. The model is able to simulate skating and can give insight in the
forces/moments in the joints. Limitations of the model are that the kinematics in
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the model are manually tuned and that the model is not driven and validated with
measurements of speed skaters. Unfortunately, no information about this model is
available in the open literature, which makes it hard to review.

The most recent speed skater model is developed by Allinger and van den
Bogert [1]. they developed a simple, one point mass, inverse dynamics model of
a speed skater which is driven by individual strokes. The main limitations of the
model are that the model is driven by a presumed leg function in time and that the
model is not validated with force measurements. Furthermore, the effect of the as-
sumptions on the model (e.g. constant height) are not investigated. On the other
hand the model is possibly accurate and very useful for optimization the coordina-
tion pattern of speed skating.

Although three biomechanical models exist, none of these models is shown to
accurately predict observed forces and motions. Which is partly due to the lack of
experimental kinematic data and force data on stroke level.

In this chapter, we present a 2-dimensional inverse dynamics model on the
straights which has minimal complexity. The model is based on three lumped masses
and is validated with observed in-plane (horizontal) kinematics and forces at the
skates. In the future, this model can be used to provide individual advice to elite
speed skaters about their coordination pattern to reach their optimal performance.

2 Methods

We measured in time the 2-dimensional in-plane (horizontal) positions (x, y) of the
two skates and the upper body, the normal forces and lateral forces at the two skates
and lean angle of the skates. We developed a 2-dimensional inverse dynamic model
of a skater. The model is driven by the measured leg extensions, that is relative
motions of the skates with respect to the upper body and absolute orientation of
the skates with respect to the ice. The upper body motions together with the forces
exerted on the ice by the skates are calculated from the model.

A schematic of our 2-dimensional model is shown in Fig. 2. The model consists
of three point masses: lumped masses at the body and the two skates. The total mass
of the system is distributed over the three bodies by a constant mass distribution
coefficient. The motions of the arms are neglected. We do not consider the vertical
motion of the upper body, since experiments show that the upper body is at nearly
constant height [3]. Air friction and ice friction are taken into account. Idealized
contact of the skate on the ice is modeled by a holonomic constraint in the vertical
direction and a non-holonomic constraint in the lateral direction.

Values for the mass distribution and air friction are found experimentally. The
best agreement between the measurements and model can be achieved if we use
accurate values for these parameters. Therefore we constructed an objective function
Jmin and minimized the error between the measurements and model. Details on the
objective function can be found in Appendix 8.3.
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Fig. 2 Free body diagrams
of the three point mass model
(horizontal plane, top view).
The masses are located at the
COM of the body and at the
COM of the skates. Fls and
Frs are perpendicular with
the skate blades, θls and θrs

are the steer angles of the
skates with respect to the
x-axis. The x- and y-axes
are the inertial reference
frame fixed to the ice rink

3 Model Analysis

In the model analysis for speed skating, three stages can be distinguished. First, the
unconstrained equations of motion of the speed skater of a single stroke are derived.
Secondly, the constraints are formulated and incorporated into the unconstrained
equations of motion. Finally all equations are derived in terms of generalized coor-
dinates and solved by numerical integration of these constrained equations of mo-
tion.

3.1 Equations of Motion

The equations of motion for each separate body (upper body, right skate and left
skate) can be derived in x and y direction. Friction forces (air and ice friction)
as well as the constraint forces are acting on the bodies. All constraints acting on
the bodies will be explained in the next paragraph. The unconstrained equations of
motions for all bodies are,

mẍi = −FfrictionXi
+ FconstraintsXi

mÿi = −FfrictionYi,
+ FconstraintsYi

i = B,LS,RS (1)

where FfrictionXi
is the component of the friction force in x direction and FfrictionYi

the component of the friction force in y direction. FconstraintsX are the constraint
forces in x direction and FconstraintsY the constraint forces in y direction.

3.2 Constraints

The first set of constraints are the leg extension constraints, they connect the skates
to the upper body. The positions of the skates are prescribed by the position of the
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Fig. 3 Definition of
generalized coordinates

upper body and the leg extension coordinates. The second set of constraints are at
the skates. A holonomic constraint is applied in the vertical direction which establish
that the skate is on the ice and a non-holonomic constraint in the lateral direction of
the skate to express that there is no lateral slip of the skate on the ice.

3.3 Generalized Coordinates

The generalized coordinates of the skater model are chosen such that we can ex-
press the coordination of the motion of the skater in terms of the leg extensions and
the skate orientations (steer angles). Therefore the configuration of the skater is ex-
pressed by the motion of the upper body and the leg extensions (relative motions of
the skates with respect to the upper body, see Fig. 3) and can be described by the
generalized coordinates,

q = (xb, yb,uLS, vLS, θLS,uRS, vRS, θRS)T , (2)

in which θLS and θRS are the steer angles of the skates with respect to the global
x-axis. These steer angles, which are prescribed coordinates, are needed to apply
the non-holonomic skate constraints. The equations of motion will be written in
terms of the generalized coordinates. Detailed information on the transformation of
the equations of motions in terms of the generalized coordinates can be found in
Appendices 8.1, 8.7, and 8.8.

3.3.1 Leg Extension Constraints

The position of the right and left skate can be expressed as function of the gener-
alized coordinates and will be incorporated into the equations of motion means by
holonomic constraints. The left skate leg extension constraints are,

c1 = xLS − xB + cos(θLS)uLS + sin(θLS)vLS = 0, (3)
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c2 = yLS − yB − sin(θLS)uLS + cos(θLS)vLS = 0, (4)

and the right skate leg extension constraints are,

c3 = xRS − xB + cos(θRS)uRS + sin(θRS)vRS = 0, (5)

c4 = −yRS + yB − sin(θRS)uRS + cos(θRS)vRS = 0. (6)

3.3.2 Skate Constraints

When the skate is on the ice we assume no lateral slip between the ice and skate, that
is the lateral velocity of the skate is zero. This can be expressed by a non-holonomic
constraint which are for the left and right skate respectively,

c5 = − sin(θLS)ẋLS − cos(θLS)ẏLS = 0, (7)

c6 = − sin(θRS)ẋRS + cos(θRS)ẏRS = 0. (8)

Since we do not consider vertical motions no constraints in the vertical direction are
needed. Contact or no contact is described by on/off switching of the corresponding
non-holonomic constraint.

3.4 Mass Distribution

The number of bodies in the model is based on an investigation of the shift in po-
sition of the center of mass on a complete anthropometric model of a speed skater
during the gliding and the push-off phase of a stroke. A minimum of three bodies
was shown to be necessary for describing the shift of the center of mass [8].

The total mass m of the skater is now distributed over the three point masses
(body, left skate, right skate) by using a mass distribution coefficient α (Fig. 4).
The distribution of the masses are given by mB = (1 − α)m, mLS = (α/2)m, and
mRS = (α/2)m.

3.5 Friction Forces

The total friction forces can be roughly divided in 80 % air friction and 20 % ice
friction [5]. The ice friction in the model, following de Koning [7], is described by
Coulomb’s friction law,

Fice = μFN (9)

where μ is the friction coefficient and FN the normal force of the skate on the ice.
Here we assume that the height of the skater is constant and that there is no double



Speed Skating Modeling 7

Fig. 4 Positions of the COM
of the bodies during the
push-off together with the
mass distribution

stance phase. Therefore, the ice friction can be written as Fice = μmg, in which m

the total mass of the skater and g the earth gravity. The air friction can be described
by,

Fair = 1

2
ρCdAv2 = k1v

2 (10)

where ρ represents the air density, Cd the drag coefficient, A the frontal projected
area of the skater, and v the velocity of the air with respect to the skater. The air drag
forces at each individual mass are calculated by multiplying the mass distribution
coefficient of that mass by the total air drag. The drag coefficient k1 can only be
estimated experimentally. With an experimental method (see Appendix 8.5) both
the drag coefficients μ and k1 for every individual subject are estimated.

3.6 Model Summary

The equations of motion together with the constraint equations are completely de-
fined by the state of skater. Combining the equations of motion for the individual
masses (1) and including of the constraint forces and the constraints (3)–(6) on
the acceleration level results in the constraint equations of motion for the system,
Au = b, with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(1 − α) 0 0 0 0 0 −1 0 −1 0
0 m(1 − α) 0 0 0 0 0 −1 0 1
0 0 α

2 m 0 0 0 1 0 0 0
0 0 0 α

2 m 0 0 0 1 0 0
0 0 0 0 α

2 m 0 0 0 1 0
0 0 0 0 0 α

2 m 0 0 0 −1

−1 0 1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

u = [
ẍB ÿB ẍLS ÿLS ẍRS ÿRS λ1 λ2 λ3 λ4

]T (12)
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b = [−FXfrictionB −FY frictionB −FXfrictionLS −FY frictionLS −FXfrictionRS

−FY frictionRS hc1 hc2 hc3 hc4
]T (13)

where hc1 . . . hc4 are the convective acceleration terms of the constraints (Ap-
pendix 8.8) and λ1 . . . λ4 are the constraint forces (Lagrange multipliers). Here λ1
and λ2 are the constraint forces in the left leg, and λ3 and λ4 the constraint forces
in the right leg. The non-holonomic skate constraints are not yet included in this
system, but will be in a later stage.

The model consists of 3 bodies with each 2 degrees of freedom, thus the uncon-
strained system has 6 degrees of freedom. However, there are 4 coordination con-
straints and 1 non-holonomic constraint of the skate on the ice (no double stance);
therefore 1 degree of freedom remains. If there is a double stance phase then both
skates are on the ice, the system is over-constrained and no degree freedom is left.
Therefore for the model we will assume only single stance phases, and the model
will alternatively switch between the right skate en left skate constraint. This as-
sumption is validated by the experimental force data, where we see only a short
period of double stance with load transfer.

We rewrite the equations of motion (11)–(13) (still without the non-holonomic
skate constraints) in terms of the generalized coordinates (2), where the prescribed
coordinates (leg extension coordinates (uLS, vLS, θLS,uRS, vRS, θRS)) are pushed
to the right-hand side (Appendix 8.1). Next, the constraint of the skate on the ice
(left or right) is added to the equations. Finally the reduced constrained equations of
motion are given by, for when the left skate is on the ice,

⎡
⎣

m 0 −sLS

0 m −cLS

−sLS −cLS 0

⎤
⎦

⎡
⎣

ẍB

ÿB

λ5

⎤
⎦ =

[
TT

,q(f − Mh)

hc5

]
, (14)

and for when the right skate is on the ice,
⎡
⎣

m 0 −sRS

0 m cRS

−sRS cRS 0

⎤
⎦

⎡
⎣

ẍB

ÿB

λ6

⎤
⎦ =

[
TT

,q(f − Mh)

hc6

]
, (15)

where λ5 and λ6 are the lateral constraint forces on the skate and hc5 and hc6 are
the convective acceleration terms of the skate constraints, the latter are presented in
Appendix 8.8. Clearly both systems have one degree of freedom left, one can think
of it as being the forward motion.

3.7 Model Constants

Experimental data was obtained from four different riders. Listed in Table 1 are the
values of the model parameters used in the simulations for these four riders. The
total mass of the skater and gravity are a measured quantities. The other parameters
are found by an optimization process as described in Appendix 8.3.
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Table 1 Parameter values for the four riders

Variable Description Value

m Mass skater 66, 80, 77, 84 [kg]

α Mass distribution 0.604, 0.682, 0.607, 0.686 [–]

k1 Drag coefficient 0.160, 0.153, 0.112, 0.299 [N/(m/s)2]

g Gravity 9.81 [m/s2]

4 Model Analysis

4.1 Parametrization of the Coordination Body Functions

Input to the model are the measured motion coordinations, the leg extensions and
the skate steer angles, and their velocities and accelerations. To determine these all
measured positions have to be differentiated with respect to time. To get rid of model
errors due to numerical differential and filtering errors (spikes), all positions are first
parameterized by smooth functions. The required parametrization functions have to
be twice differentiable. The combination of a linear and periodic functions satisfies
this requirement. The used parametrization function is,

f = c0 + c1t +
5∑

k=1

ak sin

(
2kπ

t

T

)
+ bk cos

(
2kπ

t

T

)
. (16)

The fit is not accurate at the beginning and end of the stroke, which results in
a mismatch of the initial conditions on the velocities and accelerations. Therefore
the coordinates are fit at a somewhat longer time period and then cut off afterwards.
We tried also other parametrization functions, like polynomial and cubic splines.
The differentials of polynomial functions became unstable with increasing order,
while piecewise cubic splines have no filtering which results in high frequent com-
ponents in the positions. The measured positions of the body, left and right skate
in x and y direction of a single stroke are parameterized according to (16) and by
differentiating the equations of the fitted function the velocities and acceleration are
calculated.

4.2 Integration of the Differential Equations

The differential algebraic equations (14), (15) describing the motion of the system
cannot be solved analytically. Therefore, the equations will be numerically inte-
grated, using the classic Runge-Kutta 4th order method (RK4). The stepsize h is
taken constant during the whole simulation, and chosen identical to the sample time
of the measurements Ts = 1/100 [sec]. After each numerical integration step the
constraints are fulfilled by a projection method (Appendix 8.2).
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Fig. 5 Forces in local
reference frame (Nls , Tls ,
Nrs , Trs ) and global reference
frame (FNls , FT ls , FNrs ,
FT rs ): (a) Left skate, (b) right
skate

4.3 Data Collection

The data collection of the skater includes the 2-dimensional in-plane positions (x, y)
of the two skates and the upper body, the normal and lateral forces at the two skates
and lean angle of the skates. The global positions are measured by a radio frequency
based so-called local position measurement system (LPM) from Inmotio.1 This sys-
tem is installed at the Thialf speed skate rink in Heerenveen, The Netherlands. The
LPM system has been used for analysis of soccer matches, and can handle up to 22
active transponders at 1000/22 Hz. The transponders are approximately placed at
the positions of the point masses.

We have developed two instrumented clap skates to measure the normal and lat-
eral forces (Ni,Li) at the blades of the skates, see Fig. 5. To be able to compare
these with the model output, which are the global lateral forces FT ls and FT rs , the
lean angles of the skates, φi , has be measured too. These angels are measured using
an inertial measurement unit from Xsens,2 where only the lean angle is used.

For data acquisition a DAQ unit of National instruments3 is used. All the force
and orientation data is collected from the DAQ via a USB connection on a mini lap-
top which is carried by the skater in a backpack. The different measurement systems
are synchronized by means of images from a high speed camera. See Appendix 8.4
for detailed description of the synchronization method.

Data sets of four trained speed skaters are used to validate the model. The data
collection is performed with a standard measurement protocol which includes: skat-
ing two laps at an estimated 80 % of maximal performance level. The tests are
repeated at least three times.

1http://www.inmotio.nl, Hettenheuvelweg 8, 1101 BN Amsterdam Zuidoost, The Netherlands.
2http://www.xsens.com.
3http://www.ni.com.

http://www.inmotio.nl
http://www.xsens.com
http://www.ni.com
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Fig. 6 Measured and parameterized leg extension coordinates ui, vi and θi as a function of time
for a sequencing left and right stroke for rider 1 from Table 1. Gray filled area means that the skate
is not active. (a) Left skate, (b) right skate

4.4 Fitting the Model to the Observed Data

The model is validated by showing how closely it can simulate the observed forces
and motions. Quantification of the model errors are analyzed similar to that of
McLean [9]. The measured data has different scales and units and therefore we
constructed a measurement of error, Jmin, between the model and the measured data
which includes the error of the upper body position, velocities and local normal
forces (Nls and Nrs ). The measurement of error is dimensionless, reasonably scaled
and independent of the number of time samples. See Appendix 8.3 for a detailed
description of the measurement error function Jmin.

5 Results

Plots of the measured and simulated forces and motions (output of model) as a
function of time for a sequencing left and right stroke are shown in Fig. 7 (the pa-
rameters are according to the first rider from Table 1). The corresponding measured
and parameterized leg extensions (input of model) of the left and right leg are shown
respectively in Fig. 6(a) and Fig. 6(b). At the beginning of the left stroke (t = 0) the
skate is placed in front of the upper body, resulting in a negative uls . During the
stroke the skate is moving sidewards and backwards, uls and vls increase. At the
end of the stroke the skate is retracting to the upper body, uls and vls decrease. At
the beginning of the right stroke (t = 1.25), the skate is again moving sidewards,
vrs increase. However the motion pattern of the urs is somewhat different in com-
parison with uls . The urs remains approximately constant during the stroke, which
eventually will results in a different output motion of the upper body in y direction.
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Fig. 7 Simulated (black lines) and measured (gray lines) upper body positions, velocities, accel-
erations and local normal forces on the skates (Ni ), as a function of time for a sequencing left and
right stroke, for rider 1 from Table 1 (mg = 647 N)

The skater has an average forward speed of ≈ 32 km/h. The upper body de-
scribes a sine-wave like trajectory with respect to the ice during speed skating the
straights (Fig. 7(a), yb), which has also been observed by de Boer [4]. The ve-
locity pattern sidewards, ẏb , are alike for left and right stroke. However, the for-
ward acceleration/deceleration pattern differ per stroke. This was observed for every
rider.

The local normal forces NLS and NRS of the active skate are shown in Fig. 7(b),
where the height of the body is assumed constant. At the large force drop in the
measured force data a switch is made in the model from the left skate to the right
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Table 2 Net error Jmin per
subject (average of all left
straight strokes of all tests)
divided by the number of
optimization parameters

Skater Jmin

1 0.0013

2 0.0015

3 0.0022

4 0.0013

skate. Note that the sum of the measured left and right force corresponds well to the
calculated value. At the beginning of the stroke the normal force is rising above the
body weight of the skater. Then a small force drop appears and at the end of stroke
the normal forces rises again well above the body weight. The maximal normal force
during push-off is approximately 150 % of the body weight.

Agreement exists between the measured and simulated positions and velocities.
The largest error is in the force data, which mainly appears at the beginning and end
of the stroke.

For all skaters the net error Jmin (24) of all straight left strokes is calculated.
This net error is divided by the number of optimization parameters being the upper
body positions, upper body velocities and the local normal forces and presented in
Table 2.

Averages of the magnitudes of the residuals are calculated similar to that of
Cabrera [2] by Rj = ∑N

i=1 |ỹij − yij |/N . In which N the number of collected data
points, yi the measured value of the variable and ỹi the simulated value of the vari-
able from the model. For all variables j the Rj is shown in Table 3. The residuals
of the upper body are less than 0.10 m for the forward position, 0.031 m sidewards,
0.20 m/s in the forward velocity, 0.06 m/s sidewards, and 53 N for the local normal
forces in the skate.

Table 3 Table of the residuals between measured and simulated values of the variables. Body
position in x direction [m], body position in y direction [m], body velocity in x direction [m/s],
body velocity in y direction [m/s], body acceleration in x direction [m/s2], body acceleration in y

direction [m/s2], local normal forces [N]

Skater Rxb Ryb Rẋb Rẏb Rẍb Rÿb RNl

1 0.0795 0.0165 0.1769 0.0464 0.5880 0.3836 22.01

2 0.0817 0.0245 0.1659 0.0491 0.5952 0.3379 34.30

3 0.1048 0.0314 0.2071 0.0626 1.0276 0.3244 53.91

4 0.0782 0.0186 0.1737 0.0401 0.8315 0.2380 26.45
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Fig. 8 Plots of Jmin versus a single parameter value, mass distribution α, air friction coefficient k1
and total mass of the skater m, as the parameter is varied about the nominal value for rider 1 from
Table 1. The filled circles correspond to the value of Jmin at the nominal parameter value

6 Discussion

6.1 Model Error

All position residuals are within the accuracy of the position measurement system
(≈ 0.15 m). The accuracy of the LPM can be increased if two transponders, instead
of one transponder are positioned at the skates and the upper body. The forward
velocities ẋB are less accurate than the sideward velocities ẏB , which is reasonable
due to the fact that the forces are mainly in sideward direction instead of forward.
Orientation errors have therefore more influence on the ẋB than on the ẏB .

No total agreement exists between the measured forces and the forces calculated
in the model, generally at the beginning and at the end of the stroke. There is no
normal force drop in the calculated data which is a result of the simplification that
there is no double stance phase, but the sum of the measured left and right force
do correspond well with the calculated one. Conversion from global to local forces
resulted in a force error, caused by the accuracy of the lean angle sensors. The accu-
racy of these sensors are < 2 deg root mean square, resulting in a local normal force
error between ≈ 20/−20 N. Besides conversion errors, crosstalk exists of ≈ 3 % of
the lateral forces to the normal forces (max. −9/9 N). The maximal error due to
inaccuracy of the measurement equipment is then approximately 29 N.

The net error Jmin of all measurements are in the same magnitude, which shows
that the model is valid for all subjects.

6.2 How Does the Fit Depend on Mechanical Constants

The sensitivity of the mechanical constants is obtained by minimizing the net error
Jmin (24). This net error is calculated by letting the upper body motions variable
while fixing all other parameters to their optimal fit value, except for the wanted
minimization parameter (mass distribution α, air friction coefficient k1 or mass of
the skater m). In Fig. 8 the normalized net error Jmin are plotted as function of the
minimization parameters. The minimal values in the figures correspond to the values
of the parameters at the optimal fit.
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Fig. 9 Plot of error Jmin
versus the amplitude of the
sine wave corrupting the
velocity data of the upper
body of the skater

The mass is the most sensitive mechanical parameter, however this parameter
is measured accurately and therefore of no concern here. The value of the mass
distribution α as well as the friction coefficient k1 are more uncertain. The figure
shows clearly that the fit depends little on these mechanical constant.

6.3 Fitting False Data

If the fits which are obtained are a result of good curve fitting, then it should
be able to obtain good fits to false data. To test the model a pure sine function,
A cos(2πt/T ), with amplitude A, and stroke time T , is added to the measured ve-
locity data of the upper body in either directions. In Fig. 9 the minimal error function
versus the amplitude of the sinus wave is plotted. The total error between the model
and the measured variables is minimal if the amplitude of the added function is zero.
The model shows the best fit if there is not added corrupted data to the velocity data
of the upper body. These results shows that the fits are not a result of good curve
fitting, but rather the result of a good model.

6.4 Kinematic Complexity

The double stance phase was not included in the model. However, the sum of the
measured left and right force during the short double stance phase do correspond
well with the calculated forces (Fig. 7(b)), which demonstrates that there is little
need for modeling this double stance phase.

Another major simplification of the model is that it was assumed that the center
of mass remains at a constant height during skating, which was based on de Boer [3].
However, in accelerometer data of the upper body it was found that at the end of the
stroke the upper body accelerates about 1.5 times gravity, which really influences
the forces in the model. Therefore it seems beneficial to include the vertical motion
of the body in the model.
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7 Conclusions

We have constructed a simple 2-dimensional model of speed skating that does a
reasonable job of imitating the forces and kinematics as observed in actual speed
skating. The model reproduces these forces and motions reasonably well, even if
we do not fit for that. The model is limited in accuracy due to the limited accuracy
of the LPM position measurement system. Adding the (small) vertical motion of the
upper body can increase the accuracy of the model.

The model seems promising for individual training advice. Coordination pat-
terns of individual skaters can be optimized by using the model if psychological
constraints of individual skater are added to the model. In Appendix 8.6 a detailed
description of the needed constraints on the model is given. The model can also be
used to give insight in the biomechanics of speed skating, like why speed skaters
steer back to their body at the end of the stroke. Finally the effect of anthropometric
differences between speed skaters can be determined.

Appendix

This appendix contains details on the modeling and the experimental validation and
comments and remarks for future use of the model for optimization of speed skater
performance.

8.1 Kinematic Transformation

This section describes the transformation of the equations of motion in terms of the
generalized coordinates.

We start with the differential algebraic (constraint) equations of motion (DAEs),
without the non-holonomic skate constraint, from (11), which can be written as,

[
M CT

C ∅
][

ẍ
λ

]
=

[
f

hc

]
, (17)

with the COM accelerations ẍ, the diagonal mass matrix M, the applied forces f at
the COM, the Jacobian C = ∂c/∂x of the constraint equations c(x) = 0, the convec-
tive terms hc = (∂(Cẋ)/∂x)ẋ, and the Lagrange multipliers λ, with respect to the
constraints c. The constrained equations of motion are,

Mẍ = f − CT λ. (18)

Next, we like to rewrite the equations in terms of the generalized coordinates q.
Therefore we introduce the coordinates of the COM x expressed in terms of the
generalized coordinates q,

x = T(q). (19)
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Differentiate this twice with respect to time,

ẋ = T,qq̇ and ẍ = T,qq̈ + h. (20)

The subscript comma followed by one or more variables denotes the partial deriva-
tives with respect to these variables, and with the convective terms h = (T,qq̇),qq̇.
Substitution of these accelerations in (18) and pre-multiplying with the transposed
Jacobian TT

,q gives,

TT
,qM(T,qq̈ + h) = TT

,q
(
f − CT λ

)
. (21)

Since the generalized coordinates fulfill the constraints, TT
,qCT is identical to zero,

that is the constraint forces λ drop out of the equations. The result is the equations
of motion expressed in terms of the generalized coordinates q,

T,qMTT
,qq̈ = TT

,q(f − Mh). (22)

Finally the skate constraint can be added to these equations of motion, which results
in the constraint equations of motion (14) and (15).

8.2 State Projection

After numerical integration of the equations of motion for one time increment,
the state variables in general do not fulfill the constraints. This can be solved
by formulating a minimization problem such that the distance from the predicted
solution q̃n+1 to the solution which is on the constraint surface qn+1 is mini-
mal: ‖q̃n+1 − qn+1‖2 = minqn+1 and where all qn+1 have to fulfill the constraints
c(qn+1) = 0. This non-linear constraint least-square problem is in general solved
with a Gauss-Newton method after every numerical integration step. However, here
we have to deal with non-holonomic constraints only, which are linear in the speeds
C(qn+1)q̇n+1 = 0. The optimization problem then reduces to a linear constraint
least-square problem which can be solved in one step.

8.3 Objective Function Jmin

The best agreement between simulation and measurements can be achieved if we
use accurate values for the air friction coefficient and the mass distribution. This
is solved by minimizing the error between the model and the measurements. The
objective function is defined by equation:

Ej = 1

N

N∑
i=1

(ỹi − yi)
2 (23)

where N the number of collected data points, yi the measured value of the variable
and ỹi the simulated value of the variable from the model. This is a constrained
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multivariable minimization problem: minx f (x) with the constraint: lb ≤ x ≤ ub in
which x are the air friction coefficient k1 and mass distribution constant α. The up-
per and lower limit of α are defined as 0 and 1 while the limits of k1 are defined as 0.1
and 0.3. With the optimization function fmincon of Matlab the optimal combination
of α and k1 are found. The optimization function uses an interior point algorithm
and starts at the initial guess of the minimum x0. For each measured variable the
optimal mechanical parameters can be fit.

Besides calculating the optimal values by minimizing one variable, the net error
is calculated including the error of the upper body position, velocities and local
normal forces (Ni ). The net error is calculated with:

Jmin =
∑M

j=1 wj

( 1
N

∑N
i=1

(ỹij −yij )2

ȳ2
j

)
∑M

j=1 wj ȳ
2
j

(24)

in which ỹij is the simulated value of a variable, yij the measured value of a variable,
wj is the weighting factor of a variable and ȳj is the characteristic value of the
variable. The peak to peak values of the x and y upper body positions, average
value of the body velocity in forward direction, peak to peak value of the velocity
in sideward direction and the local measured normal peak force are used as the
characteristic values of the parameters. Equal weights are used (wj = 1) for all j in
the error function.

8.4 Synchronization Method

The LPM position measurement system and the DAQ data acquisition unit are syn-
chronized with video frames from a high speed (300 Hz) digital photo camera.4

8.4.1 Synchronization LPM and Video

The LPM is synchronized by using an extra static transponder, which was placed in
line with the start line on the ice. During the synchronization test the line is filmed
with the high speed camera (300 Hz). The moment of crossing the start line can be
found in the LPM data and video.

8.4.2 DAQ and Video

In order to synchronize the DAQ and video frames a reset button with LED, which
lights up when pressed, is used. The reset button is connected with the DAQ. At the
start and the end of the measurement the subject has to push the reset button in view
of the high speed camera, such that the video frames at which the LED reset button
when pushed lights up can be easily determined.

4Casio Exilim EX-F1.
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8.5 Friction Estimation

In order to estimate the friction coefficients, the subjects got the following instruc-
tion: after skating two laps immediately stop skating and glide along the line of the
lanes in the same skating posture as you were skating before for 100 m.

In order to determine the coefficients of friction from the glide exercise, it is
assumed that the friction coefficients are constant during the glide.

From this estimation the conclusion is drawn that the speed should decreases
linearly. A first order polynomial is fitted through the velocity profile of the LPM
data of the COM of the skater during gliding.

ẏ(t) = −at + b. (25)

The gradient a of the line is the decelerations of the skater during gliding. The total
friction force Ffriction is the total mass m times the deceleration a of the skater during
gliding; Ffriction = ma. The air friction coefficient is assumed to behave like,

Fair = k1v
2 = βFfriction, (26)

with the velocity v of the center of mass of the skater, k1 the air drag factor and β the
friction distribution factor which is assumed to be 0.8. The ice friction is assumed
to behave like Coulomb friction as in

Fice = μmg = (1 − β)Ffriction, (27)

where μ is the Coulomb friction coefficient between the ice and the skate.

8.6 Optimization

For future application of the model where one wants to find coordination patterns
which result in optimal performance, additional constraints are required. The model
has to be constrained by the physiology of the skater during optimization of his
coordination pattern. The physiology constraints of a skater are given by: the leg
length, average power and maximal power of the speed skater.

8.6.1 Maximal Power Constraint

The maximal power during a single stroke must not exceed the maximal possible
power from a leg extension motion of a skater. The maximal power constraint value
could be based on either literature or experimentally determined. First, the maximal
power can be determined from the push-off force and velocity of leg extension in the
horizontal plane, since no work is done in the vertical plane. The maximal possible
power of single leg extension as a function of the leg extension velocity can be based
on force-velocity data extracted from leg press results of Vandervoort et al. [11]. The
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Fig. 10 Force velocity
relation [1]

power is estimated by multiplying the force with the extension velocity of the leg [1]
(Fig. 10).

Secondly, the maximal power of a single leg extension could be experimentally
determined per subject. In power models the maximal and average power of an
athlete is measured with an ergometer test [6]. The measured ergometer power is
then multiplied by an experimentally determined constant to determine the power
during skating. However, the uncertainty on the constant is large so there is room
for a better method to determine subject individual skating power.

8.6.2 Average Power Constraint

The average power of a stroke must not exceed the available aerobic power of a leg
extension motion. The average power of a stroke can be calculated by:

Pavg = 1

tstroke

∫ tstroke

0
P dt (28)

in which tstroke is the stroke time and P is the available aerobic power for skating.
For this equation it is assumed that the skater is running at steady state speed, which
results in zero anaerobic power.

The average power exerted during skating can be either measured with oxygen
measurements during the speed skating measurements or calculated by Eq. (28).

8.6.3 Leg Power Calculation

For optimization the power exerted by the skater of stroke has to fulfill the con-
straints. The power of a stroke can be determined from the push-off force of the



Speed Skating Modeling 21

Fig. 11 Leg power in
horizontal plane

skate on the ice and the leg extension in the horizontal plane, since no work is done
in the vertical plane (Eq. (29)).

Pleg = FT ls v̇LS. (29)

An example of the leg power during a stroke can be seen in Fig. 11. At the
beginning of the stroke the leg power becomes negative, which is caused by the
negative direction of the lean angle. During the stroke the leg power increases to
approximately 500 W. At the end of the stroke the extension speed decreases and
the leg power becomes smaller.

8.7 Generalized Coordinates

The positions of the bodies (B,LS,RS) written in the generalized coordinates:
⎡
⎢⎢⎢⎢⎢⎢⎣

xB

yB

xLS

yLS

xRS

yRS

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

xB

yB

xB − cos(θLS)uLS − sin(θLS)vLS

yB + sin(θLS)uLS − cos(θLS)vLS

xB − cos(θRS)uRS − sin(θRS)vRS

yB − sin(θRS)uRS + cos(θRS)vRS

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

in which θi are the steer angles. These planar angular rotations can be calculated,
since the velocity data of the skate in plane (x, y) are obtained. The skate steer
angles are calculated by:

[
θLS

θRS

]
=

[− tan−1
( ẏLS

ẋLS

)

tan−1
( ẏRS

ẋRS

)
]

. (31)
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8.8 Convective Acceleration Terms

The convective acceleration terms of the leg extension constraints are:

hc1 = θ̈LS

(
vLS cos(θLS) − uLS sin(θLS)

) + üLS cos(θLS) + v̈LS sin(θLS)

− θ̇LS

(
θ̇LS

(
uLS cos(θLS) + vLS sin(θLS)

) − v̇LS cos(θLS) + u̇LS sin(θLS)
)

+ θ̇LSv̇LS cos(θLS) − θ̇LSu̇LS sin(θLS) (32)

hc2 = v̈LS cos(θLS) − θ̈LS

(
uLS cos(θLS) + vLS sin(θLS)

) − üLS sin(θLS)

− θ̇LS

(
θ̇LS

(
vLS cos(θLS) − uLS sin(θLS)

) + u̇LS cos(θLS) + v̇LS sin(θLS)
)

− θ̇LSu̇LS cos(θLS) − θ̇LSv̇LS sin(θLS) (33)

hc3 = üRS cos(θRS) − θ̈RS

(−vRS cos(θRS) + uRS sin(θRS)
) + v̈RS sin(θRS)

− θ̇RS

(
θ̇RS

(
uRS cos(θRS) + vRS sin(θRS)

) − v̇RS cos(θRS) + u̇RS sin(θRS)
)

− θ̇RS−̇vRS cos(θRS) − θ̇RSu̇RS sin(θRS) (34)

hc4 = θ̇RS

(
θ̇RS

(−vRS cos(θRS) + uRS sin(θRS)
) − u̇RS cos(θRS) + v̇RS sin(θRS)

)

+ v̈RS cos(θRS) − üRS sin(θRS) − θ̈RS

(
uRS cos(θRS) + vRS sin(θRS)

)

− θ̇RSu̇RS cos(θRS) − θ̇RSv̇RS sin(θRS). (35)

The convective acceleration terms of the skate constraints are:

hc5 = θ̇LSu̇LS − v̈LS + θ̈LSuLS + θ̇LSẋB cos(θLS) − θ̇LS ẏB sin(θLS)

hc6 = θ̇RSu̇RS − v̈RS + θ̈RSuRS + θ̇RSẋB cos(θRS) + θ̇RSẏB sin(θRS).
(36)
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