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Preface

Multibody Dynamics is an exciting area of Computational Mechanics which merges
and blends various disciplines in order to provide methods and tools for the virtual
prototyping of complex mechanical systems. Multibody dynamics plays a central
role these days in the modeling, analysis, simulation and optimization of mechanical
and mechatronic systems in a variety of fields and for a wide range of scientific and
industrial applications, some of which are illustrated below.

As new methods and procedures are being proposed at a fast pace in academia,
research laboratories and industry, it is becoming important to provide researchers
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vi Preface

in multibody dynamics with appropriate venues for exchanging ideas and results. To
answer these needs, the ECCOMAS Thematic Conference on Multibody Dynamics
was initiated in Lisbon in 2003, and continued in Madrid in 2005, Milan in 2007
and Warsaw in 2009. Continuing this very successful series, the 2011 edition of the
ECCOMAS Thematic Conference on Multibody Dynamics was held in Brussels,
Belgium and organized by the Université catholique de Louvain, from 4th to 7th July
2011. More than 250 participants were attending the conference which provided a
forum for fruitful discussion and technical exchanges.

This book contains the contributions of participants selected by the organizers
that reflect the State-of-Art in the application of Multibody Dynamics to different
areas of engineering. The chapters of this book are enlarged and revised versions of
the communications, delivered at the conference, which were enhanced in terms of
self-containment and tutorial quality by the authors. The result is a comprehensive
text that constitutes a valuable reference for researchers and design engineers which
helps to appraise the potential for the application of multibody dynamics method-
ologies to a wide range of areas of scientific and engineering relevance.

Jean-Claude Samin
Paul Fisette

Louvain-la-Neuve, Belgium
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Speed Skating Modeling

A.L. Schwab, D.M. Fintelman, and O. den Braver

Abstract Advice about the optimal coordination pattern for an individual speed
skater to reach their optimal performance, could well be addressed by simulation
and optimization of a biomechanical model of speed skating. But before getting
to this optimization approach one needs a model that matches observed behavior.
In this chapter we present a simple 2-dimensional model of speed skating on the
straights which mimics observed kinematic and force data. The primary features
of the model are: the skater is modeled as three point masses, only motions in the
horizontal plane are considered, air drag forces which are quadratic in the velocity
and coulomb type ice friction forces at the skates are included, and idealized contact
of the skate on the ice is modeled by a holonomic constraint in the vertical direction
and a non-holonomic constraint in the lateral direction. Using the measured leg
extension (relative motions of the skates with respect to the upper body) we are able
to predict reasonable well the speed skater motions, even if we do not fit for that.
The model seems to have the key terms for investigations of speed skating.

1 Introduction

The coordination pattern of speed skating appears to be completely different from
all other types of human propulsion. In most patterns of human locomotion, humans
generate forces by pushing against the environment in the opposite desired direction
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2 A.L. Schwab et al.

Fig. 1 Phases of a stroke: push-off phase, glide phase and reposition phase [1]

of motion. In speed skating humans generate forces by pushing in sideward direc-
tion. When we take a closer look at speed skating the straights we observe that
a skating stroke can be divided in three phases: the glide, push-off and reposition
phase, see Fig. 1. In the push-off phase the skate moves sidewards with respect to
the center of mass (COM) of the body till near full leg extension. In the reposition
phase the leg is retracted in the direction of the center of mass of the body. During
the glide phase the body is supported over one leg that remains at nearly constant
height (ankle to hip distance). Double support, where both skates are on the ice, only
exists in the first part of the glide phase of one leg and in the second part of push-off
phase of the other leg. This coordination pattern with sideward push-off results in a
sinus-wave like trajectory of the upper body on the ice [4].

From these observations a number of questions arise. Of the many possible co-
ordination patterns, that is position and orientation of the skates with respect to the
upper body, why do skaters use this particular one? What is the optimal coordina-
tion pattern for an individual speed skater to reach their optimal performance? How
do speed skaters create forward power on ice? Why are speed skaters steering back
to their body at the end of the push-off? What is the effect of anthropometric dif-
ferences on the coordination pattern of a speed skater (like the difference between a
tall Dutch skater and a small Japanese skater)? All these questions are highly depen-
dent on the coordination pattern of the speed skater and could well be addressed by
simulation and optimization of a biomechanical model of speed skating. But before
getting to this optimization approach one needs a model that reasonable matches
observed behavior.

Currently, there exist three speed skating models [1, 6, 10]. The first models
of speed skating were initiated by Gerrit Jan van Ingen Schenau [12] and further
developed by researchers at the VU University Amsterdam [6]. By using power
balances of the human and the environment useful information about the posture,
athlete physiology and environmental parameters on the performance is obtained.
Disadvantages of these models are that the validation is difficult and it is impossible
to investigate differences in coordination pattern.

A more recent model was developed by Otten [10], in which forward and inverse
dynamics are combined. The model is complex and includes up to 19 rigid bodies
and 160 muscles. The model is able to simulate skating and can give insight in the
forces/moments in the joints. Limitations of the model are that the kinematics in
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the model are manually tuned and that the model is not driven and validated with
measurements of speed skaters. Unfortunately, no information about this model is
available in the open literature, which makes it hard to review.

The most recent speed skater model is developed by Allinger and van den
Bogert [1]. they developed a simple, one point mass, inverse dynamics model of
a speed skater which is driven by individual strokes. The main limitations of the
model are that the model is driven by a presumed leg function in time and that the
model is not validated with force measurements. Furthermore, the effect of the as-
sumptions on the model (e.g. constant height) are not investigated. On the other
hand the model is possibly accurate and very useful for optimization the coordina-
tion pattern of speed skating.

Although three biomechanical models exist, none of these models is shown to
accurately predict observed forces and motions. Which is partly due to the lack of
experimental kinematic data and force data on stroke level.

In this chapter, we present a 2-dimensional inverse dynamics model on the
straights which has minimal complexity. The model is based on three lumped masses
and is validated with observed in-plane (horizontal) kinematics and forces at the
skates. In the future, this model can be used to provide individual advice to elite
speed skaters about their coordination pattern to reach their optimal performance.

2 Methods

We measured in time the 2-dimensional in-plane (horizontal) positions (x, y) of the
two skates and the upper body, the normal forces and lateral forces at the two skates
and lean angle of the skates. We developed a 2-dimensional inverse dynamic model
of a skater. The model is driven by the measured leg extensions, that is relative
motions of the skates with respect to the upper body and absolute orientation of
the skates with respect to the ice. The upper body motions together with the forces
exerted on the ice by the skates are calculated from the model.

A schematic of our 2-dimensional model is shown in Fig. 2. The model consists
of three point masses: lumped masses at the body and the two skates. The total mass
of the system is distributed over the three bodies by a constant mass distribution
coefficient. The motions of the arms are neglected. We do not consider the vertical
motion of the upper body, since experiments show that the upper body is at nearly
constant height [3]. Air friction and ice friction are taken into account. Idealized
contact of the skate on the ice is modeled by a holonomic constraint in the vertical
direction and a non-holonomic constraint in the lateral direction.

Values for the mass distribution and air friction are found experimentally. The
best agreement between the measurements and model can be achieved if we use
accurate values for these parameters. Therefore we constructed an objective function
Jmin and minimized the error between the measurements and model. Details on the
objective function can be found in Appendix 8.3.
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Fig. 2 Free body diagrams
of the three point mass model
(horizontal plane, top view).
The masses are located at the
COM of the body and at the
COM of the skates. Fls and
Frs are perpendicular with
the skate blades, θls and θrs

are the steer angles of the
skates with respect to the
x-axis. The x- and y-axes
are the inertial reference
frame fixed to the ice rink

3 Model Analysis

In the model analysis for speed skating, three stages can be distinguished. First, the
unconstrained equations of motion of the speed skater of a single stroke are derived.
Secondly, the constraints are formulated and incorporated into the unconstrained
equations of motion. Finally all equations are derived in terms of generalized coor-
dinates and solved by numerical integration of these constrained equations of mo-
tion.

3.1 Equations of Motion

The equations of motion for each separate body (upper body, right skate and left
skate) can be derived in x and y direction. Friction forces (air and ice friction)
as well as the constraint forces are acting on the bodies. All constraints acting on
the bodies will be explained in the next paragraph. The unconstrained equations of
motions for all bodies are,

mẍi = −FfrictionXi
+ FconstraintsXi

mÿi = −FfrictionYi,
+ FconstraintsYi

i = B,LS,RS (1)

where FfrictionXi
is the component of the friction force in x direction and FfrictionYi

the component of the friction force in y direction. FconstraintsX are the constraint
forces in x direction and FconstraintsY the constraint forces in y direction.

3.2 Constraints

The first set of constraints are the leg extension constraints, they connect the skates
to the upper body. The positions of the skates are prescribed by the position of the
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Fig. 3 Definition of
generalized coordinates

upper body and the leg extension coordinates. The second set of constraints are at
the skates. A holonomic constraint is applied in the vertical direction which establish
that the skate is on the ice and a non-holonomic constraint in the lateral direction of
the skate to express that there is no lateral slip of the skate on the ice.

3.3 Generalized Coordinates

The generalized coordinates of the skater model are chosen such that we can ex-
press the coordination of the motion of the skater in terms of the leg extensions and
the skate orientations (steer angles). Therefore the configuration of the skater is ex-
pressed by the motion of the upper body and the leg extensions (relative motions of
the skates with respect to the upper body, see Fig. 3) and can be described by the
generalized coordinates,

q = (xb, yb,uLS, vLS, θLS,uRS, vRS, θRS)T , (2)

in which θLS and θRS are the steer angles of the skates with respect to the global
x-axis. These steer angles, which are prescribed coordinates, are needed to apply
the non-holonomic skate constraints. The equations of motion will be written in
terms of the generalized coordinates. Detailed information on the transformation of
the equations of motions in terms of the generalized coordinates can be found in
Appendices 8.1, 8.7, and 8.8.

3.3.1 Leg Extension Constraints

The position of the right and left skate can be expressed as function of the gener-
alized coordinates and will be incorporated into the equations of motion means by
holonomic constraints. The left skate leg extension constraints are,

c1 = xLS − xB + cos(θLS)uLS + sin(θLS)vLS = 0, (3)
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c2 = yLS − yB − sin(θLS)uLS + cos(θLS)vLS = 0, (4)

and the right skate leg extension constraints are,

c3 = xRS − xB + cos(θRS)uRS + sin(θRS)vRS = 0, (5)

c4 = −yRS + yB − sin(θRS)uRS + cos(θRS)vRS = 0. (6)

3.3.2 Skate Constraints

When the skate is on the ice we assume no lateral slip between the ice and skate, that
is the lateral velocity of the skate is zero. This can be expressed by a non-holonomic
constraint which are for the left and right skate respectively,

c5 = − sin(θLS)ẋLS − cos(θLS)ẏLS = 0, (7)

c6 = − sin(θRS)ẋRS + cos(θRS)ẏRS = 0. (8)

Since we do not consider vertical motions no constraints in the vertical direction are
needed. Contact or no contact is described by on/off switching of the corresponding
non-holonomic constraint.

3.4 Mass Distribution

The number of bodies in the model is based on an investigation of the shift in po-
sition of the center of mass on a complete anthropometric model of a speed skater
during the gliding and the push-off phase of a stroke. A minimum of three bodies
was shown to be necessary for describing the shift of the center of mass [8].

The total mass m of the skater is now distributed over the three point masses
(body, left skate, right skate) by using a mass distribution coefficient α (Fig. 4).
The distribution of the masses are given by mB = (1 − α)m, mLS = (α/2)m, and
mRS = (α/2)m.

3.5 Friction Forces

The total friction forces can be roughly divided in 80 % air friction and 20 % ice
friction [5]. The ice friction in the model, following de Koning [7], is described by
Coulomb’s friction law,

Fice = μFN (9)

where μ is the friction coefficient and FN the normal force of the skate on the ice.
Here we assume that the height of the skater is constant and that there is no double
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Fig. 4 Positions of the COM
of the bodies during the
push-off together with the
mass distribution

stance phase. Therefore, the ice friction can be written as Fice = μmg, in which m

the total mass of the skater and g the earth gravity. The air friction can be described
by,

Fair = 1

2
ρCdAv2 = k1v

2 (10)

where ρ represents the air density, Cd the drag coefficient, A the frontal projected
area of the skater, and v the velocity of the air with respect to the skater. The air drag
forces at each individual mass are calculated by multiplying the mass distribution
coefficient of that mass by the total air drag. The drag coefficient k1 can only be
estimated experimentally. With an experimental method (see Appendix 8.5) both
the drag coefficients μ and k1 for every individual subject are estimated.

3.6 Model Summary

The equations of motion together with the constraint equations are completely de-
fined by the state of skater. Combining the equations of motion for the individual
masses (1) and including of the constraint forces and the constraints (3)–(6) on
the acceleration level results in the constraint equations of motion for the system,
Au = b, with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(1 − α) 0 0 0 0 0 −1 0 −1 0
0 m(1 − α) 0 0 0 0 0 −1 0 1
0 0 α

2 m 0 0 0 1 0 0 0
0 0 0 α

2 m 0 0 0 1 0 0
0 0 0 0 α

2 m 0 0 0 1 0
0 0 0 0 0 α

2 m 0 0 0 −1

−1 0 1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

u = [
ẍB ÿB ẍLS ÿLS ẍRS ÿRS λ1 λ2 λ3 λ4

]T (12)
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b = [−FXfrictionB −FY frictionB −FXfrictionLS −FY frictionLS −FXfrictionRS

−FY frictionRS hc1 hc2 hc3 hc4
]T (13)

where hc1 . . . hc4 are the convective acceleration terms of the constraints (Ap-
pendix 8.8) and λ1 . . . λ4 are the constraint forces (Lagrange multipliers). Here λ1
and λ2 are the constraint forces in the left leg, and λ3 and λ4 the constraint forces
in the right leg. The non-holonomic skate constraints are not yet included in this
system, but will be in a later stage.

The model consists of 3 bodies with each 2 degrees of freedom, thus the uncon-
strained system has 6 degrees of freedom. However, there are 4 coordination con-
straints and 1 non-holonomic constraint of the skate on the ice (no double stance);
therefore 1 degree of freedom remains. If there is a double stance phase then both
skates are on the ice, the system is over-constrained and no degree freedom is left.
Therefore for the model we will assume only single stance phases, and the model
will alternatively switch between the right skate en left skate constraint. This as-
sumption is validated by the experimental force data, where we see only a short
period of double stance with load transfer.

We rewrite the equations of motion (11)–(13) (still without the non-holonomic
skate constraints) in terms of the generalized coordinates (2), where the prescribed
coordinates (leg extension coordinates (uLS, vLS, θLS,uRS, vRS, θRS)) are pushed
to the right-hand side (Appendix 8.1). Next, the constraint of the skate on the ice
(left or right) is added to the equations. Finally the reduced constrained equations of
motion are given by, for when the left skate is on the ice,

⎡
⎣

m 0 −sLS

0 m −cLS

−sLS −cLS 0

⎤
⎦
⎡
⎣

ẍB

ÿB

λ5

⎤
⎦ =

[
TT

,q(f − Mh)

hc5

]
, (14)

and for when the right skate is on the ice,
⎡
⎣

m 0 −sRS

0 m cRS

−sRS cRS 0

⎤
⎦
⎡
⎣

ẍB

ÿB

λ6

⎤
⎦ =

[
TT

,q(f − Mh)

hc6

]
, (15)

where λ5 and λ6 are the lateral constraint forces on the skate and hc5 and hc6 are
the convective acceleration terms of the skate constraints, the latter are presented in
Appendix 8.8. Clearly both systems have one degree of freedom left, one can think
of it as being the forward motion.

3.7 Model Constants

Experimental data was obtained from four different riders. Listed in Table 1 are the
values of the model parameters used in the simulations for these four riders. The
total mass of the skater and gravity are a measured quantities. The other parameters
are found by an optimization process as described in Appendix 8.3.
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Table 1 Parameter values for the four riders

Variable Description Value

m Mass skater 66, 80, 77, 84 [kg]

α Mass distribution 0.604, 0.682, 0.607, 0.686 [–]

k1 Drag coefficient 0.160, 0.153, 0.112, 0.299 [N/(m/s)2]

g Gravity 9.81 [m/s2]

4 Model Analysis

4.1 Parametrization of the Coordination Body Functions

Input to the model are the measured motion coordinations, the leg extensions and
the skate steer angles, and their velocities and accelerations. To determine these all
measured positions have to be differentiated with respect to time. To get rid of model
errors due to numerical differential and filtering errors (spikes), all positions are first
parameterized by smooth functions. The required parametrization functions have to
be twice differentiable. The combination of a linear and periodic functions satisfies
this requirement. The used parametrization function is,

f = c0 + c1t +
5∑

k=1

ak sin

(
2kπ

t

T

)
+ bk cos

(
2kπ

t

T

)
. (16)

The fit is not accurate at the beginning and end of the stroke, which results in
a mismatch of the initial conditions on the velocities and accelerations. Therefore
the coordinates are fit at a somewhat longer time period and then cut off afterwards.
We tried also other parametrization functions, like polynomial and cubic splines.
The differentials of polynomial functions became unstable with increasing order,
while piecewise cubic splines have no filtering which results in high frequent com-
ponents in the positions. The measured positions of the body, left and right skate
in x and y direction of a single stroke are parameterized according to (16) and by
differentiating the equations of the fitted function the velocities and acceleration are
calculated.

4.2 Integration of the Differential Equations

The differential algebraic equations (14), (15) describing the motion of the system
cannot be solved analytically. Therefore, the equations will be numerically inte-
grated, using the classic Runge-Kutta 4th order method (RK4). The stepsize h is
taken constant during the whole simulation, and chosen identical to the sample time
of the measurements Ts = 1/100 [sec]. After each numerical integration step the
constraints are fulfilled by a projection method (Appendix 8.2).
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Fig. 5 Forces in local
reference frame (Nls , Tls ,
Nrs , Trs ) and global reference
frame (FNls , FT ls , FNrs ,
FT rs ): (a) Left skate, (b) right
skate

4.3 Data Collection

The data collection of the skater includes the 2-dimensional in-plane positions (x, y)
of the two skates and the upper body, the normal and lateral forces at the two skates
and lean angle of the skates. The global positions are measured by a radio frequency
based so-called local position measurement system (LPM) from Inmotio.1 This sys-
tem is installed at the Thialf speed skate rink in Heerenveen, The Netherlands. The
LPM system has been used for analysis of soccer matches, and can handle up to 22
active transponders at 1000/22 Hz. The transponders are approximately placed at
the positions of the point masses.

We have developed two instrumented clap skates to measure the normal and lat-
eral forces (Ni,Li) at the blades of the skates, see Fig. 5. To be able to compare
these with the model output, which are the global lateral forces FT ls and FT rs , the
lean angles of the skates, φi , has be measured too. These angels are measured using
an inertial measurement unit from Xsens,2 where only the lean angle is used.

For data acquisition a DAQ unit of National instruments3 is used. All the force
and orientation data is collected from the DAQ via a USB connection on a mini lap-
top which is carried by the skater in a backpack. The different measurement systems
are synchronized by means of images from a high speed camera. See Appendix 8.4
for detailed description of the synchronization method.

Data sets of four trained speed skaters are used to validate the model. The data
collection is performed with a standard measurement protocol which includes: skat-
ing two laps at an estimated 80 % of maximal performance level. The tests are
repeated at least three times.

1http://www.inmotio.nl, Hettenheuvelweg 8, 1101 BN Amsterdam Zuidoost, The Netherlands.
2http://www.xsens.com.
3http://www.ni.com.

http://www.inmotio.nl
http://www.xsens.com
http://www.ni.com
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Fig. 6 Measured and parameterized leg extension coordinates ui, vi and θi as a function of time
for a sequencing left and right stroke for rider 1 from Table 1. Gray filled area means that the skate
is not active. (a) Left skate, (b) right skate

4.4 Fitting the Model to the Observed Data

The model is validated by showing how closely it can simulate the observed forces
and motions. Quantification of the model errors are analyzed similar to that of
McLean [9]. The measured data has different scales and units and therefore we
constructed a measurement of error, Jmin, between the model and the measured data
which includes the error of the upper body position, velocities and local normal
forces (Nls and Nrs ). The measurement of error is dimensionless, reasonably scaled
and independent of the number of time samples. See Appendix 8.3 for a detailed
description of the measurement error function Jmin.

5 Results

Plots of the measured and simulated forces and motions (output of model) as a
function of time for a sequencing left and right stroke are shown in Fig. 7 (the pa-
rameters are according to the first rider from Table 1). The corresponding measured
and parameterized leg extensions (input of model) of the left and right leg are shown
respectively in Fig. 6(a) and Fig. 6(b). At the beginning of the left stroke (t = 0) the
skate is placed in front of the upper body, resulting in a negative uls . During the
stroke the skate is moving sidewards and backwards, uls and vls increase. At the
end of the stroke the skate is retracting to the upper body, uls and vls decrease. At
the beginning of the right stroke (t = 1.25), the skate is again moving sidewards,
vrs increase. However the motion pattern of the urs is somewhat different in com-
parison with uls . The urs remains approximately constant during the stroke, which
eventually will results in a different output motion of the upper body in y direction.
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Fig. 7 Simulated (black lines) and measured (gray lines) upper body positions, velocities, accel-
erations and local normal forces on the skates (Ni ), as a function of time for a sequencing left and
right stroke, for rider 1 from Table 1 (mg = 647 N)

The skater has an average forward speed of ≈ 32 km/h. The upper body de-
scribes a sine-wave like trajectory with respect to the ice during speed skating the
straights (Fig. 7(a), yb), which has also been observed by de Boer [4]. The ve-
locity pattern sidewards, ẏb , are alike for left and right stroke. However, the for-
ward acceleration/deceleration pattern differ per stroke. This was observed for every
rider.

The local normal forces NLS and NRS of the active skate are shown in Fig. 7(b),
where the height of the body is assumed constant. At the large force drop in the
measured force data a switch is made in the model from the left skate to the right
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Table 2 Net error Jmin per
subject (average of all left
straight strokes of all tests)
divided by the number of
optimization parameters

Skater Jmin

1 0.0013

2 0.0015

3 0.0022

4 0.0013

skate. Note that the sum of the measured left and right force corresponds well to the
calculated value. At the beginning of the stroke the normal force is rising above the
body weight of the skater. Then a small force drop appears and at the end of stroke
the normal forces rises again well above the body weight. The maximal normal force
during push-off is approximately 150 % of the body weight.

Agreement exists between the measured and simulated positions and velocities.
The largest error is in the force data, which mainly appears at the beginning and end
of the stroke.

For all skaters the net error Jmin (24) of all straight left strokes is calculated.
This net error is divided by the number of optimization parameters being the upper
body positions, upper body velocities and the local normal forces and presented in
Table 2.

Averages of the magnitudes of the residuals are calculated similar to that of
Cabrera [2] by Rj = ∑N

i=1 |ỹij − yij |/N . In which N the number of collected data
points, yi the measured value of the variable and ỹi the simulated value of the vari-
able from the model. For all variables j the Rj is shown in Table 3. The residuals
of the upper body are less than 0.10 m for the forward position, 0.031 m sidewards,
0.20 m/s in the forward velocity, 0.06 m/s sidewards, and 53 N for the local normal
forces in the skate.

Table 3 Table of the residuals between measured and simulated values of the variables. Body
position in x direction [m], body position in y direction [m], body velocity in x direction [m/s],
body velocity in y direction [m/s], body acceleration in x direction [m/s2], body acceleration in y

direction [m/s2], local normal forces [N]

Skater Rxb Ryb Rẋb Rẏb Rẍb Rÿb RNl

1 0.0795 0.0165 0.1769 0.0464 0.5880 0.3836 22.01

2 0.0817 0.0245 0.1659 0.0491 0.5952 0.3379 34.30

3 0.1048 0.0314 0.2071 0.0626 1.0276 0.3244 53.91

4 0.0782 0.0186 0.1737 0.0401 0.8315 0.2380 26.45
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Fig. 8 Plots of Jmin versus a single parameter value, mass distribution α, air friction coefficient k1
and total mass of the skater m, as the parameter is varied about the nominal value for rider 1 from
Table 1. The filled circles correspond to the value of Jmin at the nominal parameter value

6 Discussion

6.1 Model Error

All position residuals are within the accuracy of the position measurement system
(≈ 0.15 m). The accuracy of the LPM can be increased if two transponders, instead
of one transponder are positioned at the skates and the upper body. The forward
velocities ẋB are less accurate than the sideward velocities ẏB , which is reasonable
due to the fact that the forces are mainly in sideward direction instead of forward.
Orientation errors have therefore more influence on the ẋB than on the ẏB .

No total agreement exists between the measured forces and the forces calculated
in the model, generally at the beginning and at the end of the stroke. There is no
normal force drop in the calculated data which is a result of the simplification that
there is no double stance phase, but the sum of the measured left and right force
do correspond well with the calculated one. Conversion from global to local forces
resulted in a force error, caused by the accuracy of the lean angle sensors. The accu-
racy of these sensors are < 2 deg root mean square, resulting in a local normal force
error between ≈ 20/−20 N. Besides conversion errors, crosstalk exists of ≈ 3 % of
the lateral forces to the normal forces (max. −9/9 N). The maximal error due to
inaccuracy of the measurement equipment is then approximately 29 N.

The net error Jmin of all measurements are in the same magnitude, which shows
that the model is valid for all subjects.

6.2 How Does the Fit Depend on Mechanical Constants

The sensitivity of the mechanical constants is obtained by minimizing the net error
Jmin (24). This net error is calculated by letting the upper body motions variable
while fixing all other parameters to their optimal fit value, except for the wanted
minimization parameter (mass distribution α, air friction coefficient k1 or mass of
the skater m). In Fig. 8 the normalized net error Jmin are plotted as function of the
minimization parameters. The minimal values in the figures correspond to the values
of the parameters at the optimal fit.
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Fig. 9 Plot of error Jmin
versus the amplitude of the
sine wave corrupting the
velocity data of the upper
body of the skater

The mass is the most sensitive mechanical parameter, however this parameter
is measured accurately and therefore of no concern here. The value of the mass
distribution α as well as the friction coefficient k1 are more uncertain. The figure
shows clearly that the fit depends little on these mechanical constant.

6.3 Fitting False Data

If the fits which are obtained are a result of good curve fitting, then it should
be able to obtain good fits to false data. To test the model a pure sine function,
A cos(2πt/T ), with amplitude A, and stroke time T , is added to the measured ve-
locity data of the upper body in either directions. In Fig. 9 the minimal error function
versus the amplitude of the sinus wave is plotted. The total error between the model
and the measured variables is minimal if the amplitude of the added function is zero.
The model shows the best fit if there is not added corrupted data to the velocity data
of the upper body. These results shows that the fits are not a result of good curve
fitting, but rather the result of a good model.

6.4 Kinematic Complexity

The double stance phase was not included in the model. However, the sum of the
measured left and right force during the short double stance phase do correspond
well with the calculated forces (Fig. 7(b)), which demonstrates that there is little
need for modeling this double stance phase.

Another major simplification of the model is that it was assumed that the center
of mass remains at a constant height during skating, which was based on de Boer [3].
However, in accelerometer data of the upper body it was found that at the end of the
stroke the upper body accelerates about 1.5 times gravity, which really influences
the forces in the model. Therefore it seems beneficial to include the vertical motion
of the body in the model.
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7 Conclusions

We have constructed a simple 2-dimensional model of speed skating that does a
reasonable job of imitating the forces and kinematics as observed in actual speed
skating. The model reproduces these forces and motions reasonably well, even if
we do not fit for that. The model is limited in accuracy due to the limited accuracy
of the LPM position measurement system. Adding the (small) vertical motion of the
upper body can increase the accuracy of the model.

The model seems promising for individual training advice. Coordination pat-
terns of individual skaters can be optimized by using the model if psychological
constraints of individual skater are added to the model. In Appendix 8.6 a detailed
description of the needed constraints on the model is given. The model can also be
used to give insight in the biomechanics of speed skating, like why speed skaters
steer back to their body at the end of the stroke. Finally the effect of anthropometric
differences between speed skaters can be determined.

Appendix

This appendix contains details on the modeling and the experimental validation and
comments and remarks for future use of the model for optimization of speed skater
performance.

8.1 Kinematic Transformation

This section describes the transformation of the equations of motion in terms of the
generalized coordinates.

We start with the differential algebraic (constraint) equations of motion (DAEs),
without the non-holonomic skate constraint, from (11), which can be written as,

[
M CT

C ∅
][

ẍ
λ

]
=

[
f

hc

]
, (17)

with the COM accelerations ẍ, the diagonal mass matrix M, the applied forces f at
the COM, the Jacobian C = ∂c/∂x of the constraint equations c(x) = 0, the convec-
tive terms hc = (∂(Cẋ)/∂x)ẋ, and the Lagrange multipliers λ, with respect to the
constraints c. The constrained equations of motion are,

Mẍ = f − CT λ. (18)

Next, we like to rewrite the equations in terms of the generalized coordinates q.
Therefore we introduce the coordinates of the COM x expressed in terms of the
generalized coordinates q,

x = T(q). (19)
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Differentiate this twice with respect to time,

ẋ = T,qq̇ and ẍ = T,qq̈ + h. (20)

The subscript comma followed by one or more variables denotes the partial deriva-
tives with respect to these variables, and with the convective terms h = (T,qq̇),qq̇.
Substitution of these accelerations in (18) and pre-multiplying with the transposed
Jacobian TT

,q gives,

TT
,qM(T,qq̈ + h) = TT

,q
(
f − CT λ

)
. (21)

Since the generalized coordinates fulfill the constraints, TT
,qCT is identical to zero,

that is the constraint forces λ drop out of the equations. The result is the equations
of motion expressed in terms of the generalized coordinates q,

T,qMTT
,qq̈ = TT

,q(f − Mh). (22)

Finally the skate constraint can be added to these equations of motion, which results
in the constraint equations of motion (14) and (15).

8.2 State Projection

After numerical integration of the equations of motion for one time increment,
the state variables in general do not fulfill the constraints. This can be solved
by formulating a minimization problem such that the distance from the predicted
solution q̃n+1 to the solution which is on the constraint surface qn+1 is mini-
mal: ‖q̃n+1 − qn+1‖2 = minqn+1 and where all qn+1 have to fulfill the constraints
c(qn+1) = 0. This non-linear constraint least-square problem is in general solved
with a Gauss-Newton method after every numerical integration step. However, here
we have to deal with non-holonomic constraints only, which are linear in the speeds
C(qn+1)q̇n+1 = 0. The optimization problem then reduces to a linear constraint
least-square problem which can be solved in one step.

8.3 Objective Function Jmin

The best agreement between simulation and measurements can be achieved if we
use accurate values for the air friction coefficient and the mass distribution. This
is solved by minimizing the error between the model and the measurements. The
objective function is defined by equation:

Ej = 1

N

N∑
i=1

(ỹi − yi)
2 (23)

where N the number of collected data points, yi the measured value of the variable
and ỹi the simulated value of the variable from the model. This is a constrained
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multivariable minimization problem: minx f (x) with the constraint: lb ≤ x ≤ ub in
which x are the air friction coefficient k1 and mass distribution constant α. The up-
per and lower limit of α are defined as 0 and 1 while the limits of k1 are defined as 0.1
and 0.3. With the optimization function fmincon of Matlab the optimal combination
of α and k1 are found. The optimization function uses an interior point algorithm
and starts at the initial guess of the minimum x0. For each measured variable the
optimal mechanical parameters can be fit.

Besides calculating the optimal values by minimizing one variable, the net error
is calculated including the error of the upper body position, velocities and local
normal forces (Ni ). The net error is calculated with:

Jmin =
∑M

j=1 wj

( 1
N

∑N
i=1

(ỹij −yij )2

ȳ2
j

)
∑M

j=1 wj ȳ
2
j

(24)

in which ỹij is the simulated value of a variable, yij the measured value of a variable,
wj is the weighting factor of a variable and ȳj is the characteristic value of the
variable. The peak to peak values of the x and y upper body positions, average
value of the body velocity in forward direction, peak to peak value of the velocity
in sideward direction and the local measured normal peak force are used as the
characteristic values of the parameters. Equal weights are used (wj = 1) for all j in
the error function.

8.4 Synchronization Method

The LPM position measurement system and the DAQ data acquisition unit are syn-
chronized with video frames from a high speed (300 Hz) digital photo camera.4

8.4.1 Synchronization LPM and Video

The LPM is synchronized by using an extra static transponder, which was placed in
line with the start line on the ice. During the synchronization test the line is filmed
with the high speed camera (300 Hz). The moment of crossing the start line can be
found in the LPM data and video.

8.4.2 DAQ and Video

In order to synchronize the DAQ and video frames a reset button with LED, which
lights up when pressed, is used. The reset button is connected with the DAQ. At the
start and the end of the measurement the subject has to push the reset button in view
of the high speed camera, such that the video frames at which the LED reset button
when pushed lights up can be easily determined.

4Casio Exilim EX-F1.
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8.5 Friction Estimation

In order to estimate the friction coefficients, the subjects got the following instruc-
tion: after skating two laps immediately stop skating and glide along the line of the
lanes in the same skating posture as you were skating before for 100 m.

In order to determine the coefficients of friction from the glide exercise, it is
assumed that the friction coefficients are constant during the glide.

From this estimation the conclusion is drawn that the speed should decreases
linearly. A first order polynomial is fitted through the velocity profile of the LPM
data of the COM of the skater during gliding.

ẏ(t) = −at + b. (25)

The gradient a of the line is the decelerations of the skater during gliding. The total
friction force Ffriction is the total mass m times the deceleration a of the skater during
gliding; Ffriction = ma. The air friction coefficient is assumed to behave like,

Fair = k1v
2 = βFfriction, (26)

with the velocity v of the center of mass of the skater, k1 the air drag factor and β the
friction distribution factor which is assumed to be 0.8. The ice friction is assumed
to behave like Coulomb friction as in

Fice = μmg = (1 − β)Ffriction, (27)

where μ is the Coulomb friction coefficient between the ice and the skate.

8.6 Optimization

For future application of the model where one wants to find coordination patterns
which result in optimal performance, additional constraints are required. The model
has to be constrained by the physiology of the skater during optimization of his
coordination pattern. The physiology constraints of a skater are given by: the leg
length, average power and maximal power of the speed skater.

8.6.1 Maximal Power Constraint

The maximal power during a single stroke must not exceed the maximal possible
power from a leg extension motion of a skater. The maximal power constraint value
could be based on either literature or experimentally determined. First, the maximal
power can be determined from the push-off force and velocity of leg extension in the
horizontal plane, since no work is done in the vertical plane. The maximal possible
power of single leg extension as a function of the leg extension velocity can be based
on force-velocity data extracted from leg press results of Vandervoort et al. [11]. The



20 A.L. Schwab et al.

Fig. 10 Force velocity
relation [1]

power is estimated by multiplying the force with the extension velocity of the leg [1]
(Fig. 10).

Secondly, the maximal power of a single leg extension could be experimentally
determined per subject. In power models the maximal and average power of an
athlete is measured with an ergometer test [6]. The measured ergometer power is
then multiplied by an experimentally determined constant to determine the power
during skating. However, the uncertainty on the constant is large so there is room
for a better method to determine subject individual skating power.

8.6.2 Average Power Constraint

The average power of a stroke must not exceed the available aerobic power of a leg
extension motion. The average power of a stroke can be calculated by:

Pavg = 1

tstroke

∫ tstroke

0
P dt (28)

in which tstroke is the stroke time and P is the available aerobic power for skating.
For this equation it is assumed that the skater is running at steady state speed, which
results in zero anaerobic power.

The average power exerted during skating can be either measured with oxygen
measurements during the speed skating measurements or calculated by Eq. (28).

8.6.3 Leg Power Calculation

For optimization the power exerted by the skater of stroke has to fulfill the con-
straints. The power of a stroke can be determined from the push-off force of the
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Fig. 11 Leg power in
horizontal plane

skate on the ice and the leg extension in the horizontal plane, since no work is done
in the vertical plane (Eq. (29)).

Pleg = FT ls v̇LS. (29)

An example of the leg power during a stroke can be seen in Fig. 11. At the
beginning of the stroke the leg power becomes negative, which is caused by the
negative direction of the lean angle. During the stroke the leg power increases to
approximately 500 W. At the end of the stroke the extension speed decreases and
the leg power becomes smaller.

8.7 Generalized Coordinates

The positions of the bodies (B,LS,RS) written in the generalized coordinates:
⎡
⎢⎢⎢⎢⎢⎢⎣

xB

yB

xLS

yLS

xRS

yRS

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

xB

yB

xB − cos(θLS)uLS − sin(θLS)vLS

yB + sin(θLS)uLS − cos(θLS)vLS

xB − cos(θRS)uRS − sin(θRS)vRS

yB − sin(θRS)uRS + cos(θRS)vRS

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

in which θi are the steer angles. These planar angular rotations can be calculated,
since the velocity data of the skate in plane (x, y) are obtained. The skate steer
angles are calculated by:

[
θLS

θRS

]
=

[− tan−1
( ẏLS

ẋLS

)

tan−1
( ẏRS

ẋRS

)
]

. (31)
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8.8 Convective Acceleration Terms

The convective acceleration terms of the leg extension constraints are:

hc1 = θ̈LS

(
vLS cos(θLS) − uLS sin(θLS)

)+ üLS cos(θLS) + v̈LS sin(θLS)

− θ̇LS

(
θ̇LS

(
uLS cos(θLS) + vLS sin(θLS)

)− v̇LS cos(θLS) + u̇LS sin(θLS)
)

+ θ̇LSv̇LS cos(θLS) − θ̇LSu̇LS sin(θLS) (32)

hc2 = v̈LS cos(θLS) − θ̈LS

(
uLS cos(θLS) + vLS sin(θLS)

)− üLS sin(θLS)

− θ̇LS

(
θ̇LS

(
vLS cos(θLS) − uLS sin(θLS)

)+ u̇LS cos(θLS) + v̇LS sin(θLS)
)

− θ̇LSu̇LS cos(θLS) − θ̇LSv̇LS sin(θLS) (33)

hc3 = üRS cos(θRS) − θ̈RS

(−vRS cos(θRS) + uRS sin(θRS)
)+ v̈RS sin(θRS)

− θ̇RS

(
θ̇RS

(
uRS cos(θRS) + vRS sin(θRS)

) − v̇RS cos(θRS) + u̇RS sin(θRS)
)

− θ̇RS−̇vRS cos(θRS) − θ̇RSu̇RS sin(θRS) (34)

hc4 = θ̇RS

(
θ̇RS

(−vRS cos(θRS) + uRS sin(θRS)
)− u̇RS cos(θRS) + v̇RS sin(θRS)

)

+ v̈RS cos(θRS) − üRS sin(θRS) − θ̈RS

(
uRS cos(θRS) + vRS sin(θRS)

)

− θ̇RSu̇RS cos(θRS) − θ̇RSv̇RS sin(θRS). (35)

The convective acceleration terms of the skate constraints are:

hc5 = θ̇LSu̇LS − v̈LS + θ̈LSuLS + θ̇LSẋB cos(θLS) − θ̇LS ẏB sin(θLS)

hc6 = θ̇RSu̇RS − v̈RS + θ̈RSuRS + θ̇RSẋB cos(θRS) + θ̇RSẏB sin(θRS).
(36)
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Contact Modelling in Multibody Systems
by Means of a Boundary Element Co-simulation
and a DIRICHLET-to-NEUMANN Algorithm

János Zierath and Christoph Woernle

Abstract The present contribution introduces the modelling of elastic contacts by
coupled multibody an boundary element systems. Compared to contacts modelled
by impact laws, physically more accurate results can be obtained. Due to the use
of boundary element systems, the contact stresses are obtained within the contact
calculation.

A new three-dimensional contact element for boundary element systems is devel-
oped. The mortar element uses the mixed formulation of boundary element formu-
lations. The algorithm for the iteration of contact states is based on an DIRICHLET-
to-NEUMANN algorithm. Herein, both contacting bodies are calculated serially. In
the first calculation step one of the contacting bodies represents a rigid obstacle for
the other elastic one. The resulting reaction forces on the elastic body are partially
transferred on the other one, which is for the second calculation step no longer rigid.
As a result, the obstacle is deformed and the next iteration starts. The algorithm con-
verges if the numerical equilibrium in the contact interface is reached.

1 Introduction

Simulation of elastic multibody systems based on a finite element analysis has be-
come usual in commercial multibody programs, such as MSC.Adams or SIMPACK.
To model contacts between elastic bodies, the classical impact laws used in rigid-
body dynamics, such as NEWTON’s kinematical approach or POISSON’s impact law
[29] based on integrated forces, are not suitable. Instead contact models derived
from the elastic body description have to be applied. Typically elastic body models
are formulated by means of a modal approach like the Craig-Bampton method [12].
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Fig. 1 Coupling of multibody system and boundary element models

Modal functions describe the elastic deformations by a superposition of global mode
shapes with static mode shapes or frequency response modes. However, the global
mode shapes are not able to describe the elastic deformations of the bodies in the
contact area. Consequently, the number of modes used for the contacting elastic
bodies has to be increased. Another method to describe elastic contacts is the cou-
pling between a finite element (FE) model and a multibody system (MBS), see [15].
As a FE body has typically a higher degree of freedom (DOF) than a complete MBS,
the coupling of FE models and MBS results in a large computational amount.

The aim of this chapter is to present a method to couple multibody systems with
boundary element systems for contact simulation as shown in Fig. 1. This approach
is seen as an alternative to model contact by coupled multibody/finite element sim-
ulations as presented by [2]. In this chapter three-dimensional problems are consid-
ered only. Due to the fact that three-dimensional contact algorithms for boundary
element systems are sparely described in literature, a new contact element based on
mortar methods has been developed, see [37].

This contribution is organised as follows. In Sect. 2 the fundamentals of multi-
body systems are introduced. The description restricts on differential algebraic equa-
tions. Based on the boundary integral formulation for elastostatics introduced in
Sect. 3, the DIRICHLET-to-NEUMANN algorithm for contact calculation in bound-
ary element systems is described in Sect. 4. This algorithm is based on mortar meth-
ods which are presented in Sect. 5. In Sect. 6 the numerical implementation of the
mortar methods is described. The contact stresses are obtained from the contact cal-
culation in boundary element systems. The calculation of the resulting contact force
from the stresses is described in Sect. 7. As an example the dynamic simulation of
two impacting spheres is presented in Sect. 8.
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Fig. 2 Kinematics of rigid
multibody systems

2 Fundamentals of Multibody Systems

In this section the theoretical background of multibody systems is shortly described.
Due to the fact that the contact acts as a force element inside the multibody envi-
ronment an introduction to constrained systems of rigid bodies is given only. The
equations of motion are formulated as differential-algebraic equations (DAE). This
formulation is typically used in commercial multibody simulation packages. A de-
tailed description of multibody system dynamics is given in [32] and [35].

The position of the ith body of a constrained multibody system is described by
a spatial vector r̂i consisting of the position vector ri from an inertial system K0 to
a body-fixed coordinate system Ki and mi ≥ 3 coordinates γi describing the spatial
orientation of Ki relative to K0 (Fig. 2),

r̂i =
[

ri

γi

]
. (1)

Examples for the definition of γi are EULER angles or EULER parameters (unit
quaternions). Accordingly, the absolute velocity of the ith body is described by the
velocity vi and the angular velocity ωi of Ki put together in the six-dimensional
spatial vector

v̂i =
[

vi

ωi

]
. (2)

To describe the position and velocity of the overall system with N bodies, the vec-
tors

r̂ =
⎡
⎢⎣

r̂1
...

r̂N

⎤
⎥⎦ , v̂ =

⎡
⎢⎣

v̂1
...

v̂N

⎤
⎥⎦ (3)

are introduced. The relation between the time derivatives of r̂i and v̂i is given by
kinematic differential equations of the form

˙̂ri = Ĥi (r̂i )v̂i , i = 1, . . . ,N

or
˙̂r = Ĥ(r̂)v̂, Ĥ = diag(Ĥ1 . . . ĤN).

(4)
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The constraints between the rigid bodies at the position, velocity, and accelera-
tion levels are formulated in the implicit form,

g(r̂, t) = 0, (5)

ġ ≡ G(r̂, t)v̂ + ¯̇g(r̂, t) = 0, (6)

g̈ ≡ G(r̂, t) ˙̂v + ¯̈g(r̂, v̂, t) = 0. (7)

The kinetic differential equations are derived from the principles of linear mo-
mentum and angular momentum. Using spatial force vectors f̂i containing a pair of
a force and a torque the kinetic equations of the ith body are

M̂i
˙̂vi = f̂ c

i + f̂ a
i + f̂ r

i + f̂ cc
i , i = 1, . . . ,N, (8)

with the symmetric, positive definite (6,6) mass matrix M̂i , gyroscopic and CORIO-
LIS forces f̂ c

i , applied forces f̂ a
i , and reaction forces (constraint forces) f̂ r

i . Addition-

ally, the vector f̂ cc
i is introduced to represent the contact forces. Inside the multibody

environment, the contact force is represented by an applied force. The overall kinetic
equations can be written as

M̂ ˙̂v = f̂ c + f̂ a + f̂ r + f̂ cc

with M̂ = diag(M̂1 . . .M̂N), f̂ c/a/r/cc =
⎡
⎢⎣

f̂ c/a/r/cc
1

...

f̂ c/a/r/cc
N

⎤
⎥⎦ . (9)

The reaction forces f̂ r
i have components in the constrained spatial directions only,

given by the row vectors of the constraint matrix G from (6). Accordingly, they can
be expressed by means of the explicit reaction force equations

f̂ r = GTλ (10)

with reaction force coordinates (LAGRANGIAN multipliers) λ. If the positions r̂ and
the velocities v̂, which have to be consistent with the constraints (5) and their first-
order time derivatives (6), are given, (9) with (10) and (7) together represent a set
of linear equations to determine uniquely the accelerations ˙̂v and the reaction force
coordinates λ,

[
M̂ GT

G 0

]
·
[ ˙̂v
−λ

]
=

[
f̂ c + f̂ a + f̂ cc

−¯̈g
]

. (11)

Numerical integration of the velocity v̂ obtained from the kinematic differen-
tial equation (4) and of the acceleration ˙̂v obtained from (11) yields the motion of
the system, described by the position r̂(t) and the velocity v̂(t). The reaction force
coordinates λ obtained from (11) yield the reaction forces f̂ r by means of the ex-
plicit reaction force equations (10). During numerical integration, the constraints at
the position and velocity levels may be violated necessitating a constraint stabilisa-
tion [4].
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3 Boundary Integral Formulation in Elastostatics

The boundary integral formulation starts from the partial differential equation rep-
resenting the quasistatic equilibrium inside the volume V ,

σij,j + bi = 0 in V for i = x, y, z. (12)

Herein the variable σij represents the stress tensor inside the volume V and bi the
body forces due to the acceleration of the body. In addition to the equilibrium inside
the volume V , the equilibrium conditions on the surface S,

ti = σijnj on S, (13)

have to be fulfilled. Herein ti is the stress vector, also called traction vector, repre-
senting the equilibrium on the surface S with the outward normal vector nj .

The surface is divided into regions with different types of boundary conditions.
There are regions on the surface S where the DIRICHLET boundary conditions

ui = ūi on Su (14)

have to be fulfilled, and regions with NEUMANN boundary conditions,

ti = t̄i on St . (15)

Due to the fact that each point on the surface S has three degrees of freedom, each di-
rection i = x, y, z has to be treated separately. Thus, the requirements Si = Sui ∪Sti

and Sui ∩ Sti = 0 have to be fulfilled for each coordinate direction i.
By using the weighted residual formulation

∫
V

(σij,j + bi)wi dṼ +
∫

Su

(ui − ūi )w̄i dS̃ +
∫

St

(ti − t̄i )w̃i dS̃ = 0 (16)

and introducing the fundamental solutions u∗
ij and t∗ij as weighting functions, the

SOMIGLIANA identity

ui(x) =
∫

S

u∗
ij (x,y)tj (y)dS̃ −

∫
S

t∗ij (x,y)uj (y)dS̃ +
∫

V

u∗
ij (x,y)bj (y)dṼ (17)

is obtained which is valid for an arbitrary load point x inside the volume V . The fun-
damental solutions for elastostatics have been developed by Lord KELVIN, see [33].
They represent the response of the system at any arbitrary field point y due to a unit
load at a chosen load point x. In this chapter, three-dimensional boundary element
formulations are treated only. Because each point has three degrees of freedom, the
coordinate direction has also to be considered. A volume integral with the specific
body forces bj is given on the left hand side of (17).

According to [1], the displacement fundamental solution, also called DIRICHLET

fundamental solution, at a field point y in direction j due to a unit load at a load point
x in direction i is given by

u∗
ij (x,y) = 1 + ν

8πE(1 − ν)r

[
(3 − 4ν)δij + r,i r,j

]
. (18)
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Herein, the variable E represents YOUNG’s modulus, ν POISSON’s ratio, and δij

the KRONECKER delta. The distance r between a load point x and a field point y is
given by the EUCLIDIAN norm

r = ‖y − x‖. (19)

The partial derivatives of the EUCLIDIAN distance r with respect to the coordinate
direction i can easily be obtained by

r,i = yi − xi

r
. (20)

The stress fundamental solution, also known as NEUMANN fundamental solu-
tion, at a field point y in direction j due to a unit load at a load point x in direction i

is given by

t∗ij (x,y) = − 1

8π(1 − ν)r2

[
∂r

∂n

[
(1 − 2ν)δij + 3r,i r,j

]− (1 − 2ν)(nir,i −nj r,j )

]
,

(21)

where ni represents the ith component of the outward normal vector n. Herein, the
derivative in normal direction is calculated by

∂r

∂n
= r,i ni . (22)

According to the third summand in (17), a remaining volume integral with the
specific body forces bj has to be taken into account. There are different procedures
to calculate body forces. A method is the discretisation of the volume by using cells,
see [1]. For a boundary element formulation this method is less appropriate because
an additional volume mesh has to be introduced. A proposal for the transformation
of the body forces from the volume V on the surface S was made in [13]. In the
present chapter, quasistatic body forces are taken into account only. By this, elastic
vibrations of the body are neglected.

Starting from SOMIGLIANA’s identity (17) for a load point x on the surface S,
the integral equation under consideration of the boundary factor cij is given by

cijuj (x) =
∫

S

u∗
ij (x,y)tj (y)dS̃ −

∫
S

t∗ij (x,y)uj (y)dS̃ + Bi(x). (23)

The boundary factor cij is a correction factor to consider load points on the surface S

of the volume V . Due to the introduction of surface elements, the surface integrals
in (23) are evaluated element-wise (summation over all elements e),

cij uj (x) =
∑

e

∫
Se

u∗
ij (x,y)tj (y)dS̃ −

∑
e

∫
Se

t∗ij (x,y)uj (y)dS̃ +
∑

e

Bie(x).

(24)

The continuous functions uj (y) for the displacements and tj (y) for the tractions
can be replaced by discrete nodal values which leads to

uj (y) = Nk

(
y(ξ, η)

)
ukj and tj (y) = Nk

(
y(ξ, η)

)
tkj . (25)
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Herein, ξ and η are the local element coordinates. The index k represents the kth
node of element e and j represents one of the coordinate directions x, y, or z.
Caused by the fact that the values ukj and tkj can belong to more than one element,
it is necessary to replace the summation over all elements e in (24) by an assembly,

cijNk

(
x(ξ, η)

)
ukj =

⋃
e

∫
Se

u∗
ij

(
x,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
x,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(x).

(26)

Within this chapter, collocation methods are applied to obtain a discretised system
of equations from (26). Assuming that the body is discretised by n nodes, the load
point x is set to the location of each node xl with l = 1, . . . , n. That means, instead
of the arbitrary load point x in (26), the nodal coordinates xl of the discretised
geometry are used as collocation points leading to

ciju1j =
⋃
e

∫
Se

u∗
ij

(
x1,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
x1,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(x1),

...

cij ulj =
⋃
e

∫
Se

u∗
ij

(
xl ,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
xl ,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(xl ),

...

cij unj =
⋃
e

∫
Se

u∗
ij

(
xn,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ tkj

−
⋃
e

∫
Se

t∗ij
(
xn,y(ξ, η)

)
Nk

(
y(ξ, η)

)
dS̃ ukj +

∑
e

Bie(xn).

(27)

The integrals from (27) can be evaluated with respect to the element surface Se. By
assembling (27) over all elements e, the system of equations(

C + H∗)u = Gt + B (28)

is obtained. Herein, the matrix C contains the boundary factors cij . According to
(27), this matrix is block diagonal. Due to the use of the fundamental solutions u∗

ij

and t∗ij , the matrices H∗ and G are fully populated, unsymmetrical and not necessar-
ily positive definite. The vector B contains the projected body forces. The system of
equations (28) can be written as

Hu = Gt + B (29)

which is the form known from literature [1, 5, 17].
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Fig. 3 Principle of DIRICHLET-to-NEUMANN algorithm

4 Contact Calculation by a DIRICHLET-to-NEUMANN

Algorithm

This contribution presents an extension to the LAGRANGIAN multiplier approach
introduced in [42]. The algorithm is introduced to reduce the amount of random
access memory and to decrease the calculation time for large systems. The algo-
rithm presented here is based on [25] and [38]. The principle of this DIRICHLET-
to-NEUMANN algorithm which is called a nonlinear GAUSS-SEIDEL block in [24]
is shown in Fig. 3.

The two contacting bodies are divided into a NEUMANN body and a DIRICHLET

body. In this chapter the mortar and non-mortar are equivalent to the NEUMANN and
DIRICHLET body, respectively. Within each iteration, a linear NEUMANN problem
and a nonlinear DIRICHLET problem is solved. Starting from (29), the system of
equations for the NEUMANN body can be expressed by

HN�uN(j) = GN�tN(j) + BN(j), (30)

where the index j represents the iteration step within the DIRICHLET-to-NEUMANN

algorithm and the upper right index N denotes the NEUMANN body. The system of
equations can be partitioned into degrees of freedom that are in contact and such
that are not,

[
HN

nc HN
cc

][�uN(j)
nc

�uN(j)
cc

]
= [

GN
nc GN

cc

][�tN(j)
nc

�tN(j)
cc

]
+ BN(j). (31)

Herein, the degrees of freedom which are not in contact are denoted by the lower
right indices nc and those which are in contact by cc, respectively. The body forces

BN(j) are typically applied within the first iteration, that means BN(j) != 0 for j > 1.
As indicated by the name of the algorithm, the tractions caused by the contact are
applied to the NEUMANN body, where for the first iteration step, thus j = 1, the
contact tractions �tN(1)

cc are assumed to be zero. Considering also the other boundary
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conditions in the non-contact area and sorting the system of equations (31) with
respect to known and unknown values leads to

[−GN
ncD HN

ncN HN
cc

]
⎡
⎢⎢⎣

�tN(j)
ncD

�uN(j)
ncN

�uN(j)
cc

⎤
⎥⎥⎦ = [−HN

ncD GN
ncN GN

cc

]
⎡
⎢⎢⎣

�uN(j)
ncD

�tN(j)
ncN

�tN(j)
cc

⎤
⎥⎥⎦+ BN(j).

(32)

Equation (32) represents a fully populated quadrangular system of equation of the
form ANxN = bN which can be solved by GAUSS or LU decomposition. The de-
formed mesh of the NEUMANN body is stored after each iteration and acts as rigid
obstacle for the DIRICHLET body. In order to obtain the overall deformations and
tractions the incremental deformations �uN(j) and tractions �tN(j) are summarised
over all iterations j . According to [25] a numerical damping parameter δD with
0 < δD ≤ 1 is introduced, resulting in

uN(j) = uN(j−1) + δD�uN(j) and tN(j) = tN(j−1) + δD�tN(j). (33)

The actual nodal coordinates of the NEUMANN body are obtained by

xN(j) = xN(j−1) + δD�uN(j). (34)

The second step within each iteration is the solution of a nonlinear DIRICHLET

problem. The formulation starts from the system of equations

HDuD(j) = GDtD(j) + BD, (35)

where the upper right index D denotes the DIRICHLET body and j the number
of iteration. Comparing (30) and (35) differences can be determined between the
systems of equations of the NEUMANN and the DIRICHLET body. The calculation
of the DIRICHLET body always starts from the reference configuration xD(1) within
each iteration step j , which means in general the undeformed configuration. Hence,
no incremental update has to be done for the displacements uD(j) and tD(j). The
body forces BD have to be applied within each iteration step or by superposition
once in a preprocessing step.

The system of equations (35) can be partitioned and sorted leading to

[−GD
ncD HD

ncN HD
cc −GD

cc

]

⎡
⎢⎢⎢⎢⎢⎣

tD(j)
ncD

uD(j)
ncN

uD(j)
cc

tD(j)
cc

⎤
⎥⎥⎥⎥⎥⎦

= [−HD
ncD GD

ncN

][uD(j)
ncD

tD(j)
ncN

]
+ BD,

(36)

which represents a system of linear equations of the form ADxD(j) = bD(j). Due
to the fact that within the potential contact area the displacements uD(j)

cc and the
tractions tD(j)

cc are unknown, the system of equations (36) is rectangular, that means
the number of equations is lower than the number of unknown nodal values. This
results in an infinite number of possible solutions.



34 J. Zierath and C. Woernle

To solve (36), a quadratic optimisation problem with equality and inequality con-
straints is formulated,

1

2
xD(j)TQD(j)xD(j) + xD(j)TpD(j) = min

xD(j)

subject to ADxD(j) = bD(j) and ND(j)xD(j) + dD(j)

0 ≥ 0. (37)

Herein QD(j) represents the objective function matrix containing the weighting fac-
tors of the nodal values xD(j), and pD(j) contains the coefficients of the linear part of
the quadratic objective function. Typically, QD(j) is a unit matrix, and the elements
of pD(j) are zero. If the objective function matrix QD(j) is equal to the identity ma-
trix, the result of such an optimisation is identical to the MOORE-PENROSE inverse
of the left-hand side matrix AD given in (36). As equality condition the system of
equations (36) is used. The inequality equations ND(j)xD(j) + dD(j)

0 ≥ 0 represent
the one-sided constraints which are built up with respect to the deformed surface of
the NEUMANN body representing the mortar side of the contacting bodies. The ma-
trix ND(j) containing the normal vectors and the vector dD(j)

0 containing the initial
gaps have to be built up within each iteration step j .

The theoretical background and computational implementation of the quadratic
programming is not explained here. A description and implementation on that topic
is given by [26].

If the optimisation is successful, the reaction forces in form of the tractions tD(j)
cc

are obtained. The sum of the tractions inside the contact area has to vanish,

tD(j)
cc + tN(j)

cc = 0. (38)

Because of the possibility of nonconforming meshes of the contacting bodies,
dynamic constraints based on a mortar method not explained so far are introduced.
This leads to a reformulation of (38),

MD(j)
t tD(j)

cc + MN(j)
t tN(j)

cc = 0, 0 ∈R
N, (39)

where the mortar matrices MD(j)
t and MN(j)

t have to be built up within each iter-
ation based on the actual geometry of the NEUMANN body as it will be shown in
Sect. 5. Due to the fact that mortar matrices are formed with respect to the degrees of
freedom in contact on the NEUMANN body representing the mortar side, the matrix
MN(j)

t is quadratic and has a full rank. Inversion of the matrix MN(j)
t in (39) leads

to

tN(j)
cc = −MN(j)−1

t MD(j)
t tD(j)

cc , (40)

which represents a mapping of the tractions in the contact area from the DIRICHLET

body to the NEUMANN body. Because the system of equations (30) is given in an
incremental form, the incremental tractions �tN(j)

cc are calculated by

�tN(j)
cc = δN

(
tN(j)
cc − tN(j−1)

cc
)
, (41)

where δN is an additional numerical damping parameter with 0 < δN ≤ 1. For further
information on building up mortar matrices see Sect. 5. A summary of the global
solution algorithm is given in Algorithm 1.



Contacts in MBS-BEM Co-simulation 35

input : A geometric set comprising elements and nodes,
System matrices HD, HN, GD, GN,
Boundary conditions �uN(j)

ncD , �tN(j)
ncN , uD(j)

ncD , tD(j)
ncN

output: Displacements (uD,uN) and tractions (tD, tN) caused by contact

1 for j = 1,2, . . . , until convergence do
2 do collision detection
3 → List of element pairs which are potentially in contact

4 Build-up of mortar matrices for tractions according to Sect. 5

5 → MD(j)
t , MN(j)

t

6 Transfer tractions: tN(j)
cc = −MN(j)−1

t MD(j)
t tD(j−1)

cc , (40)

7 Remark: tD(j−1)
cc = 0 for j = 1

8 Solve linear NEUMANN problem: HN�uN(j) = GN�tN(j) + BN(j), (30)

9 Update geometry of NEUMANN body: xN(j) = xN(j−1) + δD�uN(j), (34)

10 Project nodes from DIRICHLET body on actual geometry of the
NEUMANN body

11 → normal vector matrix ND(j), initial gap vector dD(j)

12 Solve nonlinear DIRICHLET problem:
1
2 xD(j)TQD(j)xD(j) + xD(j)TpD(j) → MIN

13 subject to: ADxD(j) = bD(j) and ND(j)xD(j) + dD(j) ≥ 0, (37)

14 → contact tractions tD(j)
cc

15 Check for convergence: ‖tN(j)
cc − tN(j−1)

cc ‖ ≤ TOL → exit loop
16 end

Algorithm 1: DIRICHLET-to-NEUMANN algorithm

Note that if the damping parameters δD in (36) and δN in (41) are equal to 1, no
convergence will be achieved. In [25] it is suggested to choose 0.7 for δD and δN.
A value of 1.0 for the parameter δD and a value of 0.5 for the parameter δN for the
algorithm described above is recommended. Due to the fact that the surface tractions
are calculated, fast convergence is achieved if the half of the tractions are transferred
from the DIRICHLET body to the NEUMANN body.

5 Build-up of Mortar Matrices

In this section the theoretical background of the mortar methods for contact and the
numerical implementation to create the mortar matrices Mt and Mu from (39) are
described. The aim of the mortar methods is to find a mapping matrix between the
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degrees of freedom of the contacting bodies. The basic concept presented here was
published by [30] for finite elements. It is here adapted for boundary elements. Sim-
ilar to Fig. 3, the contacting bodies are divided into a mortar and non-mortar body,
denoted by the indices m and nm, respectively, that are equivalent to the NEUMANN

body and the DIRICHLET body, respectively.
As mentioned before, mortar contact belongs to the group of contacts which is

based on LAGRANGIAN multipliers. The unilateral constraint for contact formula-
tion can be defined using the KUHN-TUCKER-KARUSH conditions,

1-dimensional d ≥ 0 λ ≤ 0 λd = 0,

2- or 3-dimensional d ≥ 0 λ ≤ 0 λTd = 0.
(42)

The first line of (42) presents the constraints for one-dimensional problems. As the
gap cannot be negative, d ≥ 0, and only pressure forces can be transferred, λ ≤ 0,
the product of the gap d and the LAGRANGIAN multiplier λ always vanishes.

For two- and three-dimensional problems typically a distinction has to be made
between normal and tangential contact. For normal contact, the same constraints
as for one-dimensional contact can be used where vectors of the gap d and of the
LAGRANGIAN multiplier λ have to be projected in normal direction. Stiction and
sliding may occur in tangential direction. In case of sliding, the tangential forces act
as applied forces in opposite directions of the relative motion so that force laws such
as COULOMB’s law can be applied. In case of stiction, no motion in tangential di-
rection occurs. In that case, the tangential contact can also be treated as a constraint
and the resulting tangential tractions have to be treated as reaction stresses. Hence,
the normal and tangential contact can be summarised according to the second line
of (42).

The starting point for building up three-dimensional mortar matrices is the weak
form of the KUHN-TUCKER-KARUSH condition,

ΠLM
c =

∫
Scc

λTd dS. (43)

Due to the weak form, the constraints are fulfilled in an integral meaning over the
potential contact area Scc only. The variation of the weak form from (43) leads to

δΠLM
c ≡ CLM

c =
∫

Scc

δλTd dS +
∫

Scc

λTδd dS = 0. (44)

The first integral in (44) represents the fulfilment of the gap function d choosing
an arbitrary LAGRANGIAN multiplier vector λ. The second integral represents the
fulfilment of the reaction forces for an arbitrary chosen gap function d. In case of
contact the gap between the two contacting bodies is closed, and the gap function d
can be replaced by the displacements of the mortar body mum and of the non-mortar
body munm, and the initial gap mdm

0 ,

CLM
c =

∫
Scc

δλT(munm − mum − mdm
0

)
dS +

∫
Scc

(
mtnm + mtm

)
δdT dS = 0. (45)

The upper left index m denotes that the displacement vectors are expressed with re-
spect to the body-fixed mortar reference frame Km. Additionally, the LAGRANGIAN
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multiplier λ in the second integral can be replaced by the sum of the tractions of the
mortar body mtm and of the non-mortar body mtnm. Hence, the equilibrium in the
contact area is fulfilled by an integral meaning only.

The LAGRANGIAN multipliers λ and their variations δλ can be discretised in the
same way as it was done for displacements and tractions. This leads to

λ(ξ, η) =
∑

i

Mλ
i (ξ, η)λi , δλ(ξ, η) =

∑
i

Mλ
i (ξ, η)δλi , (46)

where Mλ
i (ξ, η) represents the general shape functions over one element e and λi

and δλi the corresponding nodal values. The same procedure can be applied to the
gap function d and the corresponding variation δd,

d(ξ, η) =
∑

i

Md
i (ξ, η)di , δd(ξ, η) =

∑
i

Md
i (ξ, η)δdi . (47)

Inserting (46) and (47) into (45) leads to the constraint equations for one pair of
contact elements,

CLM
ec =

∑
i

δλT
i

∫
Secc

(∑
j

Mλ
i (ξnm,ηnm)Nj (ξnm,ηnm)munm

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mum

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mdm

0j

)
dS

+
∑

i

δdT
i

∫
Secc

(∑
j

Md
i (ξnm,ηnm)Nj (ξnm,ηnm)mtnm

j

+
∑
j

Md
i (ξm,ηm)Nj (ξm,ηm)mtmj

)
dS = 0. (48)

The nodal values munm
j and mtnm

j for the degrees of freedom on the non-mortar side
are given with respect to the body-fixed reference frame Km, see (48). Typically the
system matrices Hnm and Gnm are calculated with respect to the body-fixed refer-
ence frame Knm. The corresponding displacements and tractions are also given with
respect to Knm. An additional transformation for the current orientation between Km

and Knm is introduced so that

munm
i = mnmT nmunm

i and mtnm
i = mnmT nmtnm

i , (49)

where mnmT is the transformation matrix between body-fixed reference frames on
mortar body m and the non-mortar body nm. If (48) vanishes, the constraints for
displacements and tractions are fulfilled. Considering (49) and using the fact that
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(48) vanishes for arbitrary variations of the LAGRANGIAN multipliers δλ and gap
functions δd, the contact constraints for one pair of contact elements become

∫
Secc

(∑
j

Mλ
i (ξnm,ηnm)Nj (ξnm,ηnm)mnmTnmunm

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mum

j

−
∑
j

Mλ
i (ξm,ηm)Nj (ξm,ηm)mdm

0j

)
dS = 0,

∫
Secc

(∑
j

Md
i (ξnm,ηnm)Nj (ξnm,ηnm)mnmTnmtnm

j

+
∑
j

Md
i (ξm,ηm)Nj (ξm,ηm)mtmj

)
dS = 0.

(50)

For a pair of bilinear elements, the first equation of (50) results for the displacements
on the non-mortar side to the matrix

Mnme
u =

⎡
⎢⎣

∫
Secc Mλ

1 N1 dSmnmT
∫
Secc Mλ

1 N2 dSmnmT
∫
Secc Mλ

1 N3 dSmnmT
∫
Secc Mλ

1 N4 dSmnmT
∫
Secc Mλ

2 N1 dSmnmT
∫
Secc Mλ

2 N2 dSmnmT
∫
Secc Mλ

2 N3 dSmnmT
∫
Secc Mλ

2 N4 dSmnmT
∫
Secc Mλ

3 N1 dSmnmT
∫
Secc Mλ

3 N2 dSmnmT
∫
Secc Mλ

3 N3 dSmnmT
∫
Secc Mλ

3 N4 dSmnmT
∫
Secc Mλ

4 N1 dSmnmT
∫
Secc Mλ

4 N2 dSmnmT
∫
Secc Mλ

4 N3 dSmnmT
∫
Secc Mλ

4 N4 dSmnmT

⎤
⎥⎦

(51)

and for the displacements on the mortar side to the matrix

Mme
u =

⎡
⎢⎣

∫
Secc Mλ

1 N1 dSE
∫
Secc Mλ

1 N2 dSE
∫
Secc Mλ

1 N3 dSE
∫
Secc Mλ

1 N4 dSE
∫
Secc Mλ

2 N1 dSE
∫
Secc Mλ

2 N2 dSE
∫
Secc Mλ

2 N3 dSE
∫
Secc Mλ

2 N4 dSE
∫
Secc Mλ

3 N1 dSE
∫
Secc Mλ

3 N2 dSE
∫
Secc Mλ

3 N3 dSE
∫
Secc Mλ

3 N4 dSE
∫
Secc Mλ

4 N1 dSE
∫
Secc Mλ

4 N2 dSE
∫
Secc Mλ

4 N3 dSE
∫
Secc Mλ

4 N4 dSE

⎤
⎥⎦ (52)

with the 3 × 3 identity matrix E. The compatibility matrices for the tractions Mme
t

and Mnme
t are created with the same procedure. Assembling the matrices of all

element pairs which are possibly in contact leads to

Mm
u =

⋃
e

Mme
u , Mnm

u =
⋃
e

Mnme
u ,

Mm
t =

⋃
e

Mme
t , Mnm

t =
⋃
e

Mnme
t .

(53)

Concluding some remarks on the shape functions Mi(ξ, η) used for the inter-
polation of the gap d and the LAGRANGIAN multipliers λ are given. According
to [18, 37, 39], the shape functions Mλ

i for the interpolation of the LAGRANGIAN

multipliers λ in (46) and Md
i for the interpolation of gap d according to (47) have

to fulfil the BABUŠKA-BREZZI or inf -sup condition. A detailed description on that
topic is provided by [9]. This condition ensures a unique solution and the maximum
rank of the mortar matrices Mnm

u and Mm
t . To realise this condition, the function



Contacts in MBS-BEM Co-simulation 39

Fig. 4 Approximation of the LAGRANGIAN multiplier λ and the gap function d within the contact
area. a Without boundary conditions. b With DIRICHLET boundary conditions

space of the shape functions Mλ
i and Md

i has to be sufficiently rich. Many research
work has been done to obtain an optimal set of shape functions used for interpola-
tion of LAGRANGIAN multipliers for domain decomposition within finite element
calculations, see [36]. A dual LAGRANGIAN multiplier formulation was proposed
by [36] which leads to diagonal mortar matrices. In the present work the original
approach as described by [6] is implemented. The same interpolation functions are
used for the approximation of the LAGRANGIAN multiplier λ and the gap func-
tion d within the contact area as used for the interpolation of the displacements u
and the tractions t. The use of that shape functions typically ensures the fulfilment
of the BABUŠKA-BREZZI conditions. For two-dimensional contact problems, the
interpolation functions are schematically shown in Fig. 4.

For the interpolation of the LAGRANGIAN multipliers λ the mesh on the non-
mortar side is used, where for the interpolation of the gap function d the mesh on
the mortar side is used, as presented by Mλ

i and Md
i in Fig. 4. Due to that formula-

tion, a construction of an intermediate mesh as described by [34] is not necessary.
Nevertheless to obtain mortar matrices with a maximum rank, the shape functions
have to fulfil the BABUŠKA-BREZZI condition, which leads according to [34] to the
simple requirement

min
(
Nm,Nnm

) ≤ Nλ,Nd ≤ max
(
Nm,Nnm

)
, (54)

where Nm and Nnm represent the number of contact nodes of the mortar and non-
mortar body, respectively. The corresponding numbers of nodes for the interpolation
of the LAGRANGIAN multiplier and the gap function d are given by Nλ and Nd . Due
to the facts that the LAGRANGIAN multipliers are approximated using the potential
contacting elements on the non-mortar side and the gap function is approximated
using contacting elements on the mortar side, the requirement (54) is always ful-
filled if no boundary conditions are applied at the boundary of the contact area. If
DIRICHLET boundary conditions at the boundary of the contact area are applied,
the shape functions Mλ

i and Md
i at the boundary have to be modified, see Fig. 4b.

According to [18, 34], the shape functions are kept constant to ensure the maximum
rank of Mnm

u and Mm
t .
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Fig. 5 Introduction of a mortar layer

6 Numerical Implementation of Mortar Matrices

First, a mortar layer is introduced between the mortar and non-mortar side, see
Fig. 5.

The mortar layer can either be located as an intermediate surface between the
mortar and the non-mortar surface as presented by [27, 28, 31], or one of the con-
tacting surfaces can be chosen as shown in [25, 36]. According to [30], the numerical
integration scheme is shown in Fig. 6 and in Algorithm 2.

First, the element facets are projected onto the common mortar layer, see Fig. 6a.
Therefore, only the corner nodes are taken into account. For bilinear elements, this
consideration is sufficient because two-dimensional bilinear elements consist of four
nodes only, but in case of biquadratic elements where the edges could be curved
errors may occur. For simplification and an easier handle of the projected elements,
this error is neglected. This approach is valid if the differences between the geometry
of the biquadratic element and the corresponding 4-node element facet are not too
large.

In a second step, the common area due to the overlap of the projected elements
is determined, see Fig. 6b. Therefore, a modified version of the SUTHERLAND-
HODGMAN polygon clipping algorithm is used as presented in [16]. The algorithm
described in [16] is valid for an axis parallel clipping only. The algorithm mod-
ifications presented here are valid for clipping with arbitrary 4-point polygons as
presented in Fig. 7a.

The principle of the algorithm is to clip the parts outside of one polygon with re-
spect to another one. This is done by dividing one of the elements into four clipping
edges represented by the four projected edges of the element facet. According to
Fig. 7a, the element 1234 is chosen to be the clipping element. The element 1′2′3′4′
is clipped with respect to the element 1234. Therefore, a flow direction according to
the arrow in Fig. 7a is chosen. In case of the chosen direction the area of the element
1′2′3′4′ located on the right side of the clipping edges is cut off, because they are
outside the element 1234. To create new corner points of the overlap polygon, the
edges of the element 1′2′3′4′ are cut off with respect to the clipping edges.

A calculation whether one point is lying inside or outside with respect to the
clipping edge is necessary. According to Fig. 7b, this is done by a perpendicular
projection of the point with respect to the clipping edge. The distance vector r12
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Fig. 6 Integration scheme for 3D mortar elements. a Projections of the element facets onto the
mortar layer. b Common area of the projected facets. c Centre of area S. d Division of the polygon
into triangles. e Locating GAUSS-RADAU integration points on the triangles

of the two points of the clipping edge and the corresponding normal vector n12 are
given by

r12 =
[
x2 − x1
y2 − y1

]
and n12 =

[
y2 − y1
x1 − x2

]
. (55)

The resulting clipping test is given by

nT
12

[
xP − x1
yP − y1

]{
> 0 → outside
≤ 0 → inside.

(56)

The other parts of the algorithm remain unchanged, compare to [16]. Thereafter
the centre of the area S of the resulting polygon, see Fig. 6c, is calculated by the
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input : List of element pairs Elp(i), which is possibly in contact
output: Mortar matrices Mnm

u , Mm
u , Mnm

t , Mm
t

1 forall the element pairs Elp(i) do

1. projection of the element facets on a common mortar layer,
see Fig. 6a

2. use clipping algorithm to form polygon of the overlap
of the projected element facets, see Fig. 6b

3. locate geometric centre of the polygon, see Fig. 6c
4. divide polygon into nt triangles, see Fig. 6d

forall the nt triangles do

• locate GAUSS-RADAU integration points on the triangle,
see Fig. 6e

• project GAUSS integration points on the mortar and
non-mortar element to obtain ξm, ηm and ξnm, ηnm

• compute integrals over triangles, see (57)
• sum integral contributions, (58), to obtain

Mnme
u , Mme

u , Mnme
t , Mme

t according to (51)

end
2 end

3 assemble the element matrices according to (53)

Algorithm 2: Build-up of mortar matrices

Fig. 7 Scheme of clipping algorithm. a Clipping with 4-point polygons. b Projection of an edge
point P onto the normal of the clipping edge

arithmetic middle of the corner coordinates of the polygon. This results in a division
of the polygon into triangles according to Fig. 6d. In the next step the GAUSS-
RADAU integration points can be determined for each of the triangles according to
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Fig. 8 GAUSS-RADAU

integration points for
triangles

[11, 14]. In [30] a thirteen point GAUSS-RADAU rule is recommended, see Fig. 8,
to overcome the problem that warped meshes can not be integrated exactly.

In contrast to typical numerical integration, not the local but the absolute coordi-
nates are necessary. These coordinates are projected back on the mortar and the non-
mortar elements, respectively. As a result, the local coordinates ξm,ηm and ξnm,ηnm

will be obtained. The integrals over one triangle from (51) can be expressed by

∫
Set

Mi(ξk, ηk)Nj (ξk, ηk)dS =
ng∑
l=1

Mi(ξkl, ηkl)Nj (ξkl, ηkl)Wl, (57)

where Set is the surface of a triangle t of the element e while k represents the
projection on the mortar m and non-mortar side nm, respectively. The variable ng

represents the number of integration points and Wl the corresponding weighting
factors. The integral over the element surface Secc can be evaluated by

∫
Secc

Mi(ξk, ηk)Nj (ξk, ηk)dS =
nt∑

t=1

∫
Set

Mi(ξk, ηk)Nj (ξk, ηk)dS, (58)

which represents the sum over all triangles. Finally, the integrals can be assembled
according to (53).

7 From Contact Tractions to Applied Forces

If the contact calculation inside the boundary element environment has converged,
the tractions and displacements within the contact area are given. However, within
the multibody environment only forces and torques can be treated. Therefore, the
contact tractions tj have to be integrated with respect to the contact area to form the
resulting wrench, consisting of the force f cc

T and torque f cc
R , see Fig. 9.

According to Fig. 9, the contact tractions have to be integrated for each contact-
ing body with respect to the body-fixed reference frame Ki . The upper right index i

denotes the mortar body m and non-mortar body nm, respectively. The body-fixed
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Fig. 9 From contact tractions
to resulting wrench

reference frame Ki within the boundary element system is equal to the force ap-
plication point within the multibody system. The resulting contact force f cc

T can be
calculated by

f cc
T =

nc∑
e

[∑
k

∫
Se

Nktk dS̃

]
, (59)

where ti represents the surface traction vector of the ith node, Ni the corresponding
shape functions, and Se the element surface. The integral in (59) has to be evaluated
over all nc contacting elements. The resulting contact torque f cc

R built up by the
tractions ti can be calculated by

f cc
R =

nc∑
e

[∑
k

∑
l

∫
Se

x̃klNltl dS̃

]
, (60)

where x̃kl are the components of the skew symmetric matrix representing the loca-
tion of a point on the surface Se with respect to the body-fixed reference frame Ki .
The integrals can be evaluated using standard GAUSS integration. The overall con-
tact wrench f̂ cc from (11) is obtained by assembling the calculated contact force f cc

T

and torque f cc
R .

8 Dynamic Simulation of Two Contacting Spheres

To test the functionality of the algorithm, a simple multibody model is considered.
A schematic representation of the dynamic model is given in Fig. 10a.

The one-dimensional model consists of two identical spheres, where the lower
sphere is fixed at its lower side. The upper sphere is suspended at its upper side by
a spring-damper element in vertical direction. The properties of the spring-damper
element are defined by the stiffness coefficient kspring and the damping coefficient
bdamper. Because of the gravity ggrav, the upper sphere moves downwards until the
initial gap d0 is closed. Then elastic contact between both spheres based on the
elastic behaviour of both curves occurs. The multibody model consists of two rigid
spheres, see Fig. 10b. The multibody data of the spheres such as mass are calcu-
lated by the density ρ and the diameter dsph. The calculation of the contact forces
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Fig. 10 Model for dynamic
simulation of two spheres.
a Schematic representation.
b Multibody model

Table 1 Properties of the
dynamic model Property Value

YOUNG’s modulus E 210,000 MPa

POISSON’s ratio ν 0.3

density ρ 7,850.0
kg

m3

diameter dsph 1 m

initial gap d0 0.2 m

gravity ggrav 9.81
m

s2

stiffness coefficient kspring 40,000
N

m

damping coefficient bdamper 110
N s

m

depends mainly on the motion of the reference frames of the spheres, which are
located at the centres of the spheres. The data of the model are summarised in Ta-
ble 1.

For comparison, a reference model with existing force elements of the multibody
program SIMPACK™ was created. Here, the force element containing the devel-
oped BEM contact model is replaced by a HERTZIAN pressure element. Here, the
bodies remain undeformed and body forces are also not considered in the refer-
ence model. The transition between no contact and contact is realised by an event
function. The event function depends on the relative position and on the geometry
of the contacting bodies. If the gap between the spheres is closed, the integrator is
stopped and restarted with new initial conditions. The Sodarst2 integrator from the
multibody program SIMPACK™ is chosen. This integrator is based on an implicit
formulation with automatic step size calculation.

The co-simulation is done by the use of the explicit EULER integrator. The con-
stant step size is equal to 0.0002 s. This step size is chosen to overcome the impact
problem of both spheres. The simulation time is 1 s. In contrast to the reference
model, the body forces are considered. The contact gap of both simulations is shown
in Fig. 11.
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Fig. 11 Contact gap vs. time for BEM co-simulation and HERTZIAN pressure element

Fig. 12 Contact velocity vs. time for BEM co-simulation and HERTZIAN pressure element

The two curves agree well. Only small differences can be denoted at the end of
the simulation time. The corresponding relative contact velocity of the upper contact
point with respect to the lower contact point is shown in Fig. 12.

Herein also small differences between the two curves can be noticed at the end
of the simulation time. The contact forces of both simulations are shown in Fig. 13.

The peaks of the two contact force curves differ from each other. The first peak of
the HERTZIAN reference model reaches a value of −244.942 kN. The correspond-
ing contact force value of the BEM co-simulation is obtained with −276.003 kN,
which means a difference of −12.68 % compared to the reference model. Higher
pressure force are to be expected due to the consideration of body forces. Additional
differences occur due to the integrators chosen. These differences can be seen at the
second peak of both curves. The contact force values are obtained as −223.215 kN
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Fig. 13 Contact force vs. time. a BEM co-simulation. b HERTZIAN pressure element

and −285.308 kN for the reference model and the BEM co-simulation, respectively.
The second peak of the reference model is lower than the first one because of the
modelled damping ddamper. Additional damping occurs due to the implicit integra-
tor. In contrast the second peak of the co-simulation is higher. This results from
the explicit EULER integrator which leads to an excitation of the numerical solu-
tion.

9 Conclusions and Outlook

The present chapter introduces the modelling of elastic contacts by coupled multi-
body and boundary element systems. Compared to contacts modelled by impact
laws, physically more accurate results can be obtained. Due to the use of boundary
element systems, the contact stresses are obtained within the contact calculation.
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The contact formulation is based on mortar methods, which enables the contact
calculation of non-conforming meshes. A new three-dimensional contact element
for boundary element systems is developed. The mortar element uses the mixed
formulation of boundary element formulations. Constraints in a weak form are de-
fined for the displacements in the contact interface. This principle is also known
from mortar formulations of finite elements. Additionally, a weak equilibrium is in-
troduced for the tractions in the contact interface. The algorithm for the iteration
of contact states is based on a DIRICHLET-to-NEUMANN algorithm. Herein, both
contacting bodies are calculated serially. In the first calculation step, one of the
contacting bodies represents a rigid obstacle for the other elastic one. The resulting
reaction forces on the elastic body are partially transferred on the other one, which is
for the second calculation step no longer rigid. As a result the obstacle is deformed
and the next iteration starts. The algorithm converges if the numerical equilibrium
in the contact interface is reached.

The incorporation of the multibody and boundary element program is realised
by interprocess communication. Further details are described in [41]. The multi-
body program stops during the calculation of the contact forces by the boundary
element program. Unix domain sockets are used for communication of both pro-
grams. This coupling scheme is applied because both programs works under the
same operating system on the same computer. The applied communication proto-
col can easily be extended to network sockets. In contrast to Unix domain sockets,
network sockets allow both programs working on different computers. This prop-
erty is very important for the developed BEM co-simulation because the boundary
element program needs more computational resources than the multibody program.
The position data provided by the multibody program are used by the boundary ele-
ment program to calculate the displacements and tractions on the contacting bodies.
The resulting contact tractions are summarised to a contact wrench by numerical
integration.

Altogether the MBS-BEM co-simulation is an appropriate way for contact cal-
culation in multibody systems. The main advantage is that contact stresses are ob-
tained within the dynamic calculation. These data can be used for strength, fatigue
and durability analyses. Despite to the fact that the calculation of complex models
needs a large calculation time the coupled simulation of multibody and boundary
element systems offers various applications.

As an application for the BEM contact algorithm, the femoral-patellar joint with
sliding contact between a human patella and a femur bone is under investigation.
First tests show a good convergence of the BEM contact algorithm, see Fig. 14.

A future task should be the speed-up of the co-simulation. The main advan-
tage of the developed BEM contact algorithm is the possibility to integrate fast
boundary element methods, because the two contacting bodies are treated sepa-
rately. Fast boundary methods are developed to overcome large calculation times
caused by fully populated system matrices. The panel clustering method described
in [19] approximates the matrix-vector multiplication so that instead of a system
matrix A of the size n × n only two vectors of the size n are calculated. Thus,
the memory requirements are strongly reduced. The build-up of a binary tree or
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Fig. 14 Simulation of a patellar joint (in cooperation with Department of Orthopaedics, University
Medicine, Rostock)

octree for the boundary elements is necessary, so that the collision detection al-
gorithms described in [40, 41] can be used. The panel clustering method is ex-
tended to three-dimensional elastostatics in [20, 21] where the integral free term cij

from (23) is assumed to be equal to 1
2δij . From theoretical background this is valid

for flat surfaces only, which is not typical for physical shapes in mechanical engi-
neering. Therefore, these algorithms have to be checked carefully. Panel clustering
uses hierarchical matrices which are explained in detail by [7]. First implementa-
tions of the panel clustering method for temperature distribution problems is shown
in [22].

In the present contribution, quasistatic boundary element formulations are con-
sidered only. To take local vibrations and wave propagation of the elastic bodies
into account dynamic co-simulation is recommended. A possible implementation is
the dual reciprocity method described in [8]. The result of that method are dynamic
system matrices, whereby also a system matrix in analogy to the mass matrix of fi-
nite element systems is obtained. The coupling of multibody and boundary element
systems based on dual reciprocity methods to model flexible bodies is described
by [3].

The integration of dynamic boundary element formulations leads to better results
for elastic impact problems because the energy loss due to wave propagation is taken
into account. The system matrices for that formulation are fully populated and not
necessarily positive definite so that complex eigenfrequencies are obtained. To over-
come these problem internal nodes are included to represent the mass distribution.
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In [23] it is shown that lower eigenfrequencies become real if a sufficient number
of internal nodes is used. For dynamic co-simulation a separate integrator has to be
implemented within the boundary element formulation. In addition other coupling
schemes have to be implemented because the two simulations have to be synchro-
nised. Special coupling schemes for co-simulation of multibody and finite element
systems are described in [10] which are also applicable for the co-simulation of
multibody and boundary element systems.

Acknowledgements Thanks to Prof. Klaus Schittkowski from the University of Bayreuth for
providing the source code of quadratic programming.
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Trajectory Control of Serial and Parallel
Flexible Manipulators Using Model Inversion

Robert Seifried, Markus Burkhardt, and Alexander Held

Abstract Traditional manipulator designs are based on maximized stiffness to sup-
press undesired elastic vibrations. This results in high accuracy in end-effector tra-
jectory tracking, while it usually includes a drastic mass increase, a poor weight-
to-payload ratio and high energy consumption. In contrast, modern light weight
designs result in low energy consumption and allow often high working speeds.
However, due to the light weight design the bodies have a significant flexibility
which yields undesired vibrations. Therefore, in the control design these flexibili-
ties must be taken into account. In this chapter feedforward control designs based
on inverse models are presented and applied to serial and parallel flexible manip-
ulators. Thereby, for a given system output the inverse model provides the control
input for exact reproduction of the desired output trajectory and the trajectories of
the generalized coordinates.

1 Introduction

In order to achieve in modern machines low energy consumption and allowing high
working speeds light weight designs are increasingly often used. However, due to
the light weight design the bodies of the manipulators have a significant flexibility
which yields undesired vibrations. Therefore, the manipulators must be modeled
as flexible multibody system and in the control design these flexibilities must be
taken into account. Flexible manipulators are typical examples of underactuated
multibody systems, since they generally possess less control inputs than degrees of
freedom. In order to obtain a good performance in end-effector trajectory tracking
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an accurate and efficient feedforward control is necessary. This is then supplemented
by additional feedback control to account for small disturbances and uncertainties.
In this chapter the feedforward control design based on inverse models is presented
and applied to serial and parallel flexible manipulators. Thereby for a given system
output the inverse model provides the control input for exact reproduction of the
desired output trajectory. In addition the inverse model provides the trajectories for
all generalized coordinates, which can be used in additional feedback control.

In this chapter, firstly, an exact inverse model using concepts from differential ge-
ometric control theory [8, 12] is presented and applied to serial and parallel flexible
manipulators. The starting point is the explicit symbolic transformation of the equa-
tions of motion into the nonlinear input-output normal-form. From this the inverse
model is derived, consisting of a chain of differentiators, the driven internal dynam-
ics and an algebraic part. The stability properties of the internal dynamics determine
the complexity of the feedforward control design. If the internal dynamics are stable
they can be solved by forward time integration. Otherwise, bounded solutions for
the internal dynamics must be found by the solution of a two-sided boundary value
problem [4, 17]. In order to avoid this, optimization based output relocation is pro-
posed to obtain a system with stable internal dynamics, while keeping the tracking
error of the flexible manipulator small.

In addition an alternative approach for feedforward control based on servo-
constraints is presented. This yields at first a set of differential-algebraic equations.
By using numerical projection into the unconstrained subspace the description of
the internal dynamics is obtained, while its differentiation index is reduced. Using
the methods available for the first approach, the internal dynamics are then solved
in a similar way. This feedforward control concept is applied to a parallel flexible
manipulator, where the loop closing constraints and servo-constraints are treated
concurrently.

2 Feedforward Control Design by Symbolic Coordinate
Transformation

For modeling flexible light weight manipulators the method of flexible multibody
systems is often most suitable to represent large nonlinear working motions coupled
with elastic vibrations. Since for manipulators the elastic deformations are com-
paratively small, the floating frame of reference approach can be used [16]. The
symbolic multibody system research software Neweul-M2 [9] is used to derive the
equations of motion in minimal coordinates based on the Newton-Euler equations
and D’Alembert’s principle. The availability of the symbolic equations of motion is
very convenient for nonlinear controller design.

With the vector of generalized coordinates q ∈ R
f the equations of motion in

minimal coordinates are obtained as

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u. (1)
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Thereby M is the mass matrix, k the vector of generalized Coriolis-, centrifugal-
and gyroscopic-forces and g the vector of applied forces and inner forces due to the
body elasticity. The input matrix B distributes the control inputs u ∈ R

m onto the
directions of the f generalized coordinates. The vector of generalized coordinates
consists of the rigid coordinates qr ∈ R

fr representing the rigid body motion and
the elastic coordinates qe ∈ R

fe . Then, the equations of motion can be partitioned
into [

Mrr (q) Mre(q)

MT
re(q) Mee(q)

][
q̈r

q̈e

]
+

[
kr (q, q̇)

ke(q, q̇)

]
=

[
gr (q, q̇)

ge(q, q̇)

]
+

[
Br

Be

]
u. (2)

For serial flexible manipulators the actuation occurs only at the joints of the sys-
tems. Then, using a tangent frame for the elastic bodies, the control inputs u do not
directly effect the elastic coordinates and it is Be = 0. In addition, using relative
coordinates the inputs act directly on the rigid coordinates and it is Br = I . Since
serial manipulators are considered first, this special choice is used in the remainder
of this section.

Flexible multibody systems are typical underactuated multibody systems, since
they have less control inputs u ∈ R

m than generalized coordinates q ∈ R
f with

m < f . The control goal is tracking of a system output y ∈ R
m, e.g. the end-effector

point. In this section an exact inverse model for feedforward control design is de-
rived using concepts from differential geometric control theory [8, 12]. Thereby the
starting point is the transformation of the flexible multibody system into the nonlin-
ear input-output normal-form. Then, from this the inverse model is derived.

2.1 Coordinate Transformation into Input-Output Normal-Form

For control design it is often helpful to transform the nonlinear system into the
so-called nonlinear input-output normal-form by a diffeomorphic coordinate trans-
formation z = Φ(x). Thereby x = [qT , q̇T ]T are the original coordinates and z are
the new coordinates of the input-output normal-form, which are derived partially
from the system output. The first two derivatives of the system output are

ẏ = H (q)q̇, ÿ = H (q)q̈ + h′′(q, q̇), (3)

where H is the Jacobian matrix of the system output and h′′ = Ḣ q̇ is the local
acceleration. In (3) the second derivative of the generalized coordinates q̈ can be
replaced by the equations of motion (1), yielding

ÿ = Hq̈ + h′′ = HM−1[g − k + Bu] + h′′

= HM−1Bu + HM−1[g − k] + h′′. (4)

If the matrix HM−1B is nonsingular (4) can be solved for the control inputs u. In
this case the matrix HM−1B is called decoupling matrix and the system is said to
have vector relative degree r = {r1, . . . , rm} = {2, . . . ,2}. Following [8] the relative
degree is defined as the minimal number of derivatives of each system output hi(q),
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i = 1, . . . ,m until the inputs u can be computed. Then, no further derivatives are
necessary and the first part of the coordinate transformation is found, which is typ-
ical for many flexible manipulators. Then, the nonlinear coordinate transformation
is given by

z = Φ(x) = Φ(q, q̇) =
[

z1
z2
z3

]
with

z1 = y = h(q) ∈ R
m,

z2 = ẏ = H (q)q̇ ∈R
m,

z3 = Φ3(q, q̇) ∈ R
2(f −m).

(5)

Thereby the coordinates z3 are determined such that (5) forms at least a local
diffeomorphic coordinate transformation, which requires that the Jacobian matrix
J = ∂Φ(x)/∂x is nonsingular.

Applying the coordinate transformation (5) to the equations of motion (1) yields
the nonlinear input-output normal-form. However, the complete symbolic transfor-
mation is often quite difficult. In the following it is shown, that the input-output
normal-form can be established efficiently using a linearly combined system out-
put and the partitioned equations of motion (2). For flexible manipulators a linearly
combined output y = qr +Γ qe of rigid coordinates qr and elastic coordinates qe is
often a suitable choice [11, 15]. With such a system output the end-effector position
of serial flexible manipulators may be approximated such that ref (qr ,qe) ≈ r(y).
The determination of the weighting matrix Γ is discussed in Sect. 3. For the special
case of Γ = 0 the output reduces to y = qr , which is the so-called collocated output.
Thus, for flexible manipulators with linearly combined output a suitable coordinate
transformation is given by

z1 = y = qr + Γ qe, z2 = ẏ = q̇r + Γ q̇e, z3 = [
qT

e , q̇T
e

]T
. (6)

In order to derive the input-output normal-form the rigid coordinates qr are ex-
pressed in terms of the output y and the elastic coordinates qe . Then, after symbolic
manipulations the nonlinear input-output normal-form is obtained

M̃ÿ = g̃ − k̃ + u (7a)
(
Mee − MT

reΓ
)
q̈e = ge − ke − MT

reM̃
−1(

g̃ − k̃ + u
)
, (7b)

with the terms summarized according to the convention M̃ = Mrr − (Mre −
MrrΓ )(Mee − MT

reΓ )−1MT
re and g̃ = gr − (Mre − MrrΓ )(Mee − MT

reΓ )−1ge

and k̃ = kr − (Mre − MrrΓ )(Mee − MT
reΓ )−1ke. For details on the performed

symbolic computations see e.g. [15]. Equation (7a) has dimension m and describes
the relationship between the inputs u and outputs y. Equation (7b) has in this case
dimension f − m and is called internal dynamics. Its behavior is crucial for control
design and has to be analyzed carefully. For this task the concept of zero-dynamics
is often very useful. The zero-dynamics of a nonlinear system are the internal dy-
namics of the system under the constraint that the output is kept exactly constant,
e.g. y = 0, ∀t . A nonlinear system is called asymptotically minimum phase if the
equilibrium point of the zero-dynamics is asymptotically stable. Otherwise the sys-
tem is called non-minimum phase [8, 12].
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2.2 Inverse Model

The inverse model follows directly from the input-output normal-form (7a)–(7b).
The inverse model provides the inputs ud which are required for exact reproduction
of a desired system output trajectory y = yd . In addition the corresponding trajec-
tories of all generalized coordinates qd are obtained. The inputs ud follow from
Eq. (7a) as

ud = M̃(yd ,qe)ÿd − g̃(yd ,qe, ẏd , q̇e) + k̃(yd,qe, ẏd , q̇e). (8)

The computation of the inputs ud depends on the desired outputs yd, ẏd and the
elastic states qe, q̇e . The latter are the solution of the internal dynamics given by
Eq. (7b) which is driven by yd, ẏd and ud . Replacing ud in the internal dynam-
ics (7b) by Eq. (8) yields for the values of the elastic states qe, q̇e the differential
equation

[
Mee(yd,qe) − MT

re(yd,qe)Γ
]
q̈e

= ge(yd,qe, ẏd , q̇e) − ke(yd ,qe, ẏd, q̇e) − MT
re(yd,qe)ÿd . (9)

Several methods for model inversion exist which differ in the solution of the internal
dynamics (9):

Classical Inversion In classical inversion [6] the qe, q̇e variables can be found
through forward integration of the internal dynamics (9) from the starting time point
t0 to the final time point tf , using the initial values qe(t0) = qe0

, q̇e(t0) = q̇e0
. How-

ever, depending on the stability of the internal dynamics forward integration might
yield unbounded qe, q̇e values and thus unbounded inputs ud , which cannot be used
as feedforward control. Therefore, this approach can only be used for feedforward
control design if the internal dynamics (9) remain bounded, which implies that the
system is minimum phase. An example is a flexible manipulator with collocated
output y = qr , i.e. Γ = 0.

Stable Inversion Flexible manipulators with the end-effector point as system
output turn out to be often non-minimum phase and classical inversion cannot be
used. However, using stable inversion [4] the inversion problem can be solved, such
that the trajectories qe, q̇e of the internal dynamics (9) and the control inputs ud

remain bounded. However, the solution might be non-causal. The solution of the
stable inversion is formulated as a two-sided boundary value problem, where the
boundary conditions are described by the unstable and stable eigenspaces Eu

0 , Es
f

at the corresponding equilibrium points of the internal dynamics. These are local
approximations of the unstable manifold Wu

0 and stable manifold W s
f at the starting

and ending equilibrium point, respectively, see [12]. This yields for the internal
dynamics bounded trajectories qe, q̇e which start at time t0 on the unstable manifold
Wu

0 and reach the stable manifold W s
f at time tf . Thus the initial conditions qu0

,
q̇u0

at time t0 cannot exactly be pre-designated. A pre-actuation phase [tpr , t0] is



58 R. Seifried et al.

Fig. 1 Serial flexible manipulator

necessary which drives the system along the unstable manifold to a particular initial
condition qe(t0), q̇e(t0), while maintaining the constant output yd = yd(t0). Also a
post-actuation phase [tf , tpo] is necessary to drive the internal dynamics along the
stable manifold close to its resting position. The two-sided boundary value problem
has to be solved numerically. This can be done by a finite difference method [17],
e.g. using the Matlab solver bvp5c.

3 Determination of the Linearly Combined Output

The presented derivation of the inverse model depends on a linearly combined sys-
tem output. In this section the derivation of the linearly combined output is demon-
strated exemplarily for a serial flexible manipulator which moves in the horizontal
plane. The manipulator consists of two elastic arms with rigid elements attached at
their ends for mounting of the motors and end-effector mass, see Fig. 1. The to-
tal length of the first arm is denoted as l1 and the rigid end parts have length lr11

and lr12. The second arm has length l2 and the rigid end parts have length lr21

and lr22. The two motors produce the applied torques T1 and T2 which act on the
joint angles qr = [α,β]T . The transverse elastic deformations of the two arms are
described by the elastic coordinates q1

e ∈ R
r and q2

e ∈ R
s . In the following the ma-

trix Γ is derived from geometrical considerations and by optimization such that
the outputs y = [y1, y2]T yield a very good approximation of the end-effector posi-
tion,

ref (qr ,qe) ≈ r̄ef (y) =
[

l1 sin(y1) + l2 sin(y1 + y2)

−l1 cos(y1) − l2 cos(y1 + y2)

]
. (10)

Here y1 and y2 can be viewed as auxiliary angles, see Fig. 1. With this approxima-
tion the desired trajectories for the system output yd can be computed by rigid body
inverse kinematics from the desired trajectory r

ef
d of the end-effector point.
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3.1 Choice of System Output Using Geometrical Considerations

Due to the body elasticity the tips of the arms are subjected to the displacements u1
and u2. These are perpendicular to the undeformed axes of the arm. Restricting to
small elastic rotations, these elastic deformations are given by

u1 =
r∑

i=1

Φ1
i q1

ei + lr12

r∑
i=1

Ψ 1
i q1

ei ,

u2 =
s∑

i=1

Φ2
i q2

ei + lr21

s∑
i=1

Ψ 2
i q2

ei .

(11)

The ith elastic coordinate of the first arm is denoted by q1
ei and of the second arm

by q2
ei . The value of the ith displacement shape function at the end of the elastic parts

of the first and second arm are denoted by Φ1
i and Φ2

i , respectively. The values of
the ith shape functions for the elastic rotation evaluated at the end of the elastic parts
of arm one and two are denoted by Ψ 1

i and Ψ 2
i , respectively. Thus, the first terms

of Eq. (11) represent the transverse elastic deformation of the elastic parts of both
bodies. Due to the elastic rotation of these elastic parts, the rigid end parts of the
arms undergo an rotation with respect to their reference frame given by

ᾱ2 =
r∑

i=1

Ψ 1
i q1

ei and β̄2 =
s∑

i=1

Ψ 2
i q2

ei . (12)

The influence of ᾱ2 and β̄2 is represented by the second terms of Eq. (11). These
deformations u1, u2 result in the approximate deformation angles α1, β1, see Fig. 1.
For small displacements these two deformation angles α1, β1 can be determined and
expressed as linear combinations of the elastic coordinates as

α1 ≈ u1

l1
=

r∑
i=1

Φ1
i + lr12Ψ

1
i

l1
q1
ei =

r∑
i=1

Γ1iq
1
ei (13)

and

β1 ≈ u2

l2
=

s∑
i=1

Φ2
i + lr22Ψ

2
i

l2
q2
ei =

s∑
i=1

Γ2(r+i)q
2
ei . (14)

From these two equations the linearly combined system outputs y1 = α +α1 and
ȳ2 = β + β1 can be determined. For flexible manipulators without any rigid parts
similar outputs are used for trajectory tracking by [11] and [18]. However, when
using this output to approximate the end-effector point (10) of a multi-link flexible
manipulator, the elastic rotation of the coordinate system attached to tip of arm 1 is
neglected. Since in this coordinate system the motor angle β is described, the output
ȳ2 is not suitable for end-effector tracking, see [15]. Thus the system output y2 has
to be corrected by the additional angle α2 given by

α2 = ᾱ2 − α1 =
r∑

i=1

(
Ψ 1

i − Γ1i

)
q1
ei =

r∑
i=1

Γ2iq
1
ei . (15)
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From this follows the system output y2 = ȳ2 + α2 = β + β1 + α2, which contains
contributions of the elastic deformation of arm 1 and arm 2. The linearly combined
system output which is suitable to approximate the end-effector point by Eq. (10) is
then given by

y = qr + Γ qe

=
[

α

β

]
+

[
Γ11 . . . Γ1r 0 . . . 0
Γ21 . . . Γ2r Γ2(r+1) . . . Γ2(r+s)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
e1
...

q1
er

q2
e1
...

q2
es

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

3.2 Design of System Output by Optimization

Output relocation is a method where a different system output ŷ is chosen in order
to achieve minimum phase property. In [11] output relocation for a flexible two arm
manipulator is investigated. Thereby a linearly combined system output with block
diagonal matrix Γ is used. It is shown that for the two outputs the entries of Γ can
be scaled with a value between 0 and 1 to obtain minimum phase property. However,
the influence of the elastic rotation (15) of the first body on the second system output
is neglected and might result in large end-effector errors, see [15].

Therefore, an optimization based design procedure for a new system output ŷ is
proposed here to obtain a minimum phase design of underactuated multibody sys-
tems and also a very good approximation of the end-effector point ref . Thereby
the new output ŷ is an artificial output, which does not represent a specific mate-
rial point of the multibody system. For this task the linearly combined output is
very convenient, since it provides an easy way for the parametrization of the design
variables,

ŷ = qr + Γ (p)qe. (17)

Here the design variables p are just the entries of the weighting matrix Γ . Then, it
follows with yd = 0, ∀t from (9) that the zero dynamics, which depend only on the
elastic coordinates qe, q̇e and the design variables p, are given by[

Mee(qe) − MT
re(qr )Γ (p)

]
q̈r = gr (qr , q̇e) − ke(qe, q̇e). (18)

The linearization of the zero dynamics yield the system matrix A(p) which also
depends on the design variables. The design goal is to achieve a stable zero dy-
namics by changing the system output, whereby the new system output should still
yield a good approximation of the end-effector position ref . Therefore, a two-step
computation of the optimization criterion f (p) is proposed, which should be mini-
mized in the course of the optimization. The two steps of the optimization criterion
computation are:
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Step 1 Firstly, local asymptotic stability is checked. Thus, all eigenvalues of the
linearized zero dynamics must be in the left half-plane,

Re
[
λ
(
A(p)

)]
< 0. (19)

If at least one eigenvalue has a non-negative real part, a large default value for the
optimization criterion f (p) is returned. Otherwise, the linearized analysis shows
asymptotic stability of the zero dynamics and it is proceeded with step 2.

Step 2 If all eigenvalues of the zero dynamics are in the left half-plane, the actual
optimization criterion f (p) will be calculated. Therefore a feedforward control for
a test trajectory yd is computed. From this inverse model the end-effector trajectory
ref (qr ,qe) ∈R

m and the effective deviation e(t) from the desired trajectory can be
determined as

e(t) =
√√√√

m∑
i=1

e2
i (t) with e(t) = r

ef
d (t) − ref (qr ,qe). (20)

Then, the optimization criterion is chosen as the maximal effective end-effector de-
viation

f (p) = max
t

e(t). (21)

With the solution for the internal dynamics for the desired trajectory yd the bound-
edness of the internal dynamics is verified. If unbounded states for this design occur
the time integration fails and also a large default value is returned for the optimiza-
tion criterion f (p).

The optimization criterion is discontinuous due to the distinction between stable
and unstable designs. Therefore, gradient based methods cannot be used and the
stochastic particle swarm optimization algorithm is applied, see [13] for details on
the used algorithm. The presented optimization based approach for designing a suit-
able system output yields a good tracking performance for a given desired output
trajectory. If the optimized output Γ (p∗) also yields a good end-effector approxi-
mation for a different trajectory has to be checked for each particular case.

4 Application to a Serial Manipulator

The feedforward control design is first demonstrated for a planar serial flexible ma-
nipulator as shown in Fig. 1. The first arm has length l1 = 351 mm and consists of a
first rigid part of length lr11 = 63.5 mm, an elastic part of length le1 = 209 mm and
a second rigid part of length lr12 = 78.5 mm. The elastic part has thickness 1.27 mm
and height 76.2 mm. The second arm has length l2 = 287.5 mm and consists of a
first rigid part of length lr21 = 62.5 mm, an elastic part of length le = 210 mm and a
rigid end-effector mass of length lr22 = 15 mm. The elastic part of the second arm
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Fig. 2 Desired trajectory of the manipulator

has thickness 0.9 mm and height 38.1 mm. The rigid parts of the arms represent the
joints, motor mounting and end-effector mass. All parts of the manipulator are made
out of steel. For the description of the elastic deformation of the arms the first two
bending eigenmodes are used as shape functions for each arm, i.e. qe ∈ R

4. A tan-
gent floating frame of reference is used. The end-effector of the manipulator should
follow a straight test trajectory, whose path is shown in Fig. 2. Along the path, the
trajectory is described by a polynomial of ninth order, such that the velocities and
accelerations are zero at both the start and the end of the trajectory. The path length
is 0.2 m and the time for following the trajectory is 1 s. The trajectory starts from
rest at time 0.2 s and ends in rest at time 1.2 s.

In the following simulation results for this flexible manipulator are presented, see
also [15] for more details. Thereby the computed feedforward control is tested by
simulation, whereby it is combined with PID-feedback control for the joint trajecto-
ries qr . However, since the inverse model is exact, the PID-control has in these tests
only to compensate numerical errors. In reality there are larger uncertainties and
disturbances which the controller has to account for. The presented results should
demonstrate the capacities of the feedforward control, and the maximal achievable
accuracy in the ideal case. In the following the trajectory error in path direction eip ,

orthogonal to the path eop and the absolute error eabs =
√

e2
ip + e2

op are presented.

Firstly, a feedforward control based on a rigid system output is used, i.e. the
elasticities are neglected yielding Γ = 0. This is the so-called collocated output
which yields a minimum phase system and classical inversion can be used. From
the tracking error for this strategy, which is presented in Fig. 3, the strong influence
of body flexibility is seen, yielding an unacceptable behavior and errors of several
centimeters.

The inversion based feedforward control with linearly combined output is con-
sidered next. Using the elastic data of the manipulator and Eqs. (10)–(16) the matrix
Γ is given by
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Fig. 3 Error of the
end-effector trajectory using
exact inversion with
collocated output

Γ =
[

25.779 47.552 0 0
13.500 88.897 32.316 39.470

]
. (22)

An analysis of the zero-dynamics of the flexible manipulator with this output shows,
that the system is non-minimum phase. Thus, stable inversion is necessary and the
Matlab boundary-value solver bvp5c is used. However, it turns out, that for the Γ

values given by (22) no solution can be computed numerically using the bvc5p.
But by slight variations of Γ21 = 13.375 and Γ22 = 92.5, a numerical solution of
the boundary value problem is found. In Fig. 4 the end-effector trajectory error is
shown for this feedforward control. A very high accuracy is achieved. The trajectory
errors are in the magnitude of less than 0.1 mm. After reaching the final position at
time 1.2 s only minor deviations of the end-effector point remain.

The optimization based system output design is applied next. For the optimiza-
tion based design the non-zero entries of the weighting matrix Γ are used as design
variables. Based on the values for Γ derived from geometrical considerations (22),
the bounds for the design variables are defined. These are set such that a variation of
the design variables of +/−20 % around the geometrical case (22) is allowed. For
the optimization 100 particles are used and yields the values

Γ =
[

25.025 45.909 0 0
15.292 90.345 29.296 32.297

]
. (23)

The new system output yields a minimum phase system and feedforward control
design by classical inversion can be applied. The simulation results are presented in
Fig. 4 and show that with this approach high accuracy for the end-effector trajectory
can be obtained. The maximal trajectory error is about 0.28 mm. Compared to the
previous results the achievable accuracy for this minimum phase system is slightly
worse than the output using geometrical considerations yielding a non-minimum
phase system, see Fig. 4, but much better than using the collocated output, see Fig. 3.
Comparing to results for this manipulator presented in [15], the optimization based
output design yields also better results than the so-called quasi-static deformation
compensation, which is an alternative approach for feedforward control design of
flexible manipulators.
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Fig. 4 Error of the end-effector trajectory using stable inversion with Γ from geometrical consid-
erations (left) and optimization (right)

5 Extension to Parallel Manipulators

For multibody systems with kinematic loops and fc degrees of freedom the descrip-
tion of the kinematics using a minimal set of generalized coordinates is in general
not directly possible. Therefore, the kinematic loop is cut at a suitable joint, yielding
a multibody system in tree structure with f > fc degrees of freedom. The equations
of motion of the obtained open loop system are derived in analogy to systems with
tree structure according to Eq. (1). By introducing nc implicit algebraic loop closing
constraint equations

c(q, t) = 0, (24)

the equations of motion of the closed loop system can be formulated as a set of
differential-algebraic equations (DAE)

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u + CT (q)λ (25a)

c(q, t) = 0 (25b)

where the matrix C is the Jacobian matrix of the constraint equations c with respect
to the generalized coordinates q ∈ R

f . The vector λ ∈ R
nc represents the general-

ized reaction forces in the cut joints. In order to derive the input-output normal-form
of the system (25a)–(25b) according to Sect. 2, the set of differential-algebraic equa-
tions has to be transformed into a set of fc = f −nc ordinary differential equations.

There are several ways of rephrasing differential-algebraic equations as purely
differential equations. One way is partitioning the generalized coordinates q ∈ R

f

into a set of independent coordinates q i ∈ R
fc and dependent coordinates qd ∈ R

nc

according to

qT = [
qT

i qT
d

]
(26)
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and expressing the system dynamics in these independent coordinates, see e.g. [10].
The first step is to differentiate the constraint equations c twice with respect to the
time t leading to the constraint equations on acceleration level

c̈(q̈, q̇,q, t) = C(q)q̈ + c′′(q̇,q, t) = 0, (27)

with the vector c′′ representing the local accelerations due to the constraints. For
linear independent constraint equations and a reasonable choice of dependent coor-
dinates, the Jacobian matrix C can be split up in an independent and a dependent
part leading to

c̈(q̈, q̇,q, t) = Cd(q)q̈d + Ci (q)q̈i + c′′(q̇,q, t) = 0, (28)

in which Cd ∈R
nc×nc must be a regular matrix. Solving Eq. (28) for the dependent

accelerations q̈d and dropping the dependencies for better readability, the dependent
accelerations q̈d can be expressed as

q̈d = −C−1
d

(
Ci q̈i + c′′). (29)

Based on this relationship, the generalized accelerations can be written as

q̈ =
[

I

−C−1
d Ci

]
q̈ i +

[
0

−C−1
d c′′

]
= J cq̈i + b′′. (30)

By inserting Eq. (30) into Eq. (25a) and by left-side multiplication with the trans-
posed Jacobian matrix J c the equations of motion in minimal coordinates of the
multibody body system with kinematic loop are obtained,

J T
c M(q)

(
J cq̈i + b′′)+ J T

c k(q, q̇) = J T
c g(q, q̇) + J T

c B(q)u + J T
c CT (q)λ.

(31)

Since the relation

J T
c CT = [

I −CT
i C−T

d

][CT
i

CT
d

]
= CT

i − CT
i C−T

d CT
d = 0 (32)

holds, the Lagrange multipliers λ vanish in Eq. (31) and the equations of motion can
be displayed as

M(q)q̈i + k(q, q̇) = g(q, q̇) + B(q)u. (33)

These equations of motion in minimal form allow the partitioning of the indepen-
dent accelerations q̈i into the rigid accelerations q̈r and the elastic accelerations q̈e

according to Eq. (2).
Based on this representation the equations of motion (33) can be transformed

into the input-output normal-form, which permits the analysis of the internal dy-
namics and the application of the exact model inversion procedures discussed in
the previous sections. This approach is applied to the flexible parallel manipulator
shown in Fig. 5. Using for the coordinate partitioning the independent coordinates
qi = [qr ,qe] with qr = [s1, α], again a linearly combined system output can be
used to approximate the end-effector position

ref (qr ,qe) ≈ ref (y) with y1 = s1, y2 = α + Γ qe. (34)
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Fig. 5 Parallel flexible manipulator

The weighting matrix Γ can be derived similarly to Sect. 3. The transformation into
input-output normal-form shows, that it is again a system of vector relative degree
r = {2, . . . ,2} and the elastic coordinates qe describe the internal dynamics. Also
in this case the weighting matrix Γ derived from geometric considerations yields a
non-minimum phase system and requires a stable inversion. A simulation result is
presented in Sect. 7.

6 Model Inversion Using Servo-Constraints and Projections

In this section an alternative approach for the solution of the exact model inversion
problem is introduced, which is especially appealing for parallel flexible manipula-
tors. Formulating the complete problem as a set of differential-algebraic equations
according to

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u + CT (q)λ (35a)

h(q, t) = y(q) − yd(t) = 0 (35b)

c(q, t) = 0, (35c)

with the vector c ∈ R
nc representing the constraints due to the kinematic loops and

the vector h ∈ R
m describing the so-called servo-constraints [1, 14]. This unifies the

handling of both types of constraints. Due to the fact that the constraint equations
are on position level, it is not guaranteed that a numerical solution can be found
easily. In order to ensure that a solution can be obtained, a formalism to reduce the
index of the system without imposing a numerical drift is presented.

6.1 Differentiation Index

A very important characteristic of differential-algebraic equations is the differentia-
tion index. It describes how a perturbation in the variables effects the solution of the
DAE. The differentiation index is defined as the minimal number of differentiations
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of the constraint equations necessary to obtain ordinary differential equations for all
variables. To ensure a better readability, the constraints in Eq. (35b) and Eq. (35c)
are combined leading to the representation

M(q)q̈ + k(q, q̇) = g(q, q̇) + Θ(q)

[
u

λ

]
(36a)

ξ(q, t) = 0 (36b)

with the matrix Θ = [B CT ] ∈R
f ×(m+nc) and the vector ξT = [hT cT ]T ∈R

(m+nc)

of the constraints. Firstly, the constraint equations are differentiated with respect to
the time

dξ

dt
= ∂ξ

∂q
q̇ + ∂ξ

∂λ
λ̇ + ∂ξ

∂u
u̇ + ∂ξ

∂t
= 0

ξ̇ =
[

H

C

]
q̇ + ξ ′ = Ξq̇ + ξ ′ = 0,

(37)

in which the matrix Ξ = [H T ,CT ]T ∈ R
(m+nc)×ft summarized the Jacobian ma-

trices of the servo-constraints H and geometric constraints C. As the constraint
equations do neither depend on the reaction forces λ nor on the system inputs u, the
Jacobian matrix of the unified constraints ξ with respect to λ and u vanish. Since
Eq. (37) also does not depend on λ or u, the second partial differentiation can be
displayed as

ξ̈ = Ξq̈ + ξ ′′ = 0. (38)

By solving Eq. (36a) for the generalized accelerations q̈ and inserting them into
Eq. (38), the constraint equations on velocity level can be presented as

ξ̈ = Ξ(q)M(q)−1
(

g(q, q̇) − k(q, q̇) + Θ(q)

[
u

λ

])
+ ξ ′′ = 0. (39)

The final differentiation yields to the formulation

...
ξ = ∂ ξ̈

∂q
q̇ + ∂ ξ̈

∂ q̇
q̈ + ∂ ξ̈

∂u
u̇ + ∂ ξ̈

∂λ
λ̇ + ∂ ξ̈

∂t

= ∂ ξ̈

∂q
q̇ + ∂ ξ̈

∂ q̇
q̈ + Ξ(q)M(q)−1Θ(q)

[
u̇

λ̇

]
+ ∂ ξ̈

∂t
= 0 (40)

providing a set of differential equations for the generalized reaction forces λ and
the system inputs u, if the matrix R = ΞM−1Θ is regular. In this case, the system
has a differentiation index of 3. If the matrix R is not invertible, the differentiation
index is accordingly higher. For the special case, that the system has only indepen-
dent geometric constraints, R reduces to R = CM−1CT which is positive definite
and therewith invertible. If only servo-constraints occur it is R = HM−1B . This
is exactly the decoupling matrix occurring in Eq. (4) of the symbolic coordinate
transformation into input-output normal-form. Thus, if R is invertible the system
has differentiation index 3 and vector relative degree r = {2, . . . ,2}. In [2] it is dis-
cussed that the differentiation index is one higher than the relative degree, if the
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internal dynamics are not affected by a constraint. In the following it is assumed,
that servo-constraints and geometric constraints occur and that the matrix R has full
rank, providing differentiation index 3.

6.2 Projections

In order to reduce the index of the system, the equations of motion (36a) and the
constraint equations on acceleration level (39) are taken into account. The first step
is eliminating the generalized reaction forces λ and the system inputs u with a pro-
jection. For classical DAEs this method is sometimes referred as the null space
method, see [7]. For servo-constraint problems, the corresponding projection matri-
ces are obtained with two QR decompositions according to

ΞT = QrRr = [Qr,1 J r ]

[
Rr,1

0

]
= Qr,1Rr,1, (41a)

Θ = QlRl = [Ql,1 J l ]

[
Rl,1

0

]
= Ql,1Rl,1. (41b)

The matrix ΞT is split into an orthogonal Qr ∈R
f ×f and a triangular matrix Rr ∈

R
f ×(m+nc), whose f − (m+nc) lower rows are zero. Therefore, the matrix ΞT can

be displayed as the product of the first (m + nc) columns of Qr , called Qr,1, and
the first (m + nc) rows of Rr , called Rr,1. With this relationship, the matrix Ξ can
be written as

Ξ = RT
r,1Q

T
r,1. (42)

Due to the fact that the matrix Qr is orthogonal, the matrix product

ΞJ r = RT
r,1 QT

r,1J r︸ ︷︷ ︸
=0

(43)

vanishes. Therefore, the columns of the matrix J r span the null space of the ma-
trix Ξ and the columns of the matrix Qr,1 span the row space of the matrix Ξ ,
respectively. Since the dimensions of ΞT and Θ match, an analog procedure shows
that the columns of the matrix J l span the left null space of the matrix Θ and the
columns of the matrix Ql,1 span the column space of the matrix Θ .

The properties of the matrix Qr are used to introduce a new set of generalized
accelerations z̈ according to

q̈ = Qr z̈ = J r z̈i + Qr,1z̈d, (44)

with the independent accelerations z̈i ∈ R
f −(m+nc) and the dependent accelerations

z̈d ∈ R
(m+nc). Substituting the generalized accelerations in Eq. (38) with Eq. (44)

results in
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ξ̈ = Ξ(J r z̈i + Qr,1z̈d) + ξ ′′

= RT
r,1 QT

r,1J r︸ ︷︷ ︸
=0

z̈i + RT
r,1 QT

r,1Qr,1︸ ︷︷ ︸
=I

z̈d + ξ ′′ = 0. (45)

Solving Eq. (45) for the dependent accelerations z̈d leads to

z̈d = −R−T
r,1 ξ ′′. (46)

Therefore, using Eq. (44), the generalized coordinates can be expressed as

q̈ = J r z̈i − Qr,1R
−T
r,1 ξ ′′. (47)

The next step is to eliminate the reaction forces λ and system inputs u and to express
the equations of motion in terms of the independent accelerations z̈i . By substituting
the generalized accelerations q̈ in Eq. (36a) with Eq. (47) and multiplying the arising
equations with the transposed Jacobian matrix J l from the left yields to

J T
l M(q)

(
J r z̈i − Qr,1R

−T
r,1 ξ ′′)+ J T

l k(q, q̇) = J T
l g(q, q̇) + J T

l Θ(q)︸ ︷︷ ︸
=0

[
u

λ

]
.

(48)

This leads to the equations of motion in the new, independent coordinates zi . These
equations describe the internal dynamics of the servo-constraint problem given in
Eqs. (35a)–(35c). This corresponds to the internal dynamics given by Eq. (9) using
symbolic coordinate transformation. In order to solve the initial value problem, these
equations have to be transformed back to the original set of coordinates q . Solving
Eq. (48) for independent accelerations z̈i according to

z̈i = (
J T

l M(q)J r

)−1
J T

l

(
g(q, q̇) − k(q, q̇) + M(q)Qr,1R

−T
r,1 ξ ′′) (49)

and inserting the independent accelerations z̈i into Eq. (47) leads to

q̈ = J r

(
J T

l M(q)J r

)−1
J T

l

(
g − k + M(q)Qr,1R

−T
r,1 ξ ′′)− Qr,1R

−T
r,1 ξ ′′. (50)

In order to derive a state space representation, the same procedure is done for the
velocities. Similar to Eq. (47), the independent velocities żi can be expressed as

q̇ = J r żi − Qr,1R
−T
r,1 ξ ′. (51)

Multiplying Eq. (51) with the transposed Jacobian matrix J l from the left and solv-
ing for żi results in

żi = (
J T

l J r

)−1
J T

l

(
q̇ + Qr,1R

−T
r,1 ξ ′). (52)

Inserting this equation into Eq. (51) results in the representation necessary for state
space representation

q̇ = J r

(
J T

l J r

)−1
J T

l

(
q̇ + QrR

−T
r ξ ′)− QrR

−T
r ξ ′, (53)

in which the velocities do not violate the constraint equations. One of the benefits
of this representation is, that the equations of motion no longer dependent on the



70 R. Seifried et al.

reaction forces nor on the system inputs and at the same time comply with the con-
straints. But the back transformation also introduced 2(m + fc) zero eigenvalues
leading to a numerical drift in the solution [3]. The same effect occurs, when the
Lagrange equations of the first kind are applied to constraint mechanical systems.

A suitable way of avoiding the drift is to reformulate the system given by Eq. (50)
and Eq. (53) as an index 1-DAE by only considering 2(f − (m + nc)) differential
equations, which describe the internal dynamics, and taking the remaining 2(m+fc)

coordinates as algebraic equations into account. The generalized coordinates are
split according to qT = [qT

i qT
d ] with q i being the coordinates describing the inter-

nal dynamics and qd being the coordinates describing the driven dynamics. From
the analysis in Sect. 5 it is known that the internal dynamics can be described by
the elastic coordinates and thus it is qd = qe . Then, the equations of motion of the
servo-constraint problem in state space representation can be expressed as

⎡
⎢⎣

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣

q̇i

q̈i

qd

q̇d

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

P (J r (J
T
l J r )

−1J T
l (q̇ + Qr,1R

−T
r,1 ξ ′) − Qr,1R

−T
r,1 ξ ′)

P (M̂(g − k + M(q)Qr,1R
−T
r,1 ξ ′′) − Qr,1R

−T
r,1 ξ ′′)

ξ(q, t)

ξ̇(q̇,q, t)

⎤
⎥⎥⎥⎦ , (54)

in which the matrix P represents the Jacobian matrix of the vector q i with respect
to the generalized coordinates q and the matrix M̂ equals J r (J

T
l M(q)J r )

−1J T
l .

The numerical integration of these equations as an initial value problem does not
provoke a drift in the solution.

In analogy to Sect. 2.2 the desired system inputs ud together with the reaction
forces λ, which both are eliminated in Eq. (54), can be derived by solving Eq. (36a)
for the generalized accelerations and substituting them with Eq. (47) according to

J r z̈i − Qr,1R
−T
r,1 ξ ′′ = M(q)−1(g(q, q̇) − k(q, q̇)

) + M(q)−1Θ(q)

[
u

λ

]
. (55)

Multiplying this equation from the left with the transposed matrix Qr1
yields, in

case of an index 3 problem, a regular matrix QT
r,1M

−1Θ . Thus solving for the
desired reaction forces and system inputs leads to[

ud

λ

]
= −(

QT
r,1M

−1Θ
)−1(

R−T
r,1 ξ ′′ + QT

r,1M
−1(g − k) − QT

r,1J r︸ ︷︷ ︸
=0

z̈i

)
. (56)

6.3 Solution of the Two-Point Boundary Value Problem

In order to solve the two-point boundary value problem for this approach, some
additional considerations have to be taken into account. Firstly, the question arises
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Fig. 6 Desired trajectory of the parallel manipulator

which representation is supposed to be used to solve the boundary value problem.
There are three qualified candidates providing different advantages and drawbacks.
The first candidate is the representation describing solely the internal dynamics of
the model described by the first two rows of Eq. (54). By using this representation
the formulation of the boundary conditions follows the description in Sect. 2, but it
is necessary to compute the coordinates of the driven dynamics with a root search
at each time step.

If a corresponding solver is available, the differential-algebraic representation ac-
cording to Eq. (54) can be used to obtain a bounded solution. The third possibility
is using the projected dynamics according to Eqs. (50) and (53). In this case, the nu-
merical overhead is considerably reduced. The last two candidates have in common
that the formulation of the boundary conditions has to be modified. In addition to
the already mentioned boundary conditions based on the eigenspaces of the internal
dynamics, it is necessary to use a combination of the constraint equations on posi-
tion and velocity level at the time t0 or tf as well. A reasonable choice is ensuring
that the solution fulfills the constraint equations on position level at t0 and tf .

7 Application to Parallel Manipulators

The model inversion formalisms using coordinate transformation presented in
Sects. 2 and 5 and servo-constraints presented in Sect. 6 are applied to the paral-
lel flexible manipulator shown in Fig. 5. The trajectory presented in Fig. 6 is used.
The system consists of a long and a short arm each mounted on a car. The long arm
is composed of three rigid parts connected with two elastic links and the short arm is
composed of two rigid parts connected with an elastic link. The three identical elas-
tic links, which are made out of steel, have length le = 400 mm, height he = 80 mm
and depth de = 2 mm. The overall length of the long arm is ll = 1081 mm, whereas
the length of the short arm is ls = 560 mm. The end of the short arm is connected
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Fig. 7 Error of the end-effector trajectory with rigid output (left) and using optimized weights and
classical inversion (right)

to the middle of the long arm by a revolute joint. The long arm is modeled as one
elastic body consisting of two beam elements which are connected with rigid bodies.
A model order reduction of the long arm based on proper orthogonal decomposition,
see [5], results in a reduced elastic body with twelve shape functions to describe the
elastic deformations. A similar procedure leads to a reduced model of the short
arm with six shape functions. Due to the revolute joint the elastic deformations of
the long arm are described in a secant floating frame of reference, whereas the de-
formations of the short arm are described in a tangent floating frame of reference.
Therefore, the kinematics of the system with cut kinematic loop can be described
with four rigid coordinates qr = [s1 s2 α β]T and 18 elastic coordinates qe. In anal-
ogy to the serial manipulator, the end-effector of the long arm is supposed to follow
a straight test trajectory, see Fig. 6. The end-effector point is the system output and
can be approximated using the system output

y =
[

s1
0

]
+

[
cos(α) − sin(α)

sin(α) cos(α)

]([
llong

0

]
+

[
0∑fe

i=1 wiΦiqei

])
, (57)

where Φi is the ith shape function evaluated at the end-effector point. For wi = 1
the exact end-effector position is obtained. In this case the system is non-minimum
phase, and an output relocation can be performed for obtaining a minimum phase
system. In this case the weights wi are used as the design parameters for the op-
timization as presented in Sect. 3.2. For the servo-constraint approach the system
output (57) is used, while for the coordinate transformation approach the linearly
combined system output (34) is used.

Four different cases are studied. First of all, the servo-constraint approach is used
and the weights wi are all set to zero leading to an output omitting the elastic de-
formations, corresponding to a rigid output. In this case, the internal dynamics are
stable and the forward integration of Eq. (54) can be used. The resulting error of
the end-effector trajectory tracking is presented in Fig. 7, which shows a very large
deviation of approximately 12 mm.
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Fig. 8 Error of the end-effector trajectory using coordinate transformation (left) and servo con-
straints (right)

In order to improve the achievable accuracy of the trajectory tracking problem,
an optimization of the weights is performed. Therefore, the algorithm presented in
Sect. 3.2 is applied to the system dynamics described in Eq. (54). In this case, the
design parameters p are the weights w, which are varied from −1 to 1. The opti-
mized output yields to a minimum phase system with a minimal trajectory tracking
error. Then, for feedforward control design the servo-constraint approach is used
in combination with forward integration. Figure 8 shows, that the error obtained is
about 0.6 mm and thus less than a tenth of the error obtained with the rigid out-
put.

Next, the stable inversion is applied to the system with end-effector point as sys-
tem output, which has an unbounded internal dynamics. First, the coordinate trans-
formation approach is used with linearly combined output (34), to approximate the
end-effector point. The boundary value problem is solved with the Matlab solver
bvp5c. Figure 8 shows the obtained error of the end-effector trajectory, which is
around 0.03 mm. While the linearly combined system output is reproduced nearly
exactly, this small tracking error of the end-effector point originates form its approx-
imation by the linearly combined output.

Finally, the servo-constraint approach is used with exact output (57). Unlike the
previous computations using the servo-constraint approach, only the differential part
of Eq. (54) is considered, because the boundary value problem solver bvp5c does not
support differential-algebraic equations. The error of the solution obtained by the
boundary value problem is presented in Fig. 8. The maximal discrepancy is about
0.003 mm. Unlike the other cases, this error represents solely the solver tolerance.
In summary, both stable inversion based approaches yield nearly exact reproduction
of the end-effector trajectory.
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8 Summary

The derivation of feedforward control designs for serial and flexible manipulators
were presented. Firstly, exact inverse model based on concepts from differential
geometric control theory were used and applied to serial and parallel flexible ma-
nipulators. It was shown, that the stability properties of the internal dynamics de-
termines the complexity of the feedforward control design. By output optimization
stable internal dynamics can be obtained, while keeping the end-effector tracking
error small. In addition an alternative approach for feedforward control based on
servo-constraints was presented and applied to a parallel flexible manipulator. By
using numerical projection into the unconstrained subspace the description of the
internal dynamics is obtained, while its differentiation index is reduced. Then, for
the solution the same concepts as in the first feedforward control approach can be
used. Both approaches provide powerful tools to design accurate feedforward con-
trol for flexible manipulators
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A 3D Shear Deformable Finite Element Based
on the Absolute Nodal Coordinate Formulation

Karin Nachbagauer, Peter Gruber, and Johannes Gerstmayr

Abstract The absolute nodal coordinate formulation (ANCF) has been developed
for the modeling of large deformation beams in two or three dimensions. The ab-
sence of rotational degrees of freedom is the main conceptual difference between the
ANCF and classical nonlinear beam finite elements that can be found in literature.
In the present approach, an ANCF beam finite element is presented, in which the
orientation of the cross section is parameterized by means of slope vectors. Based
on these slope vectors, a thickness as well as a shear deformation of the cross section
is included. The proposed finite beam element is investigated by an eigenfrequency
analysis of a simply supported beam. The high frequencies of thickness modes are of
the same magnitude as the shear mode frequencies. Therefore, the thickness modes
do not significantly influence the performance of the finite element in dynamical
simulations. The lateral buckling of a cantilevered right-angle frame under an end
load is investigated in order to show a large deformation example in statics, as well
as a dynamic application. A comparison to results provided in the literature reveals
that the present element shows accuracy and high order convergence.

1 Introduction

The absolute nodal coordinate formulation (ANCF) has been developed by Shabana
[21, 22] for the modeling of large deformation structural problems in two or three
dimensions. In contrast to the classical large rotation vector formulation [12], the
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orientation of an ANCF element is not defined via rotational parameters, but in terms
of slope vectors. The big advantage of ANCF elements is a constant mass matrix
with respect to the generalized coordinates, which is advantageous in numerical
procedures.

In the present chapter, a three-dimensional ANCF beam finite element is pro-
posed, which is similar to a three-dimensional approach by Yakoub and Sha-
bana [28]. The latter authors developed a shear-deformable beam element which
provides a constant mass matrix and a geometrical description free of singularities.
In case the Poisson effect is not neglected, the standard ANCF approach in [28] does
not converge due to locking effects, see [19] for more details.

The elastic forces are investigated using a structural mechanics based formula-
tion based on Reissner’s nonlinear rod theory, as well as a continuum mechanics
based formulation for a St. Venant Kirchhoff material. The importance of the con-
tinuum mechanics based formulation is emphasized in Irschik and Gerstmayr [9].
Since any suitable constitutive law can be utilized in this approach, a wide range of
applications can be covered. Additionally, it has to be pointed out that the continuum
mechanics based approach is in accordance with fully three-dimensional computa-
tions with solid finite elements, see [9]. The continuum mechanics based approach
holds for simple cross sections only and has been investigated for rectangular cross
sections so far. In contrast to the continuum mechanics based formulation, the struc-
tural mechanics based approach can be used for arbitrary cross sections, since stan-
dard beam stiffness parameters, e.g. bending stiffnesses, for stress resultants of the
cross section are used, which are well-defined and available easily in engineering
books. The structural mechanics based formulation can be interpreted as elastic line
approach. In contrast to the continuum mechanics based approach, in which large
strain considerations are possible, the structural mechanics based approach is lim-
ited to small strain considerations for large deformations.

In the original three-dimensional continuum mechanics based ANCF beam finite
element by Yakoub and Shabana [28], the strain energy is based on a St. Venant
Kirchhoff material law using a linear relation between the Green strain tensor and
the second Piola-Kirchhoff stress tensor. Since this formulation suffers from Poisson
locking, an enhanced locking-free approach is presented in this chapter.

In Reissner’s nonlinear rod theory the strain energy is based on generalized strain
measures for axial extension, bending, shear and torsion, which can be directly re-
lated to the generalized coordinates of the ANCF element, see [11] for details of the
two-dimensional element, which is also depicted in Fig. 1(b). Moreover, the spe-
cial choice of degrees of freedom in the present approach allows for a cross section
deformation of the proposed elements, which is of particular interest e.g. in indus-
trial applications, such as rolling mills. In Sugiyama et al. [25, 26] the Green strain
tensor is used to define the beam kinematic properties and the generalized strains;
however the equilibrium equations are formed on the continuum level. To be more
precise, in [26] Green-Lagrange strains are utilized to define the curvature, while in
the present approach only the cross section frame and its derivatives are used.

A vast number of different interpolation strategies has been discussed in litera-
ture, e.g., displacements and rotations are used as primal interpolated variables in



3D Shear Deformable ANCF Beam Finite Element 79

Fig. 1 Overview of different types of elements and their nodal coordinates

Simo and Vu-Quoc [24], displacements, slopes and rotations in Dmitrochenko [4]
or strains in [5, 29]. In contrast to the formulations mentioned above, the present
approach is based on the interpolation of displacements and slopes, as in Sha-
bana [21]. For the interpolation of the displacements and the slopes, shape functions
are chosen quadratic in axial direction and linear in the transversal directions. In
so-called “fully-parameterized” elements, the nodal coordinates are based on three
slope vectors (Fig. 1(e)), representing the position gradient, see e.g. [10, 25]. Here,
the proposed formulation is based on two slope vectors only (Fig. 1(f)) and there-
fore belongs to the so-called “gradient deficient” elements. Figure 1(c) shows the
two-dimensional analogue approach, which has been already presented in [18]. The
same nodal coordinates are chosen in Kerkkänen et al. [13] for a two-noded ANCF
element and in García-Vallejo et al. [6] a three-noded analogue is presented. In case
of a Bernoulli-Euler beam element, in which the cross sections remain rigid and or-
thogonal to the beam axis, the position and the axial slope vector are used as nodal
coordinates, e.g. in [7], see Fig. 1(a) for the two-dimensional case and Fig. 1(d) for
the three-dimensional case, in which an additional angle parameter has to be added
to include torsion, see [17].

The content of this chapter is arranged as follows. A detailed geometric descrip-
tion of the proposed ANCF beam finite element and the choice of degrees of free-
dom can be found in Sect. 2. Section 3 deals with the different definitions of the
strain energy for the ANCF beam element. The proposed element is investigated
for an eigenfrequency analysis of a simply-supported beam in Sect. 4.1. A com-
parison of the computed eigenfrequencies to results in [11] and to analytical values
show good agreement. Since high thickness modes appear, time integrators should
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Fig. 2 Different configurations of the finite beam element: scaled straight reference element with
volume V ∗ in the beam-fixed coordinate system (ξ, η, ζ ), the undeformed beam in reference con-
figuration with volume V0 and the beam in deformed configuration with volume V , both depicted
in the global coordinate system (x, y, z)

be applied to stiff dynamic problems. In addition, the possible mode shapes of the
simply-supported beam are displayed, see Sect. 4.2. Further, the lateral buckling of a
cantilevered right-angle frame under an end load is investigated in Sect. 4.3. This ex-
ample produces a complete three-dimensional response and therefore is often used
also for dynamic investigations in literature, e.g. in [1, 24].

Several static problems have been already shown in [16]. A comparison to re-
sults provided in the literature, to analytical solutions, and to the solution found by
commercial finite element software shows accuracy and high order convergence in
statics. Dynamic applications will be published in [14].

2 Setup of the ANCF Beam Element

In the present chapter, a spatial ANCF beam finite element is proposed. The ana-
logue beam finite element in the planar case has been presented in [18]. There, the
degrees of freedom are the displacement vector and the transversal derivative of the
displacement. This choice is different from “fully-parameterized” elements [10, 25],
in which the position gradients are used as degrees of freedom. See again Fig. 1 for
the different choices of nodal coordinates.

The geometry of the proposed spatial finite beam element is described by means
of the position and the two transversal slope vectors, which are defined on a scaled
and straight reference element, see Fig. 2. For a sketch of the position vectors, slope
vectors and the location of the three nodes at the end points and at the midpoint of
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the beam axis for the undeformed beam in reference configuration and for the beam
in deformed configuration see again Fig. 2. The degrees of freedom are chosen as
the nodal displacements and change of slope vectors. The displacement vector is
denoted by u and the directional derivatives of the displacements are u,η = ∂u

∂η
and

u,ζ = ∂u
∂ζ

. While u are nodal coordinates, u,η and u,ζ are denoted as generalized
coordinates. Hence, the vector of degrees of freedom follows as

q = [
u(1)T u(1)T

,η u(1)T
,ζ u(2)T u(2)T

,η u(2)T
,ζ u(3)T u(3)T

,η u(3)T
,ζ

]T
. (1)

Since nine degrees of freedom are specified in each node, a three-noded beam el-
ement has 27 degrees of freedom. The shape functions are chosen similar to those
given in [18] and are defined on a scaled and straight reference element in coordinate
system (ξ, η, ζ ), see Fig. 2,

S1(ξ, η, ζ ) = − 2

L2
ξ

(
L

2
− ξ

)
,

S2(ξ, η, ζ ) = ηS1, S3(ξ, η, ζ ) = ζS1,

S4(ξ, η, ζ ) = + 2

L2
ξ

(
L

2
+ ξ

)
,

S5(ξ, η, ζ ) = ηS4, S6(ξ, η, ζ ) = ζS4,

S7(ξ, η, ζ ) = − 4

L2

(
ξ − L

2

)(
ξ + L

2

)
,

S8(ξ, η, ζ ) = ηS7, S9(ξ, η, ζ ) = ζS7.

(2)

The displacement vector u(ξ, η, ζ ) follows from

r(ξ, η, ζ ) = r0(ξ, η, ζ ) + u(ξ, η, ζ ) = S(q0 + q), (3)

in which q0 is the generalized coordinate vector of the element in reference config-
uration and S represents the shape function matrix

S = [S1I . . . S9I ], (4)

in which I is the 3-by-3 identity matrix.

3 Virtual Work of Elastic Forces

In the first instance, the virtual work of elastic forces is derived from a continuum
mechanics based formulation, using the Green-Lagrange strain tensor and the sec-
ond Piola-Kirchhoff stress tensor according to [28]. This formulation is described
in Sect. 3.1 and referred to as standard continuum mechanics based formulation.
The main problem of this formulation is the Poisson locking effect. To avoid this
locking phenomenon, the strain energy is modified in Sect. 3.2 according to the
well known selective reduced integration. To be more precise, the elasticity tensor
is split into two parts. The first part, related to bending, axial deformation, shear
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and cross section deformation, does not take into account the Poisson ratio ν, while
the second part covers the Poisson effect constant over cross section. This split-
ting leads to a more efficient formulation regarding computational aspects. This
improved formulation is called enhanced continuum mechanics based formulation
and abbreviated by CMF. Note that the Poisson locking also occurs in the origi-
nal fully parameterized element of Yakoub and Shabana [28]. There are alternatives
to the proposed selective reduced integration, see e.g. Sugiyama and Suda [26] or
Schwab [20], however, those alternatives have not been rigorously tested concern-
ing static and dynamic linear and nonlinear examples. In Sect. 3.3, the virtual work
of elastic forces is derived from a structural mechanics based formulation based
on generalized strains, which is defined according to Simo and Vu-Quoc [23] and
can be interpreted as elastic line approach. The presented formulation is enhanced
in order to include cross sectional deformation and is abbreviated by SMF in the
following.

3.1 Standard Continuum Mechanics Based Formulation

According to Yakoub and Shabana [28], the virtual work of the elastic forces can be
derived from the nonlinear continuum mechanics considerations, using the relation
between the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress
tensor. For more details on the derivation, see Bonet and Wood [3]. The Green-
Lagrange strain tensor E reads

E = 1

2
(C − I), (5)

with the right Cauchy-Green tensor C, which is defined as

C = FT F. (6)

The deformation gradient F is described via the derivatives of the position as follows

F = ∂r
∂r0

= ∂r
∂ξ

∂ξ

∂r0
=

⎡
⎣

∂r1
∂ξ

∂r1
∂η

∂r1
∂ζ

∂r2
∂ξ

∂r2
∂η

∂r2
∂ζ

∂r3
∂ξ

∂r3
∂η

∂r3
∂ζ

⎤
⎦
⎡
⎣

∂r01
∂ξ

∂r01
∂η

∂r01
∂ζ

∂r02
∂ξ

∂r02
∂η

∂r02
∂ζ

∂r03
∂ξ

∂r03
∂η

∂r03
∂ζ

⎤
⎦

−1

, (7)

in which the vector ξ = (ξ, η, ζ ) denotes the coordinates of the scaled straight ref-
erence element in unit configuration, see Fig. 2. The transformation between the
scaled straight element and the possibly distorted element in reference configura-
tion is expressed in the element Jacobian J = ∂r0

∂ξ . In case of a straight and undis-
torted reference configuration, the element Jacobian simplifies to J = I. For the
Green-Lagrange strain tensor E and the second Piola-Kirchhoff stress tensor S, the
engineering strain vector ε and stress vector σ reads as follows

ε = [Exx Eyy Ezz 2Eyz 2Exz 2Exy ]T , (8)

σ = [Sxx Syy Szz Syz Sxz Sxy ]T . (9)
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The stress-strain relation,

σ = Dε, (10)

is written in terms of the elasticity matrix D defined by

D = Eν

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ν
ν

1 1 0 0 0

1 1−ν
ν

1 0 0 0

1 1 1−ν
ν

0 0 0

0 0 0 1−2ν
2ν

0 0

0 0 0 0 1−2ν
2ν

0

0 0 0 0 0 1−2ν
2ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

in which E denotes Young’s modulus and ν is Poisson’s ratio. Then, the virtual
work of elastic forces is written as follows

UCMF
stand. =

1

2

∫
V0

εT σdV0

= 1

2

∫
V0

εT DεdV0, (12)

which holds for a rectangular cross section with

dV0 = det(J) dV ∗, (13)

dV ∗ = dξ dη dζ. (14)

In Eq. (12), the quantities are defined in the global coordinate system (x, y, z). In
order to compare continuum mechanics to structural mechanics based formulations
regarding also shear strain considerations, shear correction factors are required in
the elasticity matrix. The function of the shear correction factors is the minimiza-
tion of the error between the computed constant and the real parabolic shear stress
distribution for transverse shear, see [27]. Since the initiation of the shear correction
factors into the elasticity matrix is dependent on the orientation of the cross sec-
tion of the beam, a local frame basis (e0

1, e0
2, e0

3) is introduced. The basis vectors e0
1,

e0
2 and e0

3 are defined by means of the slope vectors r0,η and r0,ζ , which describe
derivatives of a reference position r0 in a possible pre-deformed element,

e0
1 = ē0

1

‖ē0
1‖

, ē0
1 = r0,η × r0,ζ , (15)

e0
3 = ē0

3

‖ē0
3‖

, ē0
3 = r0,ζ , (16)

e0
2 = ē0

2

‖ē0
2‖

, ē0
2 = ē0

3 × ē0
1 = r0,ζ × (r0,η × r0,ζ ). (17)

In Eqs. (15)–(17) it is assumed that the slope vectors r0,η and r0,ζ are perpendicular
in the reference configuration, which is no restriction to generality in relation to
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Fig. 3 Perspective and front view of the cross section with local frame basis vectors: e0
3 is the

unit vector in direction of r0,ζ , e0
1 is the unit vector perpendicular to r0,η and r0,ζ and e0

2 is
perpendicular to e0

1 and e0
3

classical beam theory in which the cross section is undeformed. In most cases, it
can be assumed that r0,η and r0,ζ have unit length. For a sketch of the local basis
vectors, see Fig. 3. A tensor A0, which describes the transformation of the global
coordinate system (x, y, z) to the local frame basis (e0

1, e0
2, e0

3) can be defined now
as

A0 = [
e0

1

∣∣ e0
2

∣∣ e0
3

]
. (18)

Using the transformation tensor A0, an arbitrary position r0 in Eq. (3) given in the
global coordinate system can be easily transformed to a representation in the local
frame basis, indicated by symbol ∗, as

r∗
0 = AT

0 r0. (19)

It has to be mentioned here that the transformation tensor has to be constant on the
cross section, but changes with the axial coordinate. Note, the transformation takes
into account the whole cross section and not only the beam axis.

Now, the elasticity matrix including shear correction factors, given in the local
frame basis, is written as

D∗ = Eν

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ν
ν

1 1 0 0 0

1 1−ν
ν

1 0 0 0

1 1 1−ν
ν

0 0 0

0 0 0 1−2ν
2ν

0 0

0 0 0 0 1−2ν
2ν

k2 0

0 0 0 0 0 1−2ν
2ν

k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

with the shear correction factors k2 and k3. Note, that a correction factor for torsional
shear deformation cannot be accounted for.

The entries of matrix D∗ have to be transformed from the local basis frame to
the global coordinate system using the transformation tensor in Eq. (18). It has to be
mentioned that in case the beam is oriented along the x-axis, matrix D∗ holds in the
local frame basis as well as in the global coordinate system and therefore need not
be transformed. Otherwise, the transformed elasticity matrix given now in the global
coordinate system is used to compute Eq. (12), or alternatively, all other quantities
in Eq. (12) have to be transformed to the local frame basis. The transformation
from D∗ to the according elasticity matrix given in the global coordinate system is
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technically complex, since the independent components of the 6×6 matrix D∗ have
to be reorganized. Hence, the transformations are applied to E and S in order to
define the quantities in the principle of virtual work in the same coordinate system.

The variational formulation of the elastic forces can be written as

δUCMF
stand. =

∫
V

SδEdV. (21)

To compute the principle of virtual work in Eq. (21), the following steps have to
be performed. The Green-Lagrange strain tensor E is transformed to its according
tensor in the beam-fixed coordinate system E∗ by using the relation

E∗ = AT
0 EA0. (22)

The six independent components of E∗ are entered in the engineering strain vec-
tor ε∗, i.e. (E∗)3×3 → (ε∗)6, see Eq. (8). Now the engineering stress vector σ∗ can
be computed by the stress-strain relation using D∗

σ∗ = D∗ε∗. (23)

The components of the engineering stress vector σ∗ are filled in the second Piola-
Kirchhoff stress tensor S∗, i.e. (σ∗)6 → (S∗)3×3, see Eq. (9). Note, that S∗ can be
written in the absolute coordinate system by the transformation

S = A0S∗AT
0 . (24)

Finally, Eq. (21) can be solved.

3.2 Enhanced Continuum Mechanics Based Formulation—CMF

The standard continuum mechanics formulation in Sect. 3.1 suffers from Poisson
locking in case of bending, since the Poisson ratio ν couples axial strains Exx and
the transverse normal strains Eyy and Ezz in the stress-strain relation in Eq. (10).
The locking is caused by the fact that in case of bending, the rectangular cross
section would deform into a trapezoidal shape because of the Poisson effect. As
this deformation mode is not included in the considered ANCF shape functions, this
leads to an overly stiff behavior. In the two-dimensional case, Gerstmayr et al. [11]
suggested to split the elasticity matrix D∗ into two parts,

D∗ = D0∗ + Dν∗, (25)

in which D0∗ does not include the Poisson ratio ν, while Dν∗ involves the Poisson
effect only. To be more precise, D0∗ includes the Young’s modulus E and the shear
modulus G in the diagonal;

D0∗ = diag(E,E,E,G,Gk2,Gk3), (26)
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in which the shear correction factors k2 and k3 again account for the distribution of
the shear stress along the cross section. The matrix Dν∗ includes the Poisson effect
in the axial and transverse deformation as follows

Dν∗ = Eν

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎣

2ν 1 1 0 0 0
1 2ν 1 0 0 0
1 1 2ν 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (27)

Hence, the strain energy in (12) is split into two parts according to Eq. (25) and
follows to

UCMF
enh. = 1

2

∫ W/2

−W/2

∫ H/2

−H/2

∫ L/2

−L/2
εT D0εdet(J) dξ dη dζ

+ 1

2
HW

∫ L/2

−L/2
εT Dνεdet(J) dξ, (28)

considering the Poisson effect only at the beam axis η = 0 and ζ = 0. This tech-
nique can be interpreted as a selective reduced integration scheme. This enhanced
formulation in Eq. (28) eliminates the Poisson locking effect and is referred to as
CMF.

It has to be mentioned that again the components of the elasticity matrices D0∗
and Dν∗ in Eq. (25) are given in the local frame basis.

3.3 Structural Mechanics Based Formulation—SMF

The elastic forces can also be defined by a structural mechanics based formulation,
following the approach of Simo [23]. There, the strain energy is written in terms
of generalized strains, namely the axial strain Γ1, the shear strains Γ2 and Γ3, the
torsional strain κ1 and the bending strains κ2 and κ3:

USMF
Simo = 1

2

∫ L/2

−L/2

(
EAΓ 2

1 + GAk2Γ
2

2 + GAk3Γ
2

3 + GJktκ
2
1 + EI2κ

2
2 + EI3κ

2
3

)
dξ.

(29)

It has to be mentioned that the principle axes of the cross section are in η- and ζ -
direction, such that no coupling of κ2 and κ3 occurs. The variational form of Eq. (29)
reads

δUSMF
Simo =

∫ L/2

−L/2
(EAΓ1δΓ1 + GAk2Γ2δΓ2 + GAk3Γ3δΓ3

+ GJktκ1δκ1 + EI2κ2δκ2 + EI3κ3δκ3) dξ. (30)

Equation (29) uses the following abbreviations for the beam stiffness param-
eters. E represents Young’s modulus and A is the area of the cross section,



3D Shear Deformable ANCF Beam Finite Element 87

Fig. 4 Perspective and front
view of the cross section with
cross section frame basis
vectors e1, e2 and e3, which
are represented by the slope
vectors r,η and r,ζ only

G = E/2(1 + ν) is the shear modulus, EI2 is the bending stiffness with respect
to the y-axis and EI3 is the bending stiffness with respect to the z-axis, while
J = I2 + I3 is the torsional moment of inertia. Hence, GJ represents the torsional
stiffness combined with the torsional correction factor kt , EA is the axial stiffness
and GA is the shear stiffness with the shear correction factors k2 and k3. A similar
approach is also given in a recent work [19], in which correction factors are not
included explicitly. In Sugiyama et al. [25, 26] the virtual work of elastic forces
follows from Simo [23] too, but in contrast to the proposed approach, in which
the curvature follows the material measure of curvature, there a geometrical curva-
ture is used. A comparison of results computed with the proposed formulation to
analytical solutions considering arbitrary digits shows correctness of the proposed
formulation, see also [8]. Equation (29) can be rewritten in matrix notation as fol-
lows:

USMF
Simo = 1

2

∫ L/2

−L/2

(
Γ T diag(EA,GAk2,GAk3)Γ + κT diag(GJkt ,EI2,EI3)κ

)
dξ.

(31)

3.3.1 Cross Section Frame

For the definition of the generalized strains in the succeeding section, a cross sec-
tion frame is constructed based on a rotation tensor A, which is related to A0 in
Eq. (18). The rotation tensor A is represented by the slope vectors r,η and r,ζ only.
The rotation tensor is written in a simple way, but it has to be mentioned that it is
not symmetric regarding η and ζ , since the slope vectors r,η and r,ζ are almost
perpendicular only, see Fig. 4. The local basis vectors e1, e2, and e3 describe the
rotation tensor A by means of

A = [e1 | e2 | e3]. (32)

In this case, the basis vectors e1, e2 and e3 are defined as

e1 = ē1

‖ē1‖ , ē1 = r,η × r,ζ , (33)

e3 = ē3

‖ē3‖ , ē3 = r,ζ , (34)

e2 = ē2

‖ē2‖ , ē2 = ē3 × ē1 = r,ζ × (r,η × r,ζ ), (35)

which simplifies the representation of the variation of the generalized strains, see
the following derivations.
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3.3.2 Definition of Generalized Strains

The axial strain Γ1 is defined as

Γ1 = eT
1 r′ − 1. (36)

Throughout the following, primes indicate the derivative with respect to the local
axial coordinate ξ , r′ = ∂r

∂ξ
. The shear strains Γ2 and Γ3 then read

Γ2 = eT
2 r′ and Γ3 = eT

3 r′. (37)

For the implementation of Eq. (30), the variations of Γ and κ have to be computed.
The variation for the axial strain Γ1 follows as

Γ1 = eT
1 r′ − 1 = ēT

1

‖ē1‖r′ − 1 (38)

δΓ1 = δeT
1 r′ + eT

1 δr′ (39)

=
(−(ēT

1 δē1)e1

‖ē1‖3
+ δē1

‖ē1‖
)T

rξ + ēT
1

‖ē1‖Sξ δq, (40)

with

ēT
1 := rη × rζ (41)

δēT
1 = δrη × rζ + rη × δrζ (42)

= (Sηδq) × rζ + rη × (Sζ δq). (43)

The variations for the bending strains Γ2 and Γ3 are computed analogously. For
the definition of the torsion κ1 and the bending strains κ2 and κ3 again the rotation
tensor is used. The vector of twist and curvature k is defined by the columns ei of
the rotation tensor A as follows:

k = 1

2

3∑
i=1

ei × e′
i , (44)

with e′
i = k × ei and ki = eT

i k, in which the index i defines the i-th component
of the considered vector. The torsion κ1 and the bending strains κ2 and κ3 are the
entries of vector

κ =
3∑

i=1

κiei =
3∑

i=1

kiei . (45)

Notice, the components of k are considered in the local basis ei , i.e., there holds

κi = (
AT κ

)
i
. (46)

For the definition of the vector of twist and curvature, the derivative with respect to
the beam axis coordinate ξ is used in the present approach, while in Sugiyama et
al. [25, 26] the derivative with respect to the arc length s in actual configuration is
used.
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Note, that the vector k in Eq. (44) can be rewritten as follows

k = 1

2

3∑
i=1

ei × e′
i = 1

2

3∑
i=1

(
ēi

‖ēi‖ × −(ēT
i ē′

i )ēi + ē′
i‖ēi‖2

‖ēi‖3

)

= 1

2

3∑
i=1

(
1

‖ēi‖4

(
ēi × ē′

i

)‖ēi‖2
)

= 1

2

3∑
i=1

(
1

‖ēi‖2

(
ēi × ē′

i

))
, (47)

with ēi defined in Eqs. (33)–(35). For the implementation, the variation δκ is nec-
essary:

δκ =
3∑

i=1

(δkiei + kiδei ), (48)

using the formula for the variation of δk:

δk =
3∑

i=1

(
1

2
δ

(
1

‖ēi‖2

)(
ēi × ē′

i

)+ 1

2

1

‖ēi‖2
δ
(
ēi × ē′

i

))
(49)

=
3∑

i=1

(
1

2

(−(
ēT
i ēi

)−22ēiδēi

)(
ēi × ē′

i

)+ 1

2

1

‖ēi‖2

(
δēi × ē′

i + ēi × δē′
i

))
(50)

=
3∑

i=1

(
− ēiδēi

‖ēi‖4

(
ēi × ē′

i

)+ 1

2‖ēi‖2

(
δēi × ē′

i + ēi × δē′
i

))
. (51)

Pre-curvature can be easily implemented in the theory if κ is enhanced by an ac-
cording term as follows:

κ =
3∑

i=1

κiei =
3∑

i=1

(ki − k0 i )ei , (52)

in which the torsional strain κ1 and bending strains κ2, κ3 are expressed as the
difference of the components of the vector of twist and curvature in deformed and
undeformed state with

k0 = 1

2

3∑
i=1

e0i × e′
0i =

3∑
i=1

k0iei . (53)

If the beam is initially straight, the term k0 as well as δ(Ak0) vanish and δκ turns
into δκ = δk.

3.3.3 Definition of the Cross Section Deformation Energy

The cross section deformation is included by design of the shape functions in the
ANCF, while it is not included in classical beam finite elements. In Betsch and Stein-
mann [2], a straightforward approach using constraints is presented. Here, in order
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to avoid the locking phenomenon, no Poisson coupling is involved, following the
idea of the continuum mechanics based approach in Sect. 3.2. This approach can be
interpreted as penalty formulation, see Gerstmayr et al. [11] for the two-dimensional
case. It has to be mentioned here that the eigenfrequencies corresponding to the
thickness modes are limited to twice size of shear mode frequencies, see again [11].
In the three-dimensional case, the virtual work related to the cross section deforma-
tion strain energy UCSD can be consistently derived from the continuum mechanics
based approach in Eq. (12) when neglecting the Poisson effect

UCSD = 1

2

∫ L/2

−L/2

(
EA

(
E2

ηη + E2
ζ ζ

)+ 2GAE2
ηζ

)
dξ. (54)

Note, that in difference to the two-dimensional case, the cross section may undergo
not only a thickness, but also a shear deformation. The respective components of the
Green-Lagrange strain tensor E = 1

2 (FT F − I) without consideration of the element
transformation read as follows

Eηη = 1

2

(
rT
,ηr,η − 1

)
, Eζζ = 1

2

(
rT
,ζ r,ζ − 1

)
, Eηζ = 1

2
rT
,ηr,ζ . (55)

The quantities in Eq. (55) only depend on the respective length of the slope vectors
|r,η| and |r,ζ |, whereas Γ and κ are expressed in terms of the normalized vectors
e1, e2, e3 and the direction of the beam axis r′. Hence, the total strain energy USMF

can be defined straightforward as the sum of Eq. (29) and Eq. (54) as

USMF = USMF
Simo + UCSD, (56)

and is referred to as SMF. The variation of Eq. (54) is computed by

δUCSD =
∫ L/2

−L/2
(EAEηηδEηη + EAEζζ δEζζ + 2GAEηζ δEηζ ) dξ. (57)

4 Numerical Examples

The proposed ANCF element has been implemented in the framework of the multi-
body and finite element research code HOTINT.1

The investigated formulations, namely the standard and the enhanced continuum
mechanics formulation, as well as the structural mechanics based formulation, de-
scribed in Sect. 3, have been implemented. Regarding the numerical applications,
only the enhanced continuum mechanics based and the structural based formulation
are investigated. The enhanced continuum mechanics formulation given by Eq. (28)
is abbreviated by CMF, while SMF indicates the usage of the structural mechan-
ics formulation given by Eq. (56). In order to validate the proposed ANCF element
and to illustrate the performance, the proposed element has been already tested nu-
merically by using e.g. small and large deformation static problems. A comparison

1http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html.

http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html
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Fig. 5 Simply supported
beam investigated for
eigenfrequency analysis

to results in literature and to analytical solutions shows good accuracy and high
convergence order of the proposed element. Detailed results of such investigations
have been already shown in [15]. As an extension of the extensive tests in [15], in
the present chapter, an eigenfrequency analysis of a simply supported beam is pre-
sented. Results are compared to given eigenfrequencies in literature and to analytical
solutions. Additionally, the corresponding mode shapes are presented. Furthermore,
a lateral buckling test of a cantilevered right-angle frame under an end load is in-
vestigated. This is a standard but challenging test for large deformation beam finite
elements and has not been investigated with the ANCF so far. The obtained numer-
ical results are compared to results given in literature [1].

4.1 Eigenfrequency Analysis

Similar to [10], the eigenfrequencies of an unstressed, simply supported beam are
computed, which is of length L = 2 m, height h = 0.4 m and width w = 0.4 m. The
density is chosen as ρ = 7850 kg/m3, Young’s modulus is E = 1 · 109 N/m2 with a
Poisson ratio of ν = 0.3. For a sketch of the problem setup, see Fig. 5. To realize the
bearing on the left hand side of the simply supported beam the displacements of the
axis in x-, y- and z-direction are set to zero, for the slide bearing on the right only
the displacement in y- and z-direction are fixed. The computed values are compared
in Table 1 to theoretical values denoted by Timoshenko (anal.) taken from Tables 4
and 5 in [10]. In addition to [10] we provide the analytical value for the torsional
frequency wt

wt = π

√
Gkt

ρL2
, (58)

which gives 319.350 rad/s in this example problem. Due to the fact that cross-section
deformation influences the torsional eigenfrequency (cf. Eq. (54)), this term had to
be penalized (by a factor 1000) in the SMF. Otherwise, the converged value for
the torsional eigenfrequency reads 316.732 rad/s. Similarly, in order to obtain the
analytical values regarding axial and thickness deformation, the Poisson ratio was
set ν = 0 for the CMF. If not doing so (i.e., ν = 0.3), one obtains the converged
values 280.177 rad/s for the first axial eigenfrequency, 837.026 rad/s for the second
axial eigenfrequency, and 2710.97 rad/s for the first thickness eigenfrequency.
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Table 1 Eigenfrequencies for an unstressed simply supported beam. Values are given in rad/s

# Elements 1st bend. 1st axial 1st tors. 2nd bend.

CMF element

1 105.149 281.373 353.399 –

32 95.6340 280.321 319.346 332.235

SMF element

1 105.148 281.373 352.130 –

32 95.6341 280.321 319.347 332.236

Timoshenko (anal.) 95.6340 280.321 319.350 332.235

# Elements 2nd axial 1st shear 2nd shear 1st thick.

CMF element

1 1012.36 1766.99 1896.70 3090.98

32 840.962 1766.99 1878.87 3090.98

SMF element

1 1012.36 1766.99 1896.70 3090.98

32 840.962 1766.99 1878.87 3090.98

Timoshenko (anal.) 840.962 1766.99 1878.87 3090.98

Fig. 6 Representation of the possible mode shapes for a simply supported beam

4.2 Eigenmodes

In this computation, a single ANCF beam element is used to display the possible
mode shapes of the presented element. The proposed element consists of nine de-
grees of freedom per node and therefore one element is represented by 27 degrees of
freedom. Since five degrees of freedom are eliminated by the boundary constraints,
22 eigenvalues can be computed. See Fig. 6 for a visualization of the computed
mode shapes. It has to be mentioned, that one rigid body mode is generated, which
is not displayed in this figure.
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Fig. 7 Geometry of the
cantilevered right-angle frame
under in-plane end load F

Fig. 8 Visualization of the
cantilevered right-angle frame
under in-plane end load and a
small disturbance load
normal to the plane of the
frame in HOTINT

4.3 Lateral Buckling of a Right-Angle Frame Under an End Load

This example considers the buckling behavior of a right-angle frame under an in-
plane end load and a small disturbance load at the free end normal to the plane of the
frame. See Fig. 7 for a sketch of the problem setup. According to Argyris et al. [1],
the geometry of the two connected beams is chosen as follows: length L = 0.24 m,
height h = 0.03 m and width w = 0.0006 m. The extreme slenderness of the cross
section has to be regarded. The Young’s modulus is chosen as E = 7.124 ·1010 N/m2

with a Poisson ratio ν = 0.31. The free end is loaded with a linearly increasing
transverse force F in order to obtain the critical load given in [1] as Fcr = 1.088 N
for beam elements and Fcr = 1.1453 N using triangular plate elements. A small
transversal disturbance load acts normal to the plane of the frame and is set to Fdist =
0.0001 N, see Fig. 8 for the load case. In Simo and Vu-Quoc [24], the critical load
can be found as Fcr = 1.09 N. There, the projection of final deformed shape onto the
x–z plane is shown for an applied load of magnitude F = 1.485 N. In the present
test, the main in-plane load is set to F = 1.485 N and the transversal disturbance
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Fig. 9 A jump in the tip
displacement in z-direction at
an applied load 0.734F

shows that the correct
buckling load is obtained

load Fdist is applied. Figure 9 shows the tip displacement in z-direction versus the
applied load factor λ which represents the applied load with λ · F . The critical load
is found to be 0.734 · F , which yields Fcr = 1.0899 N.

5 Conclusion

In this chapter, a three-dimensional beam finite element including axial, bending,
shear, and torsional deformation is presented. The formulation of the proposed ele-
ment is based on the absolute nodal coordinate formulation (ANCF), which is used
to describe large deformations in multibody dynamics problems. In contrast to the
standard large rotation vector formulation, the rotational degrees of freedom are not
employed in the ANCF and therefore does not necessarily suffer from singularities
emerging from angle parameterizations. However, cross section deformation is pos-
sible. Different approaches for the deformation energy are presented. A continuum
mechanics based formulation for the elastic forces is discussed and enhanced in or-
der to avoid Poisson locking. Additionally, the elastic forces are defined by a struc-
tural mechanics based approach, which includes a term accounting for cross section
deformation, which is not considered in Reissner’s classical theory. Previously, the
investigation of several static problems have already shown high convergence order
and accuracy of the proposed element. Here, an eigenfrequency test and a lateral
buckling test of a right-angle frame are presented, the computations imply good
agreement to results given in literature and it can be now judged that specially de-
signed ANCF finite elements are suitable for large deformation three-dimensional
structural problems. The extension to warping is still an open problem and will be
investigated in future.

Acknowledgements K. Nachbagauer and P. Gruber acknowledge support from the Austrian Sci-
ence Funds (FWF): I337-N18, J. Gerstmayr from the K2-Comet Austrian Center of Competence
in Mechatronics (ACCM).
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A Variational Approach to Multirate Integration
for Constrained Systems

Sigrid Leyendecker and Sina Ober-Blöbaum

Abstract The simulation of systems with dynamics on strongly varying time scales
is quite challenging and demanding with regard to possible numerical methods.
A rather naive approach is to use the smallest necessary time step to guarantee a sta-
ble integration of the fast frequencies. However, this typically leads to unacceptable
computational loads. Alternatively, multirate methods integrate the slow part of the
system with a relatively large step size while the fast part is integrated with a small
time step. In this work, a multirate integrator for constrained dynamical systems is
derived in closed form via a discrete variational principle on a time grid consisting of
macro and micro time nodes. Being based on a discrete version of Hamilton’s prin-
ciple, the resulting variational multirate integrator is a symplectic and momentum
preserving integration scheme and also exhibits good energy behaviour. Depending
on the discrete approximations for the Lagrangian function, one obtains different
integrators, e.g. purely implicit or purely explicit schemes, or methods that treat the
fast and slow parts in different ways. The performance of the multirate integrator is
demonstrated by means of several examples.

1 Introduction

Mechanical systems with dynamics on varying time scales, in particular those in-
cluding highly oscillatory motion, impose challenging questions for numerical in-
tegration schemes. Tiny step sizes are required to guarantee a stable integration of
the fast frequencies. However, for the simulation of the slow dynamics, integration
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with a larger time step is accurate enough. Here, small time steps increase inte-
gration times unnecessarily, especially for costly function evaluations. Typical ex-
amples of systems exhibiting dynamics on different time scales can be found in
astrophysics, where depending on the distances between planets, the resulting grav-
itational forces can be extremely strong or weak leading to different time scales
for a flight trajectory through space, or in molecular dynamics, where locally ex-
tremely high frequencies superpose global folding processes. In multibody dynam-
ics, such systems occur e.g. in combustion engines with chain drives or in vehicle
dynamics, or generally in systems being composed of rigid and elastic parts with
varying and in particular with high stiffness. In this chapter, variational integrators
are constructed for the efficient and structure preserving simulation of such sys-
tems.

1.1 Variational Integrators

The key feature of variational integrators is that they are based on a discrete vari-
ational formulation of the underlying system, e.g. a discrete version of Hamilton’s
principle for conservative mechanical systems. More concretely, the time stepping
schemes are derived from a discrete variational principle based on a discrete ac-
tion function that approximates the continuous one. This is opposed to the standard
derivation of integration methods that start with a continuous equation of motion and
replace the continuous quantities, in particular the derivatives with respect to time,
by discrete approximations. The variational theory of discrete mechanics provides a
theoretical framework that parallels continuous variational dynamics. Discrete ana-
logues to the Euler-Lagrange equations, Noether’s theorem, and the Legendre trans-
form are derived from a discrete Lagrangian by performing similar steps as in the
continuous theory. The resulting time stepping schemes are structure preserving,
i.e. they are symplectic-momentum conserving and exhibit good energy behaviour,
meaning that no artificial dissipation is present and the energy error stays bounded
over longterm simulations. There exist many works on symplectic integrators like
[12, 13, 15, 16, 18, 25, 27] to mention just a few. A detailed introduction and a
survey on the history and literature on the variational view of discrete mechanics is
given in [24]. Choosing different variational formulations (e.g. Hamilton, Lagrange-
d’Alembert, Hamilton-Pontryagin, etc.), variational integrators have been developed
for classical conservative mechanical systems (for an overview see [19, 20]), forced
[13] and controlled [26] systems, constrained systems (holonomic [21, 22] and non-
holonomic systems [14]), nonsmooth systems [7], stochastic systems [5], and multi-
scale systems [30]. In this chapter, we focus on holonomically constrained systems
in the framework of discrete variational mechanics for which the constraints are en-
forced using Lagrange multipliers. Thus, a discrete version of the index 3 DAEs is
solved.
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1.2 Integration Methods for Multirate Systems

For systems comprising fast and slow dynamics, different integration methods have
been developed to save computational work while preserving the accuracy of the
simulation. Here, the methods distinguish with respect to the simulation goals and
the structure of the underlying system (for an overview of numerical methods for
oscillatory, multiscale Hamiltonian systems see e.g. [6]).

Considering systems with a slow potential that is expensive to evaluate while the
fast potential is cheap to evaluate, splitting methods have been developed to accu-
rately capture the slow dynamics without resolving the fast one. One possibility to
achieve this is via implicit-explicit methods that treat the fast potential implicitly and
the slow one explicitly as e.g. the so called impulse method (see e.g. [12, 17]). This
method can also be interpreted as a particular variational splitting method found in
the literature under the name IMEX [28]. To refine the resolution for the fast dynam-
ics associated with the fast potential, smaller time steps can be used to perform its
implicit time integration. If a structure preserving integrator is used, the composi-
tion ensures that its properties are inherited. The explicit treatment of the expensive
potential certainly decreases computational costs, however, here, the fast integration
is performed for all variables, also the slow degrees of freedom.

Another alternative for the efficient simulation of multirate systems is averag-
ing. Here one is not interested in resolving the fast dynamics, but considers it to be
sufficient to feed an average of the fast dynamics into the slow equations of mo-
tion. HMM (heterogeneous multiscale methods [32]) aim to link models at different
scales and provides a general framework for designing and analysing very heteroge-
neous, multiscale or even multiphysics problems. Relying on a top-down strategy,
the missing information is filled in an incomplete model on the macro scale by es-
timating what happens on the micro scale through averaging. Thereby, one avoids
the isolated pointwise evaluation of oscillatory functions, instead relies on averaged
quantities. FLAVORS (flow averaging integrators [30]) are another example of aver-
aging methods. These integrators are formulated using variational methods and the
average of the flow is performed via a splitting and resynchronisation technique.

The separation of the unknowns into fast and slow degrees of freedom enables to
resolve the fast dynamics in an efficient way if different time grids are used for dif-
ferent parts of the system. These multirate integration methods (for an overview see
e.g. [10–12] and references therein) integrate the slow part of the system with a rela-
tively large step size while the fast part is integrated with a small time step. Thereby,
main challenges are the identification of fast and slow parts (e.g. either by separating
the system’s energy or by defining disjunct sets of degrees of freedom), the synchro-
nisation of their different dynamics and in particular the treatment of mixed parts
as they often appear when fast and slow dynamics are coupled either via potentials
or by constraints. Furthermore, resonance phenomena impose restrictions on the
combination of large and small time steps. Hence, another challenge is the stability
analysis of multirate stepping schemes as done for linear problems e.g. in [3, 8].
Similar to our approach, the latter work is based on a variational derivation, how-
ever the resulting multirate schemes are different from those presented here. There
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are many examples in the literature where multirate schemes based on backward
differentiation formulas (BDF) or Runge-Kutta methods are applied e.g. to electric
circuit systems [11, 29, 31], but also to mechanical problems [2]. However, most
of them do not focus on the preservation of the underlying system’s structure. The
aim of this chapter is to develop a structure preserving multirate integrator based on
variational mechanics.

1.3 Contribution and Outline

Sections 2 and 3 give an overview of Lagrangian dynamics. Basic definitions and
properties such as energy conservation, symplecticity and Noether’s theorem are re-
visited in the continuous and the discrete setting, respectively. In particular, the vari-
ational formulation for constrained variational mechanics including the Lagrange
multiplier theorem is presented. The variational framework provides the basis for
the derivation of the variational multirate integrator described in Sect. 4. The multi-
rate integrator is derived in closed form via a discrete variational principle on a time
grid consisting of macro and micro time nodes and thus falls into the class of struc-
ture preserving integrators which generally exhibit very good longterm stability.
The use of different quadrature rules in the approximation of the appearing integrals
and its influence on the degree of coupling in the resulting system of discrete equa-
tions of motion, the number of necessary function evaluations and the possibility to
treat fast and slow parts in an implicit or an explicit way, respectively, is discussed.
The performance of the variational multirate integrator is demonstrated by means
of a standard benchmark problem for multirate integration, the Fermi-Pasta-Ulam
problem, and for an example from constrained multibody dynamics in Sect. 5.

2 Lagrangian Dynamics

Basic definitions and properties of Lagrangian dynamics like the conservation of
energy, symplecticity and Noether’s theorem are recalled in Sect. 2.1, before La-
grangian dynamics subject to scleronomic, holonomic constraints is considered in
Sect. 2.2. All notation has been introduced in [23, 24], where a large part of the
theory presented here can be found.

2.1 Lagrangian Dynamics—Definitions and Properties

Consider an n-dimensional mechanical system in a configuration manifold Q ⊆ R
n

with configuration vector q(t) ∈ Q and velocity vector q̇(t) ∈ Tq(t)Q in the tangent
space, where t denotes the time variable in the bounded interval [t0, tN ] ⊂ R. Let,
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the Lagrangian L : T Q → R of the mechanical system consists of the difference of
the kinetic energy T (q̇) and a potential U(q). Let C (Q) = C ([t0, tN ],Q,q0, qN)

denote the space of smooth curves q : [t0, tN ] → Q satisfying q(t0) = q0 and
q(tN) = qN , where q0, qN ∈ Q are fixed endpoints. For q ∈ C (Q), the action in-
tegral is defined as

S(q) =
∫ tN

t0

L(q, q̇) dt

Requiring that the first variation of this action vanishes, i.e. δS = 0, Hamilton’s
principle of stationary action yields the Euler-Lagrange equations of motion of a
conservative mechanical system

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
= 0 (1)

2.1.1 Energy Conservation

The total energy E : T Q →R of a Lagrangian L is given by

E(q, q̇) = q̇ · ∂L

∂q̇
− L(q, q̇)

It is conserved along a solution of the Euler-Lagrange equations (1). More generally,
solutions of (1) can be identified with the Lagrangian flow FL : [t0, tN ]×T Q → T Q

that takes a given initial state (q(t0), q̇(t0)) ∈ T Q forward in time to the actual state
at t ∈ [t0, tN ] via F t

L : T Q → T Q with F t
L : (q(t0), q̇(t0)) �→ (q(t), q̇(t)). In other

words, E ◦ F t
L = E for all t ∈ [t0, tN ], i.e. the total energy is conserved along the

Lagrangian flow.

2.1.2 Symplecticity

For hyperregular Lagrangians, the Lagrangian two form ΩL : T (T Q) × T (T Q) →
R (being a two form means that ΩL is a skew symmetric bilinear form on T Q) is
symplectic, i.e. it is a closed, weakly nondegenerate two form. A coordinate expres-
sion of the Lagrangian symplectic form is given by

ΩL(q, q̇) = ∂2L

∂qi∂q̇j
dqi ∧ dqj + ∂2L

∂q̇i∂q̇j
dq̇i ∧ dqj

where Einstein’s summation convention is used. An important property of the La-
grangian flow is that it is symplectic in the sense that it preserves the Lagrangian
symplectic form, i.e.

(
F t

L

)∗
(ΩL) = ΩL

where (F t
L)∗(ΩL) denotes the pull back of ΩL. As a consequence of symplecticity,

the volume in state space is conserved.
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2.1.3 Noether’s Theorem

Another key property of the Lagrangian flow is its behaviour with respect to the
action of a Lie group G (with Lie algebra g). The Lagrangian is said to be G-
invariant, if the Lie group acts on the configuration via φ : G × Q → Q and on
the velocity via the tangent lift φT Q : G × T Q → T Q and L ◦ φ

T Q
g = L holds for

all g ∈ G with φ
T Q
g (q, q̇) = φT Q(g, (q, q̇)). In this case, the group is said to be a

symmetry of the Lagrangian, leading to a momentum map JL : T Q → g∗ that is
preserved along the Lagrangian flow, so that JL ◦ F t

L = JL for all times t ∈ [t0, tN ].

Example 1 Some classical examples of symmetries are the invariance of the La-
grangian with respect to translation and rotation, leading to the conservation of total
linear momentum and total angular momentum, respectively.

2.2 Constrained Lagrangian Dynamics

Now, let the motion be constrained by the vector valued function of holonomic,
scleronomic constraints requiring g(q) = 0 ∈ R

m. It is assumed that 0 ∈ R
m is a

regular value of the constraints, such that

C = g−1(0) = {
q
∣∣ q ∈ Q,g(q) = 0

} ⊂ Q

is an (n − m)-dimensional submanifold, called constraint manifold. Just as C can
be embedded in Q via i : C → Q, its 2(n − m)-dimensional tangent bundle

T C = {
(q, q̇)

∣∣ (q, q̇) ∈ TqQ,g(q) = 0,G(q) · q̇ = 0
} ⊂ T Q (2)

can be embedded in T Q in a natural way by tangent lift T i : T C → T Q. Here and
in the sequel G(q) = Dg(q) denotes the m × n Jacobian of the constraints. Note
that according to (2), admissible velocities are constrained to the null space of the
constraint Jacobian.

A Lagrangian L : T Q → R can be restricted to LC = L|T C : T C → R. To in-
vestigate the relation of the dynamics of LC on T C and the dynamics of L on
T Q, the following notation is used. Let q0, qN ∈ C be fixed endpoints and consider
C (Q) = C ([t0, tN ],Q,q0, qN) and the corresponding space of curves in C denoted
by C (C) = C ([t0, tN ],C, q0, qN). Furthermore, set C (Rm) = C ([t0, tN ],Rm) to be
the space of curves λ : [t0, tN ] →R

m with no boundary conditions.

Theorem 1 Suppose that 0 is a regular value of the scleronomic holonomic con-
straints g : Q → R

m and set C = g−1(0) ⊂ Q. Let L : T Q → R be a Lagrangian
and LC = L|T C its restriction to T C. Then the following statements are equivalent:

(i) q ∈ C (C) extremises the action integral SC(q) = ∫ tN
t0

LC(q, q̇) dt and hence

solves the Euler-Lagrange equations for LC .
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(ii) q ∈ C (Q) and λ ∈ C (Rm) satisfy the constrained Euler-Lagrange equations

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
− GT (q) · λ = 0

g(q) = 0
(3)

(iii) (q,λ) ∈ C (Q ×R
m) extremise

S̄(q,λ) =
∫ tN

t0

L(q, q̇) − gT (q) · λdt (4)

and hence, solve the Euler-Lagrange equations for the augmented Lagrangian
L̄ : T (Q ×R

m) → R defined by L̄(q,λ, q̇, λ̇) = L(q, q̇) − gT (q) · λ.

The proof given in [24] makes use of the Lagrange multiplier theorem (see
e.g. [1]). The term −GT (q) · λ ∈ (T C)⊥ in (3)1 represents the constraint forces
that prevent the system from deviation of the constraint manifold. As can be seen,
the constrained system on T C is a standard Lagrangian systems and so it has the
usual conservation properties. In particular, the constrained Lagrangian system LC :
T C → R has a flow map that preserves the symplectic two form ΩLC = (T i)∗ΩL.
Furthermore, Noether’s theorem holds for both, the unconstrained as well as the
constrained case. Thus, if the lifted group action leaves LC on T C invariant, the
same momentum map is preserved.

3 Discrete Variational Dynamics

The variational theory of discrete mechanics provides a theoretical framework that
parallels continuous variational dynamics. Discrete analogues to the Euler-Lagrange
equations, the symplectic structure and Noether’s theorem are derived from a dis-
crete Lagrangian by performing similar steps as in the continuous theory.

3.1 Discrete Variational Dynamics—Definitions and Properties

Corresponding to T Q, the discrete state space is defined by Q ×Q which is locally
isomorphic to T Q. For a discrete time grid {t0, t0 + �t, . . . , t0 + N�t = tN } with
N ∈ N and constant step size �t ∈R, let Cd(Q) = C ({t0, t0 + �t, . . . , t0 + N�t =
tN },Q,q0, qN) denote the space of discrete trajectories qd : {t0, t0 + �t, . . . , t0 +
N�t = tN } → Q satisfying qd(t0) = q0 and qd(tN ) = qN for given q0, qN ∈ Q.
A continuous trajectory q : [t0, tN ] → Q is replaced by a discrete trajectory qd =
{qk}Nk=0. Here, qk = qd(t0 + k�t) is viewed as an approximation to q(t0 + k�t).

According to the key idea of variational integrators, the variational principle is
discretised rather than the resulting equations of motion. The action integral is ap-
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proximated in a time interval [tk, tk+1] using the discrete Lagrangian Ld : Q×Q →
R via

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt (5)

The quadrature used to approximate the integral in (5) determines the actual time
stepping scheme (6) and in particular its order of accuracy. For qd ∈ Cd(Q), varia-
tion of the discrete action sum

Sd(qd) =
N−1∑
k=0

Ld(qk, qk+1)

reads

δSd = δqT
0 · D1Ld(q0, q1) +

N−1∑
k=1

δqT
k · (D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

)

+ δqT
N · D2Ld(qN−1, qN)

Requiring its stationarity for all {δqk}N−1
k=1 and δq0 = δqN = 0 yields the discrete

(unconstrained) Euler-Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0 for k = 1, . . . ,N − 1 (6)

For a given initial configuration q0 = q(t0) ∈ Q and initial velocity q̇(t0) ∈ Tq0Q

with corresponding initial conjugate momentum

p0 = p(t0) = ∂L(q(t0), q̇(t0))

∂q̇
∈ T ∗

q0
Q

the first discrete configuration can be computed by solving

p0 = −D1Ld(q0, q1)

Then for two given subsequent configurations, (6) can be used to integrate forward
in time. See [23, 24] for the theory on (discrete) Legendre transforms.

3.1.1 Symplecticity

The discrete object corresponding to the Lagrangian flow is the discrete Lagrangian
map FLd

: Q × Q → Q × Q with FLd
: (qk−1, qk) �→ (qk, qk+1) according to (6).

One can show that the discrete Lagrangian map inherits the properties we sum-
marised for the continuous Lagrangian flow. That means the discrete Lagrangian
symplectic form with coordinate expression

ΩLd
(q0, q1) = ∂2Ld

∂qi
0∂q

j

1

dqi
0 ∧ dq

j

1

is preserved under the discrete Lagrangian map, i.e.

(FLd
)∗(ΩLd

) = ΩLd

and we say that FLd
is symplectic.
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3.1.2 Energy Behaviour

Due to the symplecticity of the discrete Lagrangian map, backward error analysis
can be used to prove that no energy is dissipated numerically, see [12]. As a conse-
quence, the total energy oscillates (with a small amplitude) close to the real value
and no energy is gained or lost artificially along the discrete trajectory qd . Thus,
the integration runs very stable, even when relatively large time steps are used. We
speak about good longterm energy behaviour.

On the other hand, for exactly energy conserving time stepping schemes, the
energy is conserved up to numerical accuracy, see e.g. [4] and many references
therein. It is well known [9] that numerical integrators based on constant time steps
cannot be symplectic and exactly energy conserving at the same time.

3.1.3 Discrete Noether’s Theorem

Consider a given discrete Lagrangian system Ld : Q × Q → R which is invariant
under the lift φQ×Q : G × (Q × Q) → Q × Q of the action φ : G × Q → Q, i.e.
Ld ◦ φ

Q×Q
g = Ld for all g ∈ G. Then the corresponding discrete Lagrangian mo-

mentum map JLd
: Q × Q → g∗ is a conserved quantity of the discrete Lagrangian

map, such that JLd
◦ FLd

= JLd
. Note that discrete momentum maps are conserved

exactly, i.e. up to the numerical accuracy to which the (often nonlinear) discrete
equations of motion are solved.

Example 2 As in the continuous case, most common classical examples are the con-
servation of total linear momentum and total angular momentum, when the discrete
Lagrangian is invariant with respect to translation and rotation, respectively. In gen-
eral, a value of the momentum map can be computed from the initial data, and this
value is exactly preserved along the discrete trajectory.

3.2 Constrained Discrete Variational Dynamics

Let q0, qN ∈ C be fixed end points. Consider Cd(Q) = C ({t0, t0 + �t, . . . , t0 +
N�t = tN },Q,q0, qN) and let Cd(C) denote the corresponding set of discrete tra-
jectories in C. Furthermore, let Cd(Rm) = C ({t0, t0 +�t, . . . , t0 +N�t = tN },Rm)

be the set of maps λd : {t0, t0 + �t, . . . , t0 + N�t = tN } → R
m with no boundary

conditions. Then, λd = {λk}N−1
k=0 with λk = λd(tk) approximates the Lagrange mul-

tiplier λ(tk) at tk = t0 + k�t .
To include scleronomic holonomic constraints in the discrete variational prin-

ciple, the integral over [tk, tk+1] of the scalar product of the constraints and the
corresponding Lagrange multiplier in (4) is approximated by the trapezoidal rule

1

2
gT

d (qk) · λk + 1

2
gT

d (qk+1) · λk+1 ≈
∫ tk+1

tk

gT (q) · λdt

whereby gT
d (qk) = �tgT (qk) is used and let GT

d (qk) = DgT
d (qk).
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Analogue to Theorem 1, the relation between the constrained discrete Lagrangian
system on Q×Q and that corresponding to a discrete Lagrangian restricted to C×C

is stated in the following theorem which has again been taken from [24].

Theorem 2 Suppose that 0 is a regular value of the scleronomic holonomic con-
straints g : Q → R

m and set C = g−1(0) ⊂ Q. Let Ld : Q × Q → R be a discrete
Lagrangian and LC

d = Ld|C×C
its restriction to C ×C. Then the following statements

are equivalent:

(i) qd = {qk}Nk=0 ∈ Cd(C) extremises the discrete action SC
d = Sd|C×C

and hence
solves the discrete Euler-Lagrange equations for LC

d .
(ii) {qk}Nk=0 ∈ Cd(Q) and {λk}N−1

k=1 ∈ Cd(Rm) satisfy the constrained discrete
Euler-Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) − GT
d (qk) · λk = 0

g(qk+1) = 0

(iii) (qd, λd) ∈ Cd(Q × R
m) extremise S̄d(qd, λd) = Sd(qd) − 〈λd, gd(qd)〉 and

hence, solve the Euler-Lagrange equations for the augmented Lagrangian L̄d :
(Q ×R

m) × (Q ×R
m) →R defined by

L̄d(qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 1

2
gT

d (qk) · λk − 1

2
gT

d (qk+1) · λk+1

As in the continuous case, the structure preservation properties remain untouched
by the presence of constraints, the constrained discrete Lagrangian map preserves
the standard discrete symplectic form on C × C and the same discrete momentum
maps that are preserved in the discrete unconstrained case (again, the preserved
value can be computed as the continuous momentum maps at the initial condi-
tion).

4 Variational Multirate Integrator

Having reviewed Lagrangian dynamics for constrained systems in the time continu-
ous case in Sect. 2 and in the discrete setting in Sect. 3, we now focus on constrained
systems with dynamics on different time scales.

4.1 Slow and Fast Potential and Constraints

Let the fact that the Lagrangian contains slow and fast dynamics be characterised
by the possibility to additively split the potential energy U(q) = V (q) + W(q) into
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a slow potential V and a fast potential W . Then, the constrained Euler-Lagrange
equations of motion on a time interval [t0, tN ] ⊂ R

∂V

∂q
+ ∂W

∂q
− d

dt

∂T

∂q̇
−

(
∂g

∂q

)T

· λ = 0

g(q) = 0

(7)

can be derived via Hamilton’s principle requiring stationarity of the action. See
Sect. 5 for examples of such additively split potentials.

4.2 Slow and Fast Variables

We further assume that the n-dimensional configuration variable q can be di-
vided into ns slow variables qs ∈ Qs and nf fast variables qf ∈ Qf such that
Qs × Qf = Q and q = (qs, qf ) with ns + nf = n. Let the fast potential depend
of the fast degrees of freedom only, i.e. W = W(qf ) while the slow potential
V = V (q) depends on the complete configuration variable as does the constraint
function g = g(q). With these assumptions, the Euler-Lagrange equations (7) take
the form

∂V

∂qs
− d

dt

∂T

∂q̇s
−

(
∂g

∂qs

)T

· λ = 0

∂V

∂qf
+ ∂W

∂qf
− d

dt

∂T

∂q̇f
−

(
∂g

∂qf

)T

· λ = 0

g(q) = 0

Remark 1 If in addition, the slow potential depends on the slow variables only and
on top of that the kinetic energy does not contain any entries coupling q̇s and q̇f ,
then the system is completely decoupled and simulation can be performed inde-
pendently in parallel, without any exchange of information. This case is trivial and
we focus on the scenario described above. Note that the inclusion of additional po-
tentials or constraint functions depending on the fast or the slow variable only is
straightforward.

4.3 Discrete Variational Principle on Macro and Micro Grid

Rather than choosing one time grid for the approximation as for standard varia-
tional integrators, for the multirate integrator, two different time grids are intro-
duced, see Fig. 1. With the time steps �T and �t (where �T ≥ �t), a macro time
grid {tk = k�T | k = 0, . . . ,N} and a micro time grid {tmk = k�T + m�t | k =
0, . . . ,N − 1,m = 0, . . . , p} are defined. Note that except for the boundary nodes
t0, tN , two micro time nodes coincide with a macro time node, i.e. t

p

k−1 = t0
k = tk
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Fig. 1 Macro and micro time grid

for k = 1, . . . ,N − 1, and �T = p�t , see Fig. 1. The macro time grid provides the
domain for the discrete macro trajectory of the slow variables

qs
d = {

qs
k

}N

k=0 with qs
k ≈ qs(tk)

and the discrete micro trajectory of the fast variables lives on the micro grid

q
f
d = {

q
f
k

}N−1
k=0 = {{

q
f,m
k

}p

m=0

}N−1
k=0 with q

f,m
k ≈ qf

(
tmk

)

Since the constraints depend on the complete configuration variables, the Lagrange
multipliers cannot be separated in a fast and a slow part and must be computed on
the fine time grid. Thus, the discrete trajectory of Lagrange multipliers takes the
form

λd = {λk}N−1
k=0 = {{

λm
k

}p

m=0

}N−1
k=0 with λm

k ≈ λ
(
tmk

)

Note that t
p

k−1 = t0
k and therefore also q

f,p

k−1 = q
f,0
k and λ

p

k−1 = λ0
k hold.

As an approximation to S̄ in (4), the augmented discrete action is defined as

S̄d

(
qs
d, q

f
d , λd

) =
N−1∑
k=0

[
Ld

(
qs
k , q

s
k+1, q

f
k

)− hd

(
qs
k , q

s
k+1, q

f
k , λk

)]
(8)

The discrete Lagrangian Ld = Td − Vd − Wd approximates
∫ tk+1
tk

L(q, q̇) dt and
reads

Ld

(
qs
k , q

s
k+1, q

f
k

) = Td

(
qs
k , q

s
k+1, q

f
k

)− Vd

(
qs
k , q

s
k+1, q

f
k

)− Wd

(
q

f
k

)
(9)

while hd is approximating
∫ tk+1
tk

g(q)T · λdt . Omitting the arguments of Ld and hd ,
stationarity of the discrete action

δS̄d =
N−1∑
k=0

{
Dqs

k
(Ld + hd) · δqs

k + Dqs
k+1

(Ld + hd) · δqs
k+1

+
p∑

m=0

[
D

q
f,m
k

(Ld + hd) · δqf,m
k + Dλm

k
hd · δλm

k

]} = 0

with independent variations δqs
k for k = 0, . . . ,N and δq

f,m
k , δλm

k for k = 0, . . . ,

N − 1 and m = 0, . . . , p yields the discrete Euler-Lagrange equations. Let k = 0
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and assume that an initial configuration (qs
0, q

f,0
0 ) being consistent with the con-

straints, i.e. g((qs
0, q

f,0
0 )) = 0, and an initial conjugate momentum (ps

0,p
f,0
0 ) is

given. Then for k = 0, the unknowns qs
1, q

f,1
0 , . . . , q

f,p

0 and λ0
0, . . . , λ

p−1
0 are de-

termined by solving the following set of equations for m = 1, . . . , p − 1.

(IC)s Dqs
0

(
Ld

(
qs

0, q
s
1, q

f

0

)+ hd

(
qs

0, q
s
1, q

f

0 , λ0
)) = −ps

0

(IC)f D
q

f,0
0

(
Ld

(
qs

0, q
s
1, q

f

0

)+ hd

(
qs

0, q
s
1, q

f

0 , λ0
)) = −p

f,0
0

Dλ1
0
hd

(
qs

0, q
s
1, q

f

0 , λ0
) = 0

(DEL)
f,m

0 D
q

f,m
0

(
Ld

(
qs

0, q
s
1, q

f

0

)+ hd

(
qs

0, q
s
1, q

f

0 , λ0
)) = 0

D
λm+1

0
hd

(
qs

0, q
s
1, q

f

0 , λ0
)

+ δm,p−1Dλ0
1
hd

(
qs

1, q
s
2, q

f

1 , λ1
) = 0

(10)

These equations can be considered as initial conditions, since they determine the
unknowns in the first macro time interval from given initial data. Note that variation
with respect to λ0

0 is unnecessary, since the initial configuration does fulfil the con-
straints a priori. Analog to the variational integrators for constrained systems on a
single time grid as described in Sect. 3.2 (see also e.g. [21, 24]), here variation with
respect to λm

0 yields the condition g((qs
0, q

f,m

0 )) = 0. Therefore, the last condition

g((qs
1, q

f,p

0 )) = 0 is composed by contributions from variation with respect to the
multipliers λ

p

0 and λ0
1 (which are equal) which is ensured using the Dirac delta in

the last equation. To proceed further in time for k = 1, . . . ,N − 1 (assuming that
qs
k−1, q

s
k , q

f,0
k−1, . . . , q

f,p

k−1 are given), solving the following discrete Euler-Lagrange

equations for m = 1, . . . , p − 1 determines qs
k+1, q

f,1
k , . . . , q

f,p
k and λ0

k, . . . , λ
p−1
k .

(DEL)sk
Dqs

k

(
Ld

(
qs
k , q

s
k+1, q

f
k

)+ Ld

(
qs
k−1, q

s
k , q

f

k−1

)

+ hd

(
qs
k , q

s
k+1, q

f
k , λk

)+ hd

(
qs
k−1, q

s
k , q

f

k−1, λk−1
)) = 0

(DEL)
f,0
k

D
q

f,0
k

(
Ld

(
qs
k , q

s
k+1, q

f
k

)+ Ld

(
qs
k−1, q

s
k , q

f

k−1

)

+ hd

(
qs
k , q

s
k+1, q

f
k , λk

)+ hd

(
qs
k−1, q

s
k , q

f

k−1, λk−1
)) = 0

Dλ1
k
hd

(
qs
k , q

s
k+1, q

f
k , λk

) = 0

(DEL)
f,m
k

D
q

f,m
k

(
Ld

(
qs
k , q

s
k+1, q

f
k

)+ hd

(
qs
k , q

s
k+1, q

f
k , λk

)) = 0

D
λm+1

k
hd

(
qs
k , q

s
k+1, q

f
k , λk

)

+ δm,p−1(1 − δk,N−1)Dλ0
k+1

hd

(
qs
k+1, q

s
k+2, q

f

k+1, λk+1
) = 0

(11)

Again, at the macro nodes the constraint equations include an additional term
which is added using the Dirac delta. Note however, that this term does not exist at
the very end node tN .
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Remark 2 Due to the variational derivation of the multirate integrator, we can state
that a discrete symplectic form is preserved along the discrete solution trajectory.
Furthermore, if the discrete Lagrangian is invariant under a group action on the
macro grid, then the corresponding momentum map is preserved at the macro time
nodes {tk}Nk=0.

4.4 Discrete Action—Influence of Quadrature

The quadrature rules in use for the discrete Lagrangian (9) and the discrete con-
straint term in (8) determine the degree of coupling between the discrete equations
(10) and (11), respectively. This can range from a fully implicit scheme over vari-
ants being explicit in the macro and implicit in the micro quantities to fully explicit
schemes. We consider Lagrangians of the form L(q, q̇) = T (q̇) − V (q) − W(qf ).

4.4.1 Kinetic Energy

Assume that the kinetic energy can be decomposed in a contribution from the fast
and the slow variables, i.e.

T (q̇) = 1

2
q̇T · M · q̇ = 1

2

(
q̇s

)T · Ms · q̇s + 1

2

(
q̇f

)T · Mf · q̇f

where Ms and Mf are the mass matrices for the slow and fast variables, respec-
tively, yielding the total mass matrix as M = diag(Ms,Mf ). In the sequel the ve-
locities q̇s and q̇f are approximated using backward difference operators on the
macro and micro grid. Then the discrete kinetic energy is defined on the time inter-
val [tk, tk+1] as

Td = �T

2

(
qs
k+1 − qs

k

�T

)T

· Ms ·
(

qs
k+1 − qs

k

�T

)

+
p−1∑
m=0

�t

2

(
q

f,m+1
k − q

f,m
k

�t

)T

· Mf ·
(

q
f,m+1
k − q

f,m
k

�t

)

4.4.2 Constraints

The discrete function hd approximates the integral
∫ tk+1
tk

g(q)T · λdt . Similar to the
approximation on a standard time grid as described in Sect. 3.2 (see also [21]), a
trapezoidal rule is used here.

(
qs
k , q

s
k+1, q

f
k , λk

) =
p−1∑
m=0

[
1

2
gT

d

(
qs
k , q

s
k+1, q

f,m
k

) · λm
k

+ 1

2
gT

d

(
qs
k , q

s
k+1, q

f,m+1
k

) · λm+1
k

]
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For the discrete constraint function gd , an intuitive example is the following.

Example 3 The slow variables qs can be linearly interpolated between qs
k and qs

k+1
on the micro time grid as

q
s,m
k = 1

p

(
(p − m)qs

k + mqs
k+1

)
for m = 0, . . . , p (12)

Then, the discrete constraint function reads

gd

(
qs
k , q

s
k+1, q

f,m
k

) = �tg
((

q
s,m
k , q

f,m
k

))

4.4.3 Potential Energy

When standard variational integrators are used for problems with very stiff poten-
tials, their discrete counterparts are often based on midpoint evaluations of the con-
tinuous potentials such that the corresponding integration scheme is implicit. On
the other hand, softer potentials can be approximated by evaluations of the continu-
ous potential on the left or right node yielding explicit schemes (at least as long as
there are no constraints present), which are of course much cheaper regarding the
computational costs. For the multirate integrator, a large variety of combinations is
possible.

Example 4 (Implicit fast and explicit slow forces) Let’s first consider a special case
where the dynamics is not subject to any constraints. Then, choosing an affine com-
bination as approximation in the slow potential that involves only macro nodes

Vd

(
qs
k , q

s
k+1, q

f
k

) = �T
(
αV

((
qs
k , q

f,0
k

))+ (1 − α)V
((

qs
k+1, q

f,p
k

)))
(13)

with 0 ≤ α ≤ 1 and a micro node based midpoint rule in the fast potential

Wd

(
q

f
k

) =
p−1∑
m=0

�tW

(
q

f,m
k + q

f,m+1
k

2

)
(14)

leads to discrete conservative forces in the discrete Euler-Lagrange equations which
are explicit for the slow potential and implicit for the fast one. Thus, only few eval-
uations of the gradient of V are necessary which is advantageous when the slow
potential’s evaluation is very costly compared to the fast one. The resulting scheme
can be interpreted as a variational splitting method which is symmetric and sym-
plectic, since it is a symmetric composition of symmetric and symplectic methods.
When this method is formulated with α = 1

2 on only one time grid with a constant
time step (i.e. �t = �T and p = 1) and without splitting the configuration vari-
able into fast and slow variables, one obtains the IMEX method in [28] which is an
example of an impulse method, see [12] and references therein.
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Example 5 (Fully implicit scheme) In this example, the slow variables are interpo-
lated according to (12) and then midpoints are inserted into the slow potential

Vd

(
qs
k , q

s
k+1, q

f
k

) =
p−1∑
m=0

�tV

((
q

s,m
k + q

s,m+1
k

2
,
q

f,m
k + q

f,m+1
k

2

))
(15)

and into the fast potential as in (14). As a result, the discrete Euler-Lagrange equa-
tions are fully coupled and have to be solved simultaneously using an iteration
method. Another quadrature yielding a fully implicit scheme for 0 ≤ α ≤ 1 is given
by

Vd

(
qs
k , q

s
k+1, q

f
k

) =
p−1∑
m=0

�t
(
αV

((
q

s,m
k , q

f,m
k

))+ (1 − α)V
((

q
s,m+1
k , q

f,m+1
k

)))

(16)

Example 6 (Fully explicit scheme) In the absence of constraints, using the affine
combination of the slow potential evaluated at the macro nodes in (13) and the affine
combination of micro node evaluations of the fast potential

Wd

(
q

f
k

) =
p−1∑
m=0

�t
(
αW

(
q

f,m
k

)+ (1 − α)W
(
q

f,m+1
k

))

with 0 ≤ α ≤ 1 leads to discrete Euler-Lagrange equations (11) that can subse-
quently be solved without iteration, i.e. first q

f,1
k is obtained from (DEL)

f,0
k , then

(DEL)
f,m
k yields q

f,m+1
k for m = 1, . . . , p − 1. At any time, qs

k+1 can be computed

from (DEL)sk . For α = 1
2 , this choice of quadrature leads to the scheme in [8] for the

special case that a synchronised time grid is used there.

More general multirate schemes are obtained for different choices and combina-
tions of quadrature. Depending on the complexity of the evaluation of the potential
functions and their gradients, the computational costs of the overall simulation is
heavily influenced by the choice of quadrature.

5 Numerical Examples

5.1 Fermi-Pasta-Ulam Problem

The performance of the presented multirate approach is first demonstrated by means
of the Fermi-Pasta-Ulam (FPU) problem (see e.g. [12]). Consider 2l unit point
masses that are chained together by soft and stiff springs as shown in Fig. 2. With an
appropriate choice of the coordinates it is possible to separate the slow and the fast
variables of the multirate system. The slow variables qs

i , i = 1, . . . , l, correspond
to the location of i-th stiff spring’s centre, while the length of i-th stiff spring is a
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Fig. 2 Fermi-Pasta-Ulam problem: 2l point masses that are chained together by soft and stiff
springs

fast variable q
f
i , i = 1, . . . , l. The Lagrangian is composed by the kinetic energy of

slow and fast variables and the spring potentials

L = 1

2

l∑
i=1

((
q̇s
i

)2 + (
q̇

f
i

)2)

− 1

4

[(
qs

1 − q
f

1

)4 +
l−1∑
i=1

(
qs
i+1 − q

f

i+1 − qs
i − q

f
i

)4 + (
qs
l + q

f
l

)4

]

− ω2

2

l∑
i=1

(
q

f
i

)2

where the second term is the soft spring potential V ((qs, qf )) depending on the
complete configuration variable, while the third term is the stiff potential W(qf )

that depends on the spring lengths only and includes the stiffness ω ∈ R which is
supposed to be large. For this system, no constraints are present. The Fermi-Pasta-
Ulam problem is a multirate system, i.e. it shows different behaviour on different
time scales (confirm [12]). The vibration of the stiff linear springs takes place on
the time scale ω−1, while ω0 is the time scale of the soft nonlinear springs’ mo-
tion. Furthermore, on the time scale ω, energy exchanges among the stiff springs.
For the simulations, we consider 6 point masses (i.e. l = 3) with mass m = 1 and
the stiffness of the stiff springs is ω = 50. The system has an initial displacement
qs

1(0) = 1 and an initial extension q
f

1 (0) = ω−1, initial velocities are q̇s
1(0) = 1 and

q̇
f

1 (0) = 1. All remaining initial values are zero.
In this simulation, the quadrature (16) with α = 1 is used for the slow potential

and the midpoint rule (14) for the fast one. As a reference solution, a standard vari-
ational integrator (p = 1) with the time step �T = 0.01 is used. This time step is
small enough to resolve the fast oscillations of the stiff springs’ extensions. In the
left hand side plot in Fig. 3, the configuration and momentum of the first slow and
the first fast variable (i.e. the first stiff spring’s centre and the length of the first stiff
spring) are shown. Using a bigger time step �T = 0.3, the fast motion cannot be
captured anymore as can be seen on the right hand side of Fig. 3.

Keeping a macro time step of �T = 0.3, the multirate variational integrator is
used for a different number of intermediate micro steps. In Fig. 4, micro (red solid)
and macro (blue dashed) solutions for configuration and momentum of the first slow
and the first fast variable are shown for p = 10 micro steps on the left and for p = 30
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Fig. 3 FPU problem. Simulation results using a standard variational integrator (p = 1) with time
step �T = 0.01 (left) and �T = 0.3 (right). Configuration (a, b) and momentum (c, d) of first
slow (top) and first fast (bottom) variable

micro steps on the right. For an increasing number of micro steps, the approxima-
tion of the fast variables becomes better. For p = 30, the micro step size �t = 0.01
is equal to the step size of the standard variational integrator in the reference solu-
tion. As a result, the discrete solution of the fast variable nicely coincides with the
reference solution although the macro solution alone (red solid) does not resolve the
fast dynamics.

In Fig. 5, the exchange of energy between the stiff springs (blue dashed, black
dash-dotted, cyan dashed) is shown. The total oscillatory energy, i.e. the sum of the
stiff springs’ energy (red solid) remains close to a constant value (this is called an
adiabatic invariant of the Hamiltonian system, see [12]) which is nicely visible in
Fig. 5(a) for the reference solution. Using the macro time step T = 0.3 and p = 1
(Fig. 5(b)), the total energy oscillates much more and cannot be considered a con-
stant value anymore. However, for p = 10 (Fig. 5(c)) and p = 30 (Fig. 5(d)) micro
steps the oscillations become smaller, and for p = 30 the same qualitative long term
energy behaviour as for the reference solution is obtained.

Computational costs for different examples of quadrature rules are depicted in
Fig. 6. Computation times for the simulation of tN = 30 seconds are shown in the
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Fig. 4 FPU problem. Simulation results using a multirate variational integrator with macro time
step �T = 0.3 and p = 10 (left) and p = 30 (right) micro steps. Configuration (a, b) and momen-
tum (c, d) of first slow (top) and first fast (bottom) variable

left hand side plot for the fully implicit scheme (Example 5: (14) and (15)) and on
the right hand side for a quadrature leading to an explicit treatment of the fast poten-
tial and an implicit treatment of the slow potential (Example 4: (14) and (13)). All
simulations are based on a constant micro time step of �t = 0.01. For an increasing
number p of micro steps per macro time step (thus for an increasing macro step
�T = p�t), the computational costs decrease as expected. Thus, the resolution for
the fast dynamics stays constant and fine enough, while the overall computational
costs get lower since the number of slow potential evaluations decreases.

5.2 Triple Spherical Pendulum

For the triple spherical pendulum in Fig. 7, the slow variable qs = q1 ∈ R
3 is the

placement of the large mass (mslow
1 = 100), while qf = (q2, q3) ∈ R

6 contains the
placements of the two smaller masses (mfast

2 = mfast
3 = 2). The slow potential energy

reads V (q) = qT · M · ḡ with the constant mass matrix M ∈ R
9×9 and the gravity
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Fig. 5 FPU problem. Energy of the three stiff springs (blue dashed, black dash-dotted, cyan
dashed) and the total oscillatory energy (red solid)

Fig. 6 FPU problem. Computation time for the simulation of tN = 30 seconds based on a constant
micro time step �t = 0.01 and an increasing number p of micro nodes per macro step �T
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Fig. 7 Triple pendulum
consisting of one large slow
and two small fast masses

vector ḡ ∈ R
9 acting in the negative e3-direction with acceleration 9.81. Massless

rigid links of lengths l1 = 20 and l2 = 3 connect the large mass to the origin and the
first small mass to the large one, respectively. They give rise to a purely slow con-
straint gs(qs) = 1

2 (q2
1 − l2

1) and a constraint gsf (q) = 1
2 ((q2 − q1)

2 − l2
2) coupling

the slow and the first fast mass. Both constraints are combined into the vector valued
constraint function g = (gs, gsf ). The second small mass is connected to the first
one by a linear spring with the stiffness ω = 5000, thus the fast potential takes the
form W(qf ) = 1

2ω((q3 − q2)
2 − l2

3) where l3 = 3 is the length of the unstretched
spring. Initially, the triple pendulum is aligned with the e1-axis and the spring is pre-
stretched by 2. The slow mass has an initial velocity of q̇s(0) = (0,2,−3) and the
fast masses’ initial velocity is q̇f (0) = (0,3l2,−l2, l2 + l3,5(l2 + l3),−(l2 + l3)).

In the simulation of the triple pendulum’s dynamics, the midpoint evaluation
(14) is used in the fast potential. Since the gravity potential is a linear function, it
yields a constant force vector, which is independent of the choice of quadrature.
The two left hand side plots in Fig. 8 show the evolution of the configuration and
conjugate momentum of the second fast mass, being computed via a standard vari-
ational integrator (p = 1) with �T = 0.001 as a reference solution. The right hand
side plots show the results from the variational multirate scheme with �T = 0.08
and p = 5, while the corresponding results for p = 10 and p = 20 are depicted in
Fig. 9. The lines connect the values at the macro nodes and the intermediate micro
node values are indicated by little crosses. One can see clearly, that the macro grid
with �T = 0.08 is too coarse to resolve the fast motion. For an increasing num-
ber of micro nodes, the fast oscillations of the second small mass become more
and more visible. Finally, a numerical indicator for the variational character of the
proposed method is given in Fig. 10. The triple pendulum’s Lagrangian is invariant
with respect to rotation about the gravitational axis, thus the corresponding angular
momentum component L3 is conserved exactly along the trajectory. The algorithm
does conserve L3 to numerical accuracy, independent of the macro or micro time
step size.
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Fig. 8 Triple pendulum. Simulation results using a standard variational integrator (p = 1) with
time step �T = 0.001 (left) and a multirate variational integrator with macro time step �T = 0.08
and p = 5 (right) micro steps. Configuration (a, b) and momentum (c, d) of second fast mass mfast

3

6 Conclusion

A unified framework for the derivation of different multirate integrators for con-
strained dynamical systems is presented. All schemes are derived in closed form via
a discrete variational principle on a time grid consisting of macro and micro time
nodes. Being based on a discrete version of Hamilton’s principle, the resulting vari-
ational multirate integrators are symplectic and momentum preserving integration
schemes and also exhibit good energy behaviour. The choice of quadrature in the
slow and fast potentials of the system can be adapted to the simulation goal like
e.g. a low number of function evaluations of a costly potential or obtaining a partly
of fully explicit scheme. In particular, if the number of micro nodes is large enough,
fast oscillations can be resolved without solving for the slow variables on the mi-
cro grid. This leads to savings in the computational costs. This unified variational
framework allows the analysis of a large class of multirate schemes, which has to be
done in future work with particular focus on stability problems caused by resonance
phenomena.
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Fig. 9 Triple pendulum. Simulation results using a multirate variational integrator with macro
time step �T = 0.08 and p = 10 (left) and with p = 20 (right) micro steps. Configuration (a, b)
and momentum (c, d) of second fast mass mfast

3

Fig. 10 Triple pendulum. Evolution of angular momentum using a standard variational integrator
(p = 1) with time step �T = 0.001 (left) and a multirate variational integrator with macro time
step �T = 0.08 and p = 20 (right) micro steps
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Symbolic Sensitivity Analysis of Multibody
Systems

Joydeep M. Banerjee and John McPhee

Abstract Sensitivity analysis is the process of apportioning changes in the response
of the system into the perturbations of the system parameters. In this chapter, we will
present an overview of various issues regarding sensitivity analysis of multibody
systems using symbolic formulations. Symbolic formulation for multibody system
simulation has been demonstrated to have a number of benefits (Samin and Fisette
in Symbolic Modeling of Multibody Systems, 2004), and has proven itself to be a
very important tool for efficient sensitivity analysis. We present a detailed litera-
ture review of the subject, highlighting the challenges and the diverse applications
of sensitivity analysis. We identify direct differentiation as a key approach towards
symbolic sensitivity for its simplicity and accuracy. We will discuss software imple-
mentation and issues regarding the efficiency of the process of sensitivity analysis.
We will present an overview of generation of sensitivity equations and using nu-
merical examples, we will outline different approaches towards the evaluation of
sensitivity information.

1 Introduction

Sensitivity analysis refers to the study of changes in system behavior brought about
by the changes in entities inherent to the system. Mathematically, it is a problem
of finding the derivative of a function with respect to the system parameters. To
illustrate the importance of sensitivity analysis, it is worthwhile to look into the
range of engineering applications that uses sensitivity analysis.

Importance Analysis The knowledge about the effect of parameter perturbation
on a predefined objective function or a performance measure is important for many
industrial applications and manufacturing processes. For example, during the man-
ufacturing process, stricter quality control needs to be imposed on the components
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that have greater influence on the overall performance of the system. Importance
analysis can be used to determine which parameters have greater effect on a partic-
ular criterion than others. In other words, importance analysis captures the essence
of sensitivity analysis, which is to relate uncertainties in the values of the model
parameters to the uncertainties in a desired objective function.

Process Sensitivity Efficient management of any process requires knowledge of
the key issues that affect the output of the process. For processes where an analytical
model is available, symbolic sensitivity studies can provide invaluable insight about
the critical parameters and optimization strategies.

Design and Optimization of Physical Systems From the simple mechanism
that closes the door to the complex spacecraft that sends humans to the moon,
proper design makes the difference between a complete failure and “a giant leap
for mankind”. For most practical systems of the modern age, iterative analysis and
design computation is expensive in terms of human time and resources. For this
reason, an optimization process is highly desired. Efficient optimization routines
require gradient information, which are essentially sensitivity data.

Model Simplification Model simplification is an attempt to capture the impor-
tant system behaviors by using a bare minimum of model entities and ignoring the
rest of the features. It is important for analysis, control design and simulation of
complex large scale systems. Essentially the model simplification problem reduces
to the problem of knowing which feature is important for the purpose. Sensitivity
analysis provides a systematic way to evaluate the effect of each entity on the desired
behavior.

Robust Design To achieve robust design for dynamic systems, one has to min-
imize the deviation of the system from its intended behavior due to changes in
the varying parameters. The problem essentially becomes a minimization problem
where gradient information or sensitivity data greatly improves efficiency and accu-
racy.

Parameter Identification Parameter identification finds the parameters for a
given system model to make it match a measured behavior as closely as possible.
Mathematically it is a problem of minimization of the difference between the model
prediction and the measured data. Sensitivity data enables the implementation of
efficient techniques to deal with this problem.

Optimal Control Sensitivity analysis is also used while designing optimal con-
trols, to identify control parameters and to study the behavior or the system with
changes in control parameters.

In light of the above discussion, it is quite clear how important it is to have an
efficient and accurate algorithm for sensitivity analysis. Unfortunately, for practical
systems, the sensitivity study is a very complicated problem. To illustrate further on
the topic, a mathematical description of the process is required at this point.
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2 The Formulation of Sensitivity Analysis

For a multibody system, the most general form of the governing equation is a set of
differential-algebraic equations or DAEs as shown in Eq. (1).

Mq̈ + 	T
qλ = Q

	 = 0
(1)

In the above equation, q is the vector of state variables, 	 is the vector of con-
straint equations, 	q is the Jacobian of the constraint vector and Q is the vector of
forcing functions, which are functions of the state variables, its derivatives and the
model parameters. The vector of Lagrange multipliers enforcing the constraints that
evolve from the closed loops of multibody systems is denoted by λ.

To perform sensitivity analysis on a system, we need to define some sort of a
measure for the physical characteristics that we want to study. For this reason we
define what is known as an objective function. For a general multibody system gov-
erned by Eq. (1), a performance measure can be formulated as shown in Eq. (2).

ψ = G
(
(q, q̇)|t=T ,p, T

)+
∫ T

t0

F(q, q̇,λ,p, t)dt (2)

In the above equation G and F represent arbitrary functions with sufficient
smoothness, p represents the set of parameters, and q, q̇ and λ are the generalized
displacements, velocities and the Lagrange multipliers respectively. The final time
for simulation is assumed to be dependent on the model parameters, i.e. T = y(p).

The term G is a function of the final time T , the model parameters p and the
values of q and q̇ evaluated at t = T . The term F is an objective function in an
integrated form where the integration is performed over a time span with the final
time being a function of the model parameters p.

The sensitivity of the objective function ψ can be obtained by differentiating
the expression with respect to p. Using the chain rule of differentiation on Eq. (2)
we obtain an expression for the sensitivity S. For convenient illustration, we use
subscripts to denote partial differentiation operation.

fb = ∂f

∂b
and S = dψ

dp
(3)

S = Gp + GT yp + Gq
(
qp|t=T + (q̇|t=T )yp

)+ Gq̇
(
q̇p|t=T + (q̈|t=T )yp

)

+
∫ T

t0

(Fqqp + Fq̇q̇p + Fλλp + Fp)dt + (F |t=T )yp (4)

Thus, to evaluate ψp, one needs to evaluate yp, qp, q̇p and λp, i.e. the derivatives
of T , q, q̇ and λ with respect to the parameters respectively.

There are different numerical, analytical and hybrid methods which can evalu-
ate these derivatives. The divided difference method, automatic differentiation tech-
niques, direct differentiation and adjoint variable method have been used by many
researchers to perform sensitivity analysis. Each of these methods has its own sets
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of advantages and disadvantages. For proper application of sensitivity analysis, it is
important to correctly identify the advantages and disadvantages of these methods
and consequently the applications where they can be used efficiently.

It is also necessary to address the issues encountered by these methods to improve
their suitability in different engineering applications. In the subsequent sections,
details of some of the existing methods are discussed with examples and simulation
results from kinematic and dynamic problems.

Many researchers who work in this area often face questions from individuals,
not acquainted with the challenges of sensitivity analysis, regarding the justification
of research efforts towards better methods of sensitivity analysis, which after all is
just a process that evaluates derivatives of certain quantities. To address this query,
it is important to emphasize the ever increasing complexity of the situation. With
the rapid increase in the size and complexity of the models being analyzed, the pro-
cess of providing efficient and accurate sensitivity information suitable for diverse
engineering applications is never “just” a differentiation.

3 Literature Review

Sensitivity analysis can be classified into two basic categories. Based on the domain
in which their results stay valid, sensitivity analysis can be described as either a
global or a local study.

The term “global sensitivity analysis” was introduced by noted econometrician
Edward Leamer [34]. In successful global sensitivity analysis, the conclusions re-
main valid for the entire range of values of the parameters [32]. Mathematically,
global sensitivity analysis can be performed by variance based methods like high
dimensional model representation [45] or sampling based methods like elementary
effect method and Monte Carlo filtering.

However, for practical multibody systems, these methods can be extremely inef-
ficient. Due to the requirement of large number of simulations, sampling and statis-
tical sensitivity analysis is often not suitable and much better performance can be
obtained by employing what is known as local sensitivity analysis.

On the other hand, local sensitivity analysis gives results that are valid only in
the neighborhood of the point at which they are evaluated. Since multibody systems
are non-linear in nature, local sensitivity information are generally not valid for the
entire range of possible parameter values. As a result, conclusions based on local
sensitivity analysis need a specification of operating point to become meaningful.

Direct differentiation, the adjoint variable method, automatic differentiation and
other analytical formulations can be used to evaluate local sensitivity informa-
tion.The fact that these methods yield locally valid information makes these ap-
proaches suitable for applications where exp These methods are suitable for opti-
mization algorithms and have been used in a wide range of engineering applications.
Haug and Serban [49] have stated

Dynamic design sensitivity analysis of multi-body systems represents the link between op-
timization tools and simulation tools.
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Finite Difference Formulation One of the easiest methods of local sensitivity
analysis for multibody systems is to use a finite difference scheme to evaluate the
gradient information of the objective function with respect to the parameters. This
method is probably the simplest to implement and can easily be extended to eval-
uate derivatives of higher orders. However it is often not worthwhile for practical
implementation because of its dependence on the perturbation size. Furthermore,
researchers [2, 5, 8] have shown that extra computational cost is necessary to deter-
mine optimal perturbations for the parameters for different scenarios.

Direct Differentiation The objective of local sensitivity analysis for a multibody
system is to evaluate the derivative of the state variables representing the system.
For models where symbolic equations are available, this can be accomplished by a
method known as the direct differentiation.

To perform sensitivity analysis on these models, one approach is to find a step-
ping stone between the system equations governing the state variables and the sen-
sitivity equations governing the sensitivities of the state variables. The simplest
method to derive the set sensitivity equations is to differentiate the governing equa-
tions symbolically. This is precisely the approach followed by the method of direct
differentiation [16, 33, 49].

In direct differentiation, a set of auxiliary equations known as the sensitivity
equations are generated from the original system equations by differentiating them
with respect to the model parameters. By solving these sensitivity equations, the
corresponding sensitivity information is obtained as functions of time.

To illustrate this method, we consider a system governed by a set of nonlinear
equations as shown in Eq. (5), where q is a vector of state variables, p is the vector
of model parameters and f is a vector of sufficiently smooth functions.

f(q,p, t) = 0 (5)

We also introduce a set of objective functions as given in Eq. (6).

g(q,p, t) = 0 (6)

In Eqs. (5) and (6), the number of state variables and the number of model param-
eters are n and m respectively i.e., q ∈ Rn and p ∈ Rm. The vectors f and g have n

and k functions respectively, f : Rm+n → Rn and g : Rm+n → Rk .
For this scenario, the objective of sensitivity analysis is the evaluation of the

derivative of g with respect to the model parameters p. Using matrix notations, the
expression for this derivative is shown in Eq. (7).

S = dg
dp

= gqqp + gp (7)

The terms gq and gp in Eq. (7) can be derived from the structure of the vector g.
However, the n × m matrix qp is unknown and can only be evaluated from the
original model. To calculate the matrix qp we differentiate Eq. (5) with respect to
the model parameter vector p and obtain the following equation.

fqqp + fp = 0 (8)
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Equation (8) is matrix of n × m equations that can be solved to evaluate the
n × m elements of the matrix qp. The matrix qp can then be substituted in Eq. (7)
to evaluate the required sensitivity information.

Direct differentiation is portable, easy to implement, stable, and produces results
that are numerically exact. This method has been used to perform sensitivity anal-
ysis for systems governed by kinematic equations [38], ordinary differential equa-
tions [14, 43, 47] and also differential-algebraic equations [48]. Serban and Free-
man [48] have performed simultaneous sensitivity analysis with respect to multiple
parameters. It is widely used to perform parameter identification [47] and design
optimization [20].

The drawback of direct differentiation is also apparent from the presented ex-
ample. To evaluate a sensitivity matrix S of k × m elements, direct differentiation
requires the solution of n × m equations, (8). Usually, for practical scenarios, the
number k is much smaller than n or m. This means, using direct differentiation
method, one needs to solve a much larger set of equations to get a smaller set of
required information.

The size and the complexity of Eq. (8) depends on the nature of the govern-
ing equation f, the size of the vector of state variables q and the number of model
parameters p. For large systems, especially while dealing with a large number of pa-
rameters, this makes direct differentiation unsuitable for implementation. To address
this issue, an alternate method using adjoint variables was developed.

Adjoint Variable Method The process of finding the gradient of a function in-
volving the state variables of a system with respect to a system parameter can be
described as the process of optimizing an objective function, where the quantities
are constrained by the set of governing system equations. Lagrange’s method of
optimization can be used to convert the constrained optimization problem into an
unconstrained optimization problem using a set of adjoint variables. This is known
as the adjoint variable method.

Mathematically, the adjoint variable method can be demonstrated by considering
the system governed by Eq. (5). To evaluate the sensitivity of the objective function
vector given in Eq. (7), the first step in adjoint variable method is to introduce the
adjoint variables by multiplying Eq. (8) with the transpose of a n × k matrix λ.

λTfqqp + λTfp = 0 (9)

The adjoint equations are formed as shown in Eq. (10). The terms fq and gq are
derived from the vectors f and g using symbolic differentiation.

λTfq = gq (10)

By multiplying Eq. (10) with qp we obtain

λTfqqp = gqqp (11)

Combining Eqs. (11) and (9) we obtain

gqqp = −λTfp (12)
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The required sensitivity matrix can be then written as

S = dg
dp

= −λTfp + gp (13)

With the values of λ evaluated by solving Eq. (10), the sensitivity information S
can be easily evaluated by substitution.

Using adjoint variable method, the k × m elements of S are evaluated through
a set of n × k adjoint variables. The number of adjoint variables required is inde-
pendent of the number of model parameters. This makes this approach suitable for
scenarios where a large number of model parameters are under study.

Physically, the adjoint variable method uses the Lagrange multipliers as a step-
ping stone to avoid the problems of direct differentiation. The adjoint variables force
the governing equations to hold. Thus the goal switches from finding the derivatives
of the governing equations to finding the adjoint variables which would make the
system satisfy the governing equations.

The implementation of adjoint variable method is more complicated than that
of direct differentiation. In case of dynamic systems, i.e. systems that are governed
by ODEs or DAEs the generated adjoint systems become sets of ODEs and DAEs
themselves.

Often, for practical applications, the objective functions are defined in an inte-
grated form. For dynamic systems, this leads to a situation, where the adjoint system
becomes a terminal value problem, instead of an initial value problem.

Theoretically, this can be solved by simulating the governing equations in the
forward time direction and use the simulation data to solve the adjoint system in the
backward direction. This poses a challenge for the practical implementation of this
method.

Most efficient numerical integrators use adaptive step size selection method. If
adaptive step size solvers are used, the time points, were the actual quadrature is
evaluated, never match up for the forward and backward simulations. To address
this problem, the interpolation polynomials associated with every time points of the
forward problem need to be stored along with the response of the system.

From this discussion, the drawbacks of adjoint variable method can be summa-
rized. Its complex implementation and requirement of data storage makes it unsuit-
able for large systems, and for longer simulations. Also, for complicated objective
functions, adjoint variable method generates more complicated equations that need
to be solved.

The adjoint variable method has been extensively used for optimal control and
optimal design by Haug [28] and Bestle et al. [5, 6]. For control applications, the
model size is usually small, which makes adjoint variable method appropriate for
these applications.

Sandu et al. [41], Hindmarsh et al. [29] and Petzold et al. [11, 12, 39] have
worked extensively on this subject and have developed numerical packages to per-
form sensitivity analysis using the adjoint variable method on systems governed by
different types of DAEs and ODEs.
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Ding et al. [21] have extended this method to perform second-order sensitivity
studies on DAEs. Serban [46] has presented a parallel computational model based
on the adjoint variable method.

Recursive Formulation Recursive formulations were originally used to generate
efficient sets of governing equations for multibody systems [31].

To avoid the complicated and resource-hungry implementation of the adjoint
variable method, Anderson and other researchers [1, 2, 7, 30, 36] have extended
the formulation to generate sensitivity equations using recursive methods.

However, the implementation of the recursive approach is still complicated and
shows its benefits mainly for systems with open kinematic chains. It is also sug-
gested that there is a critical number of bodies that must be present in a serial chain
to make the recursive algorithm effective. For most multibody systems, especially
those encountered in vehicular systems, this critical number is higher than the max-
imum number of bodies connected in series.

Automatic Differentiation To simulate models of physical systems, numerical
methods are often used to calculate the values of the state variables that describe
the configuration of the system as functions of time. For most practical systems, the
numerical methods involve some sort of an integrator to solve the different types of
differential equations encountered in the models.

Automatic differentiation is a numerical tool which, when applied to any numeri-
cal method, can calculate the derivatives of the output of the numerical method with
respect to any relevant quantity.

It is based on the fact that any numerical process, however complicated, can be
broken down in smaller elemental operations. Therefore, using the chain rule of dif-
ferentiation and a table of standard differentiation results, it is possible to construct
the derivative of the original numerical process.

In case of sensitivity analysis, when automatic differentiation is applied to the
integrator that simulates the system, it calculates the values of the state variables
and their derivatives at different points of time.

This method of differentiation is completely different from the finite difference
approach where the entire numerical process is performed repeatedly with perturbed
values of the parameters.

Over the years, many numerical integration schemes have been developed to
simulate systems governed by kinematic, differential [19] and differential-algebraic
equations [15, 17]. Automatic differentiation has been successfully used to produce
the state variables and their derivatives [4, 8, 10, 22, 27].

It is to be noted that in automatic differentiation the evaluation of the derivative
is a numerical process. It’s an augmentation of the numerical simulation routine that
generates the sensitivity information. Therefore it does not benefit from the advan-
tages of the symbolic approach towards sensitivity analysis and cannot formally be
classified as a symbolic method.
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Bond Graph-Based Sensitivity Analysis Bond graphs represent an unified ap-
proach toward modeling multi-domain physical systems. Since the bond graph
method is capable of generating the governing equations in an automated fashion,
sensitivity analysis based on a bond-graph formulation has received considerable
attention. Cabanellas et al. [9] have formulated sensitivity analysis for bond graph
models using the concept of pseudo-bond graphs. Gawthrop [25] has developed
the “Sensitivity Bond Graph” to perform sensitivity analysis. Ronco and Gawthrop
[26] and Perry et al. [37] have used similar methods to perform parameter estima-
tion, optimization and uncertainty analysis for multi-domain mechatronic systems.
Unfortunately, the bond graph method is not very effective when it comes to three
dimensional multi-body systems [42]. Its application to sensitivity analysis of multi-
body systems is limited due to the complexities involved.

Sensitivity Analysis Based on Linear Graph Theory Savage [43] has presented
a method to automatically generate sensitivity models of first and higher orders from
a linear graph representing the system. Carr and Savage [14] have extended this
method to include cases of nonlinear constitutive equations. These methods were
restricted to steady-state problems and scalars were used to represent the variables.

From the discussion of the existing literature it is clear that as the size of the
system increases, the established methods start to become more and more inef-
ficient. The finite difference method becomes unstable for different perturbation
sizes, direct differentiation becomes computationally expensive for large number
of parameters, the adjoint variable method becomes inefficient for large systems,
and automatic differentiation misses out on the benefits of symbolic simplification
procedures. Furthermore, most of these methods require system specific considera-
tions.

It is obvious that automated, accurate and efficient sensitivity analysis for large
scale multibody and multidomain systems is still an open topic for research.

4 Software Implementation

There are commercial software packages that can perform sensitivity analysis on
systems governed by ordinary differential equations (ODEs) [29] and differential-
algebraic equations (DAEs) [11, 29].

Although these packages have been used to perform design and analysis of multi-
body systems, they are not geared towards multibody systems in general. Conse-
quently, implementation of sensitivity analysis for multibody systems using these
packages is somewhat complicated.

So far the process of symbolic sensitivity analysis of multibody systems has been
a sequential procedure. Specialized softwares are used to generate the symbolic
equations for the system, which are then solved using the available software pack-
ages to evaluate the system response and sensitivity information. The information
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generated can then be used for further analysis and post-processing like optimiza-
tion or importance analysis. To improve the effectiveness of the process, a unified
method of efficient sensitivity analysis is desired for multibody systems.

The automated generation of symbolic governing equations is a desirable feature
for efficient sensitivity analysis of multibody systems. During the design phase of
development, system models undergo numerous alterations e.g., addition or removal
of components, changes in structure or assembly, changes in component properties
etc. To perform accurate sensitivity analysis, the corresponding sensitivity equations
need to be updated constantly. An automated generation of sensitivity equations can
greatly improve the effectiveness of this process.

In this section, brief overviews of some of the existing software packages that are
used for modeling multibody and/or multi-domain systems will be presented.

ROBOTRAN ROBOTRAN is a commercial software package developed by the
Multibody Research Group at the Université Catholique de Louvain. It can auto-
matically generate symbolic governing equations for any multibody system given a
description of the system as the input [24].

The program was written in the C language and all the symbolic operators are
hard-coded into the processing engine. It allows the final mathematical models to
be exported as Fortran, C or Matlab routines.

A joint coordinate formulation is used extensively in ROBOTRAN. The coordi-
nate partitioning method is used in case of algebraic constraints. Topological de-
scription of the system provides the algebraic constraints as the loop closure equa-
tions.

It has been successfully used for multibody modeling and simulation (articu-
lated tramway bogie system, human body motion, cam follower systems and flex-
ible multibody systems), optimization of closed-loop mechanisms and parameter
identification. ROBOTRAN has proved itself to be effective in both research and
industrial scenarios.

Maple Maple is a general-purpose computer algebra system developed and mar-
keted by Waterloo Maple Inc. It incorporates a dynamically typed programming
language which resembles Pascal. There are provisions of interfacing with C, For-
tran, Java and Matlab. The heart of Maple is a kernel written in C. This provides the
Maple language. Most mathematical functionalities are provided by libraries. The
usual user interface is written in Java.

The main aspect of Maple is the ability to manipulate symbolic equations and
expressions. It contains a very large library of symbolic operations. Simplification
and modification of symbolic expression are routinely done by Maple.

Apart from the symbolic capabilities, Maple can also be used for numerical simu-
lations. Advanced numerical routines allow users to solve complicated large systems
of ODEs and DAEs using a variety of different algorithms.

Because of its excellent symbolic and numeric capabilities, Maple can be used to
simulate multibody systems effectively. Mathematically it becomes the process of
solving a set of ODEs or DAEs depending on the nature of the system. Also there
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are software packages specifically written for multibody system modeling that are
based on Maple and Maple language.

DynaFlexPro DynaFlexPro was developed by McPhee and Schmitke at the Uni-
versity of Waterloo, Canada. It is capable of generating symbolic governing equa-
tions for multi-domain engineering systems. The formulation is based on linear
graph theory and the principle of orthogonality [44]. The input to the program is
a topological description of the system using predefined blocks.

DynaFlexPro is implemented using Maple. It extensively uses Maple’s symbolic
processing libraries to generate and simplify symbolic equations. It can also be used
to generate very efficient simulation codes for different languages. The “CodeGen-
eration” package can produce optimized simulation codes for Maple, C, Matlab and
Fortran.

MapleSim MapleSim is a multi-domain modeling and simulation tool developed
by Maplesoft Inc. It is capable of simulating electrical, electronic, mechanical, hy-
draulic and magnetic systems. The input to the software is the description of the
system using the components from a central library that can be drag-dropped on to
a worksheet.

MapleSim is built on Maple, which enables it to perform very effective sym-
bolic simplifications of the generated equations. Also, using Maple’s DAE and ODE
solvers, it can simulate and present the output of the models in an interactive three-
dimensional environment. It can also perform post-processing on the generated data
using predefined templates.

The multibody package of MapleSim is based on the DynaFlexPro engine and
uses a linear graph based formulation. Other components (e.g. electrical, magnetic,
thermal, hydraulic etc.) are based on Modelica codes.

Apart from the built-in library of standard components, MapleSim allows users
to create custom components for user specific implementation. These custom com-
ponents are based on Maple language and can be readily included in models created
using MapleSim’s standard components. It is also possible to create custom compo-
nents based on Modelica codes.

5 Formulation of Direct Differentiation Equations

The main advantage of direct differentiation is its simplicity. It is easy to imple-
ment direct differentiation for systems governed by algebraic equations, ordinary
differentiation equations or differential-algebraic equations. Direct differentiation is
especially suitable for applications where explicit evaluation of the sensitivities of
the state variables are required. In this section, application of direct differentiation
to different types of equations will be considered.
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Algebraic Equations For a system governed by kinematic equations, direct dif-
ferentiation can be demonstrated by the following equations. In terms of the state
variables q, the set of model parameters p and time t , the set of equations governing
the position, velocity and acceleration variables is given as

Position 	(q,p, t) = 0

Velocity 	qq̇ = −	t = ν

Acceleration 	qq̈ = −(	qq̇)qq̇ − 2	q t q̇ − 	t t = γ

(14)

By differentiating (14) with respect to a single parameter b, we obtain three sets of
linear equations governing the sensitivity of the position, velocity and acceleration
variables.

	qqb = −	b

	qq̇b = −(	qq̇)qqb − (	q)bq̇ + νqqb + νb

	qq̈b = −(	qq̈)qqb − (	q)bq̈ + γ qqb + γ q̇q̇b + γ b

(15)

In the above equations, the subscripts refer to partial differentiation operation.
By solving Eqs. (14) and (15) the state variables and all their derivatives can be

directly evaluated.

Ordinary Differential Equations The general form for a set of ODEs can be
written in terms of a mass matrix M, force vector Q, a vector of state variables q, q̇
and q̈ and a set of model parameter p.

M(q,p)q̈(p, t) = Q(q, q̇,p, t) (16)

Using the chain rule of differentiation, we differentiate Eq. (16) with respect to a
single model parameter b ∈ p and obtain

Mq̈b + Mbq̈ + (M ¯̈q)qqb = Qb + Qqqb + Qq̇q̇b (17)

In Eq. (17), the subscripts denote the partial differentiation operation with respect
to the quantities in the subscript. Also the symbol ¯̈q means that the quantity is being
kept constant with respect to the parameter b, during the differentiation process. By
rearranging terms we obtain

Mq̈b + (Mb + P)q̈ = Qb + Qqqb + Qq̇q̇b (18)

where we have used the following expressions.

(M ¯̈q)qqb = Pq̈ where Pij =
n∑

k=1

∂mij

∂qk

(qk)b

mij : elements of matrix M

(19)

While performing sensitivity analysis with respect to multiple parameters, separate
sensitivity equations can be generated for each of the parameters under study.
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For m parameters, those equations can be written by combining Eqs. (16) and
(18) into a more convenient matrix form as given below.

⎡
⎢⎢⎢⎣

Mb1 + P M · · · 0
...

...
. . .

...

Mbm + P 0 · · · M
M 0 · · · 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈
q̈b1
...

q̈bm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qb1 + Qqqb1 + Qq̇q̇b1
...

Qbm + Qqqbm + Qq̇q̇bm

Q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

If the total number of state variables is n, Eq. (20) will have a total of n × (m + 1)

differential equations.

Differential-Algebraic Equations Equation (1) shows the general form of a set
of differential-algebraic equations frequently encountered while modeling multi-
body systems. By applying direct differentiation to Eq. (1) and using a similar
grouping and rearrangement as shown in Eq. (19), we obtain the following equa-
tions.

Mq̈b + (Mb + P)q̈ + 	T
qλb + (

(	b)
T
q + (	qq̄b)

T
q
)
λ = Qb + Qqqb + Qq̇q̇b

	qqb + 	b = 0
(21)

Equation (21) is a set of differential and algebraic equations involving the state
vector q, the Lagrange multipliers λ and their corresponding sensitivities qb and λb .

Serban and Freeman have argued that, although Eq. (21) is a valid set of relation-
ships, it is not a proper system of DAEs [48].

However, it is their opinion that, if Eqs. (21) and Eq. (1) are combined, the com-
plete set becomes a proper set of differential-algebraic equations that can be numer-
ically solved to generate the system response and the sensitivity information. The
combined equations can be written in a compact form as shown below.

M̃r̈ + �T
r μ = Q̃

� = 0
(22)

where

M̃ =
[

Mb + P M
M 0

]
, �T

r =
[

	q 0

(	b)q + (	qq̄b)q 	q

]T

(23)

And

Q̃ =
{

Qb + Qqqb + Qq̇q̇b

Q

}
(24)

Also

� =
[

	

	qqb + 	b

]
, r̈ =

{
q̈
q̈b

}
, μ =

{
λb

λ

}
and

Pij =
n∑

k=1

∂mij

∂qk

(qk)b

(25)
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Serban and Freeman have also generalized this derivation for multiple parame-
ters, and have presented the modified expressions for the matrices M̃ and �r and
vectors Q̃, μ and r [48]. Unfortunately, by close observation, it can be seen that
their formulation is not accurate.

According to their derivation, for sensitivity analysis with respect to ‘m’ number
of parameters, the expressions are

M̃ =

⎡
⎢⎢⎢⎣

Mb1 + P M · · · 0
...

...
. . .

...

Mbm + P 0 · · · M
M 0 · · · 0

⎤
⎥⎥⎥⎦ , Q̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qb1 + Qqqb1 + Qq̇q̇b1
...

Qbm + Qqqbm + Qq̇q̇bm

Q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

� =

⎡
⎢⎢⎢⎣

	

	qqb1 + 	b1
...

	qqbm + 	bm

⎤
⎥⎥⎥⎦ (27)

The modified vector of state variables and the Lagrange multipliers are given by

r = {
qT qT

b1
· · · qT

bm

}T

μ = {
λT

b1
· · · λT

bm
λT }T (28)

The Jacobian matrix �r is given by

�r =

⎡
⎢⎢⎢⎣

	q 0 · · · 0
	1 	q · · · 0
...

...
. . .

...

	m 0 · · · 	q

⎤
⎥⎥⎥⎦ (29)

where

	j = (	bj
)q + (	qq̄bj

)q, j = 1 . . .m (30)

If Eq. (29) is substituted in Eq. (22), the resulting sensitivity equations would re-
veal that the set of equations governing the sensitivities with respect to parameter b1

is dependent on the sensitivities with respect to b2 and so on. Also, one can make
the observation that, in (26)–(27) the nature of the individual equations change with
the number of parameters under study. This is not a plausible situation.

To correct the expressions for the matrices, symbolic sensitivity equations as
derived in Eq. (21) are generated for the model parameters b1 . . . bm. Subsequently,
they are arranged in a matrix format which results in the following equations.

M̃r̈ + �̃
T
r μ = Q̃

� = 0
(31)
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The matrix M̃ and the vectors Q̃, �, r and μ are given by Eqs. (26)–(28) respec-
tively. The matrix �̃r is given by the following equation.

�̃r =

⎡
⎢⎢⎢⎢⎢⎣

	q 0 · · · 0 0
0 	q 0 · · · 0
...

. . .
...

0 · · · 0 	q 0
	1 	2 · · · 	m 	q

⎤
⎥⎥⎥⎥⎥⎦

(32)

where

	j = (	bj
)q + (	qq̄bj

)q, j = 1 . . .m (33)

Equations (31)–(33), when solved using numerical methods, will yield the cor-
rect sensitivity information for any number of parameters.

6 Sequential Sensitivity Analysis

One approach to solving the sensitivity equations is to store the dynamic simulation
results and use them as a input to solve the sensitivity equations at a later stage.
Early researchers have criticized this approach of solving sensitivity equations.

In case of ODEs, the generation of sensitivity equations e.g., (18) is straight
forward. However, the approach of solving them using stored simulation results is
ill-advised; since the stiffness of the original set of ODEs and the individual sets of
sensitivity ODEs are different, the automatic step size selector routine in variable
step size integrators would generally produce different time points for integration
for the two systems. As a result, the accuracy of the solution of the sensitivity ODEs
will be inaccurate.

In this section, we will demonstrate these concepts using a simple example.

6.1 Ordinary Differential Equations

For ODEs we take up the example of a single body pendulum represented by joint
coordinates. In terms of the joint coordinate θ , acceleration due to gravity g, and the
length of the link L, the governing system equation is

θ̈ + g

L
sin(θ) = 0

θ(0) = π

6

(34)

By differentiating this equation with respect to the parameter L we obtain the
sensitivity equation.

θ̈L − g

L2
sin(θ) + g

L
cos(θ)θL = 0

θL(0) = 0
(35)
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To solve the sensitivity equations in a sequential fashion the following steps can
be taken. First the system is simulated by solving Eq. (34) and the values of θ are
stored in a matrix. A computer procedure is written to extract the value of θ at any
time point using linear interpolation of the stored values of θ . The quantity θ in
Eq. (35) is replaced by this interpolation function and an ODE solver is used to
computer θL(t).

Source of Error One source of numerical error in this setup is the accuracy of the
interpolation. At any particular time point, the difference between the actual value
and the interpolated value of θ(t) depends on how coarse or fine the grid is for the
stored values. If the interpolation error is too much, or the grid is too coarse, the
sensitivity results would definitely be affected.

In Sect. 7, the effect of grid resolution on the solution accuracy will be demon-
strated by a numerical example.

6.2 Differential-Algebraic Equations

Although the sequential solution of the sensitivity equations for DAEs is quite com-
plicated and direct attempts towards the solution of sensitivity DAEs have been
demonstrated to be problematic [48], there are some efficient methods that have
been developed to take advantages of the unique properties of the Jacobian matrices
of the DAE systems.

In the “Simultaneous Corrector Method” presented by Maly and Petzold [35],
trapezoidal rule is used to discretize the equations which are then solved by Newton-
Raphson method. In this method the Jacobian matrix is approximated with its diag-
onal elements and unlike the usual approach of updating the Jacobian matrix at each
time step, this method keeps the Jacobian matrix constant for a number of time steps
without significant loss in solution accuracy.

The “Staggered Direct Method” presented by Caracotsios and Stewart [13] sim-
plifies the solution of the sensitivity equations by reusing the Jacobian matrix used
to solve the system equations. However this method requires that the time steps used
for the two integrations are identical and the Jacobian matrix is calculated at each
one of them.

To negotiate the problems of these methods, methods like “Staggered Corrector
Method” [23] and “Staggered Hybrid Method” [18] have been applied with variable
effectiveness.

The problem with differential-algebraic systems is the index of the DAEs. Most
of the above mentioned methods were developed for index-1 systems. In multibody
systems in general, index-3 systems are quite common. As such the applicability of
these methods for sensitivity analysis of multibody system is somewhat restrictive.

However, it is conceivable that by using different formulations or by employing
index reduction methods, it might be possible to use these methods for certain types
of multibody systems effectively.
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Fig. 1 Model description in
MapleSim

7 Numerical Examples

In this section we present numerical examples to illustrate some of the methods
and related issues, discussed in this chapter. Since, sensitivity analysis of ODEs and
DAEs are structurally different, they are presented separately.

To illustrate the process of sensitivity analysis on a system governed by ODEs,
we choose an example of a simple pendulum. For the example of a system governed
by DAEs, a slider crank mechanism is chosen.

7.1 Sensitivity Analysis of a System Governed by ODEs

First we use MapleSim to model the system and extract symbolic equations from
the model. Figure 1 shows the topological description of the system that acts as an
input to the MapleSim program.

From MapleSim, we extract the governing equation in terms of the model pa-
rameters, (i.e. mass m, length L) and the state variable associated with the revolute
joint θ(t). For the system shown in Fig. 1, MapleSim generates Eq. (34) as the gov-
erning equation.

The next step is to use computer algebra packages to simplify the generated equa-
tions and apply direct differentiation to generate the sensitivity equations. Using
Maple as the tool for algebraic manipulations we obtain the sensitivity equations
with respect to the model parameter L, Eq. (35). The final step is to solve Eqs. (34)
and (35) in conjunction with proper initial conditions to evaluate the required sensi-
tivity information.

Effect of Grid Resolution As mentioned in the previous section, while perform-
ing sequential sensitivity analysis using stored values of simulation data, storage
grid resolution is expected to have an influence on solution accuracy. To demon-
strate the effect of the resolution of the storage grid on the accuracy of the sensitivity
analysis, the following numerical experiments were conducted.

Equations (34) and (35) were solved simultaneously. Next, only Eq. (34) was
simulated and the results were stored in a matrix with different grid resolutions. The
coarse grid was created by sampling the solution with a frequency of 1 Hz and the
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Fig. 2 Comparison of solution methods and effect of grid resolution

finer grid was created by sampling at 10 Hz. Using these stored values, Eq. (35)
was solved and the results were compared with those obtained from the combined
solution.

We have used Maple and its built in numerical ODE solver “dsolve [numeric]”
implementing the Runge-Kutta-Feldberg 4th and 5th order algorithm.

In the first stage, while solving Eq. (34), “dsolve” was programmed to generate
the solutions at specific values of the independent variable t . The data was stored in
a matrix, which was used to generate an interpolation function for the quantity θ . In
the second stage, while solving Eq. (35), the symbol θ was replaced by the interpo-
lation function and “dsolve” was programmed to treat it as a known function.

The parameter values used for the simulation were [g = 9.81 m/s2, L = 1 m].
The integrator properties were set as follows [abserr = 10−7, relerr = 10−6,
maxfun = 3 × 104].

Figure 2 shows that for the coarse grid, the solution accuracy is quite poor. How-
ever, for a finer grid the two solution methods are found to be in good agreement
with each other.

7.2 Sensitivity Analysis of a System Governed by DAEs

A slider crank mechanism is shown in Fig. 3. The angles θ1 and θ2 are selected
as the generalized coordinates and the governing equations are generated in terms
of these two state variables. Due to the closed kinematic chain, the system has one
constraint equation which reduces the total degrees of freedom to one.

The centers of mass of the crank and the connecting rods are assumed to be at a
distance b1 and b2 from the points A and B respectively. The masses, lengths and the
centroidal moments of inertia of the elements are shown in the figure. The system
is driven by an applied torque τ and is subjected to a linear rotational damper with
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Fig. 3 Slider crank
mechanism governed by
DAEs

damping coefficient c at the hinge point A. The governing equations are generated
using MapleSim and Maple is used for the analysis.

The set of system equations consists of two differential equations and one alge-
braic constraint equation. The dynamic equations can be expressed in a matrix for-
mat as described by Eq. (1). The expressions for the matrices are shown in Eq. (36).

[
m11 m12
m21 m22

][
θ̈1

θ̈2

]
+

[
L1 cos θ1

−L2 cos θ2

]
λ =

[
F1
F2

]
(36)

where

m11 = J1 + (m2 + m3)L1
2 + m1b1

2

m22 = m2b2
2 + m3L2

2 + J2

m12 = m21 = −L1(m2b2 + m3L2) cos(θ1 + θ2)

F1 = τ − cθ̇1 − L1θ̇
2
2 sin(θ1 + θ2)(m3L2 + m2b2)

− (m1b1 + m3L1 + m2L1) cos θ1

F2 = (
cos θ2 − L1θ̇

2
1 sin(θ1 + θ2)

)
(m3L2 + m2b2)

(37)

The algebraic constraint equation, or the vector 	 described in Eq. (1), is given by

L1 sin θ1 − L2 sin θ2 = 0 (38)

In Eq. (36), λ is the Lagrange multiplier, which is a measure of the joint reac-
tion force at the point P . The following parameter values were used for the sim-
ulation [b1 = 0.5 m, L1 = L2/2 = 1 m, b2 = 0.66666 m, m1,m2,m3 = 1 kg, c =
0.5 N s/rad, τ = 1.5 N m, g = 1 m/s2, J1 = 0.08333 kg m2, J2 = 0.44444 kg m2].

To demonstrate the method of sensitivity analysis using direct differentiation on
DAEs, we try to evaluate θ1p , where p is the vector of model parameters. Equations
(26)–(30) are derived for the system for different selections of vector p. The gen-
erated set of DAEs are numerically solved in Maple v. 15 using built-in numerical
routines. The “Modified Extended Backward Difference Method” is used for the
integration and the following integrator parameters are used to achieve convergence
[abserr = 10−12, relerr = 10−11].

Figure 4 plots the sensitivity of the crank angle θ1 with respect to the model
parameter b2 on the vertical axis and the number of revolution of the crank on the
horizontal axis. The plot shows that the result of the sensitivity analysis is different
for different choices of the set of parameters. Also, it was observed that the results
vary if the order of the parameters is changed. This clearly shows that Eqs. (26)–
(30) do not yield correct results. As mentioned before, it is due to the incorrect
formulation of the Jacobian matrix given in Eq. (29).
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Fig. 4 Sensitivity of the
crank angle for different
selections of model parameter

Fig. 5 Sensitivity of the
crank angle for different
selections of model
parameters

To correct this problem we evaluate the sensitivities by numerically solving
Eq. (31) and using the expression given in Eq. (32) for the Jacobian matrix.

Figure 5 demonstrates that Eq. (32) does produce accurate evaluation of sensi-
tivity information. To validate the results generated by direct differentiation, we use
finite difference formulation to evaluate the sensitivities and compare them to those
evaluated using direct differentiation.

Figure 6 shows the difference between the direct differentiation results and finite
difference results for the sensitivity of angle θ1 with respect to the parameter b2.
The plot clearly demonstrates the validity of the method presented in this chap-
ter.

8 Conclusion

Sensitivity analysis for multibody systems is an involved, highly specialized and
fascinating area of research. At any point of time, the objective is to provide effi-
cient, accurate and preferably automated evaluation of sensitivity information. Due
to the ever increasing complexity of the systems being processed, the proverbial
“bar” is always set at a higher level.
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Fig. 6 Validation of results
obtained by direct
differentiation

To plan towards better sensitivity analysis, it is important to identify the steps
involved. Generally, the process can be divided into three main stages.

The first stage is the generation of the underlying model of the system. Better
and efficient models lead to more efficient post-processing. So, one way to improve
sensitivity analysis is to improve the process that generates the governing equa-
tions. This is precisely where the modeling software come into the picture. Software
packages like ROBOTRAN, MapleSim and DynaFlexPro have made huge improve-
ments to the process of modeling multibody systems. Not only do they cut down on
the difficulties of modeling and hence the time involved, they are also capable of
simplifying the generated equations and contribute significantly towards improved
sensitivity analysis.

The second stage is where sensitivity analysis is formulated. Over the years, var-
ious methods and formulations have been developed for this purpose. Different for-
mulations have their own sets of advantages and disadvantages and often require
system-specific considerations. That is why there is still a lot of scope for improve-
ments in this subject.

The third stage is solving the formulated equations and using the simulation re-
sults for further analysis and processing. Better numerical solution algorithms lead
to efficient sensitivity analysis. This is where the commercial solvers and integrators
come in.

In practice, the second and third stages are often combined together. There are
many software packages that formulate and solve the sensitivity equations. How-
ever, at the current state, there is a sizable discrepancy between the required and
available amount of automation and efficiency in this process and it continues to be
a research challenge.

We believe that some of the existing problems of the formulation of sensitivity
analysis can be addressed by extending the modeling techniques to the process of
generation of sensitivity equations. Some of the commercial modeling softwares use
linear graph theory to efficiently model and simplify multibody system equations.
The entire multibody component package of MapleSim is based on a graph-theoretic
formulation. In our opinion, if we use graph-theory to generate sensitivity equations,
there will be significant improvement in the process involved.
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Graph-theoretic sensitivity analysis will be based on existing software tools and
therefore it can be automated. Furthermore, the approach can benefit from the ex-
isting simplification techniques that are being used by these software packages to
simplify system equations.

Automated graph-theoretic sensitivity analysis is an ongoing topic of re-
search [3]. Future work is focused on the performance evaluation of this approach
for various large scale multibody systems.

It seems unlikely that just by improving one particular stage of the process, it
would be possible to reach the required level of efficiency and accuracy from sensi-
tivity analysis. The prudent approach appears to be to improve the overall efficiency
by coming up with better methods for modeling, formulation and numerical pro-
cessing in a combined and well-coordinated fashion.
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Efficient Coarse-Grained Molecular Simulations
in the Multibody Dynamics Scheme

Mohammad Poursina and Kurt S. Anderson

Abstract The numerical simulation of highly complex biomolecular systems such
as DNAs, RNAs, and proteins become intractable as the size and fidelity of these
systems increase. Herein, efficient techniques to accelerate multibody-based coarse-
grained simulations of such systems are presented. First, an adaptive coarse-graining
framework is explained which is capable of determining when and where the sys-
tem model needs to change to achieve an optimal combination of speed and ac-
curacy. The metrics to guide these on-the-fly instantaneous model adjustments and
the issues associated with post-transition system’s states are addressed in this book
chapter. Due to its highly modular and parallel nature, the Generalized Divide-and-
Conquer Algorithm (GDCA) forms the bases for a suite of dynamics simulation
tools used in this work. For completeness, the fundamental aspects of the GDCA
are presented herein. Finally, a novel method for the efficient and accurate approx-
imation of far-field force and moment terms are developed. This aspect is key to
the success of any large molecular simulation since more than 90 % of the com-
putational load in such simulations is associated with pairwise force calculations.
The presented approximations are efficient, accurate, and highly compatible with
multibody-based coarse-grained models.

1 Introduction

Development and application of the efficient techniques to model, simulate, and ana-
lyze highly complex biomolecular systems such as DNAs (Deoxyribonucleic acid),
RNAs (Ribonucleic acid), enzymes, and proteins have been gaining attention by
scientists and engineers in an effort to predict and understand different structural,
mechanical, and thermodynamic properties of such systems [17, 22, 44, 56, 71].
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These molecular simulations provide important information about the relationships
between the structure and function of biopolymers, and provide insight into vari-
ous biological processes. Fully atomistic representation of such systems [33, 43]
results in detailed information on the underlying physics of these biopolymers and
captures all scales of the problem. However, these simulations are greatly limited
because they cannot be accomplished in a timely manner for models possessing the
desired size and fidelity. This is due the existence of high frequency motions which
impose a tight constraint on the temporal integration step size (0.5–2 fs) of explicit
integrators [19, 75], while biologically important processes occur on time scales as
slow as milliseconds to seconds [55]. Furthermore, these models with large number
of atoms (na ≈ 106 [23]) suffer from the cumbersome pairwise force field calcu-
lations with the computational complexity of O(na

2) at each time step. As such,
different methods have been developed to improve the temporal integration step
size and reduce the computational cost per integration time step.

In biomolecular systems, high frequency and low amplitude motions of the atoms
are responsible for local motions, while low frequency and high amplitude motions
of the system’s subdomains are dominant in representing the global conformation.
Hence, the simulation performance may be improved significantly via the intelligent
use of specialized coarse-grained models in which high frequency modes of motion
of the system are removed from consideration. These models still capture the overall
conformational motion of the biopolymers while allowing the application of larger
integration time steps (e.g., 20–50 fs [19, 31, 75]).

The coarse-grained model may be realized by treating a group of atoms as a
spherical bead (pseudo-atom) [16, 31, 66]. For instance, each nucleotide in a pro-
tein chain may be modeled using one to six beads [74]. Other applications of such
spherical beads in dissipative particle dynamics and solvent lipid interactions are
reported in [48, 73].

Alternatively, a group of atoms may be represented by a rigid or flexible body
connected to its parent and child bodies via kinematic joints. Using internal co-
ordinates (i.e., generalized coordinates which describe the relative motions of the
child bodies with respect to the parent bodies at the connecting joints), the geo-
metric constraints such as fixing bond lengths can be enforced exactly. In the finest
coarse-grained articulated body model, dihedral angles (torsion dynamics) are used
to describe the dynamics of the system [1, 36, 40, 72], while the bond stretch and
bond angles are frozen. Unlike the spherical beads, the mass distribution and ge-
ometry of each articulated pseudo-atom is expressed in terms of the associated in-
ertia tensor, and the distance from the corresponding mass center to the joints of
the pseudo-atom. In such models, which may be particularly applicable to simulate
the dynamic behavior of polymer chains, both translational and rotational motion
[11, 18] of each cluster [36] are considered in forming the equations of motion. As
such, the effect of Coriolis and centrifugal inertial forcing terms are considered in
the equations of motion. As the length of the polymer chain increases, the role of
these terms becomes more important in capturing the dynamics of the system due
to scaling effects. Since these articulated models address the rotational motion of
the rigid and flexible subdomains of the system in the equations of motion, they
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can capture the geometry of biopolymers more accurately than most of the bead-
based coarse-grained models which ignore the rotational dynamics of the spherical
pseudo-atoms.

It is demonstrated in [57, 63] that the dynamic behavior of biopolymers is highly
nonlinear, and significantly affected by the change in the kinematics and dynamics
of the boundary conditions of the system. As such, static (time-invariant) coarse-
grained models may not appropriately capture the dynamics of the system for the
entire course of the simulation. This requires the development of adaptive machin-
ery to perform such simulations, particularly when the non-equilibrium behavior of
these systems is of interest.

In the adaptive multiscale strategy presented here, some degrees of freedom (in-
ternal coordinates) have their definitions/meanings adjusted “on-the-fly” at different
instants and different locations of the system based on the values of knowledge-,
math-, and/or physics-based metrics. Herein, the appropriate metrics to guide these
model transitions are investigated. Each model adjustment towards the lower or
higher fidelity system model may be viewed as the instantaneous application or
release of system’s internal constraints. As such, the generalized momentum of the
system must be conserved to arrive at the physically meaningful post-transition sys-
tem’s states. It is also demonstrated that within the transitions to the finer-scale mod-
els, some issues arise which are associated with the proper amount and placement
of the energy within the system.

Given the central role that multibody dynamics plays in the presented frame-
work, a suite of Generalized Divide-and-Conquer Algorithm-based approaches is
employed to this end. These methods offer a good combination of computational
efficiency and modular structure. Furthermore, the computational complexity of the
algorithm is O(n) and O(logn) in serial and parallel implementations, respectively,
where n denotes the number of degrees of freedom of the system.

A key aspect of this book chapter is associated with pairwise force calculations
in molecular simulations. More than 90 % of the computational cost per tempo-
ral integration step in modeling biopolymers is associated with calculating these
forcing terms. Focusing on long-range (far-field) interactions in the system, various
methods such as Barnes-Hut [5, 10], Edwald summation [21, 24], and the Fast Mul-
tipole Method [32] have been developed to reduce the cost of these forcing terms
evaluations. A review on these methods is presented in [57]. Herein, a novel ap-
proximation for the far-field force and moment calculations that is well suited for
use in an articulated body modeling of biopolymers is presented. This technique
may be viewed as a generalization and extension of the method presented in [38]
to approximate the gravitational force used in modeling spacecraft dynamics. The
resultant force and moment due to the pairwise interactions are approximated be-
tween: the atoms (particles) embedded in a pseudo-atom (body) in the coarse-scale
region and an atom (particle) which resides in the fine-scale domain; and between
the particles embedded in two different pseudo-atoms (bodies) in the coarse-scale
regions of the system. The value of the moment ignored in bead-based models can
produce significant errors which is more accurately captured using multibody-based
coarse-grained simulations. These low order multipole approximations and Taylor
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expansions are expressed in terms of the geometric and physical properties of the
pseudo-atoms (subdomains). Since these properties are constant for rigid domains
of the system, these approximations significantly accelerate the evaluation of the
far-field forcing terms.

2 The Need for Adaptive Simulation of Molecular Systems

The dynamics of biopolymers is highly nonlinear and chaotic. Although these sys-
tems have highly chaotic components, their coarser scale conformational behavior
may tend towards a specific structure. As such, it may be possible to remove high
frequency modes of motion which contribute little to the final structure, while main-
taining more important lower frequency components. However, given the complex
nature of the system behavior, it may not be possible to identify which modes of
motion can be removed a priori. For instance, the simulations conducted on articu-
lated RNAs with various sequences in [57, 63] show that the dynamic behavior of
each joint angle is highly time variant, and is significantly affected by the changes
in the dynamics of the rest of the system. Those results demonstrate that the cur-
rent coarse-grained model which is potentially correct for a specific time interval
may not provide accurate and reliable information about the conformational motion
of the system for the entire simulation. This results in the inadequacy of the static
coarse graining in which the system model does not change within the course of the
simulation. As such, adaptive multiscale methods which perform the coarse graining
in time and space must be developed to better model the dynamics of biopolymers.

The adaptive machinery is capable of identifying the critical locations of the sys-
tem to remove and/or add fidelity from/to the system model as necessary. In this pro-
cess, some degrees of freedom of the system are adaptively constrained or released
at different instants and different locations of the system. As such, this framework
automatically adjusts the coarseness of the model, in an effort to more optimally in-
crease the simulation speed, while maintaining accuracy. In the following, the nec-
essary machinery to implement the adaptive multiscale simulation of biopolymers
is presented. Development of the metrics to guide the model adjustments, efficiently
modeling the forward dynamics, as well as appropriately handling the dynamics of
the transitions are important aspects in this scheme. More detail on the adaptive
multiscale framework to model biopolymers is found in [13, 57, 63].

3 Metrics to Steer Transitions

In situations where modification of the dynamics model is appropriate, these adjust-
ments should be guided by suitable internal metrics. These metrics may be physics-
based (derived directly from physical laws), knowledge-based (derived empirically)
and/or math-based (derived from strictly mathematical relations). Herein, two dif-
ferent metrics which respectively guide the model transitions to the coarser and finer
models are investigated.



Efficient Coarse-Grained Molecular Simulations in the Multibody Dynamics 151

3.1 Fine-to-Coarse Transitions

The transition to the coarser-scale model can be achieved via removing the less
significant modes of motion of the system. This can be realized by monitoring the
behavior of the individual internal coordinates of the system model to assess which
of them may be removed, while not adversely changing the conformational behav-
ior of the system. In molecular simulations, high frequency modes of motion do
not contribute significantly to the global conformation of the system, while provid-
ing large instantaneous relative velocities and accelerations. As such, velocity- and
acceleration-based metrics are not well-suited for identifying the more significant
degrees of freedom of the system in the overall conformational motion. Further-
more, these complex systems are highly nonlinear and chaotic; therefore, the in-
stantaneous values of the states of the system are not expected to (and have been
shown not to [63]) work well for guiding model transitions.

Monitoring the moving-window statistical properties of the internal coordinates
of the system is proposed in [63] as a math-based metric to assess and guide the
coarse graining process instead of the instantaneous velocity- and acceleration-
based measures described in [67, 70]. The standard deviation of the generalized
coordinates defined at the joints (internal coordinates) collected within the moving
window as given by

Sw =
√∑nw

k=1 (qk − q̄w)2

nw

(1)

is suggested as the metric of choice to determine if an existing joint should be kept
or removed. In this relation, q̄w is the moving-window average of the sequence of
data {qk}nw

k=1 within the window of the size of nw .
It should be mentioned that the overall conformation of the system may be more

sensitive to some specific internal coordinates, while this sensitivity varies with time
[13, 57]. As such, if the scaled (weighted) moving-window standard deviation of
any internal coordinate of the system is less than a predefined threshold, then the
associated degree of freedom is eligible to be frozen.

3.2 Coarse-to-Fine Transitions

Since the static coarse-grained models may not appropriately predict the overall
conformational motion of the biopolymer, it may be necessary to add fidelity to
the system model within the course of the simulation. The system’s constraints and
internal loads as shown in Fig. 1 arise from the kinematic constraints imposed on ad-
jacent body-to-body motions by the connecting joints, the interactions between the
bodies, and the imposed boundary conditions. Furthermore, the constraint load indi-
cates the degree to which the body or joint in question is attempting to be deformed
at its location. Therefore, monitoring the spatial constraint loads (forces and torques)
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Fig. 1 The constraint load F

gives an estimate of the error
introduced because of locking
the joint

acting on all kinematic joints of the system, and intermediate locations within the
rigid and flexible bodies is the proposed metric to assess the validity of the selected
coarse-grained model, and to guide the model refinement. In other words, the joint is
released (or added) if the spatial constraint force at the associated location exceeds
the nominal load which figuratively causes a mechanical failure [63].

4 Generalized Divide-and-Conquer Based Adaptive Framework

The simulation of the biopolymer in an adaptive framework should appropriately
and efficiently addresses the forward dynamics, model adjustments, and dynam-
ics of the transitions. In all of these steps, multibody dynamics plays an impor-
tant role since herein the pseudo-atoms may be viewed as rigid and/or flexible
domains of the system connected together via kinematic joints. As the complex-
ity of these multibody systems (manifesting itself in the form of modes of mo-
tion) increases, a prohibitive computational burden can be imposed on the sim-
ulation due to the kinematic coupling which exists in most articulated multi-
body formulations. Different so-called O(n) algorithms (as opposed to traditional
O(n3) algorithms) in which the simulation turnaround time scales linearly with
the increase in the system’s degrees of freedom (i.e., n) have been developed in
[2, 6, 8, 15, 25, 26, 35, 45, 54, 68, 69, 76, 77] as an effort to reduce this undesir-
able scaling in computational effort with problem size. These O(n) methods are less
costly for large n, but due to their underlying serial recursive under-pinnings, they
generally do not lend themselves well to massive parallelization. As such, differ-
ent algorithms have been designed to model and simulate multibody systems which
better exploit the parallel computing capability [7, 9, 20, 29, 30, 34, 39, 42].

The Divide-and-Conquer Algorithm (DCA) is a recursive method of modeling
multibody systems first demonstrated by Featherstone [27, 28]. Its recursive struc-
ture is not serial, but that of a binary tree. Different extensions and applications of
this method in modeling and sensitivity analysis of the multi-rigid/flexible-body sys-
tems, studying the impulsive behavior and contact problems in such systems, as well
as the parallel implementation of this algorithm are reported in [12–14, 46, 47, 49–
53]. In this scheme, a complete set of both absolute and generalized coordinates
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are used to form the equations of motion. As such, the analyst can select a set of
appropriate coordinates to integrate and work with. Applying both spatial and gen-
eralized coordinates, and directly imposing the constraints describing the kinemat-
ics of the joints to form the equations of motion of the system, the DCA provides
a robust framework to address the dynamics of the kinematically closed-loop sys-
tems in singular configurations [50]. A Generalized Divide-and-Conquer Algorithm
(GDCA) developed in [57, 60] is an extension to the DCA which can be easily used
to model multibody systems in which a part of the forcing information is provided
in a generalized force format. This may occur in modeling the systems in which a
set of known/unknown generalized forces must be considered in the equations of
motion due to the application of the control law or the imposition of the algebraic
constraints [58, 59]. For instance, this method is used in [57, 58] to perform the
constant temperature simulation of biopolymers in which the feedback forces from
the thermostat are provided in the generalized format.

Herein, the GDCA-based methods are suggested to be used in the context of the
large-scale adaptive molecular problems because:

1. They are relatively efficient for the large-scale sequential computer implementa-
tion. The computational complexity of these algorithms for unconstrained sys-
tems is O(n) in the serial implementation.

2. These methods are highly parallelizable which provide a time optimal order logn

computational performance achieved with a processor optimal order n proces-
sors.

3. The implementation and use of these formulations within an adaptive framework
are relatively straightforward due to the algorithm’s highly modular structure.

4.1 Forward Dynamics

Similar to the DCA, the dynamics of each body in the GDCA scheme is expressed in
terms of the handle equations of motion [50]. A handle is a point of the body through
which it has an interaction with its surroundings. Herein, the handle equations in
the GDCA scheme are presented to illustrate how they accommodate generalized
forces.

Consider an arbitrary body k shown in Fig. 2 connected to bodies k −1 and k +1
via kinematic joints J k and J k+1, respectively. Each degree of freedom of this sys-
tem is defined as the relative motion of the child body with respect to its parent body.
Let the column matrix f̂ contain the known/unknown generalized forces associated
with some specific degrees of freedom which must be included in the equations of
motion. The two-handle equations of motion for body k in the GDCA scheme are
presented by the following relations [57, 60]

A k
1 = φk

11

(
F k

1c + PJ k

s f̂k

)+ φk
12

(
F k

2c − PJ k+1

s f̂k+1
)+ φk

13, (2)

A k
2 = φk

21

(
F k

1c + PJ k

s f̂k

)+ φk
22

(
F k

2c − PJ k+1

s f̂k+1
)+ φk

23. (3)
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Fig. 2 Interactions between consecutive bodies in a multibody system

In the above equations, A k
i (i = 1,2) represent the spatial accelerations of the han-

dles of the body. The terms F k
ic (i = 1,2) are the spatial constraint forces due to

the kinematic constraint associated with the connecting joint, whiles f̂k is the col-
umn matrix of the generalized forces associated with those degrees of freedom of
the joint which are represented by the normalized subspace of the joint free-motion
map PJ k

s [57]. It is proven in [57, 60] that PJ k

s f̂k is the dynamically equivalent
spatial force [57] due to the corresponding generalized force f̂k . As such, the handle
equations of motion in a Generalized-DCA can accommodate the known/unknown
generalized forces, as well as the unknown spatial forces. Different applications of
these equations are reported in [57].

Similar to the DCA, the Generalized-DCA is implemented using a series of re-
cursive assembly and disassembly processes [50] to respectively form and solve
the equations of motion of the system. The main goal of the assembly pass is to
recursively generate larger encompassing subsystems by assembling the adjacent
articulated bodies/subsystems of a multibody system as shown in Fig. 3. It is seen
that the information flow in the underlying recursive operations is not serial, but in
the structure of a binary tree. In the disassembly process, these equations of mo-
tion are then solved for the spatial accelerations and constraint forces of the handles
of all nodes of the binary tree of Fig. 3. The detailed information on how the new
terms due to the application of the generalized forces are treated in these processes
are explained in [57, 59, 60].

4.2 Model Adjustment

In the adaptive scheme, it may deemed necessary to change the definition (i.e. lock-
ing or releasing) of the joints based on the value of the applied metrics. This model
transition is realized by adjusting the joint free-motion map PJ k

[50] of the as-
sociated joint, and the corresponding orthogonal complement map DJ k

at the leaf
level of the binary tree. For instance, if a revolute joint is to be locked because it is
determined to be making an insignificant contribution to the overall conformation
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Fig. 3 Assembly and disassembly passes to recursively form and solve the equations of motion of
the nodes of the binary tree

of the system, the associated spatial joint free-motion map PJ k = [1 0 0 0 0 0]T
is replace by the null matrix after the transition. Similarly, the current orthogonal
complement of the joint free-motion map

DJk =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(4)

is replaced by the identity matrix if expressed in the joint coordinate system.
Using the appropriate matrices characterizing the kinematics of the joints of the

desired model after the transition, the assembly and disassembly processes are then
performed as described previously to form and solve the forward dynamics equa-
tions of motion of the revised system model. More detail on these model adjustments
is presented in [57, 63].

4.3 Dynamics of the System Within the Transition

All of the adjustments between different system models including coarse-to-fine and
fine-to-coarse transitions are incurred without the influence of any external load.
Furthermore, the configuration of the system does not change within each model
adjustment. Therefore, any violation in the conservation of the generalized momen-
tum of the system in these transitions leads to nonphysical results. In other words,
the integration of the momentum of each differential element projected onto the
space of admissible motions permitted by the more restrictive model (whether pre-
or post-transition) over the entire system must be conserved across the model tran-
sition [37]. For instance, consider the process of instantaneous coarse graining of
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a fine-scale model. The coarse-scale model at t = tc is realized by imposing con-
straints on the fine-scale model at t = tf where |tc − tf | = ε where ε is vanishingly
small. In this transition, the number of generalized speeds of the system reduces
from {uf

i }ni=1 to {uc
i }n−m

i=1 , where n and n − m represent the number of degrees of
freedom of the fine and coarse models, respectively. As such, the conservation of
the generalized momentum of the system is expressed as

L c/c = L f/c, (5)

where L is the generalized momentum of the system. The terms L c/c and L f/c

represent the momenta of the coarse and fine models, respectively, projected onto
the space of admissible motions (partial velocity vectors) of the coarse model at the
time of transition.

Hence, the adaptive framework should be equipped with the machinery to effi-
ciently form the generalized momenta balance equations and solve for the general-
ized speeds corresponding to the new set of degrees of freedom after each model ad-
justment. The formation of these impulse-momentum equations within each transi-
tion can be efficiently performed with a divide-and-conquer based scheme [52, 57].
As with the forward dynamics DCA assembly process, the handle equations which
address the impulse-momentum equations of the bodies/assemblies of the system
are recursively formed and combined together to find the associated equations of
the resulting assemblies. These handle equations are then recursively solved for the
jumps in the spatial velocities of the handles of the assemblies, as well as the con-
straint impulses applied to these locations when the generalized momentum balance
is enforced.

5 Issues in Transitioning to Higher Fidelity Models

The transition towards the coarser-scale model which is effectively solving Eq. (5)
for {uc

i }n−m
i=1 always results in a unique solution. Unlike real mechanical systems, the

conservation of the generalized momentum across the model transition to the finer-
scale model of a biomolecular system may not result in a unique solution. Because,
in the transitions to the coarser model, naturally existing higher modes of motion
are ignored since the internal metric had previously indicated these modes as less
relevant. As such, in the transition to the higher fidelity models, the kinetic energy
of these ignored modes must be estimated and considered appropriately. The gener-
alized momentum conserving distribution (Eq. (5)) of the kinetic energy among the
modes of the fine model is not unique even if the value of the lost kinetic energy
within this transition is known [62]. More specifically, an underdetermined set of
equations must be solved for {uf

i }ni=1 when more than a single degree of freedom of
the system is released to achieve a higher fidelity model [57].

To solve the problem of the transition to the finer fidelity model, an optimization-
based technique may be used to arrive at the “best” solutions from an infinite pool
of possible physically meaningful solutions. This optimization problem which is
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implemented on a knowledge-, math-, or physics-based cost function is heavily
constrained since it must additionally satisfy the impulse-momentum equations i.e.
Eq. (5). For instance, one may minimize the L2 norm of the difference between
the generalized speeds of the fine-scale model and those of the coarse-scale model.
In this situation, the generalized speeds are prevented from deviating greatly from
the ones before unlocking [3, 62]. Alternatively, it may be desired to perform the
optimization on the energy transferred to the solvent [62].

The application of the traditional methods such as Lagrange multipliers to form
and solve this constrained optimization problem is computationally expensive [57].
The computational complexity of this problem reduces via changing the constrained
optimization problem to an unconstrained one which effectively reduces the opti-
mization parameters. However, in this scheme, using the coordinate partitioning to
find the relations between the dependent and independent design parameters (gener-
alized speeds) may become very costly [57, 78] if not performed wisely. The mathe-
matical framework of forming the impulse-momentum equations (constraints), and
efficiently finding the relations between the dependent generalized speeds and the
independent ones in the DCA scheme for rigid and flexible body systems are pre-
sented in [4, 41, 57, 64]. It is demonstrated in these works that the application of this
algorithm can significantly reduce the computational expenses associated with the
manipulations performed to derive the dynamics of the transition, as well as those
performed as parts of the optimization problem.

6 Preliminaries for Efficient Pairwise Force Calculations

1. Consider body B (not necessarily a rigid body) containing N particles, and the
individual particle P̄ shown in Fig. 4. In general, the pairwise force interaction
between an arbitrary particle Pi embedded in B and P̄ may be expressed in the
following format:

FP̄ Pi
= βλ̄λi

(|r′
i |)s er′

i
= βλ̄λir′

i

(
r′2

i

)− s+1
2 , (6)

where, β is the constant associated with the force field of interest, s > 1 is an
integer, er′

i
is the unit vector from P̄ to Pi . Additionally, λi is the quantity cor-

responding to the force field which is associated with particle Pi , and similarly,
λ̄ is the same quantity associated with particle P̄ . This general formulation may
be used to address the gravitational, Coulombic or London forces. For instance,
if one is interested in the pairwise interactions due to the Coulomb’s law [65],
λi represents the charge of the particle, s becomes 2, and β is replaced by the
Coulomb force constant.

2. For body (pseudo-atom) B , the pseudo-center denoted by Cλ is defined as the
center of the body corresponding to the quantity of interest λ provided that the
pseudo-mass (lumped quantity) of the body defined as
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Fig. 4 Pairwise interactions
between the particle P̄ and
the particles embedded in B̄

(particle-body interactions)

Λ �
N∑

i=1

λi (7)

is not zero. The position of this point with respect to the mass center of the body
(i.e., B∗) is calculated using the relation

Rλ =
∑N

i=1 Riλi

Λ
, (8)

where Ri is the position vector of the particle (atom) Pi measured from the center
of mass of the body. Discussions on the subdomains of the system for which the
pseudo-center is not defined (Λ = 0) are provided in Sect. 9.

3. For body B , the pseudo-inertia tensor associated with the quantity λ with respect
to the pseudo-center of the body is defined as

I
B/Cλ

λ �
N∑

i=1

(
U r2

i − riri

)
λi. (9)

In this definition, U denotes the identity tensor, and ri is the position vector of
the particle Pi relative to the pseudo-center of the body. This tensor represents
the dyadic of the moment of inertia (second moment) of the body if one studies
the gravitational force [37]. It should be mentioned that for rigid subdomains of
the system, this dyadic is constant if expressed in the axes fixed in the domain of
interest.

7 Force Approximation

In the following, the approximation of the net force applied to a body due to the
interactions between a single particle and the particles in the body is presented.
Additionally, the resultant force interactions between the particles in two different
domains (bodies) of the system is also approximated.

7.1 Particle-Body Force Interactions

Consider the interaction between particle P̄ and an arbitrary particle Pi embedded
in body B shown in Fig. 4 is expressed by Eq. (6). Also assume that the origin of
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the body-fixed frame is located at the pseudo-center of the body. According to the
geometry shown in Fig. 4, the position vector from r′

i in Eq. (6) can be replaced by
R + ri to arrive at

FP̄ Pi
= βλ̄λi

(
R2 + r2

i + 2R · ri

)− s+1
2 (R + ri ). (10)

The above equation can be rewritten as

FP̄ Pi
= βλ̄λi

Rs

(
1 +

(
ri

R

)2

+ 2a1 · ri

R

)− s+1
2
(

a1 + ri

R

)
, (11)

where, ri , and R are the lengths of the vectors ri and R, respectively. In this relation,
a1 is the unit vector from P̄ to the pseudo-center of body B as shown in Fig. 4.

Using the binomial series expansion, the term (1 + (
ri
R

)2 + 2a1 · ri

R
)− s+1

2 in
Eq. (11) is expanded as

(
1 +

(
ri

R

)2

+ 2a1 · ri

R

)− s+1
2

= 1 − s + 1

2

((
ri

R

)2

+ 2a1 · ri

R

)
+ (s + 1)(s + 3)

8

((
ri

R

)2

+ 2a1 · ri

R

)2

− (s + 1)(s + 3)(s + 5)

48

((
ri

R

)2

+ 2a1 · ri

R

)3

+ · · · (12)

provided that |( ri
R

)2 + 2a1 · ri

R
| < 1.

The total force experienced by body B due to the pairwise interactions between
its own particles and P̄ is expressed as

FP̄ B =
N∑

i=1

FP̄ Pi
. (13)

Using the expression provided in Eq. (12), this net force is rewritten as

FP̄B = βλ̄

Rs

[
N∑

i=1

λia1 −
N∑

i=1

(s + 1)λi

(
a1 · ri

R

)
a1 +

N∑
i=1

λi

ri

R

−
N∑

i=1

(s + 1)

2
λi

(
ri

R

)2

a1 +
N∑

i=1

(s + 1)(s + 3)

2
λi

(
a1 · ri

R

)2

a1

−
N∑

i=1

(s + 1)λi

(
a1 · ri

R

)
ri

R
+ O

(
r

R

)3
]
. (14)

In the above relation, r is the length of the position vector of a generic point on B

with respect to the pseudo-center of the body.
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Elaborating on different terms in the above expression based on their orders with
respect to ri

R
[57, 61], Eq. (14) provides the net force applied to the body as

FP̄B = βλ̄

Rs

{
Λa1 +

[
s(s + 1)

4R2
tr
(
I

B/Cλ

λ

)− (s + 1)(s + 3)

2R2
a1 · I B/Cλ

λ · a1

]
a1

+ s + 1

R2
a1 · I B/Cλ

λ + O

(
r

R

)3}
, (15)

where tr(I B/Cλ

λ ) is the trace of the pseudo-inertia tensor. This equation can be
expressed as

FP̄B = βλ̄Λ

Rs

[
a1 +

∞∑
i=2

fi

(
r

R

)i
]
, (16)

where fi � fi ( r
R

)i is the collection of terms associated with the ith degree of r
R

.
Ignoring the third and higher order terms in this relation, the net force is approx-

imated as

FP̄ B ≈ F̃P̄B = βλ̄Λ

Rs
(a1 + f2), (17)

provided that

max
i∈B

ri � R. (18)

Introducing a dextral, orthogonal set of unit vectors, a1, a2, and a3 with the origin
passing through the pseudo-center of B , and defining the elements of the pseudo-
inertia tensor in a-basis as

Iij = ai · I B/Cλ

λ · aj (i, j = 1,2,3), (19)

the term f2 may be written as

f2 = s + 1

ΛR2

{[
s

4
tr
(
I

B/Cλ

λ

)− s + 1

2
I11

]
a1 + I21a2 + I31a3

}
. (20)

7.2 Body-Body Force Interactions

Due to the pairwise interactions between particles {Pi}Ni=1 belonging to body B

(Fig. 5), and {P̄j }N̄j=1 embedded in body B̄ , the resultant force FB̄B is applied to

B by B̄ . This force can be approximated (F̃B̄B ) by summing over all approximate
forces applied to B by all particles P̄j on B̄ . As such, using the second order ap-
proximation of Eq. (15), this net force is approximated as
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Fig. 5 Pairwise interactions
between the particles
embedded in B and B̄

(body-body interaction)

F̃B̄B =
N̄∑

j=1

βΛλj

R̄s
j

āj

1 + βλj

R̄s
j

N̄∑
j=1

{[
s(s + 1)

4R̄2
j

tr
(
I

B/Cλ

λ

)

− (s + 1)(s + 3)

2R̄2
j

āj

1 · I B/Cλ

λ · āj

1

]
āj

1 + s + 1

R̄2
j

āj

1 · I B/Cλ

λ

}
, (21)

where R̄j denotes the distance from P̄j to Cλ, and āj

1 is the corresponding unit
vector.

Since the second summation involves the terms of second or higher degrees in
ri , R̄j and āj

1 may be replaced by R and a1, respectively. No terms of interest for
the purpose at hand are lost through this replacement. This substitution is effectively
the application of the Taylor series expansion in the approximation.

Let us define a2 and a3 such that a1, a2, and a3 establish a dextral, orthogonal set
of unit vectors. Defining the moments and products of inertia of B and B̄ for axes
parallel to a1, a2, a3, and passing through the pseudo-center of the individual bodies
as

Iij = ai · I B/Cλ

λ · aj (i, j = 1,2,3), (22)

Īij = ai · Ī B̄/C̄λ

λ · aj (i, j = 1,2,3), (23)

and elaborating on the first summation of Eq. (21), this equation is simplified as

F̃B̄B = βΛΛ̄

Rs
(a1 + g2 + ḡ2), (24)

where

g2 = s + 1

ΛR2

{[
s

4
tr
(
I

B/Cλ

λ

)− (s + 1)

2
I11

]
a1 + I21a2 + I31a3

}
, (25)

ḡ2 = s + 1

Λ̄R2

{[
s

4
tr
(
Ī

B̄/C̄λ

λ

)− (s + 1)

2
Ī11

]
a1 + Ī21a2 + Ī31a3

}
. (26)

8 Torque Approximation

Since the resultant forces calculated in Sects. 7.1 and 7.2 do not necessarily act
through the center of mass of the body, they create moments about the mass center.



162 M. Poursina and K.S. Anderson

In the following, these resultant torques due to the long-range particle-body and
body-body interactions are calculated.

8.1 Particle-Body Torque Interactions

Based on the geometry shown in Fig. 4, the following cross product is used to cal-
culate the torque which body B experiences about its mass center B∗ due to the
interaction between P̄ and Pi

MB∗
P̄ Pi

= Ri × FP̄ Pi
. (27)

Replacing Ri by Rλ − R + r′
i , this torque can be rewritten as

MB∗
P̄ Pi

= (Rλ − R) × FP̄ Pi
+ r′

i × FP̄ Pi︸ ︷︷ ︸
0

. (28)

The last term in the above relation disappears since both r′
i and FP̄ Pi

are collinear
vectors. As such, body B experiences the following moment about B∗ due to the
interactions between its own particles and P̄

MB∗
P̄ B

=
N∑

i=1

(Rλ − R) × FP̄ Pi
= (Rλ − R) × FP̄ B . (29)

Using the second order approximation of the net force from Eq. (15), this moment
is approximated as

M̃B∗
P̄ B

= βΛλ̄

Rs
Rλ ×

{
a1 + s + 1

λ̄R2

{[
s

4
tr
(
I

B/Cλ

λ

)− (s + 3)

2
a1 · I B/Cλ

λ · a1

]
a1

+ a1 · I B/Cλ

λ

}}
− βλ̄(s + 1)

R(s+1)
a1 × (

a1 · I B/Cλ

λ

)
. (30)

Defining the elements of the pseudo-inertia tensor in a-basis as defined in Eq. (19),
and using f2 from Eq. (20), this expression is simplified as

M̃B∗
P̄ B

= βΛλ̄

Rs
Rλ × (a1 + f2) − βλ̄(s + 1)

R(s+1)
(I21a3 − I31a2). (31)

8.2 Body-Body Torque Interactions

Using Eq. (30), the resultant moment applied to B about B∗ from B̄ due to the
interactions between the particles in these bodies can be approximated by summing
over the approximate torques which body B experiences about B∗ by all particles
P̄j on B̄ as
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M̃B∗
B̄B

=
N̄∑

j=1

βλ̄jΛ

R̄s
j

Rλ × āj

1 +
N̄∑

j=1

βλ̄j

R̄s
j

Rλ × s + 1

R̄2
j

{[
s

4
tr
(
I

B/Cλ

λ

)

− (s + 3)

2
āj

1 · I B/Cλ

λ · āj

1

]
āj

1 + āj

1 · I B/Cλ

λ

}

−
N̄∑

j=1

βλ̄j (s + 1)

R̄
(s+1)
j

āj

1 × (
āj

1 · I B/Cλ

λ

)
. (32)

Similar to the argument made in Sect. 7.2, R̄j and āj

1 may be replaced by R and
a1, respectively. Using the same strategy provided in [61], the approximate moment
about B∗ from B̄ due to the pairwise interactions between the particles embedded
in B and B̄ is expressed as

M̃B∗
B̄B

= βΛΛ̄

Rs
Rλ × (a1 + g1 + ḡ2) − βΛ̄(s + 1)

R(s+1)
(I21a3 − I31a2), (33)

where Iij , g1, and ḡ2 have already been defined in Eqs. (22), (25) and (26), respec-
tively.

9 Discussions on the Developed Approximations

1. The presented approximations contain the terms up to the quadrupole moment
(quadrupole-quadrupole interactions). Furthermore, since the origin of the body-
fixed frame is located at its pseudo-center, the first moment

∑N
i=1 λiri does not

appear in these approximations [57, 61].
2. According to Eq. (8), the pseudo-center is not defined when the pseudo-mass Λ

of the body (subdomain) is zero. Similarly, if Λ is very close to zero, the pseudo-
center may be located far away from the body. As such, the center of mass of
the body may be considered as the origin of the body-fixed frame to derive the
resultant forces and torques. In these situations, the pseudo-inertia tensor used in
all the derived approximations is defined about B∗. Furthermore, due to locating
the origin of the body-fixed frame at the mass center rather than the pseudo-
center, the first moment appears in the approximations. However, it is proven in
[57, 61] that the first moment is constant regardless of the choice of the origin.
Consequently, when the pseudo-mass of the pseudo-atom is zero, it is necessary
to express the first moment measured from any reference point defined by the
analyst in the approximate force and torque. Furthermore, for rigid subdomains
of the system, this term becomes time-invariant.

3. For rigid pseudo-atoms, the pseudo-inertia tensor which appears in all the ap-
proximations is a time-invariant quantity if expressed in body-fixed frame. As
such, if this tensor is calculated for a rigid subdomain of the system at some time
either before or during the simulation, no additional cost is incurred to form or
use this dyadic during the course of the simulation. It is only needed to moni-
tor the location and orientation of each pseudo-atom. Moreover, the trace of this
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tensor which appears in these approximations is also a constant scalar for rigid
subdomains.

4. Due to the symmetry observed in the body-body force approximation in
Eqs. (24)–(26), the approximate net force does not violate Newton’s third law
of motion.

5. In the formulation presented for the particle-body and body-body torque approx-
imations in Eqs. (31) and (33), if the pseudo-center and the center of mass of the
body coincide, i.e., Rλ = 0, the last term only contributes to the applied moment.
In this case, the approximate moment formulation provides a zero value if a1

is aligned with one of the principal axes of the pseudo-inertia tensor of body B .
Since the geometry of the system is known at each time step, one can avoid using
these approximations by checking whether the orientation of the body is close to
this specific configuration. In such situations, the analyst may use the exact cal-
culations or a higher order approximation to find the moment. Moreover, in the
body-body torque interaction, one may use the summation of the particle-body
torque approximations over the entire particles of the body to calculate the torque
applied to a body from another body.

6. Poursina and Anderson [61] demonstrate the efficiency of the method by com-
paring the operation counts for particle-body and body-body force interactions
using the exact force calculations and the presented approximations. Addition-
ally, for a system containing np particles, and Nr rigid subdomains (Nr � np),
the computational complexity of the presented approximations is O(Nr)

2 as op-
posed to O(n2) complexity when all atoms are considered in pairwise calcula-
tions. Moreover, it is expected that the computational complexity will improve
to O(Nr logNr) if advanced algorithms are used to implement these approxima-
tions [57]. As such, an efficient implementation of these approximations which
is well-suited in combination with the state-of-the-art multibody algorithms is an
ongoing research by the authors [57].

10 Numerical Results

Consider particles with unit positive charges distributed equidistantly on two
straight lines B and B̄ with the length L as shown in Fig. 6. This could be a
simple model of a rigidified residue of a DNA or an RNA. Since the Coulombic
potential field is active between these charged particles, the values of the parame-
ters in Eq. (6) are selected as β = ke = 8.9885518 × 109 N m2/C2, λi = λ̄ = λ =
1.6021764 × 10−19 C, and s = 2. Due to the symmetry in the mass and charge dis-
tribution, the mass center and the pseudo-center of each body coincide. The dextral
orthogonal unit vectors b1b2b3 and b̄1b̄2b̄3 are attached to the pseudo-centers of
bodies B and B̄ , respectively. The angles θ1 and θ2 as shown in Fig. 6 are used to
describe the orientation of these body-attached reference frames with respect to the
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Fig. 6 Pairwise Coulombic
interactions between the
particles on two rigid bodies
B and B̄

a-frame. Further, the pseudo-inertia tensor of each body with respect to the associ-
ated pseudo-center is expressed in the corresponding body-basis as follows

I
B/Cλ

λ = Ī
B̄/C̄λ

λ =
⎡
⎣

5λL2

8 0 0
0 0 0
0 0 5λL2

8

⎤
⎦ . (34)

To run the simulations, it is assumed that L = 5 Å which is approximately on
the same order of magnitude of length of an RNA residue. Herein, various config-
urations of this planar system are formed by fixing θ2 = 0, and changing R from L

to 4L and θ1 from 0 to π/2. The resultant electrostatic force applied from B̄ to B

at each configuration is computed using three different methods. First, the exact net
force due to the pairwise interactions is calculated. Then, the resultant force applied
by each particle of B̄ to the entire body B is found using the particle-body approx-
imation derived in Eq. (17), and summed over all particles embedded in B̄ . Finally,
the resultant force applied to B is calculated using the body-body approximation
presented in Eq. (24). The torque experienced by B about B∗ due to the interactions
between the particles embedded in B and B̄ is also calculated using these three
methods.

Using the following definitions

EF
ij �

‖Fapprox.(Ri, θ1j
) − Fexact(Ri, θ1j

)‖2

‖Fexact(Ri, θ1j
)‖2

, (35)

ET
ij �

‖Tapprox.(Ri, θ1j
) − Texact(Ri, θ1j

)‖2

‖Texact(R, θ1)‖∞
, (36)

the values of the percentage error of the approximate resultant force and moment
at each configuration (Ri, θ1j

) are, respectively, calculated and depicted in Fig. 7.
Since for this problem, the resultant force never becomes zero, the percentage error
of the approximate force at each configuration is normalized by L2 norm of the asso-
ciated force. However, the percentage error of the approximate torque is normalized
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Fig. 7 (a) The percentage error of the approximate net force applied to B by summing over parti-
cle-body approximations. (b) The percentage error of the approximate resultant torque about B∗ by
summing over particle-body moment approximations. (c) The percentage error of the approximate
net force applied to B using body-body approximation. (d) The percentage error of the approxi-
mate resultant moment about B∗ using body-body torque approximation

by the maximum of the absolute value of the exact torque among all configurations
since the net moment is zero in some configurations.

The results show that both particle-body and body-body formulas generate the
acceptable approximations for the far-field interactions. Although in the entire con-
figuration space sampled in this example, there exist very tiny regions for which
the approximations provide large errors, these errors decay very quickly as the bod-
ies become more distant. For instance, for a very conservative case with R

L
> 3,

Fig. 7(c) shows that the body-body force approximation provides the relative error
less than 0.1 %. It is also observed that summing over the particle-body approxima-
tion to find the force and moment between two bodies, in general, provides less error
than the application of the body-body approximation. Although the particle-body
approximation is more accurate, the body-body formulation is faster, and provides
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Fig. 8 The percentage
relative error in the
translational acceleration of
P1 when the angular motion
of the body is ignored

acceptable approximation for the exact resultant force and torque for most configu-
rations.

To analyze the importance of the angular motion in the determination of the
configuration of the system, assume that body B is a segment of a very long chain
(of a biopolymer), and the motion is transferred to the outboard handle of this body
through point P1. Without loss of generality and for simplicity, it is assumed that
the angular velocity of B (i.e. NωB ) is zero. Therefore, the rotational motion of
this body is reflected in its angular acceleration measured in the Newtonian frame
of reference i.e. NαB . The exact translational acceleration of P1 in the Newtonian
frame (i.e. N aP1

exact) when the angular motion of the body is not ignored is expressed
as

NaP1
exact = N aB∗ + NωB︸︷︷︸

0

× (
NωB︸︷︷︸

0

× rB∗P1
)+ NαB × rB∗P1 . (37)

The term N aB∗
in the above relation is the translational acceleration of B∗ in the

Newtonian frame, and rB∗P1 denotes the position of P1 with respect to B∗. This
relation demonstrates that both P1 and B∗ have the same translational accelerations
if the entire rotational motion of the body is ignored (i.e., NωB = NαB = 0). As
such, the percentage relative error of the translational acceleration of P1 when the
angular motion of this segment is neglected is defined as

Err = ‖NαB × rB∗P1‖2

‖NaP1
exact‖2

× 100. (38)

This error is calculated and depicted in Fig. 8, assuming that the mass of each
particle is 27.026 Daltons which is 1

5 of the mass of the nucleotide Adenine. It is
observed that this error is significant within the majority of the configuration space.
As a result, the angular motion needs to be considered in modeling biopolymers such
as DNAs and RNAs in which the geometry plays an important role in determining
the conformational motion of the system.
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11 Conclusions

Herein, different strategies to improve the computational efficiency of the multi-
body-based coarse-grained simulations of biopolymers have been presented. The
adaptive modeling of these systems in which the model is adjusted within the course
of the simulation has been developed. This scheme which is much more accurate
than traditional static (time-invariant) coarse-grained models is capable of identify-
ing the critical locations of the system to add or remove fidelity to or from the sys-
tem model on-the-fly. Potential metrics to direct these model transitions have been
presented. Furthermore, the important issues associated with the implementation of
these instantaneous model adjustments within the course of the simulation have been
addressed. Since this coarse graining strategy is realized in a multibody dynamics
scheme, a Generalized Divide-and-Conquer (GDCA) which is highly modular and
lends itself well to adaptivity has been presented. The method for rigid body systems
is exact, non-iterative and efficient, providing a time optimal order logn computa-
tional performance achieved with a processor optimal order n processors. Another
aspect of this book chapter has been associated with the development of an efficient
algorithm to approximate far-field interactions. The presented method approximates
particle-body and body-body force and moment terms. The developed formulations
are highly compatible with the state-of-the-art efficient multibody algorithms. The
methods have provided relatively accurate results for the test case with Coulombic
interactions. It has also been illustrated that the torque which is ignored in bead
models plays an important role in more appropriately capturing the conformational
motion of biopolymers.
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Efficiency and Precise Interaction for Multibody
Simulations in Augmented Reality

Lorenzo Mariti and Pier Paolo Valentini

Abstract In this chapter, an enhanced methodology for interactive, accurate, fast
and robust multibody simulations using Augmented Reality is presented and dis-
cussed. This methodology is based on the integration of a mechanical tracker and a
dedicated impulse based solver. The use of the mechanical tracker for the interac-
tion between the user and the simulation allows to separate the processing of the data
coming from the position tracking from those coming from the image collimation
processing. By this way simulation results and visualization remain separated and
the precision is enhanced. The use of a dedicated sequential impulse solver allows
a quick and stable simulation also for a large number of bodies and overabundant
constraints. The final result of this work is a software tool able to manage real time
dynamic simulations and update the augmented scene accordingly. The robustness
and the reliability of the system will be checked over two test cases: a ten pendula
dynamic system and of a cross-lift mechanism simulation.

1 Introduction

During the last years, many investigations focused on the increasing trend of using
Augmented Reality (AR) [1] to support a variety of engineering activities and to
develop interactive tools in design. Augmented Reality has been used for support-
ing geometrical modeling [2], reverse engineering [3], assembly simulation [4–7],
analysis [8].

The augmented reality deals with the combination of real world images and com-
puter generated data. Most AR research is concerned with the use of live video
imagery which is digitally processed and augmented by the addition of computer
generated graphics. The purpose of the augmented environment is to extend the vi-
sual perception of the world, being supported by additional information and virtual
objects. One of the most important feature of AR is the possibility to embed an high
level of user’s interaction with the augmented scene [9].
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Some recent contributions showed an increasing interest in developing environ-
ments for simulating and reviewing physical simulations based on Augmented Re-
ality [10–14]. They focused on the interactivity between the user and the augmented
environment. By this way, the user is not a mere spectator of the contents of the aug-
mented scene, but influences them. Interaction in dynamic simulations can concern
both the definition of boundary conditions and initial parameters and the real time
control of the process.

In a recent paper [15], P.P. Valentini and E. Pezzuti developed a methodology
for implementing, solving and reviewing multibody simulation using augmented
reality. According to their results, augmented reality facilitates the interaction be-
tween the user and the simulated system and allows a more appealing visualization
of simulation results. For this reason, this approach has revealed to be suitable for
didactical applications and teaching purposes as well.

On the other hand, the development of multibody simulations in augmented real-
ity requires very fast solver in order to produce a smooth animation and an effective
illusion. Valentini and Pezzuti proposed to use an optical marker to track the posi-
tion of the user and interact with the objects in the scene. Moreover, they developed
some simple examples to introduce the methodology.

Starting from the discussed background, this chapter aims to discuss two impor-
tant enhancements of the work in [15] in order to improve the accuracy of user’s
interaction and to allow a robust simulation of large multibody systems. The accu-
racy in tracking the user is important to perform precise simulation that are required
in many engineering applications. The use of optical marker is simple but in this case
position tracking error highly depends on the resolution of the camera sensor and
on the distance between the camera and the marker. Using standard USB cameras,
this error can be some millimeters and can be unacceptable for precise applications,
and unwanted flickering may occur due to the tracking algorithm limitations [16].
In order to improve the accuracy in tracking, in the present study we have included
the use of a mechanical instrumented arm which is able to achieve a precision of
about 0.2 mm in a working space of about 1.2 m of diameter. This enhancement
is also important to separate the processing of the data coming from the position
tracking from those coming from the image processing (for perspective collimation
and visualization issues). By this way, higher precision in the analysis results can be
achieved and only the graphical visualization is affected by optical imprecision.

The second enhancement which has been proposed and tested, is about the use
of a dedicated solver for managing the integration of the equations of motion. The
implemented solver makes use of the sequential impulse strategy [17] which allows
a quick and stable simulation also for a large number of bodies, in presence of
overabundant and unilateral constraints. According to some authors and applications
(i.e. [18, 19]), this approach leads to a very fast and stable solution, but quite less
accurate than global solution methods.

The chapter is organized as follows. First of all, a brief introduction about the
state of the art of virtual engineering in augmented reality is presented, focusing
on the aspects related to multibody simulations. Then, a description of hardware
and software implementations is discussed, including the explanation of the itera-
tive impulse solver and the details about the strategy for implementing interaction
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between the user and the scene. In the second part, two examples are presented and
discussed.

2 Multibody Simulations in Augmented Reality Environments

The first and basic implementation of multibody simulations in augmented reality
is about the possibility to project on a real scenario the results coming from a pre-
computed simulation. It concerns the rendering on the augmented scene of all the
objects involved in the simulation whose position is updated according to the results
of the simulation.

This implementation is similar to that of the common post-processing software
for visualizing graphics results. The only difference is in the introduction of the
simulated system in a real context. The advantage is to perceive the interaction with
the real world and check working spaces, possible interferences, etc.

Although it can be useful, this approach does not unveil all the potential of AR
[15]. A more powerful way to enhance multibody simulation is to introduce an high
level of interactivity. It means that the user does not only watch the augmented
scene, but interacts with it. In this case, the solution of the equations of motion has
to be computed synchronously to the animation in order to populate the scene with
quickly updated information.

With this type of interaction, the user is active in the scene and can change the
augmented contents by picking, pushing and moving objects and controlling the pro-
vided information and the environment behaves according to realistic physics laws.
The interaction is carried out with advanced input/output devices involving different
sensorial channels (sight, hear, touch, etc.) in an integrated way [20]. In particular,
in order to interacts with digital information through the physical environment, the
environment has to be provided of the so called Tangible User Interfaces (TUIs)
[21–23].

In the most simple implementations, the patterned markers used for collimating
real and virtual contents are used also as TUIs. In advanced implementation visual
interaction is achieved by dedicated interfaces (mechanical, magnetic, optical, etc.).
By this way, the image processing for the computation of the camera-world perspec-
tive transformation can be separated from the acquisition and processing of the user
intent. Thanks to this split computation, it is possible to achieve a very precise inter-
action and simulation and a less precise (and more efficient) visual collimation. This
means that the results of the simulations can be accurate and suitable for technical
and engineering purposes. On the other hand, the small imprecisions in the optical
collimation are limited to graphics display.

Starting from these considerations, the generic integration algorithm between
multibody simulations and augmented reality presented in [15] can be modified
separating the contributions of interaction and collimation. For this reason, an high-
interactive generic multibody simulation in augmented reality can be implemented
following five main steps:
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Fig. 1 Augmented reality
hardware setup

1. Before the simulation starts, the geometries and topological properties (joints
and connections) have to be defined (as for any multibody system);

2. The real scene has to contain information for collimating the real world to the
virtual objects;

3. The real environment has to contain one or more TUIs for the acquisition of the
user’s intent of interacting with the scene;

4. During each frame acquisition, the user’s intent has to be interpreted; the multi-
body equations have to be built and solved synchronously in order to compute
the correct position of all the virtual bodies in the scene;

5. For each frame acquisition, virtual objects have to be rendered on the scene, after
the numerical integration, in the correct position and attitude.

3 Implementation of the Augmented Reality Environment

3.1 Hardware Setup

For the specific purpose of this investigation, the implemented AR system (depicted
in Fig. 1) includes an input video device Microsoft LifeCam VX6000 USB 2.0
camera, an Head Mounted Display (Emagin Z800) equipped with OLed displays,
a Revware Microscribe GX2 mechanical tracker and a personal computer.

The Revware Microscribe is an instrumented arm (digitizer) which can be
grabbed and driven by the user and possesses five degrees of freedom. It is able
to acquire the real-time position of its tip stylus. The operating space is a sphere of
about 1.2 m of diameter and the precision of tracking is up to 0.2 mm.
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Fig. 2 Multibody simulation in augmented reality procedural scheme

3.2 Implementation and Interaction Strategy

In order to implement a AR environment suitable for multibody dynamics inter-
active simulation, we have chosen the following strategy (see Fig. 2). Before the
simulation starts, the geometries and topological properties (joints and connections)
have to be defined (as for any multibody simulation). Then, the real scene has to
contain information for collimating the real world to the virtual objects. Usually
this operation is performed by a patterned planar marker which is recognized by the
processing units. For the scope it is necessary to perform the computation of the
camera point of view and the corresponding perspective effect.

During each frame acquisition, the position of the user in the scene has to be
acquired as well. This task can be performed using the mechanical tracker and com-
puting the position and attitude of its end effector. This information can be inter-
preted and transferred as a spatial input for the simulation (user’s intent to interact
with the scene). Then, the multibody equations have to be solved in order to com-
pute the correct position of all the virtual bodies in the scene, taking into account
the user’s intent.

After this computation, all the virtual objects have to be rendered on the scene in
the correct position and attitude.
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All the supporting software has been implemented using C++ programming lan-
guage and Microsoft Visual Studio 2003 developing suite. Routines for image pro-
cessing have been developed using the open source libraries named ARToolkit1

which has been successfully used in many previous investigations. The libraries
comprise a set of numerical procedures which are able to detect and recognize pla-
nar patterned markers in a video stream in real time. Using correlation techniques,
the routines are also able to compute relative position and attitude between markers
and camera with good precision for visual purposes. This computation is necessary
for an accurate perspective collimation between virtual entities and real scene. The
details about specific implementation and about the contents of the library can be
found on the Internet site of the developers.2

The Microscribe GX2 has been integrated using the Microscribe SDK library that
allows the real time access to position and attitude of each link of the instrumented
arm. This library interprets the output coming from the rotation sensors of the five
revolute joints of the mechanical arm and computes the position of the stylus tip by
solving an open kinematic chain problem.

For managing complex geometries the OpenVrml library3 has been included. All
rendering tasks about virtual objects in the augmented scene have been performed
using OpenGL library.

Details about the procedures for deducing and solving the equations of motion
of the system under investigation have been provided in the next sections.

All these pieces of software have been integrated into a single simulation envi-
ronment.

3.3 Collimation Procedure

The first step in the integration of the tracker in the augmented scene is the col-
limation between the information acquired by the instrumented device and that of
the digital camera (see Fig. 3). The video stream acquired by the digital camera is
elaborated by an image processing routine. It is able to recognize a patterned marker
in the scene and to compute the corresponding transformation matrix between the
camera and the real word. This matrix is used to project all the virtual contents in
the augmented scene in the correct position and perspective.

The information acquired by the digitizer is concerned with the position and
attitude of the end effector with respect to the reference frame fixed to the device
itself.

In order to ensure the collimation between the data stream coming from the cam-
era and that from the tracker, it is important to compute the relative transformation

1The ARToolkit libraries can be freely downloaded from the Internet site http://sourceforge.net/
project/showfiles.php?group_id=116280.
2http://www.hitl.washington.edu/artoolkit/.
3The library can be freely downloaded from the Internet site http://openvrml.org/.

http://sourceforge.net/project/showfiles.php?group_id=116280
http://sourceforge.net/project/showfiles.php?group_id=116280
http://www.hitl.washington.edu/artoolkit/
http://openvrml.org/
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Fig. 3 Collimation between optical marker and mechanical tracking system

matrix between the tracker and the world (described by the marker). This calibration
has to be performed only at the beginning of the application and it has to be repeated
only if the relative position between the world marker and the digitizer changes.

The calibration procedure can be performed by picking with the tracker stylus
a set not-aligned points (four no-coplanar points at least) at known positions with
respect to the relative frame associated to the marker.

For expressing the coordinate transformation between points, it is useful to deal
with homogeneous transformation matrices which include information on both rota-
tion and translation parameters. A generic homogeneous transformation matrix can
be expressed in the form:

[T ] =
[ [Orientation]3×3 [Position]3×1

0 0 0 1

]
(1)

In the same way, a generic point can be expressed with the following coordinate
vector:

{P } = {
x y z 1

}T (2)

The coordinate transformation of a generic point P from the local coordinate
system fixed to the digitizer to the world coordinate system attached to the marker
can be written as:

{P }world = [
T

digitizer
world

]{P }digitizer (3)

where:

{P }world is the vector containing the coordinate of the point P expressed in the
world reference frame;
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{P }digitizer is the vector containing the coordinate of the point P expressed in the
local (tracker) reference frame.

Considering a collection of points P1 P2 . . . Pn, we can build two matrices as:

[P ]world = [ {P1}world {P2}world . . . {Pn}world
]

(4)

[P ]digitizer = [ {P1}digitizer {P2}digitizer . . . {Pn}digitizer
]

(5)

In order to compute the matrix [T digitizer
word ] we have to solve the following system

of equations:

[P ]world = [
T

digitizer
world

][P ]digitizer (6)

for the unknown elements of the matrix [T digitizer
word ].

An homogeneous transformation matrix is defined by 6 independent parame-
ters (three for the description of the rotation and three for the translation). For this
reason, the system (6) has more equations than unknowns and the solution can be
computed as:

[
T

digitizer
world

] = [P ]−1+
world[P ]digitizer (7)

where the [P ]−1+
world is the pseudo-inverse matrix of the [P ]world matrix.

Due to numerical approximation or errors in acquisition, the orientation block of
the computed matrix [T digitizer

word ] can result not exactly orthogonal. Since it represents
a rigid spatial rotation, it is important to correct this imprecision. For this purpose,
we can operate a QR decomposition of this orientation block:

[
Orientationdigitizer

word

]
3×3 = [R1]3×3[U1]3×3 (8)

where (due to the QR algorithm):

[R1] is an orthogonal matrix representing the corrected rotation;
[U1] is a matrix whose upper band contains the errors of approximation and the

lower band has only zero elements. In case of a pure rotation (orientation block
without errors) [U1] = [I ].
Finally, in order to compute the transformation matrix between the digitizer and

the camera [T digitizer
camera ], useful to collimate the acquired points to the visualized ones,

a matrix multiplication has to be performed:
[
T digitizer

camera

] = [
T

digitizer
word

][
T word

camera

]
(9)

Figure 4 shows some snapshots acquired during a calibration procedure. The
reference points are picked using a reference cube of known dimensions (80 mm ×
80 mm × 80 mm).

3.4 User’s Interaction

Once the position and the attitude of the tracker are correctly recorded, we have to
define the methods to interact with the simulation.
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Fig. 4 Four snapshots taken during calibration procedure

Fig. 5 The implementation of a fictitious spring for managing the user’s interaction to the simu-
lated bodies
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A possible solution (see Fig. 5) is the use of a fictitious spring-damper element
connected between the digitizer stylus tip and a point belonging to one of the rigid
bodies in the simulation [24]. By this way, if the tip is moved in the scene, it affects
the dynamics of that point that moves accordingly.

Mathematically, the use of a fictitious spring between the tracker stylus tip and
a spline control point adds a term to the external force vector {F }e in equations of
motion:

{F }e = {F }e − kf _spring
{
d

tracker_tip
virtual_body_point

}− cf _spring
{
ḋ

tracker_tip
virtual_body_point

}
(10)

where:

{d tracker_tip
virtual_body_point} is the distance between the connected control point and the dig-

itizer tip;
{ḋ tracker_tip

virtual_body_point} is the derivative of {d tracker_tip
virtual_body_point}with respect to time;

kf _spring is the stiffness coefficient of the fictitious spring;
cf _spring is the damping coefficient of the fictitious spring.

In order to prevent the dynamics of the system to be affected by the presence of
an external (and not physical) elastic component the value of the stiffness parameter
has to be chosen very stiff. Moreover, the use of a damping coefficient improves the
stability of the system and prevents jittering in simulation.

4 Implementing the Sequential Impulse Solver

Given a collection of nbody rigid bodies, constrained by njoint kinematic joints and
subjected to a set of external forces, the equation of motion can be deduced follow-
ing different approaches.

One of the most used multibody dynamics formulation is based on the Lagrange
equations, obtaining a differential-algebraic system:

{ [M]{q̈} − [ψq ]T {λ} = {Fe}
{ψ} = {0} (11)

where:

[M] is the inertia matrix of the collection of rigid bodies;
{ψ} is the vector containing all the constraint equations;
{q}, {q̇} and {q̈} are the vectors of absolute generalized coordinates, velocities and

accelerations, respectively;
[ψq ] is the Jacobian matrix of the constraint equations (differentiated with respect

to the generalized coordinates);
{λ} is the vector of Lagrange multipliers associated to the constraint equations;
{F }e is the vector containing all the elastic and external forces (including the ficti-

tious spring contribution).
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In order to reduce the complexity of the solution, the constraint equations are
often differentiated two times with respect to time and Eq. (11) is rearranged as:[ [M] [ψq ]T

[ψq ] [0]
]{ {q̈}

{λ}
}

=
{ {Fe}

{γ }
}

(12)

where

{γ } = −([ψq ]{q̇})
q
{q̇} − 2[ψqt ]{q̇} − {ψtt } (13)

and the subscripts “q” and “t” denote the differentiation with respect to the gener-
alized coordinates and time, respectively.

Both Eq. (11) and Eq. (12) allow to solve for the unknown generalized accelera-
tion, velocities and positions taking into account all the constraint equations simul-
taneously. Of course, this approach can achieve accurate results with suitable DAE
solver. On the other hand, a dynamic system with a lot of constraints increases the
complexity of the problem and the computational effort to solve it. For this reason,
the system in (12) can be rearranged for being suitable for the sequential impulse
solution strategy.

There are two main steps in the impulse-based methodology. Firstly, the equa-
tions of motion are tentatively solved considering elastic and external forces but
neglecting all the kinematic constraints. This produces a solution that is only ap-
proximated because the constraint equations are not satisfied. In a second step, a
sequence of impulses are applied to each body in the system in order to correct its
velocity according to the limitation imposed by the constraint. This second step is
iterative. It means that a series of impulse is applied to the bodies until the con-
straint equations are fulfilled within a specific tolerance. It is important to underline
that each impulse is applied independent from the others. By this way the constraint
equations are not solved globally, but iteratively.

4.1 Solving the Equations of Motion

Following the approach introduced in the previous section, the sequential impulse
formulation can be split into two main steps. The first one is about the solution of
the equations of motion in (11) neglecting the constraint equations and constraint
forces:

[M]{q̈}approx = {Fe} (14)

By this way, Eq. (14) can be solved for {q̈}approx that represent the vector of
approximated generalized accelerations.

The values of the corresponding approximated generalized velocities and posi-
tions can be computed by linear approximation:

{q̇}approx = h · {q̈}approx (15)

{q}approx = h · {q̇}approx (16)

where h is the integration time step.
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In order to correct the {q̇}approx and fulfill the constraint equations, a series of
impulses {P }constraint has to be applied to the bodies. Each impulse is computed
imposing the fulfillment of the constraint equations written in terms of generalized
coordinates. As well-known from the Newton’s law, the application of the impulses
causes a variation of momentum:

[M]({q̇}corrected − {q̇}approx
) = {P }constraint (17)

where {q̇}corrected is the vector of generalized velocities after the application of im-
pulses {P }constraint.

The corrected velocities can be computed from Eq. (17) as:

{q̇}corrected = {q̇}approx + [M]−1{P }constraint (18)

Considering that the impulses are related to the constraint equations, they can be
computed as

{P }constraint = [ψq ]T {δ} (19)

where {δ} is the vector of Lagrange multipliers associated to the impulses.
Since the effect of the impulses is to correct the generalized velocities and ful-

fill the kinematic constraints, the {q̇}corrected has to satisfy the constraint equations
written in terms of velocities:

{ψ} = {0} ⇒ d{ψ}
dt

= [ψq ]{q̇} + {ψt } = {0} (20)

[ψq ]{q̇corrected} + {ψt } = {0} (21)

Inserting Eq. (19) into Eq. (18) and substituting {q̇}corrected into Eq. (21) we can
obtain:

[ψq ]({q̇approx} + [M]−1[ψq ]T {δ})+ {ψt } = {0} (22)

Equation (22) can be solved for {δ}obtaining:

{δ} = ([ψq ][M]−1[ψq ]T )−1([ψq ]{q̇}approx + {ψt }
)

(23)

Then, the impulses can be computed using Eq. (19) and the corrected values of
generalized velocities using Eq. (18).

Since the impulses are computed sequentially, the global fulfillment of the con-
straint equations cannot be directly achieved. Some iterations are required. The com-
putation of {δ}, {P }constraint and {q̇}corrected can be repeated till a tolerance on the
fulfillment of Eq. (21) is reached or for a maximum number of time. Experience
[17] shows that four or five iterations are sufficient to achieve an adequate toler-
ance. Since the constraints are imposed at velocity level, a stabilized formulation
is required to control the constraints fulfillment at the position level. Details are
provided in Sect. 4.3.
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4.2 Computation of Reaction Forces

When simulating multibody dynamics, one of the most interesting results for engi-
neers is the knowledge of the reaction forces, i.e. the forces exerted by the joints.

Using the sequential impulse formulation, the reaction forces cannot be com-
puted directly but a preliminary computation is required. The problem is that im-
pulses are applied sequentially, it means that each joint exerts more than one impulse
during each time step and the various impulses have to be recollected.

In order to deduce a methodology for evaluating the reaction forces of the joints
we have to introduce the concept of the accumulated impulse. It can be defined as
the resultant impulse of each joint produced each time step and it can be computed
as the sum of all the impulses exerted by the joint over the iteration.

In the solution of the equations of motion, the joint impulses are evaluated using
Eq. (23) and Eq. (19). This computation is performed iteratively in order to reach a
set of velocities congruent to kinematic joints. It means that at each iteration a new
impulse vector {P }constraint is computed.

The accumulated Lagrange multipliers {Δ} of the impulses for each time step
can be evaluated as:

{Δ} =
∑

iterations

{δ} (24)

The accumulated impulse {Ptot}constraint can be computed using Eq. (19) obtain-
ing:

{Ptot}constraint = [ψq ]T {Δ} (25)

The reaction forces {F }constraint exerted by the joints can be computed using the
general relation between forces and impulses:

{F }constraint = {Ptot}constraint

h
(26)

4.3 Stability Issues

The use of the sequential impulse strategy is subjected to the use of constraint equa-
tions expressed in terms of generalized velocity. It means that the exact information
about the kinematic joints may be lost during the integration process. In this case a
position drift can be observed and stability problems may occur.

In order to enforce the constraints on position a stabilized formulation can be
adopted. In this case, the constraint equations in Eq. (21) can be modified as:

[ψq ]{q̇corrected} + {ψt } − β

h
{ψ} = {0} (27)

where β is a scalar chosen in the range 0–1.
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Table 1 Geometrical and
inertial parameters of the first
example

Parameter Value

Pendulum length 50 mm

Pendulum mass 0.1 kg

Pendulum principal moments of inertia [21,21,0.5] kg mm2

5 Examples of Simulation

In order to test the proposed methodology and both hardware and software integra-
tion, in this section two examples of implementation are presented and discussed.

5.1 Ten Pendula Dynamic System

The first simulated scenario is about a collection of 10 rigid pendula that move under
the effect of gravity. All the pendula have the same geometry and inertial properties
which have been summarized in Table 1.

The first pendulum is pivoted to a fixed frame by means of a point-to-point 3
d.o.f. joint. The other pendula are sequentially connected by mean of revolute joints
(hinges). The user can interact with the scene by connecting a fictitious spring be-
tween the tracker stylus and the free end of the last pendulum. In particular, the user
can decide when the connection between the tracker and the last pendulum has to
be activated (simulating the clipping) or deactivated (simulating the release). This
scenario is also important to test the methodology with event based changes in the
equations of motion.

In order to achieve stable and correct results, the solution strategy has to be able
to manage rapid changes in force definition. The simulation has been performed
with a fixed time step of 0.01 s.

Per each video frame, 4 integration steps are computed and the augmented scene
is updated accordingly.

Figure 6 reports a series of four snapshots taken during the run of the simulation.
The rigid body collection is real-time rendered along with the simulation. In the first
part of the simulation (snapshot A of Fig. 6) the pendula are free to move and they
are in an equilibrium position (aligned along the vertical direction).

Then, the user locates the tracker near the last pendulum tip and activates the
fictitious spring connection (snapshot B). From this moment, the tip of the last pen-
dulum moves subjected to this connection.

When the user moves the tracker, the tip of the pendulum follows it. It is im-
portant to notice that the motion of all the rigid body collection is continuously
simulated according to the external action of the gravity and the driving force due
to the user’s presence.

When the user decides to release the fictitious spring connection (snapshot C), the
collection of pendula moves subjected to gravity force only and it oscillates around
the equilibrium position (snapshot D).
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Fig. 6 Snapshots of the simulation of the first example

The accuracy and the stability of the simulation have been checked computing
the error in the fulfillment of the constraint equations and the overall energy of
the system (potential, kinetic and elastic). The norm of the constraint equations
expressed using position variable is always lower than 10−6 m except for ten time
steps when it reaches 1.6 ·10−5 m. The variation of the overall energy of the systems
(energy loss) is below 1 %. In the computation of the overall energy, the contribution
of the external action of the user has been taken into account by evaluating the
corresponding power as the dot product between the reaction force of the fictitious
spring and the velocity of the digitizer stylus tip as:

Poweruser_action = {Ffictitious_spring} · {vstylus_tip} (28)

where

Poweruser_action is the power associated to the reaction force of the user’s action;
{Ffictitious_spring} is the reaction force of the fictitious spring computed as in

Eq. (10);
{vstylus_tip} is the absolute velocity of the stylus tip.
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Fig. 7 Cross-lift device of
the second example

5.2 Cross-Lift Dynamic Simulation

The second simulated scenario is about the dynamic motion of a cross-lift device
which is comprised of 11 rigid bodies connected by 16 hinges and 4 slider joints
(see Fig. 7). The links are connected by means of the following constraints:

• Two revolute joints between the frame and the first link on both side A and B of
the mechanism;

• Two slider joints between the frame and the second link on both side A and B of
the mechanism;

• Four revolute joints between adjacent links on each side of the mechanism (8 in
total);

• A revolute joint between the third link and the upper plate on both side A and B
of the mechanism;

• A slider joint between the fourth link and the upper plate on both side A and B of
the mechanism;

• Four revolute joints connecting the two horizontal rods between the two side of
the mechanism.

Two linear spring-damper elements act horizontally between the frame and the
slider joint location of the second link on both side A and B of the mechanism. The
gravity field acts downward along the vertical direction.

The example has been chosen in order to test the capabilities of the solver to deal
with many overabundant constraints. Geometrical, inertial and elastic properties of
the simulation have been summarized in Table 2.
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Table 2 Geometrical, inertial and elastic parameters of the second example

Parameter Value

Cross links length 300 mm

Distance between the two side of the mechanism (transverse rod length) 350 mm

Mass of the cross links 0.1 kg

Cross link principal moments of inertia [750,750,2] kg mm2

Mass of the transverse rods 0.1 kg

Transverse rod principal moments of inertia [1021,1021,2] kg mm2

Mass of the upper plate 0.1 kg

Upper plate principal moments of inertia [1021,1021,2] kg mm2

Horizontal spring stiffness 40 N/mm

The user can interact with the scene by imposing a fictitious spring between the
stylus tip and the middle point of the upper plate. In particular, the user can decide
when the connection between the tracker and the upper plate has to be activated
(simulating the clipping) or deactivated (simulating the release).

In the same way of the first example, the simulation has been performed with a
fixed time step of 0.01 s. Per each video frame, 4 integration steps are computed and
the augmented scene is updated accordingly.

Figure 8 reports a series of four snapshots taken during the run of the simulation.
The cross-lift mechanism is real-time rendered along with the simulation.

In the first part of the simulation (snapshot A of Fig. 8) the mechanism is free to
move and it is in an equilibrium position. Then, the user locates the tracker in the
middle of the upper plate and activates the fictitious spring connection (snapshot B).
From this moment, the upper plate vertical coordinates is controlled by the tracker
and the mechanism moves subjected to this connection.

When the user moves the tracker, the upper plate follows it in the vertical direc-
tion (snapshot C), preserving the right connection with the other rigid bodies. It is
important to notice that the motion of all the rigid body collection is continuously
simulated according to the external action of the gravity, the springs and the driving
force due to the user’s presence.

When the user decides to release the fictitious spring connection, the lifting de-
vice moves freely subjected to gravity force and internal springs and it oscillates
around the equilibrium position (snapshot D).

Also for this example, the accuracy and the stability of the simulation have been
checked. Due to the presence of a lot of overabundant constraints, the norm of the
constraint equations is higher than in the previous example. During the free motion
(when the simulation run without the interaction of the user) it is lower than 10−6 m.
When the user interacts by pushing and pulling the upper plate, the norm increases
and reaches 6.1 ·10−5 m. The variation of the overall energy of the systems is always
below 2 %. As in the previous example, in the computation of the overall energy,
the contribution of the external action of the user has been taken into account by
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Fig. 8 Snapshots of the simulation of the second example

evaluating the corresponding power as the dot product between the reaction force of
the fictitious spring and the velocity of the digitizer stylus tip using Eq. (28).

6 Conclusions

In this chapter, an enhanced methodology for interactive, accurate, fast and robust
multibody simulations of mechanical systems using Augmented Reality has been
presented and discussed. This methodology is based on the integration of a mechan-
ical tracker and a dedicated impulse based solver.

In this context, the simulation of movement of mechanical systems in an Aug-
mented Reality environment can be useful for projecting virtual animated contents
into a real world. By this way, it is possible to build comprehensive and appeal-
ing representations of interactive simulations including pictorial view and accurate
numerical results.

In particular, two important enhancements have been presented with respect to a
previous implementations. First of all, it has been possible to improve the precision
of the interaction between the user and the scene by means of a precise mechanical
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tracking instrumentation. This constitutes an important improvement if compared
with the use of simple optical markers for tracking the user in the scene. In the
latter case, the precision in tracking was affected by the resolution of the camera,
while with a mechanical device, it is possible to separate the processing of the data
coming from the position tracking, from those coming from the image collimation
processing. By this way, the simulation input is independent from the visualization
input and output.

The second important enhancement is the use of a dedicated solver based on the
sequential impulse strategy in order to perform a fast and robust simulation.

According to this approach, the solution is based on the less computational de-
manding solution strategy. Following the implemented algorithm, the equations of
motion are firstly tentatively solved considering elastic and external forces but ne-
glecting all the kinematic constraints. This produces a solution that is only approxi-
mated because the constraint equations are not satisfied. In a second step, a sequence
of impulses are applied to each body in the collection in order to correct its velocity
according to the limitation imposed by the constraint. This second step is iterative
and involves the application of a series of impulses to the bodies until the constraint
equations are fulfilled within a specific tolerance.

The final result of this work is a tool able to manage real time dynamic simulation
and to update the augmented scene accordingly. The robustness and the reliability
of the system have been checked over two test cases: a ten pendula dynamic system
and the dynamics of a cross-lift mechanism.

According to the proposed methodology, the user can directly control the simu-
lation by a smooth visualization on the head mounted display.

The integration among Augmented Reality, dedicated solver and precise input
tracker can be considered an advantage for the future development of a new class of
multibody simulation software. Moreover, this integrated simulation environment
can be useful for both didactical purposes and engineering assessments of mechan-
ical systems.
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Modelling of Contact Between Stiff Bodies
in Automotive Transmission Systems

Geoffrey Virlez, Olivier Brüls, Nicolas Poulet, Emmanuel Tromme,
and Pierre Duysinx

Abstract Many transmission components contain moving parts, which can come
into in contact. For example, the TORSEN differentials are mainly composed of gear
pairs and thrust washers. The friction involved by contacts between these two parts is
essential in the working principle of such differentials. In this chapter, two different
contact models are presented and exploited for the modelling of differentials. The
former uses an augmented Lagrangian technique or a penalty method and is defined
between two flexible bodies or between a rigid body and a flexible structure. The
second contact formulation is a continuous impact modelling based on a restitution
coefficient.

1 Introduction

Nowadays in automotive industries the requirements to reduce fuel consumption
and environmental pollution are greatly increasing. Reducing the weight of the ve-
hicle, lowering of mechanical losses and developing new hybrid electric propulsion
systems are needed in order to reach this goal. Nevertheless these new vehicle de-
signs should not alter the security and the comfort of the passengers. For instance,
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electronic control systems such as ABS or ESP involve additional automotive com-
ponents and therefore tend to increase the global weight, but they highly improve
the vehicle handling and allow to avoid accidents in a lot of situations. The mass re-
duction of structural parts can also lead to a higher flexibility, which can introduce
vibrations and have an impact on the driving pleasure. Moreover, the comfort in the
passenger cell can be affected by the reduction of acoustic isolation due to thinner
structural panels.

In order to find a compromise between these antagonist criteria, the current trend
addresses the development of reliable simulation tools to enhance automotive design
processes.

Multibody simulation techniques are frequently used to model complex automo-
tive systems. For instance, dynamic simulations of crankshaft or connecting rods
have been carried out in [18] to analyse the mechanical losses; the study of defor-
mations and stresses are available in [7, 17] for global multicylinder engines. The
suspensions are also widely modelled using multibody tools [3]. The models are
often composed of a mixed set of rigid and flexible bodies and enable to analyse
the vehicle dynamic behaviour in case of maneuvers or braking (see for example [8]
and [10]).

Models of transmission components is less mature because several complex
physical phenomena are involved such as stick-slip, backlash between gear teeth,
contact with friction, impact or hysteresis. The modelling of these nonlinear and
discontinuous effects is not trivial and can lead to numerical problems during the
simulations. The development of specific formulations is needed in order to manage
these particular effects. The driveline devices such as clutch, gear box or differential
highly interact together. They influence the driveline behaviour and also the whole
vehicle performance. For example, the differential features can have a direct influ-
ence on the sizing of anti-roll bar and suspensions. Therefore, individual models of
transmission components are often not sufficient and there is a need to have global
drivetrain or even full vehicle models. In this way, the driveline modelling would
allow the improvement of the performance not only of the transmission devices, but
also of the other subsystems of the vehicle.

In automotive as in other fields of mechanics, many transmission components
include contacts between different parts. These contacts inhibit the relative motion
in one or several directions but they let free the motion in the other directions. The
contact can be: bilateral or unilateral, rigid or flexible, frictional or frictionless. Sev-
eral complex physical phenomena can be involved by contacts. For instance, if the
relative velocity when the contact occurs is high for unilateral contact, the impact
encountered can generate vibration waves in the body structure. Permanent plastic
deformations can be induced [20]. The friction can also lead to stick-slip phenomena
due to the difference between static and dynamic friction coefficients.

These accurate and efficient contact models are essential in order to get reliable
drivetrain models. Gear boxes or differentials include numerous contacts which play
a key role in the working principle of these mechanisms. It cannot be expected to
set up a realistic dynamic model of this kind of transmission components without a
good and reliable mathematical formulation of contacts.
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In the literature, three main categories of contact modelling can be distinguished
according to the behaviour considered to model the bodies subjected to contact:
rigid-rigid contact [20], flexible-rigid contact [14] or flexible-flexible contact [23].
In the field of multibody systems dynamics, two different approaches are often used
to formulate the contact condition: continuous contact modelling and instantaneous
contact modelling. The continuous method does not need specific algorithmic tools
to manage the impact phenomena. The contact forces are added in the equations of
motion of the mechanism and a standard time integration scheme can be used to
solve the complete system. The positions and velocities of all bodies vary contin-
uously and it is not necessary to stop the time integration at the moment of con-
tact establishment (see [15] for more details). With instantaneous contact models,
the motion is divided into two periods, before and after the impact. While the dis-
placements are continuous, a jump of the relative velocity is observed at the contact
instant. Instantaneous contact formulations are often related to nonsmooth dynamic
methods [1, 13]. The discontinuities in the velocity field require the use of special
integration methods [5, 12, 16]. For instance, event-driven approaches require the
interruption of the time integration at each impact whereas time-stepping methods
discretize in time the complete multibody system dynamics including the unilateral
constraints and the impact forces.

The objective of this chapter is to investigate two different unilateral contact for-
mulations for modelling contacts in dynamic simulation of automotive drivetrains.
For large models including numerous contacts, it can be very useful to use various
contact conditions according to the detail level needed for each contact. For instance
in case of a complete drivetrain model, accurate and fine contact formulations can be
used inside the components modelled in detail whereas rougher contact conditions
are sufficient for the transmission devices globally represented. This combination of
contact formulations enables to obtain low CPU time consuming models for global
applications. In order to be used with a classical integration scheme, two continuous
contact formulations have been considered in this work. The first one is an accurate
contact model defined between two flexible bodies or between a rigid body and a
flexible body. This contact formulation uses an augmented Lagrangian approach or
a penalty method. Each flexible body is represented by a finite element mesh, that
notably enables to analyse the stresses on the contact surfaces. The second contact
formulation is a simpler model defined between two rigid bodies. This method is
based on the continuous impact theory and uses a restitution coefficient. The fric-
tion has been taken into account in both contact elements.

The application under study to validate the two contact elements is the TORSEN
differential. This kind of limited slip differential is mainly composed of gear pairs
and thrust washers. The axial force produced by the helical mesh leads to contact
between the lateral circular faces of toothed wheels and the various thrust washers.
The friction generated between these two bodies is at the source of the locking
effects, specific to the operation of TORSEN differentials. A unilateral frictional
contact model is then essential to model accurately and reliably these differentials.

In the sequel of this chapter, the nonlinear finite element approach for flexi-
ble multibody systems available in SAMCEF/MECANO [9] is briefly presented
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in Sect. 2. The two contact formulations are respectively presented in Sect. 3 for the
rigid/flexible coupled interaction method and Sect. 4 for the continuous impact mod-
elling. The working principle of TORSEN differential will be described in Sect. 5
and numerical results provided by the simulation of this transmission device are
shown in Sect. 6 for both contact models.

2 Finite Element Method in Multibody System Dynamics

In this work, the chosen approach is based on the nonlinear finite element method
for flexible multibody systems developed by Géradin and Cardona [9]. This method
allows the modelling of complex mechanical systems composed of rigid and flex-
ible bodies, kinematics joints and force elements. The degrees of freedom are the
absolute nodal coordinates with respect to a unique inertial frame. Hence, there is
no distinction between rigid and elastic coordinates which allows accounting in a
natural way for many nonlinear flexible effects and large deformations. The Carte-
sian rotation vector combined with an updated Lagrangian approach is used for the
parametrization of rotations. This choice enables an exact representation of large
rotations.

The dynamics of a system including holonomic bilateral constraints is described
by Eqs. (1) and (2). The modelling of unilateral contact conditions within this for-
mulation is addressed in the next two sections.

M(q)q̈ + ggyr(q, q̇) + gint(q, q̇) + ΦT
q (pΦ + kλ) = gext(t) (1)

kΦ(q, t) = 0 (2)

where q, q̇ and q̈ are the generalized displacements, velocities and acceleration co-
ordinates, M(q) is the mass matrix, ggyr is the vector of gyroscopic and complemen-
tary inertia forces, gint(q, q̇) is the vector of the internal forces, e.g. elastic and dissi-
pations forces and gext(t) is the vector of the external forces. According to the aug-
mented Lagrangian method, the constraint forces are formulated by ΦT

q (pΦ + kλ)

where λ is the vector of Lagrange multipliers related to algebraic constraints Φ = 0;
k and p are respectively a scaling and a penalty factor to improve the numerical con-
ditioning.

Equations (1) and (2) form a system of nonlinear differential-algebraic equations.
The solution is evaluated step by step using a second order accurate time integration
scheme. For this study, the Chung-Hulbert scheme, which belongs to the family of
the generalized α-method, has been used (see [2, 6]). At each time step, a system of
nonlinear algebraic equations has to be solved using a Newton-Raphson method.

3 Coupled Iterations Method for Node to Surface Contact
Element

For multibody simulation techniques based on a finite element approach, three ge-
ometrical configurations can be used to define the contact elements: node to node,
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Fig. 1 Contact
condition—projection of
slave node on master surface

node to surface and surface to surface contact elements. The last configuration being
often related to mortar algorithms [11, 19].

In this section, a node to surface contact element, based on the coupled itera-
tion method, is presented. In contrast to uncoupled iterations, the contact problem
is solved at the same time as the other nonlinearities and no distinction is done be-
tween the degrees of freedom linked by contact and the other ones. An augmented
Lagrangian approach is used to define the kinematic constraints related to each con-
tact condition. The resulting system of equations is solved simultaneously for the
displacements and Lagrange multipliers.

This formulation is suitable for implicit nonlinear analysis and is able to model
contacts between a rigid structure and a flexible part (flexible/rigid contact) or be-
tween two flexible parts (flexible/flexible contact). Contact elements are created be-
tween the nodes on the contact surface of the first support and a flexible facet of a
finite element (in case of flexible/flexible contact) or a rigid master surface (in case
of flexible/rigid contact) on the second support. Bilateral but also unilateral contacts
can be represented. In this last case, the kinematic constraints are active in case of
effective contact and inactive when the two bodies are separated. Once the set of
active constraints has been determined, the equations of motion have the structure
of Eqs. (1) and (2). The contact algorithm can be decomposed in two steps.

The first step is a geometrical step, which consists in searching the projection
of each slave node on the master surface (Fig. 1), computing the normal distance
(dn) between the node and the surface, and measuring the displacement variations
(�u1,�u2) in the tangent directions during the current time step.

The virtual variations δdn, δ�u1, δ�u2 can be expressed as functions of the
variations of nodal unknowns q, which are the displacements of the slave nodes,
and displacements and rotations of the node linked to the rigid surface (flexible-rigid
contact) or the displacements of the nodes of the facet (flexible-flexible contact).

δdn = nT Bδq (3)

δ�u1 = tT1 Bδq (4)

δ�u2 = tT2 Bδq (5)

where n is the normal, t1, t2 are the tangents to the surface, B = ∂(xS − xM)/∂q,
xS and xM being respectively the slave and master node positions expressed in the
absolute reference frame.
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Fig. 2 Contact criterion and
solution

The second step sets the contact conditions whose expression depends on the
current status of the contact. For unilateral contacts, the case of an active or an
inactive contact can be distinguished in the normal direction. The friction coefficient
and the normal force enable to determine if the status is stick or slip in tangential
directions.

In order to assess the contact status, two simple tests based on the quantities σn

and σt are carried out. These quantities are defined as

σn = kλn + pdn (6)

σt1 = kλt1 + p�u1 (7)

σt2 = kλt2 + p�u2 (8)

σt =
√

σ 2
t1

+ σ 2
t2

(9)

where λi are three Lagrange multipliers: one for the contact (λn) and two for the
friction (λt1, λt2 ). k is a scaling factor and p is a regularization parameter.

For the behaviour in the normal direction, the bold line in Fig. 2 represents the
solution of the contact condition at convergence of the differential-algebraic sys-
tem of equation (Eqs. (1) and (2)): either the normal distance dn being zero or the
Lagrange multiplier λn being zero. During the iterations of the Newton-Raphson
procedure, the system is not at the equilibrium and the contact criterion σn allows to
determine if the contact condition related to an active (see Sect. 3.1) or an inactive
(Sect. 3.2) contact has to be used. The dotted line σn = 0 divides the space in Fig. 2
in two zones. If σn < 0, the node is not considered in contact and if σn > 0, the
node is considered in contact. The convergence property of this algorithm depends
on the slope (−p/k) of the line σn = 0. The scaling factor k being constant, the
choice of the regularization parameter p influences the convergence in some partic-
ular situations but the solution at convergence will not depend on this regularization
parameter (cf. bold line in Fig. 2).
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3.1 Inactive Contact

If the contact criterion σn is positive, there is no contact nor friction forces applied
on the nodes. The three Lagrange multipliers are set to zero. At the element level,
the internal forces are computed by:

δq∗T Fint = −(δλnkλn + δλt1kλt1 + δλt2kλt2) (10)

with:

q∗ =
{

q
λ

}
(11)

3.2 Active Contact

When σn is negative, the contact is active and the kinematic constraint can be ex-
pressed by φ = dn. The virtual work principle enables to calculate the internal forces
at the element level:

δq∗T Fint = δdn(pdn + kλn) + δλnkdn (12)

At the equilibrium, the kinematic constraint is satisfied (φ = 0) and therefore the
normal distance dn is equal to zero. The Lagrange multiplier λn can be interpreted as
the contact force divided by the scaling factor k. This last parameter is often chosen
equal to the stiffness of the structural elements in order to have the same order
of magnitude in the various terms of the iteration matrix of the Newton-Raphson
process.

When the contact is active, two status are available for the friction behaviour:
either the node is sticking to the surface or the node is sliding. The friction criterion
σt defined in Eq. (9) is used to determine the friction status.

3.3 Sticking Friction

If σt is smaller than the normal force σn multiplied by the friction coefficient μ,
the node is sticking on the master face. The friction coefficient is a constant value,
no distinction between the static and kinetic friction coefficient is made. Two kine-
matic constraints equal to the variations of tangential displacements (φ1 = �u1 and
φ2 = �u2) are introduced. As for the contact in the normal direction, the kinematic
constraints are equal to zero after convergence (φ1 = �u1 = 0, φ2 = �u2 = 0).
The internal forces related to friction forces for each contact element in a sticking
situation are computed from the virtual work.

δq∗T Fint = δ�u1(p�u1 + kλt1) + δ�u2(p�u2 + kλt2)

+ δλt1k�u1 + δλt2k�u2 (13)
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3.4 Sliding Friction

When σt > μ|σn|, the slave node is sliding on the master surface. The element forces
are computed from:

δq∗T Fint = { δ�u1 δ�u2 δλt1 δλt2 }

⎧⎪⎨
⎪⎩

μ|σn|v1
μ|σn|v2

(μ|σn|v1 − kλt1)k/p

(μ|σn|v2 − kλt2)k/p

⎫⎪⎬
⎪⎭

(14)

In this case, the friction Lagrange multipliers are parallel to the variation of sliding
displacements (�u1,�u2). The iteration matrix for a sliding friction is not symmet-
rical and it is recommended to use a non-symmetric solver.

3.5 Penalty Method

The augmented Lagrangian approach presented above is sometimes not able to find
a solution or can encounter great difficulties to converge in case of large discontinu-
ities during the simulation. For instance, if the relative normal velocity of the col-
liding bodies is high at the contact establishment, an impact phenomenon occurs.
This contact formulation cannot manage the strong discontinuity and the rebonds
after the first impact have often erratic magnitudes and frequencies. Likewise, the
switching between the stick and the slip is highly nonlinear for high speed systems.

In order to improve the convergence of the algorithm, the augmented Lagrangian
method can be replaced by a pure penalty method. In contrast to the Lagrangian
approach where the contact is infinitely rigid, the penalty allows a small penetration
between the two bodies that slightly relaxes the discontinuity. The penalty function
can be linear or nonlinear and can be seen physically as a finite stiffness that is
active in compression but not in traction. To have a smoother response, it can also
be useful to account for damping in the contact model. The first step consisting of
the projection of the slave nodes on the master faces is unchanged compared with
Lagrangian approach.

A regularization is often used to avoid the discontinuity when the sign of the
relative sliding velocity shifts (see Fig. 3). The regularized friction coefficient μR

can be defined in several ways with sometimes complex functions. In this study, a
simple quadratic function is used:

μR(ξ̇ ) =
⎧⎨
⎩

μ
(
2 − |ξ̇ |

εv

)
ξ̇
εv

|ξ̇ | < εv

μ
ξ̇

|ξ̇ | |ξ̇ | ≥ εv

(15)

where ξ̇ is the relative sliding velocity, μ is the friction coefficient and εv is the
regularization tolerance.
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Fig. 3 Regularized friction
coefficient

4 Continuous Impact Modelling

The continuous contact modelling is based on a continuous contact law that uses
a restitution coefficient. During impacts between rigid bodies, some kinetic en-
ergy is lost. Indeed, impacts can initiate wave propagation in the bodies which ab-
sorb parts of the kinetic energy until they vanish owing to material damping. High
stresses might also occur near the impact point and involve plastic deformation,
which also contributes to kinetic energy loss, as well as visco-elastic material be-
haviour. Macro-mechanically, these various sources of kinetic energy loss are often
summarized and expressed by a coefficient of restitution. The loss of kinetic en-
ergy described by the coefficient of restitution depends on the shapes and material
properties of the colliding bodies as well as on their relative velocities. However,
the restitution coefficient cannot be computed within the multibody system simula-
tion. It has to be roughly estimated from experience, measured by experiments or
determined by numerical simulations on a fast time scale [20].

There exist different definitions for the coefficient of restitution: kinematic (eN ),
kinetic (eP ) or energetic (eE):

eN = − ġne

ġns

(16)

eP = �Pr

�Pc

=
∫ te
tc

F dt
∫ tc
ts

F dt
(17)

e2
E = −Tr

Tc

= −
∫ te
tc

F ġn dt
∫ tc
ts

F ġn dt
= −

∫ he

hc
F dt

∫ hc

hs
F dt

(18)

where ġns and ġne are respectively the relative velocity between the two bodies in
normal direction before and after impacts; the time intervals [ts , tc] and [tc, te] cor-
respond to the compression and restitution phases; �Pc and �Pr are the impulse
during the compression and restitution phases; Tc and Tr are the deformation en-
ergies during the compression and restitution phases; F is the contact force and
h = −gn is the penetration allowed between the two bodies.

An impact with e = 1 means no energy loss (complete elastic contact), whereas
e = 0 corresponds to a total loss of energy (plastic or inelastic contact), 0 ≤ e ≤ 1.

These three forms of the restitution coefficient are equivalent unless the configu-
ration is eccentric and the direction of slip varies during impact or if the bodies are
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Fig. 4 Force law for
continuous impact modelling

rough. Some differences can also appear in case of frictional contact or if several
impacts occur simultaneously (see [21] for more details).

4.1 Force Law

A penalty approach is used for this continuous contact model whereby a small pen-
etration h is allowed. The contact force is computed from this local penetration by
a force law.

F(h, ḣ) = khn + chnḣ (19)

where k is the contact stiffness and c is a damping parameter.
In order to avoid a jump at the beginning of the impact and tension force at

the end of the impact, the classical viscous damping term (cḣ) has been multiplied
by hn.

As depicted in Fig. 4, this force law yields a hysteresis loop with hs = he = 0
for the force-penetration curve. The enclosed area represents the kinetic energy loss
during impact.

The parameters k and c have to be chosen in order to have realistic values for the
impact duration, the local penetration and the kinetic energy loss. One way to set
the damping parameter consists in formulating this coefficient as a function of the
restitution coefficient. According to the contact configuration, various expressions
are available in the literature (see for example [15]). For the contact considered
in this work between gear wheels and washers, the expression (20) seems relevant
and yields to a good approximation of the kinetic energy loss for large kinematic
restitution coefficients (e > 0.8).

c = 3(1 − e2)

4

k

ḣs

(20)

where ḣs is the relative normal velocity between bodies at the contact beginning.
The force (Eq. (19)) applied on the two bodies while there are in contact as well as
the contribution of this contact element to the global iteration matrix of the system
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have to be specified in the contact subroutine. In order to compute the tangent stiff-
ness matrix and the damping matrix included in the iteration matrix of the contact
element, the incremental form of the virtual work principle can be used.

δ dW = δ dhF(h, ḣ) + δhdF (h, ḣ) (21)

δ dW = δ dhF(h, ḣ) + δh

(
∂F

∂h
dh + ∂F

∂ḣ
dḣ

)
(22)

This last expression has to be handled in order to obtain Eq. (23) and to identify the
tangent stiffness matrix and damping matrix.

δ dW = δqT ∂Fint

∂q︸ ︷︷ ︸
KT

dq + δqT ∂Fint

∂q̇︸ ︷︷ ︸
CT

dq̇ (23)

Here q is the vector of nodal degree of freedom used by the contact element. In
our current implementation, this vector contains the position parameters of the node
located at the centre of the contact surface of two bodies candidate to contact (qT =
{xA yA zA xB yB zB}).

In summary, the tangent stiffness and damping matrices can be expressed in the
following form:

δ dW = δqT

[(
−F

h
+ ∂F

∂h
− ∂h

∂ḣ

ḣ

h

)
nnT + F

h
I + ∂F

∂ḣ
n

ẋT
AB

h
I
]

︸ ︷︷ ︸
KT

dq

+ δqT

[
∂F

∂ḣ
nnT

]

︸ ︷︷ ︸
CT

dq̇ (24)

with xT
AB = {xB − xA yB − yA zB − zA}, the vector between nodes A and B; n is

the normal direction to the contact surface.

4.2 Friction Force

The friction force produced by the contact between the two rigid bodies can be
easily added to the contact element presented in the previous section. Its magnitude
is given by Eq. (25) where Fnorm is equivalent to the contact force (Eq. (19)).

Ffr = μR|Fnorm| (25)

This friction force is applied on a point M located at the middle of the segment AB

and its direction is aligned with the tangential velocity vector vt .
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5 Description of TORSEN Differentials

The two essential functions of a differential are to transmit the motor torque to the
two output shafts and to allow a difference of rotation speed between these two
outputs. In a vehicle, this mechanical device is particularly useful in turn when the
outer wheels have to rotate quicker than the inner wheels to ensure a good handling.

The main drawback of a conventional differential (open differential) is that the
total amount of available torque is always split between the two output shafts with
the same constant ratio. In particular, this is a source of problems when the driving
wheels have various conditions of adherence. If the motor torque exceeds the max-
imum transferable torque limited by road friction on one driving wheel, this wheel
starts spinning. Although they do not reach their limit of friction, the other driving
wheels are not able to transfer more torque because the input torque is often equally
split between the two output shafts.

The TORSEN differentials significantly reduce this undesirable side effect. This
kind of limited slip differential allows a variable distribution of motor torque de-
pending on the available friction of each driving wheel. For a vehicle with asym-
metric road friction between the left and right wheels, for example, right wheels
are on a slippery surface (snow, mud, . . .) whereas left wheels have good grip con-
ditions, it is possible to transfer an extra torque to the left lane. That allows the
vehicle to move forward whereas it would be hardly possible with an open differen-
tial. However, the overall driving torque cannot be applied on one output shaft while
no load is exerted on the second shaft. When the difference between the 2 output
torques becomes too large, the differential unlocks and lets different rotation speeds
but keeps the same constant torque ratio.

When a TORSEN differential is used, the torque biasing is always a precondition
before any difference of rotation speed between the two output shafts. Contrary to
viscous coupling, TORSEN (a contraction of Torque-Sensing) is an instantaneous
and pro-active process which acts before wheel slip.

The differential can be used either to divide the drive torque into equal parts act-
ing on the traction wheels of the same axle, or to divide the output torque from the
gearbox between the two axles of four-wheels drive vehicles. This second applica-
tion is often called the transfer box differential or central differential.

As depicted in Fig. 5, the TORSEN differential contains a housing in two parts
as well as several gear pairs and thrust washers. Due to the axial force produced
by the helical mesh, several gear wheels can move axially and enter in contact with
the various thrust washers fixed on the case or housing. The friction encountered by
this relative sliding is at the origin of the locking effect of TORSEN differentials.
The second important contribution to the limited slip behaviour is due to the friction
between the planet gears and the housing holes in which they are inserted. When
one axle tries to speed up, all encountered frictions tend to slow down the relative
rotation and involve a variable torque distribution between the output shafts. The
biasing on the torque only results from the differential gearing mechanical friction.

This limited slip differential has four working modes which depend on the di-
rection of torque biasing and on the drive or coast situation. According to the
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Fig. 5 Kinematic diagram, exploded view and cut-away view of type C TORSEN differential

considered mode, the gear wheels rub against one or the other thrust washers which
can have different friction coefficients and contact surfaces.

6 Numerical Results

The two main kinematic constraints needed to model TORSEN differentials are gear
pairs and contact conditions. The formulation used to model each gear pair is avail-
able for describing flexible gear pairs in 3 dimensional analysis of flexible mecha-
nism. This gear element is developed in [4] and is a global kinematic joint defined
between two physical nodes: one at the centre of each gear wheel which is repre-
sented as a rigid body. Nevertheless the flexibility of the gear mesh is accounted for
by a nonlinear spring and damper element inserted along the instantaneous normal
pressure line. Several specific phenomena in gear pairs which influence significantly
the dynamic response of gears are also included in the model: backlash, mesh stiff-
ness fluctuation, misalignment, friction between teeth. Contacts between the thrust
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Fig. 6 Time evolution of torque and rotation speed of housing and output shafts of type C
TORSEN on vehicle configuration

washers and the circular lateral faces of gear wheels have been successively mod-
elled by the two contact formulation presented in this chapter.

A dynamic analysis of the type C TORSEN has been carry out when this compo-
nent is considered in the vehicle configuration. The other driveline devices such as
driveshafts are not represented in this work. Equivalent loads are applied on the dif-
ferential inputs and outputs: a torque is applied on the housing whereas the rotation
speed of sun gear and coupling are prescribed. The housing torque is equivalent to
the driving force coming out from the gear box and transmitted to the differential
housing through the propeller shaft. The prescribed rotation speeds can be seen as a
measure of the adherence properties on the front and rear axles.

The time evolution of these loads has been chosen in order to study the four work-
ing modes of the differential during the same simulation and the transient behaviour
at the switching time between two modes. Besides, in order to test the robustness of
the model, the torque on the housing is applied with fast increasing or decreasing
phases interrupted by steady state periods (see Fig. 6).

Some numerical results specific to the contact formulations studied in this chapter
are presented in Sect. 6.1 for the coupled iterations method and in Sect. 6.2 for the
continuous impact modelling.

A previous work addresses the development of full type B and type C TORSEN
differential models. See Ref. [22] for more details on the construction of theses
models and their global validation by comparison with experimental data.
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6.1 Flexible-Rigid Contact

In the differential model, the five thrust washers are modelled with finite elements
whereas the gear wheels are represented by rigid bodies. Therefore, the flexible-
rigid version of the coupled iterations method for node to surface contact (Sect. 3)
is used.

Owing to the high axial velocity of the gear wheels when the differential switches
from one working mode to another one, the augmented Lagrangian approach has to
be replaced by a full penalty method in order to allow the convergence of the in-
tegration algorithm as explained in Sect. 3.5. A damping force has also been used,
besides the linear penalty function. The penalty function enable small interferences
between the gear wheel and the thrust washer whereas the damping tends to slow
down the impact velocity. The chosen damping function is a linear function with
respect to the penetration velocity. The damping force has even been introduced be-
fore the effective contact to anticipate the latter and reduce the shock phenomenon.
This anticipating damping has been used to facilitate the convergence but has also
a physical meaning. Indeed, in real operation the film of lubricating oil between the
contacting surfaces tends to slow down the bodies before the contact and then plays
the role of a damper. The damping coefficient used in this model should be identified
with the oil properties to have a realistic damping behaviour. Nevertheless, in this
work the damping coefficient has been chosen in order to allow the convergence but
without a reference with the physical properties. The contact stiffness value used
to enable the small penetration has also been set only to ensure the convergence. If
this value is too large, the discontinuity is not sufficiently relaxed and if the value
is too small the penetration of the two contacting bodies is too high which is in
contradiction with the prescribed contact condition. A regularization of the friction
coefficient has been needed to avoid a large discontinuity when the relative rotation
between gear wheel and thrust washer changes direction.

Figure 7 illustrates the contact pressure of all contact elements introduced in the
model when the differential is in the drive to rear mode. The time evolution of con-
tact pressure is depicted in Fig. 8 where it can be observed that at each time and
for each working mode, three contact elements are active and two are inactive. The
contact between thrust washers #8 and #10 (cf. Fig. 5) is the only contact element
always active. The drive modes ([0;7] s and [16;24] s) involve the contacts between
the sun gear and the washer #7 and between the internal gear and the washer #11.
On the other hand, the contacts between the coupling and the washer #11 and be-
tween the internal gear and washer #9 are active for the coast modes ([8;15] s and
[25;32] s). The friction is taken into account in the five contacts. Figure 10 shows
the spatial distribution of power dissipated by friction. The analysis of stresses in
the thrust washers can be also provided by the simulation (Fig. 9). All these numer-
ical data are useful to design the TORSEN differential. For instance, the internal
and external radius of thrust washers or the friction coefficient of the contact can be
adapted according to the locking effect wanted for each working mode. The washer
thickness could also be modified thanks to the stress analysis. Further, the inclusion
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Fig. 7 Contact pressure on thrust washers (t = 3.5 s: Drive to rear mode)

Fig. 8 Time evolution of the contact pressure in thrust washers



Modelling of Contact Between Stiff Bodies in Automotive Transmission 209

Fig. 9 Stress in the thrust washers (t = 11.6 s: Coast to front mode)

Fig. 10 Power dissipated by friction between gear wheels and thrust washers (t = 28.2 s: Coast
to rear mode)
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of this differential model in a full vehicle where the car body, suspensions, drive-
shafts or tyres are represented, would allow to study the interaction between the
differential and the vehicle dynamics.

A particular attention must be put on the meshing of the thrust washers. The
kind of finite element used can influence the convergence properties and the results
accuracy. It could be noticed that considering the thrust washers with a volume
behaviour is better than with shell finite elements. Furthermore, it is better if the
contact surface is composed of quadratic elements which are thereafter extruded to
obtain hexahedron elements. In order to avoid tetrahedral elements in the mesh, the
geometry of the thrust washers has been slightly simplified to obtain a perfect ring
shape.

The main disadvantage of this rigid/flexible contact element is the high compu-
tational time needed owing to the important number of configuration parameters re-
quired by this contact formulation. Indeed, this contact condition requires to model
at least one of two contacting bodies with finite elements. For instance, in case of
volume elements, the number of generalized coordinates is more than three times
the number of nodes plus the Lagrange multipliers linked to the contact element
attached to each slave node. For some applications, it is not always necessary to
account for the flexibility of the bodies in contact. In this case, this contact element
increases the size and unnecessarily complicates the model.

6.2 Rigid-Rigid Contact

The frictional contact formulation based on the continuous impact theory, described
in Sect. 4 of this chapter, has been implemented in the user element framework of
SAMCEF/MECANO. In order to test this new contact element and compare its per-
formance with the coupled iterations method for flexible-rigid contact, the TORSEN
differential has also been considered as the application system. The same kind of
loading and limit conditions have been used whereas the five contact conditions
have been replaced by the new contact elements.

Figure 11 shows the time evolution of the torque on the sun gear and coupling
when the drive to rear mode of the differential is active (first quarter of the simula-
tion depicted in Fig. 6). These torques can be seen as the reaction torque on the dif-
ferential output shafts linked to the sun gear and the coupling because their rotation
speed is prescribed whereas a torque is applied on the differential input (housing).

The spikes on curves of Fig. 11 represent the shocks due to impacts when the
gear wheels move quickly at the switching time between to working modes. With
the rigid/flexible contact formulation, the magnitude of these spikes is almost van-
ished due to the anticipating damping used to enable the algorithm convergence.
The effects of impacts are also depicted in Fig. 12 which illustrates the axial dis-
placement of the sun gear. The rebonds of gear wheels against the various thrust
washers occur at each change of differential working mode. The magnitude and the
frequency of these rebonds depends on the restitution coefficient and the contact
stiffness used for each contact element.
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Fig. 11 Reaction torque on the sun gear and the coupling

Fig. 12 Axial displacement of the sun gear (e = 0.8)
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This rigid/rigid contact condition based on the continuous impact modelling is
suitable for global models of complex automotive components due to its robustness
and implementation simplicity. Besides the modelling of TORSEN differential, this
contact formulation could be easily extended to model the contact between plates in
clutch or between synchronization devices in gear boxes.

Compared with the previous contact element, the main advantage is the reduc-
tion of the computation time by a factor of five. Moreover, the transient behaviour
before and after the impact is better represented because it is not mandatory to
add an anticipating damping before the impact. The amount of numerical damp-
ing needed to enable the convergence is less than for the previous contact formula-
tion. A Hilbert-Hughes-Taylor integration scheme can be used whereas the Chung-
Hulbert method with the maximum of numerical damping allowed was necessary
for the rigid/flexible contact. The contact stiffness and the restitution coefficient are
the only two parameters needed for this contact element. Their value have to be
determined according to several criteria: material properties of the two contacting
bodies, geometry of the contact surfaces, . . . Most of the time, in order to find ac-
curate and reliable values for theses parameters, some physical experiments have to
be carried out. For intricate configurations, the experimental measures often require
a complicated set-up and expensive instruments. Another way to fix the restitution
coefficient and contact stiffness addresses the achievement of detailed numerical
simulations. These later are carried out on a faster time scale than the multibody
model simulation within the contact condition is included. Nevertheless, in both
case these operations are time consuming and request a lot of resources. This is one
drawback of this contact formulation based on the restitution coefficient. Currently,
neither experiments nor detailed numerical simulations have been carried out for
the TORSEN differential model. For the five contact elements, the contact stiffness
has been chosen according to the Young’s modulus of the steal used for the gear
wheels and thrust washers. The restitution coefficient has been prescribed to a value
commonly used for contact between two metallic bodies (e = 0.8).

7 Conclusions

This chapter is about the modelling of unilateral contacts included in automotive
transmission components. These contacts are essential for the correct operation of
mechanical devices such as gear boxes, differentials or clutches. Physical phenom-
ena like impacts or stick-slip highly influence the dynamic behaviour of the full
automotive driveline but they are particularly difficult to model accurately and effi-
ciently.

Two different contact formulations have been considered in this work. Both con-
tact elements have been used to represent the contacts between gear wheels and
thrust washers in a full TORSEN differential model. The friction has been taken
into account in all contact elements because friction torques are fundamental for the
locking effect of this kind of limited slip differential.
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The first one uses the coupled iterations method and is able to model contact
between two flexible bodies modelled with finite elements or between a rigid body
and a flexible body. During the first step of this contact algorithm, each slave node
on the contact surface of the first body is projected on the master face of the second
body submitted to the contact condition. From this projection, an associated distance
sensor in the normal and tangential directions is created. The relative displacement
in theses directions allows to determine the contact status: inactive or active contact,
sticking or sliding contact. The second step addresses the definition of the contact
condition according to the contact status. An augmented Lagrangian approach is
used to express the three kinematic constraints. However if impacts occur, some
convergence problems can appear. For the simulation of the TORSEN differential,
the augmented Lagrangian approach has to be replaced by a full penalty method
in order to have a robust model. A dynamic simulation including the four working
modes has been performed and has been globally validated by comparison with
experimental data [22].

The second contact formulation implemented is defined between two rigid bod-
ies and is based on the continuous impact theory. With this method, a restitution
coefficient is used to account for the kinetic energy loss during the impact process.
The contact force is determined by an impact law which depends on the contact
stiffness, the restitution coefficient and the relative local penetration and penetration
velocity between the two rigid bodies. This second formulation is more robust to
represent the transient behaviour close to the impact and enables to greatly reduce
the number of degrees of freedom as well as the computing time. However, in con-
trast to the first contact formulation (flexible/flexible or rigid/flexible), the analysis
of deformations and stresses in the contacting bodies is not available with this global
contact model.

For global applications like full automotive drivetrain systems, the two con-
tact formulations presented in this chapter could be used together inside the same
model. For instance, the coupled iterations method between flexible bodies could
be used for the contacts included within the transmissions devices accurately mod-
elled. While for the driveline components coarsely modelled, the rigid-rigid contact
formulation could be used to represent these contact conditions in a more global
way. Further, the two contact models could be extended in order to capture specific
phenomena such as stick-slip often encountered in mechanical transmission devices.
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