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Abstract Wireless capsule endoscopy (CE) has been available since 2001 and is
now established as one of the principal approaches used to examine the small bowel,
with a range of devices available from four manufacturers. But although its use is
widespread the reading of CE videos remains an arduous and time consuming ex-
ercise for gastroenterologists because relevant frames which are of interest to the
physician constitute only about 1 % of the video. CE exam viewing times vary from
40–90 minutes, depending on the clinician’s experience, the complexity of the case
and the small bowel transit time. Colour image analysis has been applied by man-
ufacturers to speed up this process, for example, Given Imaging’s Rapid Reader
Software includes a suspected blood indicator (SBI) designed to detect bleeding in
the video. However, some evaluations of this tool reported concerns with regard
to its specificity and sensitivity and so it does not free the specialist from review-
ing the entire footage and can only be used as a fast screening aid. Over the past
decade a number of papers have proposed a range of colour image processing and
computer vision applications to assist the gastroenterologist in the analysis of CE
video. These techniques can be divided into three categories, the first considers the
topographic segmentation of CE video into meaningful parts such as mouth, oe-
sophagus, stomach, small intestine, and colon. The second involves the detection of
clinically significant video events (both abnormal and normal) and the third attempts
to adaptively adjust the video viewing speed. This chapter reviews this research fo-
cusing particularly on the role of colour and texture descriptors and concludes by
suggesting possible future directions for CE analysis.
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1 Introduction

Wireless Capsule Endoscopy (CE) is a non-invasive clinical procedure allowing the
entire Gastrointestinal (GI) tract to be examined using a small encapsulated CMOS
camera. The development of this system was heralded in 2000 [1] and the first com-
mercial system was available from Given Imaging Ltd. following FDA (American
Food and Drug Administration) clearance in August 2001. The system, initially mar-
keted as M2A but later rebranded PillCam SB (SB denoting Small Bowel), consists
of a small (11 mm × 26 mm) capsule, an associated data-recorder belt and appli-
cation software. The disposable capsule is swallowed and propelled through the GI
tract by peristalsis before being expelled naturally. A transparent optical dome at one
end of the capsule contains an array of six white light emitting diodes which sur-
round a camera designed to capture two (256 × 256) colour images a second. The
images are compressed by JPEG and transmitted using radiotelemetry to the data
recorder which is worn by the patient on a belt. Analysis of the RF signal received
by an array of aerials fixed to the patient’s body allows the position of the capsule
to be determined and its trajectory to be logged. Two silver-oxide batteries located
at the other end of the capsule enable the camera to operate for about 8 hours, af-
ter such time the belt is removed for analysis. A software application called Rapid
Reader allows the stored data (approximately 50,000 images) to be downloaded to a
PC workstation for analysis. The clinical procedure is simple. The patient is advised
to fast overnight and in some cases a drug which prepares the bowel and reduces GI
transit time is administered. On the following morning, antennas are attached to the
patient and connected to the data recorder, which is worn on a belt. The physician
removes the capsule from its holder and performs a visual check to confirm it is op-
erational before it is ingested by the patient. Once the capsule has been swallowed
the patient is free to undertake normal tasks (subject to certain limitations), returning
to hospital after a period of 8 hours has elapsed.

In 2004 Given Imaging launched a second product called PillCam ESO, incor-
porating two CMOS cameras (one positioned at each end of the capsule) operating
at a higher frame rate designed to target oesophageal disease. PillCam COLON,
launched in 2006, represents another specialization of the concept, optimized for
colon examinations. PillCam COLON also employs two cameras but after activa-
tion the capsule enters a sleep mode for two hours (allowing it to reach the colon)
before resuming image transmission. In 2005 Olympus launched a system called
EndoCapsule with similar functionality to PillCam SB. EndoCapsule uses a CCD
camera system equipped with automatic brightness control (ABC) to provide auto-
matic illumination adjustment designed to deliver higher resolution images of con-
sistent quality. A unique feature of EndoCapsule is a real-time viewer which allows
the clinician to observe images as they are captured in addition to reviewing the
video using the more usual off-line analysis tool (EndoView). Given responded in
2007 by launching PillCam SB 2 a second-generation product with a superior spec-
ification and additional features designed to improve workflow. Subsequent second
generation versions denoted PillCam ESO 2 and PillCam COLON 2 followed. Since
2007, capsules called MicroCam developed by IntroMedic and a Chinese competi-
tor called OMOM (jinshangroup.com) have become available. The stream of images
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Fig. 1 Rapid Reader v4
(Given Imaging)

Fig. 2 EndoView (Olympus)

captured by the data recorder are presented as a video (typically 30 mins) and ana-
lyzed by a trained clinician using application software supplied by the manufacturer
(e.g. Figs. 1 and 2).

The analysis software packages provided by different manufacturers comprise
tools designed to improve the workflow and reduce the time spent on the analy-
sis task (typically somewhere between 45–90 mins). In [2], the authors comment
that with the expected reduction in capsule prices, the time needed by a clinician
to analyse the exam may soon become the most expensive part of the procedure.
Thus, a reduction of this time would be a major benefit, provided the quality of the
diagnostic report was not reduced. The existing systems have user-friendly viewing
interfaces, but with few exceptions lack automated tools that would highlight places
of interest. Such tools could not only shorten the exam viewing time, but also im-
prove the quality of patient’s diagnosis by drawing attention to possible pathology,
which could have been missed by the clinician among many thousands of normal
frames. Incidentally, the manufacturers of the capsule try to reduce the video view-



132 M. Fisher and M. Mackiewicz

ing time using additional viewing controls e.g. double and quad views in the Rapid
Reader and EndoView software packages.

It is here where the computer vision can make a significant impact on the utility
of CE. Ultimately, we would want the computer to take over from the clinician in
stating the diagnosis allowing for a much cheaper screening technique. While this
is still a very remote possibility, the development of computer vision methods for
CE already allows or will soon allow for a significant aid in clinician’s diagnosis.
From segmenting CE video sequence into meaningful anatomical parts to detecting
bleeding and other possible pathologies, computer vision methods have matured
since the introduction of the first capsule a decade ago. The biggest challenge these
algorithms face is to prove themselves that they can be trusted in practice i.e. per-
form the designated task at least as accurately as clinicians and hence allow for their
wider adoption in clinical tools relieving clinicians from the burden of time con-
suming analysis. The ultimate bottom line measure here is the false negative ratio as
for example for the pathological video event detection task, the exam evaluated as
normal could skip manual inspection streamlining the population screening process.

The rest of this chapter reviews the computer vision research focusing partic-
ularly on the role of colour and texture descriptors and concludes by suggesting
possible future directions for CE analysis. The main subjects of research are to-
pographic video segmentation and filtering of non-informative frames, designed to
provide a focus of attention, and classifiers for bleeding and abnormality detection.
The following sections examine research in these areas, focusing in particular on
the way that colour information is used in these tasks.

1.1 Feature Extraction

The distribution of colours in an image provides a useful cue for image indexing
and object recognition. The colour distribution histogram is the most commonly
used method of representing image colour information [3]. It is relatively invariant
to image scale changes, translation and rotation about the viewing axis, and par-
tial occlusion. Colour is an effective cue in CE image analysis and a salient feature
of many proposed algorithms. Visually, the colour of the mouth is unsaturated, the
stomach pinkish; the small intestine pinkish to yellowish; and the colon also pinkish
to yellowish but often occluded by varying amounts of yellowish to greenish colour
caused by faecal contamination. Moreover, different pathologies have their own dis-
tinct colour signatures. For example, ulcerations often contain yellowish and white
colours surrounded by the overly reddish hues suggesting inflammation or bleeding.

CE video frames are stored as RGB triplets but very few researchers choose to
analyse the data in this form. Fox [4], Bourbakis et al. [5] and Hwang et al. [6] are
amongst a minority who extract colour features directly from RGB colour space.
The authors claim their blood classifier appears to outperform the SBI tool provided
by Given Imaging. Building on the work of Swain and Ballard [3], Berens [7] ex-
plored the scalability of colour indexing and extended their work by investigating
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Fig. 3 CE images acquired from (A) Mouth, (B) Stomach, (C) Small Intestine, (D) partially oc-
cluded Colon and (E) completely occluded Colon; and below their respective equalized HS his-
tograms. A visible shift in hue (vertical axis of the histogram) between the respective histograms
is clearly visible. From [13]

the choice of colour space, coding of color histograms and techniques to provide
invariance to illumination. Experiments undertaken by Berens [8, 9] showed that
RGB colour space is not the best choice for image classification and that other per-
ceptually relevant colour spaces such as HSI (Hue, Saturation, Intensity) produced
better classification results. Consequently, Mackiewicz, working with Berens and
Fisher, [10–13] also use HSI colour space, but due to the range of intensity variation
in CE images, arising as the distance between the capsule and the intestine sur-
face constantly varies, they ignore the intensity channel and favour HS histograms.
The range of colour present in CE images is relatively small, mapping to a region
covering just around 20 % of the possible HS colour space, so the histograms are
equalized within this subset of red to yellowish-green colours. Figure 3 shows typ-
ical CE images acquired from the mouth, stomach, intestine and colon regions, and
their respective HS histograms. It can be seen that the colour distribution of the
stomach is slightly shifted towards red, compared to that within the intestine. It is
also clear that the colour distribution of the colon tissue is highly similar to that of
the small intestine, when it is free of faecal contamination. However, colon images
are generally obscured by the presence of faecal contamination which has a distinct
hue-saturation signature.

Texture features can play an important role, particularly in topographic video
segmentation of CE video (Sect. 2). The most prominent texture pattern that distin-
guishes different organs are small finger-like projections called villi (responsible for
food absorption), visible in Fig. 3C. These are present in the small intestine, but not
in the neighbouring regions of stomach and colon. Mackiewicz et al. analyse tex-
ture by employing a 3D Local Binary Pattern (LBP) operator introduced by Connah
and Finlayson [14] which extends the concept originally conceived by Mäenpää and
Pietikäinen [15–17] who calculated 1D LBP histograms for the three colour chan-
nels independently. Because CE images are often obscured (to a varying degree) by
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Fig. 4 Grid of 28 sub-image
regions. From [13]

strong shadows, or by air bubbles and other artifacts such as mucus, bile, faeces,
food etc. histograms built using the entire image will contain any visual contami-
nation present in the image. To address this problem, some researchers extract only
those parts of the image which contain only non-occluded tissue. In this respect,
Mackiewicz divides each CE image frame into a grid of 28 sub-image regions ar-
ranged to cover most of the image area as shown in Fig. 4 and discards those regions
which do not meet certain conditions.

The criteria are based on testing five parameters: Mean Intensity, Saturation, Hue,
and Standard Deviation of Intensity and Hue against similar values derived from
visually clear images of gastrointestinal tissue. The remaining sub-images form a
so-called sub-image region (SubIR) that is used by the feature extraction process
described previously. Figure 5 shows eight typical images acquired in the stomach
and intestine showing only those sub-images selected by the procedure described
above.

Another key result of Berens’s work was that transform coding could be used
to efficiently represent colour histograms without degrading their indexing perfor-
mance [8, 18]. Mackiewicz applies this idea to colour histograms derived from CE
images using both DCT and PCA transforms in a two stage algorithm to reduce
the colour feature vector to just 8 values. Figure 6 shows the first three principal
components calculated using the Hybrid Transform (DCT followed by PCA) from
1000 HS histograms extracted from one CE video. Each dot on the graph represents
one histogram.

Jeongkyu Lee et al. [19] also address the problem of event boundary detection in
CE arguing that there is compelling evidence to suggest HSI provides strong features
that are highly correlated with topographic segments of the GI tract. Li et al. [20–
22] also adopt the HSI colour space but in a similar approach to Mackiewicz they
only use the HS components, summarizing this feature as a so called chromaticity
moment. Coimbra et al. [23–27] favour colour and texture descriptors drawn from
the MPEG-7 standard [28] and have evaluated these for detecting a variety of events
in CE video. In [25] they conclude that the MPEG-7 Scalable Colour (SC) and
Homogeneous Texture (HT) descriptors are the most adequate for the task of event
detection. The SC descriptor is derived from the colour histogram defined in the
HSI color space with fixed color space quantization of 16 bins. For compression,
this information is encoded using the Haar transform, allowing scalable representa-
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Fig. 5 CE images showing selected SubIRs. A–D Stomach; E–H Intestine. From [13]

Fig. 6 Three first principal
components representing
compressed histograms
extracted from four different
video regions. From [13]

tion of the description and complexity scalability of feature extraction and matching
procedures [29]. The HT descriptor encodes a precise statistical distribution of the
image texture as a vector of 62 integers coming from the Gabor filter response of 30
frequency channels quantized in 30◦ radial segments in 5 octave bands [30]. Duda et
al. [31, 32] also test MPEG-7 descriptors for CE image discrimination and conclude
that the HT descriptor is the most reliable and the colour descriptors all performed
similarly. They also selected HT and SC descriptors as features. In their work, Vi-
larino et al. [33–35] also surveyed a range of image descriptors and concluded that
intensity, color and texture are the most relevant visual cues when processing en-



136 M. Fisher and M. Mackiewicz

doscopic videos. However, since their focus is intestinal contractions they pursue a
sequence-based rather than a frame-based approach, focusing on variations in image
intensity.

All researchers use colour features as inputs, sometimes combined with other
cues derived from motion, to classify single images and image sequences drawn
from CE video. Applications fall broadly into three areas. Topographic video seg-
mentation, the detection of clinically significant abnormalities, and attempts to con-
trol the speed at which frames are delivered to the viewer. These are reviewed in
Sects. 2, 3 and 4.

2 Topographic Video Detection

The GI tract comprises mouth, oesophagus, stomach and duodenum (upper GI tract),
the jejunum, ileum, colon and rectum. Typically the capsule takes a few seconds to
pass through the oesophagus before reaching the esogastric junction and entering
the stomach. The capsule remains in the stomach typically 15 minutes but this pe-
riod might be extended to several hours before it passes through the pylorus (a valve
between the stomach and the small intestine). The capsule takes about four hours
to transit the small intestine before entering the colon. Three key landmarks are
the esogastric junction (between oesophagus and stomach), pylorus (between stom-
ach and small intestine), and ileocaecal valve (between small intestine and colon).
Annotating the esogastric junction is quite easy as the features inside the mouth, oe-
sophagus and stomach are quite different. Locating the pylorus in the video can be
difficult and time consuming, even for those experienced in this task, as the stomach
tissue near the pyloric valve and that of the small intestine are visually similar. The
ileocaecal valve which marks the entry to the colon is even more difficult to locate
as the tissue is often obscured by faecal material.

Topographic video segmentation considers the problem of segmenting the cap-
sule video into meaningful parts such as mouth, oesophagus, small intestine and
colon. Researchers have observed that the choice of the right features is probably
the most important issue in this segmentation task and most support the view that
image texture is an important cue. Mackiewicz and Coimbra classify single im-
ages based on information recovered from colour and texture descriptors (combined
with a motion descriptor) and use these results to classify image features into the
previously mentioned anatomical classes. Work by both Coimbra and Mackiewicz
concludes that using a Support Vector Classifier rather than a Bayesian approach
improves the results, which can then be used within a navigation tool and to esti-
mate the capsule Gastric and Intestinal Transit Times, which are important factors
in diagnosing certain medical conditions.

Mackiewicz investigates a number of recognition algorithms including various
linear and non-linear classifiers: Multivariate Gaussian, kNN and Support Vector
Classifier (SVC) to perform the actual video segmentation, i.e. label the transition
points between anatomical regions. He performs a number of experiments to test
his topographic segmentation approach using a data set comprising 76 annotated
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CE videos provided by clinical collaborators at the Norfolk and Norwich Univer-
sity Hospital. The videos were annotated by an experienced clinician and segmented
into meaningful parts: Entrance, Stomach, Intestine and Colon. The input feature set
comprised both colour features derived from both whole images and subIRs. Single
images are classified as Entrance/Stomach, Stomach/Intestine and Intestine/Colon.
In these experiments the HS histograms were quantized into 32 × 32 = 1024 bins
and LBP histograms were built using 8 sampling points to provide 7 unique pat-
terns, 21(3 × 7) bins for the independent 1D histogram and 343(73) for the joint 3D
histogram.

It is worth noting that the choice of anatomical regions to be segmented varied
between researchers. The most popular set was mouth/entrance; oesophagus; stom-
ach; small intestine and colon. However, Duda et al. attempted to classify the CE
images from only the upper part of the GI tract into a larger number of distinctive
regions. They chose six anatomical regions: (A) oesophagus, (B) cardia, (C) fun-
dus, (D) corpus of the stomach, (E) pylorus and (F) duodenal cap. They used Neural
Networks as the image feature classifiers. The authors reported only the classifica-
tion results and did not attempt to segment the actual videos. Lee et al. chose yet
another set of anatomical regions namely: oesophagus; stomach; duodenum and je-
junum; ileum; and colon. The idea for their algorithm is based on the fact that each
digestive organ has different patterns of intestinal contractions. The analysis of the
frequency functions associated to these patterns leads to the event boundaries which
indicate either entrance to the consecutive organ or unusual events in the same or-
gan, such as intestinal juices, bleeding, ulceration, and unusual capsule movements.
These events can then be classified and if necessary merged into higher level events
that represent digestive organs leading to a tree-like representation of the capsule
endoscopy topography. The authors report that the performance on ileum and colon
is worse than on the upper digestive organs which confirms the earlier findings re-
garding difficulties with locating the entrance to the colon reported by Mackiewicz
and Coimbra.

Some researchers have produced clinical demonstrator systems by combining
their classifiers within a search framework that allows the user to search and navigate
within and between topographic regions. Both Coimbra and Mackiewicz have found
a Hidden Markov Model (HMM) to be the best strategy for this purpose.

3 Detection of Clinically Significant Events

Another important research area involves the detection of clinically significant video
events (both abnormal and normal). Examples include physical abnormality (e.g. ul-
ceration, polyp, cancer), intestinal fluids, intestinal contractions and capsule reten-
tion. This category also includes bleeding, an area which has received considerable
focus in the literature and one that has been addressed by the manufacturers in their
proprietary software packages.

Blood detection is a focus for much of CE research, perhaps motivated by
early reports that questioned the performance of the SBI shipped with PillCam SB.
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Fig. 7 Bleeding detection system flow chart. From [13]

In [4, 6], the authors propose a new algorithm that they claim can detect bleeding ar-
eas in the capsule videos. The algorithm uses Expectation Maximization (EM) clus-
tering and Bayesian Information Criterion (BIC). The authors manually segmented
around 200 images into blood and non-blood regions. Then, they selected 16,000
bleeding and 45,000 non-bleeding pixels and modelled the colour distribution of
these regions using Gaussian mixtures in RGB colour space. A Bayesian decision
rule was used. The algorithm chooses those pixels x to be bleeding candidates for
which conditional probability p(x—bleeding) of a pixel x given by bleeding pixels
is significantly larger than conditional probability p(x—non-bleeding) of a pixel x

given by non-bleeding pixels; and also it is larger than a certain predefined threshold.
In the final step of the algorithm, the areas of bleeding regions are calculated and all
segmented regions containing less than 1,000 pixels are rejected. To test the results
of bleeding detection, the authors selected 15,222 capsule images of which 1,731
contained blood from three different videos. On this test set, the reported specificity
and sensitivity were 98,10 % and 92,55 % respectively.

Contrary to [4, 6], who use parametric bleeding colour distribution models,
Mackiewicz chooses a different method using the similar feature set as described
in the previous section [36]. A simplified flowchart of the bleeding detection system
is shown in Fig. 7. First, each pixel is classified as bleeding or non-bleeding using a
HSI model. Then, a region growing operation merges candidate pixels into regions
of at least 250 pixels. If a blood region is detected, associated colour and texture
features are extracted. These features are also extracted from the region surround-
ing the suspicious region. Then, after searching for specular highlights in order to
check if the frame contains air bubbles, these features are used to identify the frame
as containing suspicious regions. The images are classified using a Support Vec-
tor Classifier into three classes: Bleeding, Lesion/Abnormality or Normal, reporting
figures of 97 %, 92 % and 92 % respectively using on ten-fold cross validation with
a database comprising 84 full-length CE videos.
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Fig. 8 Two images
containing air bubbles with
specular highlights.
From [13]

Another idea for aiding capsule endoscopy video review involves removing non-
informative frames from the video sequence. Early detection of such regions is
highly beneficial since they can be removed from the sequence, before it is presented
to the clinician, resulting in a shortening of the reviewing time. Intestinal fluids are
one type of non-informative content. They appear as yellowish to brownish semi-
opaque turbid liquids often containing air-bubbles as well as other artifacts (Fig. 8).
Removal of such frames was first proposed by [34] who presented an algorithm
which detects areas in the WCE video comprising images completely obscured by
intestinal fluids. The authors observe that the most relevant feature of the intestinal
fluids is the presence of small bubbles of different sizes and quasi-circular shapes.
Their algorithm is based on texture analysis performed using Gabor filter banks. In
order to construct a filter bank, the authors used four different directions oriented at
0◦, 45◦, 90◦, 135◦ and consisting of four Gaussian scales (sigma values of 1, 2, 4
and 8 pixels), resulting in a bank of 16 filters. Mackiewicz also addresses the prob-
lem of air bubbles as these can cause problems when attempting to identify frames
containing blood because the healthy tissue colour distribution seen through the air
bubble is similar to the blood colour distribution, thus triggering false positives. He
observed that air bubbles often contain specularities which can be detected using an
approach due to Ortiz and Torres [37].

Vilarino et al. [33–35] as well as Igual et al. [38] studied detection of intestinal
contractions and intestinal motility disfunction. Villarino claim a sensitivity of 70 %
in respect of their approach which involves the analysis of textural, colour and blob
features using a Support Vector Machine (SVM).

Recently, Li and Meng [20] proposed a method of bleeding and ulceration detec-
tion by means of chromaticity moments constructed from the Tchebichef polyno-
mials. The authors divide the circular CE image into a grid of 36 non-overlapping
blocks (30 × 30 pixels) (similar grid was also used for feature extraction in [12], see
Fig. 4), from which they calculate six chromaticity moments. Next, they performed
an experiment in which 5400 (1800 normal, 1800 bleeding and 1800 ulceration)
image blocks were selected from 300 non-consecutive CE images extracted from
10 patient video sequences. The blocks were randomised and classified using an
MLP Neural Network. Finally, the authors reported sensitivity and specificity fig-
ures obtained from the block classifications. This was a preliminary study that was
not performed on the full length videos.
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More recently, Li et al. [22] presented a study with an aim to develop a computer
aided system to diagnose small bowel tumours. They proposed a textural feature
that is built on wavelet and local binary pattern. They employed a classifier en-
semble consisting of k-nearest-neighbor, multilayer perceptron neural network and
support vector machine. Results obtained from the single image classification of
600 normal and 600 abnormal capsule images showed the promising performance
for small bowel tumour detection.

4 Viewing Speed

Attempts to automatically adapt the viewer’s focus of attention based on video con-
tent have focused on automatically adjusting the viewing speed and filtering of non-
informative frames. Hai et al. [39] proposed video speed is adjusted by an algorithm
which plays the video at high speed in stable regions and at slower speed where
significant changes between frames occur, signifying the possibility of pathologies.
The authors divide each frame into 64 blocks and measure the similarity of colours
between respective blocks in consecutive frames. RGB histograms quantized to 163
bins are used to describe each image block. The distance between local histograms
is computed using the L1 norm, formally:

Dblk(i) =
nbins∑

k=1

(∥∥Hn
R,k − Hn+1

R,k

∥∥ + ∥∥Hn
G,k − Hn+1

G,k

∥∥ + ∥∥Hn
B,k − Hn+1

B,k

∥∥)

which is later used to calculate the similarity between two frames:

Sim(n) = 1

nblocks

Nblocks∑

i=1

sim_block(i)

where

sim_block(i) =
{

1: Dblk(i) > Threshblock

0: otherwise

These features are used together with estimates of motion displacement to classify
the frame in one of four states and these in turn adjust a delay which controls the
speed at which frames are presented to the viewer. The authors conclude that using
their method the viewing time may be reduced from 2h to around 30 minutes without
‘loss of information’.

The software supplied by both Given Imaging (Rapid Reader) and Olympus (En-
doView) also include play speed control. Unfortunately, the details of these algo-
rithms remain unknown. Moreover, in the more recent versions of Given’s Rapid
Reader, the clinician is given an option of watching a video in either “Normal Mode”
or in the “Quick View Mode”. Although the “Quick View” mechanism is not pre-
cisely explained in the documentation, we noticed that it uses an approach similar
to that described above to reduce the viewing time of the video. It must be added
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though, that the “Quick View” mode skips some frames, displaying only the most
suspicious (at least to the algorithm that is used by Given Imaging), which makes it
different to the algorithms described above.

The obvious conclusion regarding these methods must be that they are highly
subjective. All research on this topic has to include particularly extensive clinical
evaluations in order to make sure that the increase in the viewing speed does not
increase the number of false negatives [40].

5 Future Directions for CE Research

In a recent review of ten years of CE, Mackiewicz [41] considers a number of ex-
citing opportunities for further research in the field CE video analysis. Firstly, there
is the possibility of focusing on specific pathological events possibly addressed by
some of the specialist capsules now being marketed (e.g. PillCam ESO and Pill-
Cam COLON). Adaptive control of the speed at which the video is reviewed is
also a promising area as it draws from experience gained in other research in the
field of video summarization and beyond this, there is the possibility of tools for
automated reporting and annotation of CE video. The prospect of more advanced
capsules which might be controlled by the physician are probably no more than a
decade away. One of the main challenges for CE research is in providing sufficient
quantities of annotated training data to enable classifiers to be built. Given that a typ-
ical CE exam may contain around 50,000 images, but only a few abnormal events,
a reasonably conservative figure for a training set might be 100 exams (about 50
hours of video). The fact that few researchers have access to a database of this size
probably explains the lack of significant progress in the field, even following the
publication of hundreds of individual papers.

6 Discussion

All of the significant investigators of CE video analysis [12, 21, 27] have used colour
and texture features. The preferred colour feature is the HSI colour histogram, en-
coded using the Haar (MPEG-7) or hybrid (DCT + PCA) transform. Many re-
searchers chose MPEG-7 features, possibly due to the freely available reference
software [42], the established track record of these techniques in other content based
image retrieval applications, and the work due to Coimbra et al. [25]. All researchers
agree that colour texture is a very important component. The groups using MPEG-7
favour the HT descriptor, based on the Gabor wavelet. However, the comparative
success of other methods such as LBP adopted by Mackiewicz in an implementa-
tion developed by colleagues Connah and Finlayson [14], suggests that the MPEG-7
descriptors may not be the most suitable for this purpose. A number of classifiers
have been tested using both feature sets and there is widespread agreement that
the Support Vector Classifier yields marginally better results than other methods.
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Evaluation of the approaches varies considerably and the lack of a large reference
data set is a major drawback. The quality of evaluations undertaken by groups in
Norwich, Porto, HongKong and Barcelona is largely due to the support by collabo-
rators at local hospitals or manufacturers. Manufacturers Given Imaging, Olympus
and OMOM (jinshangroup.com) all provide example CE video data but primarily
motivated by a desire to promote sales, marketing, and training rather than support
the development of algorithms by the wider scientific community. The availabil-
ity of CE video has made a significant impact on the medical imaging community
since its introduction in 2001 and there is no doubt that it will become increasingly
important, as the number of CE examinations grows.
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