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The research related to the analysis of living structures (Biomechanics) has been a source of recent re-
search in several distinct areas of science, for example, Mathematics, Mechanical Engineering, Physics,
Informatics, Medicine and Sport. However, for its successful achievement, numerous research top-
ics should be considered, such as image processing and analysis, geometric and numerical modeling,
biomechanics, experimental analysis, mechanobiology and enhanced visualization, and their applica-
tion to real cases must be developed and more investigation is needed. Additionally, enhanced hardware
solutions and less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of high level
information from static images or dynamic image sequences. Examples of applications involving image
analysis can be the study of motion of structures from image sequences, shape reconstruction from
images and medical diagnosis. As a multidisciplinary area, Computational Vision considers techniques
and methods from other disciplines, such as Artificial Intelligence, Signal Processing, Mathematics,
Physics and Informatics. Despite the many research projects in this area, more robust and efficient
methods of Computational Imaging are still demanded in many application domains in Medicine, and
their validation in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be strongly
connected and related. Hence, the main goal of the LNCV&B book series consists of the provision of a
comprehensive forum for discussion on the current state-of-the-art in these fields by emphasizing their
connection. The book series covers (but is not limited to):

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis
• Cellular Imaging and Cellular Mechanics
• Clinical Biomechanics
• Computational Bioimaging and Visualization
• Computational Biology in Biomedical Imaging
• Development of Biomechanical Devices
• Device and Technique Development for

Biomedical Imaging
• Digital Geometry Algorithms for

Computational Vision and Visualization
• Experimental Biomechanics
• Gait & Posture Mechanics
• Multiscale Analysis in Biomechanics
• Neuromuscular Biomechanics
• Numerical Methods for Living Tissues
• Numerical Simulation
• Software Development on Computational

Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and Mesh
Generation

• Image Processing and Analysis
• Image Processing and Visualization in

Biofluids
• Image Understanding
• Material Models
• Mechanobiology
• Medical Image Analysis
• Molecular Mechanics
• Multi-modal Image Systems
• Multiscale Biosensors in Biomedical Imaging
• Multiscale Devices and Biomems for

Biomedical Imaging
• Musculoskeletal Biomechanics
• Sport Biomechanics
• Virtual Reality in Biomechanics
• Vision Systems
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Preface

Since the early 20th century, medical imaging has been dominated by monochrome
imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic
resonance imaging. As a result, color information has been overlooked in medi-
cal image analysis applications. Recently, various medical imaging modalities that
involve color information have been introduced. These include cervicography, der-
moscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound
photography. However, in comparison to monochrome images, the analysis of color
medical images is a relatively unexplored area. The multivariate nature of color im-
age data presents new challenges for researchers and practitioners as conventional
methods developed for monochrome images are often not directly applicable to mul-
tichannel images.

The goal of this volume is to summarize the state-of-the-art in the utilization
of color information in medical image analysis and provide future directions for
this exciting subfield of medical image analysis. The intended audience includes
researchers and practicing clinicians, who are increasingly using digital analytic
tools.

The volume opens with “A Data Driven Approach to Cervigram Image Analysis
and Classification” by Kim and Huang. The authors describe an automated, data
centric system for cervigram image analysis that utilizes color and texture features
extracted from the regions of interest to classify unseen cases using a Support Vector
Machine classifier trained on several thousand annotated images. The authors report
a sensitivity of 75 % and a specificity of 76 % on a set of 2,000 images.

The volume continues with four chapters on skin lesion image analysis. In
“Macroscopic Pigmented Skin Lesion Segmentation and Its Influence on Lesion
Classification and Diagnosis,” Cavalcanti and Scharcanski investigate the influence
of segmentation accuracy on skin lesion classification. The images are first enhanced
using a novel shading attenuation algorithm. Following a segmentation step, vari-
ous shape, color, and texture related features are then extracted from the lesions.
Finally, the images are classified using a 1-Nearest Neighbor (1-NN) classifier. The
authors compare six recent monochromatic and multichannel segmentation meth-

v
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ods and conclude that the use of color information during segmentation improves
the accuracy of classification.

In “Color and Spatial Features Integrated Normalized Distance for Density Based
Border Detection in Dermoscopy Images,” Kockara et al. propose an improved den-
sity based clustering algorithm for detecting lesion borders in dermoscopy images.
This algorithm is an accelerated version of the celebrated DBSCAN (Density Based
Spatial Clustering of Applications with Noise) algorithm and it does not require
any preprocessing. The authors obtain promising results on a difficult set of 100
dermoscopy images.

In “A Color and Texture Based Hierarchical K-NN Approach to the Classifica-
tion of Non-Melanoma Skin Lesions,” Ballerini et al. describe a hierarchical clas-
sification system for non-melanoma skin lesions based on the K-NN classifier. The
images are first segmented using a region-based active contour model. Color and
texture related features are then extracted from the lesions. Finally, the images are
classified using a hierarchical K-NN classifier. The authors obtain promising results
on a set of 960 macroscopic images that contains five classes of non-melanoma skin
lesions.

The final skin lesion analysis chapter, “Color Quantization of Dermoscopy Im-
ages Using the K-Means Clustering Algorithm” by Celebi et al., investigates the
applicability of a recently proposed k-means based color quantization method to
dermoscopy images of skin lesions. This method improves upon conventional k-
means based color quantization by using data reduction, sample weighting, acceler-
ated nearest neighbor search, and deterministic cluster center initialization. The au-
thors demonstrate that their method outperforms state-of-the-art quantization meth-
ods with respect to distortion minimization.

In “Grading the Severity of Diabetic Macular Edema Cases Based on Color Eye
Fundus Images,” Welfer et al. present an automated method for detecting and grad-
ing diabetic macular edema signs in color eye fundus images. First, the optic disc,
fovea center, and exudates are detected using a sequence of morphological opera-
tors. The spatial distribution of the exudates around the macula center is then used
to classify each case into one of four categories (absent, mild, moderate, and severe)
using a CART (Classification and Regression Trees) classifier. The authors obtain
an average accuracy of over 94 % on a set of 89 publicly available images.

In “Colour Image Analysis of Wireless Capsule Endoscopy Video: A Review,”
Fisher and Mackiewicz present a comprehensive survey of wireless capsule en-
doscopy video analysis focusing on the related color imaging aspects. After pre-
senting an overview of the history of the field, the authors discuss feature extraction,
segmentation, significant event detection, and adaptive control of viewing speed.

The volume continues with two chapters on microscopy. In “Automated Pro-
totype Generation for Multi-Color Karyotyping,” Wu et al. present a three-step
method for generating a prototype from multicolor karyotypes obtained via mul-
tispectral imaging of human chromosomes. The first step involves the automated
extraction of individual chromosomes from each karyotype, followed by chromo-
some straightening and size normalization. In the second step, the extracted and
normalized chromosomes belonging to each of the 24 color classes are automati-
cally assigned to a particular group based on the ploidy level. Finally in the third
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step, the prototype of the color karyotype is determined by generating a representa-
tive chromosome for each group using pixel-based fusion.

Bueno et al. in “Colour Model Analysis for Histopathology Image Process-
ing” compare five color models, namely Red-Green-Blue (RGB), Hue-Saturation-
Intensity (HSI), Cyan-Magenta-Yellow-Black (CMYK), CIELAB, and Hue-
Saturation-Density (HSD), for the analysis of histological whole slide images.
Based on visual examination and Receiver Operating Characteristic (ROC) curve
analysis the authors conclude that the CIELAB model gives the best results.

A chapter on burn image analysis entitled “A Review on CAD Tools for Burn
Diagnosis” by Sáez et al. completes the volume. The authors discuss the issue of
color normalization and then present a comparison of several color segmentation
methods applied to burn images. The chapter concludes with a discussion of color
based estimation of burn depth using a Fuzzy-ARTMAP classifier.

As editors, we hope that this volume focused on analysis of color medical images
will demonstrate the significant progress that has occurred in this field in recent
years. We also hope that the developments reported in this volume will motivate
further research in this exciting field.

M. Emre Celebi
Gerald Schaefer
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A Data Driven Approach to Cervigram Image
Analysis and Classification

Edward Kim and Xiaolei Huang

Abstract Cervical cancer is one of the leading causes of death for women world-
wide. Early detection of cervical cancer is possible through regular screening; how-
ever, in developing countries, screening and treatment options are limited due to
poor (or lack of) resources. Fortunately, low cost screening procedures utilizing vi-
sual inspection after the application of acetic acid in combination with low cost
DNA tests to detect HPV infections have been shown to reduce the lifetime risk of
cervical cancer by nearly 30 %. To assist in this procedure, we developed an auto-
matic, data centric system for cervigram (photographs of the cervix) image analysis.
In the first step of our algorithm, our system utilizes nearly a thousand annotated
cervigram images to automatically locate a cervix region of interest. Next, by uti-
lizing both color and texture features extracted from the cervix region of interest on
several thousand cervigrams, we show that our system is able to perform a binary
classification of disease grading on cervigram images with comparable accuracy to
a trained expert. Finally, we analyze and report the effect that the color and texture
features have on our end classification result.

1 Introduction

Cervical cancer afflicts an estimated 12,200 women in the US [1] and 529,800
women worldwide [2] every year. Fortunately, it can be cured if it is detected during
its early stages and treated appropriately. However, among the new cervical cancer
cases found worldwide each year, 85 % of them are in developing countries [2]. This
disproportionate burden in low-resource world areas with medically underserved
populations is mainly due to the lack of screening. Screening can prevent cervical
cancer by detecting Cervical Intraepithelial Neoplasia (CIN), also known as cervi-
cal dysplasia. The CIN classification is specified in several grades: CIN1 (mild),
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CIN2 (moderate), and CIN3 (severe). In a clinical setting, one of the most important
goals of screening for cervical cancer is the differentiation of normal/CIN1 from
CIN2/3+. If a lesion is classified as CIN2/3+, it will require treatment whereas mild
dysplasia in CIN1 typically will be cleared by immune response in a year or so, and
thus can be observed or treated more conservatively.

To address the problem of CIN classification, we utilize a low cost, photographic
screening test, called Cervicography. The photographs of the cervix, or cervigrams,
can provide valuable and insightful information to assist in diagnosis and disease
grading. One of the most important observations in cervigrams is the acetowhite re-
gion which is caused by the whitening of potentially malignant regions of the cervix
epithelium after applying dilute (3–5 %) acetic acid. All forms of precancerous tis-
sue exhibit some degree of opacity, or acetowhiteness, after contact with acetic acid.
Thus, accurately interpreting the severity of this tissue region is critically important
to cervigram image analysis. Additionally, other visual features or observations can
assist with disease classification. These features include the identification or pres-
ence of mosaicism, punctation, atypical vessels or vasculature, blood, polyps, cyst,
etc. However, as cervigram regions have very high variability in color, shape, and
size, it is difficult for both trained medical professionals and computer algorithms
to identify and characterize these regions individually.

2 Related Work

In recent years, there have been several automatic or semi-automatic image analysis
algorithms applied to cervigram images. A common process in many of these previ-
ous works was the automatic detection of the cervix region. This region of interest
(ROI) contains the relevant information necessary for accurate tissue and disease
classification. In Li et al. [13], the region of interest is found by the analysis of lo-
cal color features and optimized through expectation maximization. Zimmerman et
al. [18] developed a two-stage segmentation process utilizing image intensity, satu-
ration, and gradient information and reported their results on 120 images. Gordon
et al. [9] uses a Gaussian mixture model to automatically find the cervix region of
interest, and then separates the cervix tissue region into three types: the columnar
epithelium, the squamous epithelium, and the acetowhite region. Gordon et al. also
tested on a set of 120 cervigram images. Xue et al. [17] focuses on the removal of
specular regions and the identification of the acetowhite region in the ROI. Simi-
larly, Xue et al. tested on 120 cervigram images, and used L∗a∗b∗ color features,
Gaussian mixture models, and k-means clustering to achieve their results.

Further image classification tasks in the region of interest can be performed as
exhibited in several previous works. In Ji et al. [11], the authors use texture features
to recognize important vascular patterns found in cervix images. They collected 5
images per vascular pattern class (network, hairpin, punctation1, punctation2, mo-
saic1, mosaic2) for a total of 30 images. Similarly, Srinivasan et al. [16] uses a filter
bank of texture models for recognizing punctation and mosaicism on ten images.
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As demonstrated by the previous work, there are many complex visual features
that contribute to the problem of cervigram image analysis. The isolation of the
cervix region of interest is an important first step used to remove the unwanted
effects of the background image noise. Then, analysis of the region of interest can
be performed by looking at color and texture features. Color features play a key role
in the cervix and tissue classification task, whereas texture also plays an important
role in the identification of mosaicism and vessel pattern analysis. Further, given the
high variability exhibited by cervigrams, testing on larger datasets is necessary to
validate the effectiveness of cervigram image analysis on real world datasets.

3 Methodology

In our work, we develop a unique approach to cervigram image analysis. In contrast
to many previous works that utilize a more generative model towards cervigram
image analysis, we developed a discriminative, data centric system that would be
able to utilize similar cervigram cases in a collection of annotated cervigrams to
perform a binary classification, i.e. normal/CIN1 and CIN2/3+.

To be more explicit, we do not attempt to directly characterize the visual prop-
erties present in cervigram images. Instead, we utilize thousands of training images
collected by the National Cancer Institute (NCI) and National Library of Medicine
(NLM) to classify a new cervigram image. For this process, we will be utilizing two
distinct databases. The first database consists of 939 expertly labeled cervigrams.
There are detailed annotations linking these images to expert markings including the
delineation of the cervix region of interest. We will refer to this database as D1. Our
second database, D2, is of a larger scale and contains tens of thousands of patient
records and cervigram images [10]. Each record also has been labeled with a final
outcome, which we can utilize in the classification stage of our system. The final
outcome is determined by expert practitioners and has been given a final diagnosis
(normal/CIN1, CIN2/3+). These expert annotations of final diagnosis are based on
analyzing the histology of the patient images, a commonly used gold standard to
define the ground truth diagnosis.

In summary, our system takes as input a new test cervigram image and uses large
amounts of training data to reach a final disease classification. This classification
result involves several steps. The first step is the translation of raw image data into
a compact color and texture feature representation. Using our representation, we
can then attempt to leverage our first database of annotated cervigrams to isolate
the cervix region of interest. Finally, we can again utilize our second database and
the specific visual features located in the ROI of a given cervix region to obtain a
final disease classification. By using the databases in our classification task, we are
indirectly utilizing the variables that went into the diagnosis of a patient cervigram
image, without having to individually model the complex visual characteristics.



4 E. Kim and X. Huang

3.1 Visual Feature Extraction and Representation

Through our research, and as exhibited in many previous works, we have found that
both color and texture features are necessary to represent the visual cues present
in cervigram tissue regions (acetowhite regions, mosaicism, punctation, etc.). Addi-
tionally, the relative size and position of abnormal characteristics are also important
to capture in our feature representation. Thus, we utilize a spatial pyramid of color
and texture features as described in Lazebnik et al. [12]. This spatial pyramid repre-
sentation is able to preserve the geometric correspondence of visual features.

Color Features Color plays an important role in cervical lesion identification
and classification. One of the most important visual features on the cervix that have
relevant diagnostic properties is the presence of acetowhite regions, or the whitening
of potentially malignant cervical regions with the application of dilute acetic acid.
The perceived color and thickness of an acetowhite region is also relevant to cervical
lesion grading. Thus, we extract pyramid color histogram features, PLAB, from a
cervigram image to represent various color regions. We convert the pixel colors in
a cervigram into the perceptually uniform L∗a∗b∗ color space. A property of this
color space is that a small change in the color value corresponds to about the same
small change in visual appearance. Our PLAB descriptor is also able to represent
local image color and its spatial layout. For each channel (L∗, a∗, or b∗) of the
color space, we extract 3 pyramid levels, with a 16 bin histogram from each region.
A pyramid is constructed by splitting the image into rectangular regions, increasing
the number of regions at each level. Thus, a single channel histogram consists of
336 bins, and our complete PLAB descriptor consists of 1008 bins.

Texture Features Texture features play an important role in representing vari-
ous vasculature patterns, punctation, mosaicism, and tissue thickness characteris-
tics. Similar to our color features, we represent texture as a pyramid histogram of
oriented gradients, or PHOG feature [4]. The PHOG descriptor represents local im-
age shape and its spatial layout. The shape correspondence between two images
can be measured by the distance between their PHOG descriptors using a spatial
pyramid kernel. To extract the PHOG descriptors from a cervigram image, we first
compute the gradient response using a sobel edge filter. If we use an 8 bin orienta-
tion histogram over 4 levels, the total vector size of our PHOG descriptor for each
image is 680 bins. For an illustration of our PLAB and PHOG feature, see Fig. 1.

Image Similarity Measurement To compute the image similarity, we use a
weighted sum of the similarities between the two images’ color and texture features.
The cost function that measures this dissimilarity, or distance, is defined as,

Cs(X,Y ) = λ
(
d
(
Xc,Y c

))+ (1 − λ)
(
d
(
Xt,Y t

))
(1)

where X, Y represent two distinct images, Xc, Y c are the PLAB color feature vec-
tors of X and Y , and Xt , Y t are the PHOG texture features of X and Y respectively.
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Fig. 1 Example of the PLAB and PHOG features extracted at multiple levels in a rectangular re-
gion of interest. In (a)–(c) the L∗a∗b∗ color space is sampled into 16 bins per region (per channel).
The L∗ channel in the PLAB feature vector is represented in (d)–(f). The edges of the input image
are computed by a sobel edge filter and partitioned into a pyramid of regions (g)–(i). 8 orientation
bins are extracted from each rectangle and concatenated into the PHOG feature vector represented
in (j)–(l)

The distance between feature vectors is computed by d , and the λ term weighs the
influence of the two features on the final similarity computation.

For the distance measure between two histogram-like feature vectors, hX and hY ,
we use the χ2 measure defined as,

d(hX,hY ) = χ2(hX,hY ) = 1

2

K∑

k=1

[hX(k) − hY (k)]2

hX(k) + hY (k)
(2)

where K is the total number of bins present in the feature vectors.
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3.2 Finding the Region of Interest

In the first step of our algorithm, we isolate the (cervix) region of interest in a new
cervigram. Given a new cervigram image our goal is to annotate a tight bounding
box around the cervix. Some previous works have used the local color and position
features in order to isolate the cervix region [8, 9, 17]. However, due to the high
variability in color, size, and position of the cervix in cervigrams, these approaches
based solely on local image features suffer from low specificity. In contrast, we take
a different approach to the region of interest detection problem. Our approach is
data driven; we rely on an expertly labeled database of 939 cervigram images with
their delineated rectangular regions of interest in order to find a suitable bounding
box for the region of interest in a new cervigram image.

We will refer to this step in our algorithm as our optimized bounding box
method, and is defined as the following. Given a new cervigram test image, we
extract the color and texture features from the whole image and compute the image
similarity between this image and every other image in our 939 database (D1) by
Eq. (1). We sort the list of images in the database by decreasing similarity and extract
the top M matching cervigram images. These images should globally resemble the
test image; however, there is no guarantee that the cervix region of the top images
match the location and size of the test image. Thus, we only use the top M matching
cervigrams for their annotated ROI and use these ROIs as candidate bounding boxes.
We denote the top M matching cervigrams’ ROIs as Bm where m = [1 . . .M], and
our ground truth bounding boxes in D1 as D1

n, where n = [1 . . .N]. Then, for ev-
ery candidate bounding box, we recompute the color and texture features of the test
image inside the candidate ROI. We then compute the similarity between each can-
didate bounding box and every ground truth cervix ROI in our first database of N

(=939) images. Among the MXN comparisons, we find the pair of ROIs that gives
the smallest distance, and the candidate ROI in this pair will be our final ROI for the
test image.

Mathematically speaking, we choose the minimum distance bounding box pair
to obtain our final ROI, B̂m,

〈
B̂m, D̂1

n

〉= arg min
〈Bm,D1

n〉
Cs

(
D1

n,Bm

)
, n ∈ [1 . . .N], m ∈ [1 . . .M] (3)

3.3 Cervigram Classification

Given the cervix region of interest, we can now more accurately match a test cervix
region to our database of cervigram ROIs. Our second database, D2, consists of
thousands of cervigrams that have been analyzed by experts and given a disease
diagnosis of CIN1 through CIN3. This data can be utilized to train a classifier which
will compute a disease classification for the given test image.

We build two classification methods into our system, a support vector machine
classification and a majority vote classification.
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3.4 Support Vector Machine Classification

In D2, we compute the ROIs for every image, and extract their color and texture
features. We then build a binary linear classifier that can discriminate between nor-
mal/CIN1 and CIN2/3+ using a Support Vector Machine (SVM) [5]. We extract
our color and texture features from the cervix ROI and concatenate these vectors
into a single 1688 bin vector (1008 bin color vector + 680 texture vector). We can
build a SVM model based upon a subset of D2, which will attempt to separate the
two classes (normal/CIN1 and CIN2/3+) in a high dimensional space. Given a new
cervigram ROI, the SVM model can predict a CIN classification based upon the de-
cision boundary obtained by our training data. We describe the size of our training
and test set, as well as the parameters of our SVM model, and how we obtained
them in our results section.

3.5 Majority Vote Classification

For our majority vote classifier, we again compute the extracted color and texture
features in the cervix ROI. We can then compute a matching score between the test
cervix ROI and every other ROI in our second database. Using the matching score,
we can sort the similarity of the images to the new image and find the top Q most
similar cases. These top cases vote on a classification, where the majority vote label
is selected as the final output of our system. Mathematically speaking, given Q, the
top cluster of |L| = Q cases can be obtained by minimizing,

C(X) =
Q∑

n=1

Cs

(
D̂2

Ln
, B̂X

)
, L ⊂ D2 (4)

where D̂2 are the computed ROIs from our second database, and X is our test cervi-
gram, and B̂X is its corresponding ROI. When minimized, the set of L consists of
the top Q matches from our second database. Each element of L has a correspond-
ing binary label i.e. normal/CIN1 or CIN2/3+, and will cast a vote for the final
classification. The majority vote label is assigned to the test image, X.

4 Results

We perform several experiments to evaluate our system. Our first experiment mea-
sures how accurately we are able to isolate the cervix region of interest. Our second
experiment measures the ability of our system to correctly classify a new cervigram
image. Finally, our third experiment measures the effect that our color and texture
features have on the final outcome.
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4.1 Isolating the Region of Interest

In this experiment, we analyze how accurately we are able to detect the region of
interest in a new cervigram image. This experiment tests on 450 cervigrams in D1,
but utilizes all of the 939 (minus the test cervigram, e.g. leave-one-out) expertly
annotated bounding boxes to obtain the final result as described in Eq. (3). The
majority of the images are of the same size and resolution; however, there still is a
small amount of variability. Our feature representations are normalized to account
for this variability.

To measure the accuracy of our region of interest calculation, we use the Jaccard

similarity coefficient defined as, J (A, B̂) = |A∩B̂|
|A∪B̂| which measures the similarity of

our bounding box calculation to the ground truth region of interest specified by a
trained physician. In this equation we can view A as the ground truth cervix region
bounding box, and B̂ as the minimum bounding box found in Eq. (3). In essence,
the Jaccard coefficient can be viewed as the area of intersection of bounding boxes,
divided by the total area covered by both bounding boxes. A Jaccard similarity co-
efficient closer to one has a greater similarity to the ground truth; whereas, a coef-
ficient value close to zero has nearly no overlap area similar to the ground truth. In
this experiment, we compare three different methods.

1. Image Bounding Box (IBB). In this method, we choose the most similar im-
age to the test image, based upon a global image similarity. The bounding box
is transferred from the top match to the test cervigram. This method does not
eliminate the noise present outside the region of interest.

2. Average Bounding Box (ABB). This method again uses global image similarity;
however, we take the top K matches and average the position of their bounding
boxes to achieve our final bounding box. We used a gradient descent on the Jac-
card similarity coefficient (with respect to D1) to obtain the best K (= 15).

3. Optimized Bounding Box (OBB). This is our method described in Sect. 3.2 that
utilizes candidate bounding boxes from a global image match. We compute the
final bounding box by finding the argmin in Eq. (3). For our experiments, we set
M to be 100, i.e. we have 100 candidate bounding boxes to choose from.

We show several sample images, their corresponding ground truth bounding boxes,
and the results of these three methods in Fig. 2.

However, the Jaccard index does not describe the entire story. As seen in
Fig. 2(4)(c), the Jaccard index can be quite low, yet the cervix region may be more
accurately located than indicated. To further describe the accuracy of our cervix ROI
calculation, we compute the Euclidean distance between the ground truth centroid
position, and our computed ROI centroid position. Additionally, we record the dif-
ference of the aspect ratio between the ground truth bounding box and our computed
rectangle as further evidence. The aspect ratio is computed by the absolute differ-
ence between the width divided by height of the computed bounding box and the
width divided by height of the ground truth bounding box. In Table 1 we report the
average Jaccard index values, centroid difference, and aspect ratio difference. And
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Table 1 Comparison of three different region of interest methods. We report the average Jaccard
index, centroid distance, and aspect ratio difference of the computed bounding box and ground
truth bounding box on 450 test images

Method Jaccard index (std) Centroid dist. Aspect ratio

Image Bounding Box (IBB) 0.611 (0.12) 32.37 0.148

Average Bounding Box (ABB) 0.699 (0.13) 23.91 0.109

Optimized Bounding Box (OBB) 0.736 (0.14) 25.72 0.096

std = Standard Deviation

as seen from our results, our optimized bounding box method outperforms the other
two methods, and has the desired effect of maintaining a low centroid difference and
consistent aspect ratio.

4.2 Accuracy of Our Disease Classification

In our second experiment, we utilize a subset of 2,000 cervigram images obtained
from the NIH/NCI database D2, consisting of 1,000 normal/CIN1 grade images and
1,000 CIN2/3+ cases. We perform a ten fold cross validation, binary classification
on this dataset to evaluate how well our system is able to differentiate between
these classes. We test using two classifiers, our majority vote classifier described in
Sect. 3.5 and a linear Support Vector Machine described in Sect. 3.4.

There are several parameters that need to be set for both classification methods.
For our majority vote technique, we train the number of voting cases, Q, by com-
puting the Dice similarity coefficient, DSC = 2·T P

(2·T P+FP+FN)
over our training set

while varying Q between the top matching case (Q = 1) to the top fifty (Q = 50)
matches. In the Dice similarity coefficient, T P denotes true positive cases, FP de-
notes false positive cases, and FN are false negative cases. As we increase Q, the
DSC score steadily increases from 0.70 at Q = 1 and asymptotically approaches
0.75 when Q > 30. Therefore, we set Q to be the top 33 most similar cervigram
images to the input image that will vote to obtain the final classification output of
our system. For the weight parameter of our color versus texture features (λ value),
we chose λ = 0.7. The analysis behind this value can be seen in the next section,
Sect. 4.3.

For our linear SVM, we train the parameters of our model using a five-fold cross
validation on the training images, and use this model to classify the new input image.
The results of both our methods can be seen in Table 2. Additionally, in this table, we
also report comparative results from multiple studies around the world as reported
by Sankaranarayanan et al. [15]. In these studies, direct visual inspection of the
cervix was conducted after the application of acetic acid, and each patient is given
a result of positive or negative for CIN2/3+.
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Table 2 Comparison of Sensitivity, and Specificity for different classification methods for detect-
ing CIN2/3+. Our automatic classification method is comparable to manual inspection by experts

Method Samplesa Sensitivity, %
(95 % CI)

Specificity, %
(95 % CI)

Our automatic methodb, Majority Vote 2,000 73 (65–81) 77 (67–87)

Our automatic methodb, L-SVM 2,000 75 (69–82) 76 (66–86)

Denny et al. [6], 2000, South Africa 2,885 67 (56–77) 84 (82–85)

Belinson et al. [3], 2001, China 1,997 71 (60–80) 74 (71–76)

Denny et al. [7], 2002, South Africa 2,754 70 (59–79) 79 (77–81)

Sankaranarayanan et al. [14], 2004
India and Africa

54,981 79 (77–81) 86 (85–86)

aSamples for our method are number of distinct cervigram images. Samples for the comparative
studies correspond to number of patients
bConfidence intervals calculated by ten-fold cross validation

CI = Confidence Interval

Fig. 3 The effect of
changing our λ value between
1–0 when using a majority
vote classifier. A balanced
weight of 0.5 has equal
contribution of color and
texture, whereas a value
closer to 1 favors the color
feature. Empirically, a λ value
of 0.7 has the best specificity
and sensitivity on D2

4.3 Weighted Effect of Color and Texture

In our final experiment, we view the effects of the color and texture features on
our final classification result. Using our majority vote classifier, and altering the
λ in Eq. (1), we can evaluate the influence of these features. As a baseline data
point, a value of λ = 0.5, gives both color and texture features equal weight. On
a set of 1,000 cervigram images from D2 (500 normal/CIN1, 500 CIN2/3+), we
vary the parameter from 0–1, where a λ of less than 0.5 gives more weight to our
texture feature and a λ of greater than 0.5 gives more weight to our color feature.
We analyze how this parameter affects the sensitivity and specificity of our majority
vote classifier on dataset, D2 and display the results in Fig. 3.

From these results it is clear that the color feature plays a vital role in the CIN
designation for cervigram images. By using the color feature alone (λ = 1), we are
still able to achieve fairly good results, but if we only use texture features (λ = 0),
our sensitivity and specificity drop dramatically.
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5 Discussion and Conclusion

We present an automatic cervigram image analysis algorithm that is able to isolate
the region of interest in a new cervigram image, and ultimately classify the image
as normal/CIN1 or CIN2/3+. Our system is data centric, meaning we do not attempt
to directly model the complex features present in the cervix anatomy, but rather uti-
lize thousands of training images to perform our analysis. Furthermore, our system
performs well, and is shown to be comparable to human observers. To improve our
results, we have been exploring multi-modal classification methods by utilizing pa-
tient data such as patient age, HPV types (16/18/31), and health behavior (history of
smoking). Another possible improvement would be the use of vector weights to find
the optimal balance of color and texture. As a final note, since a color change of the
acetowhite region has a high correlation to the severity of a CIN classification, this
would suggest that a color feature would be important in cervigram image analysis.
Through our experiments, we were able to confirm that color does in fact play a
vital role in the CIN classification task.
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Macroscopic Pigmented Skin Lesion
Segmentation and Its Influence on Lesion
Classification and Diagnosis

Pablo G. Cavalcanti and Jacob Scharcanski

Abstract Melanoma is a type of malignant pigmented skin lesion, and currently is
among the most dangerous existing cancers. However, differentiating malignant and
benign cases is a hard task even for experienced specialists, and a computer-aided
diagnosis system can be an useful tool. Usually, the system starts by pre-processing
the image, i.e. removing undesired artifacts such as hair, freckles or shading effects.
Next, the system performs a segmentation step to identify the lesion boundaries.
Finally, based on the image area identified as lesion, several features are computed
and a classification is provided. In this chapter we describe all these steps, giving
special attention to segmentation approaches for pigmented skin lesions, proposed
for standard camera images (i.e. simple color photographs). Next, we compare the
segmentation results to identify which techniques have more accurate results, and
discuss how these results may influence in the following steps: the feature extraction
and the final lesion classification.

1 Introduction

Pigmented skin lesions include both, benign and malignant forms. According to
World Health Organization [1], about 132000 melanoma cases, a dangerous kind of
malignant pigmented skin lesion, occur globally each year. The early diagnosis of
melanomas is very important for the patient prognosis, since most malignant skin
lesion cases can be treated successfully in their early stages. However, research work
has shown that discriminating benign from malignant skin lesions is a challenging
task [2, 3].

To help diagnosing pigmented skin lesions, physicians often use dermoscopy,
which is a non-invasive technique that magnifies submacroscopic structures with
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the help of an optical lens (a dermoscope) and liquid immersion. According to
Mayer [4], the use of dermoscopy can increase the diagnosis sensitivity in 10–27 %
with respect to the clinical diagnosis. Also, several automatic segmentation and clas-
sification methods have been proposed to help obtain a diagnosis with a dermoscopy
image [5–10]. However, even with the help of dermoscopy, differentiating malignant
and benign lesions is a challenging task. In fact, specialists affirm that in the early
evolution stages of malignant lesions, dermoscopy may not be helpful since it often
does not improve the diagnosis accuracy [11].

Still considering early stage cases, there are practical situations where a non-
specialist (e.g. a physician not trained on Dermatology) wishes to have a qualified
opinion about a suspect skin lesion, but only standard camera imaging is avail-
able on site. In such situations, telemedicine is justifiable, and the non-specialist
can capture a macroscopic pigmented skin lesion (MPSL) image of the suspect
skin lesion and send it to a specialist, who can analyze it in higher detail. In this
particular situation, a teledermatology consultation brings benefits, like the eas-
ier access to health care and faster clinical results [12]. Besides, comparing the
physical (face-to-face) patient diagnosis with the remote diagnosis by telederma-
tology, recent results suggest that teledermatology also tends to be effective and
reliable [13].

In the last decades, several segmentation techniques have been proposed to facil-
itate the remote diagnosis of MPSL images. Since there is no standardized protocol
for acquiring these images, often they contain artifacts like hair, shading and other
disturbances that make the remote diagnosis by specialists more difficult. With the
help of the automatic segmentation, this task may be facilitated. Moreover, the seg-
mentation is an initial step for computer-aided diagnosis systems. Starting from the
lesion area identification, lesion features can be extracted and an automatic classifi-
cation/diagnosis can be provided.

However, since these MPSL images may present characteristics that could make
the remote diagnosis more difficult, the automatic processing and analysis also poses
some challenges for the researchers in this field. Most of the MPSL image seg-
mentation techniques proposed in the literature convert the original color image
to a monochromatic image, and use a thresholding algorithm to identify the lesion
area [14–17]. Even more complex segmentation approaches, such as active contours
techniques [18, 19], process grayscale images. Nevertheless, the discriminating le-
sion and healthy skin areas may be more difficult on a monochromatic images, since
the chromatic aspect is lacking in them.

In the following sections we will present segmentation algorithms that process
multichannel MPSL images, based on thresholding [20] and on level-sets [21]. After
that, we show that such methods working on multichannel MPSL images are more
efficient than methods working on monochromatic images. Also, we will discuss
how features that are relevant from the medical point of view can be extracted,
and how the final classification/diagnosis of the acquired lesion is affected by the
segmentation quality.



Macroscopic Pigmented Skin Lesion Segmentation 17

2 Pre-processing

MPSL images usually contain artifacts that make the segmentation process more
difficult. Skin characteristics, such as freckles, are easily detected by these algo-
rithms based on color or size. However, most methods available try to identify the
lesion area assuming that pigmented skin lesions correspond to locally darker skin
discolorations. Consequently, artifacts such as hair and shading, that usually also
are darker than healthy skin may be mistaken as lesions during the segmentation
process.

Although some of the approaches available eliminate hair as a pre-processing
step [15, 16, 19], this task can be performed as a post-processing step, after the im-
age segmentation. Hair is thin, and its shape is quite distinct from the lesion shapes,
and consequently it is easy to eliminated hair from MPSL images by morphological
operations or other methodologies.

On the other hand, the presence of shading requires pre-processing in advance to
segmentation. The shading areas assume any shape, and require a treatment that is
different from that given to artifacts like hair. Moreover, if the shading attenuation
is well performed, it also contributes for the enhance the contrast between healthy
and unhealthy skin.

2.1 Shading Attenuation

Alcón et al. [17] proposed to correct the uneven illumination by removing the low
frequency spatial component of the image. Although this method can be efficient for
some images, it requires specific parameters. It is very difficult to obtain a specific
value that can be used for any input image, and the authors [17] do not detail how
to obtain this value automatically.

Face images also are skin images and can be affected by shading effects. Tan and
Triggs [22] and Zhou et al. [23] proposed to use Difference of Gaussians (DoG) fil-
tering to correct the shading artifacts. However, this methodology needs specific pa-
rameters (e.g., definition of a window size and the filters standard deviations) which
may require adjustments for different types of shading effects in the skin lesion im-
ages. Moreover, the authors observed that DoG filtering may generate strong-edges
in hair areas [22], which could affect negatively the overall segmentation process.

Therefore, Cavalcanti et al. [21] proposed a shading attenuation method that is
adaptive to the MPSL image data. Their method assumes that images are acquired
in a way that the lesion appears in the image center, and it does not touch the image
outer borders. The first step of the method is to convert the image from the original
RGB color space to the HSV color space, and retain the Value channel V . This is
justified by the fact that this channel presents the higher visibility of the shading
effects. A region of 20 × 20 pixels is extracted from each V corner, and the union
of these four sets define the pixel set S. This pixel set is used to adjust the following
quadric function z(x, y):

z(x, y) = P1x
2 + P2y

2 + P3xy + P4x + P5y + P6, (1)
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Fig. 1 Shading attenuation
example. (a) Input image;
(b) Obtained quadric model
using the corners of the input
Value channel; (c) Obtained
quadric model in 3D;
(d) Result obtained by the
division of the Value channel
by the obtained quadric
model

where the six quadric function parameters Pi (i = 1, . . . ,6) are chosen to minimize
the error ε:

ε =
Ns∑

j=1

[
V (Sj,x, Sj,y) − z(Sj,x, Sj,y)

]2
, (2)

where, Sj,x and Sj,y are the x and y coordinates of the j th element of the set S,
respectively, and Ns is the total number of pixels of the four corners (in our case,
Ns = 1600).

Calculating the quadric function z(x, y) for each image spatial location (x, y),
we have an estimate z(x, y) of the local illumination intensity in the image V (x, y).
Dividing the original V (x, y) channel by z(x, y), we obtain a new Value channel
where the shading effects have been attenuated. The final step is to replace the orig-
inal Value channel by this new Value channel, and convert the image from the HSV
color space to the original RGB color space. In Fig. 1, an example of applying this
method to a skin lesion image is presented. The result is a color image easier to be
segmented.

3 Segmentation

As already mentioned in Sect. 1, several segmentation techniques have been pro-
posed for MPSL images in the last decades. We outline some representative recent
methods and their characteristics in the following subsections. Also, at the end of
this section, we present and discuss the performance of these segmentation tech-
niques for a MPSL image database.
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3.1 Grayscale-Based Methods

Based on the principle that a pigmented skin lesion is a depigmentation of the skin,
and to reduce the computation cost, many segmentation methods start by converting
the input image from color to grayscale. After that, most algorithms try to distin-
guish between healthy to unhealthy pixels. The following techniques illustrate the
algorithms that have recently been used for this purpose.

3.1.1 Thresholding-Based Methods

Otsu’s Thresholding method [24] has been widely used in grayscale images [14–16].
Furthermore, Cavalcanti et al. [25] also employed this thresholding scheme to the
Red channel (R of the RGB color space), trying to take advantage of the fact that
healthy skin usually has a reddish tone. This method assumes two pixel classes,
namely healthy and unhealthy skin pixels, and searches exhaustively for the thresh-
old th that minimizes the total intra-class variance σ 2

w(th), defined as the weighted
sum of variances of the two classes:

σ 2
w(th) = ω1(th)σ 2

1 (th) + ω2(th)σ 2
2 (th), (3)

where ωi are the a priori probabilities of the two classes separated by the thresh-
old th, and σ 2

i are their intra-class variances. Minimizing the intra-class variance is
equivalent to maximizing the inter-class variance σ 2

b (th):

σ 2
b (th) = σ 2 − σ 2

w(th)

= ω1(th)ω2(th)
[
μ1(th) − μ2(th)

]2
, (4)

where σ 2 is the image pixels variance, and μi are the class means. Computed the th
threshold, the lesion pixels correspond to the pixels with values lower than th.

The Otsu’s method usually is followed by a post-process step, constituted by
successive morphological operations, to eliminate other regions that may be thresh-
olded (besides the lesion). Cavalcanti et al. [25] suggest the following procedures:
select the largest threshold area, perform a hole filling operation, and a dilation with
a disk with 5 pixels of radius.

However, Alcón et al. [17] recently suggested that Otsu’s method may over-
segment the lesion area. So, they proposed a new thresholding method specific for
MPSL images. They observed that, although the lesion intensities distribution fl(x)

is unknown, the distribution fs(x) of the skin correspond to a Gaussian-like distri-
bution:

fs(x) = Ae

−(x−μs )2

2σ2
s , (5)

where, μs is the mean value of healthy skin pixel intensities. Being fl+s the distri-
bution of grayscale intensities of the whole image, μs is determined by the corre-
sponding intensity value of the highest peak of fl+s . Since fl+s = fl + fs , and μl
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(the mean value of lesion pixels) always is lower than μs , this distribution can be
approximated as:

fl+s(x) =
{

fs(x), x ≥ μs,

fl(x) + fs(x), x < μs.
(6)

Therefore, based on this assumption, the skin pixels distribution can be estimated
as:

f̃s(x) =
{

fl+s(2μs − x), x < μs,

fl+s(x), x ≥ μs,
(7)

and, consequently, the lesion pixels distribution as:

f̃l(x) = fl+s(x) − f̃s(x). (8)

Finally, the means Ẽ(Xs) and Ẽ(Xl) of the distributions f̃s(x) and f̃l(x), respec-
tively, are used for the computation of the threshold T as follows:

T = Ẽ(Xs) + Ẽ(Xl)

2
, (9)

and, as in the Otsu’s method, the pixels with values lower than the computed thresh-
old, are segmented as lesion pixels.

Figure 2 illustrates the performance of the above mentioned thresholding-based
segmentation methods. As can be observed, these low-complexity algorithms are
able to determine the lesion area, suffering from boundary definition inaccuracies
caused by hair. Also, it is important to observe that the method proposed by Alcon
et al. is negatively affected by the lack of a post-processing method to eliminate
undesired thresholded areas. Finally, Fig. 2(i) shows the difference between Otsu
and Alcon et al. results, obtained by thresholding different regions of the histogram.

3.1.2 Multi-Direction GVF Snake Method

Some researchers have proposed to use Snakes (or Active-Contours) methods to
segmented MPSL images, instead of a thresholding method [19]. These methods
usually start by smoothing the image, and as an illustration of such methods we
refer to the method proposed by Tang [19]. In this method, the MPSL image is
initially smoothed by adaptive anisotropic diffusion filtering. Tang modified the tra-
ditional anisotropic diffusion to make it more robust to noise, and more details can
be found in [19]. Next, a modification of the traditional GVF (Gradient Vector Flow)
snake [26] is used to determine the lesion boundary. The original GVF (u, v) can be
determined by the minimization of the following energy function:

EGV F (u, v) = 1

2

∫ ∫
g
(|∇f |)(u2

x + u2
y + v2

x + v2
y

)

+ (1 − g
(|∇f |))((u − fx)

2 + (v − fy)
2)dxdy, (10)
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Fig. 2 MPSL image segmentation using thresholding-based methods. (a) The RGB image after
pre-processing. (b) Figure (a) after conversion to grayscale. (c) The Red channel of (a). (d) The
resultant binary mask of Otsu’s method applied to figure (b). (e) The result of applying morpholog-
ical operation in (d). (f) The resultant binary mask of Otsu’s method applied to figure (c). (g) The
result of applying morphological operation in (f). (h) The resultant binary mask of Alcon et al.
method applied to figure (b). (i) The plot of histogram of figure (b), and the computed Otsu and
Alcon thresholds

where, f is an edge map derived from the image, g is an edge-force magnitude:

g
(|∇f |)= exp

(
−
( |∇f |

K

))
, (11)

and K is a non-negative smoothing parameter for the field (u, v).
Tang uses a Multi-Directional GVF (MDGVF) in order to create a force-field

(u, v) that enforces the snake to converge to the lesion area, and not to spurious
image edges. Based on an initialization mask (containing a rough segmentation of
the lesion), the author computes the lesion center (x, y) and the direction vector
d(x, y) = (dx, dy) at each image pixel (x, y), pointing to the lesion center:

dx = x − x
√

(x − x)2 + (y − y)2
, (12)
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Fig. 3 MPSL image
segmentation using
multi-direction GVF snake
method. (a) An example of
image after pre-processing
and grayscale conversion.
(b) Image (a) after the
application of anisotropic
diffusion filter. (c) The rough
segmentation of (b). (d) The
final segmentation after the
snake convergence

dy = y − y
√

(x − x)2 + (y − y)2
. (13)

After that, the author determines the unitary vector v(x, y) = (vx, vy) for each
pixel closer to d(x, y) by cosine similarity, i.e. v(x, y) is one of the nine vectors
(−1,−1), (−1,0), (−1,1), (0,−1), (0,0), (0,1), (1,−1), (1,0) or (1,1).

Being I (x, y) the grayscale intensity of a pixel (x, y), its respective directional
gradient DI can be determined as follows:

DI (x, y) = I (x + vx, y + vy) − I (x, y). (14)

Since often lesions are darker than healthy skin, the negative values of this gra-
dient can be used to determine a new edge-map:

F(x, y) =
{

DI (x, y), if DI (x, y) < 0,

0, otherwise.
(15)

Replacing f by F in Eq. (10), a new energy function is obtained to force the
snake to converge specifically along the direction of the lesion. To initialize this
process, Tang suggests using the Multistage Adaptive Thresholding method [27]
to segment the image roughly. In Fig. 3, we present a typical lesion segmentation
obtained using this method. The reader may observe that this algorithm handles bet-
ter artifacts like hair than thresholding-based methods, but unfortunately the lesion
boundary is not well determined.

3.2 Multichannel-Based Methods

Although grayscale images have widely being used for segmenting MPSL images,
some approaches rely on multichannel images as described in the following sec-
tions.
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3.2.1 Thresholding-Based Methods

In a similar way that thresholding is used in grayscale MPSL images, we can thresh-
old color images. In this case, thresholds are computed and a binary mask is gener-
ated for each channel, and masks are combined to form the final color MPSL image
segmentation. However, working with color images adds new concerns. For exam-
ple, pigmented skin lesions are not easily discriminated from healthy skin on the
Green channel (G of the RGB color space), and the color information may disturb
instead of benefiting the final results.

So, to facilitate the use of thresholding methods, Cavalcanti and Scharcanski [20]
recently proposed a multichannel image representation for MPSL images that max-
imizes the discrimination between healthy and unhealthy skin regions. The idea is
to create a new 3-channel image Ī N

i based on the normalization of the RGB chan-
nels Ī C

i of the input image, and then use a thresholding algorithm based on Otsu’s
method to segment it.

The first channel is a representation of the image darkness, relying on the fact
that lesion areas are depigmented skin regions. Each pixel is defined as Ī N

1 (x, y) =
1 − Ī C

i (x, y), i.e. the complement of the normalized Red channel.
The second channel is a texture representation, since local textural variability

usually is higher in lesions than in healthy skin areas. Being L̄ a normalized Lumi-
nance image defined by the average of the three Ī C

i channels, the textural variability
in L̄(x, y) can be quantified by computing τ(x, y, σ ) as follows:

τ(x, y, σ ) = L̄(x, y)
S̃(x, y, σ )

S(x, y, σ )
, (16)

where, S(x, y,σ ) = L̄(x, y) ∗ G(σ) (i.e., the Luminance image L̄ is smoothed by
a Gaussian filter with standard deviation σ ), and S̃(x, y, σ ) represents its comple-
ment. In this way, if an image region is dark, its textural information is empha-
sized; if the region is bright, its textural information is de-empshasized. However,
a single Gaussian filter may not be sufficient to capture the textural variability, so
τ(x, y, σ ) is calculated for different σ values and we select its maximum value at
each pixel:

T (x, y) = max
σ

[
τ(x, y, σ )

]
, σ ∈ {σ1, σ2, . . . , σN }. (17)

Finally, the texture variation channel T is normalized, obtaining Ī N
2 (x, y) as fol-

lows:

Ī N
2 (x, y) = (T (x, y) − min (T )

)
/
(
max (T ) − min (T )

)
. (18)

The third channel Ī N
3 (x, y) of the representation describes the local color varia-

tion, assuming that healthy and unhealthy skin regions present different color dis-
tributions. The Principal Component Analysis (PCA) method is applied on the nor-
malized colors of the image Ī C

i (x, y), and the first component is retained (i.e. the
component that maximizes the local data variance). In this representation, lesion
pixels usually have higher variability values than healthy skin pixels, and to detect
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these lesion pixels in this channel (corresponding to those detected in channels Ī N
1

and Ī N
2 ), the following PCA property described next is utilized. Since the input data

is centered around the mean, and healthy skin pixels often are more frequent in the
MPSL image, the projections of the healthy skin pixels on the PCA space tend to
generate values nearer to zero than the lesion pixels (i.e., the projected lesion pix-
els tend to have larger magnitudes, i.e. positive or negative). Therefore, the color
variability information C is represented by the pixel projection magnitudes, and the
normalization of C generates the Ī N

3 channel:

Ī N
3 (x, y) = (C(x, y) − min (C)

)
/
(
max (C) − min (C)

)
. (19)

Also, the Ī N
3 channel is filtered with a 5 × 5 median filter to reduce the noise.

Obtained this multichannel representation, the Otsu’s thresholding method (see
Sect. 3.1.1) is used to segment the image. Three thresholds thi are computed, one
for each channel Ī N

i (x, y), and a pixel (x, y) is defined as part of a lesion region
(i.e., φ(x, y) = 1) if its value is higher than the threshold thi in at least two of the
three channels:

φ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if (ĪN
1 (x, y) > th1 ∧ Ī N

2 (x, y) > th2),

1, if (ĪN
2 (x, y) > th2 ∧ Ī N

3 (x, y) > th3),

1, if (ĪN
1 (x, y) > th1 ∧ Ī N

3 (x, y) > th3),

0, otherwise.

(20)

As mentioned before (see Sect. 2), after thresholding the remaining skin artifacts
(such as freckles and hair) are eliminated more easily. These artifacts usually occur
in isolated regions that differ in area and perimeter from skin lesions, since lesions
often have larger areas and more irregular boundaries. Therefore, the perimeter and
the area of all thresholded connected pixel sets (i.e. where φ(x, y) = 1) are com-
puted, and then this set of regions is partitioned in two clusters. All regions in the
cluster with smaller areas (in average) are eliminated, and their correspondent mask
pixels are set to φ(x, y) = 0. At the end, the resultant mask is filtered by a 5 × 5
median filter, eliminating any possible remaining artifacts that may originate rim
imperfections.

In Fig. 4, we present the results for all steps of this method, including the multi-
channel representation generation, the thresholding and post-processing steps. The
reader may observe that the lesion boundary is determined with higher precision in
comparison to the methods presented previously.

3.2.2 ICA-Based Active-Contours Method

Instead of creating a multichannel representation for a MPSL color image, Caval-
canti et al. [21] recently proposed a segmentation method to be used on the image
original color channels. They proposed to use a classical active-contours method
(Chan-Vese [28]), followed by morphological operations as a post-processing step.
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Fig. 4 Segmentation process for the image shown in (a) using thresholding method on a mul-
tichannel representation. In (b)–(d), respectively, the Ī N

i channels representing darkness, texture
variation and color variation. In (e)–(g), respectively, binary masks after thresholding, artifacts
elimination and filtering

Active-contours methods have already been used to segment pigmented skin
lesion images. However, as we seen in Sect. 3.1.2, usually a conversion to a
grayscale image precedes the processing stages. Other approaches have been pro-
posed using color images [29], but these algorithms were designed for dermo-
scopic images, which have different characteristics, and a common drawback of
such methods is the difficulty to determine a convenient way to initialize the active-
contours algorithm. If the initialization do not indicate the lesion regions with
some accuracy, the final segmentation may be incorrect and include healthy skin
regions.

Cavalcanti et al. [21] proposed to use independent component analysis (ICA) to
generate a reliable binary mask for initializing the active-contours algorithm. They
observed that when ICA is applied to a MPSL image, one of the resultant ICA com-
ponents corresponds mainly to the lesion area, the second component to the healthy
skin, and the third component corresponds to noise artifacts. Nevertheless, there
is an ordering indeterminacy inherent to the ICA method, and it is not possible to
know in advance which component will show the lesion more clearly. However, due
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to the lesion variability, the histogram of the component that shows more clearly the
lesion often has a non-Gaussian histogram (frequently multimodal). The noise arti-
facts component histogram tends to be non-Gaussian, and the component that shows
healthy skin more clearly tends to have a Gaussian histogram. Thus, they estimate
the non-Gaussianity of the ICA histogram components with differential entropy, i.e.
J (X) = |H(X) − H(Xg)|, where Xg is a Gaussian distributed random variable
with the same variance as X. The component that produces the largest differential
entropy (i.e., contains the highest non-Gaussianity estimate) is identified as the one
containing the lesion information more clearly, and the smallest differential entropy
component carries basically healthy skin.

After reordering the channels, the lesion region is best represented in the first
channel. Next, the component values are normalized in the range [0,1], and the
Otsu’s thresholding method is used (see Sect. 3.1.1) to segment the skin lesion in this
channel. Given the ICA results, the lesion information can be emphasized (closer to
value 1) or de-emphasized (closer to value 0) in this channel, and consequently
the thresholded area may correspond to either, the lesion or the background. To
guarantee that the lesion is captured in the thresholded area, the corner pixels (used
in the shading attenuation step, that are known to correspond to healthy skin) are
tested to check if they are thresholded as ‘1’s or ‘0’s. If most corner pixels are
thresholded as ‘1’s, the thresholded area corresponds to healthy skin, and the logical
complement is used to obtain the lesion localization mask. In this way, a rough
approximation of the lesion area is obtained. Next, the lesion boundary is better
approximated and possible artifacts are eliminated with a morphological opening
(i.e. the structuring element is a disk with a radius of 3 pixels).

Given this initialization binary mask, Cavalcanti et al. [21] proposed determining
the lesion boundary more precisely using the Chan-Vese Active-contours method
for vector-valued images [28]. Their method assumes that the color image Ii is
formed by two regions of approximately constant intensities c1 and c2, separated
by a curve C. The lesion localization mask is used as an initialization, indicat-
ing approximately the region to be segmented. Afterwards, the active-contours
method iteratively tries to minimize the energy function F(c1, c2,C) in the color
image Ii :

F(c1, c2,C) = μ length(C) + λ1

∫

inside(C)

1

3

3∑

i=1

∣∣Ii(x, y) − c1,i

∣∣2dxdy

+ λ2

∫

outside(C)

1

3

3∑

i=1

∣∣Ii(x, y) − c2,i

∣∣2dxdy,

where μ, λ1 and λ2 are weighting parameters (λ1 = λ2 = 1, as suggested in [28],
and μ = 0.2). Using the Level-set formulation, it is possible to minimize the
energy function embedding the curve C, obtaining the zero level set C(t) =
{(x, y)|φ(t, x, y) = 0} of a higher dimensional Level-set function φ(t, x, y). The
evolution of φ(t, x, y) is given by the following motion Partial Differential Equa-
tion:
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Fig. 5 Illustration of the
segmentation using the
ICA-Based Active-Contours
method. (a) Color image after
shading attenuation. (b) First
re-ordered independent
component/channel of
image (a). (c) Lesion
localization mask. (d) The
active-contours segmentation
result. (e) Final lesion
segmentation, after
post-processing image (d)

∂φ

∂t
= δε(φ)

[

μdiv

( ∇φ

|∇φ|
)

− 1

3

3∑

i=1

λ1
∣∣Ii(x, y) − c1,i

∣∣2

+ 1

3

3∑

i=1

λ2
∣∣Ii(x, y) − c2,i

∣∣2
]

, (21)

where δε(φ) is the Dirac delta function, c1,i and c2,i are the averages inside and
outside of the curve C in the i-th channel Ii , respectively.

It is possible that the final curve C contains regions beyond the lesion area. So,
if the number of regions segmented by the Chan-Vese method is higher than one,
local artifacts are eliminated. The area and the perimeter of each segmented region
are computed, and these values are clustered with K-Means, where K = 2. The re-
gions in the cluster with the smaller areas (in average) are eliminated as artifacts
and the other regions are kept. The regions kept are hole filled to improve their con-
nectivity, forming the final segmentation mask. The final post-processing step is a
morphological dilation (with a disk of 5 pixels of radius as the structuring element).

In Fig. 5, we present the results for all steps of this method. The reader may
observe that the initialization mask already do not contain skin artifacts, forcing the
active-contours method to a precise determination of the lesion area.
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3.3 Comparison of Segmentation Methods Based on Experimental
Results

In order to compare the performances of the six state-of-art segmentation methods
for MPSL images presented above, we use the same image dataset as in Alcón et
al. [17], which contains 152 images that have been collected from the Dermnet
dataset [30]. This dataset consists of 107 melanomas and 45 Clark nevi (or atypical
nevi), a benign kind of lesion that present similar characteristics to melanomas.

We implemented the shading attenuation step and all the presented algorithms,
and processed all the 152 images with these implemented methods. Some examples
of segmentation results can be seen in Fig. 6. We also measured the error for each
resultant segmentation using the following criterion [6–8]:

ε = Area(Segmentation ⊕ GroundTruth)

Area(GroundTruth)
× 100 %, (22)

where, Segmentation is the result of the method in test, GroundTruth is the manual
segmentation of the same lesion, Area(S) denotes the number of pixels indicated
as lesion in the segmentation result S, and ⊕ indicates the exclusive-OR, operation
that gives the pixels for which the Segmentation and GroundTruth disagree.

The average error obtained by each segmentation method is presented in Table 1.
We also included a synopsis of the six segmentation methods tested in Table 1.
As can be seen, the only method that uses color information (ICA-Based Active-
Contours Method) generates the smallest error segmentation, in average. Although
the methods based on the Otsu’s Thresholding Method are not computationally as
intense as the method based on active-contours, those methods appear in the se-
quence, as those with the smallest segmentation errors (multichannel representation
appears to be more effective than the methods based on grayscale images). The
thresholding method proposed by Alcón et al. and the Multi-Direction GVF Snake
method were ranked last, since these methods presented higher segmentation er-
rors. It shall be observed that these methods do not have a post-processing step.
Analyzing the segmentation results visually (see Fig. 6), we may observe that the
lack of a segmentation post-processing step to eliminate artifacts usually generate
segmentations larger than the lesion itself.

Besides the average errors, we present in Table 2 the percentage of images in
the database that had lesion segmentation errors lower than 5 %, 10 %, 20 %, 30 %
and 40 %, respectively. As can be seen, the Otsu’s thresholding method applied
on grayscale images tends to be more accurate, but potentially it also can generate
larger segmentation errors than the ICA-Based Active-Contours method (the only
method that uses color MPSL images). On the other hand, the ICA-Based Active-
Contours method tends to be more reliable in the sense that it is less likely to produce
large segmentation errors, and obtained experimentally the most accurate lesion seg-
mentation results (in average).

Considering the results presented in Tables 1 and 2, we can infer that color can
contribute to improve the segmentation of a MPSL image. Although methods based
on one single channel may segment accurately some MPSL images, in average the



Macroscopic Pigmented Skin Lesion Segmentation 29

Fig. 6 Examples of MPSL images and their respective segmentation results for the six presented
methods. In the 1st. line, the color images (after shading attenuation). From 2nd. to 7th. lines,
respectively, results of Otsu’s Thresholding Method on Grayscale, Otsu’s Thresholding Method
on the Red Channel, Alcón et al. Thresholding Method, Multi-Direction GVF Snake Method,
Thresholding Method on a Multichannel Representation, and ICA-Based Active-contours Method

color-based method provides more reliable segmentation results. In the next sec-
tions, we discuss if the segmentation accuracy is correlated, or not, to the final clas-
sification/diagnosis accuracy.
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Table 1 Comparison of the six segmentation methods tested for the MPSL image database

Approach Image type Post-processing
type

Computational
cost

ε in average

Otsu’s Thresholding Method
on Grayscale [15]

Monochromatic M. Morphology Low 42.33 %

Otsu’s Thresholding Method
on the Red Channel [25]

Monochromatic M. Morphology Low 38.58 %

Alcón et al. Thresholding
Method [17]

Monochromatic – Low 165.31 %

Multi-Direction GVF Snake
Method [19]

Monochromatic – High 59.60 %

Thresholding Method on a
Multichannel
Representation [20]

Multichannel M. Morphology Medium 34.83 %

ICA-Based Active-Contours
Method [21]

Multichannel
(Color)

M. Morphology High 28.34 %

Table 2 Segmentation errors in terms of error percentages

Approach ε < 5 % ε < 10 % ε < 20 % ε < 30 % ε < 40 %

ICA-Based Active-Contours
Method [21]

3.29 % 29.61 % 73.68 % 86.84 % 94.08 %

Otsu’s Thresholding Method on
Grayscale [15]

3.29 % 34.87 % 75.66 % 87.50 % 93.42 %

Otsu’s Thresholding Method on
the Red Channel [25]

1.97 % 27.63 % 67.11 % 83.55 % 93.42 %

Thresholding Method on a
Multichannel
Representation [20]

1.32 % 4.61 % 43.42 % 69.74 % 81.58 %

Alcón et al. Thresholding
Method [17]

0.00 % 0.00 % 8.55 % 16.45 % 25.00 %

Multi-Direction GVF Snake
Method [19]

0.00 % 0.00 % 0.00 % 5.92 % 23.03 %

4 Feature Extraction for Skin Lesion Discrimination

Given a MPSL image segmentation, we are able to obtain a classification (or diag-
nosis) of the acquired pigmented skin lesion. Before obtaining this classification,
features representative of the skin lesion must be extracted. Computer-aided diag-
nosis systems often try to reproduce computationally the ABCD rule [31], which
is an acronym referring to the four criteria used in clinical diagnosis, namely:
Asymmetry, Border Irregularity, Color Variation and Differential Structures. Sev-
eral approaches have been proposed for describing quantitatively the first three cri-
teria [3, 5, 8, 17, 32]. These feature extraction techniques can be used jointly to rep-
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resent benign and malignant cases better, and discriminate them more effectively.
The fourth criterion (i.e. Differential structures) only is visible in dermoscopy im-
ages, but to describe quantitatively this lesion characteristic automatically still is
challenging.

Since our ultimate goal is to evaluate the influence of image segmentation on
the final classification/diagnosis, we will adopt the feature extraction and classifica-
tion scheme proposed specifically for MPSL images by Cavalcanti and Scharcan-
ski [20]. In the following sections we present the 52 features that have been used
in their ABCD rule implementation, also including features that were proposed by
other authors. In terms of terminology, it is important to clarify that images Ī C

i and
Ī N
i refer to a normalized color image and to the multichannel image representation

presented in Sect. 3.2.1, respectively.

4.1 Features Used for Lesion Asymmetry Characterization

The goal of these features is to quantify the lesion shape, in special the asymmetry
of the lesion in relation to the principal axes. The major axis L1 of the lesion is
aligned with its longest diameter, passing through its center; the minor axis L2 is
orthogonal to L1 and also passes through the shape center. The features utilized are
the following:

f1: Solidity: the ratio between the lesion area (A) and its convex hull area [17];
f2: Extent: the ratio between the lesion area and its bounding box area [17];
f3: Equivalent diameter: 4A/(L1π) [5, 17];
f4: Circularity: 4πA/(L1p), where p is the lesion perimeter [17];
f5: The ratio between the principal axes (L2/L1) [5, 17];
f6: The ratio between sides of the lesion bounding box [17];
f7: The ratio between the lesion perimeter p and its area A [3];
f8: (B1 − B2)/A, where, B1 and B2 are the areas in each side of axis L1;
f9: Similar to f8, but makes use of the shorter axis L2;
f10: B1/B2 with respect to the axis L1;
f11: Similar to f10, but makes use of the shorter axis L2.

4.2 Features Used for Lesion Boundary Irregularity
Characterization

The boundary sharpness is quantified by the magnitude of the gradient |
→

∇ Ī N
i | at

each pixel using the Sobel operator [20]. However, instead of using pixels only at
the lesion rim, we analyze pixels in an extended (dilated) rim1 [17]. Consequently,

1The rim is dilated by 2 pixels, producing a 5 pixels wide region centered at the lesion rim, as
suggested in [17].
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lesions that have a smooth boundary (usually nevi) are better characterized. Also,
the lesion boundary dilation makes the boundary representation more robust to the
inaccuracies of the segmentation process. To characterize the lesion boundary irreg-
ularity, the following features are used [20]:

f12–f14: Average gradient magnitude of the pixels in the lesion extended rim [17],
in each one of the three Ī N

i channels;
f15–f17: Variance of the gradient magnitude of the pixels in the lesion extended
rim [17], in each one of the three Ī N

i channels;

The lesion rim irregularity is characterized in the ABCD rule by dividing the
rim in 8 symmetric regions [31]. In addition to the two principal axes L1 and L2,
two additional axes are obtained by rotating by 45 degrees these orthogonal axes.
Therefore, 8 symmetric regions R = 1, . . . ,8 are generated. For each channel Ī N

i ,
the average gradient magnitudes of the extended rim pixels μR,i (R = 1, . . . ,8) are
computed. Therefore, 6 more features are calculated:

f18–f20: Average of the 8 μR,i values in each one of the three Ī N
i channels;

f21–f23: Variance of the 8 μR,i values in each one of the three Ī N
i channels;

4.3 Features Used for Lesion Color Variation Characterization

These features quantify the color variation in the lesion, and the following measure-
ments can be utilized for this purpose [20]:

f24–f27: Maximum, minimum, mean and variance of the pixels intensities inside
the lesion segment in the color variation channel Ī N

3 ;
f28–f39: Maximum, minimum, mean and variance of the pixels intensities inside
the lesion segment in each one of three original Ī C

i channels;
f40–f42: Ratios between mean values of the tree original Ī C

i channels: mean(ĪC
1 )/

mean(ĪC
2 ), mean(ĪC

1 )/mean(ĪC
3 ) and mean(ĪC

2 )/mean(ĪC
3 ), considering only pix-

els inside the lesion segment.

Physicians usually identify six distinct hues in skin lesions: white, red, light and
dark brown, blue-gray, and black [31]. Lesions containing more of these hues are
more likely to be malignant. The lesion color variability can be quantified by com-
puting the occurrence of these typical hues within a lesion segment. Given a pixel
in the lesion segment, the nearest reference color (associated with a typical hue, see
Table 3 [17]) is found by the Euclidean distance to the pixel color in Ī C

i . A hue
occurrence counter is created, one cell per typical hue. For each lesion pixel, the
nearest typical hue counter is increased by 1. Finally, typical hues counters are nor-
malized/divided by the lesion area A, and generate the 6 additional features f43–f48.
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Table 3 Six possible colors
of a lesion on the RGB color
space

Color Red Green Blue

White 1 1 1

Red 0.8 0.2 0.2

Light Brown 0.6 0.4 0

Dark Brown 0.2 0 0

Blue-Gray 0.2 0.6 0.6

Black 0 0 0

4.4 Features Used for Lesion Differential Structures
Characterization

The lesion differential structures refer to submacroscopic morphologic and vascular
structures only visible in dermoscope images. In an attempt to extract the charac-
teristics of these structures also on a macroscopic image, differences between be-
nign and malignant lesions can be measured using texture features. Cavalcanti and
Scharcanski [20] propose to extract the 4 features f49–f52, namely the maximum,
minimum, mean and variance of the pixels intensities inside the lesion segment to
represent the textural variation in the channel Ī N

2 .

4.5 Feature Extraction Summary

Even for specialized physicians the discrimination of benign from malignant pig-
mented skin lesions may not be an easy task, and the development of techniques
that facilitate this job is a current research topic. In the previous sections, we pre-
sented 52 features that help in this task, but readers can probably find additional (or
even alternative) features in literature, and probably new features will be proposed
in the coming years as this research area develops. The ultimate goal is to represent
image lesion characteristics to could facilitate the early classification/diagnosis and
reduce the number of deaths caused by these lesions.

Another important issue when dealing with the selection of feature sets is the
adoption of automatic (or interactive) feature selection algorithms. Some authors
of classification approaches for pigmented skins lesions [5, 15, 17] suggest using a
method to select the best features as those that help most the MPSL image class dis-
crimination. However, this feature selection procedure can be tricky. Pigmented skin
lesions have a large variability in terms of characteristics, and the discrimination be-
tween a malignant and a benign case can be determined by only 1 or 2 features. If
these features have been eliminated because they did not seem to be important on a
given training set, malignant cases can be incorrectly classified as benign, leading
to costly false negatives.
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5 Classification of Pigmented Skin Lesion Images

After extracting the features that characterize each MPSL image, we can use these
data to obtain a final classification (or diagnosis) of the imaged lesion. We discuss
how this information is processed in the following sections.

5.1 Feature Normalization

The extracted features may have values in different ranges. Some of the proposed
approaches do not perform feature normalization [8, 17]. However, classifiers tend
to be more efficient if these feature values are normalized and represented in the
same range (i.e., the feature values are scaled to fall in a specified range), therefore
we adopt this normalization step in our work.

This feature value scaling is performed based on the mean and standard deviation
of the captured feature values [5, 20, 32]. Among the possible feature normalization
options [32, 33], we chose to normalize the feature values using the well known
z-score transformation [33]:

Zi,j = ((vi,j − μj )/(3σj ) + 1)

2
, (23)

where, vi,j is the value of the j th feature of the ith sample (image), μj and σj are
the mean and standard deviation of the j th feature, respectively. After the z-score
transformation, most of the Zi,j values are in the [0,1] range. The out-of-range
values are saturated to either 0 or 1.

5.2 Defining Training Sets

Classification techniques are commonly used in machine learning. The validation
test requires the definition of training sets, and two methodologies are usually ap-
plied, namely: cross-validation and holdout validation [34]. The cross-validation
method divides the samples in S portions, and S − 1 portions are used for training
while the remaining portion is used for testing. This process is repeated until all
the samples have been evaluated. In the holdout validation, part of the samples in
each class (benign or malignant) are randomly selected and used for training, and
the remaining samples are used for testing. Often, up to half of the initial sample
set is used for testing. The holdout validation method was used in our experiments
described in Sect. 6.

However, a common limitation of the public domain MPSL datasets is the rela-
tively small number of cases, specially in the benign class (which often leads to un-
balanced training sets). So, in addition to the selection of representative samples, we
often need to balance and extend the training sets. One popular alternative is to add



Macroscopic Pigmented Skin Lesion Segmentation 35

new training samples using the Smoothed Bootstrap Resampling method [20, 35].
This method is used when there are not enough samples to guarantee the statistical
significance of the data set. In this case, the original samples are randomly selected,
and new ones are created by adding a small amount of zero-centered noise to their
feature values, enlarging the data set [35]. In our experiments (see Sect. 6), we used
zero mean Gaussian noise, with σ = 0.1, and made sure to obtain at least 2500
samples for each class (5000 samples in total) for a two class problem.

5.3 Classification Methods

After the feature normalization and the training samples selection steps, the gen-
erated data is the input used to train a classification method. For the classification
of pigmented skin lesions images (macroscopic or dermoscopic), Support Vector
Machines (SVM) is frequently utilized [5, 16]. However, due to the complex class
shapes generated by the feature data, determining an adequate kernel and its pa-
rameters often is a difficult task. Artificial Neural Networks [15, 36] suffer from
a similar limitation, determining the number of layers in multilayer perceptrons
and their characteristics is critical, and may increase or decrease the final accu-
racy significantly. However, techniques such Decision and Regression Trees [17]
usually are less computationally intensive, and the parameters can be determined
automatically. However, despite of their relatively simplicity, such classifier used
alone hardly obtain the desirable accuracy levels by state-of-the-art of MPSL clas-
sification schemes.

In our experiments, where we try to relate segmentation and classification perfor-
mance, we used a Nearest Neighbor Classifier (KNN) with K = 1. This algorithm
is very simple, where each sample/image is assigned to its neighbor class using
the Euclidean Distance in feature space. This method was chosen for its simplicity
and because it has been already used successfully in pigmented skin lesion image
classification research [20, 36, 37].

6 Discussion of Experimental Evidences: Pigmented Skin Lesion
Segmentation and Its Influence on the Lesion Classification
and Diagnosis

In the previous sections, we discuss the procedures utilized to obtain a classifica-
tion/diagnosis for a MPSL image, from the pre-processing steps to the final classi-
fication. Now, we wish to evaluate the influence of the segmentation methods in the
final lesion classification/diagnosis.

Recall that the Alcón et al. dataset used in our experiments (see Sect. 3.3) con-
tains 107 melanoma images (malignant cases) and 45 Clark nevi images (benign
cases). In Tables 4, 5, 6 and 7 we present the classification results for these 152
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Table 4 Comparison of classification results in average

Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method [17] 92.56 % 89.16 % 91.55 %

Otsu’s Thresholding Method on Grayscale [15] 93.89 % 83.91 % 90.93 %

ICA-Based Active-Contours Method [21] 92.95 % 85.60 % 90.78 %

Thresholding Method on a Multichannel
Representation [20]

93.91 % 83.29 % 90.76 %

Multi-Direction GVF Snake Method [19] 92.34 % 86.89 % 90.72 %

Otsu’s Thresholding Method on the Red Channel [25] 94.17 % 80.36 % 90.08 %

Table 5 Best classification results in terms of sensitivity

Approach Sensitivity Specificity Accuracy

Otsu’s Thresholding Method on the Red Channel [25] 99.07 % 75.56 % 92.11 %

Alcón et al. Thresholding Method [17] 99.07 % 75.56 % 92.11 %

Multi-Direction GVF Snake Method [19] 98.13 % 86.67 % 94.74 %

Thresholding Method on a Multichannel
Representation [20]

98.13 % 86.67 % 94.74 %

ICA-Based Active-Contours Method [21] 98.13 % 84.44 % 94.08 %

Otsu’s Thresholding Method on Grayscale [15] 97.20 % 80.00 % 92.11 %

Table 6 Best classification results in terms of specificity

Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method [17] 92.52 % 97.78 % 94.08 %

ICA-Based Active-Contours Method [21] 92.52 % 95.56 % 93.42 %

Multi-Direction GVF Snake Method [19] 87.85 % 93.33 % 89.47 %

Thresholding Method on a Multichannel
Representation [20]

93.46 % 91.11 % 92.76 %

Otsu’s Thresholding Method on Grayscale [15] 94.39 % 88.89 % 92.76 %

Otsu’s Thresholding Method on the Red Channel [25] 94.39 % 88.89 % 92.76 %

images obtained by different state-of-the-art methods. In each one of these Tables,
we present the Sensitivity (i.e, the percentage of MPSL images correctly classified
in the malignant class), Specificity (i.e., the percentage of MPSL images correctly
classified in the benign class) and Accuracy (i.e., the percentage of MPSL images
correctly classified overall, considering all images).

Since the training sample selection process is random (see Sect. 5.2), and may not
assure that the selected samples represent well the characteristics of both classes, we
considered as representative all the 50 training sets obtained in 50 random trails, as
well as the 50 classification results corresponding to each one of these training sets.



Macroscopic Pigmented Skin Lesion Segmentation 37

Table 7 Best classification results in terms of accuracy

Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method [17] 98.13 % 88.89 % 95.39 %

Thresholding Method on a Multichannel
Representation [20]

98.13 % 86.67 % 94.74 %

ICA-Based Active-Contours Method [21] 97.20 % 88.89 % 94.74 %

Multi-Direction GVF Snake Method [19] 97.20 % 88.89 % 94.74 %

Otsu’s Thresholding Method on Grayscale [15] 96.26 % 88.89 % 94.08 %

Otsu’s Thresholding Method on the Red Channel [25] 94.39 % 88.89 % 92.76 %

That is, we computed 50 times: (a) the training samples selection, (b) the Smoothed
Bootstrap Resampling method, and (c) the Nearest Neighbor classifier results, so
that our experimental results are statistically relevant. The final classification per-
formance is measured based on these 50 trials.

We present the Accuracy, Specificity and Sensitivity averages of the 50 obtained
results in Table 4. In Tables 5, 6 and 7, we present the best classification results
for each segmentation method tested (in terms of Sensitivity, Specificity and Accu-
racy, respectively). As can be seen, these segmentation methods were ranked based
on their segmentation (see Sect. 3) and classification errors, but their segmentation
and classification rankings differ. This indicates that the MPSL image feature set
describes the lesions well, representing well their morphology even if the segmenta-
tion is not as precise as would be desirable. Additionally, these experimental results
show that better feature extraction techniques that could take advantage of more
accurate segmentations are needed, achieving classification results that are more
accurate.

It shall be observed that our classification results indicate accuracies higher than
90 % (in average), independent of the selected segmentation algorithm. These ac-
curacies are higher than the diagnosis accuracies obtained by trained physicians in
telemedicine, which range between 31 % to 85 % according to the literature [13].

7 Summary and Future Trends

In this chapter, we reviewed the procedures used for classifying or diagnosing a
pigmented skin lesion from a macroscopic image. Given the acquired color image,
we showed how to eliminate shading effects, determine the lesion boundaries and
some of the important lesion characteristics, and how to obtain the correct lesion
classification as a (malignant) melanoma or a (benign) nevus.

The importance of using color also is outlined in this work, since the use of color
can enhance the MPSL image segmentation precision. It shall be observed that the
classification accuracies obtained in such segmentation and classification schemes
already can be higher than the diagnosis accuracies obtained by trained physicians in
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telemedicine. Although the segmentation results do not correlate well with the final
classification accuracies, we believe that in future new features can be developed to
make better use of more precise segmentations, leading even higher classification
accuracies.

In particular, we believe that such automatic MPSL image analysis schemes will
contribute to increase the reliability of telemedicine. Consequently, the access to
MPSL image prescreening systems shall be increase in the near future, which will
contribute to improve the current early skin cancer detection rates, the skin cancer
patient prognosis, and also it shall help increase the efficiency of the medical care
systems.
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Color and Spatial Features Integrated
Normalized Distance for Density Based Border
Detection in Dermoscopy Images

Sinan Kockara, Mutlu Mete, and Sait Suer

Abstract Dermoscopy is the major imaging modality used in the diagnosis of
melanoma and other pigmented skin lesions. Automated assessment tools for der-
moscopy images have become an important research field mainly because of inter-
and intra-observer inconsistencies at interpretation of the same image. Automated
detection of lesion borders is very important step in dermoscopy image analysis.
One of the highest accuracy rates in the automated lesion border detection field
is achieved by Fast Density Based Lesion Detection (FDBLD), which is based on
density based clustering of pixel-of-interest. In addition to low border detection er-
ror, FDBLD removes redundant computations in well-known spatial density based
clustering algorithm DBSCAN; thus, in turn it accelerates clustering process consid-
erably. However, FDBLD is designed to run only on binary images; thus, it requires
pre-processing step to convert color image in to a binary image. Furthermore, very
important color information in dermoscopy images falls into disuse.

In this study, we develop a modified FDBLD by introducing a new distance mea-
sure called Normalized Distance. Our method (ND- FDBLD) improves the effi-
ciency of lesion detection by plugging Normalized Distance into FDBLD. This in
turn removes dependency of FDBLD to preprocessing step and improves its accu-
racy. Moreover, developed distance measure helped involve both color and position
dependencies in FDBLD. Both FDBLD and ND-FDBLD methods, in experiments,
are tested on the same set of dermoscopy images. ND-FDBLD method is compared
not only against FDBLD but also against dermatologists’ drawn ground truth lesion
border images. Results revealed that new algorithm is more accurate and efficient
than FDBLD on 75 % of 100 dermoscopy images. On 23 % of images both our
method and FDBLD performed the same accuracy rates. FDBLD had better accu-
racy than ND-FDBLD only on two images. In parallel to these results, ND-FDBLD
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generates more accurate results than FDBLD compared to dermatologists’ drawn
ground truth images.

1 Introduction

Skin cancer is one of the most common cancer types. Three most widely seen skin
cancer types are melanoma, basal cell cancer, and squamous cell cancer which
are named after the type of skin cells from which cancer arises [1]. Skin can-
cer is the most commonly diagnosed cancer type and it is rarely fatal, except for
melanoma [2]. Melanoma is the most rapidly increasing cancer in the world and is
the sixth most common cancer in the US [3]. In 2010, there were estimated 68,130
new cases in the US. Unfortunately, 8,700 of these cases were fatal [1]. Although
survival rate is increasing, death rate from malignant melanoma is exponentially
increasing too [3]. Early diagnosis is crucial for the treatment, because malignant
melanoma is very invasive when it affects melanocyte. Melanoma develops in the
epidermis. An often-used mnemonic for early signs of melanoma is “ABCDE rule”,
where A corresponds to asymmetry, B is borders (irregular), C is color, D corre-
sponds to diameter, and E indicates characteristics of evolving over time. Since it
is found between the outer layer of the skin (the epidermis) and the next layer (the
dermis), it is clearly visible by human eyes. The diseased area can be cured by a
surgical excision operation.

2 Dermoscopy Image Analysis

Dermoscopy is one of the major imaging techniques for detecting skin lesion area.
It is found that, by using dermoscopy techniques, the sensitivity of finding the lesion
area increases up to 20 % [4]. Dermoscopy images give dermatologists confidence
in determining the lesion. Combining dermoscopy and computer aided diagnosis
(CAD) techniques is a very important and active research field. In order to prevent
time loss and intra- and inter-observer variations, researchers try to utilize comput-
erized techniques. The borders of most melanomas are often indistinct which makes
visual identification very difficult. Over time, the lesion may grow or the pigmenta-
tion in the lesion may darken. To evaluate changes in the lesion by time, the previous
border of the same lesion must be compared side by side with the current border
of the same lesion. Therefore, delineating lesion borders on dermoscopy images
are critical. In the current practice, dermatologists visually check the dermoscopy
images and manually or virtually draw the lesion border which is a tedious and
error-prone process. Moreover, the delineated lesion border drawn by various der-
matologists may not be the same. Sometimes this difference may reach up to 24 %
[5]. Motivated by these facts, CAD techniques are developed to help dermatologists
to reduce possible differences, and standardize the results by alleviating inter- and
intra-observer variations, and accelerate the process [5, 6].
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Fig. 1 Two-step procedure
for classifying the lesion area
in dermoscopy [12]

At the first stage of dermoscopy image analysis, border detection is usually ap-
plied [7, 8] to detect other features more accurately. Since human eye does not per-
ceive minor color and shape changes, help of CAD techniques is beneficial at this
step. There are many factors that make automated border detection complex. For in-
stance, low contrast between the surrounding skin and the lesion, fuzzy and irregular
lesion border, and intrinsic artifacts such as cutaneous features (air bubbles, blood
vessels, hairs and black frames) can be named [5]. According to Celebi et al. [5]
automated border detection can be divided into four sections: pre-processing, seg-
mentation, post-processing, and evaluation. The pre-processing step involves color
space transformations [7], contrast enhancement [9] and artifacts removal [10]. The
segmentation step involves partitioning of an image into disjoint regions [11]. The
post-processing is used to obtain the lesion border [6]. The evaluation involves the
assessment of the border detection results by a dermatologist.

2.1 The ABCDE Rule

Diagnostic steps in dermoscopy are summarized in Fig. 1. After the images are taken
by a dermatoscope, the first step is to decide whether or not the lesion is melanocytic.
Melanocytes are melanin-producing cells located under the skin’s epidermis layer.
Once the lesion is identified as melanocytic, the process continues with determining
whether it is malignant or benign by using one of the five evaluation methods [12].
ABCDE rule is the most commonly accepted evaluation method for malignancy.

In 1985 the ABCD criteria was established as a simple tool for alerting lay per-
sons and primary health care doctors and to help them diagnose the early incidence
of potentially curable melanoma. It consists of a series of simple parameters that can
be employed in daily life as a simple mnemonic to make people, as well as doctors,
aware of the clinical features of melanoma.

In the mnemonic ABCD; A stands for asymmetry, B stands for border irregu-
larity, C for color variations and D for diameter greater than 6 mm. Asymmetry,
border irregularity, and color variation are all associated with melanoma lesions
whose diameter are more than 6 mm. Over the later years this ABCD mnemonic
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Table 1 How the features
affect TDS Rule Score Weight factor

Asymmetry 0–2 1.3

Border 0–8 0.1

Color 1–6 0.5

Diameter/Dermoscopic Structure 1–5 0.5

as a screening tool has changed with the addition of the parameter E, which recog-
nizes evolving lesions (i.e. lesions that change over time). Thus, the mnemonic now
reads ABCDE. The parameter E has been included to emphasize the importance of
evolving pigmented lesions in the natural process of melanoma progression.

Each of the criteria in ABCDE is then multiplied by a given weight factor to yield
a total dermoscopy score (TDS) [13, 14]. Depending on the TDS, malignancy of a
lesion is determined. If TDS is less than 4.75 the lesion is considered as benign. The
values of 5.45 or greater are highly suggestive of melanoma and the values between
4.8 and 5.45 are considered as suspicious. Table 1 summarizes ranges for ABCD
scores and shows weights for each of the criteria. TDS is calculated as follows:

TDS = (A score × 1.3) + (B score × 0.1) + (C score × 0.5) + (D score × 0.5)

Notice in Table 1 that Color is the major contributor to the TDS score.

3 Density Based Clustering

Density based spatial clustering of applications with noise (DBSCAN) clustering
algorithm, introduced in 1996 [15]. It is generally used for discovering clusters in
large spatial databases with noise. Fast density-based lesion detection (FDBLD)
[16] algorithm borrows cues from DBSCAN; however, FDBLD removes redundant
computations in DBSCAN by selectively picking querying points. FDBLD obtained
one of the most accurate results in automated lesion border detection.

In this study, the focus is on FDBLD to further improve accuracy of the algorithm
for detecting lesion borders in dermoscopy images. FDBLD is highly depended on
pre-processing step. In the pre-processing step the intermeans algorithm is used to
create a binary image from dermoscopy image [17]. Since a binary image is used
in FDBLD, one of the most important components of ABCDE rule, C (color) is
missed. Moreover, FDBLD is heavily dependent on the results of the pre-processing
step. If another segmentation technique is used for pre-processing, even for the same
image, FDBLD tends to generate different results. Therefore, the primary focus on
this study is two-fold: first, removing dependency of FDBLD in the pre-processing
step; thus, using color information, and second, improving accuracy of the results.
To achieve these, new distance measure (normalized distance) is incorporated in to
FDBLD.

In the following section DBSCAN and FDBLD algorithms are introduced. It
is followed by normalized distance and updated FDBLD. Finally, the experiments
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and results section compares normalize distance embedded FDBLD (ND-FDBLD)
against FDBLD.

3.1 DBSCAN

Density-based clustering methods group data elements based on density character-
istics around them. Unlike the majority of other methods, the noises in data can be
found as outliers while some other clustering methods force these noises to be a
member of a cluster. DBSCAN is based on the formal notion of density-reachability
for k-dimensional points. It is designed to discover clusters of arbitrary shape. If
region queries are efficiently supported by spatial index structures, i.e. at least in
moderately dimensional spaces, runtime of the algorithm is the order of O(n logn).
Two properties are critical for DBSCAN are as follows:

• All points within the cluster are mutually density-connected
• If a point is density-connected to any point of the cluster, it becomes part of the

cluster.

If there is a point that does not belong to any cluster yet, these two properties
are tested. According to these properties, the point is determined as a member of a
specific cluster or otherwise, marked as an outlier. Outlier means point does not be-
long to any cluster. Even for DBSCAN, distance or similarity measures have critical
importance. Depends on the measure used, clustering results vary significantly.

DBSCAN requires two parameters namely epsilon (ε) and a minimum number of
points (MinPts) around ε radius of a point. If a point’s ε radius vicinity has MinPts
number of points around it, then that point is called a core point. DBSCAN is based
on a key idea: to form a new cluster or grow an existing cluster the ε-neighborhood
of a point should contain at least a minimum number of points, MinPts. Neighbors
of a point P are those points that are close to the point P . The neighborhood of a
point is determined by choice of a distance function regarding two points in search
space, such as Euclidean space. Searching for ε-neighborhood requires a region
query, which is, in 2D, to look for neighboring points in ε-radius around a query
point. The major advantage of DBSCAN is that it can follow the arbitrary shapes of
the clusters and requires only a distance function and two input parameters: ε and
MinPts. A detailed theoretical formulation for DBSCAN is given in [15].

Once the two parameters ε and MinPts are set, DBSCAN starts to cluster data
points from an arbitrarily chosen point P . It begins with finding the neighbors of
point P in ε-neighborhood, i.e., all points that are directly density reachable from
point P (see Fig. 2). If the neighborhood is sparsely populated, i.e., it has fewer
neighbors than MinPts, point P is labeled as noise. Otherwise, a new cluster is ini-
tiated and all points in ε-neighborhood of point P are marked by the new cluster’s
label. Next, the neighborhoods of all P ’s neighbors are examined iteratively to check
if new candidates can be added into the cluster. If a cluster cannot be expanded fur-
ther, DBSCAN chooses another arbitrary unlabeled point (if any such point exists)
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Fig. 2 Density reachability in DBSCAN

and repeats the same procedure to form another cluster. These search-and-create
procedures are iterated until all data points in the dataset have been labeled as noise
or with a cluster label. The major drawback of DBSCAN is that for a dataset con-
taining n points, n region queries are required to fire during cluster creation.

Regarding a thresholded (binary) image I , let its dimension be N × N . For a
pixel p, let px and py denote its position where top-left corner is (0,0) of I . Let
cxy = {0,1} represent the value of pixel p at (px,py). Also, let foreground be zero-
valued pixels, cxy = 0. The ε-neighborhood of a pixel p, denoted by NEps(p), is
defined by

NEps(p) = {q ∈ I | dist(p, q) ≤ ε
}
,

where dist() is Euclidean distance, which gives distance between pixels p and q ,
and given as

dist(p, q) =
√

(px − qx)2 + (py − qy)2.

By having NEps(p), one can create a cluster if |NEps(p)| ≥ MinPts where and
|NEps(p)| denotes number of ε-neighbors of point p. This final check guarantees
that the ε-neighborhood of p is dense enough to form and expand a cluster. As
mentioned above, this process continues until all pixels are queried. Finally, noise in
dataset (pixels without any cluster label) is assumed not to be part of the foreground.

This clustering algorithm follows the procedure of finding all points density-
reachable from an arbitrary starting point. If the starting point is a core point then
the procedure begins building a cluster. Recall that, core point is a point which
has more than MinPts points around its ε-neighborhood. On the other hand, if the
processed point is a border point, the algorithm cannot go further, i.e., DBSCAN
cannot find any point density-reachable from the starting point. This procedure is
followed until all of the points in the ε-neighborhood are touched or visited at least
once. After all of the points in a cluster are visited, the algorithm chooses a new
arbitrary starting point to generate other clusters.

3.2 Boundary Driven Density Clustering

DBSCAN spends most of its computational time in region queries. As mentioned
in the previous section, the major drawback of DBSCAN for a dataset containing
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Fig. 3 Convex hull which
represents a primitive cluster.
MinPts = 5

n points, n region queries are required to complete clustering. Therefore, any im-
provement in decreasing the number of neighborhood searches will have great im-
pact in terms of the computation time of the algorithm. To this end, FDBLD targets
the problem of the excessive number of region queries fired in DBSCAN. For in-
stance, a very large number of region queries become more problematic in the case
of applications like virtual slides [18, 19].

Although FDBLD can be generalized for higher dimensional datasets, the appli-
cations in 2D are a primary focus of this study. The idea of FDBLD in 2D is to rely
on the cluster’s boundary. By having these boundaries, it can identify those points
that are likely to change current shape, the border of the cluster. In DBSCAN as well
as in FDBLD, the area of a cluster always expands out and never shrinks. In the case
of queries that cannot affect the cluster’s area, looking for the ε-neighborhood is
treated as unnecessary and omitted in FDBLD. This improvement certainly is very
advantageous for the running time of the algorithm since unnecessary computations
are removed. The idea behind determining the border of a cluster is derived from
the border of a primitive cluster.

Definition 1 Primitive cluster, PC, is a cluster formed by a core point and bounded
by a convex hull.

As seen in Fig. 3, each cluster formation starts with a core point—at the center,
which is also the method to create core point candidates. To keep the boundary
of a cluster, we represent ε-neighborhood of each core point with a convex hull,
which is a special simple polygon. The convex hull encloses all points found in the
neighborhood including query at the center.

Figure 4 illustrates how FDBLD works in three steps. In that example assume
that a base cluster initially given as in Fig. 4(a). In the first step a core point from
border (red point) is queried for |NEps(p)| ≥ MinPts. Assume that MinPts is 5 for
this example. So, red point in Fig. 4(a) is a core point. In the second step, a primitive
cluster around this center point p is generated with its minimum enclosing convex
hull. Notice that, once the ε-neighborhood query is fired around p (red point), we
find 8 points (excluding the query point itself) which are more than MinPts of this
sample. The convex hull serves as a boundary of PC. PC is shown in Fig. 4(b) (or-
ange convex hull). In the third step, base cluster expanded by merging two polygons;
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Fig. 4 Expanding a cluster in FDBLD in three steps

base cluster boundary and new convex hull’s boundary. Since a cluster never shrinks,
it will always expand from border or will remain the same size. This novel idea is
called boundary driven density clustering. Interior points are skipped since they can-
not expand the current cluster. Therefore, redundant computations in DBSCAN are
eliminated; so that, clustering process is accelerated.

Including convex hull in the algorithm accelerates the process and therefore plays
an important role. FDBLD also uses monotone chain algorithm [20] to find mini-
mum enclosing convex hull.

3.3 Expanding Cluster in FDBLD

Clustering involves the expansion of the first PC (see Definition 1). Once the first
core point in the dataset forms a convex hull it becomes an initial boundary of a clus-
ter. Afterward, each of the convex hulls of core points is combined with main body
of the cluster. Principally, this operation corresponds to the union of two polygons.

Adding a convex area can expand the cluster in various ways. Figure 4 shows
how a newly found convex hull joins the main body of a cluster in three steps. The
ε-neighborhood query (dashed line) in Fig. 4(a) a query (red) point satisfies the
MinPts condition; thus, four new points will be added into the existing cluster. The
expansion of a cluster iteratively continues by examining other points in the region
of leading points until no more unlabeled point is found. The points that are not
associated with any cluster are labeled as noise, as it is in DBSCAN.

A simple polygon is the first step in the cluster formation and does not consider
donut-like clusters. PCs iteratively form polygon around data points. In Fig. 5(a),
assume that PC1 is the first PC formed in the dataset. Since at this time there is no
other polygon to be merged, PC1 becomes a polygon at the same time. Once PC2 is
obtained, it is unionized with PC1 to expand it. After two more iterations for PC3
and PC4, the final polygon is given in Fig. 5(b). Although one polygon is enough for
boundary of a simple cluster (SC), more simple polygons are needed to represent
donut-like clusters.
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Fig. 5 Unionized convex
hulls generate a single
polygon

Fig. 6 Leading points (blue
region)

3.4 Selecting Leading Points

FDBLD differs from DBSCAN in selecting points in order to expand a cluster.
Throughout clustering, DBSCAN fires ε-neighborhood query for each point P in a
seed list of a growing cluster regardless of its impact on current contours of the clus-
ter. It means that ε-neighborhood queries of the points that cannot alter the boundary
of a cluster would waste computational time. Obviously some of the queries would
make changes to the shape (see Fig. 6, blue region) while others that are relatively
far (ε-width) from the edges would not (see Fig. 6, yellow region). On the other
hand, it is important to note that most of the expansions made by a query are not
final, and these changes will not be seen in the latest structure of the cluster.

FDBLD only fires queries that potentially change the boundaries of a cluster
rather than firing queries for each point in the dataset. That is why FDBLD is a
boundary driven density based clustering method. To select leading points, the out-
lined algorithm keeps the boundaries of the polygons that delineate the cluster body.
Accelerations gained with FDBLD compared to DBSCAN are given in Fig. 7. Con-
trary to DBSCAN, we do not inspect the status of the points, whether they are core
or border points, where the label of these points does not have any contributions
in terms of the result of clustering. In FDBLD, the cluster body can enlarge only
through points that are qualified for an ε-neighborhood queries. Hence, if a point is
close enough to a cluster boundary, FDBLD fires ε-neighborhood search around it,
otherwise no query will be fired for it. However, it does not mean that every query
will alter the shape of a cluster. Therefore, we maintain the set of points (points in
the blue region in Fig. 6) that are likely to change the boundaries of a cluster.

As seen in the simple cluster in Fig. 6, the leading data points are only found in
the border region (blue region in Fig. 6) including the points on the edges of the outer
polygon. The points in the yellow area cannot modify the boundary of a growing
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Algorithm FDBLD(Binary Image, α, MinPTS)
//BinaryImage is not UNCLASSIFIED
ForeGrd=All zero-value pixels
ClusId = nextId(NOISE);
FOR i FROM 1 TO ForeGrd.size DO
pxl = ForeGrd.get(i);
IF pxl.ClId = UNCLASSIFIED THEN
IF Expand(ForeGrd,pxl,ClusId,α,MinPts) THEN
ClusId = nextId(ClusId);

END IF
END IF

END FOR
END; // FDBLD

Fig. 7 Algorithm FDBLD

cluster due to the ε-neighborhood. For instance, point P and its ε-neighborhood
dashed circle of Fig. 6 cannot alter the boundary of the cluster; thus, this query
will be skipped in FDBLD. Actually, all of the queries for the points in the yellow
region in Fig. 6 will be skipped since they cannot alter the cluster. For this reason,
the region of leading points, which includes all leading points, can be imagined as
an ε-width inner band (blue region Fig. 6) around the polygon of the cluster C.

3.5 FDBLD Algorithm

The algorithm of FDBLD in 2D is given in Fig. 7. Output is the number of clusters
found in the image. The major function of FDBLD is Expand which is given in
Fig. 8. The boundary of each cluster is obtained from Cls variable, which includes
at least one simple polygon.

By firing an ε-neighborhood query around Pxl, CxHull calculates the boundary
of Primitive Cluster, PriCls. If the first PriCls is a null pointer structure, Expand
returns false for this query pixel. Otherwise, the cluster Cls is formed from PriCls.
The next step is to expand as long as the list of boundary pixels is not empty. Union
reshapes the current Cls by unionizing PriCls and Cls. Finally, update functions take
a list of boundary pixels and current cluster Cls, and return updated boundary pixels.
Usually many of pixels are removed from the list because of expansion of the Cls.

In summary, FDBLD was introduced to detect borders of 2D datasets. It is a spe-
cialized version of DBSCAN. Although it produces the same clusters as DBSCAN
does for the same datasets, on average FDBLD is almost 9 times faster than DB-
SCAN. In our experiments on 100 dermoscopy images, FDBLD fired 86 % less
queries than DBSCAN (see Fig. 9 for comparisons). However, both DBSCAN and
FDBLD only work with binary images. Because both of these algorithms necessi-
tate two parameters, ε and MinPts. Without color image to binary image conversion,
it was impractical to find a common ε value which fits for all dermoscopy images.
Even for our 100 dermoscopy image dataset, it was not possible to find a single ε



Color and Spatial Features Integrated Normalized Distance 51

Boolean Expand(ForeGrd, Pxl, ClusId, α, MinPts)
PriCls = CxHull(Pxl, α, MinPts); //First Pri.Cls.
IF PriCls.size = 0 RETURN FALSE;
ELSE // Core point, PriCls becomes Cls
Cls = PriCls // Cls is a regular cluster
Update(BoundPxl,Cls);
WHILE BoundPxl.size > 0
Pxl = BoundPxl.next();
PriCls = CxHull(Pxl, α, MinPts);
Union(PriCls,Cls);
Update(BoundPxl,Cls);

END WHILE; //
END IF
RETURN True;

Fig. 8 Expand function for FDBLD

Fig. 9 Number of queries
fired by DBSCAN and
FDBLD for 100 images

value that produces accurate border regions for all images. This is because each hu-
man has almost unique skin color and lesion pigmentations. In order to have single
values for ε and MinPts for all images, as an input, both DBSCAN and FDBLD
require binary image produced in preprocessing step. When a binary image has
been used with DBSCAN or FDBLD; however, very important information, color,
is lost.

Recall from the ABCDE Rule section above, in TDS score, color is the most im-
portant component for diagnosis. However, both DBSCAN and FDBLD only work
with black and white image. To overcome this problem and let FDBLD directly
work on a color image without a need for preprocessing step, a new distance mea-
sure is necessary. This distance measure should consider both pixel color and posi-
tion to calculate distance between two pixels. Thus, we developed a new distance
measure which is called normalized distance. Normalized distance will be explained
in later section. There are many different color spaces. Some of them better fits for
certain application area. Thus, normalized distance measure has to be generalized
for different color spaces too.
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4 Normalized Distance

In this section, a modified normalized distance measure in Euclidean space, which
also includes spatial properties of points (pixels in this case), is proposed. The fol-
lowing is a proposed modified normalized distance measure for RGB color space
and pixel coordinates:

d(i, j) =
√

w3(R)2 + w4(G)2 + w5(B)2

3w12552
+ (x)2 + (y)2

w2((ω − 1)2 + (h − 1)2)

where d(i, j) represents normalized Euclidean distance between pixels i and j . In
the equation, w3, w4, and w5 are weights for individual R, G, and B channels re-
spectively, where initially w3 = w4 = w5 = 1. We introduce different weights for
different color channels (for future use) since in some application domains certain
color channels have more significant impact than others. However, w1 is weight for
RGB color channels against (x, y) coordinates and w2 is weight for (x, y) coordi-
nates for pixels against RGB color channels, where 1/w1 + 1/w2 = 1, by default
w1 = w2. For instance, in some cases if spatial position (x, y coordinate) is more
important than color information, then w1 should be greater than w2. In that case,
the difference in pixel positions will have a greater impact on distance calculation.
R, G, B , x, and y represent RGB channel differences and x, y spatial
coordinate differences between two pixels, respectively. 3 × 255 is RGB channel
normalization constant. ω is width and h is height of image for normalization of
spatial distance (x2 + y2).

If we generalize the modified normalized distance measure for different color
spaces, it becomes as following:

d(i, j) =
√∑n

k=1 wk+2(Ck)2

nw1C2
max

+ (x)2 + (y)2

w2((ω − 1)2 + (h − 1)2)

where k is the multispectral channel number, n is the total number of channels,
Ck represents channel k’s difference between i and j , wk represents weights for
each channel where

∑n
k=1 wk+2 = 1. In this way, both color and spatial position

information are included in a single distance metric. With this distance measure, it
becomes possible to differentiate the same colored pixels in different locations.

Figure 10 illustrates the importance of normalized distance measure over results:
(a) shows an exemplary dermoscopy image of a lesion which has low contrast be-
tween the surrounding skin and the lesion and also a fuzzy and irregular le sion
border; (b) illustrates the result drawn by a dermatologist whereas (c) illustrates
the result generated by FDBLD with Manhattan distance while (d) illustrates the
result generated by ND-FDBLD. As clearly seen from this example, the simple
normalized distance measure was specifically designed for lesion border detections
(ND-FDBLD) outperform FDBLD. (e) shows the result of FDBLD with Euclidean
distance (after preprocessing is applied). (f) and (g) illustrate how ND-FDBLD be-
haves with different weights. Moreover, normalized distance (ND) makes a finding
common ε value for all images very simple. ε interval is found in a few trials. With
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Fig. 10 Results generated by FDBLD with different distance measures
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FDBLD without pre-processing, it is not possible to find common ε interval which
generates satisfactory results for all images. ND-FDBLD works directly on color
images without any pre-processing (intermeans segmentation) step.

4.1 Effect of Color Spaces

Although ND benefits this study in RGB space, it is adaptable to other space. The
weights wi are, therefore, incorporated into the calculation of ND. Note that color
is represented differently in different color space. In majority of biomedical ap-
plications, color is the most critical information for assessing biomedical images.
However, in literature, there is no standard color space in which a particular color
points are represented for computer vision tasks.

A standard language within the community to quantify and collaborate is a
much needed effort. In 1931, an international group, Commission Internationale
de L’Eclairage1 (CIE), had met to bring a solution to the mentioned difficulty. This
effort resulted in a very useful tool: color models, which is the fundamental brick
for people and devices to work and communicate in agreement while using digital
color images. The naming of a color model allows quantifying colors that remove
subjectivity.

A color model provides a coordinate system and a subspace in which each color is
represented by a single point. Beside generic color models, many commercial mod-
els, such as Munsell [21], Hunter-LAB [22], TexHVC and NCS [23], were also in-
vented for various applications. In the digital image processing, there are more than
20 well-accepted color models. For instance, CIELAB, CIELUV, CIEXYZ, CMY,
CMYK, HSL, HSV, Hunter-LAB, NRGB, RGB, and SCT are the most common
color models. A few of them are used extensively, whereas others appear only in a
few studies. Most of the researchers [19, 24–26] map their color points to another
color space in the preprocessing phase. It is often claimed that mapping will benefit
the general framework, such as CBIR, classification of subimages, and texture anal-
ysis. One of the expected advantages of conversion between color models is to have
perceptual uniformity in the new color space [24]. Perceptual uniformity is an at-
tribute of color space, and characterizes a just-detectable visual difference that con-
stitutes a constant distance (such as Euclidean) in any location or direction within
the space [25]. More formally, considering the distance from C1 = (X1, Y1,Z1) to
color C1 +C, and the distance from color C2 = (X2, Y2,Z2) to color C2 +C,
where C = (X,Y,Z). Both distances are equal to C, yet in general, they
will not be perceived as being equal colors by human eye. This is because of the
variation throughout the spectrum of color models. CIELAB and CIELUV were
particularly design to overcome this problem. Reader is referred to [26, 27] for de-
tails on analysis of color models on biomedical image processing.

1This is also called the International Commission on Illumination.
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5 Experiments and Results on Dermoscopy Images

Initially, we studied on FDBLD clustering algorithm to find the two main parame-
ters, MinPts and ε. An empirical experimentation was employed to determine these
two parameters. We randomly selected 50 dermoscopy images in order to find the
correct values for MinPts and ε. After the parameters are determined, new ND em-
bedded FDBLD is tested on 100 dermoscopy images. Tables 2 and 3 illustrate the
difference between ND-based FDBLD and FDBLD of Mete et al. [16]. The first
column of a table is image ID’s of 100 dermoscopy images. Each object in an image
is labeled after applying the clustering algorithm. The results essentially indicate
two labels: cancer and non-cancer. In this comparison, precision, recall, and border
error are used. We calculated these measurements by using the formula below.

Precision = TP

TP + FP
, and Recall = TP

TP + FN

Border error (BE) measure, which is also called XOR measure, was proposed by
Hance et al. [28]. This measure quantifies the percentage of border detection error.
It is the most commonly used measure and accepted by the skin lesion detection
researchers. Thus, XOR measure is more important for skin lesion detection than
precision and recall. Schaefer et al. [29] also uses XOR measure for dermoscopy
images, and it is calculated by

BE =
[

AB ⊕ MB

MB

]
× 100

where ⊕ is exclusive OR operator, essentially underlines disagreement between the
target (ManualBorder, MB) and predicted (Automatic Border, AB) regions. Refer-

Table 2 Comparisons between ND-FDBLD and FDBLD with respect to border error rate, preci-
sion, and recall (first half of the dataset)

Img.ID ND-FDBLD FDBLD

B. Err. Pre. Rec. B. Err. Pre. Rec.

1 0.05 0.96 0.99 0.03 1.00 0.88

2 0.08 0.92 0.98 0.02 0.94 0.86

3 0.08 0.96 0.96 0.09 0.89 0.76

4 0.04 0.97 1.00 0.08 0.98 0.79

5 0.06 0.95 0.99 0.04 1.00 0.76

6 0.04 0.98 0.98 0.05 0.98 0.86

7 0.06 0.95 0.99 0.08 0.93 0.87

8 0.04 0.96 1.00 0.05 0.89 0.85

9 0.04 0.97 0.98 0.06 1.00 0.84

10 0.06 0.94 1.00 0.06 1.00 0.86

11 0.10 0.91 1.00 0.04 1.00 0.84

12 0.03 0.98 1.00 0.04 0.96 0.89
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Table 2 (Continued)

Img.ID ND-FDBLD FDBLD

B. Err. Pre. Rec. B. Err. Pre. Rec.

13 0.04 0.96 1.00 0.03 1.00 0.88

14 0.08 0.93 1.00 0.03 1.00 0.85

15 0.02 0.98 0.99 0.02 1.00 0.93

16 0.01 1.00 0.99 0.01 0.99 0.94

17 0.06 0.94 1.00 0.08 1.00 0.57

18 0.06 0.96 0.98 0.11 1.00 0.68

19 0.13 0.89 1.00 0.13 1.00 0.72

20 0.02 1.00 0.98 0.05 1.00 0.71

21 0.03 0.99 0.98 0.05 1.00 0.80

22 0.01 0.99 0.99 0.04 1.00 0.76

23 0.02 0.99 0.99 0.04 1.00 0.85

24 0.02 0.98 1.00 0.06 1.00 0.71

25 0.03 1.00 0.97 0.05 1.00 0.87

26 0.04 1.00 0.97 0.05 1.00 0.85

27 0.04 0.97 0.98 0.07 1.00 0.82

28 0.03 0.99 0.99 0.06 1.00 0.82

29 0.05 0.96 0.99 0.07 1.00 0.76

30 0.02 0.98 1.00 0.05 1.00 0.80

31 0.33 0.75 1.00 0.33 1.00 0.52

32 0.04 0.96 1.00 0.08 1.00 0.76

33 0.06 0.94 1.00 0.06 1.00 0.70

34 0.04 0.97 0.99 0.08 1.00 0.79

35 0.05 0.98 0.97 0.06 1.00 0.83

36 0.11 0.90 1.00 0.07 1.00 0.77

37 0.03 0.98 1.00 0.09 1.00 0.80

38 0.04 0.96 1.00 0.02 0.99 0.90

39 0.03 0.98 0.99 0.03 1.00 0.90

40 0.01 1.00 0.99 0.02 1.00 0.92

41 0.03 0.99 0.97 0.05 1.00 0.82

42 0.02 1.00 0.98 0.03 1.00 0.88

43 0.02 1.00 0.98 0.06 1.00 0.76

44 0.04 1.00 0.96 0.02 1.00 0.86

45 0.01 0.99 1.00 0.04 1.00 0.82

46 0.04 0.96 1.00 0.08 1.00 0.73

47 0.02 1.00 0.98 0.03 1.00 0.85

48 0.04 0.97 1.00 0.08 1.00 0.73

49 0.05 0.96 1.00 0.15 1.00 0.73

50 0.01 0.99 1.00 0.04 1.00 0.83
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Table 3 Comparisons between ND-FDBLD and FDBLD with respect to border error rate, preci-
sion, and recall (second half of the dataset)

Img.ID ND-FDBLD FDBLD

B. Err. Pre. Rec. B. Err. Pre. Rec.

51 0.09 1.00 0.91 0.03 1.00 0.93

52 0.08 1.00 0.92 0.05 1.00 0.83

53 0.04 1.00 0.96 0.02 0.99 0.90

54 0.04 0.97 1.00 0.09 1.00 0.73

55 0.05 0.96 1.00 0.08 1.00 0.75

56 0.03 0.99 0.97 0.05 1.00 0.81

57 0.05 1.00 0.95 0.06 1.00 0.83

58 0.03 1.00 0.97 0.05 1.00 0.83

59 0.05 1.00 0.95 0.01 1.00 0.96

60 0.05 0.98 0.97 0.03 1.00 0.91

61 0.06 0.95 1.00 0.14 1.00 0.62

62 0.03 0.99 0.98 0.07 1.00 0.81

63 0.02 0.98 0.99 0.06 1.00 0.81

64 0.03 1.00 0.97 0.03 1.00 0.81

65 0.01 1.00 0.99 0.01 1.00 0.92

66 0.02 0.99 1.00 0.05 0.90 0.80

67 0.03 0.97 1.00 0.05 1.00 0.77

68 0.02 0.98 1.00 0.04 1.00 0.81

69 0.01 1.00 0.99 0.01 1.00 0.90

70 0.03 1.00 0.97 0.02 1.00 0.80

71 0.03 0.98 0.99 0.06 1.00 0.68

72 0.04 0.96 1.00 0.10 1.00 0.68

73 0.05 0.99 0.96 0.05 0.94 0.77

74 0.01 0.99 1.00 0.02 0.99 0.85

75 0.07 0.94 1.00 0.08 1.00 0.65

76 0.40 0.72 1.00 0.11 1.00 0.71

77 0.01 0.99 1.00 0.03 1.00 0.73

78 0.11 0.90 1.00 0.13 1.00 0.62

79 0.14 0.88 1.00 0.12 1.00 0.69

80 0.04 0.96 1.00 0.07 1.00 0.63

81 0.01 1.00 1.00 0.02 1.00 0.61

82 0.14 0.88 1.00 0.12 1.00 0.74

83 0.05 0.96 1.00 0.11 1.00 0.52

84 0.01 0.99 1.00 0.03 1.00 0.78

85 0.04 0.97 0.99 0.08 1.00 0.76

86 0.05 0.98 0.97 0.09 0.98 0.76

87 0.03 0.98 0.99 0.07 1.00 0.73
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Table 3 (Continued)

Img.ID ND-FDBLD FDBLD

B. Err. Pre. Rec. B. Err. Pre. Rec.

88 0.02 0.98 1.00 0.06 1.00 0.55

89 0.03 0.99 0.98 0.04 0.89 0.90

90 0.07 0.95 0.98 0.17 1.00 0.55

91 0.03 0.97 1.00 0.08 1.00 0.61

92 0.06 0.97 0.98 0.05 1.00 0.88

93 0.02 0.98 1.00 0.02 1.00 0.90

94 0.06 0.96 0.98 0.15 1.00 0.65

95 0.01 1.00 0.99 0.03 1.00 0.66

96 0.06 0.98 0.96 0.09 1.00 0.74

97 0.31 0.76 1.00 0.23 1.00 0.65

98 0.04 0.96 0.99 0.05 1.00 0.83

99 0.05 0.95 1.00 0.12 1.00 0.64

100 0.03 0.97 1.00 0.03 1.00 0.70

ring to information retrieval terminology, the nominator of the BE means summa-
tion of false positive (FP) and false negative (FN). The denominator is obtained by
adding true positive (TP) to false negatives (FN). After the pixels in an image are
labeled, the number of true prediction of the lesion area was named true positive, the
number of false prediction of lesion area as false positive, the number of true predic-
tion of non-lesion as true negative, and the number of false prediction of non-lesion
as false negative.

Of 100 images, in 75 images ND-FDBLD had better results than FDBLD (see
Fig. 10). In Tables 2 and 3, ND-FDBLD is compared against the original FDBLD
on the same dataset. The three columns following the first column show our results
and the second three columns represent results from Mete et al. [16].

As seen from Tables 2 and 3, the proposed lesion border detection method is more
accurate than FDBLD. However, FDBLD outperforms our method in two images,
image numbers 76 and 97 (Fig. 11). In these images, there exists a cutaneous feature
which is hair. In these images, hair occludes the lesion area and they elongate down
to the image borders which are considered as peripherals in our approach. Therefore,
hairs which intersect the lesion area and the regions residing between the hairs are
included in the lesion area. An active contour model introduced recently overcomes
this problem [30].

6 Conclusion

A recent study of the fast density based lesion border detection (FDBLD) approach.
Reference [16] was used as a basis for this study. FDBLD is based on a novel bound-
ary driven density based clustering algorithm. FDBLD as well as its predecessor
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Fig. 11 Comparison between
our method and FDBLD,
x horizontal axes is image
numbers, vertical one is
border error of corresponding
image

DBSCAN requires two parameters ε and MinPts. To find optimum parameters for
ε and MinPts that fit for every image in our dermoscopy dataset is not possible.
Thus, FDBLD has to have binary image. When it runs on a binary image; however,
the most important component of dermoscopy image, color, is lost. In this study,
to overcome this problem and eliminate pre-processing step (color to binary image
conversion), we introduce a new distance measure. This distance measure is called
normalized distance (ND). ND not only considers pixel positions but also considers
pixel colors for distance computation. Moreover, ND is generalized to fit other color
spaces than RGB.

Accuracy of the FDBLD is highly dependent on the preprocessing step. To im-
prove accuracy of the FDBLD, to remove its dependency on the preprocessing step,
and to let FDBLD directly run on color dermoscopy images ND is integrated to the
existing approach. ND integrated FDBLD is abbreviated as ND-FDBLD.

Results show that dependency of FDBLD to the pre-processing step is discarded
by integrating normalized distance measure in to FDBLD. Moreover, efficiency of
the FDBLD is improved by achieving lower border error rates for automated le-
sion border detections in dermoscopy images. ND-FDBLD was tested on 100 der-
moscopy images. Results were compared with both FDBLD and manually drawn
lesion borders by dermatologists for the same images. In order to measure accuracy
of the obtained results, precision, recall, and border error rate measures were used.
The results show that ND-FDBLD performs better in 75 % of dermoscopy images
than FDBLD. Moreover, this new approach reduces overall border error rates. Fu-
ture direction includes noise reduction in the preprocessing steps and finding the
best color space for dermoscopic image analysis.
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A Color and Texture Based Hierarchical K-NN
Approach to the Classification of Non-melanoma
Skin Lesions

Lucia Ballerini, Robert B. Fisher, Ben Aldridge, and Jonathan Rees

Abstract This chapter proposes a novel hierarchical classification system based
on the K-Nearest Neighbors (K-NN) model and its application to non-melanoma
skin lesion classification. Color and texture features are extracted from skin lesion
images. The hierarchical structure decomposes the classification task into a set of
simpler problems, one at each node of the classification. Feature selection is em-
bedded in the hierarchical framework that chooses the most relevant feature subsets
at each node of the hierarchy. The accuracy of the proposed hierarchical scheme is
higher than 93 % in discriminating cancer and potential at risk lesions from benign
lesions, and it reaches an overall classification accuracy of 74 % over five common
classes of skin lesions, including two non-melanoma cancer types. This is the most
extensive known result on non-melanoma skin cancer classification using color and
texture information from images acquired by a standard camera (non-dermoscopy).

1 Introduction

Skin cancers are the most common forms of human malignancies in fair skinned
populations [18]. Although malignant melanoma is the form of “skin cancer” with
the highest mortality, the “non-melanoma skin cancers” (basal cell carcinomas
and squamous cell carcinomas, etc.) are far more common. The incidence of both
melanoma and non-melanoma skin cancers is increasing, with the number of cases
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being diagnosed doubling approximately every 15 years [35]. It is widely accepted
that early detection is fundamental to reducing the diseases’ morbidity and mortal-
ity. Automatic detection systems may offer benefit for this key diagnostic task.

There are a considerable number of published studies on classification meth-
ods relating to the diagnosis of cutaneous malignancies. The first published work
presenting an automatic classification of melanoma could be found in 1987 [11].
A paper describing the first complete system appeared a few years later [29]. The
number of published papers has increased every year and the significant progress
that has occurred in this field is demonstrated by the recent journal special issue that
summarizes the state of the art in computerized analysis of skin cancer images and
provides future directions for this exciting subfield of medical image analysis [16].

Different techniques for enhancement, segmentation, feature extraction and clas-
sification have been reported by several authors. Enhancement includes color cali-
bration and normalization [32, 54].

Concerning segmentation, Celebi et al. [14] presented a systematic overview of
main border detection methods: clustering followed by active contours are the most
popular. Improvements in lesion border detection are described in recent papers [26,
39, 54, 61, 66].

Numerous features have been extracted from skin images, including shape, color,
texture and border properties [19, 37, 43, 52, 56, 57, 63]. It is common to use fea-
tures related to the ABCD mnemonic rule [49]. However, our experiments suggested
that the use of the ABCD rule in the development of automatic classifiers can be ar-
guably discouraged [64].

Classification methods range from discriminant analysis to neural networks and
support vector machines [15, 41, 55]. See Maglogiannis et al. [40] for a review of
the state of the art of computer vision system for skin lesion characterization.

These methods have been mainly developed for images acquired by epilumi-
nescence microscopy (ELM or dermoscopy). However, newer technologies, includ-
ing digital dermoscopy, infrared imaging, multispectral imaging, and confocal mi-
croscopy, have recently come to the forefront in providing greater diagnostic accu-
racy [16].

Moreover published studies mainly focus on differentiating melanocytic naevi
(moles) from melanoma. Whilst this is undeniably important (as malignant melano-
ma is the form of skin cancer with the highest mortality), in the “real-world” the
majority of lesions presenting to dermatologists for assessment are not covered by
this narrow domain, and such systems ignore other benign lesions and crucially
the two most common skin cancers (Squamous Cell Carcinomas and Basal Cell
Carcinomas) [10, 27, 60].

The proposed work uses only high resolution color images acquired using stan-
dard cameras. To our knowledge only two melanoma pre-screening systems are
based on standard camera images [1, 12].

In the current study, color and texture features are used for the classification. We
focus on 5 common classes of skin lesions: Actinic Keratosis (AK), Basal Cell Car-
cinoma (BCC), Melanocytic Nevus/Mole (ML), Squamous Cell Carcinoma (SCC),
Seborrhoeic Keratosis (SK). As far as we can tell there is no research on automatic
classification of these lesion types (other than moles) outside our group [39].
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Moreover, this paper introduces a new hierarchical framework for skin lesion
classification. This framework is comprised of a modified version of the K-Nearest
Neighbors (K-NN) classifier, the Hierarchical K-Nearest Neighbors (HKNN) clas-
sifier, and a new similarity measure, based on color and texture features, that uses
different feature sets for comparing similarity at each node of the hierarchy.

The motivation for using a K-NN classifier can be seen in Fig. 4. It is clear that the
clusters overlap greatly, but are distinguishable. No hard boundary could separate
them (e.g. as usable by a support vector machine or Bayesian classifier).

Below we describe how the lesion classes can be organized in a hierarchical
scheme (Sect. 2) that suggests the use of the hierarchical classifier (Sect. 3). Then
we introduce the feature pool (Sect. 4). Therefore we make 2 claims:

1. The use of a hierarchical K-NN classifier improves classification accuracy from
70 % to 74 % over a non-hierarchical K-NN, and from 67 % and 69 % over a flat
and a hierarchical Bayes classifier, respectively,

2. This is the most extensive paper to present lesion classification results for non-
melanoma skin cancer using color imagery acquired by a standard camera, unlike
the dermoscopy method, which requires a specialised sensor.

While 74 % is low compared to the 90+ % rates achieved by melanoma clas-
sification, we argue that 74 % is worth publication: (a) the melanoma results are
from only the 2 class problem of melanoma vs melanocytic naevi (moles), and (b) it
has taken more than 20 years of research specifically on that problem to reach the
90+ % levels, whereas this is the first research on image-based classification of AK,
BCC, SCC and SK. We accept that whilst classification rates of this magnitude seem
low in the sphere of informatics research, these rates are significantly above what is
currently being achieved in non-specialist medical practice [10, 21, 27, 44, 51, 60].

2 Skin Class Hierarchy

Some images of the five classes are shown in Fig. 1. The hierarchy is fixed a pri-
ori by grouping our image classes into two main groups. The first group, hence
called Group1, contains lesion classes: Actinic Keratosis (AK), Basal Cell Carci-
noma (BCC) and Squamous Cell Carcinoma (SCC). The second group, hence called
Group2, contains lesion classes: Melanocytic Nevus/Mole (ML) and Seborrhoeic
Keratosis (SK). We note that AK, BCC, SCC, ML and SK are diagnostic classes
defined by dermatologists. The two groups were constructed by clustering classes
containing images which were visually similar at the first split. However we can
give some meaning to two groups observing that the first group comprises BCC and
SCC that are the two most common types of skin cancer and AK which is consid-
ered a pre-malignant condition that can give rise to SCCs and sometimes can be
visually similar to early superficial BCCs. In the second group ML and SK are both
benign forms of skin lesions having a similar appearance. The class grouping leads
to the hierarchical structure shown in Fig. 2. This structure makes a coarse separa-
tion among classes at the upper level while finer decisions are made at a lower level.
As a result, this scheme decomposes the original problem into 3 sub-problems.
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Fig. 1 Examples of skin
lesion images from the
different classes used in this
work

Fig. 2 Block diagram of the
hierarchical organization of
skin lesion classes

3 Hierarchical K-NN Classifier

A large number of classifier combinations have been proposed in the literature [33].
They may have different feature sets, different training sets, different classification
methods or different training sessions, all resulting in a set of classifiers whose out-
put may be combined, with the hope of improving the overall classification accuracy.
The schemes for combining multiple classifiers can be grouped into three main cate-
gories according to their architecture: (1) parallel, (2) cascading and (3) hierarchical.
In the hierarchical architecture, individual classifiers are combined into a structure
which is similar to a decision tree classifier. The advantage of this architecture is the
high efficiency and flexibility in exploiting the discriminant power of different types
of features [33]. A large number of studies have shown that classifier combination
can improve recognition accuracy [33]. It has been shown that in many domains an
ensemble of classifiers outperforms any of its single components [42]. The approach
used in our research falls within the hierarchical model.

Our approach divides the classification task into a set of smaller classification
problems corresponding to the splits in the classification hierarchy (see Fig. 2).
Each of these subtasks is significantly simpler than the original task, since the clas-
sifier at a node in the hierarchy need only distinguish between a smaller number of
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classes. Therefore, it may be possible to separate the smaller number of classes with
higher accuracy. Moreover, it may be possible to make this determination based on
a smaller set of features.

The proposed approach addresses also the feature selection problem. The reduc-
tion in the feature space avoids many problems related to high dimensional feature
spaces, such as the “curse of dimensionality” problem [33], where the indexing
structures degrade and the significance of each feature decreases, making the pro-
cess of storing, indexing and classifying extremely time consuming. Moreover, in
several situations, many features are correlated, meaning that they bring redundant
information about the images that can deteriorate the ability of the system to cor-
rectly distinguish them. Dimensionality reduction or feature selection has been an
active research area in pattern recognition, statistics and data mining communities.
The main idea of feature selection is to choose a subset of input features by elimi-
nating features with little or no predictive information.

It is important to note that the key here is not merely the use of feature selection,
but its integration with the hierarchical structure. In practice we build different clas-
sifiers using different sets of training images (according to the set of classifications
made at the higher levels of the hierarchy). So each classifier uses a different set
of features optimized for those images. This forces the individual classifiers to use
potentially independent information.

Hierarchical classifiers are well known [28, 45, 58] and commonly used for doc-
ument and text classification [13, 20, 23, 50], including a hierarchical K-NN clas-
sifier [24]. While we found papers describing applications of hierarchical systems
to medical image classification and annotation tasks [22, 47, 59], to the best of our
knowledge only a hierarchical neural network model has been applied to skin le-
sions [53]. They claim over 90 % accuracy on 58 images including 4 melanomas.
Unfortunately many technical details are not described in the paper. On the other
hand, only poor performance was reported relative to the classification of melanoma
using the K-NN method [7, 31]. Some promising results have been presented very
recently by using a K-NN followed by a Decision Tree classifier [12].

3.1 K-NN Classifier

K-NN is a well-known classifier. K-NN was first introduced by Fix and Hodges [25]
in 1951. It is well explored in the literature and has been shown to have good classifi-
cation performance on a wide range of real world data sets [17]. Many lazy learning
algorithms are derivatives of the K-NN. A review of them is presented in the paper
of Wetterschereck et al. [62]. A recent application of one of these similarity-based
learning algorithms, namely the lazy CL procedure, to melanoma is described by
Armengol [5].

To classify an unknown example T , the K-NN classifier finds the K nearest
neighbors among the training data and uses the categories of the K neighbors
to weight the category candidates. Then majority voting among the categories of
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data in the neighborhood is used to decide the class label of T . Given M classes
C1,C2, . . . ,CM and N training samples I1, I2, . . . , IN , and the classification for Ii

with respect to category Cj (i = 1, . . . ,N ; j = 1, . . . ,M):

y(Ii,Cj ) =
{

1 Ii ∈ Cj

0 Ii /∈ Cj
(1)

the decision rule in K-NN can be written as:

assign T to Cj if score(T ,Cj ) = arg
M

max
j=1

K∑

i=1

y(Ii,Cj ) (2)

where the training examples Ii are ranked according to their similarity to the test
example T .

The K-NN classifier has only one free parameter K which can be optimized by
a leave-one-out cross-validation procedure, given the distance function Dist (see
Eq. (13)) which is used to determine the ‘nearest’ neighbors. Choosing the proper-
ties to be used in each classifier is a core issue, and is addressed next. The actual
distance metrics are presented in Sect. 4.

3.2 Learning Phase

Our Hierarchical K-NN classifier (HKNN) is composed of three distinct K-NN clas-
sifier systems, one at the top level, and two at the bottom level. The top level clas-
sifier is fed with all the images in the training set. It classifies them into one of the
two groups. The other two classifiers are trained using only the images of the cor-
responding group (i.e. AK/BCC/SCC or ML/SK) that have been correctly (when in
the training stage) classified by the top classifier, and classifies them into one of the
2 or 3 diagnostic classes.

The learning phase consists of the feature selection process for the three distinct
K-NN classifiers. A sequential forward selection algorithm [34] (SFS) is used for
feature selection. The goal for choosing features is the maximization of the clas-
sification accuracy. We used a weighted classification accuracy due to the uneven
class distribution of our data set. This is the rate with which the system is able to
correctly identify each class. Then we take an average of these rates with respect to
the number of classes. Therefore our overall classification accuracy is defined as:

Overall accuracy = 1

M

M∑

j=1

correctly_classified(Cj )

number_of_test_images(Cj )
(3)

where M is the number of classes.
A leave-one-out cross-validation method is used during feature selection. Each

image is used as a test image, all the remaining images in the training set are ranked
according to their similarity index to the test image. Finally the test image is clas-
sified to the class which is most frequent among the K samples nearest to it using
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Eq. (2). The features that maximize the classification accuracy over all the images
in the training set are selected among all the extracted features.

At the end, there will be three sets of features for the three classification tasks, one
selected for the top classifier and two selected for the subclassifiers. The feature sets
for the two subsystems are also selected using SFS, but only using images from the
appropriate classes (i.e. AK/BCC/SCC or ML/SK). Note that, since every subnode
in the hierarchy has only a subset of the total classes, and the subnodes each have
fewer images, the additional cost of feature selection is not substantially more than
that of a flat classification scheme.

3.3 Classification Phase

In the classification phase all the test images are classified through the hierarchical
structure. Each image is first classified into one of the two groups by the top level
classifier that uses the first set of features. Then one of the classifiers of the second
level is invoked according to the output group of the top classifier and therefore
the image is classified in one of the 5 diagnostic classes using one of the two other
subsets of features.

A drawback of the proposed method is that errors on the first classification level
can not be corrected in the second level. If an example is incorrectly classified at
the top level and assigned to a group that does not contain the true class, then the
classifiers at lower levels have no chance of achieving a correct classification. This
is known as the “blocking” problem [58]. An attempt to solve this problem could
be to use classifiers on the second level which classify to more than the two or three
classes for which they are optimized. Our attempts in this direction show us that not
only these classifiers gave much worse results, but also incur additional problems
due to the very small number of images wrongly classified in the first level, that
makes the classes more unbalanced.

4 Feature Description

Here, skin lesions are characterized by their color and texture. In this section we
will describe a set of features that can capture such properties.

4.1 Color Features

Color features are represented by the mean colors μ = (μR,μG,μB) of the lesion
and their covariance matrices Σ . Let

μX = 1

N

N∑

i=1

Xi and CXY = 1

N

[
N∑

i=1

XiYi

]

− μXμY (4)
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where: N is the number of pixels in the lesion, Xi the color component of chan-
nel X (X,Y ∈ {R,G,B}) of pixel i. In the RGB (Red, Green, Blue) color space,
the covariance matrix is:

Σ =
⎡

⎣
CRR CRG CRB

CGR CGG CGB

CBR CBG CBB

⎤

⎦ (5)

In this work, RGB, HSV (Hue, Saturation, Value) and CIE_Lab, CIE_Lch (Munsell
color coordinate system [48]) and Ohta [46] color spaces were considered. Four
normalization techniques were investigated to reduce the impact of lighting, which
were applied before extracting color features. In the end, we normalized each color
component by dividing each color component by the average of the same component
of the healthy skin of the same patient, because it had best performance compared to
the other normalization techniques. After experimenting with the 5 different color
spaces, we choose the normalized RGB, because it gave slightly better results than
the other color spaces (see Sect. 5.4.2)

4.2 Texture Features

Texture features are extracted from generalized co-occurrence matrices (GCM).
Assume an image I having Nx columns, Ny rows and Ng gray levels. Let
Lx = {1,2, . . . ,Nx} be the columns, Ly = {1,2, . . . ,Ny} be the rows, and Gx =
{0,1, . . . ,Ng − 1} be the set of quantized gray levels. The co-occurrence matrix Pδ

is a matrix of dimension Ng × Ng , where [30]:

Pδ(i, j) = #
{(

(k, l), (m,n)
) ∈ (Ly × Lx) × (Ly × Lx) | I (k, l) = i, I (m,n) = j

}

(6)

i.e. the number of co-occurrences of the pair of gray levels i and j which are a
distance δ = (d, θ) apart. In our work, the pixel pairs (k, l) and (m,n) have distance
d = 5,10,15,20,25,30 and orientation θ = 0◦,45◦,90◦,135◦, i.e. (m = k + d,

n = l), (m = k+d/
√

2, n = l+d/
√

2), (m = k,n = l+d), (m = k−d/
√

2, n = l+
d/

√
2).

Generalized co-occurrence matrices are the extension of the co-occurrence ma-
trix to multispectral images, i.e. images coded on n color channels [6]. Let u and v

be two color channels. The generalized co-occurrence matrices are:

P
(u,v)
δ (i, j) = #

{(
(k, l), (m,n)

) ∈ (Ly × Lx) × (Ly × Lx) | Iu(k, l) = i,

Iv(m,n) = j
}

(7)

For example, in case of color images, coded on three channels (RGB), we have
six cooccurrence matrices: (RR), (GG), (BB) that are the same as gray level co-
occurrence matrices computed on one channel and (RG), (RB), (GB) that take into
account the correlations between the channels.
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Fig. 3 Areas of lesions
where ratio features where
calculated

In order to have orientation invariance for our set of GCMs, we averaged the
matrices with respect to θ . Quantization levels NG = 64,128,256 are used for the
three color spaces: RGB, HSV and CIE_Lab.

From each GCM we extracted 12 texture features: energy, contrast, corre-
lation, entropy, homogeneity, inverse difference moment, cluster shade, cluster
prominence, max probability, autocorrelation, dissimilarity and variance as defined
in [30], for a total of 3888 texture features (12 features × 6 inter-pixel distances ×
6 color pairs × 3 color spaces × 3 gray level quantisations). Two sets of texture
features are extracted from GCMs calculated over the lesion area of the image, as
well as over a patch of healthy skin of the same image. Differences and ratios of
each of the lesion and normal skin values are also calculated, giving 2 more sets of
features:

featurel−s = featurelesion − featurehealthy_skin (8)

featurel/s = featurelesion/featurehealthy_skin (9)

Altogether, for a given feature family we use {featurelesion, featurehealthy_skin,

featurel−s , featurel/s}. This gives a total of 4 × 3888 = 15552 possible texture fea-
tures, from which we extracted a good subset. All features are z-normalized over all
training data.

4.3 Ad Hoc Color Ratio Features

Color ratio features are designed ad hoc for skin lesions, by observing color varia-
tions inside the lesion area. Mean colors μA and μB are extracted over the areas A
and B shown in Fig. 3, and their ratios calculated as:

ratio = μA

μB

(10)

Two different area sizes are considered. In the first case, the thickness of the
border area is 10 % of the area of the lesion. In the second case, the diameter of the
inner area is 1/3 of the diameter of the whole lesion. Since lesions are not circular,
the morphological erosion operator is applied iteratively inward from the border
until the desired percentages of lesion area pixels are reached. These features seem
particularly useful for BCCs, which present pearly edges.

Ad hoc color ratio features are calculated for the three color spaces: RGB, HSV
and CIE_Lab, and all feature set are z-normalized. These properties are included in
the texture feature set.
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4.4 Distance Measure

The color and texture features are combined to construct a distance measure between
each test image T and a database image I .

For color covariance-based features, the Bhattacharya distance metric:

BDCF (T , I ) = 1

8
(μT − μI )

T

[
(ΣT + ΣI )

2

]−1

(μT − μI ) + 1

2
ln

| (ΣT +ΣI )
2 |√|ΣT ||ΣI |

(11)

is used, where μT and μI are the average (over all pixels in the lesion) color feature
vectors, ΣT and ΣI are the covariance matrices of the lesion of T and I respectively,
and | · | denotes the matrix determinant.

The Euclidean distance:

EDT F (T , I ) = ∥∥f T
subset − f I

subset

∥∥=
√√
√√

S∑

i=1

(
f T

i − f I
i

)2 (12)

is used for distances between a subset of S texture features fsubset , selected as de-
scribed later. Other metric distances (mahalanobis, cityblock) have been considered,
but gave worse results.

We aggregated the two distances into a distance matching function as:

Dist(T , I ) = w · BDCF (T , I ) + (1 − w) · EDT F (T , I ) (13)

where w is a weighting factor that has been selected experimentally, after trying
all the values: {0.1,0.2, . . . ,0.9}. In our case, w = 0.7 gave the best results. A low
value of Dist indicates a high similarity.

5 Methods

The features described in previous sections were extracted from the lesions in our
image database. In this section we will describe in detail the image analysis and the
choices of the model parameters.

5.1 Acquisition and Preprocessing

Our image database comprises 960 lesions, belonging to 5 classes (45 AK,
239 BCC, 331 ML, 88 SCC, 257 SK). The ground truth used for the experiments is
based on the agreed classifications by 2 dermatologists and a pathologist.

Images are acquired using a Canon EOS 350D SLR camera. Lighting was con-
trolled using a ring flash and all images were captured at the same distance (∼50 cm)
resulting in a pixel resolution of about 0.03 mm. Lesions are segmented using the
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region-based active contour approach described in [39]. The segmentation method
uses a statistical model based the level-set framework. Morphological opening has
been applied to the segmented lesions to be sure to have patches containing only
lesions and healthy skin where the features are extracted.

5.2 Highlight Removal

Specular highlights appear as small and bright regions in various parts of our skin
images. The highlights created by specular reflections are a major obstacle for
proper color and texture feature extraction.

Specular highlights are often characterized by local coincidence of intense
brightness (I ) and low color saturation (S). Intensity and saturation are defined as
follow:

I = R + G + B

3
(14)

S = 1 − min(R,G,B)

I
(15)

and candidate specular reflection regions can be identified using appropriate thresh-
old values (motivated by [38]):

I > Ithr · Imax (16)

S < Sthr · Smax (17)

where Imax are Smax the maximum intensity and saturation in the image respec-
tively.

The most appropriate threshold values experimentally chosen (Ithr = 0.8) and
(Sthr = 0.5) differ from the values proposed in [38] probably due to the different
nature of the images.

We did not apply any subsequent filling procedure on the detected regions, as
this may destroy the original texture and therefore have a negative impact of the
subsequent feature extraction. Areas identified as “highlight” were simply excluded
from the region where the feature extraction process takes place.

5.3 Feature Normalization

The features described in previous sections have very different value ranges. To
account for this, an objective rescaling of the features is achieved by normalizing to
z-scores of each feature set, which is defined as

zij = xij − μj

σj

(18)
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where: xij represents the ith sample measure of feature j , μj the mean value of all
samples for feature j and σj is the standard deviation of the samples for feature j .

In addition, feature values outside the values at 5–95 percentiles have been trun-
cated to the 5th or 95th percentile value, and the normalising μ and σ calculated
from the truncated set. The normalising parameters were constant over all experi-
ments.

5.4 Evaluation

To assess performance, training and test sets were created by randomly splitting the
data set into 3 equal subsets. The only constraint on otherwise random partitioning
was that a class was represented equally in each subset. A 3-fold cross-validation
method was used, i.e. 3 sets composed of two-thirds of the data were created and
used as training sets for feature selection and the remaining one-third of the data as
the test set using the selected features for classification. Thus no training example
used for feature selection was used as a test example in the same experiment. Three
experiments were conducted independently and performance reported as mean and
standard deviation over the three experiments.

In the hierarchical classifiers mentioned in previous sections, the most commonly
used performance measures are the classic information retrieval notions of precision
and recall, or a combination of the two measures [58]. As we are dealing with a
classification task and not a retrieval task, we use the classification accuracy derived
from the confusion matrix. In the training stage, confusion matrices are obtained
by a leave-one-out scheme, where each image is used as a test image and classi-
fied according the known classification of the remaining images in the training set.
On the other hand, in the classification stage, confusion matrices are obtained in a
slightly different way: each image of the test set is classified according to the known
classifications of the K nearest neighbors in the training set.

5.4.1 Influence of the K Parameter

Classification results when varying the value of K of the K-NN classifiers have been
evaluated. In some experiments we noticed a little improvement by using a smaller
value of K for feature selection and a bigger one for classification. Table 1 shows
our evaluation. The numbers (mean ± standard deviation of the accuracy over the
three sets) in the first column are obtained in the feature selection stage, i.e. using the
value of K written on their left. The highest classification accuracy over the test sets
for each value of K used during the feature selection are highlighted in boldface.

We chose values of K : (1) to be odd numbers, (2) to be smaller than the training
class sizes and (3) to span what seemed like a sensible range. Since performance
does not vary too much for the K = 11 or K = 15 test cases, any value of K in this
range is probably approximately equally effective. In the following, the presented
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Table 1 Accuracy of the three subclassifiers varying the value of K . Each row shows the value of
K used in training, columns show the K used in testing

(a) Top level

Training Set Test Set

K = 7 K = 11 K = 15

K = 7 95.80 ± 0.53 91.67 ± 0.93 92.09 ± 1.59 91.88 ± 1.23

K = 11 95.68 ± 0.18 93.33 ± 0.67 92.71 ± 1.17 92.61 ± 0.74

K = 15 95.73 ± 0.63 93.23 ± 1.42 93.33 ± 0.95 93.86 ± 0.72

(b) Group1 (AK, BCC, SCC)

Training Set Test Set

K = 7 K = 11 K = 15

K = 7 79.40 ± 0.75 69.48 ± 0.98 71.50 ± 1.28 70.95 ± 2.31

K = 11 79.96 ± 3.40 69.07 ± 3.38 70.04 ± 0.88 70.86 ± 1.14

K = 15 81.87 ± 3.62 70.87 ± 0.91 72.64 ± 2.41 71.79 ± 2.06

(c) Group2 (ML, SK)

Training Set Test Set

K = 7 K = 11 K = 15

K = 7 91.97 ± 0.42 85.82 ± 0.88 86.01 ± 0.86 85.82 ± 0.39

K = 11 91.88 ± 0.54 85.64 ± 0.58 86.00 ± 0.70 86.19 ± 0.59

K = 15 90.80 ± 1.20 84.55 ± 0.86 85.84 ± 0.81 85.67 ± 1.43

results are obtained using the combination of K that gave the best classification
accuracy (underlined in the table) on the test set for each subclassifier (top level
classifier: train K = 15, test K = 15; AK/BCC/SCC classifier: train K = 15, test
K = 11; ML/SK classifier: train K = 11, test K = 15). Recalling that K is the num-
ber of nearest samples used to classify the image under examination, it is technically
correct to use different values at the classification stage than those used during the
feature selection stage.

5.4.2 Influence of Color Features

A comparison of the accuracy (mean ± standard deviation over the three sets) of
the three subclassifiers using only color features is reported in Table 2, using the K

values reported in the previous section. Note that values for RGB are different from
Table 1 because texture features are not used here.

The best results are obtained using RGB and Ohta color spaces. Actually all
accuracies are nearly identical before normalization. After normalization, RGB and
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Table 2 Accuracy of the
three subclassifiers over the
three sets using different
color spaces, before and after
normalization

(a) Before color normalization

Top level Group1 Group2

RGB 87.82 ± 2.14 64.37 ± 3.80 55.03 ± 1.31

HSV 87.81 ± 2.21 62.61 ± 2.88 55.03 ± 1.31

Lab 87.20 ± 2.68 63.47 ± 2.73 55.95 ± 1.33

Lch 86.46 ± 2.52 63.48 ± 2.91 55.05 ± 0.62

Ohta 87.82 ± 0.97 64.37 ± 3.80 55.85 ± 1.37

(b) After color normalization

Top level Group1 Group2

RGB 92.71 ± 0.66 74.38 ± 1.81 84.35 ± 1.19

HSV 89.80 ± 1.95 62.65 ± 4.16 54.45 ± 2.60

Lab 91.04 ± 1.45 62.93 ± 3.68 56.87 ± 1.94

Lch 87.71 ± 1.80 65.23 ± 3.57 53.54 ± 2.40

Ohta 92.71 ± 0.66 62.31 ± 2.71 57.79 ± 3.40

Ohta color spaces still give best results for the top classifier, while RGB gives much
better results for the other two subclassifiers. These data also indicate that color
features are more important at the top level of the hierarchy, i.e. in discriminating
cancerous vs non cancerous lesions.

5.4.3 Influence of Texture Features

The texture feature set that best discriminates between the groups at the first level
of the hierarchy is different from the feature sets that best discriminate at the second
level, and these two sets also differ between each other. Figure 4 shows a scatter
plot of the two top features for each classifier. The list of selected features for each
level of the hierarchy is reported in the Appendix (see Table 8). Considering that
a potentially very different set of features is selected at each node of the hierarchy,
we can say that the hierarchical method, as a whole, actually uses a larger set of
features in a more efficient way, without ending up in problems like the “curse of
dimensionality”. Hence, there is a benefit from the hierarchical scheme.

We can observe that color information is important also in the texture features
because texture properties extracted using different color channels are selected.

The plots of the accuracy vs the number of features (from 1 to 10 for each level
of the hierarchy) are shown in Fig. 5. We show only the plots for one of the three
subsets and for the best K combinations. Keeping in mind that the color features are
fixed and feature selection is applied only to texture features, the nearly flat trend of
the top level classifier (Fig. 5 top) confirms that color features are more important
in discriminating AK/BCC/SC from ML/SK, and adding more texture features does
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Fig. 4 Scatter plots of the
top 2 features for each of the
three sets. Top graph shows
Group1 (AK/BCC/SCC) in
red and Group2 (SK/ML) in
green
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Fig. 5 Plots of accuracy vs
number of texture features for
one of the 3 subsets, using
color feature +1 to 10 texture
features
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Table 3 Accuracy of the
three subclassifiers over the
three training sets, validation
sets and test sets

(a) Stop when validation accuracy decreases once

Top level Group1 Group2

Training set 94.06 ± 1.37 71.63 ± 6.20 87.84 ± 1.01

Validation set 91.88 ± 0.81 69.16 ± 0.36 85.99 ± 0.39

Test set 91.56 ± 1.06 71.49 ± 1.91 86.01 ± 0.33

# Features 5, 5, 3 6, 9, 3 3, 3, 14

(b) Stop when validation accuracy decreases twice

Top level Group1 Group2

Training set 94.06 ± 1.90 70.77 ± 6.17 87.56 ± 1.45

Validation set 92.40 ± 0.77 69.69 ± 1.92 86.55 ± 0.70

Test set 90.83 ± 0.94 71.51 ± 2.70 85.32 ± 3.08

# Features 16, 13, 2 5, 18, 2 18, 2, 12

not improve its performance more than 2 %. On the other hand, the trend of the
AK/BCC/SCC and ML/SK subclassifiers (Fig. 5 bottom) indicates the usefulness of
using texture features at this level of the hierarchy.

5.4.4 Influence of Feature Number and Selection Algorithm

Referring again to the plots shown in Fig. 5, we can see that is reasonable to stop
after adding 10 texture features to color features, as the accuracy on the test set was
not significantly improving anymore.

A slight overfitting problem evident in some plots suggested us to make experi-
ments using the three sets as train, validation, test sets respectively. Results (mean
± standard deviation of the accuracy over the three subsets) are reported in Table 3.
We stopped selecting additional features when the accuracy on the validation set
decreased (once in the top table, twice in the bottom one).

We did not notice any significant improvement. This is probably due to the
smaller training set size that further reduced the size of the smallest class.

The number of features selected for each of the three subsets is in the last row of
the tables. The high variation means the number of selected features is not a crucial
choice. Indeed, the three subsets are created by randomly splitting the data in such
a way that the 5 lesion classes were equally represented in each subset.

The SFS feature selection algorithm is claimed not to be the optimal algorithm,
however in our case the use of a sequential forward backward greedy algorithm
(see Table 4) did not show any significant improvement. Once again we note a high
variation in the number of selected features for the three subsets.
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Table 4 Accuracy of the
three subclassifiers over the
three training sets, validation
sets and test sets using a
greedy forward backward
algorithm

Top level Group1 Group2

Training set 95.35 ± 1.73 80.25 ± 5.09 91.35 ± 0.40

Validation set 91.67 ± 0.45 67.19 ± 1.67 85.45 ± 0.78

Test set 90.52 ± 0.97 72.08 ± 2.92 86.75 ± 2.55

# Features 5, 20, 10 10, 20, 4 20, 4, 20

Table 5 Comparison of the overall percentage accuracy of the hierarchical and flat classifiers over
the three training sets and test sets

Flat KNN HKNN Flat Bayes Hierarc. Bayes

Training set 77.6 ± 1.4 83.4 ± 1.4 74.3 ± 2.2 81.9 ± 1.5

Test set 69.8 ± 1.6 74.3 ± 2.5 67.7 ± 2.3 69.6 ± 0.4

5.5 Comparison with Other Methods

In Table 5 we compare our results with the results obtained using a non hierarchical
approach, i.e. a flat K-NN classifier and a Bayes classifier that use a single set of
features for all the 5 classes. The flat classifiers were trained using features selected
using the same SFS algorithm. Results of a hierarchical Bayes classifier, having the
same hierarchy as the HKNN classifier and whose subclassifiers were trained using
the same features and the same SFS algorithm, are also reported in the table. We
see that the use of hierarchy gives an improvement both over the training and test
sets.

6 Overall Results

The final results are reported in Table 6. The final accuracy of the top classifier and
the two subclassifiers at the bottom levels are also reported here. The values are
the mean ± standard deviation over the three training and test sets. These results
are obtained using best combination of K determined in Sect. 5.4.1, the RGB color
features and 10 texture features for each subclassifier. We decided to use a fixed
number of features as the train-validation-test scheme did not enhance performance
(see considerations in Sect. 5.4.4 about set sizes and number of features). Similarly,
the variety of results from the different configurations and numbers of features all
have about the same level, given the estimated standard deviations, and so suggest
that there is little risk of overtraining.

Recall the top level classifier discriminates between cancer and pre-malignant
conditions (AK/BCC/SCC) and benign forms of skin lesions (ML/SK). Therefore,
its very high accuracy (above 93 %) indicates the good performance of our system in
identifying cancer and potential at risk conditions. Analysis of the wrongly classified
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Table 6 Accuracy of the three subclassifiers and combined classifier over the three training sets
and test sets. Note that the Group1/2 results are only over the lesions correctly classified at the top
level. On the other hand, the full classifier results report accuracy based on both levels

Top level Group1 Group2 Full classifier

Training set 95.7 ± 0.6 81.9 ± 3.6 91.9 ± 0.5 83.4 ± 1.4

Test set 93.9 ± 0.7 72.6 ± 2.4 86.2 ± 0.6 74.3 ± 2.5

Table 7 Classification
results: confusion matrix on
the test images. Rows are true
classes, columns are the
selected classes

AK BCC ML SCC SK

AK 7 27 1 9 1

BCC 2 210 6 14 7

ML 10 10 269 10 42

SCC 8 34 5 36 5

SK 9 8 33 8 199

images at the top level pointed out that these were the lesions on which clinical
diagnosis of experienced dermatologists was most uncertain.

The overall classification accuracy on the test set is 74.3 ± 2.5 %, as shown in
the right column of Table 6. The overall result also includes the ∼6 % misclassified
samples from the first level.

The overall performance (74 %) is not yet at the 90 % level (achieved after 20+
years of research) for differential diagnosis of moles versus melanoma, however,
our method addresses lesion classes that seem to have no previous automated image
analysis (outside of research from our group [2–4, 8, 9, 36, 39, 65]) and, as high-
lighted previously, our algorithms’ performance is above the diagnostic accuracy
currently being achieved by non-specialists.

Table 7 shows the confusion matrix of the whole HKNN system on the test im-
ages. This matrix has been obtained by adding the three confusion matrices from
the three test sets, as they are disjoint. We note a good percentage of correctly clas-
sified BCC, ML and SK. The number of correctly classified AK and SCC at a first
glance looks quite low. This is due to the small number of images in each of these
two classes. However most of the AKs are misclassified as BCC and we should re-
member that AK is a pre-malignant lesion. Also many SCC are classified as BCC
which is another kind of cancer. Therefore consequences of these mistakes are not
as dramatic as if they were diagnosed as benign. An additional split in the hierarchy
may improve results.

7 Conclusions

We have presented an algorithm based on a novel hierarchical K-NN classifier, and
its application as the first classification of 5 most common classes of non-melanoma
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skin lesion from color images. Our approach uses a hierarchical combination of
three classifiers, utilizing feature selection to tailor the feature set of each classifier
to its task. The hierarchical K-NN structure improves the performance of the system
over the flat K-NN and a Bayes classifier.

As the accuracy is above 70 %, this system could be used in the future as a
diagnostic aid for skin lesion images, particularly as the cancerous vs non cancerous
results are ∼94 %.

These results were produced by optimizing classification accuracy. For medical
use future research should include the cost of decisions into the optimization pro-
cess.

Further studies will include the extraction of other texture related features, the
evaluation of other feature selection methods and the use of a weighted K-NN
model, where neighbor images are weighted according their distance to the test
image. In the future, it would be interesting to extend the hierarchical approach to
more than two hierarchical levels, including self-learned hierarchies.

Acknowledgement We thank the Wellcome Trust for funding this project (Grant No: 083928/Z/
07/Z).

Appendix

List of texture features selected for each level of the final tree. (See Table 8.)

Table 8 Legend: R = Red, G = Green, B = Blue, H = Hue, S = Saturation, V = Value, L, a, b =
Lab color space. Texture features are defined in [30]

(a) Top level

Texture feature Interp. distance Quant. levels Color channels Site

Entropy 5 128 HV Lesion

Cluster Shade 10 128 Lb Skin

Inv. Diff. Moment 5 64 SV Lesion

Contrast 15 64 ab Skin

Energy 5 64 HV Lesion

Inv. Diff. Moment 15 64 RG Lesion

Max Probability 5 128 HH Lesion/skin

Cluster Prominence 25 64 GG Skin

Correlation 10 256 HV Lesion

Cluster Prominence 15 64 LL Lesion-skin
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Table 8 (Continued)
(b) Group 1 (AK,BCC,SCC)

Texture feature Interp. distance Quant. levels Color channels Site

Variance 30 64 HS Lesion/skin

Energy 25 256 ab Lesion

Inv. Diff. Moment 25 64 BB Lesion

Entropy 15 128 HH Lesion

Max Probability 5 256 RB Lesion/skin

Cluster Prominence 10 64 SS Lesion-skin

Contrast 5 64 SS Lesion

Homogeneity 15 256 RG Lesion

Homogeneity 25 128 SV Lesion/skin

Inv. Diff. Moment 5 64 HS Skin

(c) Group 2 (ML,SK)

Texture feature Interp. distance Quant. levels Color channels Site

Correlation 10 256 SS Lesion

Dissimilarity 5 64 bb Skin

Cluster Shade 5 64 HH Lesion

Cluster Shade 5 64 HV Lesion

Cluster Prominence 5 64 HH Lesion

Cluster Prominence 5 64 HS Lesion

Cluster Shade 10 64 HV Lesion

Cluster Shade 5 256 HV Lesion

Correlation 5 64 HV Skin

Contrast 5 64 HH Lesion
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Color Quantization of Dermoscopy Images
Using the K-Means Clustering Algorithm

M. Emre Celebi, Quan Wen, Sae Hwang, and Gerald Schaefer

Abstract Color quantization (CQ) is an important operation with various applica-
tions in medical image analysis. Most quantization methods are essentially based
on data clustering algorithms. However, despite its popularity as a general purpose
clustering algorithm, k-means has not received much respect in the CQ literature be-
cause of its high computational requirements and sensitivity to initialization. In this
chapter, we investigate the performance of a recently proposed k-means based CQ
method. Experiments on a diverse set of dermoscopy images of skin lesions demon-
strate that an efficient implementation of k-means with an appropriate initialization
strategy can in fact serve as a very effective color quantizer.

1 Introduction

True-color images typically contain thousands of colors, which makes their display,
storage, transmission, and processing problematic. For this reason, CQ is commonly
used as a preprocessing step for various graphics and image processing tasks. In the
past, CQ was a necessity due to the limitations of the display hardware, which could
not handle over 16 million possible colors in 24-bit images. Although 24-bit dis-
play hardware has become more common, CQ still maintains its practical value [8].
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Modern applications of CQ in graphics and image processing include: (i) compres-
sion [74], (ii) segmentation [18], (iii) text localization/detection [60], (iv) color-
texture analysis [59], (v) watermarking [42], (vi) non-photorealistic rendering [66],
and (vii) content-based retrieval [19].

The process of CQ is mainly comprised of two phases: palette design (the se-
lection of a small set of colors that represents the original image colors) and pixel
mapping (the assignment of each input pixel to one of the palette colors). The pri-
mary objective is to reduce the number of unique colors, N ′, in an image to K

(K � N ′) with minimal distortion. In most applications, 24-bit pixels in the origi-
nal image are reduced to 8 bits or fewer. Since natural images often contain a large
number of colors, faithful representation of these images with a limited size palette
is a difficult problem.

CQ methods can be broadly classified into two categories [71]: image-independ-
ent methods that determine a universal (fixed) palette without regard to any specific
image [26, 48], and image-dependent methods that determine a custom (adaptive)
palette based on the color distribution of the images. Despite being very fast, image-
independent methods usually give poor results since they do not take into account
the image contents. Therefore, most of the studies in the literature consider only
image-dependent methods, which strive to achieve a better balance between com-
putational efficiency and visual quality of the quantization output.

Numerous image-dependent CQ methods have been developed over the past
three decades. These can be categorized into two families: preclustering methods
and postclustering methods [8]. Preclustering methods are mostly based on the sta-
tistical analysis of the color distribution of the images. Divisive preclustering meth-
ods start with a single cluster that contains all N ′ image colors. This initial cluster
is recursively subdivided until K clusters are obtained. Well-known divisive meth-
ods include median-cut [30], octree [27], variance-based method [65], binary split-
ting [49], greedy orthogonal bipartitioning [68], optimal principal multilevel quan-
tizer [69], center-cut [37], and rwm-cut [75]. More recent methods can be found
in [15, 31, 38, 46, 61]. On the other hand, agglomerative preclustering methods
[3, 7, 21, 24, 63, 72] start with N ′ singleton clusters each of which contains one
image color. These clusters are repeatedly merged until K clusters remain. In con-
trast to preclustering methods that compute the palette only once, postclustering
methods first determine an initial palette and then improve it iteratively. Essen-
tially, any data clustering method can be used for this purpose. Since these meth-
ods involve iterative or stochastic optimization, they can obtain higher quality re-
sults when compared to preclustering methods at the expense of increased computa-
tional time. Clustering algorithms adapted to CQ include maxmin [28, 70], k-means
[11, 32, 33, 35, 40], k-harmonic means [23], competitive learning [10, 13, 57, 64],
fuzzy c-means [9, 41, 50, 55, 67], rough c-means [54, 56], BIRCH [5], and self-
organizing maps [14, 16, 17, 51, 53, 73].

In this chapter, we investigate the applicability of a recently proposed k-means
based CQ method to dermoscopy image quantization. The rest of the chapter is or-
ganized as follows. Section 2 describes the conventional k-means algorithm and the
proposed modifications. Section 3 describes the experimental setup and compares
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the modified k-means CQ method to other methods. Finally, Sect. 4 gives the con-
clusions and future work.

2 Color Quantization Using K-Means Clustering Algorithm

2.1 K-Means Clustering Algorithm

K-means (KM) is undoubtedly the most widely used partitional clustering al-
gorithm [25]. Given a data set X = {x1,x2, . . . ,xN } ∈ R

D , the objective of
KM is to partition X into K exhaustive and mutually exclusive clusters S =
{S1, S2, . . . , SK }⋃K

k=1 Sk = X , Si ∩ Sj = ∅ for 1 ≤ i �= j ≤ K by minimizing the
Sum of Squared Error (SSE):

SSE =
K∑

k=1

∑

xi∈Sk

‖xi − ck‖2
2 (1)

where ‖.‖2 denotes the Euclidean (L2) norm and ck is the center of cluster Sk cal-
culated as the mean of the points that belong to this cluster. This problem is known
to be NP-hard even for K = 2 [1] or D = 2 [47], but a heuristic method developed
by Lloyd [45] offers a simple solution. Lloyd’s algorithm starts with K arbitrary
centers, typically chosen uniformly at random from the data points. Each point is
then assigned to the nearest center, and each center is recalculated as the mean of
all points assigned to it. These two steps are repeated until a predefined termination
criterion is met. The pseudocode for this procedure is given in Algorithm 1 (bold
symbols denote vectors). Here, m[i] denotes the membership of point xi , i.e., index
of the cluster center that is nearest to xi .

The complexity of KM is O(NK) per iteration for a fixed D value. In CQ appli-
cations D typically equals three since the clustering procedure is often performed
in three-dimensional color spaces such as RGB or CIELAB [12].

From a clustering perspective KM has the following advantages:

• It is conceptually simple, versatile, and easy to implement.
• It has a time/space complexity that is linear in N and K . Furthermore, numerous

acceleration techniques are available in the literature [20, 29, 36, 39, 43, 52].
• It is guaranteed to terminate [58] and its convergence rate is quadratic [6].
• It is invariant to data ordering, i.e., random shufflings of the data points.

The main disadvantages of KM are the facts that it often terminates at a local
minimum [58] and that its output is sensitive to the initial choice of the cluster cen-
ters. From a CQ perspective, KM has two additional drawbacks. First, despite its
linear time complexity, the iterative nature of the algorithm renders the palette gen-
eration phase computationally expensive. Second, the pixel mapping phase is inef-
ficient, since for each input pixel a full search of the palette is required to determine
the nearest color. In contrast, preclustering methods often manipulate and store the
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input : X = {x1,x2, . . . ,xN } ∈ R
D (N × D input data set)

output: C = {c1, c2, . . . , cK } ∈R
D (K cluster centers)

Select a random subset C of X as the initial set of cluster centers;
while termination criterion is not met do

for (i = 1; i ≤ N; i = i + 1) do
Assign xi to the nearest cluster;
m[i] = argmin

k∈{1,2,...,K}
‖xi − ck‖2;

end
Recalculate the cluster centers;
for (k = 1;k ≤ K;k = k + 1) do

Cluster Sk contains the set of points xi that are
nearest to the center ck ;
Sk = {xi |m[i] = k};
Calculate the new center ck as the mean of the points
that belong to Sk ;
ck = 1

|Sk |
∑

xi∈Sk

xi ;

end
end

Algorithm 1: Conventional K-means algorithm

palette in a special data structure (binary trees are commonly used), which allows
for fast nearest neighbor search during the mapping phase. Note that these draw-
backs are shared by the majority of postclustering methods and will be addressed in
the following subsection.

2.2 Modifications to the K-Means Algorithm

We have recently proposed a fast and exact KM variant called Weighted Sort-Means
(WSM) that is more suitable for CQ [11]. In order to keep the manuscript self-
contained, here we present a brief overview of WSM. WSM differs from the con-
ventional KM algorithm as follows:

1. Data sampling: A straightforward way to speed up KM is to reduce the amount
of data, which can be achieved by subsampling the input image data. In this
study, two deterministic subsampling methods are utilized. The first method in-
volves a 2:1 subsampling in the horizontal and vertical directions, so that only
1/4-th of the input image pixels are taken into account [28]. This kind of moder-
ate sampling has been found to be effective in reducing the computational time
without degrading the quality of quantization [4, 22, 28, 38]. The second method
involves sampling only the pixels with unique colors. These pixels can be de-
termined efficiently using a hash table that uses chaining for collision resolution
and a universal hash function of the form: ha(x) = (

∑3
i=1 aixi) mod m, where

x = (x1, x2, x3) denotes a pixel with red (x1), green (x2), and blue (x3) com-
ponents, m is a prime number, and the elements of sequence a = (a1, a2, a3)
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are chosen randomly from the set {0,1, . . . ,m − 1}. This second subsampling
method further reduces the image data since most images contain a large number
of duplicate colors.

2. Sample weighting: An important disadvantage of the second subsampling
method described above is that it disregards the color distribution of the orig-
inal image. In order to address this problem, each point is assigned a weight that
is proportional to its frequency. Note that this weighting procedure essentially
generates a one-dimensional color histogram. The weights are then normalized
by the number of pixels in the image to avoid numerical instabilities in the cal-
culations. In addition, Algorithm 1 is modified to incorporate the weights in the
clustering procedure.

3. Sort-Means algorithm: The assignment phase of KM involves many redun-
dant distance calculations. In particular, for each point, the distances to each
of the K cluster centers are calculated. Consider a point xi , two cluster cen-
ters ca and cb and a distance metric d(·, ·), using the triangle inequality, we
have d(ca, cb) ≤ d(xi , ca) + d(xi , cb). Therefore, if we know that 2d(xi , ca) ≤
d(ca, cb), we can conclude that d(xi , ca) ≤ d(xi , cb) without having to calcu-
late d(xi , cb). The compare-means algorithm [52] precalculates the pairwise dis-
tances between cluster centers at the beginning of each iteration. When search-
ing for the nearest cluster center for each point, the algorithm often avoids a
large number of distance calculations with the help of the triangle inequality
test. The sort-means (SM) algorithm [52] further reduces the number of dis-
tance calculations by sorting the distance values associated with each cluster
center in ascending order. In each iteration, point xi is compared against the
cluster centers in increasing order of distance from the center ck that xi was
assigned to in the previous iteration. If a center that is far enough from ck is
reached, all of the remaining centers can be skipped and the procedure contin-
ues with the next point. In this way, SM avoids the overhead of going through
all of the centers. It should be noted that more elaborate approaches to acceler-
ate KM have been proposed in the literature. These include algorithms based on
kd-trees [39, 43], and more sophisticated uses of the triangle inequality [20, 29].
Some of these algorithms [20, 29] are not suitable for low dimensional data sets
such as color image data since they incur significant overhead to create and up-
date auxiliary data structures [20]. Others [39, 43] provide computational gains
comparable to SM at the expense of significant conceptual and implementation
complexity. In contrast, SM is conceptually simple, easy to implement, and in-
curs very small overhead, which makes it an ideal candidate for color cluster-
ing.

4. Initialization: It is well-known that KM is quite sensitive to initialization. Ad-
verse effects of improper initialization include [11]: (i) empty clusters (a.k.a.
‘dead units’), (ii) slower convergence, and (iii) a higher chance of getting
stuck in bad local minima. Conventional KM algorithm is often initialized
by K cluster centers chosen uniformly at random from the data points. Such
a random initialization method not only exhibits the aforementioned prob-
lems, but also leads to clusterings with highly variable quality. In this study,
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the greedy orthogonal bipartitioning method of Wu [68] is used to initial-
ize the cluster centers. This deterministic method has been shown to be one
of the most effective and efficient preclustering methods in various studies
[10, 11, 13].

The pseudocode for WSM is given in Algorithm 2. Let γ be the average over
all points p of the number of centers that are no more than two times as far as
p is from the center p was assigned to in the previous iteration. The complexity of
WSM is O(K2 +K2 logK +N ′γ ) per iteration for a fixed D value, where the terms
(from left to right) represent the cost of calculating the pairwise distances between
the cluster centers, the cost of sorting the centers, and the cost of comparisons,
respectively. Here, the last term dominates the computational time, since in CQ
applications K is a small number and furthermore K � N ′. Therefore, it can be
concluded that WSM is linear in N ′, the number of unique colors in the original
image. It should be noted that, when initialized with the same centers, WSM gives
identical results to KM.

3 Experimental Results and Discussion

3.1 Image Set and Performance Criteria

The WSM method was tested on a set of eight true-color (24-bit) dermoscopy im-
ages of skin lesions obtained from the EDRA Interactive Atlas of Dermoscopy [2].
The images are shown in Fig. 1.

The effectiveness of a quantization method was quantified by the commonly used
Mean Absolute Error (MAE) and Mean Squared Error (MSE) measures:

MAE(X, X̂) = 1

HW

H∑

h=1

W∑

w=1

∥∥X(h,w) − X̂(h,w)
∥∥

1

MSE(X, X̂) = 1

HW

H∑

h=1

W∑

w=1

∥∥X(h,w) − X̂(h,w)
∥∥2

2

(2)

where X and X̂ denote respectively the H × W original and quantized images in
the RGB color space. MAE and MSE represent the average color distortion with
respect to the L1 (City-block) and L2

2 (squared Euclidean) norms, respectively. Note
that most of the other popular evaluation measures used in the CQ literature such
as Peak Signal-to-Noise Ratio (PSNR), Normalized MSE, Root MSE, and average
color distortion [51, 64] are variants of either MAE or MSE.

The efficiency of a quantization method was measured by CPU time in millisec-
onds, which includes the time required for both the palette generation and pixel
mapping phases. In order to perform a fair comparison, the fast pixel mapping algo-
rithm described in [34] was used in quantization methods that lack an efficient pixel
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input : X = {x1,x2, . . . ,xN ′ } ∈ R
D (N ′ × D input data set)

W = {w1,w2, . . . ,wN ′ } ∈ [0,1] (N ′ point weights)
output: C = {c1, c2, . . . , cK } ∈ R

D (K cluster centers)
Select a random subset C of X as the initial set of cluster centers;
while termination criterion is not met do

Calculate the pairwise distances between the cluster
centers;
for (i = 1; i ≤ K; i = i + 1) do

for (j = i + 1; j ≤ K; j = j + 1) do
d[i][j ] = d[j ][i] = ‖ci − cj‖2;

end
end
Construct a K × K matrix M in which row i is a permutation
of 1,2, . . . ,K that represents the clusters in increasing
order of distance of their centers from ci ;
for (i = 1; i ≤ N ′; i = i + 1) do

Let Sp be the cluster that xi was assigned to in the
previous iteration;
p = m[i];
min_dist = prev_dist = ‖xi − cp‖2;
Update the nearest center if necessary;
for (j = 2; j ≤ K; j = j + 1) do

t = M[p][j ];
if d[p][t] ≥ 4 prev_dist then

There can be no other closer center. Stop
checking;
break;

end
dist = ‖xi − ct‖2;
if dist ≤ min_dist then

ct is closer to xi than cp ;
min_dist = dist;
m[i] = t ;

end
end

end
Recalculate the cluster centers;
for (k = 1;k ≤ K;k = k + 1) do

Calculate the new center ck as the weighted mean of
points that are nearest to it;

ck =
(
∑

m[i]=k

wixi

)/ ∑

m[i]=k

wi ;

end
end

Algorithm 2: Weighted sort-means algorithm

mapping phase. All of the programs were implemented in the C language, compiled
with the gcc v4.4.5 compiler, and executed on an Intel Core i7-980X 3.33 GHz
machine. The time figures were averaged over 100 runs.
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Fig. 1 Test images
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3.2 Comparison of WSM Against Other Quantization Methods

The WSM method was compared to 11 well-known CQ methods:

• Median-cut (MC) [30]: This method starts by building a 32 × 32 × 32 color
histogram using 5 bits/channel uniform quantization. This histogram volume is
then recursively split into smaller boxes until K boxes are obtained. At each step,
the box that contains the greatest number of colors is split along the longest axis
at the median point, so that the resulting subboxes each contain approximately
the same number of colors. The centroids of the final K boxes are taken as the
color palette.

• Octree (OCT) [27]: This two-phase method first builds an octree (a tree data
structure in which each internal node has up to eight children) that represents
the color distribution of the input image and then, starting from the bottom of
the tree, prunes the tree by merging its nodes until K colors are obtained. In the
experiments, the tree depth was limited to 6.

• Variance-based method (WAN) [65]: This method is similar to MC with the
exception that at each step the box with the greatest SSE is split along the axis
with the least weighted sum of projected variances at the point that minimizes the
marginal squared error.

• Greedy orthogonal bipartitioning (WU) [68]: This method is similar to WAN
with the exception that at each step the box is split along the axis that minimizes
the sum of variances on both sides.

• Center-cut (CC) [37]: This method is similar to MC with the exception that at
each step the box with the greatest range on any coordinate axis is split along its
longest axis at the mean point.

• Self-organizing map (SOM) [17]: This method utilizes a one-dimensional self-
organizing map with K neurons. A random subset of N/f pixels is used in the
training phase and the final weights of the neurons are taken as the color palette.
In the experiments, the highest quality configuration, i.e., f = 1, was used.

• Radius-weighted mean-cut (RWM) [75]: This method is similar to WAN with
the exception that the box is split along the vector from the origin to the radius-
weighted mean (rwm) at the rwm point.

• Modified maxmin (MMM) [70]: This method chooses the first palette color c1
arbitrarily from the input image colors and the i-th color ci (i = 2,3, . . . ,K) is
chosen to be the color that has the greatest minimum weighted L2

2 distance (the
weights for the red, green, and blue channels are taken as 0.5, 1.0, and 0.25,
respectively) to the previously selected colors, i.e., c1, c2, . . . , ci−1. Each of these
initial palette colors is then recalculated as the mean of the colors assigned to it.
In the experiments, the first color was chosen as the centroid of the input image
colors.

• Split and merge (SAM) [7]: This two-phase method first partitions the color
space uniformly into B partitions. This initial set of B clusters is represented as an
adjacency graph. In the second phase, (B −K) merge operations are performed to
obtain the final K clusters. At each step of the second phase, the pair of clusters
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with the minimum joint quantization error are merged. In the experiments, the
initial number of clusters was set to B = 20K .

• Cheng and Yang (CY) [15]: This method is similar to WAN with the exception
that at each step the box is split along a specially chosen line defined by the mean
color and the color that is farthest away from it at the mean point.

• Adaptive distributing units (ADU) [10]: This method is an adaptation of
Uchiyama and Arbib’s clustering algorithm [62] to CQ. ADU is a competitive
learning algorithm in which units compete to represent the input point presented
in each iteration. The winner is then rewarded by moving it closer to the input
point at a rate of γ (the learning rate). The procedure starts with a single unit
whose center is given by the centroid of the input points. New units are added
by splitting existing units that reach the threshold number of wins θ until the
number of units reaches K . Following [10], the algorithm parameters were set to
θ = 400

√
K , tmax = (2K − 3)θ , and γ = 0.015.

The convergence of WSM was controlled by the following commonly used cri-
terion [44]: (SSEi−1 − SSEi )/SSEi ≤ ε, where SSEi denotes the SSE (1) value at
the end of the i-th iteration. The convergence threshold was set to ε = 0.001.

Tables 1, 2 and 3 compare the CQ methods with respect to MAE, MSE, and
CPU time, respectively for 4, 6, and 8 colors. For the effectiveness criteria, the
best (lowest) error values are shown in bold. It can be seen that, in general, WSM
is significantly more effective than the other methods. As expected, postclustering
methods are often significantly slower than the preclustering methods. Nevertheless,
each CQ method requires only a few milliseconds of CPU time. Therefore, it is
generally preferable to use postclustering methods that give higher quality results.

Figures 2, 3 and 4 show sample quantization results for Ael484, Nml012, and
Nml024, respectively. It can be seen that, despite the small number of quantization

Table 1 MAE comparison of
the quantization methods Method K K

4 6 8 4 6 8

Acl285 Ael484

MC 35.7 33.2 30.2 31.6 29.7 26.0

OCT 44.5 26.3 26.6 32.2 23.6 21.3

WAN 49.4 31.5 24.6 30.5 25.6 20.5

WU 36.2 27.3 22.0 30.3 20.5 17.9

CC 51.5 32.7 31.2 34.7 23.7 20.9

SOM 36.9 26.1 23.2 33.9 24.2 22.4

RWM 35.9 25.3 22.8 31.5 21.7 17.3

MMM 43.7 34.9 25.3 29.5 20.6 19.8

SAM 35.9 31.1 30.1 29.7 26.8 25.8

CY 37.9 26.3 22.8 34.8 27.8 19.6

ADU 33.5 24.6 21.3 30.6 24.3 16.4

WSM 33.0 24.5 19.9 29.1 19.7 15.9
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Table 1 (Continued)

Method K K

4 6 8 4 6 8

Fel096 Nbl034

MC 41.3 38.2 37.6 47.5 41.9 37.5

OCT 42.5 35.9 31.0 53.1 41.4 37.9

WAN 48.7 38.4 29.5 56.1 43.6 33.2

WU 44.0 30.4 24.5 48.1 37.1 33.1

CC 56.7 34.3 30.7 49.8 38.6 32.5

SOM 50.8 31.9 29.0 55.8 40.0 33.3

RWM 43.1 29.4 24.7 48.1 38.4 29.7

MMM 61.5 43.5 37.5 46.8 34.3 31.9

SAM 44.4 35.9 34.2 52.4 39.7 36.7

CY 43.2 31.1 27.8 50.6 37.9 30.9

ADU 40.1 29.4 23.1 49.5 34.4 29.0

WSM 40.3 27.1 22.5 46.5 33.6 28.4

Nbl063 Newl012

MC 54.9 41.8 39.2 36.8 34.8 31.9

OCT 55.2 38.4 30.4 36.7 26.6 24.9

WAN 53.7 38.0 32.5 40.9 32.6 29.2

WU 44.0 36.3 28.6 37.2 28.5 24.1

CC 44.9 37.2 31.9 40.8 31.2 30.0

SOM 62.1 37.0 31.0 43.3 30.9 27.0

RWM 44.7 38.4 28.1 38.0 28.3 24.1

MMM 46.0 33.4 30.5 35.4 31.1 29.1

SAM 55.7 45.4 42.4 39.9 35.3 34.8

CY 50.3 36.5 29.7 39.9 31.0 26.4

ADU 44.9 34.7 27.3 35.8 26.3 22.2

WSM 43.7 35.8 26.8 35.6 26.4 22.4

Nml012 Nml024

MC 46.3 31.2 27.8 56.2 43.0 41.6

OCT 45.1 39.6 29.9 52.5 43.8 39.8

WAN 51.6 35.5 25.6 56.8 45.8 36.3

WU 38.1 27.4 22.7 52.6 38.8 32.4

CC 42.3 34.0 27.0 52.0 45.8 37.6

SOM 56.5 35.7 23.9 52.4 47.7 34.9

RWM 38.9 28.5 24.1 50.9 39.2 33.8

MMM 39.4 32.9 27.0 54.3 40.7 35.0

SAM 38.3 32.4 30.9 52.8 38.8 34.1

CY 46.6 29.6 25.5 56.3 42.2 32.8

ADU 45.6 28.2 22.0 53.0 38.5 32.9

WSM 37.1 26.3 21.5 50.5 37.2 31.6
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Table 2 MSE comparison of
the quantization methods Method K K

4 6 8 4 6 8

Acl285 Ael484

MC 759.1 639.1 526.1 625.9 524.6 379.5

OCT 1750.7 438.0 435.6 685.0 521.8 424.1

WAN 1652.2 647.0 416.1 751.9 497.9 335.2

WU 786.7 477.6 283.7 598.6 295.3 228.6

CC 1496.3 605.2 560.3 693.6 382.9 300.3

SOM 895.8 467.0 415.7 1325.4 594.0 552.0

RWM 774.4 421.1 298.3 639.3 375.3 190.8

MMM 1077.7 668.3 372.5 586.2 267.7 246.7

SAM 869.0 578.0 548.2 589.1 423.0 391.7

CY 823.9 433.6 329.5 684.2 410.9 234.9

ADU 718.8 406.7 297.1 1070.9 685.3 240.4

WSM 714.6 359.8 234.5 522.8 256.5 173.5

Fel096 Nbl034

MC 945.4 787.5 762.8 1177.3 939.8 761.7

OCT 1351.6 678.6 546.3 1829.2 970.2 844.0

WAN 1884.7 909.5 559.6 1771.9 1093.7 658.2

WU 1182.1 540.4 380.1 1249.0 779.9 628.2

CC 1654.5 637.3 503.4 1313.0 833.3 568.8

SOM 2151.3 1039.4 853.9 1850.3 1004.0 696.9

RWM 1039.1 522.2 341.3 1196.1 805.3 514.0

MMM 2018.6 946.7 716.3 1211.9 674.1 594.9

SAM 1249.6 712.2 659.9 1561.4 890.2 768.9

CY 1027.1 572.3 424.5 1325.0 777.6 533.1

ADU 1329.8 491.9 334.2 1242.5 648.3 476.3

WSM 884.4 436.8 313.1 1147.0 637.0 458.9

Nbl063 Newl012

MC 1610.4 892.2 791.0 770.5 655.8 528.9

OCT 1806.2 881.3 504.5 766.0 400.3 354.4

WAN 1585.2 880.8 602.9 1112.6 684.1 534.9

WU 1086.0 751.0 509.9 776.1 477.7 354.0

CC 1138.7 784.5 556.5 910.2 522.8 478.2

SOM 2268.2 787.8 608.4 1883.6 769.0 649.4

RWM 1098.2 794.7 459.0 781.9 464.3 313.1

MMM 1156.0 635.6 521.0 754.1 522.2 436.6

SAM 1611.6 1084.0 972.0 1012.0 732.3 709.5

CY 1283.6 708.1 486.5 852.7 567.5 381.0
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Table 2 (Continued)

Method K K

4 6 8 4 6 8

ADU 1085.8 674.9 457.3 1000.4 409.2 310.2

WSM 1062.2 726.2 405.4 726.6 393.8 281.8

Nml012 Nml024

MC 1400.2 520.0 418.4 1761.6 1016.2 960.7

OCT 1431.2 1268.0 582.2 1515.5 1018.0 844.4

WAN 1552.9 736.2 410.6 1821.5 1170.0 774.8

WU 922.6 458.0 306.8 1444.3 825.2 592.9

CC 1055.3 729.9 433.9 1454.8 1153.5 852.3

SOM 1924.2 1029.5 376.5 1448.9 1311.9 772.8

RWM 880.3 447.1 330.5 1354.7 841.9 630.7

MMM 971.8 640.7 395.8 1524.9 907.7 673.1

SAM 849.7 606.7 561.9 1572.7 839.4 646.3

CY 1331.8 479.9 371.0 1735.5 956.7 561.0

ADU 1133.4 466.7 292.1 1443.2 789.0 587.5

WSM 789.1 412.8 274.3 1316.6 763.7 550.7

Table 3 CPU time
comparison of the
quantization methods

Method K K

4 6 8 4 6 8

Acl285 Ael484

MC 0.1 0.0 0.0 0.0 0.0 0.0

OCT 40.8 40.7 41.1 31.3 40.5 40.8

WAN 0.2 0.2 0.2 0.0 0.2 0.4

WU 0.1 0.8 1.6 0.1 1.1 0.6

CC 5.6 6.6 7.7 5.6 7.1 6.8

SOM 21.5 30.9 40.1 20.7 34.6 41.6

RWM 4.8 5.7 5.7 4.2 6.1 6.2

MMM 20.7 22.5 24.6 17.2 19.5 19.7

SAM 0.7 0.8 0.8 0.1 0.1 0.3

CY 4.0 6.2 6.5 4.3 5.5 5.8

ADU 0.3 0.6 0.8 0.3 0.1 0.9

WSM 19.9 25.4 19.0 11.3 15.0 18.2

Fel096 Nbl034

MC 0.1 0.0 0.0 0.0 0.0 0.0

OCT 40.8 43.4 42.4 43.9 50.1 50.7
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Table 3 (Continued)

Method K K

4 6 8 4 6 8

WAN 0.0 0.3 0.6 0.0 0.0 0.1

WU 0.3 0.9 0.6 0.2 0.4 1.0

CC 4.8 6.4 8.3 5.4 8.4 8.6

SOM 21.7 32.4 40.2 20.1 30.7 40.2

RWM 4.2 5.2 6.3 4.4 7.5 7.2

MMM 20.3 22.9 25.2 29.7 39.7 40.8

SAM 0.8 0.7 0.5 0.6 0.8 0.7

CY 4.4 7.4 7.1 5.2 5.2 7.5

ADU 0.3 0.1 0.7 0.0 0.6 0.7

WSM 20.5 20.1 18.0 20.6 29.8 27.4

Nbl063 Newl012

MC 0.0 0.0 0.0 0.0 0.0 0.0

OCT 41.2 48.2 46.7 37.8 42.2 43.8

WAN 0.0 0.2 0.2 0.2 0.1 0.3

WU 0.3 0.5 0.7 0.6 0.7 1.5

CC 6.0 7.6 8.6 5.5 7.4 7.2

SOM 20.3 31.8 39.7 25.2 36.6 41.0

RWM 4.7 5.8 6.4 4.3 6.4 7.9

MMM 24.8 31.0 32.9 23.7 27.1 28.3

SAM 0.2 0.5 0.9 0.4 0.6 0.4

CY 4.8 6.4 7.3 5.0 5.4 8.7

ADU 0.1 0.7 0.7 0.2 0.7 1.0

WSM 15.1 18.8 24.3 20.1 20.0 21.1

Nml012 Nml024

MC 0.0 0.0 0.0 0.0 0.0 0.0

OCT 40.4 41.3 47.2 47.0 52.1 54.8

WAN 0.1 0.2 0.4 0.2 0.2 0.5

WU 0.7 1.2 1.3 0.9 1.2 0.8

CC 4.8 7.8 8.4 7.5 9.8 11.3

SOM 21.8 33.1 40.1 22.0 35.2 40.2

RWM 4.8 5.6 6.0 5.9 8.8 11.6

MMM 19.7 20.8 21.0 41.5 44.0 46.3

SAM 0.3 0.8 0.5 0.5 0.5 0.6

CY 5.1 5.9 6.2 6.3 9.5 9.4

ADU 0.3 0.5 1.0 0.3 0.6 0.9

WSM 20.0 16.5 20.3 21.0 24.5 24.5
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Fig. 2 Ael484 quantized to K = 4 colors
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Fig. 3 Nml012 quantized to K = 6 colors
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Fig. 4 Nml024 quantized to K = 8 colors
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levels used, WSM performs exceptionally well in allocating representative colors to
various regions of the images.

4 Conclusions and Future Work

In this paper, we investigated the applicability of a recently proposed k-means based
CQ method to dermoscopy image quantization. This method improves upon the
conventional k-means based CQ method by using data reduction, sample weighting,
accelerated nearest neighbor search, and deterministic cluster center initialization.
Extensive experiments on a diverse set of dermoscopy images demonstrated that the
proposed method outperforms state-of-the-art quantization methods with respect to
distortion minimization. Other advantages of the presented method include ease of
implementation, very high computational speed, and the possibility of incorporating
spatial information into the quantization procedure.

The proposed method can be readily utilized to improve color based similarity
retrieval of dermoscopy images. It can also be used to facilitate the detection of
skin lesion borders by simplifying the images prior to segmentation. The presence
of multiple colors (white, red, light brown, dark brown, blue-gray, and black) in
a skin lesion is a highly significant feature of invasive melanoma. Melanomas are
usually characterized by three or more colors, and in about 40% of them even five
or six colors are present [2]. Our method can be combined with a suitable cluster
validity measure to determine the number of dominant colors in a skin lesion, which
is potentially useful for diagnostic purposes.
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Abstract Current computer-aided diagnosis (CAD) systems tend to neglect the de-
tection and grading of Diabetic Macular Edema (DME) signs. This chapter intro-
duces a new computer based scheme for detecting and grading DME signs using
color eye fundus images. The grading scheme integrates methods for: (a) detect-
ing retinal structures (e.g. optic disk and fovea); (b) detecting lesions in the retina
(e.g. exudates); (c) analyzing the spatial distribution of DME signs in the retina; and
(d) grading the severity of a DME case as absent, mild, moderate or severe. In a pre-
liminary experimental evaluation of our DME grading scheme using publicly avail-
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able eye fundus images (i.e., DIARETDB1 image database), an accuracy of 94.29 %
was obtained with respect to the mode of the evaluations of the same DME cases
by four experts. This is encouraging, since a similar DME grading performance is
achieved by a DME expert. In order to calculate the clinicians grading performance,
we assumed the mode of all experts DME gradings as the reference evaluation for
each case. Thus, if an expert assigned each DME case to the class identified as the
mode of the experts severity gradings, that expert achieved an accuracy of 100 %.

1 Introduction

DME has three severity levels [2, 22], namely: (1) DME mild; (2) DME moderate;
(3) DME severe. Mild DME is usually characterized by retinal thickening or hard
exudates occurring far from the macula center. Moderate DME is characterized by
the occurrence of retinal thickening or by hard exudates in the neighborhood of
the macula center. Finally, severe DME presents retinal thickening or hard exudates
near the macula center. Exudates are aggregates of leaked fatty material, formed by
the precipitation of blood products (e.g. lipids and protein) in the retina, choroid
or optic disk, and often appear as bright yellow lesions in eye fundus images. The
detection of hard exudates provides insufficient information to grade the Diabetic
Macular Edema (DME), since the spatial distribution of the exudates with respect
to the macula center is very important. The macula center is very important in terms
of visual acuity because it is densely populated by cones, the color receptors of the
visual system. For instance, exudates covering a larger area, but far from the macula
center can be the less harmful to the patient visual acuity than exudates covering a
smaller area near the macula center [10]. The further away from the macular region,
less severe is the Diabetic Macular Edema.

In most eye fundus images, the macula appears as the darker image region, and
its central portion is called the fovea. Physically, the fovea is a circle with of approx-
imately 0.25 mm of diameter [17], and its center is located on the temporal side of
the optic nerve, at a number of optic disk diameters from the optic disk center [10]
(e.g. 2 disk diameters). The temporal side is the side opposite to the optic disk (e.g.
if the optic disk is in the left side, the temporal side is in the right side). Thus, optic
disk parameters (like its diameter) are important for detecting other retinal struc-
tures, such as the fovea. Moreover, the detecting the optic disk helps to avoid the
detection of exudate false positives (i.e. since the optic disk may be bright yellow
and can be confused with exudates). Figure 1 illustrates a typical fundus image, and
some important retinal features, like the fovea, the blood vessels arcade, the optic
disk and exudate lesions. Therefore, grading the Diabetic Macular Edema in color
eye fundus images can be done efficiently if the optic disk and the fovea are located
first, and then the spatial distribution of the exudates is evaluated around the fovea
center (see Fig. 1).

In this chapter, we present a computer-aided scheme for grading the Diabetic
Macular Edema. As proposed by Lalonde et al. [15], our scheme has two main steps,
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Fig. 1 Main features and
exudate lesions on a typical
truecolor red-green-blue
(RGB) fundus image

namely: (1) detection of retina structures and lesion signs; and (2) evaluation of le-
sions signs. These steps are detailed in the next sections. This work is organized as
follows. Recent advances in computer-aided diagnosis (CAD) and related systems
are discussed in Sect. 2. Section 3 describes the data used to evaluate the compo-
nents of our grading scheme, and details our DME grading scheme in Sect. 3.1.
Experimental results are presented and discussed in Sect. 4, and our conclusions
and ideas for future work are presented in Sect. 5.

2 Related Work

Hayashi et al. [6] presented a CAD system to detect vessel tree abnormalities on eye
fundus images, without focusing on DME issues. Goh et al. [5] proposed a diabetic
retinal image screening system for classifying retinas as normal/abnormal. Their
system detects the optic disk, exudates and retina vessels, but it can not detect the
fovea or grade DME cases. Lalonde et al. [9], proposed a system for automatically
detecting retinal lesions (e.g. microaneurysms and exudates) and other anatomical
structures (e.g. optic disk and macula). Their system can register fundus images, but
it was not designed to account for the spatial distribution of exudates near the fovea
center, consequently it is not able to grade DME. Simandjuntak et al. [15] designed
a CAD system for detecting structures like the optic disk, macula, blood vessels
and microaneurysms. Their ultimate goal is to detect diabetic retinopathies in their
early stages based only on the detected microaneurysms. However, they are not
concerned with DME, since the detection of exudate lesions and their distribution
around the fovea center are not computed. Yen et al. [23] proposed to grade diabetic
retinopathies on fundus images using a hybrid intelligent system to detect the signs
of non proliferative diabetic retinopathies (NPDR). Nevertheless, their method can
not evaluate DME and its evolution.

Li et al. [10] proposed methods for the automatic detection of features in retinal
images. First, they detect the optic disk using principal components analysis (PCA),
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Table 1 Some major features of the proposed method and of other CAD schemes available in the
literature

Methods Provides the
detection
of anatomical
structures
in the retina

Provides the
detection
of lesions signs
in the retina

Provides
an analysis
of the lesion
distribution

Able to
grade
DME
cases

Hayashi et al. [6] Yes No No No

Goh et al. [5] Yes Yes No No

Lalonde et al. [9] Yes Yes No No

Simandjuntak et al. [15] Yes Yes No No

Yen et al. [23] Yes Yes No No

Li et al. [10] Yes Yes Yes No

Walter et al. [18] Yes Yes No No

Sopharak et al. [16] Yes Yes No No

Our proposed method Yes Yes Yes Yes

and then they define the fovea region as a circle located a number of optic disk
diameters away from the optic disk center, in the temporal side of the optic disk.
Although they presented an analysis of the spatial distribution of exudates around
the fovea center, they did not show an extensive evaluation of their method, neither
how to use it for grading DME.

CAD system based on mathematical morphology also have been proposed for
different applications. Walter et al. [18] proposed a method based on a sliding win-
dow to detect exudates. First, a morphological closing operator is used to remove
the retinal vessels, and then a sliding window returns the local gray level variability
in the vicinity of each pixel, which is used to detect exudate candidates. Afterwards,
morphological reconstruction is used to detect the exudate lesions more accurately.
All exudates in the optic disk region are eliminated to reduce false positives, since
both, the exudates and the optic disk, can have similar brightness and shape. How-
ever, Walter et al. method do not consider the spatial distribution of exudates around
the macula center, consequently DME grading is not performed. Also, Sopharak et
al. [16] proposed a method similar to the approach of Walter et al. [18]. First, they
segment and exclude the optic disk to avoid false positives. Afterwards, they de-
tect exudate lesions. Their method for detecting exudates is based on morphological
operations and the local variability image. Their approach also detects the macular
region in order to describe the distribution of the exudates around the macula center.
However, the analysis of the distribution of exudate lesions around the fovea center
was not presented. Table 1 summarizes the major features of the proposed method
and of other CAD systems available in the literature.

In this chapter, we present our grading scheme for detecting and grading signs of
Diabetic Macular Edema (DME) in color eye fundus images. Since we did not find
other approaches focused specifically on this theme, we believe that our contribution
innovates in this area.
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3 Materials and Methods

We used in our experiments 89 color eye fundus images of the DIARETDB1 [8].
The DIARETDB1 database is available on the WEB, and consists of a total of 89
color eye fundus images of 1500 × 1152 pixels at 24 bit RGB, captured using a 50◦
field-of-view digital fundus camera. In the DIARETDB1 database, there are 47 reti-
nal images containing hard exudates, and 42 without hard exudates lesions. These
images vary in quality (i.e. uneven background illumination). In some cases, images
without hard exudates contain signs of another lesions such as microaneurysms and
hemorrhages [8].

However, it shall be observed that two types of references were used in this work
(i.e. ground truth), namely: (1) reference images for the retinal structures and le-
sions; and (2) references for the Diabetic Macular Edema stages. In the first case,
each image was marked by four ophthalmologists. Afterwards, the mean contour
(i.e. the average contour of the marked retinal structures and lesions signs) was cal-
culated for each image of DIARETDB1, and then it was used as a ground truth
image. In the second case, the Diabetic Macular Edema stage of each DIARETDB1
image was evaluated by four ophthalmologists. Afterwards, for each DIARETDB1
image, the Diabetic Macular Edema stage most frequently diagnosed by the experts
was computed (i.e. the mode of the DME stage diagnoses). Next, the mode of the
Diabetic Macular Edema stage evaluations for each DIARETDB1 image was used
as the reference (i.e. ground truth), and the experts evaluation performances are cal-
culated with respect to this reference.

3.1 The Computer-Aided DME Grading Scheme

The grading scheme has two steps namely: (1) Detection of retina structures and
lesion signs; (2) Prescreening of lesions signs. In the following sections we describe
in detail all methods comprising each step.

3.2 Detection of Retina Structures and Lesion Signs

In this section, we detail our automated methods developed for detecting: (a) optic
disk (see Sect. 3.2.1); (b) fovea center (see Sect. 3.2.2); and exudate lesions (see
Sect. 3.2.3).

3.2.1 Detecting the Optic Disk

The optic disk appears as a bright yellow region, similar to exudates. Therefore, we
first detect the optic disk and prevent detecting false positive exudate lesions. Also,
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we try to detect the optic disk rim accurately since the estimated optic disk diameter
allows to detect other retina structures, like the fovea center. For example, the fovea
region can be located a number of optic disk diameters away from the optic disk
center, in the temporal side of the optic disk [10]. Figure 2(a) depicts the input to
our method, and Fig. 2(g) illustrates the output, that is, an image whose optic disk
rim was automatically delimited. Thus, using this image we can find the optic disk
center and the optic disk diameter accurately.

We developed a method that is adaptive to the local image intensity, for detecting
the optic disk position and the optic disk rim [19]. Our method improves on other
methods presented in the literature in terms of the accuracy of the optic disk rim
detection, while it is not negatively influenced by the outgoing vessels confluence
in the optic disk (a common difficulty in other methods [18]). In order to find the
optic disk rim, we use the Watershed Transform from Markers [19]. Thus, we need
to select internal and external markers to locate the optic disk boundaries (i.e. rim).
In our method, we use several points situated inside the optic disk as internal mark-
ers. As external markers, we use several circles of constant diameter, centered at
each previous selected internal marker. Then, using the Watershed Transform from
Markers and the internal and external markers as parameters, several contour shapes
are obtained. At last, we select the contour shape with the highest compactness and
largest area to be the optic disk rim (see [19] for more details). In addition, in our
work, the optic disk contour of each image has been labeled by four ophthalmolo-
gists as suggested in [11]. Figure 2(b)–(e) shows four ground truth images labeled
by four ophthalmologists. Afterwards, the mean labeled contour was calculated, and
then it was used as ground truth (see Fig. 2(f)). It shall be observed that color infor-
mation in the eye fundus images contributes greatly to the identification of details
in these images more accurately. According to our experts, color images are sig-
nificantly better than grayscale images, and color information facilitates the image
visual analysis.

3.2.2 Detecting the Fovea Center

We developed a new morphological approach for detecting the fovea center [20].
Our method relies on the existing spatial relationship between the optic disk and the
macula to select a ROI (Region of Interest) in the green channel of the original color
eye fundus image (see Fig. 3). Within this ROI, we detect fovea candidate regions
using specific morphological filters. Afterwards, well known anatomical attributes
of the fovea are used to validate its center location (e.g. the center of the darker
candidate regions, located below the optic disk center, are selected). Figure 4 shows
the main steps of our fovea center detection approach.

As illustrated in Fig. 5, our method identifies the fovea center as a pixel, and this
method was validated on two publicly available databases of retinal images [20].
The fovea center detection accuracy is measured as the distance (in pixels) between
the detected fovea center and the hand-labeled fovea center. In our experiments, we
considered correct the detected fovea center that is distant no more than 50 pixels
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Fig. 2 (a) Color eye fundus image with exudates around the fovea center. (b)–(e) Shows four
ground truth images labeled by four ophthalmologists (i.e. the optic disk were manually segmented
by four ophthalmologists). (f) The mean labeled contour used as ground truth. (g) Detected optic
disk rim on an image containing diabetic lesions
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Fig. 3 Color eye fundus
image with the optic disk
center point and the fovea
candidate region identified at
2.6 DD (disk diameter (DD),
in this case, is equal to
68.9143 pixels)

from the ground truth (manually identified), as proposed by Niemeijer et al. [13].
Figure 5 shows the detected fovea center marked as a white dot superimposed on an
original color eye fundus image of the DIARETDB1 database. Our method tends
to be robust to artifacts near the fovea region, such as exudates, microaneurysms
and microhemorrhages. The quantitative analysis using the Euclidean Distance and
ground truth eye fundus images, indicate that our method tends to detect the fovea
center more accurately than comparable approaches available in the literature. How-
ever, in the presence of large hemorrhages, our method may fail. The morphological
filter used to remove the hemorrhages was able to remove small opaque lesions only,
failing in the presence of large hemorrhages (see [20] for more details).

3.2.3 Detecting Exudate Lesions

The occurrence of exudate lesions near the central macular region may be the cause
of severe visual loss. Therefore, the detection of exudate lesions and their proximity
to the central macular region is essential for grading the Diabetic Macular Edema
automatically. Our approach to detect exudates relies on mathematical morphology
techniques and comprises three stages [21], namely: (a) preprocessing stage to ad-
just uneven illumination of the input image; (b) detection of exudates; and (c) post
processing stage, to improve the exudates detection. All existing hard exudates on
the images of DIARETDB1 database have been hand-labeled by experts, and then
these hand-labeled images were taken as reference images (i.e. ground truth images)
to validate our approach (see details in [21]).

Algorithm 1 describes the tree stages of our exudates lesion method. Lines 1 to 4
of Algorithm 1 describe the first stage. Lines 5 to 8 describe the second stage, and
line 9 to 13 describe the third stage of our grading scheme. Briefly, f1 represents
a background approximation of the L channel, and it is found by using alternating
sequential filters of grayscale opening (i.e. γ ) and grayscale closing (i.e. φ), where
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Fig. 4 (a) A region of
interest (ROI), of 160 × 160
pixels at 2.6 DD pixels of
distance away from the optic
disk center. This ROI was
selected using the green
channel of the original color
eye fundus image. (b) ROI
Image without signs of bright
lesions (e.g. exudate lesions).
(c) ROI image without small
basins (e.g.
microhemorrhages).
(d) Fovea candidate regions.
(e) Only candidate regions
below the optic disk center
point remain. (f) Selected
region for the fovea. The
centroid of this selected
region is taken as the fovea
center

B is a fat, diamond-shaped, structuring element. We used in this work a diamond-
shaped structuring element with a side of 80 pixels. This value represents the dis-
tance from the origin of this structuring element to the edge, and was obtained based
on experiments. f2 represents an image without the smooth intensity variations of
the background. The image f3 results from the removal of all connected basins from
image f2 using the morphologic h-minima filter. f4 is an image that contains the set
of all regional maxima, RMAX, of the image f3. Then, in order to detect the exu-
dates candidate regions, an elementary dilation (i.e. δ) is performed on the image f4.
Afterwards, we invert all the previously dilated regions to obtain the marker image
f5(x, y) (where fg(x, y) represents the green channel, of the original DIARETDB1
color image). B is a diamond-shaped structuring element, with a fixed radius 3. In
the second stage, we find preliminary exudate lesion candidates by the following
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Fig. 5 Detected fovea center
superimposed on the original
color eye fundus image

Algorithm 1: Pseudo code to find exudate lesions using our tree steps ap-
proach [21]

Input: Color eye fundus image (RGB).
Output: Detected exudate lesions.
Convert the original RGB color image to L*u*v*;1
Select the lightness scale, L as the input image;2
f1 = ((((L∗ γ B) φ B) · · · γ nB) φ nB);3
f2 = L∗ − f1 + k;4
f3 = hmin(f2) = R∗

f2(f2 + h);5

f4 = RMAX(f3) = f3 + 1 − Rf3+1(f3);6

f5(x, y) =
{

0, if δ(B)(f4(x, y)) = 1,

fg(x, y), if δ(B)(f4(x, y)) = 0;7

f6(x, y) =
{

0, if (fg − Rfg (f5)) ≤ λ,

1, if (fg − Rfg (f5)) > λ;8

f7 = the binary image containing the vessel network;9
f8 = f6 − f7;10
f9 = fg + γT H (fg) − φT H (fg);11

f10(x, y) =
{

0, if δ(B)(f8(x, y)) = 1,

f9(x, y), if δ(B)(f8(x, y)) = 0;12

f11(x, y) =
{

0, if (f9 − Rf9(f10)) ≤ λ,

1, if (f9 − Rf9(f10)) > λ;13

steps. First, obtain a morphological reconstruction by dilation using the green chan-
nel fg as a mask image and f5 as the marker image. Afterwards, we subtract the
previously reconstructed image from the fg image. Finally, we segment the exudate
lesions using a thresholding algorithm, and a new binary image f6 is obtained. The
vascular tree appears in the foreground of image f7, and this vascular tree is seg-
mented using the method described in [19]. False positives (i.e. artifacts similar to
exudates) appear in f6, and after refining these estimates by removing unlikely exu-
date estimates we obtain f8, which contains the (new) refined exudates candidate re-
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Fig. 6 (a) Original DIARETDB1 color eye fundus image. (b) Green channel of the original DI-
ARETDB1 color eye fundus image. (c) L*u*v* color space of the original DIARETDB1 color eye
fundus image. (d) L channel from L*u*v* color space

gions. f9 in the line 11 of Algorithm 1 is an image morphologically enhanced, where
γT H and φT H denote the morphological top-hat by opening and the morphological
top-hat by closing operators, respectively. Moreover, we use a non-flat structuring
element (i.e. B) with the shape of an ellipsoid to achieve our enhancement results.
The radius of this structuring element was set to 12 pixels, and the reference height
to gray level 50. Now, using the images f8 and f9, we can find the last marker image
f10, and the exudates are finally detected as shown in line 13 of Algorithm 1 (λ = 5
is all our experiments and B is a diamond-shaped structuring element, with a fixed
radius 3). To implement the Algorithm 1, we used the MMORPH library [3]. See
Ref. [21] for more details.

As described in Algorithm 1, was used L*u*v* color space to perform the first
stages of our exudates lesion method. More precisely, we use the lightness L of the
perceptually uniform L*u*v* color space in the first detection stage. It was observed
that intensity fluctuations in the L channel are smaller than in the RGB channels [7].
Since we use global intensity information of the image, and such information appear
to be less affected by illumination variation and noise in the L channel, we work with
the L channel information to find the exudates. Figure 6(c) shows the L*u*v* color
space of the original DIARETDB1 color eye fundus image (Fig. 6(a)). In addition,
Fig. 6(d) illustrates the L channel from L*u*v* color space which presents less
intensity fluctuations than the green channel (Fig. 6(b)) (see [21] for more details).
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Table 2 Comparison of exudate detection methods (see [21] for more details)

Methods Retinal Images with Hard-Exudatesa

Average
sensitivity

Average
specificity

Average
predictive
value

Average
misclassified
proportion

Sopharak et al. [16] 43.48 % 99.31 % 25.48 % 0.68 %

Ravishankar et al. [14] 58.21 % 98.09 % 13.37 % 1.9 %

Walter et al. [18] 66.00 % 98.64 % 19.45 % 1.34 %

Our grading scheme method 72.21 % 98.97 % 21.65 % 1.0 %

Methods Retinal Images without Hard-Exudatesb

Average
sensitivity

Average
specificity

Average
predictive
value

Average
misclassified
proportion

Sopharak et al. [16] 99.28 % 0.71 %

Ravishankar et al. [14] 97.53 % 2.47 %

Walter et al. [18] 99.22 % 0.77 %

Our grading scheme method 99.40 % 0.6 %

aComprises 47 images of the DIARETDB1 database
bComprises 42 images of the DIARETDB1 database. The sensitivity and predictive value cannot
be calculated because all TP (True Positives) and FN (False Negatives) values in color eye fundus
images without exudates are equal to zero

Table 2 compares the grading scheme and other methods reported in the litera-
ture [21]. Our grading scheme achieved 72.21 % and 98.97 % of mean sensitivity
and mean specificity, respectively, on the 47 images with hard-exudates. A compar-
ison with other methods proposed in the literature is shown in Table 2, indicating
that our method significantly improves on the results obtained by the other meth-
ods. Our method was also applied on retinal images without exudates, achieving
a mean specificity of 99.40 % (i.e. the highest mean specificity value) and an av-
erage misclassified proportion of 0.6 % (i.e. the lowest misclassified proportion).
However, as indicated in Table 2, the best average predictive and the lowest mis-
classified proportion were achieved by Sopharak et al. [16] on the retinal images
with hard-exudates. Conversely, the method proposed by Sopharak et al. achieved
the worst average sensitivity on the DIARETDB1. Let us clarify that sensitivity is
the proportion (i.e. area in pixels) of true positives, TP, with respect to proportion
of false negative, FN, pixels (i.e. sensitivity = TP

(TP+FN)
). Specificity is the propor-

tion of true negative, TN, pixels with respect to the proportion of false positive,
FP, pixels (i.e. specificity = TN

(TN+FP)
). However, as exudates occupy a small pro-

portion of the whole image, specificity tends to be high, making it less meaningful.
So, besides presenting specificity value, we also show the predictive values (i.e.
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Fig. 7 (a) Detected exudates superimposed on an original DIARETDB1 color eye fundus image.
(b) Ground truth image

predictive value = TP
(TP+FP)

).1 Additionally, we show the misclassified proportion,
which is estimated as the proportion of pixels that are misclassified, or the propor-
tion of false positives in the image (i.e. misclassified proportion = FP

(TP+FP+FN+TN)
).

Figure 7 compares the result of our grading scheme for image #05 of the DI-
ARETDB1 database with the ground truth image. Figure 7(a) shows the exudate
lesions detected by our grading scheme (i.e. the detected exudates are depicted as
bright spots). Figure 7(b) shows the ground truth image.

3.3 Lesion Signs Prescreening

In this section, we present the methods that locate the retinal sectors in an eye fundus
image (see Sect. 3.3.1), and analyze the distribution of exudates in these retinal
sectors (see Sect. 3.3.2).

3.3.1 Identification of Retinal Sectors

The detection of exudates is not sufficient for grading the Diabetic Macular Edema
(DME) since the distribution of these exudates around the macula center also must
be considered. For example, an eye fundus image containing more exudates may
be associated to less harm to the patient visual condition than another eye fundus
image containing less exudates, because in this last case the exudates may be closer
to the macula center [10]. This exudates distribution is analyzed based on the retinal
sectors, as shown in Fig. 8. The retinal image in sub-divided in 10 subfields (reti-
nal sectors) [10, 16], namely: (1) Central; (2) Inner superior; (3) Inner temporal;
(4) Inner inferior; (5) Inner nasal; (6) Outer superior; (7) Outer temporal; (8) Outer

1Predictive value is the probability that a certain pixel really is in an exudate region [18].
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Fig. 8 Retinal sectors and its
10 subfields

inferior; (9) Outer nasal; (10) Far temporal subfield. These retinal sectors are cen-
tered at the fovea center, and the radii of the three fovea-centered circles are based
on the optic disk diameter. The radii of the smaller, middle and outer fovea-centered
circles are equal to 1

3 , 1 and 2 optic disk diameters, respectively [10].

3.3.2 Analyzing the Spatial Distribution of Exudate Lesions

The spatial distribution of exudates in an eye fundus image is analyzed based on the
retinal sectors (subfields). Exudates inside the central circle (subfield 1) and inside
of the inner circle (i.e. subfields 2–5), tend to affect more the patient visual acuity
than the exudates inside (or beyond) the outer circle [10, 16]. For example, an eye
fundus image showing several exudates located far from the macula center (e.g.
inside or outside subfields 6–10) may indicate a less severe DME case, compared
to another image showing fewer exudates near the macula center [10]. Figure 9(a)
illustrates a color eye fundus image where most lesions are located near the macula
center (inner superior and inner nasal subfield), indicating a severe DME case. On
the other hand, Fig. 9(b) illustrates a color eye fundus image where most exudate
lesions are located far from the macula center (outer temporal and far temporal
subfield), indicating a mild DME case.

In our approach, exudates prescreening generates a table (namely, severity table)
that describes the areas (in pixels) affected by exudates in the retina image subfields.
Table 3 illustrates the severity table for the image in Fig. 9(a), indicating that exu-
dates occur in 765 pixels in different subfields. In this example, there are exudate
lesions in the central subfield and in the inner circle, indicating a severe DME case.
The severity table may help grading DME cases, specially in the DME early stages
when its potential impact on the patient visual acuity still can be reduced.

A DME case can be classified in terms of the severity table information as: (a) ab-
sent; (b) mild; (c) moderate; or (d) severe. Unfortunately, the real world probability
density function (i.e. pdf ) of the data in these classes is unknown. In complex data
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Fig. 9 Two images of the DIARETDB1 database with the exudates automatically identified and
with the retinal sectors delimited. (a) Depict the image #03 of the DIARETDB1 database contain-
ing exudates in the central subfield, inner superior subfield, inner nasal subfield, inner temporal
subfield, outer superior subfield and outer temporal subfield. (b) Depict the image #06 of DI-
ARETDB1 database containing exudates far from the fovea, i.e. in the outer temporal subfield, far
temporal subfield and in the outer superior subfield

Table 3 Location of
exudates in Fig. 9(a), (b) Region Central Inner

Superior Nasal Inferior Temporal

Area 80 281 242 Absence 56

Region Outer Far Temporal

Superior Nasal Inferior Temporal

Area 99 Absence Absence 8 Absence

Total area 765 pixels

Level DME severe

sets with intricate data relations (like in DME cases), large data sets are required
to accurately estimate this pdf. Nevertheless, since each case corresponds to one
patient, and the availability of patients in ophthalmology services is limited, the
number of eye fundus images with DME signs often is too small for reliable pdf
estimates. Therefore, in this work, we overcome this practical difficulty using the
smoothed bootstrap approach,2 where the statistical significance of the sample set
is improved in each class by randomly re-sampling the original data to artificially
produce another sample set, expanded maintaining a similar random structure. We
approximate the unknown pdf s asymptotically, as the sample set is increased [4].

In order to determine the decision boundaries between the different classes (i.e.
thresholds), the Classification and Regression Tree (CART) [1] method is used (the
parameters are detailed in Sect. 4). The original data may be correlated, with ad-
verse effects on the inter-class separability and the classification accuracy, and the

2Details of the smoothed bootstrap technique can be found in [4].
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obtained data by bootstrapping the severity table data maintains a similar random
structure. Therefore, CART was in fact used on a transformed data space, as detailed
next.

Given a set of data samples A, the similarity matrix may be defined as a matrix S,
where Sij represents a similarity measure3 between data samples xi,xj ∈ A. We ap-
ply a data clustering technique (i.e. CART) on the similarity matrix S spectrum to
perform clustering in fewer dimensions, reducing the need for very large data sets
to obtain data statistical significance. Also, the data tends to be less correlated and
the inter-class separability often is improved in this spectral space. As proposed by
Meila and Shi [12], we take the eigenvectors corresponding to the k′ largest eigen-
values of the matrix P = SD−1, where D is the diagonal matrix Dii = ∑

j Sij ,
and then cluster samples by their respective k′ components in these eigenvectors. It
is recommended that data is equally distributed among the 4 classes [12], therefore
1000 smoothed bootstrap data samples were generated for each DME severity class,
summing up to 4000 data samples in total (all classes). These 4000 smoothed boot-
strap data samples are clustered in the 4 DME severity classes by: (1) computing
P from S, and its eigenvalues/vectors; (2) selecting the largest k′ eigenvalues and
their corresponding eigenvectors; (3) performing CART clustering into 4 classes by
projecting the data samples x in the k = k′ − 1 dimensional space defined by the
rows of [x2, . . . , x

′
k]. The inter-class boundaries are the thresholds found by CART.

4 Experimental Results

Our grading scheme was trained using smoothed bootstrap samples (see Sect. 3.3.2),
and 35 DIARETDB1 color eye fundus images not in the training set were used for
testing. The spectral space formed by k = 3 largest eigenvalues of the similarity
matrix S produced the best results in our experiments, and was chosen to report
our results. The 35 eye fundus images were screened by four retina experts and by
our grading scheme, and the results are summarized in Table 4. Comparing with
the mode of the experts classification (i.e. the class most voted by the experts in
each case screened), our scheme graded incorrectly 2 DME cases (i.e. two false
negatives were produced by our grading scheme, since in these two cases DME was
misclassified as absent), obtaining an accuracy of 94.29 % in our experiments.

Confusion matrices were calculated for the four retina experts and for our grading
scheme. Taking as a reference the mode of the DME grading done by the experts,
the four experts obtained accuracies of 71.43 %, 94.29 %, 80 %, and 85.71 %, re-
spectively, and their average accuracy was 82.86 %. Therefore, in our experiments
our DME grading scheme obtained the same accuracy as Expert#2 (the most ex-
perienced among the experts), and a higher accuracy than the average of the four
experts.

3Sij = ed(i,j)/σ , where d(i, j) is the Euclidean distance between the data samples xi and xj, and σ

is a constant.
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Table 4 Comparison of the DME severity level grading by our grading scheme and four retina
experts, using 35 DIARETDB1 color eye fundus images with DME signs

Severity level (manually assigned) Severity level

Expert#1 Expert#2 Expert#3 Expert#4 Mode Our grading scheme

image#01 moderate moderate moderate moderate moderate moderate

image#02 moderate moderate mild moderate moderate moderate

image#03 moderate moderate mild severe moderate moderate

image#04 severe severe severe severe severe severe

image#05 severe severe severe severe severe severe

image#06 mild mild absent mild mild mild

image#07 severe moderate moderate moderate moderate moderate

image#08 moderate moderate mild moderate moderate moderate

image#09 moderate moderate moderate severe moderate moderate

image#12 moderate moderate severe moderate moderate moderate

image#13 moderate moderate moderate moderate moderate moderate

image#14 moderate moderate moderate moderate moderate moderate

image#15 moderate moderate severe severe severe severe

image#16 moderate severe moderate severe severe severe

image#17 mild mild mild mild mild mild

image#18 moderate mild mild mild mild mild

image#19 severe severe severe severe severe severe

image#20 mild mild mild moderate mild mild

image#21 absent mild mild mild mild mild

image#24 moderate moderate moderate moderate moderate moderate

image#25 moderate moderate severe severe severe severe

image#26 mild mild mild mild mild mild

image#35 mild moderate moderate moderate moderate absent

image#38 mild moderate moderate moderate moderate moderate

image#49 absent absent absent absent absent absent

image#50 absent absent absent absent absent absent

image#51 absent absent absent absent absent absent

image#53 mild moderate moderate severe moderate moderate

image#58 absent absent absent absent absent absent

image#60 absent absent absent absent absent absent

image#62 absent absent absent absent absent absent

image#66 moderate moderate mild moderate moderate moderate

image#75 absent absent absent absent absent absent

image#84 moderate moderate moderate severe moderate absent

image#86 moderate absent absent absent absent absent

Accuracy 71.43 % 94.29 % 80 % 85.71 % 94.29 %
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5 Conclusions and Future Trends

The growing amount of medical information (e.g. the vast amount of existing med-
ical imaging modalities) requires the use of computer-aided diagnosis systems. For
instance, when the computer-aided diagnosis systems are used in clinical practice,
the patient care can be more efficient. Moreover, the same computer-aided system
can be used in the training of future medical specialists. However, it is important to
note that the automatic diagnostic methods may fail, and therefore can not be used
for clinical practice in an isolated way. These methods should be seen as a decision
support system and their use should always be assisted by an expert. In this chap-
ter, we present a scheme for detecting and grading Diabetic Macular Edema (DME)
signs in color eye fundus images. Our DME grading scheme detects retina struc-
tures and lesion signs, and then classifies the lesions signs spatial distribution in the
retina image subfields. The output of our DME grading scheme is a severity table
and an estimated severity level, which may help in the objective evaluation of the
potential impact of DME on the patient visual acuity. Our preliminary experimental
results are promising, since our grading scheme potentially can grade automatically
DME cases with a performance similar to an expert. Future work will concentrate
on an extensive clinical evaluation of our grading scheme, and on investigating the
application of the proposed DME grading scheme in telemedicine.
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Colour Image Analysis of Wireless Capsule
Endoscopy Video: A Review

Mark Fisher and Michal Mackiewicz

Abstract Wireless capsule endoscopy (CE) has been available since 2001 and is
now established as one of the principal approaches used to examine the small bowel,
with a range of devices available from four manufacturers. But although its use is
widespread the reading of CE videos remains an arduous and time consuming ex-
ercise for gastroenterologists because relevant frames which are of interest to the
physician constitute only about 1 % of the video. CE exam viewing times vary from
40–90 minutes, depending on the clinician’s experience, the complexity of the case
and the small bowel transit time. Colour image analysis has been applied by man-
ufacturers to speed up this process, for example, Given Imaging’s Rapid Reader
Software includes a suspected blood indicator (SBI) designed to detect bleeding in
the video. However, some evaluations of this tool reported concerns with regard
to its specificity and sensitivity and so it does not free the specialist from review-
ing the entire footage and can only be used as a fast screening aid. Over the past
decade a number of papers have proposed a range of colour image processing and
computer vision applications to assist the gastroenterologist in the analysis of CE
video. These techniques can be divided into three categories, the first considers the
topographic segmentation of CE video into meaningful parts such as mouth, oe-
sophagus, stomach, small intestine, and colon. The second involves the detection of
clinically significant video events (both abnormal and normal) and the third attempts
to adaptively adjust the video viewing speed. This chapter reviews this research fo-
cusing particularly on the role of colour and texture descriptors and concludes by
suggesting possible future directions for CE analysis.
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1 Introduction

Wireless Capsule Endoscopy (CE) is a non-invasive clinical procedure allowing the
entire Gastrointestinal (GI) tract to be examined using a small encapsulated CMOS
camera. The development of this system was heralded in 2000 [1] and the first com-
mercial system was available from Given Imaging Ltd. following FDA (American
Food and Drug Administration) clearance in August 2001. The system, initially mar-
keted as M2A but later rebranded PillCam SB (SB denoting Small Bowel), consists
of a small (11 mm × 26 mm) capsule, an associated data-recorder belt and appli-
cation software. The disposable capsule is swallowed and propelled through the GI
tract by peristalsis before being expelled naturally. A transparent optical dome at one
end of the capsule contains an array of six white light emitting diodes which sur-
round a camera designed to capture two (256 × 256) colour images a second. The
images are compressed by JPEG and transmitted using radiotelemetry to the data
recorder which is worn by the patient on a belt. Analysis of the RF signal received
by an array of aerials fixed to the patient’s body allows the position of the capsule
to be determined and its trajectory to be logged. Two silver-oxide batteries located
at the other end of the capsule enable the camera to operate for about 8 hours, af-
ter such time the belt is removed for analysis. A software application called Rapid
Reader allows the stored data (approximately 50,000 images) to be downloaded to a
PC workstation for analysis. The clinical procedure is simple. The patient is advised
to fast overnight and in some cases a drug which prepares the bowel and reduces GI
transit time is administered. On the following morning, antennas are attached to the
patient and connected to the data recorder, which is worn on a belt. The physician
removes the capsule from its holder and performs a visual check to confirm it is op-
erational before it is ingested by the patient. Once the capsule has been swallowed
the patient is free to undertake normal tasks (subject to certain limitations), returning
to hospital after a period of 8 hours has elapsed.

In 2004 Given Imaging launched a second product called PillCam ESO, incor-
porating two CMOS cameras (one positioned at each end of the capsule) operating
at a higher frame rate designed to target oesophageal disease. PillCam COLON,
launched in 2006, represents another specialization of the concept, optimized for
colon examinations. PillCam COLON also employs two cameras but after activa-
tion the capsule enters a sleep mode for two hours (allowing it to reach the colon)
before resuming image transmission. In 2005 Olympus launched a system called
EndoCapsule with similar functionality to PillCam SB. EndoCapsule uses a CCD
camera system equipped with automatic brightness control (ABC) to provide auto-
matic illumination adjustment designed to deliver higher resolution images of con-
sistent quality. A unique feature of EndoCapsule is a real-time viewer which allows
the clinician to observe images as they are captured in addition to reviewing the
video using the more usual off-line analysis tool (EndoView). Given responded in
2007 by launching PillCam SB 2 a second-generation product with a superior spec-
ification and additional features designed to improve workflow. Subsequent second
generation versions denoted PillCam ESO 2 and PillCam COLON 2 followed. Since
2007, capsules called MicroCam developed by IntroMedic and a Chinese competi-
tor called OMOM (jinshangroup.com) have become available. The stream of images
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Fig. 1 Rapid Reader v4
(Given Imaging)

Fig. 2 EndoView (Olympus)

captured by the data recorder are presented as a video (typically 30 mins) and ana-
lyzed by a trained clinician using application software supplied by the manufacturer
(e.g. Figs. 1 and 2).

The analysis software packages provided by different manufacturers comprise
tools designed to improve the workflow and reduce the time spent on the analy-
sis task (typically somewhere between 45–90 mins). In [2], the authors comment
that with the expected reduction in capsule prices, the time needed by a clinician
to analyse the exam may soon become the most expensive part of the procedure.
Thus, a reduction of this time would be a major benefit, provided the quality of the
diagnostic report was not reduced. The existing systems have user-friendly viewing
interfaces, but with few exceptions lack automated tools that would highlight places
of interest. Such tools could not only shorten the exam viewing time, but also im-
prove the quality of patient’s diagnosis by drawing attention to possible pathology,
which could have been missed by the clinician among many thousands of normal
frames. Incidentally, the manufacturers of the capsule try to reduce the video view-
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ing time using additional viewing controls e.g. double and quad views in the Rapid
Reader and EndoView software packages.

It is here where the computer vision can make a significant impact on the utility
of CE. Ultimately, we would want the computer to take over from the clinician in
stating the diagnosis allowing for a much cheaper screening technique. While this
is still a very remote possibility, the development of computer vision methods for
CE already allows or will soon allow for a significant aid in clinician’s diagnosis.
From segmenting CE video sequence into meaningful anatomical parts to detecting
bleeding and other possible pathologies, computer vision methods have matured
since the introduction of the first capsule a decade ago. The biggest challenge these
algorithms face is to prove themselves that they can be trusted in practice i.e. per-
form the designated task at least as accurately as clinicians and hence allow for their
wider adoption in clinical tools relieving clinicians from the burden of time con-
suming analysis. The ultimate bottom line measure here is the false negative ratio as
for example for the pathological video event detection task, the exam evaluated as
normal could skip manual inspection streamlining the population screening process.

The rest of this chapter reviews the computer vision research focusing partic-
ularly on the role of colour and texture descriptors and concludes by suggesting
possible future directions for CE analysis. The main subjects of research are to-
pographic video segmentation and filtering of non-informative frames, designed to
provide a focus of attention, and classifiers for bleeding and abnormality detection.
The following sections examine research in these areas, focusing in particular on
the way that colour information is used in these tasks.

1.1 Feature Extraction

The distribution of colours in an image provides a useful cue for image indexing
and object recognition. The colour distribution histogram is the most commonly
used method of representing image colour information [3]. It is relatively invariant
to image scale changes, translation and rotation about the viewing axis, and par-
tial occlusion. Colour is an effective cue in CE image analysis and a salient feature
of many proposed algorithms. Visually, the colour of the mouth is unsaturated, the
stomach pinkish; the small intestine pinkish to yellowish; and the colon also pinkish
to yellowish but often occluded by varying amounts of yellowish to greenish colour
caused by faecal contamination. Moreover, different pathologies have their own dis-
tinct colour signatures. For example, ulcerations often contain yellowish and white
colours surrounded by the overly reddish hues suggesting inflammation or bleeding.

CE video frames are stored as RGB triplets but very few researchers choose to
analyse the data in this form. Fox [4], Bourbakis et al. [5] and Hwang et al. [6] are
amongst a minority who extract colour features directly from RGB colour space.
The authors claim their blood classifier appears to outperform the SBI tool provided
by Given Imaging. Building on the work of Swain and Ballard [3], Berens [7] ex-
plored the scalability of colour indexing and extended their work by investigating
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Fig. 3 CE images acquired from (A) Mouth, (B) Stomach, (C) Small Intestine, (D) partially oc-
cluded Colon and (E) completely occluded Colon; and below their respective equalized HS his-
tograms. A visible shift in hue (vertical axis of the histogram) between the respective histograms
is clearly visible. From [13]

the choice of colour space, coding of color histograms and techniques to provide
invariance to illumination. Experiments undertaken by Berens [8, 9] showed that
RGB colour space is not the best choice for image classification and that other per-
ceptually relevant colour spaces such as HSI (Hue, Saturation, Intensity) produced
better classification results. Consequently, Mackiewicz, working with Berens and
Fisher, [10–13] also use HSI colour space, but due to the range of intensity variation
in CE images, arising as the distance between the capsule and the intestine sur-
face constantly varies, they ignore the intensity channel and favour HS histograms.
The range of colour present in CE images is relatively small, mapping to a region
covering just around 20 % of the possible HS colour space, so the histograms are
equalized within this subset of red to yellowish-green colours. Figure 3 shows typ-
ical CE images acquired from the mouth, stomach, intestine and colon regions, and
their respective HS histograms. It can be seen that the colour distribution of the
stomach is slightly shifted towards red, compared to that within the intestine. It is
also clear that the colour distribution of the colon tissue is highly similar to that of
the small intestine, when it is free of faecal contamination. However, colon images
are generally obscured by the presence of faecal contamination which has a distinct
hue-saturation signature.

Texture features can play an important role, particularly in topographic video
segmentation of CE video (Sect. 2). The most prominent texture pattern that distin-
guishes different organs are small finger-like projections called villi (responsible for
food absorption), visible in Fig. 3C. These are present in the small intestine, but not
in the neighbouring regions of stomach and colon. Mackiewicz et al. analyse tex-
ture by employing a 3D Local Binary Pattern (LBP) operator introduced by Connah
and Finlayson [14] which extends the concept originally conceived by Mäenpää and
Pietikäinen [15–17] who calculated 1D LBP histograms for the three colour chan-
nels independently. Because CE images are often obscured (to a varying degree) by
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Fig. 4 Grid of 28 sub-image
regions. From [13]

strong shadows, or by air bubbles and other artifacts such as mucus, bile, faeces,
food etc. histograms built using the entire image will contain any visual contami-
nation present in the image. To address this problem, some researchers extract only
those parts of the image which contain only non-occluded tissue. In this respect,
Mackiewicz divides each CE image frame into a grid of 28 sub-image regions ar-
ranged to cover most of the image area as shown in Fig. 4 and discards those regions
which do not meet certain conditions.

The criteria are based on testing five parameters: Mean Intensity, Saturation, Hue,
and Standard Deviation of Intensity and Hue against similar values derived from
visually clear images of gastrointestinal tissue. The remaining sub-images form a
so-called sub-image region (SubIR) that is used by the feature extraction process
described previously. Figure 5 shows eight typical images acquired in the stomach
and intestine showing only those sub-images selected by the procedure described
above.

Another key result of Berens’s work was that transform coding could be used
to efficiently represent colour histograms without degrading their indexing perfor-
mance [8, 18]. Mackiewicz applies this idea to colour histograms derived from CE
images using both DCT and PCA transforms in a two stage algorithm to reduce
the colour feature vector to just 8 values. Figure 6 shows the first three principal
components calculated using the Hybrid Transform (DCT followed by PCA) from
1000 HS histograms extracted from one CE video. Each dot on the graph represents
one histogram.

Jeongkyu Lee et al. [19] also address the problem of event boundary detection in
CE arguing that there is compelling evidence to suggest HSI provides strong features
that are highly correlated with topographic segments of the GI tract. Li et al. [20–
22] also adopt the HSI colour space but in a similar approach to Mackiewicz they
only use the HS components, summarizing this feature as a so called chromaticity
moment. Coimbra et al. [23–27] favour colour and texture descriptors drawn from
the MPEG-7 standard [28] and have evaluated these for detecting a variety of events
in CE video. In [25] they conclude that the MPEG-7 Scalable Colour (SC) and
Homogeneous Texture (HT) descriptors are the most adequate for the task of event
detection. The SC descriptor is derived from the colour histogram defined in the
HSI color space with fixed color space quantization of 16 bins. For compression,
this information is encoded using the Haar transform, allowing scalable representa-
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Fig. 5 CE images showing selected SubIRs. A–D Stomach; E–H Intestine. From [13]

Fig. 6 Three first principal
components representing
compressed histograms
extracted from four different
video regions. From [13]

tion of the description and complexity scalability of feature extraction and matching
procedures [29]. The HT descriptor encodes a precise statistical distribution of the
image texture as a vector of 62 integers coming from the Gabor filter response of 30
frequency channels quantized in 30◦ radial segments in 5 octave bands [30]. Duda et
al. [31, 32] also test MPEG-7 descriptors for CE image discrimination and conclude
that the HT descriptor is the most reliable and the colour descriptors all performed
similarly. They also selected HT and SC descriptors as features. In their work, Vi-
larino et al. [33–35] also surveyed a range of image descriptors and concluded that
intensity, color and texture are the most relevant visual cues when processing en-
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doscopic videos. However, since their focus is intestinal contractions they pursue a
sequence-based rather than a frame-based approach, focusing on variations in image
intensity.

All researchers use colour features as inputs, sometimes combined with other
cues derived from motion, to classify single images and image sequences drawn
from CE video. Applications fall broadly into three areas. Topographic video seg-
mentation, the detection of clinically significant abnormalities, and attempts to con-
trol the speed at which frames are delivered to the viewer. These are reviewed in
Sects. 2, 3 and 4.

2 Topographic Video Detection

The GI tract comprises mouth, oesophagus, stomach and duodenum (upper GI tract),
the jejunum, ileum, colon and rectum. Typically the capsule takes a few seconds to
pass through the oesophagus before reaching the esogastric junction and entering
the stomach. The capsule remains in the stomach typically 15 minutes but this pe-
riod might be extended to several hours before it passes through the pylorus (a valve
between the stomach and the small intestine). The capsule takes about four hours
to transit the small intestine before entering the colon. Three key landmarks are
the esogastric junction (between oesophagus and stomach), pylorus (between stom-
ach and small intestine), and ileocaecal valve (between small intestine and colon).
Annotating the esogastric junction is quite easy as the features inside the mouth, oe-
sophagus and stomach are quite different. Locating the pylorus in the video can be
difficult and time consuming, even for those experienced in this task, as the stomach
tissue near the pyloric valve and that of the small intestine are visually similar. The
ileocaecal valve which marks the entry to the colon is even more difficult to locate
as the tissue is often obscured by faecal material.

Topographic video segmentation considers the problem of segmenting the cap-
sule video into meaningful parts such as mouth, oesophagus, small intestine and
colon. Researchers have observed that the choice of the right features is probably
the most important issue in this segmentation task and most support the view that
image texture is an important cue. Mackiewicz and Coimbra classify single im-
ages based on information recovered from colour and texture descriptors (combined
with a motion descriptor) and use these results to classify image features into the
previously mentioned anatomical classes. Work by both Coimbra and Mackiewicz
concludes that using a Support Vector Classifier rather than a Bayesian approach
improves the results, which can then be used within a navigation tool and to esti-
mate the capsule Gastric and Intestinal Transit Times, which are important factors
in diagnosing certain medical conditions.

Mackiewicz investigates a number of recognition algorithms including various
linear and non-linear classifiers: Multivariate Gaussian, kNN and Support Vector
Classifier (SVC) to perform the actual video segmentation, i.e. label the transition
points between anatomical regions. He performs a number of experiments to test
his topographic segmentation approach using a data set comprising 76 annotated



Colour Image Analysis of Wireless Capsule Endoscopy Video: A Review 137

CE videos provided by clinical collaborators at the Norfolk and Norwich Univer-
sity Hospital. The videos were annotated by an experienced clinician and segmented
into meaningful parts: Entrance, Stomach, Intestine and Colon. The input feature set
comprised both colour features derived from both whole images and subIRs. Single
images are classified as Entrance/Stomach, Stomach/Intestine and Intestine/Colon.
In these experiments the HS histograms were quantized into 32 × 32 = 1024 bins
and LBP histograms were built using 8 sampling points to provide 7 unique pat-
terns, 21(3 × 7) bins for the independent 1D histogram and 343(73) for the joint 3D
histogram.

It is worth noting that the choice of anatomical regions to be segmented varied
between researchers. The most popular set was mouth/entrance; oesophagus; stom-
ach; small intestine and colon. However, Duda et al. attempted to classify the CE
images from only the upper part of the GI tract into a larger number of distinctive
regions. They chose six anatomical regions: (A) oesophagus, (B) cardia, (C) fun-
dus, (D) corpus of the stomach, (E) pylorus and (F) duodenal cap. They used Neural
Networks as the image feature classifiers. The authors reported only the classifica-
tion results and did not attempt to segment the actual videos. Lee et al. chose yet
another set of anatomical regions namely: oesophagus; stomach; duodenum and je-
junum; ileum; and colon. The idea for their algorithm is based on the fact that each
digestive organ has different patterns of intestinal contractions. The analysis of the
frequency functions associated to these patterns leads to the event boundaries which
indicate either entrance to the consecutive organ or unusual events in the same or-
gan, such as intestinal juices, bleeding, ulceration, and unusual capsule movements.
These events can then be classified and if necessary merged into higher level events
that represent digestive organs leading to a tree-like representation of the capsule
endoscopy topography. The authors report that the performance on ileum and colon
is worse than on the upper digestive organs which confirms the earlier findings re-
garding difficulties with locating the entrance to the colon reported by Mackiewicz
and Coimbra.

Some researchers have produced clinical demonstrator systems by combining
their classifiers within a search framework that allows the user to search and navigate
within and between topographic regions. Both Coimbra and Mackiewicz have found
a Hidden Markov Model (HMM) to be the best strategy for this purpose.

3 Detection of Clinically Significant Events

Another important research area involves the detection of clinically significant video
events (both abnormal and normal). Examples include physical abnormality (e.g. ul-
ceration, polyp, cancer), intestinal fluids, intestinal contractions and capsule reten-
tion. This category also includes bleeding, an area which has received considerable
focus in the literature and one that has been addressed by the manufacturers in their
proprietary software packages.

Blood detection is a focus for much of CE research, perhaps motivated by
early reports that questioned the performance of the SBI shipped with PillCam SB.
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Fig. 7 Bleeding detection system flow chart. From [13]

In [4, 6], the authors propose a new algorithm that they claim can detect bleeding ar-
eas in the capsule videos. The algorithm uses Expectation Maximization (EM) clus-
tering and Bayesian Information Criterion (BIC). The authors manually segmented
around 200 images into blood and non-blood regions. Then, they selected 16,000
bleeding and 45,000 non-bleeding pixels and modelled the colour distribution of
these regions using Gaussian mixtures in RGB colour space. A Bayesian decision
rule was used. The algorithm chooses those pixels x to be bleeding candidates for
which conditional probability p(x—bleeding) of a pixel x given by bleeding pixels
is significantly larger than conditional probability p(x—non-bleeding) of a pixel x

given by non-bleeding pixels; and also it is larger than a certain predefined threshold.
In the final step of the algorithm, the areas of bleeding regions are calculated and all
segmented regions containing less than 1,000 pixels are rejected. To test the results
of bleeding detection, the authors selected 15,222 capsule images of which 1,731
contained blood from three different videos. On this test set, the reported specificity
and sensitivity were 98,10 % and 92,55 % respectively.

Contrary to [4, 6], who use parametric bleeding colour distribution models,
Mackiewicz chooses a different method using the similar feature set as described
in the previous section [36]. A simplified flowchart of the bleeding detection system
is shown in Fig. 7. First, each pixel is classified as bleeding or non-bleeding using a
HSI model. Then, a region growing operation merges candidate pixels into regions
of at least 250 pixels. If a blood region is detected, associated colour and texture
features are extracted. These features are also extracted from the region surround-
ing the suspicious region. Then, after searching for specular highlights in order to
check if the frame contains air bubbles, these features are used to identify the frame
as containing suspicious regions. The images are classified using a Support Vec-
tor Classifier into three classes: Bleeding, Lesion/Abnormality or Normal, reporting
figures of 97 %, 92 % and 92 % respectively using on ten-fold cross validation with
a database comprising 84 full-length CE videos.
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Fig. 8 Two images
containing air bubbles with
specular highlights.
From [13]

Another idea for aiding capsule endoscopy video review involves removing non-
informative frames from the video sequence. Early detection of such regions is
highly beneficial since they can be removed from the sequence, before it is presented
to the clinician, resulting in a shortening of the reviewing time. Intestinal fluids are
one type of non-informative content. They appear as yellowish to brownish semi-
opaque turbid liquids often containing air-bubbles as well as other artifacts (Fig. 8).
Removal of such frames was first proposed by [34] who presented an algorithm
which detects areas in the WCE video comprising images completely obscured by
intestinal fluids. The authors observe that the most relevant feature of the intestinal
fluids is the presence of small bubbles of different sizes and quasi-circular shapes.
Their algorithm is based on texture analysis performed using Gabor filter banks. In
order to construct a filter bank, the authors used four different directions oriented at
0◦, 45◦, 90◦, 135◦ and consisting of four Gaussian scales (sigma values of 1, 2, 4
and 8 pixels), resulting in a bank of 16 filters. Mackiewicz also addresses the prob-
lem of air bubbles as these can cause problems when attempting to identify frames
containing blood because the healthy tissue colour distribution seen through the air
bubble is similar to the blood colour distribution, thus triggering false positives. He
observed that air bubbles often contain specularities which can be detected using an
approach due to Ortiz and Torres [37].

Vilarino et al. [33–35] as well as Igual et al. [38] studied detection of intestinal
contractions and intestinal motility disfunction. Villarino claim a sensitivity of 70 %
in respect of their approach which involves the analysis of textural, colour and blob
features using a Support Vector Machine (SVM).

Recently, Li and Meng [20] proposed a method of bleeding and ulceration detec-
tion by means of chromaticity moments constructed from the Tchebichef polyno-
mials. The authors divide the circular CE image into a grid of 36 non-overlapping
blocks (30 × 30 pixels) (similar grid was also used for feature extraction in [12], see
Fig. 4), from which they calculate six chromaticity moments. Next, they performed
an experiment in which 5400 (1800 normal, 1800 bleeding and 1800 ulceration)
image blocks were selected from 300 non-consecutive CE images extracted from
10 patient video sequences. The blocks were randomised and classified using an
MLP Neural Network. Finally, the authors reported sensitivity and specificity fig-
ures obtained from the block classifications. This was a preliminary study that was
not performed on the full length videos.
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More recently, Li et al. [22] presented a study with an aim to develop a computer
aided system to diagnose small bowel tumours. They proposed a textural feature
that is built on wavelet and local binary pattern. They employed a classifier en-
semble consisting of k-nearest-neighbor, multilayer perceptron neural network and
support vector machine. Results obtained from the single image classification of
600 normal and 600 abnormal capsule images showed the promising performance
for small bowel tumour detection.

4 Viewing Speed

Attempts to automatically adapt the viewer’s focus of attention based on video con-
tent have focused on automatically adjusting the viewing speed and filtering of non-
informative frames. Hai et al. [39] proposed video speed is adjusted by an algorithm
which plays the video at high speed in stable regions and at slower speed where
significant changes between frames occur, signifying the possibility of pathologies.
The authors divide each frame into 64 blocks and measure the similarity of colours
between respective blocks in consecutive frames. RGB histograms quantized to 163
bins are used to describe each image block. The distance between local histograms
is computed using the L1 norm, formally:

Dblk(i) =
nbins∑

k=1

(∥∥Hn
R,k − Hn+1

R,k

∥∥+ ∥∥Hn
G,k − Hn+1

G,k

∥∥+ ∥∥Hn
B,k − Hn+1

B,k

∥∥)

which is later used to calculate the similarity between two frames:

Sim(n) = 1

nblocks

Nblocks∑

i=1

sim_block(i)

where

sim_block(i) =
{

1: Dblk(i) > Threshblock

0: otherwise

These features are used together with estimates of motion displacement to classify
the frame in one of four states and these in turn adjust a delay which controls the
speed at which frames are presented to the viewer. The authors conclude that using
their method the viewing time may be reduced from 2h to around 30 minutes without
‘loss of information’.

The software supplied by both Given Imaging (Rapid Reader) and Olympus (En-
doView) also include play speed control. Unfortunately, the details of these algo-
rithms remain unknown. Moreover, in the more recent versions of Given’s Rapid
Reader, the clinician is given an option of watching a video in either “Normal Mode”
or in the “Quick View Mode”. Although the “Quick View” mechanism is not pre-
cisely explained in the documentation, we noticed that it uses an approach similar
to that described above to reduce the viewing time of the video. It must be added
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though, that the “Quick View” mode skips some frames, displaying only the most
suspicious (at least to the algorithm that is used by Given Imaging), which makes it
different to the algorithms described above.

The obvious conclusion regarding these methods must be that they are highly
subjective. All research on this topic has to include particularly extensive clinical
evaluations in order to make sure that the increase in the viewing speed does not
increase the number of false negatives [40].

5 Future Directions for CE Research

In a recent review of ten years of CE, Mackiewicz [41] considers a number of ex-
citing opportunities for further research in the field CE video analysis. Firstly, there
is the possibility of focusing on specific pathological events possibly addressed by
some of the specialist capsules now being marketed (e.g. PillCam ESO and Pill-
Cam COLON). Adaptive control of the speed at which the video is reviewed is
also a promising area as it draws from experience gained in other research in the
field of video summarization and beyond this, there is the possibility of tools for
automated reporting and annotation of CE video. The prospect of more advanced
capsules which might be controlled by the physician are probably no more than a
decade away. One of the main challenges for CE research is in providing sufficient
quantities of annotated training data to enable classifiers to be built. Given that a typ-
ical CE exam may contain around 50,000 images, but only a few abnormal events,
a reasonably conservative figure for a training set might be 100 exams (about 50
hours of video). The fact that few researchers have access to a database of this size
probably explains the lack of significant progress in the field, even following the
publication of hundreds of individual papers.

6 Discussion

All of the significant investigators of CE video analysis [12, 21, 27] have used colour
and texture features. The preferred colour feature is the HSI colour histogram, en-
coded using the Haar (MPEG-7) or hybrid (DCT + PCA) transform. Many re-
searchers chose MPEG-7 features, possibly due to the freely available reference
software [42], the established track record of these techniques in other content based
image retrieval applications, and the work due to Coimbra et al. [25]. All researchers
agree that colour texture is a very important component. The groups using MPEG-7
favour the HT descriptor, based on the Gabor wavelet. However, the comparative
success of other methods such as LBP adopted by Mackiewicz in an implementa-
tion developed by colleagues Connah and Finlayson [14], suggests that the MPEG-7
descriptors may not be the most suitable for this purpose. A number of classifiers
have been tested using both feature sets and there is widespread agreement that
the Support Vector Classifier yields marginally better results than other methods.
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Evaluation of the approaches varies considerably and the lack of a large reference
data set is a major drawback. The quality of evaluations undertaken by groups in
Norwich, Porto, HongKong and Barcelona is largely due to the support by collabo-
rators at local hospitals or manufacturers. Manufacturers Given Imaging, Olympus
and OMOM (jinshangroup.com) all provide example CE video data but primarily
motivated by a desire to promote sales, marketing, and training rather than support
the development of algorithms by the wider scientific community. The availabil-
ity of CE video has made a significant impact on the medical imaging community
since its introduction in 2001 and there is no doubt that it will become increasingly
important, as the number of CE examinations grows.
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Automated Prototype Generation
for Multi-color Karyotyping

Xuqing Wu, Shishir Shah, and Fatima Merchant

Abstract This chapter presents an algorithm for automatically generating a proto-
type from multicolor karyotypes obtained via multi-spectral imaging of human chro-
mosomes. The single representative prototype of the color karyotype that is gener-
ated represents the analytical integration of a group of karyotypes obtained via Mul-
ticolor Fluorescence In Situ Hybridization (MFISH) method. Multicolor karyotyp-
ing is a 24-color MFISH method that allows simultaneous screening of the genome.
It allows for the detection of a wide variety of anomalies in human chromosomes,
including subtle and complex rearrangements. Although, multicolor karyotyping al-
lows visual detection of gross anomalies, misclassified pixels make manual exam-
ination difficult. Additionally, in the absence of prior knowledge of the anomaly,
interpretation of the karyotypes can be ambiguous. In this study we have developed
an automated method for the generation of a single representative prototype of the
color karyotype, which assists the screening of chromosomal aberrations by compu-
tational removal of non-physiological anomalies. We hypothesize that generation of
a single representative prototype of the color karyotype from multiple karyotypes (k)
for a given specimen can highlight all the aberrations, while minimizing misclassi-
fied pixels arising from inconsistencies in sample preparation, hybridization and
imaging procedures. A three-tier approach is implemented to achieve the generation
of the representative color karyotype from a set of multiple (>2) karyotypes. The
first step involves the automated extraction of individual chromosomes from each
karyotype in the set, followed by chromosome straightening and size normaliza-
tion. In the second step, the extracted and normalized chromosomes belonging to
each of the 24 color classes are automatically assigned to a particular group (1, 2,
3, etc.) based on the ploidy level (monoploid, diploid, triploid, etc.), respectively.
For automated group assignment, Bayesian classification is utilized to determine
the probability that a particular chromosome belongs to a specific group based on
the similarity between the chromosomes within the group. Similarity is evaluated
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using two distance metrics: (1) two-dimensional (2D) histogram based descriptors,
and (2) Eigen space representation based on Principal Component Analysis (PCA).
Finally in the third step, we compute the prototype of the color karyotype by gen-
erating the representative chromosome for each group in the 24 color classes using
pixel-based fusion. This approach allows us to generate the representative prototype
color karyotype that reflects all anomalies for a given specimen, while rejecting
non-physiological inconsistencies. Furthermore, automation not only reduces the
workload, but also allows alleviation of subjectivity by providing a quantitative for-
mulation based on statistical analysis.

1 Introduction

A karyotype is a pictorial presentation of all the chromosomes in a genome, wherein
homologous metaphase chromosomes are displayed as groups in standard classes
(categories). In humans, a normal karyotype includes 46 chromosomes that are cat-
egorized into a total of 23 classes, of which classes 1 to 22 consists of pairs of
homologous chromosomes, and the final class includes the sex chromosome pair of
either XX for a female or XY for a male [1]. Clinicians routinely use karyotypes to
diagnose cancers and genetic diseases [2–8]. Two approaches are widely used for
generating karyotypes, namely, G-banding [7] and color karyotyping [2, 9].

G-banding involves the use of the Giemsa dye that binds DNA and produces
characteristic and reproducible banding patterns for individual chromosomes. These
banding patterns are then used to identify and group homologous pairs of chromo-
somes in a karyotype, which enables cytogeneticists to recognize the differences
between chromosomes and to link different disease phenotypes to chromosomal
anomalies. G-banded karyotypes are gray-scale visualizations of the number and
appearance of chromosomes in a species. Manual interpretation requires knowledge
of the unique banding patterns for each of the 24 chromosomes and thus entails
considerable operator training and experience.

In contrast, color karyotypes represent the chromosomes in 24 unique colors.
Color karyotyping is a molecular cytogenetic technique that is popularly used for
studying complex inter-chromosomal rearrangements in cancer. Chromosomes are
first labeled with finite numbers of spectrally distinct fluorophores in a combina-
torial fashion, such that each homologous pair of chromosomes is uniquely labeled
[10, 11]. Next, dedicated spectral imaging microscopes are used to capture images of
each fluorophore, and the acquired images are computationally analyzed to enable
the classification of individual chromosomes based on the combinatorial labeling
scheme of probes. Based on the mechanisms of spectral image acquisition and clas-
sification, color karyotyping is broadly categorized into spectral karyotyping (SKY;
uses interferometer-based spectral imaging) [12] or multiplex FISH (M-FISH; uses
fluorochrome-specific optical filters) [13]. The generated color karyotype allows the
visualization of individual chromosomes in a unique color, thereby permitting rapid
visual and qualitative resolution of structural and numerical chromosome abnor-
malities. This is an advantage over G-banded karyotypes in which certain chromo-
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somal aberrations, in the absence of specialized training cannot be easily and un-
equivocally identified by visualization of the alternating dark and light chromosome
bands [14]. Disadvantages of color karyotyping include the inability to (1) define the
translocation breakpoints, and (2) detect intrachromosomal rearrangements because
they do not result in a color change along the chromosome.

Although several studies have demonstrated that both SKY and M-FISH sys-
tems are highly accurate in identifying chromosomal aberrations [15–18], inherent
limitations of these methods demand careful interpretation of the karyotypic infor-
mation. Pixel classification can be poor due to low signal to noise ratio in the images
resulting from autofluorescence and non-uniform hybridization. Additionally it has
been shown that “Fluorescence flaring” [19] frequently results in misclassified pix-
els that can lead to erroneous interpretations at chromosome overlaps, translocation
breakpoints, and chromosomal regions containing co-amplified material [19–21].
As compared to interpreting G-banded karyotypes, anomaly detection is relatively
easier in color karyotypes because of the ease in identifying areas where a chromo-
some, painted in one color, has a small piece of a different chromosome, painted in
another color, attached to it. However, in order to screen chromosomal rearrange-
ments, cytogeneticists not only have to confirm the chromosome classification, but
also need to flag all the possible anomalies. This information cannot be ascertained
based on a single metaphase, and a multi-cell approach is necessary. Interpretation
of anomalies is further confounded when the decision has to be based on the ex-
amination of multiple karyotypes that typically display inter-karyotype variability
and often intra-karyotype variability of the classified chromosomes due to the pres-
ence of misclassified color pixels. Thus, we have developed an automated approach
that allows alleviation of certain ambiguities such as misclassified and overlapping
pixels that are inherent to color karyotyping.

Our approach leverages the fact that using multi-cell metaphase karyotypes for
genetic screening can highlight the differences generated between two homologous
chromosomes due to technical artifacts and that such differences can be resolved
by analyzing multiple karyotypes from one individual. It is highly unlikely that the
same technical artifact would occur repeatedly in a given specimen and thus can
be computationally resolved by the examination of the color information at each
pixel from multiple chromosomes of the same class. Although performing such an
examination manually is not practical, it is not only computationally feasible but
can also be statistically corroborated.

Although the prototype representation of the color karyotype introduced in this
study will directly benefit the visual screening of chromosome aberrations, it has the
ability to allow an informed screening process since prototype creation is founded
on statistical analysis of the frequency of occurrence of each colored pixel in each
chromosome computed over multiple karyotypes. Currently, other than the conven-
tional manual viewing of multiple karyotypes for each subject, there is no compu-
tational approach that facilitates screening of anomalies from M-FISH/SKY kary-
otypes. To the best of our knowledge, the only other approach that assists visual-
ization of color karyotypes is the computer generated SKYGRAM image, which
consists of a colored ideogram where each chromosome in the karyotype is dis-
played in its unique SKY classification color, with band overlay. The SKYGRAM
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image is only available for images in SKY/CGH database [22], and requires in-
formation on the start (top) and stop (bottom) band for each various segments on
the chromosome, which is not typically available for studies that comprise solely
of color karyotyping. We describe here for the first time, an approach for visualiz-
ing chromosomal aberrations in color karyotype via generation of a unique pictorial
representative prototype that embeds information from multiple karyotypes.

2 Overview of Methodology

Each karyotype in a normal individual has 22 pairs of autosomal chromosomes and
one pair of sex chromosomes, resulting in a total of 24 classes of chromosome. The
number of copies of chromosomes in each class is dependent on the ploidy level,
which can either by normal (two copies) or abnormal (one, three, four, etc.). The
problem of generating a representative karyotype given multiple karyotypes can be
viewed as one of image fusion, where multiple images for each chromosome are
examined to generate a single view that mirrors the aggregate information based on
the dominant consensus from the multiple chromosomes.

To fulfill this objective in an automated manner, the primary aim is to enable an
approach to cluster or group chromosomes such that for each class, homologous
chromosomes are assigned to a specific group (1, 2, 3, etc.), where chromosomes
within a given group exhibit maximal similarity. Here similarity is related to com-
paring the spatial distribution of colors along each chromosome. Determining po-
sitional occurrence of color is critical in order to differentiate true chromosomal
aberrations from color inconsistencies arising due to sample processing and image
acquisition. Since each karyotype is classified independently, the arrangement of all
copies of a chromosome in a given class may not be consistent across all karyotypes.
For example, consider six karyotypes where one copy of the pair of homologous
chromosomes in class 1 has a translocation. This would appear as a chromosome
pair where one of the chromosomes has a uniform unique color while the other
copy shows two colors. For a prototype karyotype, the chromosome copies in each
of the six karyotypes should be fused into a single pair where one has a uniform
color whereas the other has two colors. In order to achieve this, the 12 chromo-
somes of class 1 from the 6 karyotypes have to be appropriately grouped such that
all the chromosome copies with the translocation are in the same group, whereas
the normal copies are in the second group. Hence, before we can perform fusion of
individual chromosome images, we have to organize the chromosome copies from
the multiple karyotypes to be consistently segregated into appropriate groups (de-
termined by the ploidy level).

Figure 1 presents a flowchart of our processing pipeline. Initially all chromo-
somes are extracted from individual color karyotypes, straightened and normalized
to a standard size. Next based on a priori information on the total number of kary-
otypes, the chromosomes are grouped such that the homologous pairs of chromo-
somes from the multiple karyotypes are assigned to different groups based on their
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Fig. 1 Flowchart illustrating
the processing pipeline for
automatic generation of
prototypes

constitutive color pixel population. To do so, two methods are evaluated, each as-
suming a different descriptive model for the spatial distribution of constitutive col-
ored pixels on each chromosome. First a histogram-based approach is used that
performs grouping based on maximizing the similarity of spatial distribution of the
colored pixels across chromosomes within a group. Second, a PCA-based approach
is used that aims to minimize variability of the dominant colors within chromo-
somes in a group. Both approaches follow a Bayesian classification framework to
group homologous chromosomes (for each one of the 24 classes) across multiple
karyotypes into multiple groups (depending on ploidy level) based on the similarity
of color and position of the constitutive pixels in each chromosome. For example in
case of euploidy, chromosomes for each class are assigned to the most similar one
of the two groups. Following segregation of all chromosomes, we compute the final
prototype chromosome by pixel-based fusion. Since each pixel can take one of 24
colors, we generate an ordered set of pixels for every position (x, y) across all k

chromosomes. We then compute the mode of the ordered set. For fusion, we use a
simple selection criterion based on a threshold that provides a lower bound on the
frequency of observing a specific color. If a color value varies from the mode, the
pixel is assigned a value of zero (color is uncertain). The methodology is described
in detail in the following sections.

3 Methods

A three-tier approach is implemented to achieve the generation of the representative
color karyotype from a set of multiple (>2) karyotypes. The steps include chromo-
some extraction and normalization, chromosome grouping and pixel-based fusion
for prototype generation.
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Fig. 2 (A) Representative color karyotype from a M-FISH system. (B) Representative color kary-
otype from a SKY system

3.1 Chromosome Extraction, Straightening and Size
Normalization

The first step in the algorithm is to automatically extract chromosomes from a fully
annotated and finalized karyotype. Color karyotypes for both M-FISH and SKY are
typically presented in a standardized format. For example, Fig. 2(A, B) presents a
sample color karyotype from a M-FISH [15] and SKY system [2].

As seen in the color karyotypes, homologous chromosome pairs for each class
are arranged in an ordered sequence from 1–24. Moreover, each class is further
separated from the neighboring classes. This systematic ordered spatial arrange-
ment allows for individual chromosomes to be easily extracted from the karyotypes
via sequential cropping of the chromosome sub-images based on position and class
color.

Following extraction of the chromosome sub-image, the next step comprises
of chromosome straightening [23, 24]. Chromosomes are naturally flexible, and
metaphase chromosomes are typically visualized not only in a variety of sizes and
lengths, but can also appear to be bent or curved in shape. We implemented the
following algorithm to straighten curved chromosomes. Initially, the morphologi-
cal medial axis transformation is applied to the binary image of the chromosome
to identify the central axis of the curved chromosome [25]. Next, the central axis
is smoothed using a two-dimensional cubic spline function. For any given point on
the smoothed central axis, we determine the normal direction of the tangent line and
find the intersection of the normal line and the two outermost edges of the original
curved chromosome. For any point along the central axis, pixels identified on the
normal line are mapped onto a new chromosome image such that the central axis
is vertically straightened at an angle of 90◦, and the normal line at each pixel on
the central axis is now horizontally oriented (i.e. at an angle of 0◦) perpendicular to
the vertical. The final straightened chromosome image is obtained by repeating this
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Fig. 3 Results of
chromosome straightening

step for each point (i.e. straightening the normal line) along the central axis. Figure 3
shows representative images of curved chromosomes and the resulting straightened
chromosomes.

Finally, the last pre-processing step was normalization of chromosome size in
terms of length and width. This step is necessitated to standardize the chromosomes
in order to enable further processing steps related to grouping and pixel-based fu-
sion for prototype generation. Size normalization across the length and width was
achieved via pixel resampling (up/down-sampling) [26]. As a rule, size determina-
tion was based on selecting the dimensions to match that of the largest chromosome
in the set of karyotypes being analyzed.

3.2 Clustering Approach for Assigning Homologous
Chromosomes to Ploidy-Level Based Groups

Each karyotype in a normal individual has 22 pairs of autosomal chromosomes
and one pair of sex chromosomes. To be able to extract the prototype from mul-
tiple karyotypes, copies of chromosomes for each of the 24 classes from all the
karyotypes need to be correctly segregated and grouped based on the spatial distri-
bution of their constitutive colors. We pose this as a chromosome-grouping prob-
lem. For example, given a chromosome from a specific class, we identify its mul-
tiple copies with the labels L1, . . . ,Lp , where p = ploidy level for the chromo-
some class. Let K = 1, . . . ,N denote the number of karyotypes. Thus, for any
chromosome class in the genome, the total copies in a karyotype can be denoted
by Cl,k = {c1,k, c2,k, . . . , cp,k}. Further, the total number of possible chromosome
grouping combinations for a given class would be pK . For a given number of kary-
otypes and the ploidy level for each chromosome class, the number of groups is thus
fixed and can be denoted as G = {G1,G2, . . . ,Gpk }. In this case, the identification
of the group that constitutes the correct labels for each of the chromosome can be
considered a classification problem.

Consider R to be a chromosome randomly chosen from a group in G. Excluding
the group corresponding to the sampled chromosome, the remaining groups can be
denoted as Ĝ = {G1, . . . ,G(pk−1)}. The probability of the random sample R belong-

ing to a group Gk from Ĝ can be calculated as per the Bayesian decision rule as

P(Gk|R) = P(R|Gk) ∗ P(Gk)

P (R)

where P(R) =∑M
k=1 P(R|Gk) ∗ P(Gk) and M = pK−1.
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Thus, the true assignment of labels can be calculated based on maximizing the
posterior probability,

P(Ĝ|R) = arg max
k

P (Gk|R).

However, since we have no a priori knowledge of the true groups from which a
sample is chosen and the denominator is typically constant for a given known set of
groups, the assignment of the randomly chosen chromosome into one of the groups
can be simplified to the estimation of the maximum likelihood such that:

P(R|Ĝ) = arg max
k

P (R|Gk).

This suggests that each group can be best represented by observations R with the
correct label assignments. Thus, if Q independent observations are sampled result-
ing in an observation set O , the joint conditional distribution function over all ob-
servations can be written as:

P(O|Ĝ) =
Q∏

k=1

P(Rk|Ĝ).

The formulation can be further simplified by maximizing the log-likelihood such
that,

�{R1,R2, . . . ,RQ|Ĝ} =
Q∑

k=1

logP(Rk|Ĝ)

where P(Rk|Ĝ) defines the probability of assigning Rk to the group Ĝ, and can be
measured by the distance between the sample Rk and the group center C

Ĝ
. In this

study, P(Rk|Ĝ) is estimated as:

P(Rk|Ĝ) ∝ 1

‖Rk − C
Ĝ
‖ .

3.2.1 Distance Metrics for Bayesian Classification

Two approaches were evaluated to compute the distance metric ‖Rk − C
Ĝ
‖ for

Bayesian classification. In doing so, the two key elements needed are the ability to
find an appropriate representation for chromosomes Rk and a corresponding mech-
anism to define the group center C

Ĝ
.

3.2.2 Two-Dimensional (2D) Histogram Based Descriptors

To facilitate the computation of the distance metric, cropped images of chromo-
somes were represented by histogram based local descriptors. Specifically, 2D im-
age signatures were generated to accurately represent the color content of the chro-
mosome with respect to its spatial distribution within the chromosome. The 2D
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Fig. 4 Size normalized chromosome image and its 2D Color Histogram. (A) Chromosome with
few misclassified pixels. (B) Chromosome with a terminal translocation

histogram was used to represent the signature of each size normalized chromosome
image. For each image with the size of m × n, we generated the m × 24 2D his-
togram. So each line of the image is represented by a 24-bin 1D histogram.

Figure 4 presents examples of 2D color histograms for (A) a chromosome with
few misclassified pixels, and (B) a chromosome with a terminal translocation. As
seen in Fig. 4, the 2D histogram provides a clear visualization of the spatial distribu-
tion of the different colors within the chromosome. In the case of the chromosome
with few misclassified pixels (Fig. 4A), the unique color of the chromosome (peach)
predominates the entire length of the chromosome, whereas for the chromosome
with the terminal translocation (Fig. 4A), the two different colors; blue and pink;
dominate at the two opposite ends along the length of the chromosome. Thus, the
2D color histogram may be used to differentiate chromosomes based on the spatial
localization of its constitutive colors.

The distance between any two 2D histograms (i.e. ‖Rk − C
Ĝ
‖) is then deter-

mined as follows. First, we calculate the Hellinger distance between each pair
of corresponding 1D histograms [27], whose result is saved in an m × 1 vector.
Then, the final distance between the 2D histograms is measured by the L2 norm
of the vector. To search for the maximum likelihood for optimal label assignments
(arg maxk P (R|Gk)), we use a variant of k-means classification to define group cen-
ters. For K karyotypes and each chromosome class with p being the ploidy level,
each sampled chromosome needs to be evaluated for assignment into one of the
pK−1 groups. For each group, the group center is defined by computing an average
2D histogram from all the chromosomes in that group. The assignment of the sam-
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pled chromosome into one of the groups is based on computing the distance defined
above. A total group score is computed by taking the product of distances between
the sampled chromosome and all group centers. Once the initial grouping is done,
we recalculate the new averages based on all 2D histograms in the group and note it
to be the new group center. For each of the groups, we select the chromosome that
is furthest from the group center and use it as the new sample. The above steps are
repeated until a minimum total group score is obtained.

3.2.3 Eigen Space Representation

An alternate approach to measuring similarity or distance between chromosomes
within a group is to measure similarity within a linear subspace of the images. One
such subspace can be defined by the eigenvectors of the images within a group.
Hence, the distance between two images can be measured in eigenspace, within
which a chromosome image can be represented based on the principal components
{uj } that best describes the covariance across another group of images.

Consider one of the groups Gk comprising of Ii , i = 1, . . . , z images. A matrix
A is formed where each column of the matrix is one of the vectorized images. Thus,
for images of size m × n, the matrix A is of size mn × z. The eigenvectors are
determined based on singular value decomposition, as follows:

A = USV T

where the columns of U are eigenvectors of AAT . Any image Ii can be recovered
as follows:

Ii =
z−1∑

j=1

uj sj v(i,j)

Ii =
z−1∑

j=1

w(i,j)uj

where sj is the j th singular value, v(i,j) is the ith element of the j th eigenvector

in V and w(i, j) = 〈ai ,uj 〉
sj

. The set of coefficients w(i, j), j = 1, . . . , z can be sum-
marized into a z dimensional vector wi , and the distance between any two images
(i, j) can be estimated as ‖wi − wj‖. Optimal group assignments for each sampled
chromosome is then obtained through an exhaustive minimization of the distance
across all groups.

3.3 Prototype Generation Using Pixel-Based Fusion

Comparison of each pixel amongst all the chromosomes in the same group was used
to create the final prototype image for each chromosome. The color for each pixel
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was chosen based on the majority vote from all karyotypes. Thus, pixels that had
the same color across chromosomes from all the karyotypes in a set retained their
original color, whereas other pixels in a chromosome with differing colors across
the multiple karyotypes for which a majority vote was not feasible were labeled as
misclassified pixels.

Having determined the group of chromosomes with the most similar spatial dis-
tribution of colors, we computed the representative chromosome by performing
pixel-based fusion. Since each pixel on any chromosome can take one of twenty-
four colors, we first generate an ordered set of pixels for every position (x, y) across
all k chromosomes. We also compute the mode of the ordered set to determine the
value with the largest number of occurrences. We use a simple selection criterion
based on a percentage threshold that provides a lower bound on the frequency of
observing the color value for the fused chromosome. Given the ordered set A of B

pixels at location (x, y), the value to be assigned to the fused representation is given
by:

F(x, y) = A{%Threshold × B}.
Further, if the color value is not the same as the mode of the ordered set, the pixel
value is assigned a value of zero since the true color is uncertain. We set the thresh-
old value to 0.6 to reflect that the mode should comprise of a minimum of 60 %
majority across all colors. Figure 5 illustrates the approach for prototype genera-
tion.

3.4 Assessment Metrics for Data Analysis

The performance of the algorithm for automatically generating a representative pro-
totype from a set of multiple color karyotypes was assessed using two approaches.
First, the representative karyotype was compared to the ground truth, which is the
manually annotated karyotype. Second, we determined the color variance between
the two clustering approaches to assess their performance. Since, in color karyotyp-
ing, each chromosome has a predefined unique color c, any other colors appearing
in the chromosome may be regarded as noise. Then the signal to noise ratio SNR for
each chromosome can be computed as follows:

SNR = Ncolor=c

Ncolor �=c

where Ncolor �=c is the number of pixels that have color other than the predefined
unique color for the given chromosome, and Ncolor=c is the number of pixels with
the predefined unique color for the given chromosome. For copies of chromosomes
belonging to the same group, SNR should be comparable, and any inconsistencies
may be reflected by the variance of SNR, which we denote as the color variance of
each group. To compare the grouping performance of the histogram-based method
and the eigenspace analysis, we determined the sum of the variance of all the groups



156 X. Wu et al.

Fig. 5 Prototype generation
using majority vote based
pixel fusion

for each case analyzed. In addition, we also computed a measure of color purity to
understand the inherent quality of karyotypes, defined as:

Purity = Ncolor=c

Npixels

where Npixels is the total number of pixels on the chromosome. Purity is computed
for each chromosome and the measure of color purity for a case is taken as the
average across all chromosomes.

4 Results

Color karyotype images were randomly selected from the M-FISH Chromosome
Imaging Database developed and maintained by the Laboratory for Image and Video
Engineering at The University of Texas at Austin [28, 29]. We tested our algo-
rithms using a total of 15 cases, each with multiple color karyotypes. The num-
ber of karyotypes in each case ranged from 3–7. Overall, we had 9 cases with
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Table 1 List of color karyotype cases analyzed

No Karyotype # Histogram based GF Eigen based GF

1 46, XY 5 46, XY 1 46, XY 1

2 46, XY 6 46, XY 1 46, XY 0.95

3 45, XX, −13 5 45, XX, −13 1 45, XX, −13 0.95

4 46, XY 3 46, XY 1 46, XY 0.95

5 46, XY 7 46, XY 1 46, XX 0.95

6 44, −X, −5, −14,
+18, Ins(11; 8),
t(15; 16), t(7; 16),
t(9; 14), t(14; 15),
t(5; 17)

5 44, −X, −5, −14,
+18, Ins(11; 8),
t(7; 16), t(9; 14),
t(14; 15), t(5; 17)

1 44, −X, −5, −14,
+18, Ins(11; 8),
t(7; 16), t(9; 14),
t(14; 15)

0.77

7 46, XX 3 46, XX 1 46, XX 1

8 47, XX, +9 3 47, XX, +9 1 47, XX, +9 1

9 46, XX 4 46, XX 1 46, XX 1

10 46, XY 3 46, XY 1 46, XY 1

11 46, XY 4 46, XY 1 46, XY 1

12 46, XY 3 46, XY 1 46, XY 1

13 46, XX, t(X; 4) 5 46, XX, t(X; 4) 1 46, XX, t(X; 4) 0.95

14 46, XY, t(3; 13),
t(8; 3), t(16; 8)

3 46, XY, t(3; 13),
t(8; 3), t(16; 8)

1 46, XY, t(3; 13),
t(8; 3), t(16; 8)

1

15 45, XY, −18, −22,
+11, t(7; 8),
t(9; 10), t(11; 20),
t(15; 18), t(20; 5)

4 45, XY, −18, −22,
+11, t(7; 8),
t(9; 10), t(11; 20),
t(15; 18), t(20; 5)

0.91 45, XY, −18, −22,
+11, t(7; 8),
t(9; 10), t(11; 20),
t(15; 18), t(20; 5)

0.91

normal karyotypes and the remaining 6 cases included chromosomal aberrations
such as aneuploidy, insertions and terminal translocations. Table 1 presents a list of
the 15 cases analyzed along with information about the specific abnormalities, the
number of karyotypes per case, and the results obtained based on manual reading
of the generated prototypes. We also report the grouping factor (GF) for the two
methods, histogram- and eigen-based grouping. GF is measured based on the cor-
rectness of grouping per chromosome. As an example, for a normal karyotype 46,
XY, if chromosome X and Y are incorrectly grouped, the resultant GF would be
(46 − 2)/46 = 0.95. This measure provides an indication of the grouping accuracy
between the two methods.

Our results indicate that the histogram-based distance metric is more effective
in achieving grouping of similar homologous chromosomes across karyotypes and
pixel based fusion can resolve sample processing anomalies such as overlapping
chromosomes and misclassified pixels occurring due to cross-hybridization, as well
as in detecting chromosomal translocations and insertions that are in the range
of 3–50 Mbp and greater. Figure 6 represents the results of grouping chromo-
somes that have overlaps, random instances of misclassified pixels due to cross-
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Fig. 6 Results of grouping chromosomes with (A) overlaps, (B) insertions, (C) translocations

hybridization, and physiological translocations. As seen in Fig. 6A, the six chromo-
somes of class 1 from three karyotypes are effectively clustered into two groups by
both the histogram-based and the eigen-based distance metrics, and the pale green
region apparent on one of the chromosomes in group1 is effectively removed in the
prototype. Similarly, as seen in Fig. 6C the six chromosomes of class 16 from three
karyotypes are effectively clustered into two groups wherein the chromosomes with
the translocation are all assigned to the appropriate group by both the histogram-
based and the eigen-based distance metric. However, although the final prototype
image is accurate in Fig. 6B, the eigen-based clustering fails to accurately group all
the chromosomes with the internal insertion.

Figure 7 shows a set consisting of six color karyotypes with the classification
46, XY. Figure 8 shows the representative prototypes generated using the two ap-
proaches, namely; histogram-based 2D descriptors and eigen-analysis for grouping
of chromosomes. As seen in Fig. 8, both the approaches are effective in generating
an accurate representative karyotype.

Figure 9 shows a set consisting of four color karyotypes with the classification
45, XY, −18, −22, +11, t(7; 8), t(9; 10), t(11; 20), t(15; 18), t(20; 5). Figure 10
shows the representative prototypes generated using the two approaches, namely;
histogram-based 2D descriptors and eigen-analysis for grouping of chromosomes.
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Fig. 7 Six color karyotypes for a single sample case with karyotype 46 XY

Fig. 8 (A) Prototype created by histogram-based. (B) Prototype created by eigen-based method

As seen in Fig. 10, both the approaches are effective in generating an accurate rep-
resentative karyotype that mirror several chromosomal aberrations.

The prototypes generated by the histogram-based method matched the ground-
truth karyotypes in 14 out of the 15 cases analyzed. The only sample where the
prototype did not match the ground-truth was case 6 (Table 1) where it missed a
t(15; 16), primarily due to the size of the translocation being less than 3 Mbp, which
is beyond the detection limit of MFISH. Similarly, the grouping efficiency of the
histogram-based approach was 100 % in all but one case (case 15; 91 %). However,
this may be attributed to the high color variance (Fig. 11) and moderate purity of the
karyotypes in the sample set (Fig. 12; lower values indicate higher purity). Overall,
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Fig. 9 Four color karyotypes for a single sample case with karyotype 45, XY, −18, −22, +11,
t(7; 8), t(9; 10), t(11; 20), t(15; 18), t(20; 5)

Fig. 10 (A) Prototype created by histogram-based. (B) Prototype created by eigen-based method

the performance of the eigen-based approach was lower with prototypes matching
the ground-truth in 13 out of 15 cases. Moreover, the grouping efficiency was rela-
tively low with only 8 cases showing 100 %. The eigen-based approach was more
susceptible to color variability and out of 15 total cases tested, the histogram-based
method outperformed eigenspace analysis in 7 cases with a smaller total variance
within the groups. Figure 11 shows the comparison of total color variance between
two methods for all the 15 cases.
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Fig. 11 Plot of color
variance for the histogram
and eigen-based chromosome
grouping

Fig. 12 Variability in color
purity for the karyotypes
analyzed

5 Conclusion

Color image analysis can be used to automatically generate representative proto-
type karyotypes from a set of multiple karyotypes. The representative prototypes
mirror aberrations from the multiple karyotypes while mitigating the appearance of
misclassified pixels via color based pixel fusion. This allows a pictorial summary
that depicts the aggregate information from multiple karyotypes thereby permitting
convenient visualization and inference of any chromosomal aberrations. The statis-
tical foundation of the chromosome grouping and fusion algorithms improves man-
ual inference since overlapping chromosomes are resolved and misclassified pixels
are automatically eliminated, whereas insertions and translocations are enhanced
in the representative karyotype. Overall histogram based grouping not only pro-
vides an improved distance metric for clustering similar chromosomes, but also has
an added advantage of reduced computational requirements when compared to the
eigen-based approach. Further studies need to focus on automatically flagging the
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aberrations in the representative karyotypes while providing statistical confidence
limits on the flagged aberrations.
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Colour Model Analysis for Histopathology
Image Processing
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Abstract This chapter presents a comparative study among different colour mod-
els (RGB, HSI, CMYK, CIEL*a*b*, and HSD) applied to very large microscopic
image analysis. Such analysis of different colour models is needed in order to carry
out a successful detection and therefore a classification of different regions of inter-
est (ROIs) within the image. This, in turn, allows both distinguishing possible ROIs
and retrieving their proper colour for further ROI analysis. This analysis is not com-
monly done in many biomedical applications that deal with colour images. Other
important aspect is the computational cost of the different processing algorithms
according to the colour model. This work takes these aspects into consideration to
choose the best colour model tailored to the microscopic stain and tissue type under
consideration and to obtain a successful processing of the histological image.

1 Introduction

Digitization in the biomedical field has become a reality thanks to the evolution
of devices, applications. Anatomical Pathology has also benefited from these new
technologies, which have provided solutions for whole slide scanning by means
of motorized microscopes and scanners [14], that is, whole slide imaging (WSI).
A WSI system equipped with the right storage and computing infrastructure can
significantly improve workflow, hence increasing productivity while reducing costs,
enable automated image analysis, quantification and quality control [8, 23, 26]. En-
suring optimal performance using the available technology depends essentially on
the creation of computational tools that integrate mathematical and physical mod-
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els under defined architectures. The objective of this integration is to obtain and
describe the necessary information for accurate interpretations in clinical diagnosis.

In this chapter we present a comparative study among different colour models
(RGB, HSI, CMYK, CIEL*a*b*, and HSD). The colour models have been applied
to very large microscopic image analysis. Such analysis of different colour models
is needed in order to carry out a successful detection and therefore a classification
of different regions of interest (ROIs) within the image. This, in turn, allows both
distinguishing possible ROIs and retrieving their proper colour for further ROI anal-
ysis. This analysis is not commonly done in many biomedical applications that deal
with colour images. Other important aspect is the computational cost of the different
processing algorithms according to the colour model. This work takes these aspects
into consideration to choose the best colour model tailored to the microscopic stain
and tissue type under consideration and to obtain a successful processing of the
histological image.

Several research works have sought to develop image processing algorithms for
histological image analysis. Most of them are focused on the segmentation of only
one region of interest (ROI), that is usually the nucleus and glands, as well as
their classification for diagnosis purposes. To this end, Doyle et al. [12] use multi-
resolution classification, first and second order statistics, as well as wavelet features,
and support vector machines (SVM) for classification into benign and malign tissue.
A multi-scale approach is also used in several works [18, 27, 32]. Huang et al. [18]
use sparse coding and dynamic sampling where the computational time is reduced
with GPU processing. Roullier et al. [32] and Madabhushi et al. [27] present graph-
based multi-resolution approaches using domain specific knowledge. Other novel
classification methods use neural networks [43], probability maps [10], and fractal
dimension analysis [19].

Statistical information techniques [13], region growing algorithms [3, 29, 48],
fuzzy c-means [2, 15, 28, 29] active contour models [17, 47], including level set
methods [16, 44, 46], filtering and morphological analysis [3, 37, 40, 44] have been
also used for ROI detection. The main problem with these methods is that they are
not designed to process large amounts of data, which is the case when working with
whole digital slides in pathology. The size of histological images may range from
300 Megabytes (MB) to 30 Gigabytes (GB) of RAW information, that is between
20000 × 20000 pixels to 100000 × 100000 pixels. However, usually only areas of a
few Mbytes are processed, with the consequent risk of losing important information
in the image. Thus, the image processing that slides are subject to is still limited
both in terms of data processed and processing methods. Besides, many of these
methods yield limited results because they focus mainly on a single structure or
type of tissue.

Therefore, there is a need to design and develop parallel image processing tools
for biomedical applications. To this end the colour model should be analysed, as
well as the distance colour model applied to the processing algorithm in order to
reduce the computational cost and obtain in an efficient way a set of heterogeneous,
complex and specific image analysis. In this work different colour models and dis-
tances have been studied and applied under a general parallel image processing
model designed and implemented with MPP (Massively Parallel Processing).
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The evaluation of the colored stains at the specific subcellular regions where the
markers are localized (i.e. nucleus, cellular membrane, cytoplasm) provides impor-
tant information for the assessment of cancer [6, 41]. Therefore, there are a few
works in the literature to analyse and apply colour models for microscopic digital
image processing. Van der Laak et al. [22] propose the HSD (Hue, Saturation, Den-
sity) model. The HSD model is an adaptation of the HSI model in which the RGB
to HSI (Hue, Saturation, Intensity) transform is applied to optical densities (OD) for
the individual RGB (Red, Green, Blue) channels instead of intensities. The use of
OD has been also applied by Ruifrok et al. [33, 34] for quantification of immuno-
histochemical (IHC) staining. Thus they developed an algorithm to deconvolve the
color information acquired with RGB cameras, to calculate the contribution of each
of the applied stains, based on the stain-specific RGB absorption. This deconvo-
lution method has been used to detect Ki-67 hot-spots on immunohistochemical
slides of glioblastomas and separate the positive nuclei (brown) from the negative
ones (blue) [25]. The deconvolution method has been also used combined with mor-
phological methods for the segmentation of IHC tissue images of lung cancer [6, 7].
Recently, colour deconvolution was also used to assess the effect of potential thera-
peutic agents in dystrophic mice [31] and for quantitative image analysis of estrogen
receptor, progesterone receptor, and Ki-67 IHC in breast cancer tissue sections [42].

The use of other colour models have been reported, mainly HSI and CMYK. Fi-
carra et al. use the HSI model to detect the membrane in non-small cell lung carci-
noma IHC images and quantify the expression of growth factor receptor EGFR/erb-
B family. HSI colour model is also used to help breast cancer diagnosis on breast
tissue specimens stained separately for estrogen receptor, progesterone receptor and
human epidermal growth factor receptor-2 (HER-2/neu) [30]. Other studies have
been reported using HSI model to characterize medial fibrosis in relation to car-
diovascular risk factors on TMA (tissue microarrays) [36]. A similar colour model,
the HSL (Hue, Saturation, Luminance), has been used to quantify different IHC
markers targeting proteins with different expression patterns (cytoplasmic, nuclear
or membranous) in colon cancer or brain tumor TMAs [9].

2 Methods and Materials

2.1 Material Preparation

Tissue samples from biopsies and cytologies, prepared with different stains, were
digitized with a motorized microscope ALIAS II at 20× with no compression. The
samples were extracted from 8 lung cytologies and 8 prostate biopsies, with the di-
agnosis of carcinoma. Specimens fixed in 4 % buffered formalin were selected to
prepare 4 mm thickness histological slides deparaffinized in xylene. Both conven-
tional haematoxylin-eosin stain (HE) and immunohistochemical (IHQ) techniques
were performed. In cytology Pap stain (Papanicolau) was performed. In all tissue
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cases, target retrieval was performed with a pre-treatment module for tissue speci-
mens, PT Link, (DAKO, Denmark). Ready to use primary antibodies were incubated
for 1 hour at room temperature, the detection was performed using the EnVision
FLEX+ (DAKO, Denmark) visualization system in an Autostainer Link 48 (DAKO,
Denmark).

Pap stain is a multichromatic staining cytological technique developed by George
Papanikolaou. Pap staining is used to differentiate cells in smear preparations of
various bodily secretions, here is used for pleural fluid. Pap staining is a very reliable
technique. The classic form of Pap stain involves five dyes in three solutions [5]:

• A nuclear stain, haematoxylin, is used to stain cell nuclei. The unmordanted hae-
matein may be responsible for the yellow color imparted to glycogen.

• First OG-6 counterstain (-6 denotes the used concentration of phosphotungstic
acid; other variants are OG-5 and OG-8). Orange G is used. It stains keratin. Its
original role was to stain the small cells of keratinizing squamous cell carcinoma
present in sputum.

• Second EA (Eosin Azure) counterstain, comprising three dyes; the number de-
notes the proportion of the dyes, e.g. EA-36, EA-50, EA-65.
– Eosin Y stains the superficial epithelial squamous cells, nucleoli, cilia, and red

blood cells.
– Light Green SF yellowish stains the cytoplasm of other cells, including non-

keratinized squamous cells. This dye is now quite expensive and difficult to
obtain, therefore some manufacturers are switching to Fast Green FCF, how-
ever it produces visually different results and is not considered satisfactory by
some.

– Bismarck brown Y stains nothing and in contemporary formulations it is often
omitted.

When performed properly, the stained specimen should display hues from the
entire spectrum: red, orange, yellow, green, blue, and violet. The chromatin patterns
are well visible, the cells from borderline lesions are easier to interpret and the
photomicrographs are better. The staining results in very transparent cells, so even
thicker specimens with overlapping cells can be interpreted. On a well prepared
specimen, the cell nuclei are crisp blue to black. Cells with high content of keratin
are yellow, glycogen stains yellow as well. Superficial cells are orange to pink, and
intermediate and parabasal cells are turquoise green to blue. Metaplastic cells often
stain both green and pink at once. Pap stain is not fully standardized; it comes in
several versions, subtly differing in the exact dyes used, their ratios, and timing of
the process.

HE is a popular staining method in histology [1]. It is the most widely used
stain in medical diagnosis; for example when a pathologist looks at a biopsy of a
suspected cancer, the histological section is likely to be stained with HE section.
The staining method involves application of hemalum, which is a complex formed
from aluminium ions and oxidized haematoxylin. This colors nuclei of cells (and a
few other objects, such as keratohyalin granules) blue. The nuclear staining is fol-
lowed by counterstaining with an aqueous or alcoholic solution of eosin Y, which
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Fig. 1 Two samples of
histopathological images
acquired at 20×

colors other, eosinophilic structures in various shades of red, pink and orange. The
staining of nuclei by hemalum does not require the presence of DNA and is prob-
ably due to binding of the dye-metal complex to arginine-rich basic nucleoproteins
such as histones. The mechanism is different from that of nuclear staining by basic
(cationic) dyes such as thionine or toluidine blue. Staining by basic dyes is prevented
by chemical or enzymatic extraction of nucleic acids. The eosinophilic structures are
generally composed of intracellular or extracellular protein. Most of the cytoplasm
is eosinophilic. Red blood cells are stained intensely red. Other colors, e.g. yellow
and brown, can be present in the sample; they are caused by intrinsic pigments, e.g.
melanin [21, 24].

The processing was done using our own libraries, implemented by the research
group, running under MPI on a grid composed by 17 nodes Intel Xeon (3.2 GHz)
INFINIBAND net (10 GB full-duplex) architecture. Two samples of the histopatho-
logical images analyzed are illustrated in Fig. 1.

2.2 Methods

This chapter compares five different colour models: RGB, HSI, CMYK, CIEL*a*b*,
and HSD applied to histological WSI processing. Since these colour models are the
most commonly used in histopathological image processing.

2.2.1 RGB Colour Model

The RGB colour model stands for the three additive primary colours, red, green, and
blue. The main purpose of the RGB colour model is for the sensing, representation,
and display of images in electronic systems, such as televisions and computers,
though it has also been used in conventional photography. The RGB colour model
has a solid theory based on human perception of colours, that is trichromacy. The
normal explanation of trichromacy is that the organism’s retina contains three types
of colour receptors with different absorption spectra. The RGB colour model is
based on the Young-Helmholtz theory of trichromatic colour vision, developed by
Thomas Young and Hermann Helmholtz, in the early to mid nineteenth century, and
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on James Clerk Maxwell’s colour triangle that elaborated that theory. Physiological
evidence for trichromatic theory was later given by Gunnar Svaetichin (1956) [39].

The normal three kinds of light-sensitive photoreceptor cells in the human eye
(cone cells) respond most to yellow (long wavelength or L), green (medium or M),
and violet (short or S) light (peak wavelengths near 570 nm, 540 nm and 440 nm,
respectively [20]. The difference in the signals received from the three kinds al-
lows the brain to differentiate a wide gamut of different colours, while being most
sensitive to yellowish-green light and to differences between hues in the green-to-
orange region. During digital image processing each pixel can be represented in the
computer memory or interface hardware (for example, a graphics card) as binary
values for the red, green, and blue colour components. When properly managed,
these values are converted into intensities or voltages via gamma correction to cor-
rect the inherent nonlinearity of some devices, such that the intended intensities are
reproduced on the display.

The RGB colour model is the most common way to encode colour in comput-
ing, and several different binary digital representations are in use. Since colours are
usually defined by three components, then a three-dimensional volume is described
by treating the component values as Cartesian coordinates in a Euclidean space. For
the RGB model, this is represented by a cube using non-negative values within a 0-1
range, assigning black to the origin (0, 0, 0), and with increasing intensity values
running along the three axes up to white (1, 1, 1). An RGB triplet (r, g, b) represents
the three-dimensional coordinate of the point of the given colour within the cube or
its faces or along its edges. This approach allows computations of the colour simi-
larity of two given RGB colours by simply calculating the distance between them:
the shorter the distance, the higher the similarity.

2.2.2 HSI Colour Model

HSI stands for hue, saturation, and intensity. Other similar models are HSV where
V stands for value, and is also often called HSB (B for brightness) and HSL where
L stands for lightness. These colour models are the most common cylindrical-
coordinate representations of points in an RGB colour model, which rearrange the
geometry of RGB in an attempt to be more intuitive and perceptually relevant than
the Cartesian (cube) representation. They were developed in the 1970s for computer
graphics applications, in colour-modification tools in image editing software, and
for image analysis and computer vision.

In each cylinder, the angle around the central vertical axis corresponds to hue,
the distance from the axis corresponds to saturation, and the distance along the axis
corresponds to intensity, lightness, value or brightness. Hue refers to the same at-
tribute, while the definitions of saturation may differ. Because HSI is transforma-
tion of device-dependent RGB models, the physical colours they define depend on
the colours of the red, green, and blue primaries of the device or of the particular
RGB space, and on the gamma correction used to represent the amounts of those
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primaries. The resulting mixtures in RGB colour space can reproduce a wide vari-
ety of colours (called a gamut); however, the relationship between the constituent
amounts of red, green, and blue light and the resulting colour is unintuitive. Further-
more, neither additive nor subtractive colour models define colour relationships the
same way the human eye does [4, 11, 35]. In an attempt to accommodate more tra-
ditional and intuitive colour mixing models, the HSV model was developed in the
mid-1970s [38]. The following year, 1979, at SIGGRAPH, Tektronix introduced
graphics terminals using HSL for colour designation, and the Computer Graphics
Standards Committee recommended it in their annual status report. These models
were useful not only because they were more intuitive than raw RGB values, but
also because the conversions to and from RGB were extremely fast to compute:
they could run in real time on the hardware of the 1970s.

The drawback of these models is that they do not separate colour-making at-
tributes, or their lack of perceptual uniformity. Perceptual uniformity means that
a change of the same amount in a color value should produce a change of about
the same visual importance. HSI, HSV and HSB colour models ignore much of the
complexity of colour appearance. Other more computationally intensive models,
such as CIEL*a*b* better achieve these goals. If we plot the RGB gamut in a more
perceptually-uniform space, such as CIEL*a*b*, it becomes immediately clear that
the red, green, and blue primaries do not have the same lightness or chroma, or
evenly spaced hues.

2.2.3 CMYK Colour Model

The CMYK colour model (process colour, four colour) is a subtractive colour
model, used in colour printing, and is also used to describe the printing process
itself. CMYK refers to the four inks used in some colour printing: cyan, magenta,
yellow, and key (black). Though it varies by print house, press operator, press man-
ufacturer and press run, ink is typically applied in the order of the abbreviation.
The “K” in CMYK stands for key since in four-colour printing cyan, magenta, and
yellow printing plates are carefully keyed or aligned with the key of the black key
plate.

The CMYK model works by partially or entirely masking colours on a lighter,
usually white, background. The ink reduces the light that would otherwise be re-
flected. Such a model is called subtractive because inks “subtract” brightness from
white. In the CMYK model, white is the natural colour of the paper or other back-
ground, while black results from a full combination of coloured inks. This is the
opposite of additive colour models such as RGB, where white is the additive combi-
nation of all primary coloured lights, while black is the absence of light. However,
both RGB and CMYK spaces, model the output of physical devices rather than hu-
man visual perception.
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2.2.4 CIEL*a*b* Colour Model

The three coordinates of CIEL*a*b* represent the lightness of the colour (L* = 0
yields black and L* = 100 indicates diffuse white; specular white may be higher), its
position between red/magenta and green (a*, negative values indicate green while
positive values indicate magenta) and its position between yellow and blue (b*,
negative values indicate blue and positive values indicate yellow). The CIEL*a*b*
colour space is based on the CIEXYZ colour space coordinates. The CIEXYZ
colour space simulate the perceived brightness by the human eyes, that is with sensi-
tivity peaks in short (S, 420–440 nm), middle (M, 530–540 nm), and long (L, 560–
580 nm) wavelengths. Y means brightness, Z is quasi-equal to blue stimulation,
and X is a mix which looks like red sensitivity curve of cones. Thus, CIEL*a*b*
colour model can predict which spectral power distributions will be perceived as the
same colour (metamerism), but which is not particularly perceptually uniform. This
property can improve the reproduction of tones.

The CIEL*a*b* colour space includes all perceivable colours which means that
its gamut exceeds those of the RGB and CMYK colour models. CIEL*a*b* space
is much larger than the gamut of computer displays, printers, or even human vision,
a bitmap image represented as CIEL*a*b* requires more data per pixel to obtain
the same precision as an RGB or CMYK bitmap. One of the most important at-
tributes of the CIEL*a*b* model is the device independency. This means that the
colours are defined independent of their nature of creation or the device they are dis-
played on. Therefore, it is used as an interchange format between different devices.
CIEL*a*b* colour is designed to approximate human vision, and its L component
closely matches human perception of lightness. It can thus be used to make accurate
colour balance corrections by modifying any of the CIEL*a*b* components.

2.2.5 HSD Colour Model

HSD stands for hue, saturation, and density. The HSD transform was defined as the
RGB to HSI transform applied to optical density (OD) values rather than intensities
for the individual RGB channels [22]. The OD for a channel depends linearly on the
amount of stain, given the absorption value of the stain at each channel, thus fol-
lowing Lambert-Beers’ law of absorption. The overall measure for the OD can be
defined as the average of the OD for the three channels. According to van der Laak et
al. [22] a colour model used for recognition of stains in transmitted light microscopy
should not be based on the human visual system. Instead, it should provide chro-
matic information independent of the OD of the stain. Thus, the HSD model should
be suitable for stain recognition in digital images from transmitted light microscopy
and enable all possible distinctions in a 2D standardised data space [22].

It is out of the scope of this chapter go deeply to the formulation to convert
from the RGB colour model to others. The reader interested may refer to the cited
bibliography [45].
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Fig. 2 Colour models for the biopsy tissue sample

Fig. 3 Colour models for the cytology tissue sample

Figures 2 and 3 show the different colour models for the biopsy and cytology
tissue samples, respectively. Figure 4 shows all colour channels of the colour models
for the biopsy tissue sample.

All colour models have their advantages and drawbacks. It is necessary to iden-
tify which colour model is suitable to represent and reproduce the ROI under con-
sideration for each tissue type and WSI modality. This may be done by analysing the
distance colour formulae applied between two colours, d(x,y),with x = (x1,x2, x3)

and y = (y1, y2, y3).
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Fig. 4 Colour channels for the biopsy tissue sample

The distance considered within this study are: the Euclidean distance for the RGB
model (see Eq. (1)), the NBS colour distance formulae for HSI model (see Eq. (2))
and the CIEDE2000 for the CIEL*a*b*, colour model (see Eq. (3)).
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√
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where KL, Kc , KH are weight factors and the rest of components, SL, SC , SH , C′,
H ′, may be calculated by means of the, {L*, a*, b*} coordinates [45].

Moreover, another aspect to be considered is how to deal with the colour coor-
dinates, that is as a vector or in a marginal way. These aspects have been analysed
within this work. To this end the 3*2 distances to the most representative colour
ROIs and statistically identified on the image were calculated on different WSI, that
is to prostate biopsies and lung cytology stained with hematoxiline-eosine (HEO)
and papanicolau. The results are shown as follows.

3 Results

The results applied to microscopic images show that the Euclidean and NBS vector
distance for the RGB, HSI model respectively distinguish among different ROIs.
The same occurs with the CMYK and HSD model. The vector CIEDE2000 distance
for the CIEL*a*b* model reproduces in a better way the original colour. However,
the computational cost of the last one is higher than the other colour models, about
four times higher.

The first column of Figs. 5 and 6 show the segmentation into six classes of the
biopsy and cytology tissue samples respectively. The classes represent the most rel-
evant structures within the biopsy image. The classes were previously selected with
their representative colour pixels. Then, the distance of each pixel to the six classes
was calculated. Euclidean distance was used for the RGB and CMYK models, the
NBS distance for the HSI and HSD models and the CIEDE2000 for the CIEL*a*b*
model. The second column of Figs. 5 and 6 show the scatter plot of the segmented
pixels for all the colour models. The scatter plots show that all distance formu-
lae separate similarly the different classes. The worst results are obtained with the
CMYK colour model.

To quantify the goodness of the distance formulae a ROC analysis was carried on
for two of the classes corresponding to the lumen or glandular light and nucleus of
the biopsy sample. The true pixels belonging to the ROIs were indicated by experts
at Hospital General Universitario de Ciudad Real. Table 1 shows the ROC analysis
for the Euclidean, NBS and CIEDE2000 colour distance applied to the RGB, HSI,
CMYK, CIEL*a*b*, and HSD models for the biopsy tissue sample. It is shown that
the % of specificity is higher for the CIEDE2000 distance with lower value of FP.

4 Conclusions

This chapter has presented a comparative study among RGB, HSI, CMYK,
CIEL*a*b*, and HSD colour models applied to histological images. This analy-
sis, in turn, allows both distinguishing possible regions of interest and retrieving
their proper colour for further region analysis. The results applied to prostate biop-
sies stained with HE and lung cytologies stained with papanicolau show that the
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Fig. 5 Colour distance segmentation for the biopsy tissue sample
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Fig. 6 Colour distance segmentation for the cytology tissue sample
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Table 1 ROC analysis of the
colour distance formulae for
the biopsy sample

(a) Glandular Light ROI

FP FN TP Specificity

RGB (Euclidean) 0.0165 0.0669 0.9330 0.9834

HSI (NBS) 0.0067 0.0900 0.9097 0.9932

CMYK (Euclidean) 0.0075 0.0703 0.8852 0.8827

CIEL*a*b* (CIEDE2000) 0.0047 0.1007 0.9082 0.9952

HSD (NBS) 0.0085 0.083 0.9417 0.9863

(b) Nucleus ROI

FP FN TP Specificity

RGB (Euclidean) 0.1542 0.0406 0.9593 0.8457

HSI (NBS) 0.0992 0.1090 0.8909 0.9007

CMYK (Euclidean) 0.0703 0.0427 0.9101 0.7591

CIEL*a*b* (CIEDE2000) 0.0573 0.2230 0.7717 0.9426

HSD (NBS) 0.0798 0.0507 0.9682 0.9128

vector CIEDE2000 distance for the CIEL*a*b* model reproduces in a better way
the original colour.

Therefore, this comparison does allow us to choose the best colour model tailored
to the microscopic stain and tissue type under consideration to obtain a successful
processing. Moreover, a compromise between the computational cost and the results
focus always to distinguish between different colour detection and colour retrieval
for further ROI analysis should be kept. The colour model should be taken into
consideration when defining standards for histological images.
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A Review on CAD Tools for Burn Diagnosis

Aurora Sáez, Carmen Serrano, and Begoña Acha

Abstract A correct first treatment is essential for a favorable evolution of a burn
injury. To know the depth of the burn is necessary to develop an appropriate course
of treatment: correct visual assessment of burn depth relies highly on specialized
dermatological expertise. The cost of maintaining a burn treatment unit is high,
therefore it would be desirable to have an automatic system to give a first assess-
ment at primary health-care centers, where there is a lack of specialists. The aim of
the system is to separate burn wounds from healthy skin, and to distinguish among
different types of burn depth. Digital color photographs are used as inputs to the sys-
tem. Firstly, some topics related to image acquisition will be addressed. A method
to normalize colors when photographs have been acquired with different cameras
and/or illuminant conditions is described. Secondly, a comparative of several color
segmentation algorithms will be presented. Finally, to estimate the burn depth a clas-
sification method, that take into account different color-texture features extracted
from the burn images, will be described.

1 Introduction

For a favourable evolution of a burn injury, it is essential to initiate the correct first
treatment [10]. To know the depth of the burn is necessary to develop an appropriate
course of treatment: correct visual assessment of burn depth relies highly on spe-
cialized dermatological expertise. As the cost of maintaining a burn treatment unit
is high, it would be desirable to have an objective or automatic system to give a
first assessment at primary health-care centers, where there is a lack of specialists
[32, 36]. The World Health Organization demands that, at least, there must be one
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bed in a Burn Unit for each 500,000 inhabitants. So, normally, one Burn Unit cov-
ers a large geographic area. If a burn patient appears in a medical centre without
a Burn Unit, telephone communication is usually established between the closest
hospital with a Burn Unit and the local medical centre, where the non-expert doctor
describes subjectively the colour, size and other aspects considered important for
burn characterization. The result in many cases is the application of an incorrect
first treatment (very important, on the other hand, for a correct outcome for the pa-
tient and the wound), or unnecessary transportation of the patient, involving high
Healthcare cost and psychological trauma for patients and family [30].

Procedures and systems for computer-aided diagnosis (CAD) [12, 13, 29] have
gained increasing acceptance in medicine. However, the extension of the CAD con-
cept to the analysis of color images of skin lesions is being developing at a slower
pace due to difficulties in translating human color perception into objective rules
that may be analyzed by a computer.

Automatic burn wound diagnosis is still a unexplored field. In the related bibli-
ography, it can found that there is a tendency to investigate objective methods for
determining the depth of the burn in order to reduce the subjectivity and the high ex-
perience requirement that visual inspection demands. In this sense, there are works
trying to evaluate burn depth by using thermographic images [11, 33, 34], terahertz
pulsed imaging [19], polarization-sensitive optical coherence tomography [27] and
laser Doppler imaging [23, 24]. Afromowitz et al. [4, 5] try to give a diagnosis of
the burn depth from a estimation of the number of days that the wound will take
to heal. They measure the optic reflectivity in the red, green and infrared bands,
hypothesizing that it is highly correlated with burn healing time, and they form a
false colour image that indicates the time of healing, or equivalently, the depth of
the burn. Renkielska et al. [31] present active dynamic thermography (ADT) as a
quantitative method for burn wound discrimination by evaluating the thermal time
constants. The main disadvantage of these methods is the complexity and cost of the
image acquisition system.

Roa et al. [32] proposed the use of a digital photographic camera to develop an
affordable image-acquisition method that met the following clinical needs:

• The system should not be expensive because the cost involved in a realistic im-
plementation of the system should be low.

• The system should be easy to use by a physician or nurse because technicians
specialized in acquiring images will not be usually available at primary medical
centers.

• The system should preserve the essential characteristics of the burn wounds re-
quired for diagnosis.

In this sense, the group of Acha and Serrano [3, 37] has designed a clinically fea-
sible system for automatic burn wound classification based on visual digital images.
To achieve this aim, the following tasks have to be performed:

• Clinical needs establishment and development of the image acquisition protocol.
• Digital image processing: Once the image is acquired following a standardized

protocol, it is processed to get the information required for assessing the burn
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depth. Image-processing algorithms to isolate the burn from the rest of the scene
(segmentation), and to give the depth of the segmented burn part (classification)
have been designed.

• System validation: The system has been validated by a group of experts of a Burn
Unit.

In this chapter a review of CAD system for burns diagnosis in digital color pho-
tographs is presented. This involves some topics related to image acquisition and
color images characterization, color segmentation algorithms to isolate the burn
wound from the rest of the scene and methods to estimate the burn depth.

2 Color Image Acquisition

All the research efforts published in the literature go in the line of finding new acqui-
sition methods to analyse the depth of the burn [11, 19, 33, 34]. This is motivated by
the fact that the diagnosis by simple inspection is difficult even for an expert doctor.
Nevertheless, efforts described in this chapter have the color photograph as acqui-
sition method. Therefore in this Section, methods to maintain image independent
from the acquisition condition are analysed.

One of the main characteristics in the assessment of a burn wound that physicians
take into account is color; therefore, an image-acquisition system must preserve this
property to the highest accuracy possible.

Roa et al. [32] proposed a digital photographic camera as image acquisition de-
vice, which has a low cost and it is easy to use, essential for primary medical centers.

The main problem encountered in the analysis of digital photographs of burn
wounds is that, in practical situations, the illumination conditions in hospitals are
uncontrolled. As a result, the measured pixel values depend on the illuminants; with
multiple illuminants, the measured values cannot be accurately converted to a known
color space without additional information.

In the works of Serrano et al. [38] and Sáez et al. [35], two issues are discussed:

1. Experiments to study the influence of the most common illuminants encountered
in hospitals. As a result, it is shown that the xenon flash dominates the ambient
illumination. This is an important issue because the users will need to apply the
characterization method only for each camera and not each time the illumination
conditions change.

2. A colorimetric characterization algorithm that allows to convert RGB values un-
der unknown illuminant to RGB values under D50 illuminant.

2.1 Influence of Different Illumination Conditions

In the study conducted by Serrano et al. [38], images of the Macbeth Color
Checker® DC (Gretag-Macbeth GmbH, Martinsried, Germany) were acquired un-
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Fig. 1 The Macbeth Color Checker® chart DC (Gretag-Macbeth GmbH, Martinsried, Germany)
captured under halogen illuminant

der carefully controlled conditions in order to separate out the various factors affect-
ing the process. The images were captured in a dark room where all ambient light
could be excluded, and therefore, an image under a unique illumination source could
be taken (xenon flash, halogen or fluorescent light). Also, to take into account the
possibility of natural illumination, images were acquired outdoors in diffuse sun-
light. See Fig. 1 for illustration of an image of the Macbeth Color Checker® chart
obtained under halogen illuminant.

The experiment was performed with a Digital Reflex Canon EOS 300D cam-
era (Canon Inc., Tokyo, Japan), but the system was designed to be used with any
type of digital camera. The distance between the camera and the object was fixed
at approximately 0.5 m. A xenon flash was included in the camera. The positions
of the fluorescent lamps in the ceiling were not specified. The camera aperture
(Av) and focus were fixed at specific positions. In order to analyze the influence
of different illuminants, the exposure time (T v) was varied. An exposure time was
considered to be optimal under a particular illuminant when it was at the maxi-
mum possible value without saturating any channel. The ratio between the expo-
sure times gives an indication of the influence of the different sources of light.
The optimal exposure times obtained were T v = 1/200 s, 0.6 s, and 1.6 s with
the xenon flash, sunlight, and fluorescent light, respectively. The exposure times in-
dicate that the flash is 320 times stronger than the fluorescent light used and 120
times stronger than the sunlight conditions in the experiments. In other words, if
T v = 1/200 s and 8 bits are used per color component, the fluorescent light will
not influence even the least significant bit (LSB); the sunlight conditions will in-
fluence two LSBs. In another analysis, the maximal pixel values obtained under
flash illumination, under daylight plus fluorescent illumination, and with no illu-
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Table 1 Maximal pixel values of a photograph of the Macbeth Color Checker® DC (Gretag-
Macbeth GmbH, Martinsried, Germany) for different illumination conditions with the same camera
parameters

Illumination R G B

Flash 227 196 188

Fluorescent light and sunlight 5 7 4

No illumination 4 5 4

mination at all (with the lens of the camera covered with its cap) were compared.
The same camera parameters (Av = 20, ISO = 100, T v = 1/200 s) were used.
Taking a photograph under both the fluorescent and sunlight illumination condi-
tions with T v = 1/200 s would yield images with only two LSBs having nonzero
values.

The results, summarized in Table 1, confirm that all of the illumination conditions
evaluated other than the xenon flash influence only the two LSBs.

Therefore, Acha et al. in [3] proposed the following acquisition protocol for burn
wounds: distance between camera and patient should be about 40–50 cm, the back-
ground should be a green/blue sheet, the flash must be on and the camera should be
placed parallel to the burn wound. The parameters of the camera were set to: ISO
speed 100, exposure time 1/200 s and aperture (f stop) 20.

2.2 Colorimetric Characterization Algorithm

An additional problem encountered is the camera cannot perform the chromatic
adaptation that the human eye automatically performs. Therefore, a photographed
surface with several illuminants show different colors for each illuminant. In [35]
is proposed a characterization method based on the Gretag-Macbeth Color Checker
target [39]. The authors used the Macbeth ColorChecker DC chart with 240 color
chips. It is supplied with data giving the CIE XYZ chromaticity coordinates of
each chip under D50 illuminant. The algorithm creates interpolation curves using
spline cubic interpolation, based on points formed by RGB values of gray chips
of the photographed chart under unknown illuminat and the RGB values for these
gray chips, under D50 illuminat, provided by the manufacturer. These interpolation
curves are applied to the photographed images under the same unknown illumi-
nant that Macbeth ColorChecker DC chart was captured. The RGB values of these
images under the unknown illuminant are matched with RGB values under D50
illuminant.

In order to illustrate the performance of the algorithm, a magenta color sheet was
photographed under four different illuminants: a halogen lamp, fluorescent lights,
a xenon flash, and afternoon sunlight. Figure 2 shows the photographs obtained
under the different illuminants before and after the characterization step. It can be
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Fig. 2 A magenta sheet
photographed under four
different illumination
conditions: (a) a xenon flash,
(b) afternoon sunlight,
(c) fluorescent lights, and
(d) a halogen lamp.
(e)–(h) The characterized
images corresponding to the
images in (a)–(d),
respectively

observed that, after the characterization procedure, the four photographs present
similar colors.

3 Segmentation

Different segmentation methods have been applied in the literature to segment burn
wounds. In her PhD thesis [1], Acha proposed a segmentation method based on
color analysis. It was applied to a small database. Result images were presented
but a quantitative analysis of the segmentation is missing. In [3] a new method is
presented and a quantitative evaluation, with comparison to manual segmentation,
is shown. Finally, Castro et al. [9] present results of the segmentation of burns with
different fuzzy-cmeans algorithms. In the following subsections, the former algo-
rithms will be described and results for each of them will be presented.
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3.1 Segmentation Based on Angular Distances Applied to Hue

In this algorithm [1] burn images are segmented following the steps described below.
Preprocessing. In this preprocessing step the image is transform to hue, satura-

tion and lightness (Ł∗) according to the transform standardized by CIE in 1976 [22].
Then, an anisotropic diffusion is applied to the chromatic and achromatic informa-
tion [21, 26].

Image transform to a one-channel image. Through a color analysis, the color im-
age is transformed to a one-plane image where the burn is in the most left side of the
histogram. To this aim a minimum intervention of the user is required: a point inside
the burn must be selected with the mouse. This will be considered the burn color,
(L∗

b, huvb, suvb). The objective of this step is to transform the color information of
each pixel in the image, (L∗, huv, suv), described by means of hue and saturation,
into an only parameter, duv , correlated to the color difference between each pixel in
the image and the pixel selected by the user inside the burn. This parameter must
be low inside the burn and higher in the rest of the image. Thus color differences to
the selected point could be used. In this algorithm, a combination of an angular dis-
tance for the hue and linear distance for the saturation was proposed. In particular,
the distance between huv and huvb was estimated with an expression similar to the
Von Mises distribution of the difference of both quantities as:

duvh(n,m) = huvb

exp (W)
exp

(
W cos

(
huv(n,m) − huvb

))
, (1)

where W is the parameter that controls the selectivity around huvb of the function
duv(n,m). As regards to saturation, in [1] the distance between suv and suvb is mod-
elled as the Gaussian of the scalar difference:

duvs(n,m) = suvb exp

(
− (suv(n,m) − suvb)

2

2σ 2
c

)
, (2)

where σc controls the selectivity of the function duvs . W and σc were fixed ex-
perimentally, equal for all the database, according to the variability that hue and
saturation present within each burn wound. Finally duvh and duvs were combined
as:

duv = βduvh + (1 − β)duvs; (3)

According to [1], the weight β is a parameter that varies between 0 and 1 and
weights the importance of hue or saturation in the burn perception. Segmentation
results for some images from the database are presented in Figs. 3, 4 and 5. They
are shown in comparison to segmentation obtained with the algorithm presented
in [3], explained below.

3.2 Segmentation Based on Color Distances

The segmentation approach used here is a supervised pixel-based algorithm based
on measures in the CIE L*u*v* color coordinate space. L*u*v* and L*a*b* color
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Fig. 3 Segmentation results:
(a) Original image,
(b) Segmentation based on
angular distances applied to
hue, (c) Segmentation based
on color distances

representation systems are called uniform systems because Euclidean distances be-
tween colors measured in these spaces are very much correlated with color differ-
ences according to human perception. They slightly differ because of the different
approaches to their formulation. Nevertheless, both spaces are equally good in per-
ceptual uniformity and provide very good estimates of color difference (distance)
between two color vectors [28]. The following steps show the scheme proposed.

• Selection of a Small Region in the Burn Wound by the user and Preprocessing
of the image. The burn wound will be segmented using the color information of
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Fig. 4 Segmentation results:
(a) Original image,
(b) Segmentation based on
angular distances applied to
hue, (c) Segmentation based
on color distances

a 5 × 5 pixel area around the point that the user selects with the mouse. Before
segmenting the image, it is convenient to preprocess it in order to get more ho-
mogeneous regions eliminating noise and small structures. To perform this task,
an anisotropic diffusion is applied to the color image [21, 26]. The aim of the dif-
fusion is to make the regions more homogeneous but preserving the edge infor-
mation. In order to perform the anisotropic diffusion, the approach of separating
the diffusion of the chromatic and achromatic information was followed [21].
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Fig. 5 Segmentation results:
(a) Original image,
(b) Segmentation based on
angular distances applied to
hue, (c) Segmentation based
on color distances

• Conversion to Single Channel Image. In this step a single channel image is ob-
tained from the diffused color image. In this gray scale image, differences be-
tween the burnt skin selected by the user and other parts of the image are empha-
sized. Based on the observation that doctors segment burn wounds by measuring
differences among colors, the selection box selected by the user is slid as a mask
of size 5 × 5 pixels along the image and, for each pixel in the image under the
center of the sliding mask, the following operation is performed:
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f (m,n) = 1

MAX

Δ∑

i=−Δ

Δ∑

j=−Δ

dE

[
p(i + m,j + n), w(i, j)

]
, (4)

where

MAX = max
m,n

{
Δ∑

i=−Δ

Δ∑

j=−Δ

dE

[
p(i + m,j + n), w(i, j)

]
}

; (5)

Δ = (L − 1)/2 with L = 5; p(m,n) = [L∗
p(m,n),u∗

p(m,n), v∗
p(m,n)]T represents

a pixel in the filtered image to be segmented in the L∗u∗v∗ color space; w(i, j) =
[L∗

w(i, j), u∗
w(i, j), v∗

w(i, j)]T is a pixel of the mask selected by the user; and dE[ ]
is the Euclidean distance between the pixels given in the argument. The result of the
preceding step is a grayscale image where pixels with the lowest values are those
in the region to be segmented. This step has been designed to emphasize the burned
regions, and a thresholding operation should suffice to obtain a good segmentation
of the wound. The histogram of the distance image is typically multimodal; thus, an
optimal threshold to select the mode on the left-hand side or lower-valued side of
the histogram needs to be found. This task is carried out in two steps:

1. The peaks (maximum values) of the various modes present in the histogram are
found by applying the procedure described in [3].

2. The threshold that separates the two modes close to the lower end of the his-
togram is calculated by applying Otsu’s thresholding method [25].

Finally, a 3 × 3 median filter is applied to remove spurious pixels in the result of
segmentation. The segmentation algorithm described above was tested with 35 burn
images, which were also manually segmented by five physicians [37]. The reference
image (gold standard) to verify the result of segmentation was obtained by applying
a voting method to the regions segmented by the five specialists for each case: a pixel
was considered to belong to the segmented (wound) region in the reference image if
the majority (at least three) of the physicians had marked it as such. Two parameters
were computed to characterize the performance of the segmentation algorithm. The
first parameter was the positive predictive value (PPV), which is the ratio between
the number of pixels segmented by the algorithm that agree with the reference image
and the total number of pixels segmented. The second parameter was the sensitivity,
which is the ratio of the number of pixels segmented by the algorithm that agree
with the reference image to the total number of pixels marked as wound in the
reference image. The first parameter readily characterizes oversegmentation, which
would be null if PPV = 1; on the other hand, sensitivity gives an indication of under-
segmentation. For the 35 images tested in the work of Acha et al. [37], an average
sensitivity of 0.8301 was obtained with a standard deviation of 0.09, and an average
PPV of 0.9023 was obtained with a standard deviation of 0.078.
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3.3 Fuzzy Clustering Algorithms

Castro et al. in [9] present the results of the evaluation of various fuzzy cluster-
ing algorithms applied to the segmentation of a heterogeneous set of burn wounds
images. The study compares recent and classical algorithms in order to establish a
better comparison between the benefits of more complex techniques for pixel clas-
sification. RUMA (Relative Ultimate Measurement Accuracy) [42] and a measure-
ment for the global success rate [6] were used to evaluate the success rate of these
fuzzy clustering algorithms. The authors conclude that the best algorithm is FKCM
(Fuzzy Kernel C-Means) [41], thanks to its excellent results and high stability. How-
ever, if it were possible to control the condition in which the photograph is taken, the
best algorithm would be MFCM (Modified Fuzzy C-Means) [20]. Both algorithms
explained bellow.

3.3.1 Fuzzy Kernel C-Means (FKCM)

This algorithm was proposed by Wu et al. [41]. Before clustering, original data
are mapped into a higher dimensional feature space in a nonlinear manner so that
each class possess most dissimilarity from other classes. A kernel function is used
to make it practical. The R, G, B components of the burn wounds image are the
original feature space in [9].

In the following, the image of a input data Xi , i = 1,2, . . . ,N in the high
dimensional feature space is denoted by φ(Xi), j = 1,2, . . . ,M , where φ(·) is
nonlinear mapping function: φ : Rp → Rq , p � q . Typical kernel functions are
polynomials K(X,Y) = φ(X) · φ(Y) = (X · Y + b)d and radial basis functions
K(X,Y) = φ(X) · φ(Y) = exp(−(X − Y)2/2σ 2). The Euclidean distance between
Xi and Xj in the feature space of the kernel K can be defined:

dij = dist
(
φ(Xi),φ(Xj )

)=
√∥∥φ(Xi) − φ(Xj )

∥∥2 (6)

and distances can be computed directly from kernel function:

dij =
√

φ(Xi) · φ(Xi) − 2φ(Xi) · φ(Xj ) + φ(Xj ) · φ(Xj )

=
√

K(Xi,Xi) − 2K(Xi,Xj ) + K(Xj ,Xj ) (7)

Based on the original FCM [18], the FKCM algorithm in the high dimensional
feature space is as follows:

1. Choose the number of centroids C

2. Choose kernel function K and its parameters
3. Initialize centroids Vj , j = 1,2, . . . ,C

4. Compute the degree of memberships of all feature vectors in all the clusters (uij ,
j = 1, . . . ,C; i = 1, . . . ,N ):

uij = (1/d2(Xi ,Vj ))
1/(m−1)

�C
j=1(1/d2(Xi ,Vj ))1/(m−1)

(8)
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where d2(Xi ,Vj ) = K(Xi ,Xi )− 2K(Xi ,Vj )+K(Vj ,Vj ) and m ∈ (1,∞) is a
fuzzy index which determines the fuzziness of the clusters.

5. Compute new kernel matrix K(Xi , V̂j ) and K(V̂j , V̂j ):

K(Xi , V̂j ) = �N
k=1(ujk)

mK(Xk,Xi )

�N
k=1(ujk)m

(9)

K(V̂j , V̂j ) = �N
k=1�

N
l=1(ujk)

m(ujl)
mK(Xk,Xl)

(�N
k=1(ujk)m)2

(10)

Update the degree of membership uji to ûj i according to 8
6. If maxj,i |uji − ûj i | < ε stop, otherwise, go to step 5, where ε ∈ (0,1) is a ter-

mination criterion.

3.3.2 Modified Fuzzy C-Means (MFCM)

This algorithm is based on the work of Lim and Lee [20], who describe an algo-
rithm for the segmentation of color images considered as a kind of coarse to fine
technique. The coarse segmentation stage attempts to segment coarsely by using the
thresholding technique. The histograms of each color band are smoothed by apply-
ing scale-space filtering to obtain a set of cut threshold that isolate the color inten-
sity levels appear in the image. The number of regions corresponds to the number of
significant peaks in the histogram. The valleys of the histograms correspond to am-
biguous areas. The pixels belonging to these areas cannot be assigned to any valid
class. These pixels which are not segmented by a coarse segmentation are further
segmented using the FCM in the fine segmentation stage.

4 Determination of Burn Depths

Once the burn wound is segmented, the next step is to determine its depth. There
are three main types of burn depth [10]:

1. Superficial dermal burn. The epidermis and part of the dermis are destroyed. It
is characterized by the presence of blisters (usually brown color) and/or a bright
red color.

2. Deep dermal burn. Its pink-whitish color characterizes it.
3. Full-thickness burn. All the skin thickness is destroyed and skin grafts are

needed. It is characterized by a beige-yellow or a dark brown color. So, there
are five different aspects of the burn wound, although only three depths.

Although a burn wound is classified in three classes, it can present five different
appearances.

1. Blisters: they are superficial dermal burns with a bright texture and a rose-brown
color.
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Fig. 6 Different appearances
that could present a burn,
(a) Superficial dermal
(blisters), (b) Superficial
dermal (red), (c) Deep
dermal, (d) Full thickness
(beige), (e) Full thickness
(brown)

2. Bright red: they are superficial dermal burns with bright red colors and wet ap-
pearance.

3. Pink-white: they are deep dermal burns with a dotted appearance.
4. Yellow-beige: first appearance of full-thickness burns.
5. Brown: second appearance of full-thickness burns.

Examples of each appearance are shown in Fig. 6.
It has been proven that physicians determine the depth of a burn based on color

perception, as well as on some texture aspects. In their work, Acha et al. [3] choose
features based on a perceptually uniform color space to attain the goal of classifying
burn wounds. Fondon et al. [15] try to analyze which features physicians uncon-
sciously take into account to determine the depth and try to translate them into a
mathematical quantities. Processes of feature selection have also been addressed in
the literature. In [2] a comparison of feature selection results when different classi-
fiers are used, is presented. These issues will be described in this section.

4.1 Features Extraction

4.1.1 Features Based on Color and Statistical Moments

As it has been said, physicians determine the depth of a burn based on color per-
ception and on some texture aspects. In two different studies, two set of color and
texture features have been proposed.

In [3], a set of descriptors formed by statistical moments of the histograms ob-
tained for each coordinate of the L*u*v* color space, as well as for the hue and
chroma image planes derived from them, were used. L*u*v* space is a perceptu-
ally uniform color representation system. Also, the hue and the chroma coordinates
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are intimately related to the way human beings perceive chromaticity. More specif-
ically, the descriptors chosen were: mean of lightness (L*), mean of hue (h), mean
of chroma (c), standard deviation of lightness (σL), standard deviation of hue (σh),
standard deviation of chroma (σc), mean of u*, mean of v*, standard deviation of
u* (σu), standard deviation of v* (σv), skewness of lightness (sL), kurtosis of light-
ness (kL), skewness of u* (su), kurtosis of u* (ku), skewness of v* (sv) and kurtosis
of v*. Afterwards it was necessary to apply a descriptor selection method to obtain
the optimum set for the subsequent classification.

In the second set of features, coordinates of the L*a*b* color space, the hue
and chroma image planes derived from them and RGB coordinates are used. The
descriptors chosen in this case are: mean, standard deviation, skewness and kurtosis
of red component (R), green component (G) and blue component (B), lightness
(L*), a* component (a*), b* component (b*), chroma (C), saturation (S), difference
between red band and green band (RG) and difference between blue band and green
band (BG). As in the previous features set a feature selection step is needed to
analyse the discrimination power of these 40 features.

In Sect. 4.3.3 the results for the feature selection step of these two sets are pre-
sented.

4.1.2 Features Extracted from Multidimensional Scaling

Fondon et al. in 2006 [15] proposed to find features which expressed in quantitative
measures the experience that physicians use to diagnose and which were closely
related to human perception and mathematically well supported. Instead of trying
to guess which were the most powerful characteristics in a burn, the authors needed
to discover which were the features that consciously or unconsciously were used by
the medical experts when they made an assessment.

An experiment was performed with the help of 8 experts and following the Rec-
ommendation ITU-R BT. 500-10. A comparison between a pair of images that the
medical experts had to rate between 0 and 10, where 0 meant that the images were
totally different and 10 that the images ere totally similar was performed. The results
were processed with Multidimensional Scaling (MDS) and interpreted with the help
of a Hierarchical Cluster Analysis (HCA). The images were projected into the three
obtained main dimensions. This graphic was presented to a panel of six experts in
Image Processing to identify each dimension with a feature or subjective meaning.
The dimension 1 was identified with amount of pink in the image, the dimension 2
with texture of the color and the dimension 3 with freshness of the skin. A further
step would be to mathematically describe these subjective characteristics.

4.2 Feature Selection

The discrimination power of the features based on color and statistical moments
was analyzed in [3] using the Sequential Forward Selection (SFS) method and the
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Sequential Backward Selection (SBS) method [16] via the Fuzzy-ARTMAP neural
network which is detailed in the following subsection. Feature selection is to select
the best subset from the input space.

SFS is a bottom-up search procedure where one feature at a time is added to the
current feature set. At each stage, the feature to be included in the feature set is
selected among the remaining available features which have not been added to the
feature set. So the new enlarged feature set yields a minimum classification error
comparing to adding any single feature. The algorithm stops when adding a new
feature yields an increase of the classification error.

The SBS is the top-down counterpart of the SFS method. It starts from the com-
plete set of features and, at each stage, the feature which shows the least discrimina-
tory power is discarded. The algorithm stops when removing another feature implies
an increase of the classification error.

To apply these two methods, fifty 49 × 49 pixel images per each appearance
were used. As there are five appearances, there are 250 49 × 49 pixel images in all.1

The selection performance was evaluated by fivefold cross validation (XVAL) [17].
In this sense, the disadvantage of sensitiveness to the order of presentation of the
training set, that the SBS and SFS methods present, was diminished. To perform
the XVAL method the 50 images per burn appearance were split into five disjoint
subsets. Four of these subsets (that is, 40 images per appearance) served as training
set for the neural network, while the other one (10 images) was used as validation
set. Then, the procedure was repeated interchanging the validation subset with one
of the training subsets, and so on till the five subsets were used as validation sets.
The final classification error was calculated as the mean of the errors for each XVAL
run.

4.3 Classifiers Used

The feature selection, explained in the previous section, needs to have an associated
classifier. As it has been explained previously, Acha et. al. in [3] used a Fuzzy-
ARTMAP neural network as classifier. In a later work [2], the authors made a com-
parison between that classifier and a non-linear support vector machines with dif-
ferent kernels.

In this section the results of both methods are presented.

4.3.1 Fuzzy-ARTMAP Neural Network

This type of network is based on the Adaptive Resonance Theory developed by
Grossberg and Carpenter [8]. Fuzzy-ARTMAP is a supervised learning classifica-

1The 250 49 × 49 pixel images were small images showing each one only one burn appearance
(no healthy skin or background). Each 49 × 49 pixel image was validated by two physicians as
belonging to a particular depth.
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tion architecture for analog-value input pairs of patterns. Fuzzy-ARTMAP offers
the advantages of well-understood theoretical properties, an efficient implementa-
tion, clustering properties that are consistent with human perception, and a very fast
convergence. It has also a track record of successful use in industrial and medical
applications [14]. Other strong points of this type of neural network are the small
number of design parameters (the vigilance parameter, ρa ∈ [0,1], and the selection
parameter, α > 0) and that the architecture and initial values are always the same,
independent of the application.

4.3.2 Support Vector Machine

Support vector algorithms [7] constitute one of the crucial advances about Com-
putational Learning in the 1990s. They are the final step in a long research way
known as Statistical Learning, carried out mainly by Vladimir Vapnik [40]. Sup-
port Vector Machines are based in the transformation of the input space into another
one of higher dimension (usually infinite) in which the problem can be solved by
means of a hyperplane optimal (maximum margin). Vector machine formulation is
based in the principle of structural risk minimization, which has been shown better
than the principle of empirical risk minimization, which is the one used by many
conventional neural networks.

The advantages of SVM can be summarized as:

• The training is a problem of convex quadratic programming. Therefore, there
are algorithms computationally efficient and the finding of a global extremum is
guaranteed.

• It is less susceptible of overfitting than neural networks.
• It allows to work with non-linear relationships between data (it generates non-

linear functions by means of kernels).
• It generalizes well with a few training samples.

4.3.3 Feature Selection Results

As already mentioned above, the SFS and SBS methods (Sect. 4.2) needs to have an
associated classifier. In this section the results of applying the feature selection to
the sets of features based on color and statistical moments presented in Sect. 4.1.1
are summarized in Tables 2 and 3. The average error is calculated counting the
misclassifications and dividing by the total number of images used to validate.

Acha et al. [2] presented the results of the feature set based in L*u*v* color space
using the Fuzzy-ARTMAP Neural Network and SVM. For the Fuzzy-ARTMAP
Neural Network, the SBS feature set (lightness, hue, standard deviation of the hue
component, u* chrominance component, standard deviation of the v* component,
skewness of lightness) showed the smaller average classification error. SVM was
trained using some different kernels. The minimum classification error was obtained
for the SVM with 1 variance Gaussian kernel. This classification error was the same,
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Table 2 Results of SFS and SBS methods for features based on L*u*v* color space

Classifier Method Feature set Average error

Fuzzy-ARTMAP SFS L∗, H, σC , u∗, v∗, σv , sL 2 %

SBS L∗, H, σH , u∗, σv , sL 1.6 %

SVM SFS L∗, H, S, σS , u∗, σu∗ , sL 0.7 %

Table 3 Results of SFS for features based on L*a*b* and RGB color spaces

Classifier Method Feature set Average error

Fuzzy-ARTMAP SFS a∗, B, σb∗ , S, sR , R-B, σa∗ , 2.1 %

0.7 %, when was used both the SBS and SFS methods. But in the case of SFS
method less features were needed, so that was the method chosen. More specifically,
7 features were required. These 7 features were: lightness mean, hue mean, satura-
tion mean, saturation standard deviation, u* mean, u* standard deviation, lightness
skewness.

The features set based on L*a*b* color space and RGB components was anal-
ysed using only the Fuzzy-ARTMAP neural network as classifier. A 2.1 % classi-
fication error was obtained both in SFS and in SBS, however in the case of SFS
method the number of features was smaller.

4.4 Classification Results

The features selection allows to obtain the most discriminant features to distinguish
between the different depths of burn. These features are used as input to the classifier
to characterize images with unknown burn depth.

Acha et al. [3] presented the classification results for the Fuzzy-ARTMAP neu-
ral network using the set of selected features based on L*u*v* color space (see
Sect. 4.3.3). To test the classification part the authors used 62 images. The neural
network was trained with the 250 49×49 pixel images previously cited in Sect. 4.2.
The training was performed with ρa = 1 and α = 0.001. At the end of the training
the weights were fixed for the subsequent classification test. For this test the six fea-
tures were extracted from the segmented part of the 62 images. The mean value of
the 6 features was assigned to each image. Classification results are summarized in
Table 4. 22 images with superficial dermal burns, 18 with deep dermal burns and 22
with full-thickness burns were used. The average success percentage was 82.26 %.
All superficial dermal burns misclassified were classified by the network as deep
dermal ones. All deep dermal burns misclassified were classified by the neural net-
work as superficial dermal ones. And, in the case of misclassified full-thickness
burns, 80 % of them were classified as superficial dermal and 20 % as deep dermal.
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Table 4 Classification
results for the
Fuzzy-ARTMAP neural
network using the features
based on L*u*v*

Burn depth Success percentage

Superficial dermal 86.36 %

Deep dermal 83.33 %

Full thickness 77.27 %

Average 82.26 %

Fig. 7 (a) Original image of
burn wound. (b) Classified
lesion, green = Superficial
dermal (blisters), red =
superficial dermal (red),
blue = deep dermal,
white = Full thickness
(beige), brown = Full
thickness (brown)

Later, in another analysis, the selected features based on L*a*b* and RGB coor-
dinates have been used as input of the neural network. In this analysis, the network
classified each pixel of segmented burn instead of providing an only classification
value for the complete segmented burn wound. This yield a pixel-based classifica-
tion which is very useful since in each image different burn depth can appeared. An
example image is shown in Fig. 7 where it can be seen the classification of each
pixel individually.
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5 Discussion

In this chapter, different efforts existing in the literature to develop a CAD tool for
the classification of burns into their depth have been described. Different acquisition
methods have been proposed. In this chapter, all the image processing procedures
to classify images acquired with digital color camera are described. First, existing
method to make color of the burn independent from the acquisition conditions is
exposed. Secondly, different methods proposed in the literature to segment the burn
are presented. Finally, different color and texture features and different classifiers
are utilized to classify. Some methods described in this chapter have been previously
published and some others are still unpublished.
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