Chapter 22

Allocation and Sizing of Multiple Tuned Mass
Dampers for Seismic Control of Irregular
Structures

Yael Daniel and Oren Lavan

Abstract This chapter presents a methodology for the optimal design of multiple
tuned mass dampers (TMDs) in 3D irregular buildings. The objective function
minimizes the total mass of all added TMDs while constraints are added to limit the
total accelerations experienced at the edges of the floors in the direction parallel to
each edge. The formulation of the design methodology relies on optimality criteria
conjectured herein; hence, a two-stage iterative analysis/redesign procedure, that is
based on analysis tools only, is resulted. The methodology applies to all types of
irregularity, which allows the application of the methodology in a practical design
process.

22.1 Introduction

Seismic protection of structures is an important issue in structural design due to
its threatening consequences. Often, it is required that the design of the structure
provide even more than life safety, promising a certain level of serviceability
following a severe earthquake, while allowing for a defined level of damage, i.e.,
performance-based design. In performance-based design, it is often desired to limit
important responses such as inter-story drifts, total accelerations, residual drifts, and
hysteretic energy.

There is ample literature on the reduction of structural responses to earthquakes
through passive control. Several passive damping devices are available, including
viscous, viscoelastic, metallic, and friction dampers (see, e.g., Soong and Dargush
1997; Christopoulos and Filiatrault 2006; Takewaki 2009). For wind vibration

Y. Daniel (<)  O. Lavan

Faculty of Civil and Environmental Engineering, Technion — Israel Institute of Technology,
Haifa 32000, Israel

e-mail: yaeldan @tx.technion.ac.il; lavan@tx.technion.ac.il

0. Lavan and M. De Stefano (eds.), Seismic Behaviour and Design 323
of Irregular and Complex Civil Structures, Geotechnical, Geological

and Earthquake Engineering 24, DOI 10.1007/978-94-007-5377-8__22,

© Springer Science+Business Media Dordrecht 2013



324 Y. Daniel and O. Lavan

control of tall buildings, tuned mass dampers (TMDs) are often effectively used
(e.g., McNamara 1977). Details about TMDs and their applications may be found
in the fine works of Den-Hartog (1940), Warburton (1982), and Soong and Dargush
(1997), only to name a few. As wind response of buildings is kept within the linear
range and is usually dominated by a single mode, TMDs indeed provide a very
efficient solution. Seismic action, on the other hand, may cause yielding of the struc-
ture, which can jeopardize the action of TMDs due to their detuning. In addition, in
seismic vibrations, no single distinct frequency dominates the behavior, but rather
many frequencies, including the ones of higher modes. Those two obstacles have led
many researchers to be hesitant in using TMDs for seismic structural applications
(e.g., Kaynia et al. 1981; Sladek and Klingner 1983). Nonetheless, provided those
obstacles are overcome, TMDs could provide a very promising alternative for multi-
hazard mitigation for both winds and earthquakes.

The two aforementioned obstacles can often be overcome quite easily. In some
cases where TMDs are used, inter-story drifts may already be reduced below yield
drifts, and thus the structure remains elastic. A particular example to that could be
found in cases where the static portion of wind loading dominates the lateral load
design which results in a stiff and strong structure. Here, of course, the reduction of
other structural responses (e.g., total accelerations) to both winds and earthquakes
may also be desired. In addition, even if yielding does occur, causing the effective
structure’s stiffness to shift and thus the TMD to detune, the use of a semi-active
TMD (SATMD) has been proposed (e.g., Nagarajaiah and Sonmez 2007; Roffel
et al. 2010). Another approach that is based on passive control could split the TMD
to several TMDs, each tuned to a slightly different frequency within a bandwidth
close to the natural frequency of the main system, thus reducing the detuning effect
and allowing design robustness (e.g., Xu and Igusa 1992), and in the case of 3D
structures, (Jangid and Datta 1997; Li and Qu 2006). Of course, this approach is
suitable only for cases where yielding is limited.

As for the second obstacle, regarding the multimodal seismic response, several
solutions were proposed. One solution is the use of an active TMD (ATMD)
which uses a control law to alter the frequency of the device at each moment
(e.g., Abdel-Rohman 1984). This solution, however, requires a large external power
supply to be activated, which may be costly and may force a reliability issue
during an actual earthquake. Another possible solution, that is adopted herein, is
the use of multiple TMDs (MTMDs), each tuned to a different frequency. These
MTMDs could be distributed along the structure and located at locations which will
optimize the control of the structure. The idea of using MTMDs tuned to various
natural frequencies of the structure is not new. Clark (1988) indicated that a single
TMD cannot significantly reduce the motion created due to seismic excitations,
while MTMDs can substantially reduce motion. Moon (2010) shows a practical
application of vertically distributed MTMDs in tall buildings for reducing wind-
induced vibrations and offers a method of distributing them by mode shape.

In the literature, there are not many methodologies available for the design
of MTMDs of various frequencies and locations in seismic application. In their
pioneering work, Chen and Wu (2001) use a frequency-based transfer function
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as a response measure of the multimodal vibration problem of structures and
allocate multimodal MTMDs using a sequential search technique. Luo et al. (2009)
minimized a dynamic magnification factor of the first mode obtained based on the
transfer function of the structure’s response in frequency domain. Lin et al. (2010)
proposed a two-stage frequency domain-based optimal design of MTMDs taking
into consideration both the structural response and the TMD stroke. Fu and Johnson
(2011) suggest using passive MTMDs with a vertical distribution of mass, where
each story is assigned with one TMD of which its parameters are optimized as
to minimize the sum of inter-story drifts. As for methodologies for designing 3D
asymmetric structures, several methodologies using genetic algorithms exist (Singh
et al. 2002; Ahlawat and Ramaswamy 2003; Desu et al. 2007). Other optimization
methods for similar problems were taken in (Lin et al. 1999, 2011). Some of these
methodologies only allow for dampers to dampen a single mode. While the above
methodologies present a huge step forward, there is still no methodology which
allows the possible dampening of all modes and leads to a desired performance in
small computational efforts while using analysis tools only.

This chapter presents a simple performance-based design methodology for the
allocation and sizing problem of multimodal MTMDs in structures undergoing
seismic excitations. In many cases where TMDs are considered for wind mitigation,
the static portion of wind loading dominates the lateral load design to result a stiff
and strong structure. Hence, with the addition of TMDs, inter-story drifts may not be
the main response of concern, and the reduction of total accelerations may become
of major importance. Hence, the objective function minimizes the total mass of all
added TMDs, while limiting the total accelerations experienced at the edges of the
floors in the direction parallel to each edge. The methodology is based on a simple
iterative analysis/redesign procedure where, first, an analysis is performed for a
given design and then redesign of the TMDs is performed according to recurrence
relations. The redesign first determines the mass of all dampers at a given location
based on local acceleration measures. It is then distributed between dampers tuned
to various frequencies. The proposed performance-based methodology is simple,
relies on analyses tools only, generally applies to any irregular 3D problem, and
possesses fast convergence.

22.2 Problem Formulation

22.2.1 Egquations of Motion

Following Soong and Dargush (1997), the equations of motion of a MDOF system
can be represented in state-space notation as

X(1) = A-R(1) +B-a,(t); y(t) = CC-k(1) (22.1)
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where XT = [XT )'(T] : x € RV, % € R?V is the state variable vector, x(¢)
is the displacement vector between the DOFs and the ground, a, () is the ground
motion’s acceleration, a dot represents the derivative with respect to time, and y(¢)
is the output vector of the system, whose entries are responses of interest. Those
responses are a linear combination of the state variables and the input forces (in
our case y(#) = x(¢) gives an output of displacements, absolute acceleration will be
accounted for later). The matrices A, B, and CC are defined as following

0 I 0
A= [_ﬁﬁvK _ﬁx_flvc} B = [ le} CC = [Tyan 0, ] 222
where M, C, and K are the mass, inherent damping, and stiffness matrices of the
structure according to the chosen N degrees of freedom (DOFs), respectively, e is
the excitation direction vector, I is the identity matrix, and 0 is a zero matrix of
appropriate dimensions as noted. It should be noted that for the sake of presentation,
Eq. (22.1) and the following methodology are presented using a single input
(component of the ground motion).

22.2.2 Performance Measures

As previously mentioned, there are many cases where inter-story drifts and struc-
tural damage levels under a severe ground motion obtain acceptable values. In these
situations, total accelerations are to be limited.

Added TMDs help control the responses of the structure, and the measure of cost
of this controlling system is by the amount of added mass. As more mass is added
to the structure, the retrofit is said to be more expensive and thus less cost-effective.

22.2.3 Problem Formulation

This work makes use of a stochastic description of the ground motion. The problem
is formulated as an optimization problem for which the objective function minimizes
the total amount of added masses in the TMDs under constraints of maximal
performance measures. The design variables are the mass of each TMD, located in
parallel to the edges of all floors. The root-mean-square (RMS) total accelerations at
all peripheral locations of all floors are taken as the performance measures, as they
are the largest accelerations expected within story limits. Those locations are shown
in Fig. 22.1 as (Xpy1)n> (Xpyr)n> (Xpxt)n> and (Xpxp), and are the peripheral coordinates
in the “y,” “y,” “x,” and “x” directions at the left, right, top, and bottom edges of floor
n, respectively. The remaining variables in Fig. 22.1 will be explained subsequently.
That is, the constraints are on the total accelerations at the edges of all floors in the
directions parallel to each edge. The optimization problem is thus formulated as

13
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Fig. 22.1 Definition of dynamic DOFs and peripheral coordinates of the nth floor
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where (mmvp);s is the mass of the TMD located at peripheral location [/ tuned
to frequency f; Niocations is the number of locations to be dampened, a¥MS is the

allowable RMS total acceleration, and RMS ((XL)I) is the root mean square of

the total acceleration at location [ (the /th term of RMS 52; ). Such reference to a
component of a vector or a matrix, i.e., (+);, will be used throughout the chapter.

22.3 Proposed Solution Scheme

22.3.1 Fully Stressed Design

Designs that are based on fully stressed characteristics go back to the classical
design of trusses under static loads, whereby the weight is minimized for a given
allowable stress. For that problem, it had been widely accepted that the optimal
design yields a statically determinate fully stressed design, with members out of
the design having strains smaller than the allowable. This result appeared in the
literature as early as 1900 (Cilley 1900). This has been proven in several occasions,
using various approaches (Cilley 1900; Mitchell 1904; Levy 1985).

Recently, it was shown that some dynamic optimal designs also possess “fully
stressed” characteristics. Lavan and Levy (2005); Levy and Lavan (2006) considered
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Fig. 22.2 Locations of TMDs at the floor n and their associated z DOFs

the minimization of total added viscous damping to frame structures subjected
to ground accelerations while constraining various inter-story responses. Their
optimal solutions attained by formal optimization indicated that “At the optimum,
damping is assigned to stories for which the local performance index has reached the
allowable value. Stories with no assigned damping attain a local performance index
which is lower or equal to the allowable.” That is, the optimal solutions attained
“fully stressed” characteristics.

Based on past experience of the authors in similar problems, it is conjectured
here that the optimal solution to MTMD allocation and sizing in structures under a
stochastic ground acceleration input (solution of Eq. (22.3)) possesses fully stressed
design (FSD) characteristics, i.e., “At the optimum, TMDs are assigned to peripheral
locations for which the RMS total acceleration has reached the allowable value
under the considered input acceleration PSD. In addition, at each location to which
TMDs are added, TMDs of a given frequency are assigned only to frequencies for
which the output spectral density is maximal.”

Potential locations for TMDs are located at the edges of the floors, as their lines
of action are in direction parallel to the edges (Fig. 22.2). Those are actually the
same locations where total accelerations are to be limited.

Stage one of the conjecture imposes that for all peripheral locations with
masses within the design, the total acceleration equals the allowable one, while
all peripheral locations with zero masses (outside the design) have an acceleration
equal to or less than the allowable. This is illustrated on the left-hand side of
Fig. 22.3, which presents the concept on a selected peripheral frame. The second
stage of the conjecture imposes that for all dampers at a peripheral location where
the acceleration equals the allowable one, and are within the design, the output
spectral densities are maximal (with respect to w) and equal. As for masses outside
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Fig. 22.3 Illustrations of conjecture

of the design at this DOF, the output spectral density is less than maximal. This is
illustrated on the right-hand side of Fig. 22.3.

The above conjecture suggests that the tuning frequency of each TMD is searched
for among all possible frequencies. However, for practical reasons, it is reasonable to
assume that these frequencies are in the vicinity of the bare structure’s frequencies,
and thus the tuning of TMDs could be in relation to the bare structure’s natural
frequency.

22.3.2 Analysis/Redesign Algorithm

Solutions to optimization problems, which possess fully stressed characteristics, are
efficiently achieved iteratively using a two-step algorithm in each iteration cycle. In
the first step, an analysis is performed for a given preliminary design, whereas in the
second step, the design is changed using a recurrence relationship that targets fully
stressedness. The recurrence relation can be generally written as

HORANE

XD = ™ (—p L ) (22.4)
Plallowable

where x; is the value of the design variable associated with the location I, pi; is

the performance measure of interest for the location I, piyjowable 1S the allowable

value for the performance measure, n is the iteration number, and P is a conver-

gence parameter. Fully stressedness is obtained from using Eq. (22.4) since upon
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convergence, one of the following must take place. Either x,(”+” = x,(") giving

, . +1 vine pi i
pii" = piaovavie or x;" T = x["' = 0 giving pi"’ < piaowavte

The advantages of the analysis/redesign algorithm include its simplicity, the
need to use analysis tools only, and the fairly small computational effort that lies
in the small number of analyses required for convergence. Such analysis/redesign
procedure will be utilized here to attain fully stressed designs where the mass,
frequency, and locations of MTMDs within framed structures are to be determined.

22.3.3 Proposed Solution Scheme

The proposed design methodology relies on the analysis/redesign procedure which
leads to the FSD criteria presented above:

Step 1: An allowable RMS acceleration is chosen. The mass, damping, and stiffness
matrices of the structure are assembled.

Step 2: Solution of the eigenvalue problem determines the structure’s natural
frequencies and mode shapes.

Step 3: A power spectral density (PSD) for the input acceleration is chosen.
Examples of such input spectra are stationary white noise, which gives a constant
PSD, and the Kanai-Tajimi (1957) PSD. The PSD is fitted to represent real ground
motions. This is done by fitting its parameters to a frequency-based spectrum
representing the decomposition of earthquakes into frequency components (e.g.,
a FFT spectrum). For each DOF, the transfer function of total acceleration of the
bare frame is evaluated using Eq. (22.5). This transfer function represents the ratio
between the sinusoidal output amplitude and the sinusoidal input amplitude with
frequency w. For total accelerations, it can be shown that the appropriate transfer
vector, Hy (jw), is

Hi (jo) = -M!. (joC + K) - Hy (o) (22.5)

where j = +/—1 and Hi (jw) is the displacement transfer vector given by
(Kwakernaak and Sivan 1991)

H, (jw) = CC- (joI—A)"'-B (22.6)
This transfer function is transformed to peripheral coordinates using
Hy (jo) = T-Hy (jo) (22.7)

where Hgb (jw) is the structure’s transfer function of total accelerations
in peripheral coordinates and T is a transformation matrix from the original DOFs to
peripheral coordinates. The output spectral densities of the peripheral accelerations,

(Rﬁb (a)))l, are evaluated using
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(R, @), = |(, o) |5 @) 2.8

2
where S (w) is the input PSD, (HX}) (ja)))l = (H% (jw))l . (H)’fI (ja)))l,
P
(Hy: (jw)), is the Ith term of Hy (jw), and (HZ (j)), is its complex conjugate.
The area under the output spectral density curve equals the mean-square response
(Newland 1993), and, thus, the root mean square (RMS) of total accelerations at

peripheral coordinate /, RMS (i;))l,taking into consideration the contribution of all

frequencies to the total response, is derived using

RMS(X;)I = \/2-/000 (ng;) (w))lda) (22.9)

Step 4: If for any peripheral coordinate, /, the RMS acceleration obtained is
larger than the allowable RMS acceleration, MTMDs are added to suppress the
acceleration produced. Each TMD of mass (mtmp); is assigned with a DOF for its
displacement relative to the ground, (z);r. Here, the subscript / stands for its location
while the subscript f stands for its frequency. The location, /, is corresponding to
the peripheral coordinate (xp); the TMD is attached to. At each location, Nyoge
TMDs are added, to suppress Nyode Original frequencies of the structure, where
Nmode 1 the number of modes to potentially be controlled. Thus, generally, a total
of Nmode * Niocations dampers are potentially added (Fig. 22.2).

The response of each mode could be evaluated based on a single-degree-of-
freedom (SDOF) equivalent system. Hence, properties of the TMDs to dampen a
certain mode could be set based on its SDOF representation. For the sake of sim-
plicity in this chapter, Den-Hartog’s (1940) properties were chosen. Nonetheless,
more advanced criteria could easily be used with the proposed methodology. These
Den-Hartog properties were derived for the optimal reduction of mass displacement
of an SDOF system under external sinusoidal loading. They were later shown to
also reduce the maximum total acceleration response of the mass of an SDOF
system undergoing a harmonic base excitation (Warburton 1982). In the case of
optimal Den-Hartog properties, the following initial properties are taken for the
dampers:

1. The initial mass of all TMDs located at each peripheral coordinate is taken as
certain predetermined percentage of the structure’s mass (say 1%) and divided
equally between the TMDs

(22.10)

0.01- Mstruclure
(mTMD)l,f =\

N, mode

where [ represents the damper’s location, f represents the mode dampened, and
M ucture 18 the structure’s total mass. The mass ratio (itmp ) f of all TMDs tuned
to frequency f is calculated as the ratio between the effective TMD mass of all
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TMDs tuned to frequency f and the fth modal mass of the structure. This mass
ratio is defined as

(¢F 17D (M) ) - T- 01 )

(22.11)
(90} : Moriginal : (pf)

(P1vp) =

where ¢ is the fth mode shape of the bare structure, [Moriginal] is the bare
frame’s mass matrix, and D ((mTMD) f) is a diagonal matrix with the terms
(MTMD )17 o, o S1EENE ON the diagonal.

2. Each TMD’s stiffness is determined according to the frequency of the mode
which is dampened by the TMD and is tuned to

(wtmp) f = ( o~ (22.12)

1+ (MTMD)f)

where (@n) ; is the frequency f to be dampened. The compatible stiffness is

(krmp )y, ;= (m7mp )y 5 - ((COTMD)f)2 (22.13)

3. Each TMD’s modal damping ratio is determined according to

3-(mrmp)
Ervp) f = ! 3 (22.14)
(8' (1 + (”’TMD)f) )
and the matching damping coefficient
(CTMD)I,f =2 (mTMD)l,f : (gTMD)f : (wn)f (22.15)

Step 5: The mass, damping, and stiffness matrices of the damped frame are
formulated. Note the mass of TMDs is to be added to the mass of the structure
perpendicular to their original DOF (i.e., if a certain damper is used to reduce
vibration in the “y” direction and thus its DOF is in the “y” direction, the mass
of that TMD is added to the mass of the structure in the “x” direction of the story
where it is situated).

Step 6: The peripheral RMS accelerations of the damped frame at all coordinates
are evaluated using frequency domain analysis based on Egs. (22.5), (22.6), (22.7),
(22.8), and (22.9), using the newly updated matrices (note that in Eq. (22.9), it is
needed to take only the first N components of the extended vector H;t (jw) as now
DOFs of TMDs are included in this vector).
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Step 7: The TMD’s mass is redetermined using two stages; the total mass of all
dampers located at a given location is determined, followed by the distribution of
that mass between all TMDs at that location, having various tuning frequencies.
This is done according to the recurrence relationships described below. Following
the change in mass, the stiffness and modal damping ratios of each TMD are also
updated while keeping the Den-Hartog principles intact, using Eqgs. (22.11), (22.12),
(22.13), (22.14), and (22.15). The two-stage analysis/redesign procedure is carried
out iteratively in the following way

Stage I:

all all P
frequencies frequencies RMS (( t(n)) )
(n+1) _ ( +1) (n) /
(anMD,tmal)[ = ( ™D ) Z (mTMD) : 4RMS
f=1 Ls all
(22.16)

where ()™ is the value at iteration n, (m%j['Dl ’)tolal)l is the total mass of all dampers

at location /, and P is a constant which influences the convergence and convergence
rate. A large P will result in a faster but less stable convergence of the above
equation.

Stage 2:

( Ry ((wn)f))
s (1 (@) )

(n+1)
(mTMD tolal) ;

(n+1) ()
(anMD )/ f - (mTMD)l !

5 Q217
all (n)
frequencies ) (in) ((w")f ))[

> (mTMD) ,

/=1 b

(1 @) )

where (Rg') ((wn) f))l is the component of Rg') (w) at the location [ evaluated at
P P
o = (wn) e

Step 8: Repeat steps 5—7 until convergence of the mass is reached.
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22.4 Example

The following 8-story setback RC frame structure (Fig. 22.4) introduced by Tso and
Yao (1994) is retrofitted using MTMDs for ground motions exciting the structure in
the “y” direction. A uniform distributed mass of 0.75 ton/m? is taken. The column
dimensions are 0.5 m by 0.5 m for frames 1 and 2 and 0.7 m by 0.7 m for frames 3
and 4. The beams are 0.4 m wide and 0.6 m tall. Five percent Rayleigh damping for
the first and second modes is used. A 45% reduction of the RMS total acceleration
in the bare structure is desired. Hence, an allowable peripheral RMS acceleration of
55% of the maximal peripheral RMS acceleration of the bare structure is adopted.
The response is analyzed under a Kanai-Tajimi PSD with parameters fitted to the
average FFT values of the SE 10 in 50 ground motion ensemble (Somerville et al.
1997). The design variables are the locations and properties of the individual tuned
mass dampers. The dampers are to potentially be located in the peripheral frames,
where they are most effective, and as the excitation is in the “y” direction only,
dampers will be assigned only to the peripheral frames 1 (lower 4 floors), 3 (upper
4 floors), and 4 to dampen frequencies of modes which involve “y” and “0.” The
steps described above are closely followed to optimally design the MTMDs.
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Fig. 22.4 Eight-story setback structure
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Step 1: The mass, inherent damping, and stiffness matrices of the frame were
constructed.

Step 2: The natural frequencies of the structure were determined. The first few
frequencies are (rad/s): 6.88 (x), 7.36 (y,0), 10.37 (y,0), 16.04 (x), 17.88 (y,0), 22.61
(v,9), 33.87 (x), 35.96 (y 0), and 43.48 (y,0) where x,y and 0 relate to the mode
direction.

Step 3: The RMS accelerations of the undamped building at the peripheral frames
in the y direction are presented in Fig. 22.5. Those were obtained using the
Kanai-Tajimi PSD with parameters w, = 13 rad/s, §, =0.98, and Sp = 1. Those
were determined by fitting the parameters w, and £, to a spectrum of mean FFT
values of the SE 10 in 50 ground motion ensemble scaled to Sy = 1.0. The actual
value of Sy has no effect since the allowable RMS acceleration is determined
by the percentage of reduction desired. The allowable RMS acceleration for all
peripheral accelerations was earlier adopted as 55% of the maximum peripheral
RMS acceleration of the bare frame, giving a’MS = 16.61.

Step 4: 160 TMDs were added, as a first guess. Those are comprised of ten dampers
each tuned to a different mode frequency (of modes related to “y” and “9”) at each
of the 16 peripheral locations of frames 1, upper four floors of frame 3, and frame 4.
The initial properties were a mass of 1.782 ton for each TMD; a frequency of (rad/s)
7.18,10.20,17.57,22.15,35.42,42.48,53.36, 65.92,70.90, and 92.57 (TMDs tuned
to dampen modes 2, 3, 5, 6, 8, 9, 11, 12, 13, and 15, respectively); and a damping
ratio of 0.0931, 0.0778, 0.0802, 0.0860, 0.0739, 0.0909, 0.0811, 0.0851, 0.0728,
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and 0.0889. These are based on the Den-Hartog properties of Egs. (22.11), (22.12),
(22.13),(22.14), and (22.15).

Step 5: The mass, stiffness, and damping matrices were updated.

Step 6: With the newly updated matrices and the same PSD input, new peripheral
RMS accelerations were evaluated using Eqs. (22.5), (22.6), (22.7), (22.8), and
(22.9). Peripheral accelerations smaller than the allowable were attained for all
floors of frames 5 and 8 in the x direction (see Fig. 22.4 for frame numbering).

Step 7: The problem has not converged, and thus the TMDs’ properties were
altered, using the recurrence relations of Egs. (22.16) and (22.17), while using P =5
as the convergence parameter.

Step 8: Iterative analysis/redesign as described in Eqgs. (22.16) and (22.17) while
altering the mass of the damper is carried out until convergence to allowable levels.
Upon convergence, TMDs with nonzero properties were located at frame number
1 (at floor 4), a sum of 10.69 ton added mass; at frame number 3 (at floor 8), a
sum of 161.74 ton added mass, and at frame number 4 (at floor 8), a sum of 0.08
ton added mass which is the top floor for each part of the setback frame. At floor
number 4, the TMDs are set to dampen mode 3 (m = 10.69 ton, k = 1079.5 kN/m,
& =0.1045), while at floor number 8, the TMDs are set to dampen modes 2 at frame
3 (m=161.74 ton, k = 5859.35 kN/m, £ =0.2137) and at frame 4 (m = 0.08 ton,
k=2.98 kN/m, £ =0.2137). All three assigned TMDs add up to 9.68% of the
original structure’s mass. For all practical reasons, the small TMD at frame number
4 (at floor 8) can be neglected.

Finally, an analysis of the retrofitted structure yields the peripheral RMS
accelerations shown in Fig. 22.6. As can be seen, only locations that had reached the
maximum allowable RMS total acceleration (Fig. 22.6) were assigned with added
absorbers, making the solution obtained a FSD.

22.5 Conclusions

An analysis/redesign performance-based methodology for optimally allocating and
sizing MTMDs in 3D irregular structures was presented. The proposed methodology
considers the possible dampening of all modes of the structure, at all peripheral
frames, thus eliminating the decision of what modes to dampen and where the
TMDs should be allocated. The methodology is general and automatically takes
into consideration the structural irregularities; thus, no special attention has to be
given to these complexities. As shown, using MTMDs tuned to various frequencies
can efficiently reduce total accelerations within the structure and bring them to
a desired level, allowing for performance-based design. The advantages of this
methodology are its simplicity of use and relying solely on analysis tools to solve
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the allocation and sizing problem, with no assumptions or preselection of any design
variable. These advantages make the proposed methodology attractive and efficient
for practical use.
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