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Abstract Amajor reason for our communication is to influence our conversational

partners. This is so both if our preferences are aligned, and when they are not. In the

latter case, our communicative acts are meant to manipulate our partners. We all

know that attempts to manipulate are nothing out of the ordinary. Unfortunately, the

standard theory of rational communicative behavior predicts that any such attempt

will be seen through and is thus useless. The main aim of this chapter is to

investigate which assumptions of the standard theory we have to give up to account

for our communicative behavior, when preferences between partners are not

aligned.

1 Introduction: Communicate to Influence Others

Why do we talk? What is the purpose of our use of language? It is obvious that

language is used for more than one purpose. Sometimes we use language with an

expressive purpose: guess what our roommate just did when his computer crashed

again. Sometimes language is being used to strengthen relationships between

people: Our colleagues gossip a lot during lunch. We have to admit, however,

that we normally use language just to influence the behavior of others. And to be

honest, we think you are exactly like us. Indeed, although language is a multipur-

pose instrument, the purpose to influence other’s behavior seems to be basic.
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Now, why do we want to influence each others behavior, and how are we going

to analyze this? Well, let us again speak for ourselves: We want to influence your

behavior by our use of language because we believe that your changing behavior

would be profitable for us. So we consider one communicative act better than

another, when we expect the former to have a more profitable effect than the latter.

This suggests that language use is very much like other kinds of economic behavior

and that it can be studied profitably by means of decision and game theory.
According to decision theory, an agent should choose that action which has the

highest expected utility. Consider now the following decision problem with an

agent wondering which of {a1, a2} she should perform:

a1 a2

t1 �2 0

t2 3 0

t3 �2 0

On the assumption that the three states are equally likely, it is clear that the agent

will choose action a2 because that has, on average, a higher utility than action a1,
0 versus –1/3. If an agent receives new information, and the agent believes it, this

will turn the old decision problem into a new one. Suppose, for instance, that the

agent receives the information that the actual state is in {t1, t2}. As a reaction,

the agent will adapt her probability function such that the posterior function gives

a probability 0 to state t3. Maximizing expected utility with respect to this new

probability function now results in action a1 because that has now, on average, the

highest utility: 1/2 versus 0. But now suppose that the actual state is actually t1.
Although on the basis of this new information it was rational for the agent to choose
for a1, it still was actually the wrong decision.

Until now we assumed that our agent simply received truthful information.

We haven’t considered how she received it. Suppose that she received it from

another agent. This other agent might also care about which action our agent is

going to perform. For instance, he might prefer our agent to perform a1 instead of

a2, independent of which state actually holds. In such a case, the combined utility

table of the answerer (first entry) and our agent can be pictured as follows (Table 1).

For a situation that can be modeled by the above multiagent decision table, it

makes a lot of sense for the informer to provide our agent with information {t1, t2}
in case the actual state is t1: If the agent just accepts what she is informed of, she

will perform action a1, which is exactly what the informer hoped for. Thus, if our

agent takes the new information at face value, she can be manipulated by the

informer and will act in accordance with his, but not her own, preferences.

Table 1

a1 a2

t1 1,�2 0,0

t2 1,3 0,0

t3 1,�2 0,0
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But now suppose that our agent knows the preferences of the informer as well and

that this, in fact, is common knowledge. If she is also rational, our agent will see

through the attempt of manipulation of the informer and will not take the new

information at face value. If the informer is rational as well, she will see trough

this in turn and will realize that it doesn’t make sense to provide information {t1, t2},
because the acting agent won’t take this information to be credible. A new question

comes up: How much can an agent credibly communicate in a situation like that

above? This type of question is studied by economists making use of signaling games.

2 Signaling Games and Nonaligned Preferences

In his classic work on conventions, Lewis (1969) proposed to study communication

by means of so-called signaling games. In this section, we will only consider cheap

talk games: games where the messages are not directly payoff relevant. A signaling

game with payoff irrelevant messages is a sequential game of incomplete infor-

mation with two players involved, player 1, the sender, and player 2, the receiver.

Both players are in a particular state, an element of some set T. Player 1 can observe
the true state, but player 2 cannot. The latter has, however, beliefs about what the

true state is, and it is common knowledge between the players that this belief is

represented by probability function P over T. Then, player 1 observes the true state
t and chooses a message m from some set M. After player 2 observes m (but not t),
he chooses some action a from a set A, which ends the game. The utilities of both

players are given by U1(t, a) and U2(t, a). The (pure) strategies of the player 1 and

player 2 are elements of [T ! M] and [M ! A], respectively. In simple communi-

cation games, we call these functions sending and receiving strategies, that is,

s and r.
What strategy combinations are equilibria of the game depends on the probabil-

ity distribution. With distribution P, the strategy pair S;Rh i is an equilibrium if, as

usual, neither player can do any better in terms of expected utility by unilateral

deviation. As a small example, consider the signaling game with only two states t1
and t2, two messages m1 and m2, and two actions a1 and a2, and utility functions

U(ti, aj) = 1, if i = j, o otherwise. Obviously, both players have four (pure) strategies

each. Furthermore, let x ¼ P(t1) > P(t2) ¼ y. Then, we have the payoff matrix in

Table 2.

It is easy to see that the signaling game described above has four Nash equi-

libria: s1; r1h i; s2; r2h i; s3; r3h i; and s4; r1h i. But what we are interested in here

are the cases where communication takes place, meaning that in different states,

Table 2

t1 t2 m1 m2 r1 r2 r3 r4
s1 m1 m1 r1 a1 a1 s1 x, x x, x y, y y, y

s2 m1 m2 r2 a1 a2 s2 x, x 1, 1 0, 0 y, y

s3 m2 m1 r3 a2 a1 s3 x, x 0, 0 1, 1 y, y

s4 m2 m2 r4 a2 a2 s4 x, x y, y x, x y, y
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different messages are sent. It is easy to see that this is the case only in the

equilibria s2; r2h i and s3; r3h i. In cheap talk games, the messages are not directly

payoff relevant: The utility functions do not mention the messages being used.

Thus, the only effect that a message can have in these games is through its

information content: by changing the receiver’s belief about the situation the

sender (and receiver) is in. If a message can change the receiver’s beliefs about

the actual situation, it might also change the receiver’s optimal action and thus

indirectly affect both players’ payoffs.

In an important article, Crawford and Sobel (1982) show that cheap talk can

have real strategic impact in that it might change the receiver’s optimal action but

also that the amount of possible communication in cheap talk games depends on

how far the preferences of the participants are aligned. They show that when the

preferences are more aligned, more communication can occur through costless

signaling. To put it more negatively, they show that in Lewisean cheap talk games

communication is possible only if the preferences of speaker and hearer are aligned.

In a zero-sum two-person game, for instance, it is predicted that communication with

cheap messages is impossible: Whatever is said by the sender will be ignored by the

receiver. One might think of this result as a motivation of Grice’s cooperative

principle, which assumes that the participants are cooperative—thus have aligned

preferences—in a conversation (Grice 1967).

To establish the fact proved by Crawford and Sobel, no mention was made of

any externally given meaning associated with the messages. What happens if we

assume that these messages do have an externally given meaning, taken to be sets of

situations? Thus, what happens when we adopt an externally given interpretation

function “[[·]]” that assigns to every m ∈ M a subset of T? The interesting question
is now not whether the game has equilibria in which we can associate meanings

with the messages, but rather whether there exist equilibria where the messages are

sent in a credible way. That is, are there equilibria where a speaker sends a message

with meaning {ti} if and only if she is in state ti? As it turns out, the old question

concerning informative equilibria in signaling games without preexisting meaning

and the new one concerning credible equilibria in signaling games with messages

that have a preexisting meaning are closely related. Farrell (1988, 1993), Rabin

(1990), Matthews et al. (1991), and Stalnaker (2006) show that costless messages

with a preexisting meaning can be used to credibly transmit information only if

it is known by the receiver that it is in the sender’s interest to speak the truth.

Communication is predicted to be possible only if the preferences are aligned. But

this immediately gives rise to a problem. It seems that agents—human or animal—

also send messages to each other, even if the preferences are less harmonically

aligned. Why would they do that? In particular, how could it be that natural

language is used for communication even in these unfavorable circumstances?

Reputation effects of lying in repeated games have been proposed (e.g., Axelrod

and Hamilton 1981) to explain reliable communication. But experiments show that

communication takes place even in one-shot games. To account for these cases, it is

standardly assumed both in economics (starting with Spence 1973) and in biology
(Zahavi 1975; Grafen 1990; Hurd 1995) that reliable communication is possible,

if we assume that signals can be too costly to fake. The utility function of the sender
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takes no longer only the benefit of the receiver’s action for a particular type of

sender into account but also the cost of sending the message. But assuming that

messages of natural languages can be costly seems counterintuitive.1 Until now, we

have not assumed that speakers are required to speak truly. Perhaps by adding this

constraint, we can explain communication in more general settings. This issue is

discussed in persuasion games, to which we will turn now.

2.1 Persuasion Games

Persuasion games are very similar to signaling games, but where the messages do

have preexisting meaning, and it is assumed that signallers can only send true

messages.

In general, we can think of a persuasion game as a game between an interested

party (the sender) and a decision maker (the receiver). Let T be a finite set of states
of the world and P a full support probability on T. The decision maker is interested

in predicting the value of a payoff relevant state or ti ∈ T by choosing a state tj ∈ T
as close as possible to the actual state ti. The interested party’s utility function uS is
strictly increasing in T. Thus, for all ti ∈ T, us(ti, tj) > us(ti, tk) just in case j > k.
This, of course, is common knowledge, which means that the decision maker knows

the ordinal preferences of the interested party. As usual, the decision maker doesn’t

know the actual state, but the interested party tries to persuade the decision maker

that the true state is high by revealing some information. A sender strategy s is a

function from states to messages, such that for any t 2 T : t 2 sðtÞ½ �½ �. Thus, the set of
available messages for each type, O(t), is a subset of {m ∈ M: t ∈ [m]}. What is

important is that when the actual state is t, the sender has available a report m that

rules out lower quality types. In symbols, 8t 2 T : 9m 2 OðtÞ : 8t0<t : m =2Oðt0Þ .
This assumption would be satisfied, for example, if the sender could always prove

the precise quality of its products or if it can prove a tight lower bound on the

quality of its product. A decision maker’s utility function consistent with the above

assumptions can be given by ur(ti, tj) ¼ �(j � i)2. This gives rise to the following

type of payoff table, where the rows represent the actual states, while the columns

represent the choice of the decision maker (Table 3).

We will assume that a receiver strategy is a function from messages to a

probabilistic function over T, such that 8m 2 M :
P

t rðmÞðtÞ ¼ 1. The identity of

1 Though see de Jaegher (2003) for more discussion.

Table 3

us, ur t1 t2 t3 t4

Utility t1 1, 0 2, �1 3, �4 4, �9

t2 1, �1 2, 0 3, �1 4, �4

t3 1, �4 2, �1 3, 0 4, �1

t4 1, �9 2, �4 3, �1 4, 0
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r(m) will depend on what the decision maker believes, represented by probability

function m. This function m specifies what the receiver, or decision maker, believes

when the sender makes a report. Let us call a pair r; mh i a “posture” for the decision
maker. Every posture requires that the decision maker forms beliefs consistent with

his information and maximizes accordingly. A naively credulous posture is one in
which the decision maker takes the sender’s report at face value and simply puts

mðtjmÞ ¼ PðtÞ
P m½ �½ �ð Þ for t 2 m½ �½ �. A skeptical posture �r; �mh i is one such that, for every

report m, �mðtjjmÞ ¼ 1 for the minimal t as far as the sender is concerned, that is,

t 2 m½ �½ � and 8t0 2 m½ �½ � : usð�; t0Þrusð�; tiÞ. A skeptical posture minimizes (over all

postures) the state he is going to guess. In terms of seller and buyer, a skeptical

posture minimizes the quantity the buyer will purchase. Equilibria of this game are

defined in terms of triples like s; r; mh i, where s is a sender strategy and r; mh i is a
receiver posture. The triple s; r; mh i is a sequential equilibrium if (i) s is the

sender’s best response to r for whatever type he is; (ii) for all m, r(m) is the best

guess of the receiver given his beliefs, and (iii) mðtjmÞ ¼ PðtÞ
P s�1ðmÞð Þ for t∈ s�1(m)

and is zero otherwise.

Milgrom and Roberts demonstrate that in such persuasion games, it is best for

the decision maker to “assume the worst” about what the seller reports and that

they have omitted information that would be useful (Milgrom and Roberts 1986).

Their optimal equilibrium strategy will always be the skeptical posture. What is

more, sellers will know that this is the decision maker’s optimal strategy. Given

this, sellers could as well reveal all they know.2 In terms of our topic, this means

that sellers/informed speakers might try to manipulate the beliefs of the decision

maker by being less precise than they could be; this won’t help because the decision

maker will see through this attempt of manipulation. So, again, the conclusion is

that standard economic theory predicts that manipulation by communication is

impossible, a result that is very much in conflict with what we perceive daily.3

Glazer and Rubinstein have recently studied a somewhat different type of persua-

sion games. For them, a persuasion problem is a quadruple S; Hf g; S; A; p; sh i, with
speaker S, hearer H, hearer’s goal A, and where p is H’s probability function over S.
The idea is that S wants H to do a, but H only wants to do it if the actual state s0
is in A, so 2 A � S. As in other persuasion games, also Glazer and Rubinstein

assume that S can only use true messages. A crucial role in their games is the

2 The argument used to prove the result is normally called the unraveling argument. See Jager et al.
(to appear) for a slightly different version.
3 As noted by Shin (1994), the unraveling argument is extremely sensitive to any uncertainty

concerning what the informed parties actually know. To give a very simple example, suppose that

T ¼ {t1, t2}, but that the decision maker is not sure whether the sender knows the true state. Then,

if the sender announces that the true state is either t1 or t2, the decision maker cannot appeal to the
unraveling argument to conclude that t1 is the true state. There is now a positive probability that the

seller is genuinely uninformed and is in fact telling the whole truth. Still, one can prove a

generalization of the result of Milgrom and Roberts that there always exists a sequential equilib-

rium s;r;mh iof the persuasion game in which the disclosure strategy s is perfectly revealing in the

sense that the sender will say exactly what he knows.
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persuasion function f. It is a function from messages to a number in [0, 1], where

this number measures the probability that H is persuaded to do a. Assuming that

both players are rational, S wants to choose m that maximizes f, while H wants

to minimize the error probability: mw0
ðf Þ ¼ 1� maxm2sðs0Þf ðsÞ, if s0 ∈ A, and

maxm2sðs0Þf ðsÞ otherwise.
For illustration, look at the following coin toss example. This is a game about the

result of five coin tosses. It is easy to see that this gives rise to 32 possible outcomes.

S knows the actual outcome, but H does not. It is common knowledge that S wants

H to perform awhatever the outcome is, but H wants to do a only if she is persuaded
that the coin landed heads at least three times. Unfortunately, S can only inform H

about the outcomes of two coin tosses. What is the optimal way for S and H to

proceed? Well suppose that H’s rule is to do a iff S demonstrates that the coin came

up heads two times. In that case, there are 10 of the 32 possible outcomes where H

will make the wrong choice: Do a although the coin came up heads only two times.

Thus, the error probability is 10/32. But H can do better: He can perform a only if

S demonstrates that the coin came up heads at two consecutive tosses. In this case,

the error possibility is only 5/32. Glazer and Rubinstein prove that this is also

the optimal strategy for H to choose. From our point of view we are interested in

something else: Can this persuasion game perhaps explain how we try and can

manipulate others? But the straightforward answer is again “no.” The unique best

strategy used by the hearer will always be a skeptical one: Always assume the

worst. For instance, if the speaker would have said that the coin came up heads

on the 1st toss and the 3rd, the hearer will conclude that the coin didn’t come up

heads in the 2nd trial. Manipulation can’t succeed.

3 Giving Up Some Standard Assumptions

We communicate more than standard game theory predicts. This strongly suggests

that standard game theory is based on some unrealistic assumptions. In this section,

we will discuss three of such assumptions and indicate what might result if we give

these up. First, we will discuss the assumption that what game is being played is

common knowledge. Second, we will see the implications of giving up the unreal-

istic hypothesis that everybody is completely rational and this is common knowl-

edge. Finally, we will discuss the assumption that our assessment of probabilities

and our decisions is independent of the way the alternatives and decision problems

are stated. Giving up either of these assumptions will make more room for commu-

nication and will thus be more realistic.

3.1 No Common Knowledge of the Game Being Played

In standard game theory, it is assumed that players model the game in the same

way: It is common knowledge what game is played. But this seems like a

highly idealized assumption. Is it not the case that players might model the game
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differently or at least view others as modeling it as differently? In recent work,

Feinberg (2008) demonstrates that if this possibility is taken into account, a new

rationale for communication shows up. Instead of giving his theory, we will just

motivate his approach by discussing one of his examples. Consider the following

strategic game between row player Alice and column player Bob (Table 4).

This game has obviously exactly one Nash equilibrium: a2; b1h i. Standard game

theory predicts that this equilibrium will be played, if it is assumed that it is

common knowledge between the players that the above is indeed the game that is

being played. Suppose, however, that Alice believes that Bob thinks that the only

actions between which Alice can choose are a1 and a2, that is, Alice believes that
Bob is unaware of action a3 and thinks that the following game will be played:

In fact, however, Bob believes that it is the actual game in Fig. 1 that is being

played, although he recognizes that Alice is unaware that he is considering a3
(Table 5).

Bob also thinks that Alice thinks that Bob is considering game 2 as the actual

game. Notice that although game 1 has a2; b1h i as its unique Nash equilibrium,

game 2 has a2; b2h ias its unique equilibrium. As a result, Alice thinks it is likely that

Bob will play action b2. Alice’s actual best response (i.e., in game 1) to b2, however,
is not a2, but a3. But because of Bob’s knowledge (he is aware that Alice thinks that
Bob is unaware of action a3), he can figure out that Alice would play a3, and his best
response to this in game 1—the actual game and the game that he thinks he is

playing—is action b3. Thus, this reasoning of Alice and Bob would result in play

a3; b3h i , which is strictly worse for both agents than the Nash equilibria play in

either game.

Suppose that before the agents make their choice, agents are allowed to send a

message. We have seen that in standard game theory, pre-play communication can

normally be ignored (the messages are not credible) if the preferences of the agents

are not well aligned. On the other hand, if it were common knowledge that the game

was game 1, for example, pre-play communication would be ignored as well

because that game has only one Nash equilibrium. We will see that in our case,

however, pre-play communication makes perfect sense. Bob can send a message

(“I know you can also play a3”) which makes clear to Alice that he is aware of

action a3. It is immediately clear that this message is credible: There is no reason for

Alice to think she is being manipulated. As a result, it becomes common knowledge

Table 4

b1 b2 b3

Game 1. Actual game a1 0,2 3,3 0,2

a2 2;2 2,1 2,1

a3 1,0 4,0 0,1

Table 5

b1 b2 b3

Game 2. A thinks that B thinks a1 0,2 3;3 0,2

a2 2,2 2,1 2,1
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that it is actually game 1 that is being played and that Alice should thus choose a1
instead of a3. Together with Bob’s best response, we end up with the Nash

equilibrium a2; b1h i which gives rise to a higher utility for Alice and for Bob.

Thus, it was indeed rational for Bob to communicate as he did. Feinberg (2008)

discusses more cases like this.

Thus, we can explain more cases of rational communication than we could

before if we don’t make the ideal, but unrealistic assumption that it is always

common knowledge which game is being played.

3.2 No Common Knowledge of Rationality

A Nash equilibrium is the solution concept in game theory, but it is not always easy

to reach it. In quite a number of games, however, a simple procedure will do:

(iterated) elimination of strategies that violate the canons of rationality, that is, that

are strongly dominated. In case we end up with exactly one (rationalizable) strategy

for each player, this strategy combination must be a Nash equilibrium. This

procedure crucially depends, however, on a very strong epistemic assumption:

common knowledge of rationality; not only must every agent be ideally rational,

everybody must also know of each other that they are rational, and they must know

that they know it and so on ad infinitum. It is harder to justify Nash equilibria in

general, but also such a justification leans heavily on this strong assumption.

Unfortunately, there exists a large body of evidence that the assumption of common

knowledge of rationality is highly unrealistic.

The p-beauty contest game (Moulin 1986) is based on a similar game by Keynes

(1936) and was introduced to highlight how unrealistic this assumption is. In this

game, each of n > 2 players chooses a whole number between 0 and 100. Let us

say that k is the average of these n numbers. The winners of the game are

those players who choose their numbers closest to 2k/3, and they share the prize

equally. Obviously, you shouldn’t choose any number greater than 2
3
� 100 � 67,

because such a strategy has payoff 0, whereas the mixed strategy playing 0–67

with equal probability has a strictly positive payoff. Thus, any of the former

strategies is strongly dominated by the latter mixed strategy and should thus be

eliminated after one round of eliminating strongly dominated strategies. A second

round of eliminating strongly dominated strategies, however, eliminates choices

above 2
3

2 � 100 � 44 in a similar way. Continuing in this manner, we see that the

only strategy that is not eliminated in any round is the strategy to choose is 0.

Experimental evidence, however, shows that this would be a very poor choice.

Working with various groups of size 14–16, Nagel (1995) found that the average

number chosen was 35, which is between two and three rounds of iterated elimina-

tion of strongly dominated strategies. Thus, in this game, we cannot assume

common knowledge of rationality: Agents “think ahead” only a very limited

number of rounds.
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In the previous sections, we have seen that deception and manipulation could not

be explained within standard game theory. One reason for this is that it assumes

common knowledge of rationality. If it is common knowledge that everybody is

rational, any attempt of deception will be anticipated, and the anticipation thereof

will be anticipated as well and so on ad infinitum. But we have seen above that it is
not in accordance with experimental evidence to assume common knowledge of

rationality. Is it possible to explain deception and manipulation if we give up this

assumption?

Indeed, it can be argued that wherever we do see attempted deceit in real life,

we are sure to find at least a belief of the deceiver (whether justified or not) that the

agent to be deceived has some sort of limited reasoning power that makes the

deception at least conceivably successful. Some agents are more sophisticated than

others and think further ahead. To model this, one can distinguish different strategic
types of players. A strategic type captures the level of strategic sophistication of

a player and corresponds to the number of steps that the agent will compute in a

sequence of iterated best responses. One can start with unstrategic level-0 players.

An unstrategic level-0 hearer (a credulous hearer), for example, takes the semantic

content of the message he receives literally, and doesn’t think about why a speaker

used this message. Obviously, such a level-0 receiver can sometimes be

manipulated by a level-1 sender, as we have seen in Section 1. But such a sender

can in turn be “seen through” by a level-2 receiver if she understood why the level-1

sender sent what he sent, etc. In general, a level-k + 1 player is one who plays a

best response to the behavior of a level-k player. (A best response is a rationally best
reaction to a given belief about the behavior of all other players.) A fully sophisti-

cated agent is a level-inf player. In a very interesting article, Crawford (2003)

shows that in case sender and/or receiver believes that there is a possibility that

the other player is less sophisticated than he is himself, deception is possible.

Moreover, even sophisticated players can be deceived if they are not sure that the

opponent is fully rational or not. Crawford assumed that messages have a specific

semantic content, but did not presuppose that speakers can only say something that

is true. It is possible, however, to use the same kind of idea to show that manipula-

tion is possible in such circumstances as well in persuasion games as discussed in

Section 2.1 of this chapter.

We can conclude that (i) it is unnatural to assume common knowledge of

rationality, and (ii) by giving up this assumption, we can explain much better

why people communicate than standard game theory can: Sometimes we commu-

nicate to manipulate others on the assumption that the others don’t “see it through,”

that is, that we are smarter than them (whether this is justified or not).

3.3 Framing and Reference-Point-Based Preferences

Although our standard of living increased a lot the last decades, psychological

research on happiness finds that subjective measures of well-being are relatively

stable over time. This suggests that one’s well-being crucially depends on the value
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of one’s own properties compared to that of others. In more abstract terms, utility is
reference-based, which is in contrast with the additive utility function underlying

standard game theory. The most natural reference point to compare one’s welfare is

the current status quo position. Now, psychologists have discovered that people

value payoffs according to whether they are gains or losses compared to their

current status quo position. Subjective well-being is associated not so much with

the level of income, but more with changes of income. Moreover, agents are much

more averse to lose X euros than that they are attracted to winning X euros. These

phenomena can be illustrated by the following famous Asian disease experiment

due to Tversky and Kahneman (1981).

In the two versions of this experiment, which takes the form of a questionnaire, a

separate but similar population was confronted with the following hypothetical

scenario: “Imagine that the USA is preparing for the outbreak of an unusual Asian

disease, which is expected to kill 600 people. Two alternative programs to combat

the disease have been proposed.”

In version 1 of the experiment, subjects were offered the choice between

programs A and B, which are described as follows: “If program A is adopted,

200 people will be saved. If program B is adopted, there is 1/3 probability that 600

people will be saved and 2/3 probability that no people will be saved.”

In version 2 of the experiment, subjects were offered the choice between

programs C and D: If program C is adopted, 400 people will die. If program D is

adopted, there is 1/3 probability that nobody will die and 2/3 probability that 600

people will die.

When the choice is between A and B, 72% of the subjects choose A; when the

choice is between C and D, 78% choose D. This is in spite of the fact that, from

the perspective of expected utility maximization, the two examples are perfectly

equivalent. Apparently, the experimenter, by framing the example in a different

manner, can influence the reference point of the subject and can cause a preference

reversal.

Let the US population have size X before the outbreak, and let us assume that

the decision maker is an expected utility maximizer with an increasing, strictly

concave Bernouilli utility function u(·) over the post-outbreak US population. Then

it is easy to see that the decision maker should not make any difference between

versions 1 and 2. The expected utility of programs A and C is equally u(X � 400).

The expected utility of programs B and D is 1
3
� uðXÞ þ 2

3
� uðX � 600Þ. Note that

the numbers are chosen such that if for any Y we have u(Y) ¼ U, then uðX � 400Þ
¼ 1

3
� uðXÞ þ 2

3
uðX � 600Þ. It follows that as soon as u(·) is strictly concave, then

uðX � 400Þ> 1
3
� uðXÞ þ 2

3
� uðX 600Þ so that programs A and C should be pre-

ferred. But this is contradicted by the results of Kahneman and Tversky’s

experiment.

In order to account for such choices counter to expected utility theory (in this

and other experiments), Kahneman and Tversky construct prospect theory. The
elements of this theory are that decision makers think in terms of gains and losses

with respect to an exogenously given reference point. Decision makers are risk
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averse with respect to gains and risk loving with respect to losses (reflection effect).

They are loss averse, in that, for example, they are hurt more by a 100 loss than they

enjoy a 100 gain. Finally, they overweigh small probabilities.

We only need the reference point and the reflection effect to account for the

choices in the Asian disease problem. Let r be the reference point of the decision

maker, in this case, a reference post-outbreak US population. Consider a strictly

concave valuation function v(·), which is defined both over gains and losses,

and with v(0) ¼ 0. In the loss region, for a post-outbreak population of Y, the
consumer’s utility then takes the form v(Y � r) if Y � r (gains region) and takes the
form � v(Y � r) if Y < r (loss region). The consumer’s utility is then indeed

strictly convex in the loss region and strictly concave in the gains region. For the

rest, all is the same as in expected utility theory.

Assume now that in version 1 of the experiment, the reference point is that

nobody is saved so that any person saved is seen as a gain. It follows that

r ¼ X � 600 and that we are everywhere in the gains region. In this case, the

decision maker prefers program A if and only if:

u X � 400� ðX � 600Þð Þ> 1

3
u X � ðX � 600Þð Þ þ 2

3
u ðX � 600Þ � ðX � 600Þð Þ if

uð200Þ> 1

3
� uð600Þ if and only if

3� uð200Þ> uð600Þ:

It is clear that this is valid as soon as we have a strictly concave v(·) so that the

decision maker’s utility is strictly concave in the gain region.

Assume that in version 2 of the experiment, the reference population is that

nobody dies so that any person who dies is seen as a loss. It follows that r ¼ X and

that we are everywhere in the loss region. The decision maker now prefers program

C if and only if

� V X � ðX � 400Þð Þ<� 1

3
VðX � XÞ � 2

3
V X � ðX � 600Þð Þ if and only if

Vð400Þ> 1

3
Vð600Þ if and only if

Vð600Þ< 1:5Vð400Þ:

Again, this is valid as soon as we have a strictly concave v(·) so that the decision
maker’s utility is strictly convex in the loss region.

But why would the reference points be different in version 1 and version 2?

It seems that a reference point is induced merely by expressing the news as a gain

(“are saved”) or as a loss (“die”) with respect to a reference population. In version 1,

by expressing the news as a gain with respect to a reference population where 600

people are killed, the decision maker is induced to be risk averse. In version 2, by

expressing the news as a loss with respect to a reference population the decision

maker is induced to be risk averse.
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Ducrot (1973) and Anscombre and Ducrot (1983) have argued that we have to

look at language use from an argumentative perspective to be able to explain the

appropriate use of certain adversarial connectives. Merin (1999) sought to provide a

formal analysis of their insights, but failed (cf. van Rooij 2004). We believe that

a more appropriate formalization is possible making use of prospect theory. The

idea is that the argumentative function of an adversary connective used by a

manipulative persuader is to suggest a reference point with respect to which the

main body of information given should be compared. Consider the following

modified statements for the two versions. In version 1*, the first sentence is now

stated as a lack of a gain. Further, the adversarial connective “still” induces a

contrast with this situation of no gain. By their nature, such adversarial connectives

would seem to invite the listener to make comparisons and so to think in terms of

gains and losses. For the rest, all the populations are stated as gains. In version 2*,

the first sentence is clearly stated as a loss. The adversarial connective “however”

contrasts this with situations where the losses are smaller. All further populations

are expressed as losses. Further, the order in which programs C and D are expressed

is reversed in comparison to the original experiment. The order in which the

alternatives are expressed may also induce a reference point.

Thus, an empirical question here lies in the extent to which adversarial connec-

tives and expressions suggesting gains and/or losses, and the order in which

alternatives are presented, are successful in creating reference points with listeners.

Version 1*: Imagine that the USA is preparing for the outbreak of an unusual

Asian disease. If no program is adopted, there will be no rescue for 600 people.

Still, if program A is adopted, 200 people will be saved, and if program B is

adopted, there is 1/3 probability that all 600 people will be saved and 2/3 probability

that none of them is saved.

Version 2*: Imagine that the USA is preparing for the outbreak of an unusual

Asian disease. If we fail to interfere, 600 people will lose their lives. However, if

program B is adopted, there is 1/3 probability that none of these people will die and

a 2/3 probability that all 600 of them will continue to die. If program A is adopted,

400 of these people will die.

It should be noted that applications of prospect theory are not confined to

uncertainty. Another example (due to Anscombre and Ducrot 1983), which does

not involve uncertainty and where both the order of the statements and adversarial

connectives seem to play a role, is the following. Consider a restaurant critic who

objectively observes a restaurant to be both more expensive than other good

restaurants and better than other expensive restaurants.

Version 1** The restaurant is expensive, but good.

Version 2** The restaurant is good, but expensive.

Each time, the earliest statement may induce the reference point. Version 1**

could induce a reference point with the decision maker of considering restaurants as

expensive. Yet, among expensive restaurants, the restaurant is one of the good ones.

Version 2** could induce as a reference point that restaurants serve good food. Yet,

among restaurants serving good food, the restaurant at hand is expensive. If the
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decision maker reads the critics review of the restaurant, and considers eating home

as a choice with a utility of zero, then in version 1**, the decision maker would

decide to go to the restaurant (as she perceives positive utility in going to the

restaurant), and in version 2**, she would prefer to stay at home (as she perceives a

negative utility in going to the restaurant).

4 Conclusion

So, why do we talk so much? Perhaps because our preferences are much aligned and

participants of a conversation all profit from a larger distribution of knowledge.

This would be the ideal picture, but we doubt it is the true reason behind (all)

our talking. We also talk if our preferences are not aligned. No, we talk so much,

we argue, because, among others, (i) we think we know better in which situation we

are than others (3.1), (ii) we think we are smarter than others (3.2), or (iii) we think

we can influence the probabilities and utilities of others by the way we frame their

decision problems. In short, we talk and argue so much because we believe others

are bounded rational agents.
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