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Abstract In this chapter, we present a survey of different sorts of uncertainties

lawyers reason with and connect them to the issue of how probabilistic models of

argumentation can facilitate litigation planning. We briefly survey Bayesian

Networks as a representation for argumentation in the context of a realistic exam-

ple. After introducing the Carneades argument model and its probabilistic seman-

tics, we propose an extension to the Carneades Bayesian Network model to support

probability distributions over argument weights, a feature we believe is desirable.

Finally, we scout possible future approaches to facilitate reasoning with argument

weights.

1 Introduction

Formal models of argument can be considered as qualitative alternatives to traditional

quantitative graphical probability methods for reasoning about uncertainty, as has

been observed by Parsons et al. (1997).We understand a formal model of argument as
a description of a dialectical process in formal mathematical terms. It typically

contains entities such as arguments and/or propositions in some language as well

as (possibly typed) relations between those elements. Probabilistic graphical models
is a summary term for graph structures encoding dependencies between a set of

random variables.

In other words, discourse about what is likely to be true in an uncertain domain

becomes a question of persuasion and proof rather than a subject of a supposedly

objective probability. For a proposition of interest, the answer given by the system
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as to its truthfulness is hence no longer a number but a qualitative label assigned to

it according to some formal model of dialectic argumentation.

One task that combines argumentation and the need to deal with uncertainty is

litigation planning, that is, planning whether to commence a lawsuit and what kinds

of legal claims to make. The task of a lawyer in litigation planning is unique in that

she is professionally engaged in argumentation to convince an audience of the

truthfulness of certain assertions. For her, however, argumentation takes place in a

planning context, and she needs decision support for the uncertainty she faces in
argumentation. Her utility is the degree of persuasiveness of the arguments, and

she has to plan her litigation strategy and research according to what will give her

the maximum payoff in the task of convincing her audience.

The nature of this task, that is, systematizing uncertainty about the outcome of

an argument, is a kind of practical reasoning. It is hence a promising step to bring

quantitative models of uncertainty inside qualitative argument models with the

goal of obtaining utility information for purposes of planning ones moves and

allocating resources. In litigation, lawyers must view their case from multiple

angles. They can argue about the facts playing in their favor, about the law

rendering the established facts favorable for ones side, about the ethical or policy

concerns given the facts, and, finally, about relating the case at bar to previous

decisions in a way that helps their client. Motivated by the search for a promising

systematization in which to invest further research and development resources,

we survey how these four kinds of uncertainties interrelate using a realistic trade

secret law case. We distill a set of criteria for the suitability of a probabilistic

graphical representation to model legal discourse and present the Carneades

argument model as well as its probabilistic interpretation using Bayesian

Networks [BN] as our running example model. Finally, we explain and emphasize

the role of argument weights in the process and suggest promising extensions

to the model.

2 Survey of Relevant Uncertainties

In planning for litigation, lawyers take account of uncertainties both in the facts

themselves and in how the law applies to the facts. They address uncertainty about

the facts through evidence and evidential argument and uncertainty about the

application of the law through dialectical argumentation.

In so doing, we believe that litigators need to address four main types of

uncertainties:

• Factual: evidence and the plausibility of factual assertions

• Normative: dealing with the application of the law to facts

• Moral: dealing with an ethical assessment of the conflict

• Empirical: relating to prior outcomes in similar scenarios
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2.1 The Example Case

We illustrate these in the context of a real lawsuit, ConnectU versus Zuckerberg,1 in

which plaintiffs C. and T. Winklevoss and D. Narendra sued defendant Mark

Zuckerberg. The plaintiffs founded ConnectU while at Harvard University in

2002–2003; they allegedly developed a business plan for a novel institute-specific

website and network for online communication and dating. According to the plan,

ConnectU was to expand to other institutions and generate advertising revenue.

To develop software for the website, the plaintiffs hired two students. They engaged

Zuckerberg to complete the code and website in exchange for a monetary interest if

the site proved successful. They gave him their existing source code, a description

of the website’s business model and of the functionality and conceptual content, and

the types of user information to be collected. They alleged that the defendant

understood this information was secret and agreed to keep it confidential. The

plaintiffs averred that they had stressed to the defendant that he needed to complete

the code as soon as possible and that he assured them he was using his best efforts to

complete the project. As late as January 8, 2004, he confirmed via email that he

would complete and deliver the source code. On January 11, however, the defendant

registered the domain name “thefacebook.com” and a few weeks later launched a

directly competing website. By the time plaintiffs could launch ConnectU.com,

Zuckerberg had achieved an insurmountable commercial advantage.

An initial decision is what kind of legal claim to bring such as trade secret

misappropriation or breach of contract. In considering a claim of trade secret

misappropriation, an attorney would be familiar with the relevant law and might

even have in mind a model of the relevant legal rules and factors like the one

employed in IBP (Ashley and Brüninghaus 2006) and shown in Fig. 1. Factors are

stereotypical patterns of facts that strengthen a claim for one side or the other.

2.2 Factual Uncertainty

Regarding factual uncertainty, the attorney knows that showing the factual basis for

some factors will be easier than others. In the diagram, easy to prove factors are

underlined. Clearly, the information has commercial value; the social network

model was a unique product at the time. And, the information may have given

Zuckerberg a competitive advantage. On the other hand, to those in the know, the

database is fairly straightforward and likely to be reverse-engineerable by a com-

petent internet programmer in a reasonable amount of time. In addition, it is not

clear whether the Winklevosses took security measures to maintain the secrecy of

the information. They allege Zuckerberg knew the information was confidential,

1ConnectU, Inc. v. Facebook, Inc. et al., Case-Number 1:2007cv10593, Massachusetts District

Court, filed March 28, 2007.
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but there was no agreement not to disclose, or they would have said. As to a breach

of confidential relationship, it was the Winklevosses who gave the information to

Zuckerberg, presumably in negotiations to get him to agree to be their programmer

on this project. Another question mark concerns whether Zuckerberg used improper

means to get the information. It seems clear that he never intended to actually

perform the work the Winklevosses wanted him to perform; that was deceptive.

Though he had access to the ConnectU source code (i.e., tools), he very may well

have developed the Facebook code completely independently, not using the

plaintiff’s information at all, and it may have been quite different from the

ConnectU code.

2.3 Normative Uncertainty

Normative uncertainty refers to uncertainty in the application of legal concepts

to facts based on dialectical argumentation involving two kinds of inferences:

subsumption (i.e., the fulfillment of sets of conditions) or analogy (i.e., a kind of

statutory interpretation based on similarity to some precedent or rule). For example,

Info-Trade-Secret Info-Misappropriated

Information-
Valuable

Maintain-
Secrecy

Confidential-
Relationship

Improper-
Means

Information-
Used

and

and

and

Trade-Secret-Misappropriation

F8 Competitive-Advantage (P)
F15 Unique-Product (P)
F16 Info-Reverse-Engineerable (D)
F20 Info-Known-to-Competitors (D)
F24 Info-Obtainable-Elsewhere (D)
F27 Disclosure-In-Public-Forum (D)

F4 Agreed-Not-To-Disclose (P)
F6 Security-Measures (P)
F10 Secrets-Disclosed-Outsiders (D)
F12 Outsider-Disclosures-Restricted (P)
F19 No-Security-Measures (D)

F1 Disclosure-In-Negotiations (D)
F4 Agreed-Not-To-Disclose (P)
F13 Noncompetition-Agreement (P)
F21 Knew-Info-Confidential (P)
F23 Waiver-of-Confidentiality (D)

F2 Bribe-Employee (P)
F7 Brought-Tools (P)
F14 Restricted-Materials-Used (P)
F17 Info-Independently-Generated (D)
F22 Invasive-Techniques (P)
F25 Info-Reverse-EngineeredD)
F26 Deception (P)

F7 Brought-Tools (P)
F8 Competitive-Advantage (P)
F14 Restricted-Materials-Used (P)
F17 Info-Independently-Generated (D)
F18 Identical-Products (P)
F25 Info-Reverse-Engineered (D)

or

Factual Uncertainty in ConnectU v. Zuckerberg:

Fig. 1 IBP’s domain model of trade secret law with the applicable factors for plaintiff (P) and

defendant (D) in ConnectU versus Zuckerberg. Inapplicable factors are grayed out. Easy to prove

factors are underlined
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a normative issue is whether ConnectU’s knowledge or expertise constitutes a

trade secret. Subsumption does not work too well in this example since Sec. 757

Comment b disavows “an exact definition of a trade secret,”2 listing six relevant

factors, instead. Analogy fills the gap, however. If a prior court has held it sufficient

to establish a trade secret that the plaintiff’s product was unique in the marketplace

even though it could be reverse-engineered, that is a reason for finding a trade secret

in ConnectU versus Zuckerberg. There is uncertainty, however, due to questions

like whether the present case is similar enough to the precedent to warrant the same

outcome. If one were fairly sure that the factors relating to an element (or legal

concept) apply and uniformly support one side, then one could tentatively decide

the element is satisfied. But here, since the factors are only fairly certain or doubtful

and have opposing outcomes, a litigator will probably decide that the various

elements are still open (indicated in bold in Fig. 1).

2.4 Moral Uncertainty

Moral uncertainty is involved in assessing if a decision is “just,” “equitable,” or “right”

based onwhether applicable values/principles are in agreement with or in conflict with

the desired legal outcome of the case. For instance, in trade secret law, considerations

of unfair competition, breach of confidentiality, or innovation all favor a decision for

the plaintiff, while access to public information and protecting employees’ rights to

use general skills and knowledge favor the defendant.Most of these values are at stake

in the ConnectU scenario and they conflict. If the allegedly confidential information is

reverse-engineerable, that would undermine a trade secret claim or limit its value.

On the other hand, if Zuckerberg obtained the information through deception, that

would support the claim. Thus, there are questions about the nature of the trade-off of

values at stake and which critical facts make the scale “tip over.” It makes sense to

consider the balance of values at the level of the individual elements as well as of the

claim; the values at stake and the facts that are critical will differ at these levels.

2.5 Empirical Uncertainty

Finally, there is empirical uncertainty relating to prior outcomes in similar scenarios.

In common law jurisdictions, precedents are recorded in detail, including informa-

tion about the cases facts, outcome, and the courts normative and moral reasoning.

In the United States and elsewhere, this case data may be retrieved manually and

electronically with the result that attorneys can readily access relevantly similar

cases. The precedents are binding in certain circumstances (stare decisis), but even if

2 Restatement of Torts (First) Section 757, Comment b.
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not binding, similar cases provide a basis for predicting what courts will do in

similar circumstances. Given a problem’s facts, a litigation planner can routinely

ask for the outcomes that similar cases predict for claims, elements, and issues in the

current case. The degree of certainty of these predictions (or, respectively, the

persuasiveness of an argument based on prior decisions) depends on the degree of

factual, normative, and moral analogy among the problem and the multiple, often

competing precedents with conflicting outcomes.

2.6 Interdependencies

The four types of uncertainty are clearly not independent (e.g., normative and

empirical, both involve questions of degree of similarity.) There interactions can

be quite complex, as illustrated by the role of narrative. At a factual level, narrative

and facts may mutually reinforce or be at odds. A narrative that is plausible in light

of specific facts may enhance a jury’s disposition to believe those facts; it also raises

expectations about the existence of certain other facts. For instance, if an attorney

tells a “need code” story (i.e., Zuckerberg really needed to see ConflictU’s code to

create Facebook), one would expect to find similarities among the resulting codes.

If it is a “delaying tactic” story, the absence of similarities between codes supports a

conclusion that Zuckerberg may simply have been deceiving the Winklevosses to

get to the market first. At the normative and moral levels, the narrative affects trade-

offs among conflicting values that may strengthen one claim and weaken another.

Trade secret misappropriation does not really cover the Delaying Tactic story for

lack of interference with a property interest in confidential information.

3 Desirable Attributes for a Probabilistic Argument Model

to Assist Litigation Planning

The prior work and literature on evidential reasoning using Bayesian methods as

well as BNs is extensive (see prominently, e.g., (Kadane et al. 1996)). This chapter,

however, focuses more narrowly on how probabilistic graphical models can enrich

the utility of qualitative models of argument for litigation planning. This section

will explain a list of desirable attributes that a probabilistic graphical argument

model should provide in order to be useful for the task. We believe that there are

four such attributes, namely, (1) the functionality to assess argument moves as to

their utility, including (2) the resolution of conflicting influences on a given

proposition, (3) easy knowledge engineering, as well as (4) the functionality to

reason with and about argument weights.
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3.1 Assessment of Utilities

As a starting point, the model should provide for a way to assess the effect of

argument moves on the expected outcome of the overall argument. In other words,

for every available argument move, one would like to know its expected payoff in

probability to convince the audience. Quantitative probabilistic models allow for

changes in the model’s configuration/parameters to be quantified by calculating the

relevant numbers before and after the change.

Similarly, Roth et al. (2007) have developed a game theoretical probabilistic

approach to argumentation using defeasible logic. There, players introduce

arguments as game moves to maximize/minimize the probability of a goal proposi-

tion being defeasibly provable from a set of premises, which in turn are acceptable

with some base probability. Riveret et al.’s game theoretical model of argumentation

additionally takes into account costs that certain argument moves may entail,

thereby assessing an argumentation strategy as to its overall “utility” (Riveret

et al. 2008). As Riveret et al. point out, the concept of a quantitative “utility” is

complex and needs to take into account many factors (e.g., risk-averseness of a

player) and does not necessarily need to be based on quantitative probability. We do

not take position with regard to these questions in this survey chapter. Rather, we

observe that quantitative probabilistic models enable an argument formalism to be

used for utility calculations in litigation planning. We then suggest how this combi-

nation of models can also take account of certain phenomena in legal reasoning, for

example, through probability distributions over argument weights (see Sect. 6).

3.2 Easy Knowledge Engineering

One of the difficulties in probabilistic models is the need to gather the necessary

parameters, that is, probability values. This problem has been of particular impor-

tance in the context of BNs, where a number of approaches have been taken.

For example, Dı́ez and Druzdzel have surveyed the so-called “canonical” gates in

BNs, such as noisy/leaky “and,” “or,” and “max” gates (see Dı́ez et al. 2006 with

further references) which allow for the uncertainty to be addressed in a clearly

delimited part of the network with the remaining nodes behaving deterministically.

This greatly reduces the number of parameters that need to be elicited. In furtherance,

the BN3M model by Kraaijeveld and Druzdzel (Kraaijeveld et al. 2005) employs

canonical gates as well as a general structural constraint on diagnostic BNs, namely,

the division of the network into three layers of variables (faults, evidence, and

context). A recent practical evaluation of a diagnostic network constructed under

such constraints is reported in (Agosta et al. 2008; Ratnapinda et al. 2009).

We believe that a formal model of argument lends itself well to the generation of

BNs from metadata (i.e., from some higher level control model using fewer or

easier-to-create parameters). Specifically for the Carneades model, this route has

previously been examined in (Grabmair et al. 2010). We will give an overview of it
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in Section 5.3 and will build on it in Sections 6 and 7. This is conceptually related to

the works on translation of existing formal models into probabilistic graphical

models. For an example of such a translation, namely, of first-order logic to BNs,

and a survey of related work on so-called probabilistic languages, see (Laskey

2008).

An example of a law-related BN approach that appears not to support easy

knowledge engineering is the decision support system for owner’s corporation

(i.e., housing co-op) cases of Condlie et al. (2010). There, a BN was constructed

using legally relevant issues/factors as its random variables. A legal expert was

entrusted with the task of determining the parameters. The overall goal was to

predict the outcome of a given case in light of prior cases in order to facilitate pre-

litigation negotiation efforts. While this is a good example of a legal decision

support system, it employs no argumentation-specific techniques or generative

meta-model. From the example BN in the article, it appears that the domain model

is essentially “hardwired” into a BN and would need major knowledge engineering

efforts to maintain if relevant legislation/case law (or any other kind of applicable

concerns) were to change and the complexity of the network would increase.

We believe that the construction of decision support BNs under the structural

constraints, and control of a qualitative argument model provides a more efficient

and maintainable way to knowledge engineer such systems. By contrast, admittedly,

our approach still requires validation.

3.3 Conflict Resolution and Argument Weights

The argument model needs to account for pro and con arguments as it resolves

conflicts in supporting and undermining influences on a given proposition. Since

conflicting arguments are very common in legal scenarios, it is critical for a system

to be able to tell how competing influences outweigh or complement each other. In a

quantitative model, this can be done straightforwardly, for example, by computing

an overall probability based on some weighting scheme. In this way, a strong pro

argument will outweigh a weak con argument with some probability. In qualitative

models, to the best of our knowledge, such conflict resolution needs to be established

in a model-specific way. For example, in a qualitative probabilistic network

(Wellman 1990), one could introduce a qualitative mapping for sign addition

where a strong positive influence (++) outweighs a weak negative influence (�),

leading to an overall weaker positive influence (+) (Renooij et al. 1999). Also,

Parsons (Parsons et al. 1997) has produced a qualitative model which allows for

some form of defeasibility in combining multiple arguments into a single influence.

Dung’s prominent work on argumentation frameworks (Dung 1995) only uses

only one kind of attack relation and thereby abstracts away the precise workings

which lead one argument to attack/defeat another (explained, e.g., in Baroni et al.

2009). There, arguments are equally strong, and resolving the argument means

finding certain kinds of extensions in the argument graph. For a brief probabilistic

interpretation and ranking of different extensions by likelihood, see Atkinson and
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Bench-Capon (2007). Value-based argumentation frameworks (Bench-Capon

2003) expand upon this model and implement conflict resolution not through

weights but through a hierarchy of values which prioritize conflicting arguments

depending on which values they favor.

Whether conflict resolution is undertaken through a hierarchy of values or

numerical argument weights (such as in Carneades (Gordon and Prakken 2007))

or in some way, two major conceptual challenges need to be addressed in the legal

context. First, the notion of conflict resolution or degrees of persuasion needs to

interface with the concepts of a standard and burden of proof. There is ample

literature on the topic both in formal models of argument (e.g., in argumentation

frameworks (Atkinson and Bench-Capon 2007) including a general survey and

specifically in Carneades (Gordon et al. 2009)) and elsewhere, such as in the work

of Hahn and Oaksford (2007), who (in our opinion, correctly) point out that proof

standards may be relative to the overall utility at stake.

For example, in ConnectU versus Zuckerberg, a judge may be more likely to

grant the plaintiffs’ request for injunctive relief if it were claimed only for a limited

duration such as the time it would reasonably take for a competent programmer to

reverse engineer the information once the plaintiffs’ program was deployed. Such a

solution would possibly maximize the realization of the values protected, protecting

property interest in the invention for a limited time while allowing access to public

information afterward.

Second, an argument model should allow for meta-level reasoning about

the conflict resolution mechanism, that is, arguments about other arguments (e.g.,

about their weight/strength). This is our main motivation for the extensions

suggested in Sect. 6.

4 Sample Assessment of Graphical Models

This section will lead through a comparison of graphical models and their

capabilities in the context of modeling the ConnectU versus Zuckerberg case.

Connecting to our previous explanations of uncertainty, we systematize our legal

problem by distilling it into the three major uncertainties: normative, moral, and

factual. Empirical uncertainty is not explicitly represented, but rather affects both

normative and moral uncertainty, where it flows into how decisions about

precedents affect the argument. The overall outcome is influenced both by norma-

tive and moral assessments of the facts (Fig. 2). We will now expand this basic

framework into a more detailed reflection of arguments.

4.1 A Graphical Structure of the Analysis

As we have seen in the IBP domain model sketched above, in order for a trade

secret misappropriation claim to be successful, the information in question would
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need to constitute a trade secret, and the information would need to have been

misappropriated in some way. Assume that the primary legal issue before the court

is just the former, that is, whether the source code and business documentation

obtained by Zuckerberg constitute a trade secret.

A factor in the affirmative is that the code is part of a hitherto unique product
(compare factors in Fig. 1). There is no service on the market yet with comparable

prospects of success. The value underlying this factor is the protection of property,
as the inventor of a unique product has an ownership interest in the information that

is protected by the legal system.

On the other hand, a factor speaking against the trade secret claim could be the

fact that the product is easily reverse-engineerable. After all, ConnectU (function-

ally similar to Facebook) is a straightforward online database-driven website

application. After seeing it work, an internet programmer of average competence

could recreate the functionality from scratch without major difficulty within a

reasonable amount of time. The value underlying this conflicting factor is the

protection of public information. The policy is that trade secret law shall not confer

a monopoly over information that is publicly available and easily reproduced and

hence in the public domain.

The two conflicting concerns influence both the normative and the moral

assessments. In the normative part, unique product and reverse-engineerable
essentially become two arguments for and against the legal conclusion that there is

a trade secret. They, in turn, can be established from facts in an argumentative way.

In the moral part, we have the conflicting interests behind these factors, namely, the

desire to protect one’s property and the goal to protect public information. However,

these interests are not per se arguments in the debate of whether a moral assessment

of the situation speaks for or against a trade secret misappropriation claim. Rather,

they are valueswhich are to be weighed against each other in a balancing act. Again,
this determination is contingent on an assessment of the facts.

The overall structure just presented can be visualized as a directed graph model

in Fig. 3. It shall be noted that this graph is an incomplete and coarse-grained

representation of the concerns. Our intention is only to expand parts of the norma-

tive and moral layer in order to illustrate certain features of graphical probabilistic

argument models in the subsequent sections.

TSM-Claim

Normative 
Assessment

Moral 
Assessment 

Factor nFactor 1 Factor ...

Fig. 2 A basic graph for a

legal decision problem

70 M. Grabmair and K.D. Ashley



4.2 Casting the Example into a Graphical Model

Figure 3 provides a basic graphical model of the decision problem in ConnectU

versus Zuckerberg. On the normative side, there are two conflicting arguments

(unique product and reverse-engineerable), each stemming from a certain factor

and conflicting values, which underlie these factors. Overall, the two components

are framed by the factual layer of the graph (shown as a single large node standing

in for a set of individual facts nodes) feeding into the normative and moral parts, as

well as the overarching conclusion, that is, the success of the trade secret misappro-

priation claim. A probabilistic interpretation of the graph implies that, for every

arrow, our belief in the target proposition is influenced by our belief in the

propositions that feed into it. Our belief in certain facts influences our belief in

the status of the intermediate concepts involved. The way in which this influence

takes place varies across the different kinds of uncertainty. For example, in factual

uncertainty, a significant part of the reasoning may concern evidential questions of

whether a certain fact is true (or not) and what its causal relations are to other

uncertain facts. Here, and probably to a greater extent in normative uncertainty,

multiple conflicting arguments are a typical occurrence and need to be resolved by

some functionality of conflict resolution, as will be addressed further below.

4.3 Generic Bayesian Networks

This section will give a brief overview of Bayesian Networks (as introduced in Pearl

et al. 1985) and a brief survey of how they can be used to model argumentation.

TSM-Claim

Normative
Assessment

Moral
Assessment

Info-Trade-
Secret

Info-
Misappropriated

Balancing
Property

Balancing
Publ. Inf.

Facts 

... 

Reverse-
Engineerable

Unique
Product

Fig. 3 The decision graph with moral and normative assessments expanded
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A Bayesian Network [BN] is a probabilistic graphical model based on a directed

acyclic graph whose nodes represent random variables and whose edge structure

encodes conditional dependencies between the variables. Each variable has a

conditional probability function (typically represented as a table of conditional

probabilities) defining the probability of the given node having a certain value

conditioned on the values of its immediate parent variables. One can then compute

a probability value of interest in the network by multiplying respective probabilities

along a corresponding path. BNs are capable of both forward reasoning (i.e.,

determining the probability of effects given causes) and diagnostic reasoning

(i.e., determining the probability of causes given effects). In the context of this

chapter and at the current state of our research of applying BNs to argumentation,

we only discuss the former.

From now on, we shall assume that the graph is completed in the interface of the

facts layer to the assessment layer. One can take a straightforward approach and

translate the graph in Fig. 3 into a BN. While the node and edge structure can be

mapped over identically, one needs to define conditional probability tables. In our

example, the main instances of interest are the conflicting arguments for unique
product and reverse-engineerability (see Fig. 4).

Using a BN for representing argument graphs has a number of desirable features.

First, it allows the calculation of probability values given its parameters, while

qualitative models provide this functionality only to a very limited extent. In the

context of argument models, this means that by changing the parameters or altering

the graph in certain ways, one can calculate the increase or decrease in persuasive-

ness of a conclusion statement of interest. Second, probabilities are propagated

through the network, thereby leading to a quantitative synthesis of pro and con

influences on a given proposition. This is because, through the conditional

probabilities, relative strength among competing arguments is expressed via the

probability with which one set of arguments defeats another. This aspect of BNs as

a representation technique addresses the first two of our desired attributes for an

argument-based litigation support system (see Sect. 3).

An example of a system combining argument graphs and BNs is the work of

Muecke and Stranieri (2007), who use a combination of a generic argument model

and expert-created BNs to provide support for the resolution of property issues in

divorce cases. The resulting system was intended to reflect the judicial reasoning to

be anticipated if the case were to be litigated, also taking into account precedent

cases in designing the argument graphs. However, our approach is not to be

confused with work aiming to construct argument graphs from existing BNs (see,

e.g., Keppens et al. 2012) for an approach to extracting an argument diagram from

Info-Trade-
Secret

Reverse-
Engineerable

Unique
Product

Fig. 4 Pro and con

arguments for trade secret

issue
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BNs in order to scrutinize and validate evidential reasoning with the BN).

Zukerman et al. (1998) developed a system which uses a combination of multiple

knowledge bases and semantic networks to construct two BNs, one normative

model and a user model. These are then used to gradually expand a goal proposition

of interest into an argument graph (with premise propositions and inference links)

until a desired level of probabilistic belief in the goal is established.

However, a difficulty is that BNs traditionally have proven to be difficult in

terms of the required knowledge engineering. This is particularly true with regard to

the elicitation of the necessary conditional probabilities (compare Dı́ez et al. 2006).

Also, although BNs reduce in parametric complexity compared to a full joint

distribution, exact inference is still NP hard (see Cooper 1987), and individual

conditional probability tables can become quite large very easily. We will now

illustrate this rapid growth in the context of our example.

Let us assume, similar to Carneades (Gordon and Prakken 2007; Gordon et al.

2009), that statements can have three possible statuses: accepted (where the audi-

ence has accepted a statement p as true), co-acceptable (where the audience has

accepted the statement’s complement �pas true), and questioned (where the audience
is undecided about whether to accept or reject a statement). If one applies this triad

of possible statuses to the three statement sub-issues in Fig. 4, then we need to

define 33 ¼ 27 possible statuses (called “parameters”) in the conditional probabil-

ity table of info-trade-secret. For each of the possible three statuses of the conclu-

sion info-trade-secret, we need to determine the probability of said status

conditioned on every possible combination of the three statuses of each of unique
product and reverse-engineerable.

A domain expert would need to provide all these probabilites and tackle the

challenges this task entails, for instance:

• What is the probability of the conclusion being accepted if both the pro and con

arguments are accepted by the audience and hence conflict? Which one is

stronger and how much stronger?

• If neither argument is acceptable, is there a “default” probability with which the

audience will accept the statement?

• If only the pro argument is accepted, what is the probability of the conclusion

being accepted? Is this single accepted pro argument sufficient? Is there some

threshold of persuasion to be overcome?

• Similarly, if only the con argument is accepted, is this sufficient to make the

audience reject the conclusion? Does it make a difference whether the audience

is undecided over a pro argument or whether it explicitly rejects it?

It is difficult for domain experts to come up with exact numbers for all these

scenarios, irrespective of which argument model or which precise array of possible

statuses is used. One may argue that the use of three statuses as opposed to a binary

true/false scheme artificially inflates complexity to a power of three as opposed to a

power of two (thereby leading to only 23 ¼ 8 required probabilities). In scenarios

where there are more than two arguments, however, the number of required

probabilities outgrows the feasible scope very quickly. Also, once a table of
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probabilities has been created, modifications like adding or removing arguments

require significant effort.

In light of this difficulty, it is desirable to have a simpler mechanism for

knowledge engineering when using BNs as a representation. One solution is to

use an existing qualitative model of argumentation to generate BNs including their

parameters. In such an approach, the superior “control” model (in our case, an

argument model) steers the construction of the networks and the determination of

its parameters. In argumentation, previous work on probabilistic semantics for the

Carneades argument model (Grabmair et al. 2010) produced a formalism with

which an instance of a Carneades argument graph can be translated into a BN.

This method may resolve at least some of the issues enumerated above or, at least,

provide a more usable representation.

5 Carneades

5.1 A Brief Introduction to the Carneades Model

This section gives a brief overview of the Carneades argument model as well as its

BN-based probabilistic semantics and explains the benefits it provides over a

generic BN model.

The Carneades argument model represents arguments as a directed, acyclic

graph. The graph is bipartite, that is, both statements and arguments are represented

as nodes in the graph. An argument for a proposition p (thereby also being an

argument con ¬p) is considered applicable if its premises hold, that is, if the

statements on which it is based are acceptable. This acceptability is in turn

computed recursively from the assumptions of the audience and the argument

leading to a respective statement. For each statement, applicable pro and con

arguments are assessed using formally defined proof standards (e.g., preponderance
of the evidence, beyond a reasonable doubt), which can make use of numerical

weights (in the zero to one range) assigned to the individual arguments by the

audience.

In recent work on Carneades (Ballnat et al. 2010), its concept of argumentative

derivability has been extended to an additional labeling method using the statuses

of in and out, which we will use occasionally throughout this chapter. So far, we

have spoken of a literal p being acceptable, which can alternatively be labeled as

p being in and ¬p being out. In the opposite case, if ¬p can be accepted (i.e., is in),
p is labeled out, whereas ¬p is labeled in. Finally, if p remains questioned, both

p and ¬p are out. One can see that the new method is functionally equivalent to the

original one yet entails a clearer separation of the used literals into positive and

negated instances. This has been taken over into the BN-based probabilistic seman-

tics for Carneades in (Grabmair et al. 2010).

74 M. Grabmair and K.D. Ashley



Figure 5 recasts our trade secret example into a Carneades graph. Similar to the

previous Fig. 4, three rectangular nodes represent the statements. The circular nodes

stand for the arguments which use these statements as premises and are labeled with

exemplary argument weights. Now, assume that the trade secret issue shall be

decided based on a preponderance of evidence proof standards. Verbalized, this

means that the side shall win who provides the strongest applicable argument.

A statement is acceptable under the Carneades implementation of the preponder-

ance of evidence standard if the weight of the strongest applicable pro argument is

greater than the weight of the strongest applicable con argument (for a full formal

definition, see Gordon et al. 2009). The inverse condition needs to be fulfilled for

the statement to be rejected. If neither side can provide a trumping applicable

argument, the statement remains questioned. The only constraint is that each weight

is within the [0, 1] range. They represent a quantitative measure of the subjective

persuasiveness assigned to the arguments by the audience, not probabilities, and

hence do not need to sum to 1. Carneades makes the assumption that such numbers

can be obtained and uses the set of real numbers as its scope, that is, there is no

minimum level of granularity for the precision of the number.

Hence, in our example (Fig. 5), if both unique product and reverse-engineerable
are acceptable or assumed true by the audience, the pro argument with a weight

of 0.7 trumps the con argument with a weight of 0.5, and hence the statement

info-trade-secret is acceptable.

5.2 Carneades Bayesian Networks

From the graphical display in Fig. 5, we can easily conceptualize a corresponding

Carneades Bayesian Network [CBN] quantitatively emulating the same qualitative

inferences. The structure would be identical, and we only would need to define

probability functions/tables. These probabilities basically emulate the deterministic

behavior of the Carneades model. Later, the model can be extended to support new

phenomena of uncertainty, for example, probability distributions over assumptions.

The following explanations are essentially a verbalized summary of the formalism

given in (Grabmair et al. 2010), to which we refer the interested reader for greater

detail.

First, we determine the probability parameters of the leaf nodes. Depending

on whether our audience assumes unique product and/or reverse-engineerability

info-Trade-
Secret

Reverse-
Engineerable

Unique
Product

+0.7 –0.5

Fig. 5 ACarneades graph for

the trade secret issue
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as accepted or rejected, or has no assumptions about them, the respective

probability will be either 0 or 1 for the positive and negated versions of the

respective statements. Second, the probability for each of the arguments being

applicable will be equal to 1 if their incoming premise statement is acceptable

and 0 otherwise. Third, the conditional probability table for info-trade-secret
contains the probability of the statement being acceptable conditioned on the

possible combinations of in/out statuses of the two arguments (i.e., 2 � 2 ¼ 4

parameters). Here, the probability of the presence of a trade secret being acceptable

for the audience is equal to 1 for the two cases where the pro argument based on

unique product is applicable and 0 otherwise because the pro argument is required

for acceptability and always trumps the con argument (based on reverse-
engineerable) because 0.7 > 0.5.

Notice that the just explained probabilities change once the Carneades argument

graph changes. For example, if the weights of the arguments are changed such that

the con argument strictly outweighs the pro argument, then the conditional proba-

bility table for info-trade-secret would need to be changed to assign a probability of
0 to the statement being in (or, more generally, the statement’s acceptability) in

case of conflicting applicable arguments.

This simple example illustrates how one can translate instances of a qualitative

model of argumentation into a BN. Notice, however, that all probabilities we have

defined so far are deterministic, that is, they are either equal to 1 or equal to 0. This

makes the BN function exactly like the original Carneades argument graph. Once

some part of the configuration changes, this change can be taken over into the BN

by modifying the structure or conditional probability tables of the network. In this

way, our qualitative model of argument becomes a control structure which takes

care of constructing an entire BN. The required knowledge to be elicited from

domain experts is hence limited to the information necessary to construct the

Carneades argument graph, such as the assumptions made and the weights assigned

by the audience.

Finally, the probabilistic semantics of Carneades allow for a conceptual distinc-

tion between the subjective weight of an argument (to the audience) and the

probability of the argument being applicable given the probability of the

argument’s premises being fulfilled. For detail and related work, we refer the reader

to (Grabmair et al. 2010).

5.3 Carneades Bayesian Networks with Probabilistic Assumptions

Probabilistic semantics for a qualitative argument model provide little benefit if

their parameters make the BN behave deterministically. A first extension introduces

probabilistic assumptions and has been formally defined and illustrated in an

example context in (Grabmair et al. 2010). Therefore, it shall only be explained

briefly in this chapter.

Carneades allows for an audience to assume certain propositions as in or out. In
realistic contexts, one might not be able to make such a determination about the
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audience. Instead, one may characterize an audience as being more or less likely to

accept a certain statement than to reject it by some degree of confidence, or vice

versa. One can capture this into a Carneades BN by allowing for prior probability

distributions over the leaf node literal statements that the foundations of the argu-

ment and which may be assumptions. From there upward, the network propagates

these values and provides for means to calculate the probability of success in

the overall argumentative goal given the knowledge about the assumptions of the

audience (see Fig. 6). The remaining parts of the network still are deterministically

parametrized. This means that changes to the model graph (such as the introduction

of new arguments or the alteration of weights) are still straightforward to reflect in

the BN and can be assessed in terms of their impact on the probability of the success

of the overall argument.

In a practical application, one can use available knowledge about the audience

(e.g., the composition of a jury or a particular judge in a legal proceeding) to model

these prior distributions.

5.4 Introduction to Argument Weights

Besides the assumptions about statements, Carneades associates with the audience

the weights of the arguments employed in order to be able to resolve conflicting

arguments using proof standards. Similar to probabilistic assumptions, one might

not be able to determine that the audience will definitely prefer argument A + over

argument A– (compare Fig. 6) by some margin. Instead, one may be able to say that

the audience is more likely to assign high weight to an argument than a low one. Or

one may say that the audience is so mixed that it is just as likely to give great weight

to the argument as it is to disregard it. It is hence useful to model argument weights

using prior probability distributions as well. Figure 6 displays our example network

in such a structure. Notice that the statements unique product as well as reverse-
engineerable can either be subject to further argumentation or assumed by the

Info-Trade-
Secret

Reverse-
Engineerable

Unique
Product 

A+ A-

Weight
A+ 

Prior 

Weight
A- 

Prior 

Argumentation
or Prior 

Argumentation
or Prior 

Fig. 6 Example CBN with

priors for arguments weights
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audience to be in, out, or questioned according to some prior probability.

For example, the audience can either assume the reverse-engineerability as such
or it can be convinced to believe in it because of, for example, an IT expert

testifying that an average programmer can reverse-engineer the database. In the

latter case, one could expand reverse-engineerable into a subtree containing all

arguments and statements related to this expert testimony.

6 Extension of Carneades to Support Probabilistic

Argument Weights

We now formally define an extension/modification of the CBN model to support

probability distributions over argument weights. We build on the formalism

published in (Grabmair et al. 2010), which we have not reproduced in its entirety

here. To make this chapter stand alone, we present slightly altered versions of three

definitions used in (Grabmair et al. 2010) and accompany them with explanations

about the symbols and constructs. These are the new argument weight random

variable (representing the actual weights), the modified audience (with distributions

over argument weights instead of static ones), and the enhanced probability

functions (determining the probability of an argument having a certain weight

and of its conclusion being acceptable). All other modifications are straightforward

and have been omitted for reasons of brevity.

Definition 1. (argument weight variables). An argument weight variable wa is a
random variable with eleven possible values: {0, 0.1, 0.2, . . ., 0.9, 1.0}.

It represents the persuasiveness of an argument a.

By contrast to the original Carneades models, we have segmented the range of

possible weights using 0.1 increments. While the granularity of the segmentation is

arbitrary, we consider a segmentation useful for purposes of this extension because

(1) it is flexible yet allows to reasonably model a tie among weights of conflicting

arguments (which would be harder if one were dealing with a continuous distribu-

tion) and (2) it allows the probabilities to be displayed in table form. This latter

feature will become relevant in the next section, where we survey the possibility of

yet another extension, subjecting the weight distributions to further argumentation.

Next is our enhanced definition of an audience (compare to def. 12.3 in Gordon

et al. 2009). For understanding, L stands for the propositional language in which the

statements have been formulated.

Definition 2. (audience weight distributions). An audience with weight
distributions is a structure f; f 0h i , where F ∈ L is a consistent set of literals
assumed to be acceptable by the audience and f0 is a partial function mapping
arguments to probability distributions over the possible values of argument weight
variables. This distribution represents the relative weights assumed to be assigned

78 M. Grabmair and K.D. Ashley



by the audience to the arguments. For a given set of weight values wa1 ; . . . ;wan ;
let f 00ðwa1 ; . . . ;wanÞ be a partial function mapping the arguments a1, . . ., an onto
these values.

The main aspect of the extension is the modified probability functions given in

the next definition. In the original definitions in (Grabmair et al. 2010), weights

were not explicitly represented as random variables in the network. As we introduce

them now, we alter the probability functions for arguments by making them

conditioned on the values of their argument weight parent variables. We further

assign probability functions for the weight variables themselves.

Carneades conceptualizes argumentation as an argumentation process divided
into stages, which in turn consist of a list of arguments, each connecting premise

statements to a conclusion statement. The central piece of the formalism is the

argument evaluation structure, which contains the elements necessary to draw

inferences, namely, the stage containing the arguments, the proof standards of the

relevant statements, and, finally, an audience holding assumptions and assigning

argument weights. Carneades features in-out derivability in (Ballnat et al. 2010) as

explained above. When verbalized, ðG;fÞ ‘f 00ðwa1
;...;wan Þ;g p means that the

arguments contained in the stage G and the set of assumptions by the audience

FF argumentatively entail statement p (i.e., p is in) given the argument weights

determined by the partial function f” and the proof standards of the statements

determined by the function g.

Definition 3. (modified probability functions). If S ¼ G;A; gh i is an argument
evaluation structure with a set of arguments G (called a “stage” in an “argumen-
tation process”), a function g maps statements to their respective proof standard,
A ¼ f; f 0h i is the current audience, the set of random variables VS ¼ S [ A [W
consists of a set of statement variables S, a set of argument variables A as well as a
set of weight variables W, and DS is the set of connecting edges, then PS ¼ Pa

[Ps [ Pw is a set of probability functions defined as follows:
Definitions of Pa ¼ fPaja 2 Ag have been omitted for brevity reasons. See def.

13 in (Grabmair et al. 2010). It states that arguments are applicable with a
probability of 1 if their premises hold.

If s ¼ S is a statement variable representing literal p and a1, . . ., an are its
parent argument variables with corresponding weights variables wa1 ; . . . ;wan, then
Ps is the probability function for the statement variable s:

Psðs ¼ inja1; . . . ; an;wa1 ; . . . ;wanÞ ¼
1; if ðG; FÞ‘f 00ðwa1

;...;wan Þ;gp;
0; if ðG; FÞf 00ðwa1

;...;wan Þ;gp:

�

Psðs ¼ outja1; . . . ; an;wa1 ; . . . ;wanÞ ¼ 1� Paðs ¼ inja1; . . . ; anÞ:

We further add probability functions for weight variables:

Pwa
ðwa ¼ uÞ ¼ f 0ða; uÞ:
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Finally, the total set of probability functions consists of one such function for
each statement, argument, and weight:

Let Pa ¼ Paja 2 Af g; Ps ¼ Psjs 2 Sf g and PW ¼ Pwa
ja 2 Af g:

In our example, we can use this function to automatically construct a conditional

probability table for the statement info-trade-secret. Because there are 11 possible

argument weights, its conditional side would contain 11 � 11 � 22 ¼ 484 possi-

ble combinations of argument applicability and argument weights for both A+ and

A�. The literal is in with a probability of 1 in all combinations where (1) A+ is

applicable and A� is either not applicable or, in case, both arguments are applicable

and (2) its weight wA� is less than wA+. This second case is new in this extension; in

the basic model weights (and hence the outcomes of the aggregation of the

arguments using the proof standard) are static. For example, using this extension,

in Fig. 6, the probability of info-trade-secret being in would be determined by not

only taking into account the probability of the audience accepting or rejecting

reverse-engineerability or uniqueness of the product but also the possibility of

either of the two arguments outweighing the other with some probability. Without

the extension, one could only calculate the probability of the outcome given some

static weights (e.g., 0.7 > 0.5 as above).

For example, one can use a discretized bell-curve-like distribution over the 11

intervals (assuming it holds that
P10

i¼0 P w ¼ i
10
¼ 1

� �
, depending on what one

believes to be true about the audience). For example, in ConnectU versus

Zuckerberg, we may be fairly certain that the uniqueness of the product is a

persuasive argument and hence model a narrow bell-curve-like segmentation of

probabilities with a high center (see Fig. 7 left). The reverse-engineerability, on the

other hand, may only be low in weight, resulting in a shallow discrete curve-like

distribution (see Fig. 7 middle). In a litigation planning context, these distributions

correspond to the attorney’s assumption about the audience. The narrower and

higher the curve, the more certain she will be about exactly how persuasive an

argument is. The more uncertain she is, the flatter the curve will become. If she

cannot tell at all how strong her jury/judge will deem an argument, a uniform

distribution can be employed (see Fig. 7 right).
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Fig. 7 Example probability distributions over weights (high peak, uniform, low shallow).

The horizontal axes show argument weight values for an argument whose probabilities are

displayed on the vertical axes
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The benefit of using probability distributions over argument weights as opposed

to static weights is that the system can compute the probability of a statement being

acceptable in the argument model by taking into account the probabilities with

which conflicting arguments defeat each other under the different proof standards.

For example, a strong argument may no longer deterministically defeat a weaker

one, but only by some relatively high probability that can be determined by

computing both weight prior distributions of the two arguments. Or an argument

may fall below a minimum relevance threshold or not with some probability. These

implicit computations can take place through Carneades’ existing proof standard

functions and the basic conditional probability functionality of BNs. Notice that

this extension is set on top of the core formalism for CBNs in (Grabmair et al. 2010)

and does not include prior probabilities over assumptions (compare Sect. 5.3).

A comprehensive formalism including multiple extensions is intentionally left

for future work.

7 Desiderata for Future Developments

In this section, we suggest two further extensions, namely, to influence argument

weights by (a) making the argument weights subject to argumentation and, in order

to connect to our previous explanations about moral uncertainty, (b) making the

argument weights subject to influence from the results of the moral assessment of

the case, that is, the results of the balancing of the principles involved. We will

outline these extensions conceptually, justify why we consider them relevant, and

hint at possible ways to implement them.

The common idea underlying the just suggested extensions as well as the

following explanations is that argument weights are a crucial part of an argument

model as they potentially enable the system to give definite answers in instances of

conflicting arguments. Also, the weights stand for the realization that arguments

differ in persuasiveness and are relative to a factual context and to abstract values.

We do not take a position with regard to the philosophical and argument-theoretical

implications of these notions, but only explore their ability to be modeled in this

formal context.

7.1 Weights Subject to Argumentation

Arguments can be abstracted from and reasoned about. One can argue about how

heavily a certain argument weighs in comparison to others and in light of the

context in which it is employed. For example, in ConnectU versus Zuckerberg, if

the plaintiff argumentatively establishes that the database is really difficult to

reverse engineer and requires considerable skill, then the defendant’s argument

based on reverse-engineerability becomes weaker, despite still being applicable.
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Once weights are represented explicitly in the argument graph, one can make them

subject to argumentation. This presupposes the model’s ability to express in its

proposition information about the weights. What this information specifically

means is dependent on how the argument model represents weights. In the

Carneades-BN derivative, we have been describing in this chapter, this information

about the weights takes the shape of normalized real numbers or, in the case of the

extension, a prior probability distribution over a discretized range of weights.

As has been proposed above, a very strong argument could, for example, be

modeled as a narrow bell-curve-like prior weight distribution with its peak centered

at 0.8. On the other hand, a weak argument might be a similar bell curve but with its

maximum probability located at only 0.3. Finally, an argument of average weight

would be situated at 0.5. If one attempts to represent as a graph a meta-argument

that a certain argument is either strong, weak, or average, the discourse essentially

becomes an argument about a potentially unconstrained number of alternative

choices as opposed to an argument about the acceptance of a certain statement as

true. Carneades, with its current qualitative semantics, does not provide for such

functionality.

In a generic BN representation, however, these choices can be represented as

probability distributions conditioned on the status of the parent variables, where the

parent variables here would represent, for example, the nodes in the fact layer or

normative layer informing the weights. This essentially leads to an interdependence

of argument formation and argument weights. We have just scouted the possibility

of informing a choice of argument weights from fact patterns, which in turn can be

argumentatively established. This can be considered as in part conceptually remi-

niscent of arguing from dimensions (Ashley et al. 1991). For example, in a trade

secret misappropriation case, imagine that the manufacturer of a unique product has

communicated production informations of the product to outsiders. This forms an

argument against a trade secret claim because the manufacturer himself has broken

the secrecy. However, it arguably makes a difference to whom he has

communicated the secret (e.g., his wife, his neighbor, or a competitor’s employee)

and, in a second dimension, to how many people he has done so. This small

example shows that the weight of an existing argument may be subject to argumen-

tation itself based on the facts and the values at stake in the dispute. This leads over

to our final suggested extension.

7.2 Inform Weights from Values

The values underlying the legal issues are another source of information for the

question of which weights certain arguments shall carry. In ConnectU versus

Zuckerberg, we have an argument based on the product’s uniqueness furthering

the protection of intellectual property interests, whereas an argument based on the

product’s reverse-engineerability goes against property interests in public informa-

tion. This mechanism of arguments furthering values has been debated in
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computational models of argument, perhaps most prominently in the context of the

already mentioned value-based argumentation frameworks (Bench-Capon 2003),

where a hierarchy of values resolves conflicts among arguments. In further work

(Modgil 2006), this hierarchy can be made subject to argumentation as well, lifting

the argument framework into a meta-representation. Feteris (2008) presents a

pragma-dialectical model for how legal arguments for and against the application

of rules can be weighted by underlying values and the factual context, connecting to

prominent legal theories which we do not reference here for reasons of brevity.

One can adapt this notion in the context of probabilistic semantics for argument

weights, by allowing the moral assessment of a case to influence the probability

with which certain legal arguments will prevail over others. In other words, if a

judge in ConnectU versus Zuckerberg, after considering the given facts, is of the

opinion that property interests outweigh the interest in protecting public access

(because, e.g., the evidence indicates that the social network idea is so unique and

new that its farsighted inventor deserves a head start on its marketing), she might be

more likely to accord greater weight to the legal arguments about the controversial

issues which favor the property interest value (Fig. 8).

From a technical point of view, one can imagine that the decision about which

principle is more important can determine a choice among different prior

probabilities for the argument weights. A more satisfying solution, however,

would be to not choose among predefined priors, but to have the priors of the

weights be a qualitative outflow of the balancing decision between the two

principles. If one value outweighs another by a larger or smaller margin, this margin

should be reflected in the shape of the prior distribution of the argument weights.

We are presently researching ways of modeling legal argumentation with values

and have not yet conceived how to integrate it with a probabilistic argument model

as described. Still, the idea of a value-based approach coheres with the intuitions of

legal experts and has the potential of enriching the expressivity of probabilistic

argument models.
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Fig. 8 Conceptual argument graph with values informing weights of legal arguments
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8 Conclusions and Future Work

We have presented a survey of four kinds of uncertainties lawyers reason about and

plan for in litigation and presented a realistic case example in trade secret law.

Systematizing the uncertainties into a graphical model, we explained desirable

attributes for probabilistic models of argument intended for litigation planning.

Generic BNs as well as a probabilistic semantics for the Carneades model have

been used as examples, and we have suggested extensions to the latter that allow

more sophisticated reasoning with argument weights. We see great potential in

combining quantitative models of uncertainty with qualitative models of argument

and consider legal reasoning as an ideal testing ground for evaluating how qualita-

tive models can be used most effectively to create quantitative models and how

quantitative methods can provide steering heuristics and control systems for quali-

tative argumentation.
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