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Abstract Everyday life reasoning and argumentation is defeasible and uncertain.

I present a probability logic framework to rationally reconstruct everyday life

reasoning and argumentation. Coherence in the sense of de Finetti is used as the

basic rationality norm. I discuss two basic classes of approaches to construct

measures of argument strength. The first class imposes a probabilistic relation

between the premises and the conclusion. The second class imposes a deductive

relation. I argue for the second class, as the first class is problematic if the

arguments involve conditionals. I present a measure of argument strength that

allows for dealing explicitly with uncertain conditionals in the premise set.

Probabilistic approaches to argumentation have become popular in various fields

including argumentation theory (e.g., Hahn and Oaksford 2006), formal epistemo-

logy (e.g., Pfeifer 2007, 2008), the psychology of reasoning (e.g., Hahn and Oaksford

2007), and computer science (e.g., Haenni 2009). Probabilistic approaches allow

for dealing with the uncertainty and defeasibility of everyday life arguments. This

chapter presents a procedure to formalize everyday life arguments in probability

logical terms and to measure their strength.

“Argument” denotes an ordered triple consisting of (i) a (possibly empty) premise

set, (ii) a conclusion indicator (usually denoted by “therefore” or “hence”), and

(iii) a conclusion. As an example, consider the following argument A:

(1) If Tweety is a bird, then Tweety can fly.

(2) Tweety is a bird.

(3) Therefore, Tweety can fly.
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In terms of the propositional calculus, A can be represented by A1:

(1) B � F
(2) B

(3) ; F

where “B” denotes “Tweety is a bird,” “F” denotes “Tweety can fly,” “;” denotes

the conclusion indicator, and “�” denotes the material conditional. The material

conditional (A � B) is false if the antecedent (A) is true and the consequent (B) is
false, but true otherwise.1

ArgumentA1 is an instance of the logically valid modus ponens. An argument is

logically valid if, and only if, it is impossible that all premises are true and the

conclusion is false. In everyday life, however, premises are often uncertain, and

conditionals allow for exceptions. Not all birds fly: penguins, for example, are birds

that do not fly. Also, the second premise may be uncertain: Tweety could be a

nonflying bird or not even a bird. This uncertainty and defeasibility cannot be

properly expressed in the language of the propositional calculus. Nevertheless, as

long as there is no evidence that Tweety is a bird that cannot fly (e.g., that Tweety is

a penguin), the conclusion of A is rational.

Probability logic allows for dealing with exceptions and uncertainty (e.g., Adams

1975; Hailperin 1996; Coletti and Scozzafava 2002). It provides tools to reconstruct

the rationality of reasoning and argumentation in the context of arguments like A1.

Among the various approaches to probability logic, I advocate coherence-based
probability logic for formalizing everyday life arguments (Pfeifer and Kleiter

2006a, 2009). Coherence-based probability logic combines coherence-based proba-

bility theory with propositional logic. It received strong empirical support in a

series of experiments on the following: the basic nonmonotonic reasoning System

P (Pfeifer and Kleiter 2003, 2005, 2006b), the paradoxes of the material conditional

(Pfeifer and Kleiter 2011), the conditional syllogisms (Pfeifer and Kleiter 2007), and

on how people interpret (Fugard et al. 2011) and negate conditionals (Pfeifer 2012).

Coherence-based probability theory was originated by de Finetti (1970/1974,

1980). It has been further developed by, among others, by Walley (1991), Lad

(1996), Biazzo and Gilio (2000), and Coletti and Scozzafava (2002). In the frame-

work of coherence, probabilities are (subjective) degrees of belief and not objective
quantities. It seems natural that different people may assign different degrees

of belief to the premises of one and the same argument. This does not mean,

however, that everything is subjective and therefore no general rationality norms

are available. Coherence requires that bets which lead to sure loss must be avoided

which in turn guarantees that the axioms of probability theory are satisfied.2

1Note that the propositional-logically atomic formulae B and F in argumentA1 can be represented

in predicate logic by bird(Tweety) and can_fly(Tweety), respectively. Moreover, F may be

represented even more fine-grained in modal logical terms by ◊F, where “◊” denotes a possibility
operator. However, for the sake of sketching a theory of argument strength, it is sufficient to

formalize atomic propositions by propositional variables.
2 I argued elsewhere (Pfeifer 2008) that violation of coherence is a necessary condition for an

argument to be fallacious.
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Another characteristic feature of coherence is that conditional probability, P(B|A),
is a primitive notion. Consequently, the probability value is assigned directly to the
conditional event, B|A, as a whole. This contrasts with the standard approaches to

probability, where conditional probability (P(B|A)) is defined by the fraction of the

joint and the marginal probability PðA ^ BÞ= PrðAÞð Þ. The probability axioms are

formulated for conditional probabilities and not for absolute probabilities (the latter

is done in the standard approach to probability and is problematic if P(A) ¼ 0).

Coherence-based probability logic tells us how to propagate the uncertainty of

the premises to the conclusion. As an example, consider a probability logical

version of the above argument, A2:

(1) P(F|B) ¼ x
(2) P(B) ¼ y
(3) ; xy � PðFÞ � xyþ 1� y

where xy and xy + 1 � y are the tightest coherent lower and upper probability

bounds, respectively, of the conclusion.A2 is an instance of the probabilistic modus

ponens (see, e.g., Pfeifer and Kleiter 2006a). If premise (1) had been replaced by

the probability of the material conditional, then the tightest coherent lower and

upper probability bounds of the conclusion would have been different ones. How-

ever, paradoxes and experimental results suggest that uncertain conditionals should

not be represented by the probability of the material conditional (P(A � B)) but
rather by the conditional probability (P(B|A); Pfeifer and Kleiter 2010, 2011).

The consequence relation between the premises and the conclusion is deductive

in the framework of coherence-based probability logic. The probabilities of the

premises are transmitted deductively to the conclusion. Depending on the logical

and probabilistic structure of the argument, the best possible coherent probability

bounds of the conclusion can be a precise (point) probability value or an imprecise

(interval) probability. Interval probabilities are constrained by a lower and an upper

probability bound (see the conclusion ofA2). In the worst case, the unit interval is a

coherent assessment of the probability of the conclusion. In this case, the argument

form is probabilistically non-informative: zero and one are the tightest coherent

probability bounds (Pfeifer and Kleiter 2006a, 2009).

The tightest coherent probability bounds of the conclusion provide useful build-

ing blocks for a measure of argument strength. Averages of the tightest coherent

lower and upper probabilities of the conclusion given some threshold probabilities

of the premises allow for measuring the strength of argument forms (like the modus

ponens; see Pfeifer and Kleiter 2006a). In the following, I focus on measuring the

strength of concrete arguments (like argument A).

There are at least two alternative ways to construct measures of argument

strength: one presupposes a deductive consequence relation, whereas the other one
presupposes an uncertain consequence relation. As explained above, coherence-

based probability logic involves a deductive consequence relation. Theories of

confirmation assume that there is an uncertain relation between the evidence and

the hypothesis. “Theories of confirmation may be cast in the terminology of argu-

ment strength, because P1 . . . Pn confirm C only to the extent that P1 . . . Pn / C is
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a strong argument” (Osherson et al. 1990, p. 185). Table 1 casts a number of

prominent measures of confirmation in terms of argument strength.

The underlying intuition of measures of confirmation is that premise set

P confirms conclusion C, if the conditional probability of the conclusion given

the premises is higher than the absolute probability of the conclusion,PðC=PÞ>PðCÞ.
P disconfirms C, if PðC=PÞ<PðCÞ. If C is stochastically independent of P , that is,

PðC=PÞ ¼ PðCÞ , then the premises are neutral w.r.t. the confirmation of the con-

clusion. As pointed out by Fitelson (1999), these three conditions do not impose

restrictions on the choice of the measures in Table 1, that is, they are satisfied in the

context of the listed measures.

Measures of confirmation may be appropriate for measuring the strength of

arguments if we do not want to formalize explicitly the structure of the premise

set. However, if the premise set includes conditionals (like argumentA), then these

measures require a theory of how to combine conditionals and how to condi-

tionalize on conditionals. Consider, for example, argument A and the general

requirement that a strong argument should satisfy the inequality PðC=PÞ>PðCÞ .
It is easy to instantiate the conclusion ofA : PðB=PÞ>PðBÞ. There are at least two
options to instantiate the premise setP. Both options depend on how the conditional

in premise 1 is interpreted.

The first option consists in the interpretation of the conditional in terms of a

conditional event, B|A. In this case, at least two problems need to be solved. The

first one is the combination of the conditional premise(s) with the other premise(s):

“(B|A) and A” is not defined.3 The second problem concerns the conditionalization

on conditionals: the meaning of “P(B/(B|A). . .)” needs to be explicated. This is a

deep problem, and an uncontroversial general theory is still missing (for a proposal

of how to conditionalize on conditionals, see, e.g., Douven 2012).

The second option consists in the interpretation of the conditional in terms of

the material conditional, A� B. Here, it is straightforward to combine the material

Table 1 Measures of confirmation presented in the literature (adapted from Crupi et al. 2007)

SdðP; CÞ ¼ PðC=PÞ � PðCÞ Carnap (1962)

SsðP; CÞ ¼ PðC=PÞ � PðC=:PÞ Christensen (1999)

SmðP; CÞ ¼ PðP=CÞ � PðPÞ Mortimer (1988)

SnðP; CÞ ¼ PðP=CÞ � PðP=:CÞ Nozick (1981)

ScðP; CÞ ¼ PðP ^ CÞ � PðPÞ � PðCÞ Carnap (1962)

SrðP; CÞ ¼ PðC=PÞ
PðCÞ � 1 Finch (1960)

SgðP; CÞ ¼ 1� Pð:C=PÞ
Pð:CÞ Rips (2001)

SlðP; CÞ ¼ PðP=CÞ�PðP=:CÞ
PðP=CÞþPðP=:CÞ Kemeny and Oppenheim (1952)

3 Since the conditional event is nonpropositional, it cannot be combined by classical logical

conjunction. Conditional events can be combined by so-called quasi-conjunctions (Adams 1975,

p. 46f). As Adams notes, however, quasi-conjunctions lack some important logical features of

conjunctions.

188 N. Pfeifer



conditionals and to conditionalize on the material conditional. Argument A is

instantiated in the general requirement of strong arguments as follows:

P B=A ^ ðA � BÞð Þ>PðBÞ. However, coherence requires thatP B=A ^ ðA � BÞð Þ ¼ 1.

Thus, the inequality is trivially satisfied (if PðCÞ<1). It is counterintuitive that

every instance—including those with low premise probabilities—of A is a strong

argument. Therefore, measures of confirmation are not appropriate measures of

argument strength if we want to explicitly formalize arguments that include

conditionals.

I will now turn to a measure of argument strength and show how it allows for

formalizing arguments that involve conditionals. The crucial idea is that (i) the

precision of a strong argument is high and that (ii) the location of the coherent

probability (interval) is close to 1 (Pfeifer 2007). The imprecision is measured by

the size of the tightest coherent probability bounds of the conclusion. Let z0 and z00

denote the tightest coherent lower and upper bounds, respectively, of an argument

Ax. The imprecision of Ax is measured by z00 � z0. Consequently, the precision of

Ax is measured by 1 � (z00 � z0). The location of the coherent conclusion proba-

bility is measured by the arithmetic mean of the tightest coherent probability

bounds, z0þz00
2

. The argument strength s ofAx is equal to the product of the precision

and the location of the tightest coherent probability bounds of the conclusion

sðAxÞ ¼ 1� ðz00 � z0Þ½ � � z0 þ z00

2
;

where 0 � sðAxÞ � 1, since 0 � z0 � z00 � 1. The values 0 and 1 denote the weakest

and the strongest value, respectively.

As an example of the evaluation procedure of the strength of an argument,

consider the following instance of argument A2:

(1) P(F|B) ¼ .8

(2) P(B) ¼ .9

(3) ; :72 � PðFÞ � :82

The strength of this argument is .69. In the special case where the premises are

certain (i.e., probabilities equal to 1), the strength of the argument obtains its

maximum value 1.

Figure 1 presents the behavior of the measure in general. According to the

measure, the argument strength increases if the location of the tightest coherent

bounds of the conclusion approaches 1. The argument strength decreases if the

imprecision increases. Moreover, an argument is weak if the conclusion probability

is low. Maximum imprecision implies minimum argument strength. It follows

that all probabilistically non-informative arguments are also weak arguments

(with s ¼ 0). Figure 2 shows the behavior of the measure for coherent lower

conclusion probabilities of at least .5. If the conclusion probability is at least .5,

then the argument strength varies between .375 and .500. The higher the precision,

the higher the strength of the argument.
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The proposed measure contrasts with the traditional measures of confirmation

presented in Table 1. The consequence relation remains deductive, while measures

of confirmation assume an uncertain relation between the premises and the conclu-

sion. Using probability logic to formalize arguments is advantageous as it does

justice to the logical structure: premise sets that include conditionals can be

represented explicitly. If a measure of argument strength requires to calculate the

conditional probability of the conclusion given some combination of the premises,

P(conclusion|premise set), then severe problems arise of how to connect premises

containing conditionals with each other and how to conditionalize on conditionals.

In the proposed measure, this problem is avoided, as probability logic tells us how

to infer the tightest coherent probability bounds of the conclusion from the

premises, which are in turn exploited for calculating the argument strength.

The proposed measure s has not only attractive theoretical consequences (as

explained above), it also implies at least two psychologically plausible hypotheses.

People judge arguments as strong, if the premises imply high conclusion proba-

bilities (i) and if the conclusion probability is—at the same time—precise (ii).

The empirical test of these hypotheses is a challenge for future research.
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Fig. 1 Let z0 denote the tightest coherent lower and z00 denote the tightest coherent upper bound of
an argument A. The argument strength of A is equal to 1� ðz00 � z0Þ½ � � z0þz00

2
. The strength of A

increases if the precision of the conclusion is high and the location of the tightest coherent

probability interval is close to 1
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