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Abstract An extensive study of the behaviour of composite laminates subjected to
dynamic loads was carried out by the authors many years in order to understand
the complex mechanisms of damage initiation and propagation under low velocity
impact loads. A review of the main results is hereafter presented.

The problem is that many parameters are involved in an impact and the induced
damage is very complex and not always visible. The present research efforts were
undertaken to supply semi empirical and analytical models for the prediction of
the impact response in terms of load curve, damage, involved energies and forces,
independently of the particular laminate, its thickness and stacking sequence,
matrix type and content, fibre type and architecture, fibre orientations and impact
conditions such as tup and support diameter, load speed.

Experimental tests were carried out on different material systems varying the
initial kinetic energy until the complete penetration. This allows the study of the start
and propagation of the failure modes. From the load-deflection curves recorded, all
the impact parameters involved like first failure and maximum load and energy,
absorbed and penetration energy, were obtained. The influence of the thickness
and stacking sequence so that the composite system, constrain condition and tup
diameter on the impact parameters was evaluated. Destructive and non-destructive
techniques were adopted to investigate the failure modes and the observed damage
was correlated to the relative energies.

The analysis highlighted the importance of the penetration energy, Up. An elastic
solution available for circular isotropic plates loaded at the centre was modified to
model the indentation and applied to the prediction of the load-displacement curve
necessary to know the energy that cause the first failure. Interestingly, the force
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required for damage initiation under form of delamination was found to increase at
the increasing of the thickness, t, following a power law whose exponent is very
close to 1.5 of the contact law.

1 Introduction

Due to their brittleness and anisotropy, composite laminates are particularly sensi-
tive to low velocity impact damage caused by accidental loadings imparted during
fabrication or in service. This has lead to many studies concerning impact dynamics
[1–4], mechanisms of failure initiation and propagation [4–8] and the correlation
between impact energy, damage and residual material properties [4, 5, 9–12].

In some cases, parameters such as the maximum force achievable for an assigned
energy level or the energy required to penetrate the body, are of major interest. The
body panels of car, truck and rail vehicles must be designed in order to prevent
penetration by foreign objects of known mass and velocity so that it becomes very
useful to know the penetration energy. The absorbed energy is very important, for
example, in Formula 1 race cars where it is necessary that the mechanical shock is
not transferred to the human body. At the aim to ensure the driver’s safety in high
speed crashes, lightweight laminated composites are designed to absorb the race
car’s energy and limit the decelerations on the human body. In this field, in fact, the
extreme racing speeds may lead to severe accidents with high amounts of energy
involved.

In the design of metallic aeronautical structures, medium and high-velocity
impact phenomena are of major concern, due to the danger of flying debris during
the take-off and landing operations, and bird strike in cruising. For composite
components, also low-velocity impact must be taken into account, because even a
tool dropping on the structure during fabrication or maintenance activity can induce
severe damage, resulting in a significant strength loss.

In aerospace structures, it is very important to correlate the internal damage that
can occur during an impact such as delamination, fiber failure, matrix cracking to
the residual properties of the structure. In particular, delamination is the most critical
one since it causes significant loss in compression strength that represent the most
severe load causing failure for buckling.

Delamination is a crack in the resin rich area between two adjacent layers. It
was observed that delamination occurs after a threshold energy has been reached
in presence of matrix crack [13]. Even if there is a common agreement on the
mechanisms of initiation and growth of this failure during an impact event [8,
14, 15], a general approach for predicting this damage mechanism is absent.
The complexity of the stresses in the vicinity of impacted point complicates the
analysis. For example, Ref. [14] showed that delamination growth was governed by
interlaminar longitudinal shear stress (¢13) and transverse in-plane stress (¢22) in
the layer below the delaminated interface and by the interlaminar transverse shear
stress (¢23) in the layer above the interface.
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A dangerous aspect is the difficulty to detect damage by visual inspection.
A composite can severely damage without any external sign. The only external
indication of an impact is the indentation, the plastic deformation due to the contact,
left by the impactor on the laminate surface. It has brought to the concept of “Barely
Visible Impact Damage” (BVID), usually adopted in the design of aeronautical
structures: for adequate safety, a minimum laminate strength is required in the
presence of a barely visible indentation. For an ease inspection operations, the ideal
composite for aeronautical applications should exhibit an easily detectable visible
indentation when a small internal damage area, resulting in a negligible strength
loss, has been induced by an accidental impact.

It is important to find a relationship between external and internal damage at the
aim to investigate about the residual properties without destroy the structure.

An extensive study of the behaviour of composite laminates subjected to dynamic
loads was carried out by the authors many years in order to understand the
complex mechanisms of damage initiation and propagation under low velocity
impact loads. A review of the main results is here presented at the final aim to give
useful information to predict the residual strength. In the first sections, the load-
displacement curve recorded during each experimental tests carried out varying
the initial kinetic energy, were studied at the aim to obtain information about the
impact behaviour of the specimens: some characteristic points were individuated
to correspond to the evolution of the inner damage. In correspondence of these
points, the first failure and maximum load, the correspondent energies, the absorbed
and penetration energy were calculated. After that, the influence of the thickness
and stacking sequence, matrix type and content, fibre type and architecture, fibre
orientations and impact conditions like tup and support diameter, load speed is
investigated to find semi empirical and analytical models for the prediction of the
impact response in terms of load curve, damage, involved energies and forces.
The internal and external damage was investigated through destructive and non
destructive testing.

Another topic again obscure at this time is the way through which the initial
energy of the impactor is introduced into the target. In a non-perforating impact,
a part of this energy is stored elastically, and can be easily measured. Particular
attention is dedicated, in Sect. 3.4, to the elastic energy that causes the first failure,
generally found as delamination. At the aim to predict this critical value, it is
necessary to accurately describe the load curve and to know the critical force
resulting in the first failure. At this scope, a non-linear solution available for
isotropic materials [16] was modified and it was revealed valid to accurately shape
the elastic portion of the load curve and to predict the contact force corresponding
to delamination initiation and the related energy. The results show a very reasonable
agreement with the theory.

An indentation law, allowing for the prediction of the impact energy from the
depth of indentation, was assessed and presented in Sect. 3.6. This law has a
general applicability, being scarcely affected by the fibre type and orientations,
and matrix type. The indentation was found to be a function of the impact energy
through the perforation one that represent the kinetics initial energy necessary to
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completely penetrate the laminate and obtained as the area under the complete load
curve at penetration [17]. The latter becomes a fundamental parameter to be known
at the aim to have information about the impact energy that cause the strength
loss [9, 18–20]. The complex failure mechanisms that can occur in a laminate
under low velocity impact load and their complex interaction must be taken into
account too. The impact tests revealed that, for a given fibre areal weight, Up was
independent of the reinforcement architecture and stacking sequence and of the
extend of the delamination. Up increases more than linearly with thickness times
fibre volume fraction, confirmed in [21–23]: the dependence found for CFRP and
GFRP laminates is well described by a power law having exponent 1.5 and 1.35
respectively. This is discussed in Sect. 3.7.

The dependence of the residual strength on the impact energy and the possibility
to predict the residual properties of the composite structures from indentation depth
measurements by a minimum of experimental tests is included in the successive
section.

Efforts were done, and the results are presented in Sect. 3.9, at the aim to establish
a correlation between the damage occurring in a composite as a consequence of
low-velocity impact and the energy dissipated during the impact phenomenon. To
investigate about the damage progression as a function of impact energy, ply-by-ply
delamination and fibre breakages revealed by destructive tests were measured. A
previous model, based on energy balance considerations, was applied to understand
the experimental results, together with an original method of data reduction,
allowing for the isolation of the maximum energy portion due to indentation and
vibrational effects.

The damages were observed by visual analysis, as well as by deplying some of
the specimens: delamination was found between layers equally oriented too.

2 Materials and Experimental Methods

During the history of the present experimental research, a large variety of samples
(Table 1) were tested under very different tests conditions. Most of them concerned
carbon fibre laminates made of prepreg with fibres T400/HMF 934 epoxy resin
under form of tape and fabric with different fibre areal weights, stacking sequences
and thicknesses. The thickness varied in the 1–4 mm range that is generally con-
sidered for applications. Quasi-isotropic panels with f[(0, 90)/(˙45)]sgn stacking
sequence, n D 1 to 4, were fabricated by hand lay-up and autoclave cured at
177 ıC under 0.7 MPa pressure. The fibres were under form of plain weave fabric
193 g/m2 in areal weight. The specimens were labelled as F in the text. The
stacking sequence [(0, 90)n/C45n/�45n]s was adopted too for the same presented
material and technology (FT label). The fibre content by volume was Vf D 0.55.
Moreover, rectangular graphite/epoxy panels, labelled as T30, T60 and T45, made
of carbon/epoxy T400/934 tape were fabricated with different lay-ups, (˙30)2s,
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Table 1 Materials tested in the present work

ID Material Lay up t (mm)
Vf

(%) Dt (mm) Ds (mm)

F T400/HMF 934 f[(0, 90)/
(˙45)]sgn

0.96–3.85
(1–4)

55 12.7, 16,
19.8

40, 50

n D 1 to 4
FT T400/HMF 934 [(0, 90)n/

C45n/�45n]s

0.95–3.80
(1–4)

55 6–19.8 50, 100

T30 T400/HMF 934 (˙30)2s 1.2 55 6–19.8 50
T60 T400/HMF 934 (˙60)2s 1.2 55 6–19.8 50
T45 T400/HMF 934 (˙45)2s 1.2 55 6–19.8 50
SMC – – 1.7–7 30 6–20 40–100
(C50/50) E-glass/epoxy (0/90)n

n D 5–16
0.7–2.4 60 6–20 50–100

(C90/10) E-glass/polyester (0/90)n n D 4–8 1.2–4.2 35 6–20 50–100
G E-glass fabric

295 g/m2 in
areal weight and
Cycom 7701
epoxy resin

[(0,90)n/
(C45,-45)n]s

n D 1 to 4

0.96–3.85 55 16, 19.8 50

(˙60)2s, and (˙45)2s, resulting in laminate nominal thickness t D 1.2 mm. The fibre
content in the cured laminates was about 55% by volume, and the total fibre areal
weight 1.16 Kg/m2. Three basic laminae, namely a sheet moulding compound and
labelled as “SMC” hereafter, an E-glass cloth/epoxy with 50% fibre in the warp
and 50% fibre in the weft direction (C50/50), and an E-glass cloth/polyester with
90% fibre in the warp and 10% fibre in the weft direction (C90/10), were used to
obtain additional composite plates tested in the present campaign. The fibre volume
fraction Vf was 0.30, 0.60, and 0.35, respectively, and the nominal thickness of a
single cured layer 0.6, 0.15, and 0.3 mm. For each material system, panels different
in thickness were fabricated stacking together different numbers of layers. In the
C50/50 and C90/10, the layers were laid to obtain 0/90 balanced laminates having
a total of 50% fibre along the 0ı and the 90ı directions. The panels were cured
under press according to the resin supplier specifications, and from them square
specimens, 150 mm in side, were cut by a diamond saw.

Also GFRP prepreg made of plain-weave E-glass fabric 295 g/m2 in areal weight
and Cycom 7701 epoxy resin were used to fabricate square plates 300 � 300 mm
cured by a stamp forming process between hot press plates at 120 ıC of temperature
and 2 bar of pressure for about 2 h. The stacking sequence was [(0,90)n/(C45,
�45)n]s, with n D 1 to 4, and the corresponding nominal thicknesses t varied in
the range 0.96 mm to 3.85 mm. The fibre volume fraction was about 55%. The
specimens cut are labelled as G in the text.

From the panels, square and rectangular specimens were cut by a diamond
saw and subjected to the experimental tests. They were supported on steel plates
with a circular opening 40, 50 or 100 mm in internal diameter, Ds in the last
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column of Table 1, or on a rectangular window 150 � 100 mm suggested by the
EN6038, respectively. All the low-velocity impact tests were carried out on a
Ceast Fractovis MK4 instrumented falling weight testing machine, equipped with
a DAS 8000 digital acquisition system. Specimens were struck at their centre using
hemispherical steel indentors with diameters Dt D 12.7, 14.9, 16 or 19.8 mm. To
prevent multiple impacts, the tup was caught on the rebound by a brake available in
the test apparatus.

A first series of tests, to obtain and record the force-displacement (F-d) curve at
perforation, was carried out using a mass M D 10.6 kg falling from a 1 m height.
From the F-d curves recorded for each panel, the penetration energy was evaluated.
The different energy levels were produced by suitably combining the drop height
and three masses (M D 3.6, 5.6, 7.6 kg) available in the testing machine. In all, at
least five impact tests were performed for each experimental condition.

Additional tests carried out on a MTS RT/50 universal testing machine in
displacement control statically loading the specimens, had the scope to investigate
about the influence of the loading speed and the possibility to study the impact
phenomenon by static conditions. The adopted supports and impactors were the
same of the dynamic tests. The stroke speed was fixed at 0.1 mm/min.

All the involved energies were evaluated by numerical integrations as the area
under the load-displacement curves recorded. The force values were evaluated
directly on the load curve. The indentation resulting from the indentor-material
contact was measured by a micrometric dial gauge and the measurements were
performed following the EN6038 standard.

After impact, each specimen was visually inspected to ascertain eventual visible
damage. The coupons were, then, inspected by an ultrasonic (UT) pulse-echo
immersion testing technique and, after a transversal cut suggested by the NDE
results, analysed by an optical microscope, Leitz, in order to identify damage
modes.

Some of the E-glass specimens struck with Dt D 19.8 mm were subjected to a
deeply technique too. First of all, after impact, since glass fibres are transparent,
the extent of the projected delaminated area was obtained exploiting the translucent
appearance of the material: the damage zone was highlighted by an intense light
source on the back of the specimens, and photographed; then, the projected damage
area was measured by an image analyzer and related to the specimen thickness
and the impact energy. In order to study the ply-by-ply damage extent and type,
a small hole 1 mm in diameter was drilled in correspondence of the impact point
of the selected specimens. The aim was to ease the penetration of the liquid into
the interlaminar cracks. The specimens were immersed in blue ink bath for 1 h
until the projected delaminated area was completely darkened by the ink; then, they
were dried for a suitable time of about 2 h, and carefully thermally deplied with
the help of moderate heating; finally, the resin was burnt away and the delaminated
area in correspondence of each interlaminar surface was measured, and the in-plane
length of broken fibres within each ply was evaluated by optical microscopy at low
magnification.
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3 Experimental Observations

3.1 Load-Displacement Curve

The load-displacement curve recorded during a low velocity impact at complete
penetration contains useful information about the failure process: it is possible
to observe, characteristic points related to the behaviour of the material under
dynamic loads. Despite differences in thickness, material and architecture, these
curves showed some features common to all laminates [24, 25]. Figure 1 shows
a schematic view of a typical load-displacement curve with several characteristic
points. In Fig. 2, four different curves recorded during low velocity impact tests on
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from Table 1; Ds D 19.8 mm
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CFRP laminates (FT from Table 1), one for each different thickness, are collected.
Despite the difference in thickness, some common features were noted.

Up to point “a” in Fig. 1, the curve shows no evidence of damage developing
inside the material. In this diagram a linear trend is observed initially as the
displacement increases.

However, a different behaviour between thin (less than eight layers) and thick
laminates was observed as showed in Fig. 2 where the initial rigidity of the
laminates increases with increasing t. The thinnest plates display an evident non-
linear response under very low displacement values (less than 2 mm in Fig. 2), due
to large displacements [26].

At the end of the elastic phase a load drop, clearly visible when the material
thickness is sufficiently high, is noted (point “a” in Fig. 1). This is difficult to
appreciate for the lowest thickness where the load remained substantially constant
with increasing the displacement or a different slope is evidenced, with only
negligible oscillations. However, in both thin or thick laminates, a local rigidity
variation happens, denoting damage inside the laminate.

The successive drop of the load is an indication of damage initiation in the form
of fibre breakage, and/or damage propagation in the form of matrix cracking and
delamination, fibre breakage, and fibre/matrix debonding and pull out (point b on
the curve). Matrix cracks in the resin pockets, are commonly believed to be the first
type of damage during an impact [26, 27] and the presence of matrix cracks does
not dramatically affect the overall laminate stiffness during an impact event [25, 28].
However, matrix cracks represent the initiation point for delamination [14, 18, 29,
30] and fibre break that dramatically change the local and the global stiffness of the
composites and influence the load–time response [31]. All the energy that exceed the
latter is used for the propagation of the damages. Of course, all these failure modes
lead to a reduction in the residual strength of the impacted panels [25]. After first
failure, the load increases again, although the laminate rigidity is reduced. Then, a
series of load drops, resulting in oscillations in the force-displacement curves, are
noted to correspond to extensive failures in the fibres and in the resin along the
laminate thickness.

In the range “b” – “d”, the different damage propagate through all the layers
that are progressively broken, until (point “d”) the complete perforation. The term
“perforation” is used here to indicate that there is at least one fracture surface in
each layer, so a light beam can pass through the laminate. The slope of the F-d
curve begins to decrease rapidly when the material perforation occurs.

The maximum force (point “c” in Fig. 1) was generally achieved between points
“b” and “d” even if for the thickest laminates (twelve layers or more), the point b
was often found coincident to point d that means that the first significant fibre failure
often happens at maximum force [24].

The decrease in the contact load between “d” and “e” is about the penetration
process. Finally, beyond point “e” the contact force decreases slowly: the cylindrical
impactor slides along the penetrated sample and the energy is dissipated by friction.
The penetration energy, the difference between the initial and residual kinetic energy
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Fig. 3 Load-displacement curve of a 3 mm non penetrated carbon fibre laminate. (a) impact
energy level U D 5 J; (b) impact energy level U D 15 J

of the projectile, necessary to completely penetrate the laminate and given by the
area under the load-displacement curve at penetration, is conventionally calculated
at point “e”.

Both Figs. 1 and 2 deal with cases in which complete perforation occurs. In
case of non-perforating impacts, at some point the projectile reaches a maximum
displacement and then the displacement decreases during unloading (Fig. 3). After
the first load drop (arrows in Fig. 3), the unloading part is different from the loading
one since a part of the energy is stored inside the material for the damage formation.
In Fig. 3, in fact, where the curve refers to a specimen loaded by 15 J of impact
energy, it is possible to note a larger area respect to Fig. 3 where the same laminate
was impacted by a lower energy, U D 5 J, that caused less damage. The first load
drop signalled by the arrow in Fig. 3 is generally due to delamination that was found
the only damage when the 3 mm specimen was impacted with 5 J of energy. A higher
impact energy of 15 J caused the propagation of the damage along the thickness in
correspondence of a nearly constant load.

Since the similar shape of the curves in Fig. 2, a scaling coefficient was adopted
to overlap the curves: by scaling the force according to the coefficient 1.5, the
same force-displacement curves sensibly converge to a single master curve, the
displacements are held unchanged (Fig. 4). Therefore, the contact force varies
according to t1.5. All the curves were normalised for the thickness 3.06 mm (16
layers laminate). In this way, as it will be hereafter discussed, the dependence of the
first failure load, maximum force, energy at maximum force and penetration energy
on the thickness can be easily established. By using a scale parameter in the design
of experiments for impact damage the number of experimental tests can be reduced.

Other investigators [21] have also used a scaling parameter, able to predict the
force-displacement curve exhibited by thick laminates, obtained using the force-
displacement curve recorded in testing thin samples. From the experimental data,
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concerning composite plates having thicknesses in the range 3.3–8.3 mm, all
the curves were reduced to a master curve, by scaling both the force and the
displacement through power laws. The best scaling exponent for forces was 1.2,
whereas the best exponent for the displacements was 0.35. Considering that energy
is the area under the force-displacement curve, it was concluded [21] that the
penetration energy varies to the power of 1.55 with increasing the plate thickness. It
is very similar to the exponent 1.5 found in this work.

Carefully observing the curves in Fig. 4, the superposition does not hold in
the very early stage of contact because, as it will be demonstrated, the energy in
correspondence of delamination initiation does not increase according to a power
law. After perforation, the superposition is satisfying for the 4 and 8 layers laminates
and for the 12 and 16 layers composites denoting a drastic change in the failure
modes after perforation for the two different groups of thickness.

3.2 Force at Damage Initiation

In this section the effect of several parameters on the damage initiation force is
studied. Those parameters are: the laminate thickness, the diameter of the impactor,
and the size of the plate. The trends observed are compared with prediction from
simple models.

Laminate thickness strongly affect the contact force history. The influence of
material thickness on the force at damage initiation, Fi, was first evaluated. The
importance in predicting the first failure load is due to the fact that it represents a
threshold for the formation of a damage that is not always possible to individuate on
the load curve. This force was here evaluated in correspondence of the first load drop
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or the change in slope on the ascending portion of the load vs displacement curve
(point “a” in Fig. 1). The data were obtained loading CFRP specimens made of T400
fibres and HMF 934 epoxy resin having f[(0, 90)/(˙45)]sgn stacking sequence, with
n D 1 to 4, resulting in nominal thicknesses varying in the range 1–4 mm (F in
Table 1). It was found that Fi follows a power law as a function of the thickness,
with the exponent coincident with the exponent of the contact law.

Studying the contact between a rigid sphere and a laminate some researchers
[32–35] demonstrated the successful application of the elastic contact law [36]. In
Fig. 5, Fi is plotted against the specimen thickness, t, for the data obtained here.

The following expression:

Fi D Fio � t i (1)

was revealed adequate to describe the Fi trend (continuous line in Fig. 5). From
the best-fit curve, the values Fio D 0.64 KN/mmi and i D 1.42 were obtained, for Fi

given in KN.
According to the Hertzian contact law [36], the radius R of the contact zone is

given by:

R D k � 3
p

Dt � F (2)

where k is a constant only depending on the material elastic constant [36], F is the
applied load and Dt the impactor diameter.

For a circular plate loaded at the centre, the shear stresses in the thickness
direction around the point of load application are dependent on the applied load,
rather than on the flexural moment. In fact, the evaluation of the shear force per unit
length of arc along a circle of given radius only involves equilibrium considerations.
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A shear induced failure develops when the average shear stress £ along the thickness
direction at the periphery of the contact zone achieves a critical value, proportional
to the interlaminar shear strength N� of the material:

� D k0 � N� (3)

where k0 is a constant.
From equilibrium considerations, considering the cylindrical shape along the

thickness in correspondence of the contact zone, it results that the average shear
stress £ along the specimen thickness at the boundary of the contact zone is:

£ D F

2�Rt
(4)

where t is the laminate thickness. It is necessary to underline that this is an
approximate formula since £ is not the maximum value but the mean value along
the thickness.

If the shear stress is responsible for delamination initiation, from Eq. (2) and (4)
Fi was calculated as:

Fi / .N£ � t /1:5 (5)

where N� is the interlaminar shear strength of the material.
A good agreement between the exponent of Eqs. (1) and (5), related to the

experimental value (i D 1.42) and the expected one from the contact law, was
respectively found. It is possible to better appreciate the agreement between
experiments and theory in Fig. 5 where the dashed line was drawn putting i D 1.5 in
Eq. (1), and Fio D0.60 KN/mm1.5 by the best fit method. In this way, a simple failure
criterion uniquely based on shear stresses would be able to calculate the critical load
for delamination initiation.

Matrix cracks are believed to be the first type of damage during impact. It has
been shown by Sjoblom et al. [28] that the presence of matrix cracks does not dra-
matically affect the overall laminate stiffness during an impact. It was demonstrated
that [30, 37, 38] an interaction between matrix cracking and delamination initiation
exists. Matrix crack tips act as starting points for delaminations and fibre breaks and
the latter two damages can dramatically change the local and or global stiffness
of the composite laminate and effect the load-time response [31]. Delamination
propagate starting from intralaminar cracks was found in particular in thin laminates
[38–41] where the membrane contribution is significant. In the following figures,
low (a) and high (b) magnification micrograph of loaded quasi-static (Fig. 6) and
dynamic (Fig. 7) beam showing the matrix and delamination cracks resulting from
quasi-static bending are reported [38]. The same was confirmed here by the authors:
for example, in Figs. 8 and 9 a central part and a magnification of the central
thickness of a micrograph showing delamination starting from cracks in the resin
pocket and connected by intralaminar cracks in the FT laminate 2 mm in thickness
(Table 1), is reported.
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Fig. 6 Low (a) and high (b)
magnification micrograph of
the tested quasi-static beam
showing the matrix and
delamination cracks from
quasi-static bending

Fig. 7 Low (a) and high (b)
magnification micrograph of
the dynamically tested beam
showing matrix and
delamination cracks.
V D 34.9 m/s
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Fig. 8 Micrograph showing delamination starting from cracks in resin pocket and connected by
intralaminar cracks in FT laminates (Table 1), t D 2 mm

Fig. 9 Magnification of the central part of a micrograph showing delamination starting from
cracks in resin pocket and connected by intralaminar cracks in FT laminates (Table 1), t D 2 mm

As accepted by a large number of authors [14, 30, 42, 43], the evolution of
the damage in a composite laminate subjected to a concentrated force is driven by
intralaminar tensile and shear cracks occurring in the layers farther from and nearer
to the contact point. From these cracks, delaminations were found to be generated
at interfaces between plies with different orientations, mainly propagating in the
direction of the fibres in the lower ply, and extending the more, the larger is their
distance from the contact point. These mechanisms were, here, observed only in
the thinnest laminates. By deplying GFRP laminates, for t > 0.96 mm, delamination
was found between layers with the same orientation too, in agreement with [44, 45].
In particular, for t D 2.88 mm the maximum extent of interlaminar fractures was
found at the midplane between layers having the same orientation.

Extensive delamination was also found without macroscopic evidence of in-
tralaminar cracks in the thick laminates. This confirms that in thick plates shear
stresses play a main role for delamination initiation [39–42, 46]. In [39–41, 46],
the problem of the delamination initiation was investigated in depth. A difference
between thin and thick laminates was found. In the thin laminates the bending
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is predominant whereas the shear stresses predominates in the thick ones and
delaminations without intralaminar cracks evidence were found at the mid plane.

Sjoblom [47] proposed a simple model for the calculation of Fi based on the
hypothesis that the first failure happens when the shear stress £ along the direction
of the thickness attains a characteristic critical value £c. Taking into account also
the effect of the tup diameter, Dt, from the contact law, [47], Fi was calculated as
follow:

Fi D .2��c/
1:5Dt

0:75

kc
0:5

(6)

where kc is the local rigidity. From Fig. 2 the first load drop becomes lower and
lower at the decreasing of laminate thickness since most of energy is stored to the
bending phase.

Combining Eqs. (2), (3) and (4), Fi is easily obtained as [48]:

Fi D ıDt
0:5t1:5 (7)

where:

ı D �
2� � k � k0 � �

�1:5
(8)

dependent on £c and kc.
Equation (7) is coincident with Eq. (5), except for the fact that in the latter the

influence of the tup diameter is not explicit.
Of course, Eq. (7) is expected to lose its validity when the first failure takes place

in the back layer of the laminate. In this case, since the flexural moment depends on
the support diameter, the phenomenon should be strongly affected by this parameter.

In Fig. 10 the term Fi/Dt
0.5 is plotted against the thickness, t: all the data about

the FT laminates converge to a single curve irrespective of the tup diameter and
the velocity (some data are, in fact, from static tests). Only in the case of small
thickness of t D 0.95 mm loaded by a large indenter diameter, Dt D 19.8 mm, the
superposition is not verified (circle in Fig. 10). In this case the flexural rigidity is
low (low thickness) whereas the first failure load is relatively high since the large
tup diameter. The curvature at first failure is so large and this impairs the model on
which Eq. (7) relies.

The continuous line is drawn by Eq. (7). The constant value of 0.152 KN/mm2

was calculated best fitting all the experimental data except the one, the triangle
symbol in the circle in Fig. 10, that does not follow the general trend.

For the thinnest laminate supported on the fixture 50 mm in diameter and loaded
with the 12.7 mm tup diameter it was not clearly apparent from the curve the first
load drop, so that only the non-destructive analysis was able to approximately detect
the first failure point. The same difficulty was not found when the 19.8 mm tup
diameter was adopted, without varying the support diameter (arrow in Fig. 11).
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Fig. 10 Effect of the laminate thickness, t, and tup diameter, Dt, on the first failure load, Fi. Mat.:
FT (Table 1)

0

1

2

3

0 1 2 3 4

w (mm)

F
 (

kN
)

Fig. 11 Load-deflection
curve at first failure
t D 0.95 mm and a tup
diameter Dt D 19.8 mm.
Support diameter D D 50 mm

One of the hypotheses on which Eq. (7) relies is that the first failure is
independent on the support diameter, being uniquely determined by the shear
stresses, rather than by the normal stresses associated with the flexural moment.
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Fig. 12 Effect of the support diameter, Ds, on the first failure load, Fi. Plate thickness t D 2.85 mm;
tup diameter Dt D 19.8 mm. Mat.: FT laminates (Table 1)
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In Fig. 12, the first failure loads recorded in the tests carried out by adopting
Ds D 50 mm and Ds D 100 mm for t D 2.85 mm and Dt D 19.8 mm are compared.
The load inducing first failure is actually the same, independently of the support
diameter which confirms the assumption made.

Comparing Eqs. (1) and (7) and accounting for the tup diameter (Dt D 12.7 mm),
the • value of 0.142 kN/mm2 is immediately calculated from Fio D 0.507 kN/mm1.5.
Then, from Eq. (7) the critical load Fi was calculated as a function of t with
Dt D 19.8 mm (continuous line in Fig. 13).
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From the comparison of theory with the experimental data, the agreement is quite
good for thick laminates whereas for thinner plates the predicted trend diverges from
the actual one. An explanation of this occurrence is given hereafter.

Eq. (2), from which the first failure criterion is derived, is rigorously valid for
a sphere impinging a flat plate. When the real plate is loaded with an increasing
force, its curvature increases accordingly, so that Eq. (7) falls in defect. In particular,
the actual contact area becomes larger than predicted from Eq. (7) [36]. As a
consequence, the average shear stress (Eq. 4) decreases and the critical load Fi

increases. This effect is more evident for thin than for thick plates, since their higher
deflection for a given applied force. This explain why Fi is higher than expected
for the thin laminates in Fig. 13. On the other hand, from the theory of Hertzian
contact, the error in using Eq. (7) rapidly increases with increasing Dt. Therefore,
the validity of this equation is anticipated to hold within a higher range of plate
thicknesses for lower tup diameter values. This can justify the agreement between
theory and experiments in Fig. 13.

From Eq. (7), the first failure load for the plates with t D 1.9 mm loaded by a
14.9 mm tup diameter was calculated, obtaining Fi D 1.44 kN. From three tests
carried out on Ds D 50 mm, the mean value Fi D 1.38 kN, in good agreement
with the theoretical prediction, was obtained. This result seems to confirm that
the usefulness of Eq. (7) is retained if the tup diameter is small enough. When the
scope of the test is the material characterisation in terms of •, small tup and support
diameters, and high plate thicknesses should be used to avoid large deflections of
the plate, favouring the applicability of Eq. (7).

The simple dependence of the first failure on the specimen thickness indepen-
dently of the tup diameter is in a complete agreement with the results published in
[27] where about 350 specimens different in thickness and laminations and made
of three different types of basic laminae were examined at the aim to investigate
about the first failure load. The first failure load was found to vary with the laminate
thickness to the 3/2 power too. The same was predicted by other investigators [47,
49–52]. Moreover, in [42] where the impactor diameter and the boundary conditions
were fixed, Fi was found to be dependent on t1.5 and the critical shear strength was
found to be a constant value for the specific material system even if the laminates
are made of laminae with different orientations.

3.3 Energy at Damage Initiation

Since the energy, rather than force, is the input datum in impact, one of the most
important objectives in approaching the problem of impact is the possibility to
predict the energy level in correspondence of which the first damage begins to
develop. In what follow, the main factors affecting the absorbed energy at damage
initiation are examined and from the results an analytical model is developed. The
model allows the calculation of the first failure energy assuming that the total energy
is shared in two parts, one of which stored in flexure, and the other in the material
volume close to the contact zone.
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The main energy absorbing mechanisms can be partitioned into, Uflex, the
energy stored by the plate in bending; Uind, is absorbed due to the localised
contact deformation; some energy is dissipated through vibrations. It is difficult to
separate the irreversibly absorbed energy that contributes to damage initiation and
propagation. Many authors [53–56] have shown that, for sufficiently low velocity
impact, that means up to 10 m/s [10, 28, 52, 57], the behaviour of carbon fibre
reinforced plastics is independent of the loading rate, so that the dynamic response
can be simulated by static tests. The energy dissipated by vibrations is negligible,
and the flexural displacement wo can be modelled by strength-of materials formulae.
The same does not happen for GFRP laminates [58, 59] since the viscoelastic nature
of the glass fibres.

Therefore, it can be assumed that, in a low velocity impact, the penetration of
CFRPs energy is the sum of two components: one related to the flexure of the panel,
and the other related to failure modes. A composite plate subjected to a transverse
load absorbs energy by deformation and creation of damage zone. The material
deformation occurs first and the panel absorbs energy through flexural deformation.
This part of energy has been identified by elastic energy, Uflex. It is expected that
the capacity to store elastic energy increases as the panel dimensions increase, since
the flexural deformation will be larger, or when it is less constrained at the supports.
In addition, plate deflections are proportional to the bending rigidities which in turn
are proportional to the cube of the plate thickness [60] so that the decrease of the
thickness has the same effect of the increase the panel dimension. In these cases,
the structural rigidity became lower, provided the failure modes remain unchanged.
Ui represents the limit energy below which no damage is present in the laminate.
Energies supplied higher than Ui, are useful for damage initiation and propagation
at perforation.

With these hypotheses, the energy absorbed by the material at the point of
delamination initiation is given by:

Ui D
w�

tZ

0

Fdwt (9)

where F is the applied load, wt D wo C wi where wi is the indentation, w*t is the
critical deflection at first failure, and

w0 D Kf

F

D
(10)

with Kf a constant depending on the boundary conditions and D the flexural rigidity,
which for an orthotropic circular clamped plate can be calculated as the elements Dij

of the [D] matrix, through the relationship available in [16].
For the contact law, the following relationship holds:

F D Kind � w1:5
i (11)
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Substituting wo and wi from Eqs. (10), (11) in Eq. (9) and integrating, it was
possible to obtain Ui as:

Ui D Kf F 2
i

2D
C 2F

5=3
i

5K
2=3

ind

(12)

where the first and the second term on the right represent Uflex and Uind, respectively.
From Eqs. (12) and (1):

Ui D Kf � F 2
io � t2i

2D
C 2F

5=3
io � t5i=3

5K
2=3

ind

(13)

From lamination theory, it can be verified that, for all the laminates taken into
account:

D D KD � t3 (14)

with KD a constant.
Since the dependence of Fi on the laminate thickness can be predicted very well

by a power law having exponent i D 1.5 (see dashed line in Fig. 5), in the following
this value will be adopted for simplicity. In fact, this assumption is in agreement
with the hypothesis of contact law, underlying Eq. (13) (see Eq. (11)). Accounting
for this and combining Eq. (13) and Eq. (14), it is finally found:

Ui D Kf � F 2
io

2KD

C 2F
5=3
io � t2:5

5K
2=3

ind

(15)

Therefore, according to Eq. (15), Uflex should be independent of the thickness, t,
whereas Uind should vary with t2.5.

In Fig. 14, the measured Ui is plotted against t. It was found to increase rapidly
with increasing the thickness of the laminate.

Plotting the data in Fig. 14 against t2.5 as predicted from Eq. (15), the experimen-
tal points fall with excellent agreement along a solid straight line having equation:

Ui D 0:318 C 0:047t2:5 (16)

with Ui in J and t in mm. From this equation, the Uflex is 0.318 J (dashed line in
Fig. 14). This energy could be calculated from the first term on the right of Eq. (12),
knowing that, for a clamped plate loaded by a concentrated force at the centre, the
constant Kf is given by [16]:

Kf D R2

2 
(17)
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Fig. 14 Energy for damage
initiation, Ui, against
specimen thickness, t. Mat.: F
(Table 1)

where R is the plate radius.
In [32], a different value of the constant affecting the second term on the right of

Eq. (16) (0.016 KN/mm1.5) is calculated from Eq. (15). The poor agreement with the
experimental value found here (0.047 KN/mm1.5) is due to fact that the resin type
or the fibre form (fabric in the present case, unidirectional in [32]) play a major role
in lowering the local rigidity of the material. Consequently, the relative importance
of the flexural energy (dashed line in Fig. 14) dramatically changes as a function
of the thickness: for very low t values, almost all the impact energy just before
delamination initiation is stored in flexure; on the contrary, when t D 3.1 mm or
more the energy is mainly accumulated in the material volume close to the contact
area.

It was possible to separate the energy at delamination initiation into two major
contributions: one accounting for flexural deformation and the other for local
deformation. The latter part becomes more and more important as far as the
specimen thickness increases, so that it cannot be neglected for thick laminates.

3.4 Prediction of the Load Versus Displacement Curve

An important question to be answered in studying impact on composite laminates
is the energy Ui required to cause first failure. In fact, while up to Ui the original
material strength is retained, beyond this limit a residual strength being the lower
the larger the imparted energy is.

In order to calculate the elastic energy stored in a plate at first failure, two
conditions must be met: (a) the load-deflection curve must be described accurately;
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(b) the critical force (or deflection) resulting in first failure must be evaluated
correctly. The latter point was already successfully discussed. In what follows, the
first topic will be treated and the equations for the prediction of Ui will be derived.

The study of the elastic response of composite structures is made intricate by
many phenomena, among which the in-plane and along-the-thickness anisotropy
are the most relevant. The bending-stretching coupling effects [61, 62], as well as
the shear contribution to the deformation [63, 64], can considerably complicate the
analytical development too. It was possible to simplify the study by introducing the
fact that, when the impact velocity is low (up to 10 m/s), the static and dynamic
response are similar [53–55], so that vibrational effects can be neglected and static
tests can be adopted to simulate the impact behaviour. This assumption will be
maintained along all this section, so that the vibratory effects will be disregarded.
Nevertheless, in the first part of the impact phenomenon, before first failure occurs,
the plate can be bent significantly and so, the non-linear effects deriving from the
large deflections (thin laminates or large support diameter) become evident [65, 66].
When the tup displacement is adopted to find the load-deflection curve, the contact
law must be included in the analysis.

Static tests simulating the dynamic ones and low velocity impact tests were
carried out on anisotropic, simply supported and clamped circular plates made
of graphite fibre reinforced plastic laminates of various thicknesses, 0.95, 1.90,
2.85 and 3.80 mm (TF in Table 1). According to [(0, 90)n/C45n/�45n]s stacking
sequence, n D 1 to 4, the plates were loaded at the centre by a hemispherical tup
12.7 mm in diameter. Two basic prepreg laminae, made of T400 fibres and HMF
934 epoxy resin, were used: in one, the fibres reinforcement was a plain weave fabric
with a 193 g/m2 in areal weight; in the other, the reinforcement was unidirectional
with a 145 g/m2 in areal weight.

The square plates 70 mm in side cut from the panels, were simply supported on
a steel plate having a circular opening 50 mm in diameter. Some tests were stopped
when sudden load drops were observed on the curve, clearly indicating significant
damage development in the specimen; others were interrupted at predetermined load
levels to investigate about the damage evolution.

3.4.1 Theory and Results

In performing both static and impact tests on composite plates, the tup displacement
is often assumed to measure the plate deflection even if, in the case under study,
the local deformation due to the contact between the indentor and the plate surface
(Fig. 15) must be accounted for.

In Fig. 15, wi is the local indentation, wo the plate deflection and wt the overall
tup displacement given by the sum of wi and wo:

wt D wo C wi (18)
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Fig. 15 Indentation due to the local contact tup-plate. wi: local indentation; wo: plate deflection

Simple strength-of-materials solutions are available in the literature, giving the
deflection wol of circular isotropic plates subjected to small displacements. For
instance, for a clamped plate loaded at the centre by a concentrated force F [16]:

wol D B � F � R2

E � t3
D F R2

16�D
(19)

where R is the plate radius, B D 1/16  a constant and D D Et3 its flexural rigidity.
Unfortunately, the applicability of Eq. (19) to an anisotropic composite plate

is not straightforward, since a laminate suffers the well known bending-stretching
coupling effects [61, 62]. Moreover, the shear stresses arising along the thickness,
whose effect is not taken into account in developing Eq. (19), can contribute
considerably to wol [63, 64]. Finally, thin composite plates may be bent significantly
before first failure occurs, overcoming the linear regime, within which Eq. (19)
preserves its validity. The linear relationship between load and deflection, predicted
by Eq. (19), is rapidly loosen with increasing the ratio of the deflection to the
plate thickness, t. For sufficiently large values of this ratio, a higher-order theory,
accounting for large displacements, must be addressed in order to accurately
describe the elastic response of the structure [16]. Therefore, it is expected that,
in general, wo will not coincide with wol.

A closed-form, approximate solution for the large deflection of circular isotropic
plates loaded at the centre is yielded in [16]:

˛Dwo C ˇEtw3
o D F R2

�
(20)

’, “ are two constants depending on the boundary conditions and E the elastic
modulus of the material. In the case of clamped edge, ’ D 16. The “ value is
strongly dependent on the possibility of the clamping device to prevent the radial
displacement of the plate edge. If it is completely free, “ D 0.295, whereas in the
case of immovable edge “ D 0.650 is readily obtained from the data in [16].
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From Eqs. (19) and (20), it is easily to verify that wol D wo when the deflection
is small, so that the cubic term on the left of Eq (20) is negligible compared to the
linear one. The cubic term physically derives from the strain of the middle plane of
the plate that is small when the deformation is small; as far as deformation increases,
this phenomenon becomes more and more important and it must be accounted for
in the analysis of large displacements.

Hoping that the validity of Eq. (20) could be retained at least for quasi-isotropic
laminates exhibiting a moderate flexural anisotropy, its form was adopted in [67] as
a starting point to model the load-displacement of composite plates. The E value in
the equation, governing the stretching of the middle plane, was substituted by the
in-plane modulus of the laminate. Recognizing that all the terms of the [D] matrix
for a laminate can be expressed in the general form:

D D Dut3 (21)

where Du is representative of the flexural behaviour of the laminate, Eq. (20) was
reduced to the following expression:

wo

t
C A

�wo

t

�3 D B
F R2

Et4
(22)

with:

A D “E

’Du
(23)

B D 1

 ’
(24)

From Eq. (18), also the local deformation wi occurring at the tup-plate contact point
must be known, if the overall displacement of the impactor is wanted. Rewriting Eq.
(1) as a function of the local indentation [32]:

F D ki.wi/
3=2 (25)

useful in calculating the indentation wi (Fig. 15).
In the field of small deflections, combining Eqs. (19), (18) and (25), the following

relationship:

wt D B � F � R2

E � t3
C
�

F

ki

�2=3

(26)

is obtained. Equation (26) is valid only in the field of small displacements, since Eq.
(19) suffers the same limitation.
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In Figs. 16 and 17, plots of the recorded load-displacement curves are shown
for the lowest and the largest plate thickness tested, respectively. Apart some low-
frequency oscillations, due to the dynamic effects, a divergence from the linear
regime is observed in Fig. 16, with the plate rigidity increasing with increasing
deformation. At a sufficiently high load (arrow in Fig. 16), high-frequency oscil-
lations superpose to the fundamental frequency: this is a macroscopic effect of the
first failures occurring in the laminate, revealed by the ultrasonic analysis, consisting
of intralaminar cracks and delamination. Afterwards, both the load and the rigidity
rise anew, until a clear load drop, denoting more pronounced failure phenomena, is
recorded.
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An increase in rigidity is present also in the first part of the curve in Fig. 17
even if, comparing Figs. 16 and 17, it is evident that the deviation from linearity is
much more limited when a thick laminate is examined. This is expected from Eq.
(22), according to which the effect of nonlinearity is more and more remarkable
as the ratio of the deflection to the specimen thickness increases. Interestingly, it is
confirmed that the first failure is much easier to detect from the load-displacement
curve of the thick plate, resulting in a sharp load drop.

The continuous straight lines in Figs. 16 and 17 are the predictions of the
load-deflection curves obtained on the basis of Eq. (19), i.e. simply assuming a
linear behaviour without local indentation. Although the agreement between theory
and experiments is good in the very early stage of loading in Fig. 16, the linear
approximation results in an unacceptable error as soon as the deformation increases.
Instead, for the thickest plate the theoretical prediction based on Eq. (19) results in
a significant overestimation of the rigidity.

In order to assess the model presented, Eq. (25), to take into account the effect
of non linearity, it is necessary to know the constants A and B/E in Eq. (22),
and ki in Eq. (25). To obtain B/E and ki, use of Eq. (26) was made, together
with an original method of data reduction, which was applied to the very early,
linear portion of the load-displacement curve pertaining to t D 3.80 mm. The values
B/E D 1.27 � 10�2 GPa�1 and ki D 34.9 kN/mm3/2 (C.V. D 4.3%) were found here
and adopted to evaluate A D 0.56 by best-fitting the load-displacement curve for
t D 1.90 mm. The measured value of B/E was adopted in all the calculations
hereafter. Some previous data, witnessing the physical consistency of the constants
found, were recalled. In [32], values of ki in the range 31.8–36.8 kN/mm3/2, in
excellent agreement with ki evaluated here, were obtained. It was also shown that
ki is unaffected by the boundary conditions and specimen geometry, depending
exclusively on the material and tup radius.

The dashed lines in Figs. 16 and 17 were drawn using the previous experimental
values for B/E and ki to calculate the quantity (wol C wi), even if they represent the
predictions deriving from the hypotheses of linear elasticity and local indentation.
Comparing these lines with the continuous straight ones previously discussed, it
clearly emerges the role of local deformation wi in determining the overall plate
deflection. For the thinnest plates (Fig. 16), the two lines are practically coincident,
indicating a negligible effect of the indentation whereas, the gap between the two
curves increases with increasing the plate thickness. In Fig. 17, in fact for the
laminate 3.80 mm thick the gap between the two curves is considerable. These
results are qualitatively anticipated since large local deformations require high
loads, which only thick plates can withstand without exceeding the elastic field.

However, from the comparison between Figs. 16 and 17, Eq. (26) tends to under-
estimate the force values for a fixed deflection value, with an error rapidly increasing
with decreasing t resulting in an analytic solution unacceptably inaccurate for the
thinnest plates (Fig. 16).

The thick solid curves in Figs. 16 and 17 represent the theoretical predictions
from Eqs. (22) and (18), i.e. taking into account all the factors involved in the
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deformation of the laminates. In the case of the 3.80 mm thick plates (Fig. 17),
the non-linearity effect due to the cubic term in Eq. (22) is very small, as witnessed
by the negligible difference between the dashed and the thick continuous curves.
The influence of non-linearity increases with the decrease of the thickness, and it is
very evident for the thinnest plate (Fig. 16). In any case, the load-deflection curve
is modelled with great accuracy by theory as also confirmed by the data concerning
the laminates of intermediate thicknesses, not shown here for brevity.

In conclusion, at this point it is possible to say that about the possibility to
predict the first part of the load curve, for thin plates, the effect of indentation on the
overall deflection can be neglected, whereas the cubic component in Eq. (22) plays
a major role in determining the plate response; at the increasing of the thickness, the
influence of the cubic component in Eq. (22) becomes lower and lower, whereas the
effect of indentation on the deflection becomes relevant.

In what discussed above, generated under quasi-static conditions, demonstrated
that Eq. (22) alone is not capable to efficiently describe the plate behaviour. The
reason was found in the local indentation wi occurring at the indentor-material
contact point, which markedly affects the response of the structure, especially when
large thicknesses are involved.

Three constants, A, B and ki, were experimentally determined to solve the
problem of the prediction of the elastic behaviour of a plate under dynamic
conditions.

Further experimental support to the previous theoretical model was provided
in subsequent works, where [67] the load-displacement curves deriving from both
static and low-velocity impact tests on fabric laminates were predicted accurately.
The possibility to reduce to two the number of unknown constants, yet achieving a
reasonably good agreement between theory and experiments, was also discussed.

A modified version of the solution proposed above for quasi statically loaded
tape laminates was developed in [67] for fabric laminae (F in Table 1) subjected
to low-velocity impact. The formula (Eq. 22) was modified, to take into account
the tup displacement associated with indentation. It is shown that the number of
unknown constants can be reduced to two, yet achieving a good agreement between
theory and experiments. Further, the relative importance of indentation and large
displacements in affecting the load-displacement curve is assessed.

From the results, the analytical model accurately describes the actual elastic
behaviour of the plates, provided two of the constants appearing in it are exper-
imentally determined. The results discussed about thin and thick laminates were
confirmed.

By the best fit method, the local rigidity ki D 12.0 kN/mm3/2 was obtained by
Eq. (26) and from the curves recorded for the thickest plates. This value is about
one third-one fourth compared with those found above and in [32, 68] for CFRP
laminates made of tape laminae. This is due to the fabric architecture of the present
composites, possibly playing a role in lowering ki. The previous ki was adopted as
a constant independent of the laminate thickness [32].
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Table 2 Plate thicknesses
adopted for the various
support diameters, Ds, and
tup diameters, Dt

D (mm)

Dt (mm) 50 100
12.7 A
14.9 1.90
19.8 A 2.85

Legend: A All thicknesses

3.4.2 Influence of Support and Impactor Diameter. Development About
First Failure Energy

Since the good results obtained for the prediction of the elastic part of the load
curve, it is possible to proceed at the prediction of the elastic energy stored at first
failure in a circular composite plate. The previous model is developed here to take
explicitly into account the tup diameter, and is coupled with a previous formula
[24] which is aimed at the prediction of the first failure load. From the two models,
a formula for the calculation of the energy stored at first failure as a function of
the test and material parameters is derived. Only when both the deflection at first
failure and the tup diameter are large enough, the first failure load is significantly
underestimated. The contribution of the different mechanisms of energy storage to
the total energy at first failure is identified by the study of the analytical model. At
the end, an analytical expression for the evaluation of the energy will be obtained.

The experimental tests were carried out on carbon fibre reinforced plastic
laminates (FT in Table 1) of various thicknesses, which were simply supported at the
periphery and loaded using two different supports, Ds D 50 mm and Ds D 100 mm,
and three indentor diameters, Dt D 12.7 mm, 14.9 mm, and 19.8 mm. Table 2 shows
the matrix of the experimental conditions adopted.

Some tests were stopped when sudden load drops were observed, others at
predetermined load levels. After mechanical tests, each specimen was visually
inspected and was then non-destructively evaluated by ultrasonic C-scan. Some of
the samples were also sectioned, polished, and microscopically observed.

The results show that the elastic model, which takes into account the non-
linearity due to the large displacements and the local indentation, is very accurate in
shaping the load-deflection curve up to the first failure point. Also the predicted
load and energy at first failure are in good agreement with the corresponding
measured values. Both theory and experiments demonstrate that the critical load is
independent of the support diameter in the range examined (50–100 mm), whereas
it increases with increasing the plate thickness and the indentor diameter.

Comparing Eqs. (25) and (7), the influence of Dt on the local rigidity is clear:

ki D ı � .Dt /
1=2 (27)

Knowing the ki value for a given tup diameter, the corresponding local rigidity for
another Dt value can be calculated.
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For a given laminate and fixed boundary conditions, A and B/E will not change
when the tup and support diameter are varied. ki is a function of Dt through Eq. (27).
Therefore, this equation can be used to calculate the appropriate value of the local
rigidity for a given tup diameter, starting from ki value found in the first part of this
paragraph for the FT laminates of 34.9 kN/mm3/2.

The effectiveness of Eq. (18) was already verified for different plate thicknesses.
Hereafter the dependence of the elastic behaviour on Ds and Dt is estimated. Since
the local rigidity was shown to be more evident when the flexural rigidity of
the laminate is high, the support diameter Ds D 50 mm and the plate thickness
t D 3.80 mm were adopted to verify the influence of the indentor diameter on the
plate response.

From Fig. 18 (open symbols), the lower the tup diameter is, the lower the overall
plate rigidity that is given by the rigidity of the plate plus the local rigidity, in
qualitative agreement with Eq. (27).

The effect of the tup diameter within the range of Dt values considered is only
moderate (Fig. 18). In the same figure, the theoretical predictions based on the
analytical model are also plotted. The comparison between theory and experiments
demonstrates an excellent agreement until the first failure point. The results obtained
using Eq. (27) is interesting since some data was presented [32], showing that Eq.
(27) does not model the effect of the tup diameter precisely.

The analytical prediction was successful used also to model the first part of
the curve obtained using the support diameter Ds D 100 mm and tup diameter
Dt D 19.8 mm. It is possible to conclude that the model is very accurate in describing
the elastic behaviour of the laminate, accounting for the effect of thickness, as well
as the influence of the support diameter and tup diameter.
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Fig. 19 First failure energy, Ui, against laminate thickness, t. Support diameter D D 50 mm; tup
diameter Dt D 12.7 mm. Mat.: FT (Table 1)

Combining Eqs. (22), (25), and (9), and solving the integral, the following
equation is obtained:

Ui D 2 � E � w�2
o � t

B � D2
�
�

t2 C A � w�2
o

2

�
C 2 � ki � w�5=2

i

5
(28)

where the asterisk indicates the components of the deflection when F D Fi.
From Eq. (28), the first failure energy Ui as a function of the laminate thickness

was calculated for the case D D 50 mm, Dt D 12.7 mm, and plotted (continuous
line) in Fig. 19. The solid symbols are the experimental data, and show a very
reasonable correlation with theory except for the thickest plates. In this case, the
slight divergence of the actual trend from the expected one immediately before the
load drop (Fig. 18) results in underestimating the actual energy storage capability of
the material.

Looking at Fig. 19, the experimental data trend is well represented by a straight
line but this should be misleading in the interpretation of the results in particular
because the line does not pass through the origin, violating the boundary conditions.

The dashed line in Fig. 19 represents the energy associated with the linear elastic
part of wo, calculated through the analytical model. The dash-and-spot line is the
portion of Ui due to wo. Therefore, from the comparison of the two curves the effect
of the cubic component of wo on the stored energy is evidenced. As witnessed by
the trend of the dash-and-spot and continuous line in Fig. 19, when high thicknesses
are concerned, the importance of the energy correlated to the contact law cannot be
neglected.

The model presented in Eq. (15) to explain the energy stored at first failure in
fabric reinforced, quasi-isotropic CFRP laminates of different thicknesses, yielded
consistent results. However, constant ki values far lower than expected from
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Fig. 20 First failure energy, Ui, against laminate thickness, t. Support diameter D D 50 mm; tup
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previous works [32] were obtained through the energy data. The present results
indicate that a reason for the poor correlation is the effect of non-linearity correlated
with the cubic component of the deflection.

To add further confidence in the effectiveness of theory, the first failure energy
for the case Ds D 50 mm, Dt D 14.9 mm was also evaluated through the present
theoretical model. It was obtained Ui D 0.91 J, practically coincident with the
measured value Ui D 0.92 J. The experimental results (symbols) and the analytical
prediction (curve) of the first failure energy as a function of t for the case
Ds D 50 mm, Dt D 19.8 mm are reported in Fig. 20. The agreement between theory
and experiments is good only for a thickness t � 2.85 mm, whereas it is poor for the
thinnest plates. This is not surprising, considering the effect of the plate curvature
under loading on Fi, noted in Fig. 13. The interesting finding from Fig. 20 is that,
especially when the plate is thin, the deformation can give a major contribution to
its capacity of energy storage before first failure.

In Fig. 21, the influence of the support diameter on Ui is seen, where the data
referring to a tup diameter Dt D 19.8 mm and t D 2.85 mm are also plotted as solid
symbols, and the continuous line represents the corresponding prediction. Also in
this case, the agreement between theoretical estimates and experimental results is
satisfying. Of course, the increase in Ui with increasing Ds is due to the decrease in
rigidity, together with the fact that the critical load remains the same, whichever Ds

(Fig. 12).
For Ds values approaching zero, the accuracy of the present analytical model

is expected to fail: in this case, the plate diameter becomes comparable with its
thickness, so that the contribution of the shear deformation to the elastic behaviour,
not considered here, becomes significant [33, 34].
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Fig. 21 Effect of the support diameter, Ds, on the first failure energy, Ui. Mat.: FT (Table 1)

According to Eq. (28), Ui is made of the sum of three terms associated with
the linear and cubic components of the deflection and indentation, respectively.
Consequently, the relative importance of the different mechanisms of energy storage
at first failure can be appreciated if four constants, A and B/E in Eq. (22), ki in Eq.
(25), and ı in Eq. (7), are known.

The closed-form formula proposed and developed, aiming to predict the non-
linear elastic behaviour of the plate, is successful in modelling the effect of both the
support diameter and the indentor diameter on the elastic response. The first failure
load is independent of the support diameter whereas it is a strong function of the tup
diameter. Increasing the indentor diameter results in an increase in the critical load
but this law is violated when the curvature caused by the applied load is significant
compared to the indentor diameter.

3.4.3 Failure Energy of Glass-Fibre-Reinforced Plastic Panels

The above presented model was hereafter applied to predict the critical energy at
first failure of simply supported circular glass-fibre-reinforced plastic laminates
made of glass fabric/epoxy prepreg (G in Table 1). Four panel thicknesses,
keeping the stacking sequence unchanged, and two tup diameters, Dt D 16 mm and
Dt D 19.8 mm, were employed to verify the influence of these parameters on the
elastic behaviour and first failure conditions of the material. Selected specimens
was burnt away, and optical microscopy at low magnification was used to reveal
possible reinforcement fracture. The experimental results were used to assess the
same model proposed (Eq. 22) in the case of low velocity, large mass impact
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on CFRP. The calculated values were in reasonably good agreement with their
experimental counterparts. Only for the thickest laminate, the model yielded a far
conservative estimate of the critical energy at first fibre failure, due to the deviation
of the experimental load-displacement curve from the theoretical trend.

Through Eqs. (18), (22) and (25), the F-d curve is easily drawn: assigning a F
value, wo and wi are calculated through Eqs. (22) and (25), respectively, then Eq.
(18) gives wt.

Accounting for Eqs. (18), (22), (25) and (7), Eq. (9) provided Eq. (28).
It is important to observe that Eq. (7), based on a stress approach rather than the

more popular model proposed by Davies and Zhang [51]:

Fi D �

s
8Et3GIIc

9 .1 � �2/
(29)

deriving from energy considerations and successful in predicting delamination
initiation for many quasi-isotropic laminates [51, 69, 70], was used in this work
to calculate Fi. In Eq. (29), GIIc is the Mode II delamination toughness, � is the
Poisson’s ratio considered quasi-isotropic in the analytical development.

According to both Eqs. (7) and (29), Fi linearly increases with increasing t3/2

whereas contrary to Eq. (29), Eq. (7) predicts a dependence of the threshold load on
the tup diameter, not appearing from Eq. (29). Some experimental results supporting
the increase of Fi with increasing Dt, in agreement with Eq. (7), were presented
in [71].

In correspondence of the load drop in the force-displacement curve, fibre failure
appeared at the back face of the laminate, as confirmed by optical microscopy after
resin burning. Consequently, the load arrowed in Fig. 22 recorded for thin plates
was attributed to fibre failure and is indicated by the symbol Ff hereafter.

In correspondence of the point signalled by the arrow in Fig. 23, obtained on
thick plates, some irregularities, giving rise to a sawtooth appearance similar to
the one observed in thin laminates, were noted. From visual analysis after tests,
the knee signalling the departure from linearity was associated with delamination,
and the abscissa of the corresponding load, Fd, was conventionally evaluated from
the intercept of the two straight lines (dashed lines in Fig. 23) best fitting the
approximately linear trend of the load-displacement curve before and beyond the
knee, respectively. The maximum contact force preceding the sawtooth portion of
the load-displacement curve (arrow in Fig. 23), associated with fibre failure, was
also recorded.

Effect of Speed and Mass

The energy U in the impact tests was changed by varying not only the mass,
but also the falling height (i.e. the tup velocity). This allowed to verify whether
the parameters relevant to the impact phenomenon are rate-dependent or mass-
dependent.
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Fig. 22 Typical load-displacement curve recorded for the GFRP panels of thickness t D 0.96 mm.
Indentor diameter Dt D 16 mm. Impact energy U D 1.68 J

Fig. 23 Typical load-displacement curve recorded for the GFRP panels of thickness t D 3.84 mm.
Indentor diameter Dt D 16 mm. Impact energy U D 12.2 J

Figure 24 shows the measured delamination load, Fd and the associated energy,
Ud versus the impact energy, U, for t D 3.84 mm and Dt D 16 mm. They are, both,
negligibly influenced by the impact energy and mass in the range adopted. The same
was concluded by the examination of the shape of the overall F-d curves that is the
same whichever the speed and mass.
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Fig. 24 Delamination load, Fd, and associated energy, Ud, against impact energy, U. Indentor
diameter Dt D 16 mm. Panel thickness t D 3.84 mm

Fig. 25 Contact force, F, against indentation, wi

To predict the load-displacement curve in the elastic phase through Eqs. (18),
(22) and (25), the constants A, B/E, ˛ must be known. As previously specified, ˛

was directly measured through indentation tests, (results in Fig. 25). The solid line
in Fig. 25 was drawn by Eq. (25), where ˛ D 2.95 KN/mm2 was calculated by best
fitting the experimental data. The good agreement between theory and experiments
indicates that the contact law is effective in describing the phenomenon under study.
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The values A D 0.30, B/E D 1.73 � 10�2 GPa�1 were obtained by a numerical
technique based on the best-fit method, using the elastic portion of all the load-
displacement curves. The A value is very near to that (0.27) valid for a simply
supported, circular isotropic panel loaded at the centre [16] whereas it was previ-
ously found to hold 0.56, when CFRP laminates characterized by a low anisotropy
ratio were tested. On the other hand, assuming B D 0.55 (isotropic materials), an
unrealistically high E value, E D 31.8 GPa, larger than the elastic modulus (22–
25 GPa) of the basic layer along the warp and weft directions, is calculated from B/E.

By substituting in Eqs. (18), (22) and (25) the values of the constants previously
specified, the theoretical load-displacement curves were calculated and compared
with the experimental ones (thin lines in Figs. 22 and 23). The correlation is
outstanding at low displacements, indicating the effectiveness of the solution
proposed in representing the elastic response of the panels. Beyond a given contact
force, the experimental curves diverge from the calculated ones, denoting different
damages.

According to theory, the effect of Dt on the overall shape of the elastic portion
of the load curve is the more important, the thicker the laminate is. However, even
for t D 3.84 mm, the effect of the tup diameter is hardly observable in the cases
examined in this work: although not shown in Fig. 23 to avoid crowding of data,
the thin line in the figure was hardly distinguishable from the one pertaining to
Dt D 19.8 mm. It was confirmed by the results of the experimental tests.

Assessment of the Force Model

The open symbols in Fig. 26 are the measured Fd, whereas the full points in the
same figure are the Ff values, plotted against panel thickness. Two different symbols
have been used to distinguish the two impactor diameters, the vertical bars denote
standard deviation. Both Fd and Ff increase steadily with increasing t and for a given
t, a larger Dt results in a higher value of the first failure force.

From Eq. (7), the Fd data associated with the two tup diameters in Fig. 26
should converge to a single master curve, if the quantity Fd/Dt

0.5 is reported on
the ordinate axis. In Fig. 27 the results in Fig. 26 have been rearranged according
to this procedure: it shows that this actually occurs, supporting the effectiveness of
Eq. (7) in modelling the influence of the tup diameter on Fd. More interestingly, the
same law seems to be valid also for Ff. This result is not expected: the hypotheses
on which Eq. (7) relies concern the distribution of the through-the-thickness shear
stresses [10], which govern delamination initiation and propagation. The same
assumptions are hardly acceptable for the normal stresses, responsible for fibre
failure.

The solid and dashed lines in Fig. 27 graphically represent Eq. (7), in which the
constant ı was calculated by best fitting the Fd and Ff data, respectively, obtaining
ı D 105 MPa (delamination) and ı D 200 MPa (fibre failure). With these values in
Eq. (7), the curves in Fig. 26 were drawn: they follow with sufficient accuracy the
experimental results.
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Fig. 26 Critical loads for delamination initiation, Fd, and fibre failure, Ff, vs panel thickness, t,
for the two impactor diameters Dt used: open symbols Dt D 16 mm; full symbols Dt D19.8 mm.
Mat.: G (Table 1)

Fig. 27 Fd/Dt
0.5 and Ff/Dt

0.5 ratios versus panel thickness, t

First Failure Energy

The solid symbols in Fig. 28 represent the experimental energy at first fibre failure
(yielded by the force-displacement curves in correspondence of Ff) against t for
the two Dt adopted. The open symbols in the same figure are the energy Ud

at delamination initiation. An increasing function of both laminate thickness and
indentor diameter was found.
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Fig. 28 Energies for delamination initiation, Ud, and first fibre failure, Uf, against panel thickness,
t, for the two impactor diameters Dt used. open symbols Dt D 16 mm; full symbols Dt D19.8 mm.
Mat.: G (Table 1)

The curves in Fig. 28 were obtained by the theoretical predictions of the critical
energies based on Eq. (28), in which the appropriate values of Fi (Fi D Fd, Fi D Ff)
where inserted to obtain the corresponding energies (Ui D Ud, solid lines; Ui D Uf,
dashed lines). The theory strongly underestimates Uf for t D 3.84 mm. It was
anticipated, because of the knee in the load-displacement curves of the thickest
panels, not taken into account by theory, bringing to an underestimation of the
critical displacement at first fibre failure, wf (Fig. 29). In the other cases, the
theoretical model predicts with reasonable accuracy the experimental results also for
the 2.88 mm thick panels, despite the existence of the knee in the load-displacement
curve. The incongruence is explained by the fact that, as noted previously, the
deviation from the theoretical elastic behaviour induced by delamination occurrence
was negligible in this case.

From theory, the energy for delamination initiation in the 1.92 mm thick
laminates is Ud D 0.85 J and Ud D 1.01 J for the two different impactors Dt D 16 mm
and Dt D 19.8 mm, respectively. Unfortunately, impact tests at so low energy levels
could not be carried out. Only a limited number of tests were performed setting
U � 1.5 J using both the impactor diameters. Delaminated areas in the range 20–
25 mm2 were revealed by the visual inspections, whereas no evidence of fibre
damage was yielded by the analysis after resin burning. This observation confirms
that matrix damage is introduced in the material well before Uf is reached and the
small extent of delamination suggests a stable growth, explaining the difficulty to
individuate the occurrence of this mode of damage from the analysis of the load-
displacement curve.
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Fig. 29 Critical displacements at delamination initiation, wd, and at first fibre failure, wf, versus
panel thickness, t. Tup diameter Dt D 16 mm. Curves: theoretical predictions

Final Considerations

A strategy suggested to easily determine the four constants appearing in the
presented model (Eq. (22)) consists of two impact tests to be performed on a thick
and a thin laminate, respectively. At low displacements, the cubic component of
displacement for a thick laminate is negligible, while the effect of indentation is
to take into account; these are the best conditions for measuring B/E and ki from
the load-displacement curve through the suggested procedure. On the contrary, the
influence of indentation on the load curve of a thin laminate is insignificant whereas
the membrane effect is evident, thus allowing for the evaluation of A. At the end,
if the threshold load Fi is recorded from at least one of the two curves, also the
constant ı is immediately obtained.

The present model does not account for the shear component of deflection, whose
importance becomes more relevant the higher the ratios E/G (with G being the
through-the-thickness shear modulus of the laminate) and t/D are, and the lower
the indentor diameter is [52, 57]. The evaluation of the inaccuracy deriving from
this approximation is not easy, because the shear stiffness is a function of contact
area, which increases with the increasing of the applied load. To roughly estimate
the maximum error made in the examined case, the data concerning the thickest
panels and the lowest tup diameter were considered and the contact area pertaining
to the maximum load experienced at the elastic limit was calculated through the
equation provided in [12]. The shear and flexural stiffness were estimated, assuming
typical values for the laminate elastic constants: the shear stiffness was found to
be approximately ten times the flexural stiffness, resulting in a 9% error in the
prediction of critical energy.
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Fig. 30 Maximum contact force, Fmax, against laminate thickness, t. Mat.: F (Table 1)

However, at the end, the discussed model is revealed to be able to accurately
shape the elastic portion of the load-displacement curve, even when the laminate
is so thin to exhibit an evident nonlinearity correlated with membrane effects It is
able to predict the contact force corresponding to delamination initiation by a power
law, in which a single parameter must be measured; the energy for delamination
initiation, so that the energy at first fibre failure are well predicted by the model.

3.5 Maximum Force and Energy

The maximum contact force, Fmax, could represent an important parameter in
predicting the impact behaviour of composite laminates. Different authors [34, 72,
73], have noted that the failures in a laminate are force dependent rather than energy
dependent. For this reason, it is necessary to understand how parameters such as
specimen thickness can influence its value.

It was found that also Fmax, follows a power law as a function of the thickness,
with the exponent very similar to the exponent of the contact law. The same holds
for the maximum energy, Umax.

In Fig. 30, the maximum load, Fmax, measured on F carbon fibre laminates
(Table 1) made of T400 fibres and HMF 934 epoxy resin, is plotted against the
four specimen thickness, t, obtained with the following stacking sequence f[(0,
90)/(˙45)]sgn n D 1 to 4.
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The continuous line is the best-fit power law, given by the equation:

Fmax D Fmaxo � tm (30)

where Fmaxo D 1.35 KN/mmm, m D 1.41.
The values of the exponents i in Eq. (1) and m in Eq. (30) are very similar. This

suggests that a strict correlation exists between the delamination initiation and the
failure mechanisms resulting in the load drop just after the maximum force. If this
is the case, the possibility to model Fmax should critically depend on the ability to
describe the first failure phenomena.

Also in Fig. 30 the experimental data were fitted by a power law having exponent
1.5 (dashed line), resulting in Fmaxo D 1.25 KN/mm1.5: the two curves are very close
with each other. It could mean that, as already discussed about the first failure load,
the importance of the contact law is deviced in determining the main laminate failure
as well. There is in fact no difference in the prediction in adopting a power law
having exponent 1.5.

The energy correlated to the maximum contact force presented above, Umax, was
measured and plotted in Fig. 31 against the specimen thickness, t.

The continuous line in Fig. 31 is the best-fit power law having equation:

Umax D Umaxo � tn (31)

with Umaxo D 1.62 J/mmn, n D 1.52. Even the exponent n in Eq. (31), is very
near to 1.5 that means that, considering Eqs. (30) and (31), an approximately
linear correlation between the maximum force and the corresponding energy exists
(Fig. 32).

In conclusion, the importance of the contact law is devised in determining the
main laminate failure as well.



250 V. Lopresto and G. Caprino

0

4

8

12

0 2 4 6 8

Fmax (kN)

U
m

ax
 (

J)

Fig. 32 Energy in
correspondence of the
maximum force, Umax,
against maximum force, Fmax

3.6 Indentation

With composite materials, it is difficult to detect impact damage by visual inspection
even when considerable strength and rigidity losses have occurred. The external
indication of an occurred impact is the indentation, the local deformation under
the impactor the more pronounced the thicker the laminate is. It leads to the
concept of ‘barely visible impact damage’ (BVID): at the aim to guarantee adequate
safety, it is required an assigned minimum strength in the presence of a barely
visible indentation generally fixed at 0.3 mm of depth. However, there is no
common agreement on its value. This section considers the permanent indentation of
laminated composites. In the development of mathematical models for the analysis
of the impact dynamics, contact laws are needed to relate the dent depth to the
impact energy and the residual strength to the dent depth.

After the impact tests carried out at different low energy levels when no
perforation occurs, the specimens were taken away from the impact machine and
a small permanent indentation depth, the only sign visible on the surface, was
measured by a micrometrical dial gage. The measurements were carried out after
the unloading phase of the impact tests when the impactor is not in contact with
the material anymore and on the specimen there isn’t any load. The indentation
obtained in this way is the local permanent deformation due to the local contact load.
Its trend was studied as a function of impact energy. The results obtained together
with the experimental data available in the literature [65], were used to correlate
the permanent indentation to the impact energy. A formula, modelling the residual
tensile strength decay as a function of impact energy, is used to correctly predict the
residual strength. Combining the indentation model and the residual strength model,
a closed form model, explicitly correlating the residual strength and the indentation
depth, is obtained.
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Table 3 Details of the laminates tested in [65]

Material System Symbol Lay-up Thickness (mm) Up (J)

T400 Fabric/934 F4 [(0,90)/(˙45)]s 0.764 5.0
T400 Fabric/934 F8 [(0,90)/(˙45)]2s 1.528 13.1
T400 Fabric/934 F12 [(0,90)/(˙45)]3s 2.292 26.4
T400 Fabric/934 F16 [(0,90)/(˙45)]4s 3.056 39.4
T400 Fabric/934 C SCa SDF [(0,90)/(SC)/

(0,90)/(SC)/(˙45)2 /
(0,90)2/(˙45)2/(0,90)]

3.751 29.9

T400 Fabric/934 C SCa SEF [(0,90)/(SC)2 /
(0,90)/(˙45)2 /(0,90)2/
(˙45)2/(0,90)]

3.751 30.1

T400 Fabric/934 C SCa SIF [(0,90)/(˙45)2 /
(0,90)/(SC)]s

3.560 18.9

AS-4 Tape/PEEK A8 (0/45/90/�45)s 1.056 19.2
AS-4 Tape/PEEK A24 (0/45/90/�45)3s 3.168 30.0
aSC D SynCore

®

3.6.1 Relationship Between Dent Depth and Impact Energy

In [65] low velocity impact tests were carried out follow the same experimental
methods used here on laminates different in thickness, lay-up, and material system
(Table 3): some of the laminates were under sandwich form, obtained by the
insertion of one of two layers of a syntactic foam (Syncore

®
), 1.016 mm in nominal

thickness each one, at predetermined locations along the plate thickness. For the
sandwiches, the impact happened on the first layer in Table 3, so that for SDF and
SEF the foam was very near to the material-tup contact zone.

The measured indentation was plotted against U for all the laminates examined
(Fabric (F) type, Sandwich (S) type, and AS-4 tape (A) type composites). The
indentation rate was found to increase with increasing impact energy and for given
energy and material system, the dent depth is the higher, the lower the plate
thickness is. In Fig. 33, the results obtained on F laminates were reported for
example.

SDF and SEF had approximately the same behaviour, different from what exhibit
by SIF, when sufficiently high energy levels are adopted. The latter result was unex-
pected since, according to the contact law, a higher indentation should be expected
from SDF and SEF sandwich plates, due to the presence of the unreinforced core
near to the impact surface. However, the maximum indentation depth is comparable
to the specimen thickness indicating extensive failure phenomena in the material.
Therefore, the experimental test conditions in [65] involved contact forces well
beyond the limit within which law can be reasonably applied. For a fixed impact
energy, a higher indentation is found for F8 compared to SIF. The two systems were
made by the same type and number of layers, except for the presence of core in the
SIF structure so, the effect of core in preventing indentation is evident.
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In [65], the penetration energy Up for all the laminates in Table 3 was evaluated
(see last column in Table 3) as the area under the force-displacement curve up to
the point in correspondence of which there is a marked decrease in slope and the
cylindrical shaft supporting the tup hemispherical nose began to slide against the
walls of the hole resulting from impact, dissipating energy by friction. In Fig. 34, the
same data plotted in Fig. 33 are shown against the non-dimensional energy U/Up. All
the indentation data concerning a single material system, irrespective of the actual
thickness, follow a master curve. It happens also for all the sandwich panels, despite
the different location of the core, and the AS-4 tape (A) type system.
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In Fig. 34, the power law equation:

I D Io �
�

U

Up

�ˇ

(32)

best fits all the F specimens experimental points, the values Io D 6.77 mm and
“ D 2.535, resulting in the solid line in Fig. 34, were experimentally obtained.

In Fig. 35 all the indentation data of the material systems under attention are
compared. It was found that the correlation between the data points and the curve
found for the F type material is reasonable, demonstrating that the same equation
can be used, independently of the actual material system, when an approximate
evaluation of the non-dimensional energy is wanted. Equation (32) is very useful to
calculate the impact energy from indentation measurement if the penetration energy
Up for a given laminate is known. However, looking better in Fig. 35, the agreement
between theory and experimental trend is very good up to impact energy of about
60% of the penetration one. After that, the prediction overestimates the S panels
behaviour.

Similarly to what above described about low-velocity impact, more data from
quasi static tests on the same fabrics labeled as F4, F8, F12 and F16, were collected.
It was also found that the rate of increase in indentation (Fig. 36) increases with the
indentor energy and I strongly depends on the panel thickness, being the higher the
thinner is the laminate, for a fixed energy level.

As already done previously, the data in Fig. 36 were then plotted against U/Up

(Fig. 37). As already observed for the dynamic case, all the points converge to a
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Fig. 36 Measured indentation, I, against impact energy, U
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Fig. 37 Indentation, I, against non-dimensional energy, U/Up

single master curve, indicating that the influence of the thickness disappears when
the non-dimensional energy is used as the independent parameter.

The dashed line in Fig. 37, is the curve obtained from Eq. (32) best fitting
the experimental data taken in [65] about impact tests carried out on T400/934
fabric laminates obtained above. Up to U/Up Š 0.4 the agreement is reasonable but
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Fig. 38 Indentation, I,
against non-dimensional
energy, U/Up, for the
laminates from Table 3

the predicted indentation is higher than the measured values beyond this limit. To
understand whether the discrepancy reflects the effect of loading speed, or material,
or whether some other reason can be given to explain the phenomenon noted, in
Fig. 38 the indentation data generated in [65] for the T400/934 fabric laminates
(black circle), were reported. The best-fit curve calculated above and plotted in
Fig. 37 (continuous line) is also shown in Fig. 38 for comparison purposes: a good
fitting of the data was observed.

In Fig. 38 the data previously shown about the sandwich structures made of
T400/934 fabric and Syncore

®
syntactic foam and the quasi-isotropic laminates

made of AS-4 tape/PEEK are also reported. It was confirmed what discussed above
about some deviation of that points giving the possibility to assert that the constants
appearing in Eq. (32) could be mildly dependent on the specific material under
examination.

All the points in Figs. 37 and 38 are collected in Fig. 39 where, contrary to
what speculated above, a single indentation law actually holds for all the laminates
considered, irrespective of the loading rate, fibre type and architecture, matrix type:
once again, all the points converge to a single curve if plotted against the non
dimensional energy, even if they showed different trends when plotted against the
impact energy U since the dependence on the thickness and the particular material
system. It seems that even the boundary conditions scarcely affect the relationship
between I and U/Up since the quite different constraint conditions previously
adopted for the impact tests (plates clamped, support diameter 40 mm) from here
where the plates were simply supported and the support diameter is 50 mm.

The dashed line in the figure represents the best-fit curve obtained calculating
the constants appearing in Eq. (32) from all the points in Fig. 39. It is evident that
again Eq. (32) is able to fit well the data up to about U/Up Š 0.6, beyond which it
unacceptably underestimates indentation.
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The following expression, satisfying the boundary condition U/Up D 0 ) I D 0,
was found to better correlate I and U/Up:

I D k �
�
10

� � U
Up � 1

�
(33)

k, ” are two constants. From what here above asserted, these constants are expected
to be negligibly affected by the particular laminate and matrix type.

Plotting Eq. (33) in a log scale (Fig. 40), it results in a straight line having slope
” useful to obtain the k value from the best fit method.

The k value was varied until the straight line best fitting the data passed through
the origin. In this way, the values k D 0.288 mm and ” D 1.269 were obtained. The
continuous lines in Figs. 36, 37, 39 and 40 were drown using Eq. (33): a good
correlation between the new indentation model and the experimental data can be
appreciated.

The most important conclusion is that, if Up is known, the impact energy
that cause a given indentation can be obtained from the measurement of the
indentation depth. The found indentation law (Eq. 33) seems to have a quite general
applicability, being scarcely affected by the fibre type and orientations, matrix type
and clamping conditions.

Since the importance of the absorbed energy, Ua, in determining impact damage
evolution, the same procedure applied above was followed considering Ua instead
of the impact energy.

The impact energy, U, is related to the absorbed one, Ua through the penetration
energy. In Fig. 41 the non dimensional value, Ua/Up, is plotted against the ratio
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Fig. 41 Non dimensional absorbed energy, Ua/Up, vs non dimensional impact energy, U/Up. Mat.:
G (Table 1)

U/Up for E GFRP laminates, [(0,90)n/(C45,�45)n/(C45,�45)n/(0,90)n], with n D 1
to 4: the vertical bars denote standard deviation and the symbols are identified by
the label “A/B”, where A stand for the tup diameter and B for the panel thickness in
mm. All the data follow a single linear trend, irrespective of the panel thickness and
impactor diameter. Only two points on the left at very low non-dimensional impact
energy seems to have a deviation from linearity.



258 V. Lopresto and G. Caprino

Sutherland and Guedes Soares in [74] observed a bi-linear trend between the
absorbed energy plotted against the impact one, U, on GFRP laminates made
of different woven roving architectures, thicknesses, and resins. They found a
correspondence between the knee of the bilinear trend and the onset of fibre damage.
The knee in the present case, should be located in the range U/Up D 0.08 to 0.11.

Discarding the two points on the left, the solid best-fit straight line in Fig. 41 has
equation:

Ua

Up

D 0:962
U

Up

� 0:0609 (34)

From the results, both the constants in Eq. (34) substantially hold whichever t
and Dt. The virtual non-dimensional energy Uo/Up corresponding to Ua/Up D 0,
represented by the intercept of the straight line with the x-axis, was calculated:
Uo/Up D 0.063. Therefore, would the linear relationship hold also at very low energy
values, a perfect elastic impact should occur when the initial energy is about 6.3%
or lower of the perforation one.

The dashed line in the same figure represents the condition for which all the
available energy is absorbed and has equation Ua/Up D U/Up. Since the elastic
portion of the non-dimensional impact energy, Uel/Up, is given by Uel/Up D (U-
Ua)/Up, the vertical distance of the generic experimental point from this line is
given by Uel/Up. With this in mind and considering that the slope of the continuous
line is 0.962, very close to 1, it is possible to conclude that, beyond Uo, the elastic
energy negligibly increases with increasing impact energy. Ue is nil at perforation
that means that close to the perforation, the linear relationship in Fig. 41 will be
violated.

At the increasing of impact energy, U, a part lower and lower of the initial energy
is stored elastically, compared to the absorbed energy. This is clear in Fig. 42 where
the data shown in Fig. 41 have been rearranged, plotting Ua/U against U/Up. From
Eq. (34) the following relationship for the solid line was obtained:

Ua

U
D 0:962 � 0:0609

Up

U
(35)

From the figure it is clear that, at very low impact energy, a considerable portion
of the impact energy is transferred back to the tup. Even when U is 25% of the
perforation energy, about 71% of the energy is absorbed; at U/Up D 0.75, only 12%
of the energy is employed for rebound.

What above presented for glass fibre was done for carbon fibre reinforced
plastic too.

In [74] the energy absorbed in low-velocity impact tests on GFRP laminates
made of different woven roving architectures, thicknesses, and resins was plotted
against U a linear trend similar to the one found here was observed for high values
of the impact energy, U, whereas, at lower U a new straight line, with a lower slope,
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Fig. 42 Non dimensional absorbed energy, Ua/UP, vs non dimensional impact energy, U/Up

was necessary to effectively fit the experimental data. On the base of the analysis
of the failure modes, the point of intersection of the two straight lines was found to
coincide with the onset of fibre damage.

In a previous paper [24], low-velocity impact tests were carried out on CFRP
T400/HMF 934 fabric laminates with the stacking sequence f[(0, 90)/(˙45)]sgn,
with n D 1 to 4, and the thicknesses in the rang 0.76 and 3.01 mm with a
hemispherical tup 12.7 mm in diameter. Some of the data from [24] were analyzed
anew in this contest, the absorbed energy was evaluated, and its non-dimensional
value Ua/Up was plotted against U/Up in Fig. 43. It is immediately clear in this
figure the bi-linear trend highlighted by Sutherland and Guedes Soares [74], where
the knee was associated with the onset of fibre damage. The latter would occur for
U 0.2Up much earlier for the GFRP previously studied. The fact that in Fig. 43 the
straight line fitting the data located beyond the knee seems to pass through the point
(1,1) suggests that the linear trend is preserved until perforation.

Plotting the indentation depth values, I, against the absorbed impact energy,
Ua, as already observed for impact energy, U, for a given energy, the dent depth
increases monotonically with increasing Ua and it is the larger, the thinner is the
panel and the lower is the tup diameter. The effectiveness of Eq. (33) in which the
impact energy, U, is substituted by the absorbed energy, Ua, is really appreciated.
The same indentation model previously presented (Eq. 33) assessed for the absorbed
energy instead of the impact one, give the same good results. It was expected since
the linear variation of Ua/Up with U/Up.

In Fig. 44, all the indentation data concerning GFRP (open triangles) and CFRP
(full circles) are collected. Despite the scatter affecting the experimental data, it
is obvious that GFRP laminates exhibit a larger indentation, for a fixed value of
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Fig. 43 Non dimensional absorbed energy, Ua/Up, versus non dimensional impact energy, U/Up.
Material: CFRP [24]

Fig. 44 Indentation, I, against non-dimensional absorbed energy, Ua/Up, for CFPR (full circle)
and GFRP (open triangle)

the non-dimensional absorbed energy. So, when the same indentation is measured
on GFRP and CFRP systems, the latter absorbs a higher portion of energy, if the
perforation energy is assumed as a benchmark.

The prediction model was revealed valid also considering Ua instead of U. In
order to calculate the impact energy, U, or the absorbed one, Ua, from indentation
measurements through Eq. (32) or (33), it is necessary to know the penetration
energy, Up, for a given laminate.
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3.7 Penetration Energy

This section deals with the prediction of the penetration energy, the difference
between the initial and residual kinetic energy of the projectile during impacts
resulting in complete perforation. The factors affecting the penetration energy of
a composite material are examined.

For a given fibre type, the penetration energy is substantially influenced by the
total fibre volume and tup diameter, whereas other factors, such as resin type and
content, fibre architecture, stacking sequence and orientations, play a secondary
role. An empirical power law equation proposed by the authors, is assessed on the
basis of experimental results. Results indicate that the exponent of the power law
is independent of the material considered, being practically the same for graphite
fibre, as well as glass fibre reinforced plastics, and even for an isotropic material as
polycarbonate, prone to extensive plastic yielding before final failure.

3.7.1 Effect of Laminate Thickness and Projectile Diameter

It is important to find a general formula to calculate the energy necessary to the
indentor to completely perforate the laminate. The factors mainly affecting the
energy under attention were first reviewed. In [23], the data in [24] for the F fabric
laminates T400 fibres and HMF 934 epoxy resin having f[(0, 90)/(˙45)]sgn stacking
sequence, with n D 1 to 4, labelled as F in Table 1, were examined. The dependence
of Up on the laminate thickness is well described by the following power law:

Up D Upo � tp (36)

with Upo D 7.33 J/mmp and p D 1.50, represented by the solid line in Fig. 45.
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In [75, 76], the penetration energy for a given laminate was found to linearly
increase with increasing t (i.e. fibre areal weight) but data from [17, 19, 21–23, 77]
have demonstrated that doubling t or Dt results in more than doubling the energy
absorbing capacity of the panel. So, the dependence for CFRP laminates could be
well described by a power law having exponent 1.5 [17, 21]. Adopting the same law
to fit the trend of data concerning GFRP [77], an exponent �1.35 was obtained.

However, before going on to develop the power dependence of Up on t obtained
with tests carried out in the present research, the experimental results obtained here
together with data from the literature were utilized. The difficulty in comparing
the various available data published derives from the fact that many factors, both
internal and external, can affect the energy absorbing capacity of these materials.
The most important ones are the matrix type and content, fibre type, architecture
and orientation, laminate thickness and stacking sequence, the panel geometry and
dimensions, the constraint conditions and the impactor geometry.

In [78], Babic and co-workers from the results of low-velocity impact tests
on glass fibre reinforced plastics (GFRP) with different thicknesses and volume
fraction of reinforcement, found that the scatter in the measured penetration energy
was lower when Up was plotted against the panel thickness, t, times fibre volume
fraction, Vf, rather than against the actual thickness. The same was found in [22, 23],
where different carbon fibre reinforced plastics and glass fibre reinforced plastics,
were considered, respectively. The product (t � Vf) practically coincides with the
total fibre thickness proportional to the total fibre areal weight, negligibly the
void content. In [17], the authors obtained consistent results calculating Up on the
basis of the fibre areal weight alone. Therefore, what was found seems to indicate
that the total fibre content plays a fundamental role in affecting the penetration
energy and that not only the resin content, but also its type negligibly affects the
penetration energy. In [22] six different types of resin were used to fabricate quasi-
isotropic GFRP laminates subjected, then, to dynamic loads: very little differences
in behaviour were observed. Bibo and Hogg [23] studied also the problem of the
effect of fibre architecture on the penetration energy on quasi-isotropic laminates
with different spatial distribution of reinforcement employing different forms of
glass fibres (unidirectional, quadriaxial warp-knit fabric and eight-harness satin
weave). For a fixed fibre areal weight, Up revealed to be practically independent
of the reinforcement architecture and stacking sequence although the delamination
extent was quite limited in some cases and considerable in some others, indicating
that the energy associated with delamination is negligible compared to the overall
penetration energy.

The insensitivity of Up to the fibre architecture was confirmed in [77], where
the energy absorbing capability of an in-plane isotropic sheet-moulding compound
was shown to be the same as that of fabric laminates with the same fibre areal
weight. This confirms the importance of the total fibre content and in addition
supports the hypothesis that fibre orientation play a secondary role in determining
the penetration response of a composite, at least when the anisotropy ratio is not
too high like for quasi-isotropic laminates. This hypothesis is confirmed in [21],
where Delfosse and Poursartip used different indenter diameters on two types of



Damage Mechanisms and Energy Absorption in Composite Laminates Under. . . 263

graphite/epoxy laminates. The first one was quasi-isotropic, whereas the second
had 40% of the fibres oriented in the 0-direction. The penetration energy increases
with increasing the impactor diameter but for a given indenter diameter, the two
composites exhibited the same Up value. This indicates that, at least when the
anisotropy ratio is not too high, also the fibre orientations play a secondary role
affecting the penetration energy of a laminate and the main parameters remain the
fibre type and areal weight.

Moreover, the penetration energy of (˙30)2s, and (˙45)2s tape CFRP laminates
was successfully calculated on the basis of the test results deriving from quasi-
isotropic fabric laminates taking into account only the total fibre thickness and not
the fibre orientation.

In [53], penetration tests were carried out on different forms of glass fibres
(unidirectional, non-crimp fabric and eight-harness satin) utilised to fabricate quasi-
isotropic laminates with different spatial distribution of reinforcement. The results
demonstrated that the penetration energy is scarcely affected by the reinforcement
architecture and spatial distribution, if the total fibre volume remains unchanged.

The dependence of Up on Dt is not so clear yet. In [21], where some data
concerning CFRP were presented, it was concluded that a power law having
exponent 0.7 could be adequate to describe the trend of CFRP but completely
different conclusions were highlighted in [77], where the power law best fitting
the experimental points had exponent 1.38 for GFRP. Taking into account the latter
case, it was noted that the effect of both the thickness and the impactor diameter
on the penetration energy could be modelled by power laws having very similar
exponents.

The results suggest that the parameter controlling the penetration energy is the
product (t�Dt).

The reinforcement plays a major role in determining the impact response also
for GFRP. In [78], in fact, the Up of all the data about GFRP deriving from
specimens having different matrix content converge to a single master curve when
plotted against the total fibre thickness obtained as the thickness times fibre volume
fraction. Looking at what obtained by the authors [77], the quantity (t�Vf�Dt) seems
to be a parameter useful to compare on a common basis data obtained on GFRPs
with different resin contents and different impactor diameters. To demonstrate
what asserted, the penetration energy data generated on GFRP recalled above and
described in the materials paragraph, are plotted against (t�Vf�Dt) in Fig. 46. Despite
the differences in fibre architecture and orientations, the data about three different
materials tested approximately follow the same curve, confirming the conclusions
in [78], where the negligible importance of the matrix on the energy absorption
capacity of GFRP was noted.

The power law in Fig. 46 has equation:

Up D K � �t � Vf � Dt

�˛
(37)

and with K D 0.90 and ’ D 1.30 is useful in calculating the penetration energy of a
glass fibre reinforced plastic, irrespective of the fibre architecture and orientations,
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and resin type. By examining the effect of each variable separately, it was found that
Up varied as a power function of each variable, the exponent being nearly the same.
This suggested that Up varies as in Eq. (37) where K and ’ are two experimental
constant. The ’ value was found approximately equal to 1.3 independently of the
examined variable.

This relationship is expected to be valid only for quasi-isotropic laminates and, as
in the present case, the elastic energy stored in the structure is negligible compared
to the energy expended in penetrating the material.

To demonstrate that relatively small variations in the matrix content do not affect
considerably the penetration energy [23, 78], Eq. (36) can be expressed in the
following form:

Up D U �
po � W p (38)

where Upo* and p are two constant and W designates the total areal weight of fibre
(proportional to the total fibre thickness), that is useful if the penetration response
of laminates different in matrix content must be compared. In Fig. 47, the data of
penetration energy measured on SDF, SEF, SIF and A laminates reported in Table 3,
were plotted against W.

Plotting the F type laminates data from Table 3 showed in Fig. 45, as a function
of W, by the best-fit power law the value U �

po D 7:22 (valid when W is expressed in
Kg/m2) was found (Fig. 45) and used to draw the solid line in Fig. 47. As expected,
S type and A type laminates follow a different trend respect to the F laminates ones
and the AS-4/PEEK system seems to be less efficient than T400/934 in preventing
penetration whereas, interestingly, the sandwiches showed a better impact response,
for a given fibre areal weight. The latter demonstrates that the constants in Eq. (38)
must be appropriately evaluated when sandwich structures are considered.
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The indentation law previously discussed (Eq. (32)) was used to demonstrate that
the continuous line drown in Fig. 47 should be valid for a wide class of laminates
based on the T400/934 system. Considering the Eq. (38) the following relationship
was obtained:

I D Io

�
U

U �
op � W p

�ˇ

(39)

in which the constants found for T400 fabric/934 are used to calculate the indenta-
tion as a function of impact energy for the (˙30)2s, (˙60)2s, and (˙45)2s laminates
tested, made of T400 tape/934. The comparison between theory and experiments
is carried out in Fig. 48, and the correlation between the experimental data and
theoretical predictions is outstanding, whichever the actual laminate considered.
This supports the idea that the constants in Eq. (38) are independent of both
reinforcement architecture and fibre orientations.

In Table 4, a sufficiently large variety of carbon fibres (in Table 5 the mechanical
properties are reported), matrix types, laminate lay-ups and thicknesses, constraint
conditions, and penetrator diameters is covered. The support type is specified in
the sixth column, through the code Annn/D, where “A” is the type of support
(B D beam, ˆ D circular plate, S D square plate), “nnn” is a number indicating the
support dimensions, in mm (for beams, the length), and “D” is the type of constraint
(S D simply supported, C D clamped).

The data presented indicate that the proposed formula has a quite wide appli-
cability and can be probably further simplified, allowing a simple comparison of
different materials.

In Fig. 49, in fact, the dependence on the total fibre thickness of all the laminates
in Table 4 is shown on a log-log scale and results in a linear trend which slope
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Fig. 48 Indentation, I, vs impact energy, U, for (˙™)2s laminates made of T400 tape/934

Table 4 Carbon fibre reinforced plastic laminates tested at penetration

Ref. Symb. Material Lay-up t (mm) Support Dt (mm)

[18] � XAS/Epoxy, Tape (˙45)ns 0.5 � 4 B50/S 6
♦ XAS/Epoxy, Tape (0, ˙45)ns 1.0 � 2.0 B50/S 6
� XAS/Epoxy, Tape (˙45)ns 0.5 � 2.0 ˆ120/C 6

[21] AS4/PEEK/LCa, Tape (�45/0/45/90)ns 1.0 � 3.0 ˆ40/C 20

AS4/PEEK/HCb, Tape (�45/0/45/90)ns 1.0 � 3.0 ˆ40/C 20

AS4/PPS/LC, Tape (�45/0/45/90)ns 1.0 � 3.0 ˆ40/C 20

AS4/PPS/HC, Tape (�45/0/45/90)ns 1.0 � 3.0 ˆ40/C 20

T650/PPS/Radel, Tape (�45/0/45/90)ns 2.0 ˆ40/C 20
T800H/Epoxy, Tape (�45/0/45/90)ns 2.0 ˆ40/C 20

[52] � T400/Epoxy, Fabric 0, ˙45, 90 0.8 � 3.1 ˆ40/S 12.7
[57] ˙ AS4/Epoxy, Tape (0/ 90)5s 3.0 S127/S 12.7

ı AS4/Epoxy, Fabric (0, 90)10s 2.2 S127/S 12.7
[58] IM7/Epoxy, Tape [(0/90)220]s 6.4 ˆ76/C 12.7

� IM7/Epoxy, Tape (90/˙45/0)6s 6.8 ˆ76/C 12.7

IM7/Epoxy, Tape [(0/45/90/�45)s2 /
0/45/90]s

6.6 ˆ76/C 12.7

˚ IM7/Epoxy, Tape [(02/˙45)s2/02/C45/
�452/C45]s

6.4 ˆ76/C 12.7

IM7/Epoxy, Tape [(02/˙45)s2/˙45/0]s 6.5 ˆ76/C 12.7
IM7/Epoxy, Fabric [(0/45)9/45]s 6.4 ˆ76/C 12.7

Legend: aLC low crystallinity bHC high crystallinity
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Table 5 Mechanical
properties of the fibre

Type Modulus (GPa) Strength (GPa) Elongation (%)

XAS 234 *** ***
AS4 221 4.0 1.6
T650 290 5.0 1.7
T800 294 5.5 1.9
T400 254 4.5 1.8
IM7 276 5.4 1.8
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Fig. 49 Log-log plot of the penetration energy, Up, vs (t � Vf� Dt)

(continuous lines each one for each different tup diameter) is unaffected by the
particular Dt value. This is in agreement with Eq. (37), assuming a power law
relationship between Up and fibre thickness, and an exponent ’ dependent just on
the material.

The values of the constants were found by the best–fit method providing
K D 0.45 J/mm2’ and ’ D 1.44 (continuous line in Fig. 49).

However, the analysis of the graph on a linear scale (Fig. 50) revealed an
underestimating of the energy absorbing capacity at high values of the abscissa.

Also in [79], where a penetration model was developed in order to predict Up

as a function of the target thickness and specimen dimensions, a good agreement
between theory and experiments was found up to 4 mm of thickness whereas
the agreement was poor when an 8 mm thick laminate was considered. From
microscopic observations of the failure modes during penetration and the energy
associated with each ones or drawn from the literature, by sectioning and polishing
the thick specimens, a substantial difference in failure modes was found between
thin and thick laminates. Probably the validity of the model fails when thick
composites were considered.
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Fig. 50 Linear plot of the penetration energy, Up, vs (t � Vf� Dt)

Here, it is not possible to know if high values of the abscissa are correlated with
large tup diameters or thick laminates. However, all the points characterised by a
high (t� Vf� Dt) value are about laminates of about 6.5 mm thickness and a change
in failure modes can possibly explain the poor correlation between theory and
experiments. The hypothesis is strengthened by the fact that, similarly to what found
by Cantwell and Morton [79], also Eq. (37) tends to underestimate the penetration
energy when the laminate thickness is high.

The values of the constants in Eq. (37) were, so, calculated anew only for the
points characterised by (t� Vf� Dt) values lower than 40 mm2, and 0.49 and 1.40
were found for K and ’ respectively. They are represented by the dashed line in
Fig. 50.

The same was done on other material systems (GFRP and PC) and the similar
results lead to the possibility to assume a single ’ value to describe the penetration
energy trend. In this way, it could be simple to applied Eq. (37) since the parameter
K could be used to rank different materials on the basis of their energy absorbing
capacity provided the anisotropy ratio is not too high. The latter limitation is due to
the fact that 0ı composites are prone to transverse intralaminar failures, which can
alter significantly the mechanisms of energy absorption under impact.

In Fig. 51 the best-fit straight line obtained for GFRP data discussed above is
reported on a log-log scale together with the dashed line from Fig. 50 to allow
a direct comparison of the energy absorbing capacity of GFRP and CFRP: glass
fibres are superior with respect to graphite fibres even if the two straight lines tend
to cross each other at high (t � Vf � Dt) values. The latter denote a better behaviour
of CFRP when large tup diameters are used. The crossover point is well beyond the
range of the experimental points available and it is a result of extrapolation. Since it
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Fig. 51 Comparison of the energy absorbing capacity

is not clear whether the difference in ’ values between CFRP and GFRP is actually
significant or it is only due to the data scatter, additional experimental data will be
hereafter discussed, indicating that Eq. (37) can be possibly applied to a large class
of materials and further simplified in form.

In [80], low velocity impact tests were performed on polycarbonate (PC) and
GFRP panels supported on circular rings, and the influence of panel thickness and
penetrator diameter on the penetration energy was examined. The energy absorption
modalities were very different: in GFRP, in fact, as usually found in the literature
for composite materials [21, 65, 75, 80–82], most of the energy was associated with
the propagation of failure phenomena taking place beyond the onset of damage.
On the contrary, PC exhibited an extensive permanent indentation, exclusively
responsible for energy absorption. The energy associated with crack propagation
after the maximum load was negligible: a fast propagation of cracks generated in
correspondence of the contact point was observed witnessed by the sudden drop in
the contact force down to zero.

The same procedure presented above was repeated for PC considering the
measured panel thickness instead of the product t �Vf. Once again the validity of
Eq. (37) was clear, despite the marked differences in the mechanisms of energy
absorption between PC and composites: the superposition of the points referring to
different thicknesses and different tup diameters was very satisfactory.

The values of the constants K and ’ were calculated as previously done also for
PC, obtaining K D 0.35 J/mm2’ and ’ D 1.42. The continuous, best-fit straight line
obtained for PC was reported in Fig. 51 for comparison purposes and the values of
the constants calculated for the three materials considered in this paper are collected
in Table 6.
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Table 6 Values of the
constants in Eq. (37)

Material K (J/mm2’) ’

CFRP 0.49 1.40
GFRP 0.90 1.30
PC 0.35 1.42

Table 7 Values of the
constants K best fitting the
experimental results for given
values for ’

Material ’ K (J/mm2’)

CFRP 1.30 0.67
1.42 0.45

GFRP 1.30 0.90
1.42 0.59

PC 1.30 0.56
1.42 0.35
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Fig. 52 Effect of the ’ value on the prediction capability of Eq. (37). Material: CFRP

The very similar ’ values raises the question whether this parameter is actually
material dependent, or rather it can be considered a constant of general applicability.
At this aim, the minimum and maximum ’ values found (’ D 1.30 and 1.42) were
alternatively fixed for all the materials and the related K values, best-fitting the
experimental points were calculated and reported in Table 7.

The results are graphically shown in Fig. 52 for CFRP: the curves concerning a
single material are very close with each other, so that the scatter in the experimental
data does not allow to judge which of them is the most efficient in predicting
penetration energy. The same was found for GFRP and PC. The assumption that
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a single ’ value has a general applicability cannot be rejected. However, if this was
the case, the application of Eq. (37) would be straightforward, and the parameter K
alone could be used to rank different materials on the basis of their energy absorbing
capacity.

3.7.2 Effect of Projectile Velocity

To ascertain the effect of loading speed on the penetration energy, static and dynamic
impact tests were carried out on C50/50 and SMC (Table 1), with the same impactor
and support diameter. A strong dependence of the energy absorbing capability of
GFRP on the speed was found, approximately doubling when the loading speed
increases from 2 mm/min to about 7 m/s. The discussed influence about flat GFRP
panels has been observed by many researchers [58, 83, 84] whereas other data
[53, 58] show that laminates made by graphite fibre are practically insensitive to
loading speed. The sensitivity of GFRP to velocity reflects, so, the well known and
discussed viscoelasticity of glass fibres and it is independent of the matrix behaviour.
At this point, the same model about the prediction of the penetration energy was
assessed also in the case of static tests demonstrating that the penetration energy is
substantially unaffected by the loading speed. The latter and what previously said
about indentation indicate that impact tests can be substituted by static tests if the
response of a CFRP laminate in terms of indentation and penetration is under study.

From the results obtained, the authors [19] noted that small samples do not nec-
essarily behave like an in-service component under impact conditions. Conversely,
if the scope of a testing procedure is the material characterisation, the elastic energy
absorbed by the specimens should be minimised. This suggests the use of clamps
at the supports, and the lowest in-plane dimensions allowing a free development of
the damage. Interestingly, from the results of a limited amount of tests carried out
at high speed clamping the plates between circular rings 120 mm in diameter [19],
the penetration energy was found coincident with what given by the beam tests,
and at low velocity Up was only slightly higher. Additional data about two different
types of circular GFRP panels were discussed [77]: only a moderate increase in the
penetration energy was found at the increase of the support diameter in the range
40 mm to 100 mm, although one of the laminates was quite thin (1.2 mm) and
the plates were simply supported. From the previous results, it can be reasonably
thought that, when specimen dimensions are up to about 120 mm, the elastic energy
is low and test conditions adequate to yield a sufficiently accurate value of the
material penetration energy are achieved.

Experimental evidence and theoretical justification of this behaviour was given in
[19], where the authors performed penetration tests at both low and high velocity on
CFRP using a simply supported beam configuration and varying the beam length.
The penetration energy showed an increase well described by a simple analytical
model that take into account the elastic deformation of the material. Additional
data in this direction was discussed about GFRP panels [77]: a little increase in
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the penetration energy of about 10% was found passing from 40 to 100 mm of the
support diameter since the elastic energy to bend the panel up to the maximum load
also increases, contributing to the overall energy stored by the structure. However,
it is reasonable to think that up to about 120 mm of the specimen dimensions, the
test conditions are adequate to yield accurate values of the penetration energy since
in comparison the elastic energy is low and lower at increasing of the thickness.

3.7.3 Literature Survey

As a confirmation of the results found in this work, an extensive literature research
is hereafter presented.

In [22, 23, 78], low-velocity impact tests were carried out on glass and carbon
fibre reinforced plastics (GFRP and CFRP) having different thickness and volume
fraction of reinforcement finding that the precision in the measured penetration
energy was higher when Up was plotted against the panel thickness, t, times
fibre volume fraction, Vf, rather than against the actual thickness. The product
(t � Vf) represents the total fibre thickness proportional to the total fibre areal
weight. Therefore, the results obtained in literature seem to indicate that, for a
given laminate, the total fibre content is the main parameter affecting penetration
energy. It means that not only the resin content, but also its type negligibly
affects the penetration energy. This was demonstrated in [22] where six types of
resin, including a toughened epoxy, amorphous and semi-crystalline PEEK, and
amorphous and semi-crystalline PPS, were used to fabricate quasi-isotropic GFRP
laminates: little differences in impact behaviour were observed on the basis of
matrix type.

Different forms of glass fibres (unidirectional, quadriaxial warp-knit fabric and
eight-harness satin weave) were employed to obtain quasi-isotropic laminates with
different spatial distribution of reinforcement [23]. The impact tests revealed that,
for a given fibre areal weight, Up was independent of the reinforcement architecture
and stacking sequence and of the extend of the delamination, quite limited in
some of the cases but considerable in some others. The latter could indicate that
the energy associated with delamination phenomena is negligible compared to the
overall penetration energy.

Additional data confirming the insensitivity of Up to the fibre architecture can be
found [77]: the energy absorbing capability of an in-plane isotropic sheet-moulding
compound was shown to be practically coincident with that of the fabric laminates
having the same fibre areal weight. Besides confirming the importance of the total
fibre content, this result supports the hypothesis that the fibre orientations play a
secondary role in determining the penetration response of a composite, at least when
the anisotropy ratio is not too high. Also in what reported in [17, 21], the formula
used for the calculation of the penetration energy involved the knowledge of the
total fibre thickness, whereas the fibre orientations were not taken into account.
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The penetration energy for a given laminate was first found to linearly increases
with increasing t (i.e. fibre areal weight) [75, 76]. However, more recent data [17, 19,
21–23, 77, 78] demonstrate that Up increases more than linearly with thickness. In
particular, it was found that [17, 21], as already here demonstrated, the dependence
of the penetration energy on the material thickness, t, for CFRP and GFRP laminates
could be well described by a power law having exponent 1.5 and 1.35 respectively.

Also the impactor shape strongly influences Up, which increases with increasing
impactor dimensions. Most of the data available on this subject concern spherical in-
denters about 6–25.7 mm in diameter, although conically shaped and flat cylindrical
tups have also been extensively used [4].

From the previous considerations, limiting the attention to spherical tups and a
given fibre type, the most effective parameters in influencing Up are the fibre areal
weight and the impactor diameter, Dt. It is so necessary to establish a relationship
correlating these quantities. It is very important to highlight the dependence of Up on
Dt. From Eqs. (36) and (37) confirmed by [17, 21], the effect of both the thickness
and the impactor diameter could be modelled by power laws having practically
the same exponent, it was suggested that the empirical relationship proposed here
(Eq. 37) helps to predict the penetration energy. The experimental tests supported
Eq. (37): all the data obtained substantially fall on a single master curve when
plotted against the quantity (t� Vf� Dt) irrespective of the adopted tup diameter
and fibre architecture and orientations. The formula proposed has a quite wide
applicability with a typical value for ’ of about 1.4, and can be probably further
simplified, allowing a simple comparison of different materials.

3.8 Residual Strength Model

Since the residual material properties after an impact are of primary concern in
applying damage tolerance concepts, efforts were also made to correlate, analyti-
cally or experimentally, the residual strength and the impact energy and the damage
mechanisms [9, 42, 85]. In literature some models have been proposed [9, 18–20]
to predict the residual strength ¢c of a composite laminate after low velocity impact
strength, as a function of the impact energy:

¢c

¢o

D ¢.U / (40)

where ¢c and ¢o are the virgin and the material residual strength after impact,
respectively.

Since an explicit form was found for the relationship between indentation depth
and impact energy through the penetration energy (Eq. (32)), it is possible to predict
the residual strength from indentation. If the compression strength is of concern, Eq.
(40) can assume a complicated form, because of the effect of delamination on the
failure modes precipitating final collapse.
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Table 8 Experimental values of the
constants U¢o and ’ in Eq. (41),
and theoretical limit indentation, Ilim,
beyond which a reduction in tensile
strength is predicted

Laminate U¢o (J) ’ Ilim (J)

(˙30)2s 1.87 0.386 0.125
(˙45)2s 1.97 0.267 0.143
(˙60)2s 1.48 0.275 0.069

Even if models are available in the literature for the prediction of the residual
strength, in this work, the formula proposed in [19] is assumed for the simplicity in
the procedures required to evaluate the constants involved:

�c

�o

D
�

U�o

U

�˛

(41)

¢o is the virgin strength of the laminate, and U¢o, ’ are two constants to be
experimentally determined.

When U D U¢o the residual tensile strength equals the virgin material strength.
U¢o physically represents the limit energy below which no strength reduction is
found. Equation (41) predicts a monotonic decrease in the residual strength with
increasing U. On the contrary, it is known that, beyond penetration, ¢c does not
decrease further, remaining approximately constant or undergoing a small recovery.
The previous considerations bring to the conclusion that Eq. (41) no longer holds
for U < U¢o and U > Up.

Noting that the reduction in tensile strength is dependent on the broken fibres,
rather than on the delaminated area induced by impact, it was suggested [19] that
U¢o could be directly measured as the area under the force-displacement curve up
to the point of the first fibre breakage. This damage is often signalled by a sudden
drop in the contact force (point b in Fig. 1).

Since the evidence of the first fibre failure in the force-displacement diagrams
for all the laminates considered and labelled as T30, T60 and T45 in Table 1, the
procedure proposed [19] for the calculation of the constants was followed also here.
The U¢o values obtained for the materials tested are reported in Table 8.

The results that the (˙30)2s and (˙60)2s laminates exhibited a quite different U¢o

was unexpected. They both should yield the same response to impact since the axial
symmetry, being nominally identical.

The constant ’ appearing in Eq. (41) was evaluated for each laminate using
the residual strength measured after a 7 J impact (last column in Table 8). At
this energy value, no penetration was observed for the materials tested, so that the
condition U < Up, necessary to ensure the validity of Eq. (41), was fulfilled. Using
the constants from Table 8 in Eq. (41), the continuous lines in Fig. 53 were drawn.
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Fig. 53 Residual strength,
¢c, vs impact energy, U. Black
points: test results. Solid
lines: predictions on Eq. (41).

The correlation between the theoretical predictions and the experimental data
(black symbols in Fig. 53) is very good, supporting the residual strength model.

Solving Eq. (39) for U, and substituting in Eq. (41), it results in:

�c

�o

D
"

U�o

U �
op � W p

�
Io

I

�1=ˇ
#˛

(42)

which yields the correlation wanted between I and ¢ .
For what previously shown in the indentation paragraph, the values

Io D 6.77 mm, “ D 2.535, U �
po D 7.22 J/(Kg/m2)p and p D 1.50, have a quite

general applicability for laminates made of T400/934 layers, independently of
the reinforcement architecture and fibre orientations. Taking this in mind, Eq. (42)
becomes:

¢C

¢O

D
"

U¢O

7:22 � W 1:50

�
6:77

I

� 1
2:535

#’

(43)

Contrary to the previous constants, here U¢o and ’ are characteristics of
the specific laminate under concern, giving information on its resistance to first
fibre breakage (U¢o), and its sensitivity to impact damage in terms of residual
strength (’).

Using Eq. (43) with the data in Table 8, the residual tensile strength for the three
laminates tested having lay-ups (˙30)2s, (˙60)2s, and (˙45)2s,was calculated as a
function of the indentation I. The experimental data demonstrate a very reasonable
agreement with theory, confirming the possibility to reliably predict the residual
strength from the measured I value. In Fig. 54, it is shown for brevity only for the
(˙30) laminates but the same agreement with the same accuracy was found for the
other orientations.
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Fig. 54 Non-dimensional
residual strength, ¢c/¢o,
against indentation, I, for
(˙30)2s laminate

Solving Eq. (42) for ¢c/¢o D 1, the limit value for I, Ilim, is obtained, under which
no residual strength loss is expected:

Ilim D Io �
 

U�o

U �
op � W p

!ˇ

(44)

It is reported in the last column in Table 8 where it is observed that the initial strength
decrease corresponds to an indentation level hardly detectable by visual inspection,
especially for the (˙60)2s composite.

For a given laminate, Eq. (42) can be simplified in the form:

�c

�o

D
�

Io

Ilim

��

(45)

where:

� D ˛

ˇ
(46)

Consequently, plotting on a log-log scale the residual strength data as a function
of indentation for I � Ilim results in a straight line providing a powerful tool for the
calculation of the constants in Eq. (46), based on a minimum of experiments.

The analytical model evaluating the residual tensile strength as a function of
indentation depth results in very reasonable agreement with the experimental data.
In the particular case of a fixed laminate, the model becomes particularly simple,
allowing the calculation of the material constants by a minimum of experimental
tests.
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It is important to note that, in some practice cases such as in aeronautics,
impact damage strongly influences the design allowable in compression, rather
than in tension. Therefore, the philosophy followed here could be usefully applied
only if an analytical correlation similar to Eq. (41) should be found between the
material compression strength and impact energy. Also the viscoelastic recovery
of indentation during service, signalled by some researchers like in [86], deserves
careful considerations and limits the applicability of the method to accidental
damages produced during fabrication and control operations.

3.9 Energy Absorption Mechanisms and Damage: Correlation

The scope of this section is to establish a correlation between the damage occurring
in a composite as a consequence of low-velocity impact and the energy dissipated
during the impact phenomenon. Instrumented impact tests at different energy levels
were at this aim carried out on glass fabric/epoxy laminates having different
thicknesses (G in Table 1). To assess damage progression as a function of impact
energy, ply-by-ply delamination and fibre breakages were measured by destructive
tests deplying the specimens with the help of a heat source. A previous model [29],
based on energy balance considerations, was applied for the interpretation of the
experimental results. Some limitations in its applicability, supporting the present
work, are emphasized. The contribution of fibre breakage and matrix damage
to the irreversibly absorbed energy was found to be comparable at low impact
energies; with increasing initial energy levels, delamination becomes predominant
in determining energy dissipation.

3.9.1 Energy Absorbed by Fiber and Matrix Failures

It is important to understand the mechanisms of energy absorption in a laminate
during low-velocity impact. Delfosse and Poursartip [29] tried to identify those
mechanisms and correlated energy losses with observed failure modes. They carried
out impact tests at different energy levels on two CFRP laminates, the first one
(based on an IM6/937 material system) characterized by a brittle matrix, and the
other (T800H/3900-2) by a ductile one. Following the authors, the absorbed energy,
Ua, has two components, one, Udam, necessary to create the damage, and the other,
Udis, dissipated through vibrations, heat, inelastic behaviour of the projectile or the
supports, and so forth.

Since three types of damage are possible to occur in a laminate subjected to
impact, and so the associated energies namely permanent indentation, Upi, matrix
damage (delamination and intraply splitting), Um, and fibre breakage, Uf

Ua D Upi C Um C Uf C Udis (47)
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On the other hand, it can be put:

Um D Gm � Am (48)

Uf D Gf � Af (49)

where Am is the total area of matrix damage, Af the total area of broken fibres and
Gm, Gf, are the energies required to create a unit damage area in the matrix and fibre,
respectively.

The total delaminated area, Am, was evaluated by pulse-echo ultrasonics together
with destructive inspection whereas Af, was measured thermally deplying the
impacted panels after the resin was burnt off in a furnace.

Three-point bending tests were carried out to estimate Gf whereas the mea-
surement of Gm was quite laborious, involving the selection of a range of impact
energies giving rise uniquely to delamination damage, without fibre breakage: Gm

was given by the slope of the straight line correlating Ua and Am. However, this
range of energies related only with delamination was very small (about 4.5 J) in the
tough laminate, resulting in not accurated determination of Gm for the T800H/3900-
2 system.

After the comparison between the absorbed energy deriving from matrix and fi-
bre failure and the total absorbed energy [29], it was concluded that the contribution
of the quantity (Upi C Udis) to Ua is negligible. In this case:

Ua � GmAm C Gf Af (50)

Delfosse and Poursartip found Gm D 0.8 KJ/m2 and Gm D 5.0 KJ/m2 for the
brittle and the tough system, respectively. The fracture toughness value, GIIc were
obtained from quasi-static fracture toughness experiments, 0.75 KJ/m2 and 2.0
KJ/m2 and the big difference between Gm and GIIC for the tough resin suggested
that other damage mechanisms, not caught by the measured delaminated area, could
contribute significantly to energy absorption mechanism.

Here, the main scope is to assess a method of data reduction able to overcome
the difficulties previously highlighted.

After impact on the G laminates (Table 1), the projected delaminated area was
obtained exploiting the translucent appearance of the material: the damage zone
was highlighted by an intense light source on the back of the specimens; then, the
photographed damaged area was measured by an image analyzer.

Moreover, in order to study the ply-by-ply damage extent and type, a central
hole 1 mm in diameter was drilled in correspondence of the impact point of selected
specimens. The latter were, then, immersed in black ink. Through the hole the liquid
easily penetrated into the interlaminar cracks until the projected delaminated area
was completely darkened by the ink; then, they were dried and carefully deplied
with the help of moderate heating. The delaminated area in correspondence of each
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Fig. 55 Calculation of the upper bound value of unit energy for fibre breakage

Fig. 56 Calculation of the upper bound value of unit energy for matrix damage

interlaminar surface was measured and the in-plane length of broken fibres within
each ply was evaluated by optical microscopy at low magnification, following the
procedure adopted by Delfosse and Poursartip [29].

If (Upi C Udis) in Eq. (47) is disregarded, it is possible to calculate Gu
f andGl

m

from the slope of the straight line passing through the origin in Figs. 55 and 56
where Ua-GmAm and Ua-GfAf obtained from Eqs. (47), (48), and (49), are reported
against Af and Am respectively. The index “u” (“l”) stand for an upper (lower) bound
value. At the same way the Gm

u and Gf
l values can be obtained plotting Am against
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Table 9 Upper and lower unit energies bound values for
matrix damage and fibre breakage

Gu
f (KJ/m2) Gl

f (KJ/m2) Gu
m (KJ/m2) Gl

m f (KJ/m2)

131.0 126.3 10.1 10.4

Ua-GfAf. Tentative values was assumed for this quantity changing it until the best-fit
straight line fitting the experimental data follows the expected trend. A lower limit
of the absorbed energy, Uamin, was calculated considering the lower values of Gf and
Gm.

The best-fit straight lines shown in the figures were drawn through all the data
points. The straight lines fit reasonably well the experimental trends, supporting the
applicability of the energy criterion proposed in [29].

In Table 9, the Gu
f , Gl

f ,Gl
m, Gu

m values obtained from Figs. 55 and 56, are
collected. It is possible to note that, in agreement with what find by Delfosse and
Poursartip [29], the unit energy associated with fibre breakage is far higher than
its matrix counterpart but the latter is about five times higher than what usually
measured in a Mode II delamination test for a tough resin [87].

3.9.2 Delaminated Area and Broken Fiber Length

After impacting the G panels with two different impactor diameters, 19.8 and
16 mm, the extent of the projected delaminated area was obtained exploiting the
translucent appearance of the material: the damaged zone was highlighted by an
intense light source on the back of the specimens, photographed and the area was
measured by an image analyzer. Two parameters, i.e. the projected delaminated area,
Ap, the area of delamination as perceived from visual observation and the visible
broken fibre length, d, were here assumed. The visible broken fibre length were
obtained by measuring the length of the two lines along which fibre fracture was
observed. Their mean value was, then, calculated. It is important to underline that
Ap and d must not be confused with the corresponding ply-by-ply damage, with
which the absorbed energy is conceivably correlated.

In Fig. 57, a typical impact damage visually observed on to the back face of
the panel, where the classical visible diamond-shaped delaminated area attained its
maximum dimensions, is shown. The axes coinciding with the warp-weft directions
of the surface fabric layer (horizontal and vertical directions), is clearly visible.
Besides, fibre fractures occur along two lines of length slightly lower than the major
axes of delamination.

From Fig. 57, other cross fibre failures in the internal layers oriented at 45ı, were
also observed together with multiple delaminations occurring along the thickness
suggested by a darker area fully contained in the projected delamination. These
damages are not taken into account for Ap and d.

The behaviour of d and Ap with impact energy is shown in Figs. 58 and 59,
respectively. Each point is related to a single measurement and the different symbols
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Fig. 57 Typical damage zone
after impact. Back surface.
Panel thickness t D 1.92 mm.
Tup diameter Dt D 16 mm.
Impact energy U D 15.8 J

Fig. 58 Effect of the panel thickness, t, on the evolution of visible broken fibre length, d, at the
increasing of impact energy, U. Dashed lines: Eq. (51)

are identified by the label “A/B”, where A is the impactor diameter and B the panel
thickness in mm.

It is clear that d and Ap are unaffected by the tup diameter and an increase was
noted with decreasing the panel thickness, for a fixed value of the impact energy U.
The visible broken fibre length vary linearly with U following the empirical equation
(dashed lines in Fig. 58):

d D k
U

t˛
(51)

with ˛ D 1.17, k D 3.66 mm(1C’)/J.
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Fig. 59 Projected delaminated area, Ap, versus impact energy, U. Solid lines: Eq. (52)

The dependence of Ap on impact energy is represented by the relationship (solid
lines in Fig. 59):

Ap D 14:71
U 1:50

t1:38
(52)

providing Ap (in mm2), if U (in J) and t (in mm) are known.
Equations (51) and (52) describe the role played by impact energy and laminate

thickness in determining visual damage.
The study about the mechanisms of damage initiation and propagation was the

primary focus of this part of the research. At the aim to find a simple impact
parameter for the prediction of the delaminated area, the main factors causing
delamination were here studied so that the possibility to correlate internal and
external damage. As already said, there has been a considerable debate about the
relative merits of using force and energy as a scale parameter for this impact damage.
The approach based on impact force works well in different applications, especially
when the onset of damage has to be determined for different plate or impactor
geometry [47, 48] whereas Delfosse and Poursatip [29] showed that an energy-based
approach can be more helpful in examining the extent of damage, beyond the onset.

On the base of what above asserted about the independence of the loading
velocity [53–55], static tests were here carried out on rectangular carbon fibre
reinforced plastic plates of four different thickness (T in Table 1). In order to verify
the effect of the impactor, a number of impact tests were carried out varying the
indentor diameter too. After the experimental tests, the specimens were subjected to
non-destructive evaluation using an ultrasonic C-scan apparatus to investigate about
the delamination extent. Moreover, some specimens were sectioned and observed
by optical microscopy to confirm the US results.
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Fig. 60 Delaminated area versus non-dimensional energy, U/Up, for laminates different in
thickness, t

The most common parameter [25, 29, 42, 79, 88, 89], the impact energy
considered the right one to evaluate the delaminated area is first investigated.
However, the force approach was revealed in this case more interesting in collecting
all the experimental data on a single master curve.

Discussion

The data presented refer to different material system, different thickness, different
architecture, (unidirectional, fabric, cross ply, etc.) [79, 90, 91].

It could be interesting to find a way, as already done for the indentation, to
obtain a single master curve for experimental data, about a specific material system,
obtained in different test conditions, like different impactor, different thickness,
different support diameter etc. A single master curve could also allow to know the
threshold energy, given by the x intercept, below which no damage is present in the
material.

With this in mind, the extension of the delaminated area against the non-
dimensional energy U/Up measured on the T laminates (Table 1), is shown in
Fig. 60. The different symbols refer to the different thickness and the straight
lines are drown to better understand the experimental data trend. First of all, it is
important to note that the maximum energy level for each thickness is less than
40% of the penetration energy. This is due to the fact that the low energy range
is the most interesting in aeronautical field because of the presence of a consistent
internal damage correspondent to a not so evident external indentation. Moreover,
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Fig. 61 Delaminated area versus impact load for laminates different in thickness

contrarily to what happens for the indentation, the experimental points are separated
again. This means that the impact energy is not a simple parameter to adopt for the
prediction of the delaminated area.

The fact already noted that the same energy level produces a larger delaminated
area in thickest panels could be explained with the fact that the thickness laminates
absorb the same energy with an higher load since the material rigidity increases with
the thickness raised to the 3rd power. The latter suggests that the delaminated area
can be related to the impactor-material contact load that could be used as a parameter
to compare and to predict impact damages in structures from coupon tests [34]. Even
if there is an open debate, the approach based on impact force works well in many
applications, especially when the onset of damage has to be determined for different
plates or impactor geometries [34, 49–51, 72, 73].

So said, the same experimental point from Fig. 60 are plotted in Fig. 61 against
the maximum contact load, Fmax: a single master curve was found and the damage
is again larger the thicker the laminates are.

Support area
The continuous curve is the graphical representation of the following equation:

A D � � F ˇ
max (53)

where A is the delaminated area. The value of the two constants obtained by the
minimum square method is ˜ D 3.13 � 10�8 mm2/N“ and “ D 2.89.

On the base of what found, the impact force could be used as a parameter to
compare and to predict impact damage in structures from coupon tests [47].
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4 Conclusion

Static and low velocity impact tests were carried out on different composite
laminates in different tests conditions, at the main scope to supply more information
about their behaviour under dynamic load conditions. The authors faced the very
complex problem of the failure modes caused by an impact and tried to correlate
them to the main parameters involved in the phenomenon at the aim to obtain semi
empirical and analytical models for the prediction of the residual strength.

The main conclusions are listed in the following.

• The force required for damage initiation under form of delamination increases
following a power law whose exponent is very close to 1.5 observed for the
contact law. From the observation of the failure modes, this suggests that
delamination is mainly due to shear stresses, which can be calculated by the
contact law.

• The analysis highlighted the importance of the penetration energy in giving the
possibility to predict the impact energy by a simple indentation measurement.
The scope was the assessment of a simple model to correlate the indentation
depth and the energies involved in the impact phenomenon. The model was
found to have a quite general applicability: for a given fibre/resin system, the
indentation depth is substantially independent of fibre type, architecture and
orientations, laminate thickness and resin type and content, varying only as a
function of the impact energy to the penetration energy ratio.

• The penetration energy can be predicted by an empirical equation: a power law
with the exponent that is a constant, scarcely influenced by matrix type and
content; the reinforcement architecture and orientations, and support diameter,
play a minor role too in affecting Up. The main parameter determining the energy
absorption capacity is the total fibre thickness, proportional to the total areal
weight of reinforcement and given by the product (t�Vf) of the panel thickness
times the fibre volume fraction (Eq. (37)). This parameter was revealed useful in
normalising impact data obtained under different test conditions.

• An analytical model evaluating the residual tensile strength as a function of
indentation depth results in very reasonable agreement with the experimental
data. The model allows the calculation of the material constants by a minimum
of experimental tests.

• An elastic solution available for circular isotropic plates loaded at the centre
was modified to model the indentation and applied to the prediction of the
load-displacement curve. The analytical model accurately describes the elastic
behaviour of the plates allowing to know the first failure energy. The prediction
of the energy reveals that for thin plates, a large portion of the stored energy is
correlated with the non-linear response of the plate deriving from the achieve-
ment of the large displacements regime and the indentation was negligible.
The cubic component in Eq. (22) plays a major role in determining the plate
response. This energy becomes negligible for thick plates (the influence of the
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cubic component in Eq. (22) becomes lower and lower); the energy due to the
local contact phenomena must be taken into account.

• The caused damages were observed by visual analysis, as well as by deplying
some of the specimens: contrarily to what usually found, delamination was found
between layers equally oriented too.
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