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Abstract This chapter examines the interaction of shock waves generated by
underwater explosions and submerged structures. Cylindrical shells filled with air,
water, or a liquid with a different speed of sound are considered and the specific
issue considered is the prediction of the position of the various wave fronts as a
function of time. This is a challenging problem for both analytical and numerical
approaches due to the sharp discontinuities, the complex shapes of these wave
fronts and their numbers. A simple ray tracing procedure is developed to predict
the exact position of all the wave fronts. It provides great insight into the physics
of the problem and explains the evolution of the shape of the various fronts and the
formation of singularities. Applications to the medical field are also presented.

Keywords Underwater blast • Explosion bubble • Shock wave • Wave front •
Diffraction

1 Introduction

This chapter deals with the effect of underwater explosions on submerged marine
structures and more specifically with the interaction of blast wave with those
structures. Underwater explosions have been studied for a long time and much of
what is known about the physics of the problem is summarized in a book published
by Cole [1] in 1948. These explosions generate a shock wave that propagate through
the water at the speed of sound and a large gas bubble that oscillates and migrates
towards the free surface. With nearby explosions, a structure will be subjected to
both effects and the interaction can be quite complex. As a rule of thumb, if the
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distance between the bubble and the structure is always larger than three times
the maximum radius of the bubble, their interaction can be neglected. Then, the
structure is subjected to the effect of the shock wave only.

The next section will review some basic knowledge about underwater explosions
and empirical equations used to predict the pressure pulse generated at a point given
the mass of the explosive charge and the stand-off distance. The same data can be
used to predict the size of the explosion bubble, its frequency of oscillation, and how
fast it migrates towards the surface. Some charts are presented to show the effects
of the governing parameters and show the order of magnitudes of the quantities
predicted by these equations. Section 3 introduces the propagation of waves in
solids, liquids, and their interfaces. It covers body waves, surface waves such as
Rayleigh waves, Scholte-Stoneley waves, Franz waves, and wave propagation in
wave guides as described by the Rayleigh-Lamb theory and various beam, plate
and shell theories. Section 4 describes the interaction of between shock waves and
submerged structures on a short time scale and on a longer time scale. It shows
how shock waves can excite waves propagating along the interface with the water,
how it can lead to cavitation, and how the wave is transmitted to the inside of a
fluid-filled shell.

Many studies present analytical and numerical approaches for predicting the
interaction of a shock wave with submerged cylindrical or spherical shells. While
these approaches can generate the response at any point in the fluid or on the surface
of the shell, previous studies typically presented plots of pressure versus time or
transverse velocity versus time at only a few points around the circumference of
the shell. It is then difficult to understand the physics of the problem. Recently,
some investigators presented results showing the complex interaction between the
shock wave and the structure with many wave fronts that travel, change shape, and
sometimes exhibit singularities. Obtaining accurate results numerically for the entire
domain is a challenging task and the interpretation of those results can be difficult.
Section 5 presents a brief overview of the literature and a simple geometrical
approach based on ray tracing for predicting the position of all wave fronts at any
given time. It is particularly useful in predicting the shape of certain wave fronts
as singularities occur on ray caustics. It also provides valuable insight in cases of
liquid-filled shells and particularly when the speed of sound inside in different than
that in the outside fluid.

Section 6 shows how the approach developed here can be applied to the
analysis of two problems in the medical field: (1) Shock Wave Lithotripsy (SWL) a
noninvasive procedure for kidney stone removal; (2) Traumatic Brain Injury (TBI)
caused by impact and blast loading.

2 Underwater Explosion in an Infinite Domain

Underwater water explosions generate both a shock wave that decays rapidly with
time and an oscillating and migrating explosion bubble (Fig. 1). As the charge is
detonated, a pressure pulse is generated. The rise time is very short and it decays
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Fig. 1 Shockwave and bubble generated by an underwater blast

rapidly. The pressure wave is called a shock wave because, for high explosives, the
pressure raises almost instantly to a maximum pressure at the wave front. This is
in contrast with other cases of explosions where the pressure has a finite rise time
like the pressure wave generated by the failure of a pressure vessel. This shock
wave propagates at the speed of sound over long distances and can cause damage
to structural panels but, generally, it does not transfer enough momentum to induce
overall deformation of the ship.

Pritchett [2] describes the formation of an explosion bubble for an uncased
spherical charge of conventional high explosive such as TNT initiated at the center.
As the detonation front expands through the charge, the explosive material it goes
through undergoes a chemical reaction and releases energy. The detonation wave
speed is typically in the 6,000–7,000 m/s range. As it reaches the surface of the
charge and proceeds into the water, the chemical reaction is complete and Y, the
total energy released by the explosion, is proportional to the product of Q, the mass
of the charge, and q, the energy released per unit mass of the explosive. For TNT,
q D 4.2 � 106 J/kg. Initially, about half of the energy is contained in the shockwave
propagating in the water and the other half is in the gas bubble as kinetic energy and
heat. Near the original charge, the nonlinear shock dissipates energy in the water in
the form of heat. After the shock wave has travelled 10–15 radii from the origin, this
dissipation process is over. Hunter and Gears [3] give a simple rule to estimate the
size of the near field where the wave front propagates at speeds that are substantially
higher than the acoustic wave propagation. The size of the near field should be twice
the maximum radius of the bubble which is approximately 15 times the radius of the
charge. Therefore, acoustic wave propagation speed near 1,500 m/s occurs beyond
30 charge radii.

Figure 1 shows the evolution of the pressure in time in which we note a first
pulse due to the passage of the shockwave and a series of smaller pulses due to the
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periodic collapse of the explosion bubble. This figure also shows that the bubble
radius periodically reaches a maximum and shrinks or collapses to a minimum
while migrating towards the water surface. The migration appears to stop while
the bubble radius reaches a maximum and restart once it starts shrinking again.
Explosion bubbles oscillate with very low frequencies and can induce whipping of
nearby structures and induce severe damage.

2.1 Scaling of Underwater Explosions

Over the years many experimental studies have been conducted over the years and
empirical formulas have been developed to characterize the evolution of the free-
field pressure behind the shock wave in terms of the mass of the explosive charge
and the stand-off distance. Formulas are also available for prediction the evolution
of the explosion bubble. The formulas discussed in this section are called scaling
equations or similitude equations.

2.1.1 Scaling of the Shock Wave

Following the arrival of the shock wave, the pressure p at a given point decreases
exponentially

p .t/ D poe�t=to (1)

Analysis of experimental results [4] show that the maximum pressure po and
the characteristic time to depend on the ratio Q1=3=R where Q is the mass of the
explosive charge and R is distance R from the explosion (also called the stand-off
distance). Following Cole [1],

po D K1

 
Q1=3

R

!A1

; to D K2 Q1=3

 
Q1=3

R

!A2

(2)

where Q is expressed in kg, R in m, po in MPa and to in ms. K1, K2, A1, and A2

are constants obtained from experiments. For trinitrotoluene (TNT), these constants
are K1 D 52.4, A1 D 1.18, K2 D 0.084, A2 D �0.23. The experiments of Murata
et al. [5] indicate that the pressure in both the initial pressure pulse and the bubble
pulse follow Eq. (2). As the stand-off distance increases, the maximum pressure po

decreases (Fig. 2) and the time td increases (Fig. 3). Both po and td increase when
Q, the mass of the charge, increases.

Many other expressions are available for scaling of underwater explosions. The
mass of the explosive can be written as Q D (4/3) ¡Ea3 where ¡E is the density of
the explosive and a is the equivalent spherical radius of the charge. Then, the term
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Fig. 2 Maximum pressure during underwater explosion as a function of standoff distance and
mass of the charge
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Q1/3/R in Eq. (2) is proportional to a/R, the ratio of the radius of the charge and
the stand-off distance. Some authors write Eq. (2) in terms of a/R. In Refs. [37, 38]
Eq. (1) is written as

p D Pc Œa=R�1=A f .£/ (3)

in terms £ D �c .a=R/B t=a and four constants Pc, �c, A, and B. It can be shown that
£ in this expression is equal to t/to in Eq. (1). Then, the function f(£) is taken to be

f .£/ D e�£ when £ � 1 (4)

and

f .£/ D 0:8251 e�1:338 £ C 0:1749 e�0:1805 £ when 1 < £ � 7 (5)

Combining Eqs. (3) and (4), we recover Eq. (1) which is said to be valid until
the end of the expansion phase of bubble (£ D 1). Equation (5) covers the oscillation
phase of the bubble. Equations. (3, 4 and 5) were used by Kalavalapally et al. [6, 7].
Van der Schaaf [8] found that the pressure varies according to Eqs. (1) and (2) when
t < to but observed a decay slower than exponential at larger times. The pressure was
approximated by

p .t/ D
8<
:

poe�t=to for t � to
poto = .t:e/ for to � t � nto

0 for t > nto

poe�t=to (6)

with n between 5 and 10.
Empirical Eqs. (1 and 2) are widely used to predict the main characteristics

of the shock wave generated by underwater explosions. A few new studies serve
as reminders that the expressions are used to fit experimental results and slight
improvements are always possible. Figures 1, 2 and 3 give general trends and orders
of magnitudes for the maximum pressures and characteristic times.

2.1.2 Scaling of the Explosion Bubble

The bubble consists of high-pressure, high-temperature gases generated by the
explosion that initially expands. Because of inertia, the bubble over-expands, the
pressure inside the bubble becomes less than that of the surrounding water and it
collapses. Similarly, as the bubble shrinks, the pressure inside eventually becomes
larger than the pressure outside and the bubble will expand again. This new
expansion will generate a new but less severe shock wave. This oscillation cycle
repeats several times but decays rapidly. In addition, the bubble tends to move up
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Fig. 4 Oscillating explosion bubble as a function of the explosive charge for three values of the
charge depth: 10, 50, 100 m. (a) Maximum radius; (b) Period of the first bubble oscillation

towards the surface. Bubble pulsations can lead to significant pressure impulses on
nearby ship hulls. The maximum bubble radius and the first bubble oscillation period
are given by

Rmax D K3 .Q=Zo/1=3 (7)

and

T D K4

�
Q1=3=Z5=6

o

�
(8)

where Z0 D D C 9.8 is the total static pressure at the location of the explosive,
K3 D 3.50 and K4 D 2.11 (Reid [9]). Equation (8) was obtained by curve fitting of
experimental results by Arons et al. [10] who examined the periods of the first eight
oscillations of the gas bubble. A different constant K4 was given for each period.
Chapman [11] validated Eq. (8) with Z0 D D C 10.1 for 80 < Z < 6,700 m. In several
references [12–14] the maximum radius is calculated using (Fig. 4)

Rmax D 3:38

�
Q

D C 10

�1=3

(9)

In the example taken from Vernon [15], with a 227 kg charge of TNT at 45 m,
Eq. (2) predicts that po D 4.957 MPa and to D 0.811 ms. Equations (7, 8) predict a
maximum bubble radius Rmax D 5.62 m and a first oscillation period T D 0.458 s
while with Eq. (9) the maximum radius is slightly different: Rmax D 5.42 m. The
period of the oscillation bubble is in good agreement with Vernon’s results. The
period of the oscillation bubble (0.458 s) is much larger than the characteristic time
of the shock wave (0.811 ms).



100 S. Abrate

Equations (7, 8) give the period and maximum radius of the explosion bubble
for its first oscillation. Snay [16] extended these formulas to give the period and
maximum radii for all subsequent oscillations. Leybourne [17] suggested that the
bubble oscillations period should vary according to

Ti D K4

�
Q1=3=Z5=6

o

�
=i1=2 (10)

Pulsation periods are often close to bending frequencies of ships and can cause
large amplitude heave and whipping motion. Vernon [15] showed how to determine
the far-field acceleration of the fluid, the forces acting on the ship, and the ship’s
response. When the gas bubble is close to a submarine or a ship hull, this bubble
may collapse onto the hull and produce a high speed water jet with water velocities
of 130–170 m/s [18].

For TNT, the migration of the gas bubble between the location of the explosive
to the location at the time of the first minimum bubble radius is given by [18]

m D 12:2

D C 9:8
Q1=2 (11)

For 1,000 kg TNT charge at a depth of 60 m, the bubble moves up by 6.24 m
during the first bubble oscillation. The ratio between the initial radius Ro and the
maximum bubble radius Rm is given empirically by [13]

Ro=Rm D 0:0327 D1=3 (12)

Relationships between energy, period and maximum radii for two consecutive
cycles [19]

EnC1

En
D
�

TnC1

Tn

�3

D
�

Rm; nC1

Rm; n

�3

(13)

where E is the sum of the potential energy and the kinetic energy of the system.
Typically, T2/T1 and Rm,2/Rm,1 are approximately equal to 0.70.

2.2 Oscillations of the Explosion Bubble

The period of oscillations can be estimated using a formula attributed to Rayleigh
[19, 20] or Willis [21, 22]

T D 1:83 Rmax

�
¡

p1 � pv

�1=2

(14)
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Fig. 5 (a) Non-dimensional bubble radius versus non-dimensional time for three values of the
parameter © and ” D 4/3; (b) Oscillations of an explosion bubble with © D 103.36, ” D 1.25 and
Ÿ0 D 0.1467

where p1 D pATM C ¡gh is the reference pressure at the hydrostatic depth h far
away from the bubble, pATM is the atmospheric pressure (1 bar), g the acceleration
due to gravity and ¡ is the fluid density. The vapor pressure pv is a function of
the temperature of the bubble wall only and is assumed to be small (pv � 2 kPa at
20ıC) and is often neglected [19]. Equation (15) is consistent with Eq. (8) since
from Eq. (7), (Q/Z0)1/3 D Rmax/K3 and after substitution into Eq. (8), T D K4

K3

Rmax

Z
1=2
o

.

Neglecting pv, p1 D ¡gZ0 and finally, T D p
g K4

K3
Rmax.¡=p1/1=2 . Using the values

of K3 and K4 given above and g D 9.81 m/s2, gives
p

g K4=K3 D 1:888.
First derived by Lamb [23] and usually attributed to Rayleigh [20], the Rayleigh-

Plesset equation governing the oscillation of spherical bubbles is

RŸŸ C 1:5 PŸ2 � © .Ÿo=Ÿ/3” C 1 D 0 (15)

where Ÿ D R/Rmax is the dimensionless radius of the bubble and Ÿ0 is its initial
value. The parameter © is the ratio between pb, the initial pressure inside the bubble,
and p1 � pv. Integrating Eq. (15) numerically for ” D 4/3 and © D 0.4, 0.5 and 0.6,
the results shown in Fig. 5a show that the radius decreases progressively until it a
minimum value is reached at time T/2 and then bounces back. This example taken
from Ref. [24], shows the typical behavior for a cavitation bubble for which © is
small. Lee et al. [19] considered an explosion bubble with much higher value of ©.
For that case, the results in Fig. 5b indicate that the bubble collapses abruptly at the
end of the first cycle. Afanasiev and Grigorieva [24] used the following approximate
relation for the minimum non-dimensional radius

R0
min � 3©

1 C 3© � ©3=2
(16)
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Extensive research on the oscillation of bubbles in a liquid have considered
various complicating factors: (1) bubbles are not necessarily spherical and do not
remain spherical as they collapse [25–27]; (2) the Rayleigh-Plesset model predicts
undamped oscillation of the gas bubble because the surrounding fluid was assumed
to be incompressible [28] and, assuming that surrounding water is governed by
the wave equation [29] damping of the bubble oscillations was predicted and
excellent agreement with experimental results was obtained [28]; (3) with a model
accounting for the effects of the pressure inside the bubble, the water depth, and
the compressibility of the surrounding fluid [30], the empirical relations for the
maximum bubble radius and the bubble collapse time (Eqs. 7 and 8) are recovered.

2.3 Other Types of Explosives

The preceding equations were developed for TNT explosions. For other types of
explosives, it is possible to use the same equations after calculating the equivalent
TNT charge QTNT as follows

QTNT D Qexp Hexp=HTNT (17)

where Qexp is the mass of the explosive used, HTNT is the heat of detonation of
TNT, and Hexp is the heat of detonation of the explosive used [31]. HTNT D 4.520 �
103 kJ/kg [32].

3 Wave Propagation in Solids and Fluids

Wave propagation in elastic solids is treated in details in several books [33–36].
Brekhovskikh [37] describes the propagation of waves in layered media. Viktorov
[38] focused on Rayleigh and Lamb waves. Lighthill [39] and Whitham [40] discuss
waves in fluid and Brekhovskikh and Lysanov [41] cover the more specialized topic
of ocean acoustics. This section discusses wave propagation in bulk solids, along
the surface of a solid, and along the interface between a solid and a liquid. Finally,
some basic results concerning propagation of elastic waves in elastic layers and the
connection between elasticity theory and plate theories are presented.

3.1 Wave Propagation in Unbounded Solids

The equations of motion for an elastic solid are

¢ ji; j D ¡Rui (18)
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in terms of the stress components ¢ ij and the displacement ui. For an orthotropic
material, the stress strain relations can be written as8̂̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

¢11

¢22

¢33

¢23

¢31

¢12

9>>>>>>>=
>>>>>>>;

D

2
66666664

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

3
77777775

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

©11

©22

©33

©23

©31

©12

9>>>>>>>=
>>>>>>>;

(19)

in material principal coordinates. The strain–displacement relations are

©11 D u1;1; ©22 D u2;2; ©33 D u3;3;

©23 D u2;3 C u3;2; ©31 D u3;1 C u1;3; ©12 D u1;2 C u2;1 (20)

The material behavior is defined by three elastic moduli (E1, E2, and E3), three
shear moduli (G12, G13, and G23), and three Poisson’s ratios (�12, �13, and �23). With
these nine parameters, the stiffness coefficients are

C11 D E1 .1 � �23�32/ =�; C22 D E2 .1 � �31�13/ =�; C33 D E3 .1 � �12�21/ =�

C21 D E2 .�12 C �13�32/ =�; C31 D E3 .�13 C �12�23/ =�; C32 D E3 .�23 C �13�21/ =�

C12 D E1 .�21 C �31�23/ =�; C13 D E1 .�31 C �21�32/ =�; C23 D E2 .�32 C �31�12/ =�

C44 D G23; C55 D G13; C44 D G12;

with � D 1 � �12�21 � �23�32 � �31�13 � 2�12�23�31:

3.1.1 Dilatational Waves

First, consider the case where u1 is the only non-zero displacement and an arbitrary
pulse is moving in the x1-direction with a velocity c1. Then, u1 can be written as

u1 D f .x1 � c1t/ (21)

where f is an arbitrary function. Then, ©11 ¤ 0; ©22 D ©33 D ©23 D ©31 D ©12 D 0,
and the first equation of motion (Eq. 18) becomes

C11 u1;11 D ¡Ru1 (22)
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which is the one-dimensional wave equation. Substituting Eq. (21) into Eq. (22)
gives the wave velocity

c1 D p
C11=¡: (23)

Using the same approach, if u2 is the only non-zero displacement and the wave
front is moving in the x2-direction with a velocity c2. With u2 D f .x2 � c2t/ ; ©22 is
the only non-zero strain component and the second equation of motion becomes

C22 u2;22 D ¡Ru2 (24)

and the velocity of dilatational waves in the x2-direction is

c2 D
p

C22=¡ (25)

Similarly, if u3 is the only non-zero displacement and the wave front is moving in
the x3-direction with a velocity c3. With u3 D f .x3 � c3t/ ; ©33 is the only non-zero
strain component and the third equation of motion becomes

C33 u3;33 D ¡Ru3 (26)

and

c3 D p
C33=¡ (27)

This shows that for orthotropic materials, for dilatational waves propagating
in the material principal directions, the equations of motion uncouple and three
different wave velocities are obtained (Eqs. 23, 25 and 27). For isotropic materials,
the wave velocity is the same in all directions and is given by

c D
s

E .1 � �/

¡ .1 C �/ .1 � 2�/
(28)

With this type of body waves where a planar wave front propagates in an
unbounded solid, behind the wave front the body is in a state of plane strain. For
a thin rod under axial stress, the material is in a state of plane stress and the stress
strain relation is Hooke’s law .¢ D E©/. In that case, waves propagate in the axial
direction with the velocity

co D
p

E = ¡ (29)

which is sometimes called the rod velocity. For steel, Poisson’s ratio is 0.3 so, using
the last two equations we find that c/co D 1.160 which is a significant difference.
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3.1.2 Shear Waves

When u1 is the only non-zero displacement and the wave front is moving in the
x2-direction with a velocity c4. Then, u1 can be written as

u1 D f .x2 � c4t/ (30)

where f is an arbitrary function. Then, ©12 ¤ 0; ©11 D ©22 D ©33 D ©23 D ©31 D 0,
and the first equation of motion becomes

G12 u1;22 D ¡Ru1 (31)

which is the one-dimensional wave equation. Writing Eq. (30) as u1 D f .˜/ where
˜ D x2 � c4t, we find that u1;22 D f00 and Ru1 D c2

4 f00 where a prime indicates a
derivative with respect to ˜. Substituting into Eq. (31) gives the shear wave velocity
c4 D p

G12=¡. Similarly, when u1 is the only non-zero displacement and the wave
front is moving in the x3-direction with a velocity c5. Then, u1 can be written as u1 D
f .x3 � c5t/. ©31 is the only non-zero strain and substituting into the first equation of
motion gives c5 D p

G13=¡. When u2 D f .x3 � c6t/, substituting into the second
equation of motion gives c6 D p

G23=¡.
Substituting u2 D f .x1 � c4t/, u3D f .x1 � c5t/, or u3 D f .x2 � c6t/ into the

equations of motion will also give the three shear wave velocities

c4 D p
G12=¡; c5 D p

G13=¡; c6DpG23=¡ (32)

For an isotropic material the three shear moduli are the same so the three shear
wave velocities are the same.

3.2 Surface Waves

The body waves discussed in the previous subsection reflect after reaching a
boundary of the solid. There are also several types of waves that propagate along
the surface of the body. Here we recall some basic results for three types of surface
waves: Rayleigh waves, Scholte-Stoneley waves, and Franz waves. Rayleigh waves
are disturbances that propagate along the surface of a solid with amplitudes that
decay exponentially with depth. In this section we recall existing results for the
cR, phase velocity of Rayleigh waves, and approximate expressions that show that
those waves propagate at speeds that are slightly lower than the phase velocity of
bulk shear waves in the solid. At the interface between a liquid and a solid, Rayleigh
waves can be excited by an incident wave in the fluid. These waves propagate along
the interface with a velocity cR and radiate back into the fluid. They are called leaky
Rayleigh waves.
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Stoneley waves are waves that propagate along the interface between two solids
with amplitudes that decay exponentially away from the interface. When the
interface separates a solid from a fluid these waves are called Scholte-Stoneley
waves or simply Scholte waves. Such waves are observed during the interaction
of an underwater blast and a structure.

For curved bodies such as spheres and cylinders, the surface of the body is
divided into an illuminated region that can be reached by the incident wave and
a shadow region. Franz waves (or creeping waves) start from the edges of the
illuminated region, propagate into the shadow zone following the curvature of the
body and then radiate in a tangential direction. These waves propagate in the fluid
at the speed of sound in the fluid.

3.2.1 Rayleigh Waves

In a solid, Rayleigh waves [42] are surface waves in which the motion is localized
in a thin layer near the surface with a thickness approximately equal to twice the
wavelength of the wave [33]. The horizontal and vertical components of the motion
are 90ı out of phase and the trajectories of the particles are ellipses with a major
axis perpendicular to the surface. The amplitude of these waves decay exponentially
with the distance from the free surface and cR, the speed of Rayleigh waves, is the
solution of the equation

�
2 � c2

R

c2
T

�2

D 4

s
1 � c2

R

c2
T

s
1 � ”

c2
R

c2
T

(33)

where ” D � =.œ C 2�/ . The phase velocity of Rayleigh waves cR is slightly lower
than the phase velocity of transverse waves (shear waves) cT and it depends of
Poisson’s ratio. A good approximation for the phase velocity of Rayleigh waves
is given by

cR D cT .0:862 C 1:14�/ =.1 C �/ (34)

used by Jagnoux and Vincent [43], or the following approximations

cR D cT .0:87 C 1:12 �/ =.1 C �/ cR D
�

0:44 C K

0:58 C K

�1=2

cT (35-a,b)

given by Viktorov [38] and Royer and Clorennec [44] respectively where
K D �= .1 C �/. Many other such approximations can be found in the literature
[e.g. 45–58].

When the solid surface is in contact with a fluid, the Rayleigh wave propagating
along the surface of the interface induces waves in the fluid. In this case, the wave
is called a leaky Rayleigh wave or a generalized Rayleigh wave. The motion of
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particles near the interface is elliptical in both the fluid and the solid. Leaky Rayleigh
waves are used for ultrasonic imaging of surface defects in materials [43]. They also
are observed during the diffraction of a shock wave by an elastic solid.

Considering a solid immersed in water, a wave propagating in the water at a
speed c1 D 1,498 m/s at an incident angle i1 will generate two waves in the solid
with phase velocities c2 and c3 and their respective angles i2 and i3. In addition, for
the proper value of i1, Rayleigh waves will propagate along the surface (iR D 90ı)
with a velocity cR. According to Snell’s law,

sin i1
sin ik

D c1

ck
(36)

where k D 2,3 for bulk waves and k D R for Rayleigh waves. For steel E D 210 GPa,
¡ D 7,850 kg/m3 so c2 D 3,208 m/s for shear waves and c3 D 5,172 m/s for longitu-
dinal waves. Using Eq. (34), for a Poisson’s ratio of 0.3, the velocity of Rayleigh
waves is cR D 0.9262 c2 D 2,971 m/s compared to 2,990 m/s in [43]. Equation (36)
indicates that i2 D 90ı when sini1 D c1=cR or i1 D 30.3ı. The incident wave in the
fluid excites Rayleigh waves for an incident angle of ™R D 30ı.

The amplitude of leaky Rayleigh waves decays rapidly with the distance travelled
along the solid-water interface because of energy radiation into the liquid. This is
in contrast with the propagation of Rayleigh waves on the surface of a solid in air
where no such attenuation takes place.

Neuenschwander et al. [59] showed that the phase velocity of leaky Rayleigh
waves should be between that of the Rayleigh wave in air and that of the transverse
wave in the solid cR � cLR � cT. The experiments of Goodman, Bunney and
Marshall [60] showed that when an acoustic beam reaches the surface of a cylinder
at an angle ™R, leaky Rayleigh surface waves are generated, as in the case of a plate,
and the amplitude of the portion of that wave radiated in the fluid is maximum
when the receptor is located at an angle ™R from the radial direction. The measured
velocity of ™R the Rayleigh wave was 3,280 m/s for a solid aluminum cylinder in
water and the measured ™R angle 28ı.

Formulas such as (33, 34, 35-a,b) for calculating the velocity of Rayleigh waves
were derived assuming that the surface of the solid was flat. Several authors
examined how the curvature of the surface of a cylinder affected the speed of
Rayleigh waves. According to Szilard [61], on circular cylinders, Rayleigh waves
propagate in the circumferential direction with a velocity

c D cR

�
1 C œ

2 R

�
(37)

where cR is the velocity on a flat surface, œ is the wavelength and R is the radius of
the cylinder. The analysis of Jin, Wang and Kishimoto [62] indicated that

c D cR

�
1 C 0:4822

œ

2 R

�
c D cR

�
1 � 1:1429

œ

2 R

�
(38-a,b)
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in the circumferential and axial directions respectively. These three formulas show
that the effect of curvature become negligible when the wavelength is short compare
to the radius of curvature.

Experiments conducted by Bunney et al. [63] showed that as a solid cylinder is
progressively made hollow, the circumferential acoustic waves that can be excited
change from having characteristics of Rayleigh waves to having the characteristics
of Lamb waves. It is also possible to excite both Rayleigh- and Lamb-type waves
[64–68].

3.2.2 Scholte-Stoneley Waves

Disturbances propagate near a free surface (Rayleigh waves) but also near the
interface between two half-spaces. Stoneley [69] pointed out the existence of a
wave propagating along the interface between two elastic solids. In this case, the
amplitudes decrease with x2 away from the interface x2 D 0. The geophysicist
Scholte [70] described a particular case of the Stoneley wave when one of the solid
becomes a fluid. This wave, called the Scholte-Stoneley wave, has its energy mainly
localized in the fluid and, if the viscosity of the media is negligible, it propagates
without attenuation [71]. The wave is of maximum intensity at the interface and
decreases exponentially away from the interface into both the fluid and the solid
medium. Near the interface, particles move on elliptical trajectories. In the solid,
the major axis of the ellipses are perpendicular to the interface while in the water
they are parallel to the interface.

Considering a fluid–solid interface where the fluid being located above the
interface and the solid below the interface (x2 <0), the phase velocity of the Stoneley
wave is determined from the algebraic equation [72]�

¡1

¡2

b2L C b1

�
r4 � 4b1r2 � 4 b1 .b2Lb2T � 1/ D 0 (39)

where

r D cs/c2T, b1 D
�
1 � c2

s

c2
1

�1=2

, b2L D
�
1 � c2

s

c2
2L

�1=2

and b2T D
�
1 � c2

s

c2
2T

�1=2

.cs is

the phase velocity of the Stoneley wave, c1 is the speed of sound in the fluid, c2L and
c2T are the phase velocities of longitudinal and transverse waves in the solid. Meegan
et al. [73] indicate that for several common examples of water-solid examples,
the velocity of Scholte waves are only slightly lower than the speed of sound in
water except for the sandstone-water example. The maximum phase velocity of the
Scholte-Stoneley wave is approximated by

cs D .1 � ©/ cf (40)

where cf is the speed of sound in the fluid and © is a given by

© D 1

8

 
¡f

¡

c2
f c2

L

c2
T

�
c2

L � c2
T

�
!2

(41)
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in terms of ¡f, the density of the fluid, ¡, the density of the solid, and the longitudinal
and transverse wave velocities in the solid cL and cT [71]. Therefore, Scholte-
Stoneley wave the maximum speed of is usually slightly lower than the speed of
sound in the fluid.

Experiments [74] showed that, at a water-glass interface, the Rayleigh wave
is strongly attenuated while the Scholte wave (theoretically undamped) is weakly
attenuated. The phase velocities were 3,091 m/s for the leaky Rayleigh wave and
1,488 m/s for the Scholte wave. The phase velocities for bulk waves in the glass
were cL D 5,712 m/s and cT D 3,356 m/s. Surface waves at a plexiglass-water
interface were also studied. In that example, the density of plexiglass is 1,190 kg/m3,
cL D 2,692 m/s, cT D 1,407 m/s and the predicted velocity of the Scholte wave is
cS D 1,067 m/s while the speed of sound in water is 1,500 m/s. This configuration
is called a soft solid–fluid configuration because cT < cW. In this case, a bulk wave
with a wave speed of 1,407 m/s was observed during experiments but no Rayleigh
wave was detected. This is attributed to the fact that the acoustic velocity of water
is larger than the transverse velocity of Plexiglass. When the same plexiglass is
immersed in pure ethanol with a density of 790 kg/m3 and an acoustic velocity of
1,115 m/s, a leaky Rayleigh wave with a phase velocity of 1,377 m/s was observed
along with a Scholte wave with a velocity of 1,011 m/s. Weng and Yew [75] showed
that underwater explosions generate Scholte-Stoneley surface waves at the interface
between the water and an ice cover.

A review of the acoustics of shells [76] discusses the dispersion curves for Lamb
waves on free plates and for fluid-loaded plates. For plates with one-sided water
loading, a Scholte-Stoneley wave called the A wave appears. It is due to the fluid
loading and is largely water-borne. When the plate is loaded with one fluid on
one side and a different fluid on the other side, there are two Scholte-Stoneley
waves [77].

Experimental results from short-pulse of scattering of water-immersed thin-
walled cylindrical shells filled with air, water or alcohol [78] provide evidence of the
existence of two Scholte-Stoneley waves for double fluid loading. Since the speed
of sound is 1,480 m/s in water and 1,200 m/s in alcohol, the two Scholte-Stoneley
waves could be clearly distinguished in the back scattering signals. Bao, Raju, and
Uberall [79] also studied a submerged cylindrical shell with a different fluid inside.

Uberall et al. [66] presented an overview of the dispersion curves for Lamb waves
and Scholte-Stoneley waves on thin, water-loaded and evacuated shells made of
aluminum, stainless steel and tungsten carbide. Kim and Ih [80] determined the
dispersion curves for the Scholte-Stoneley and Lamb waves of boron-aluminum
composite shells immersed in water analytically and experimentally. Maze and co-
workers [81, 82] studied the propagation of Scholte-Stoneley waves on submerged
cylindrical shells.

3.2.3 Franz Waves

Franz [83] first showed that the scattering of waves by a cylinder immersed in
water consist of a specular reflection and two waves with velocities lower that the
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free-wave velocity in water that circumnavigate the cylinder one in the clockwise
and one in the counterclockwise direction (Bunney, Goodman and Marshall [63]).
The first experimental evidence of those waves that Franz called creeping waves
was provided by Barnard and McKinney [84]. In the experiments conducted by
Neubaeur [85, 86], the speed of creeping waves around a cylinder submerged in
water was 99% of the speed of sound in water.

Ahyi et al. [87] first presented shadowgraphs of the interaction of an incident
wave with a cylinder submerged in water. Figures clearly show the incident wave,
the specularly reflected wave, the creeping wave and both symmetric and anti-
symmetric Lamb waves. Further experimental visualization results for creeping
waves were provided by Latard et al. [88] for scattering by a glass sphere. Neubauer
[89] presented experimental results and graphical methods for determining the shape
of the reflected wave front, the creeping wave front and the wavefront produced by
leaky Rayleigh waves during the diffraction of acoustic waves by an elastic cylinder.
When the incident ray becomes tangent to the cylinder, a creeping wave is generated
that travel in part around the circumference of the cylinder and then radiate into
the water in the tangential direction. Keeping a constant travel time, the tip of the
vector representing the final radiation into the water generates the wave front for the
creeping wave.

Theoretical analyses of creeping wave were conducted by Überall, Doolittle, and
McNicholas [90], Ugincius [91] and Ugincius and Uberall [92].

3.3 Lamb Waves

In an infinite elastic layer in which the top and bottom surface are stress free, two
families of waves results from the combination of dilatational and shear waves
reflecting from the free surfaces and Rayleigh waves propagating along these
surfaces. These waves are usually called Rayleigh-Lamb waves or Lamb waves and
for long wavelengths the lowest modes correspond to extensional or bending waves
predicted by plate theories.

Wave propagation in isotropic solids can be studied in a more general way
starting with the equations of motion (Eq. 18), the stress–strain relations

¢ ij D œ ©kk •ij C 2�©ij (42)

where œ and � are the two Lame constants of the material, and the strain–
displacement relations

©ij D �
ui; j C uj; i

�
=2 (43)

Using Helmholtz’s representation, the displacements can be written in terms of
a scalar potential ¥ and a vector potential N§ so that

Nu D r¥ C Nr x N§ (44)
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so that the three components of the displacement vector are

u1 D @¥

@ x1

C @ §3

@ x2

� @ §2

@ x3

u2 D @ ¥

@ x2

C @ §1

@ x3

� @ §3

@ x1

u3 D @ ¥

@ x3

C @ §2

@ x1

� @ §1

@ x2 (45)

Substituting into the equations of motion gives

.œ C 2�/ r2¥ � ¡ R¥ D 0 (46)

�r2 N§ � � RN§ D 0 (47)

These two equations are satisfied when the phase velocities for the longitudinal
and transverse waves are

cL D p
.œ C �/ =¡ and cT D p

�=¡ (48)

These are the same velocities obtained in Sect. 3.1.
Lamb [64] studied the propagation of harmonic waves in isotropic layers. When

the motion is restricted to the x1-x2 plane, Eq. (47) become

@2¥

@x2
1

C @2¥

@x2
2

D 1

c2
L

@2¥

@ t2
@2§

@x2
1

C @2§

@x2
2

D 1

c2
T

@2§

@ t2
(49)

For harmonic waves of the form

¥ D ˆ .x2/ exp Œi .kx1 � !t/� § D ‰ .x2/ exp Œi .kx1 � !t/� (50)

there are two types of modes: (1) symmetric modes for which ˆ D A2 cos .px2/

and ‰ D B1 sin .qx2/; (2) anti-symmetric modes for which ˆ D A1 sin .px2/ and
‰ D B2 cos .qx2/ where p2 D ¨2

c2
L

� k2 and q2 D ¨2

c2
T

� k2. Relationships between

the frequency ¨ and the wave number k are obtained by considering the boundary
conditions on the top and bottom surfaces .x2 D ˙h/: 	22 D 	12 � 0 which give

tan .qh/

tan .ph/
D � 4k2pq�

q2 � k2
�2 and

tan .qh/

tan .ph/
D �

�
q2 � k2

�2
4k2pq

(51)

for the symmetric and anti-symmetric modes respectively. These equations are
known as the Rayleigh-Lamb equations. In the literature, the symmetric modes are
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designated as So, S1, S2, : : : in order of increasing frequency. The anti-symmetric
modes are designated as Ao, A1, A2, : : : For long wavelengths .k ! 0/ the first
symmetric mode (So) called the “extensional mode” travels at the “plate velocity”.
In this regime the plate stretches in the direction of propagation and contracts
correspondingly in the thickness direction. At higher frequencies, the phase velocity
converge towards the Rayleigh wave velocity. The first axisymmetric mode (Ao)
called the “flexural mode”.

Osborne and Hart [65] obtained the dispersion curves of a steel plate in
contact with water, an extension of Lamb’s work for plates in air. The dispersion
relations for cylindrical shells in air and in water were determined analytically and
experimentally by Uberall et al. [66, 67]. Experimentally determined dispersion
curves for Ao modes are given by Cheeke et al. [68].

4 Interactions Between Shock Waves and Submerged
Structures

This section discusses two important points in our geometrical acoustics approach to
the study of shock wave interactions with submerged structures. First we examine
how underwater shock waves generate other types of waves as they interact with
the shell and the fluid inside. A basic approach is presented for generating the
position of the various wave fronts. Then we examine the evolution of the pressure
on both faces of a plate loaded by an underwater shock wave. This example brings
out significant differences in the response between two important practical cases in
which the back face is contact with air or in contact with water. It is shown that for
water-backed plates, the incident pulse appears to propagate through as if the plate
was not there. This apparent transparency property is used in Sect. 5 to analyze
shock wave interactions with cylindrical shells.

4.1 Initial Response of a Plate to a Shock Wave

This subsection discusses how underwater blasts excite surface waves and Lamb
waves in submerged plates and shells. Previous studies providing direct experimen-
tal evidence of this phenomenon are reviewed and an example is given to illustrate
how a simple geometrical approach can be used to predict the position of the various
wave fronts as a function of time. Only a few studies are dealing with close-in
explosions. An overview of the current state of knowledge is presented here.
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4.1.1 Shock Wave Generates a Rayleigh Wave on the Surface
of a Thick Plate

The propagation of leaky Rayleigh waves and Scholte waves at the interface of
a liquid and an elastic solid has been studied extensively because of potential
applications. Scholte waves are used to determine the properties of marine sediments
down to hundreds of meters below the seafloor [93, 94], to detect objects buried
in the seabed [95], to measure the thickness thin gold layer deposited on a silicon
wafer [96], to size inaccessible parts of industrial structures [97] for example. Leaky
Rayleigh waves are used extensively in non-destructive testing [98].

Interface waves can be excited by explosions or transient forces applied on the
interface [99–101] or by implosions [102]. In the following example, surface waves
at the interface between a thick glass plate and water are excited by a cylindrical
wave generated by a transducer. In the experiments of Fu et al. [103], a cylindrical
wave is emitted from a source S located in water domain in the upper half of the
plane and glass occupies the lower half-space. The speed of sound in the water is
taken to be 1,480 m/s. For glass, the density is 2,530 kg/m3, the phase velocity of
longitudinal waves is 5,690 m/s, the phase velocity of transverse waves is 3,460 m/s
and the Rayleigh wave velocity is 3,180 m/s. The source is located 10 mm above
the glass-water interface and the position of the various wave fronts after 12.5 �s
is shown in Fig. 6. The incident wave is a circle of radius 18.5 mm centered at S.
The reflected wave R is a circle centered at a point S0 symmetrically located below
that interface. Figure 6 shows that, as the incident wave reaches the solid surface, a
new wave front H called the head wave is created. In this example, the plate is quite
thick so bending deformations are not induced. However, Rayleigh surface waves
propagate along the interface and radiate back into the water. In a solid, Rayleigh
waves are surface waves in which the motion is localized in a thin layer near the
surface with a thickness approximately equal to twice the wavelength of the wave.
The amplitude of Rayleigh waves decays exponentially with the distance from the
free surface. A good approximation for the phase velocity of Rayleigh waves is

cR D cT .0:862 C 1:14�/ =.1 C �/ (52)

where, for an isotropic solid, cT D p
G=¡ is the phase velocity of shear waves in

terms of the shear modulus G and the density ¡. When � D 0:3, cR D 0:926 cT.
For the example in Fig. 6, a Rayleigh wave will be excited when the incident

angle ™i is such that the transmitted angle ™t D 90ı so that the reflected wave
propagates along the interface. Using Snell’s law,

sin ™i = sin ™t D cf = cR (53)

we find that this angle is 27.74ı. The solid-borne Rayleigh wave propagates along
the interface at a speed cR and then radiates back into the water at a 27.74ı angle
from the vertical to form what is called a head wave with a straight wave front at a
27.74ı angle from the interface (Fig. 6).
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Fig. 6 Interaction of a shock wave generated by a transducer located at (0, 10) with a thick glass
plate (y < 0). (a) Direct wave D, reflected wave R and a head wave H; (b) Rayleigh waves generated
by an incided wave making a 27.74ı with the vertical, travels along the interface (y D 0) and
radiates back into the water (y > 0) at an angle of 27.74ı

In this type of problem it the elastic solid is called soft if its shear wave velocity
is smaller than the speed of sound in the liquid. Such a “soft solid–fluid” interface
is found in the case of Plexiglas–water and PVC–water interfaces [74] and soft
sea floors [101]. On the other hand, a “hard solid–fluid” configuration refers to a
case in which speed of sound in the fluid is smaller than the shear velocity of the
solid material as in the case of a glass-water interface. Theoretical and experimental
investigations [74, 99–101] established that leaky Rayleigh waves do not propagate
along a soft solid- fluid interface and in that case only a Scholte-Stonely surface
wave propagates along the interface. Data from the propagation of Scholte waves is
used to characterize the properties of sediments.

Alkier [104] showed that, at a critical incidence angle, an acoustic pulse can
excite internally guided longitudinal stress waves in a submerged plate. In the
case of an aluminum plate with a longitudinal wave velocity cL D 5.45 � 103 m/s
immersed in water with water with cw D 1,484 m/s, the critical angle obtained from
Snell’s law is ™c D sin�1 .cw=cL/ or ™c D 15.79ı in this case.

4.1.2 Shock Waves Excite Lamb Waves in a Thin Plate

Leaky Lamb waves are used extensively in non-destructive evaluation [98]. There
are other uses of this type of waves. For example, Bingham et al. [105] describe
an approach using the propagation of Lamb waves to detect the presence of limpet
mines on ship hulls. Ahyi et al. [87] presented experimental results for 1 mm thick
steel plates in water subjected to a shock wave. In that case, both symmetric and
anti-symmetric Lamb waves are excited and radiate back into the water. Ahyi et al.
also considered 1 mm thick steel plates with water on both sides. Then, on the
opposite side of the plate there is a wave front for the transmitted wave that is the
mirror image of the reflected front R in Fig. 6 and the wave fronts corresponding to
Lamb waves propagating along the plate.
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4.1.3 Close-in Explosion

Wardlaw and Luton [106] described the fluid–structure interactions occurring when
a charge explodes near a plate. Numerical analyses of close-in explosions near
rigid surfaces, homogeneous plates, and sandwich plates are discussed in [107–
110]. Similar studies for explosions inside water filled cylinders are presented in
[106, 109, 111]. In all of these studies the explosion is modeled as a small initial
cavity subjected to a given pressure. The initial shock wave propagates towards the
structure, reflects, and interacts with the cavity. During the short duration of these
simulations, the cavity representing the explosion bubble deforms very little due to
the low frequency of the bubble oscillations

4.2 Long Term Response of a Plate to an Underwater
Explosion

Here four related examples are considered in order to gain some insight into the
dynamic response of plates subjected to impulsive loading. First we consider a plate
subjected to a pressure pulse applied directly on the surface. When the time is
much larger than the travel time through the thickness of the plate, the plate can
be assumed to be rigid. In the second example, a semi-infinite solid is in contact
with water and the loading consists of a pressure pulse propagating through the
water. The pressure at the interface is the sum of the incident and reflected pulses
and depends on the mechanical impedances of the water and the solid. In the third
example, the semi-infinite solid is replaced by a plate of finite thickness in contact
with air on the other side. In the fourth example, the plate is in contact with water
on both sides.

4.2.1 Free Plate Subjected to a Pressure Pulse

Considering an infinite plate of thickness subjected to a step pressure on the left and
free on the right, the Lagrange diagram of Fig. 7a shows the reflections of elastic
waves from the two surfaces. In that figure the non-dimensional time Nt D t c=h is
plotted versus the non-dimensional position Nx D x=h where h is the thickness of the
plate, and c is the speed of sound in the material. Using the method of characteristics,
we find that the particle velocity on the right face increases in a stair-case manner
(Fig. 7b). The non-dimensional velocity is defined as Nv D v: ¡c=po where ¡ is
the density of the material and po is the suddenly applied pressure. If the plate is
considered as a rigid body, the velocity of the plate is directly proportional to time
(Nv D Nt) and the figure shows that the rigid body approximation is adequate for times
much larger that h/c, the travel time through the thickness.
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Fig. 7 Short term response of a plate subjected to step pressure pulse (a: Lagrange diagram; b:
non-dimensional plate velocity versus time)

Considering the plate as a rigid body with a density ¡, a thickness h, and a
surface area A that is completely free and subjected to a pressure pulse p(t) applied
directly to its front face. V is the velocity at the end of the pulse, �hA V is the linear
momentum at the end of the pulse, and I D R

p dt is the pressure impulse (per unit
area). The impulse-momentum relation states that the momentum at the end of the
impulse is equal to the applied impulse. Therefore, the velocity is

V D I = ¡h (54)

When the plate is subjected to a step pressure, the impulse increases linearly with
time. Equation (54) predicts that the velocity V also increases linearly with time as
indicated by the dashed line in Fig. 7b. The rigid body approximation is adequate
for times much larger that h/c, the travel time through the thickness. The kinetic
energy of the plate is

T D 1

2
¡hV2 D 1

2
¡h

�
I

¡h

�2

D 1

2

I2

¡h
(55)

This equation indicates that the kinetic energy absorbed by the plate increases
with the square of the impulse and is inversely proportional to the mass per unit
area. For a given impulse, a heavy plate absorbs less kinetic energy than a light
plate.

Fleck and Deshpande [112] describe the response of metallic sandwich structures
to blast loading into three phases: in Phase I the applied impulse results in a uniform
velocity of the first facesheet, Phase II corresponds to the crushing of the core
material and phase III overall bending and stretching deformations of beam occurs.
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Given the magnitude of the impulse I, Eq. (54) was used to determine the velocity
of the front facesheet at the end of phase I [112]. Equation (55) is used without
derivation by Pan and Watson [113]. It shows that the kinetic energy absorbed is
proportional to the square of the impulse and inversely proportional to the mass
per unit area. Therefore, for a given impulse, a heavier plate absorbs less kinetic
energy than a lighter plate. We also note that the impulse is the quantity of interest
regardless of the shape of the pressure versus time curve.

4.2.2 Wave Interaction at the Interface Between Water and a Solid

Underwater blasts generate shock waves that propagate through water before
reaching the surface of a solid structure and reflecting off of that surface. The
pressure at the water-solid interface is shown to be different from that of the incident
pulse.

Figure 8a shows the one-dimensional problem of a pulse impinging on a water-
solid interface with a normal incidence. The Lagrange diagram (Fig. 8b) shows the
time-position domain is divided into three regions. Initially both the water domain
(x < 0) and the solid (x > 0) are a rest (region O in the figure). Region I is the
incident pulse and after the pulse reaches the interface the water and the solid have
the same stress T (positive in compression) and particle velocity v (Region II). From
the stress-velocity diagram (Fig. 8c) it can be easily shown that

T2 D 2zs

zs C zw
T1 (56)

where T1 is the stress in region I, T2 is the stress in region II, z denotes the
mechanical impedance and the subscripts s and w refer to the impedance of the
solid and the water respectively.

The speed of sound in water is approximately 1,500 m/s and the density
1,000 kg/m3 so its mechanical impedance zw D 1.5 � 106 kg/m2/s. For steel, with
a modulus of elasticity of 210 GPa, a Poisson’s ratio of 0.3 and a density of
7,850 kg/m3, Eq. (28) predicts a speed of sound of 6,001 m/s. The mechanical
impedance of steel zs D 47.11 � 106 kg/m2/s is much larger than that of water and
the ratio T2/T1 predicted by Eq. (56) is 1.938 which is very close to 2. Therefore,
it is often said that upon reflection from a steel surface the pressure suddenly
doubles as if that surface were rigid. Considering a typical composite material with
a transverse modulus of 10.30 GPa and a density of 1,500 kg/m3, the speed of sound
is approximately 2,620 m/s, zs D 3.931 � 106 kg/m2/s and from Eq. (56) we find that
T2/T1 D 1.448. Therefore, the mechanical impedance of the composite material is
closer to that of the water a much different behavior occurs: the pressure does not
double as the wave reflects from the surface.

Considering a 5 mm thick steel plate in contact with air on the right hand side,
the response to a step pressure wave is such that the pressure on the wet side decays
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Fig. 8 Reflection and transmission of an incident wave at a fluid–solid interface. (a) Reflected and
transmitted waves at a water-solid interface; (b) Lagrange diagram showing the incident wave in
the fluid being reflected from the interface x D 0 and the transmitted wave in the solid (y > 0); (c)
Stress velocity diagram where the slope of the solid lines is the impedance of water and the slope
of the dashed line is the impedance of the solid; (d) Interface pressure (MPa) versus time (�s) for
5 mm thick air backed plates made out of steel or composite materials; (e) Interface velocity versus
time (�s) for 5 mm thick air backed plates made out of steel or composite material

progressively to zero (Fig. 8d) and the velocity of that face increases progressively
towards an asymptotic limit (Fig. 8e). The small steps in those curves are due to
wave reflections inside the plate. For a 5 mm thick composite plate, the response is
quite different as shown on these figures. Both the pressure and the velocity change
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Water Platep

pi(t) +

zwv

dt

dv
ρh

a bFig. 9 One dimensional
model of an air-backed plate
(ABP) subjected to an
incident pressure pulse (a:
general configuration, b: Free
body diagram of the plate)

more rapidly in a few large steps. These examples show that the response to an
incident pulse transmitted through water is different than when the pressure pulse
is applied directly to the plate. The response of a composite plate is significantly
different because its mechanical impedance is much lower than that of steel.

4.2.3 Dynamic Response of an Air-Backed Plate to a Shock Wave

Now consider an exponentially decaying pulse
�
pi D po e�t=td

�
propagating towards

an air-backed plate (Fig. 9). Considering a unit area of the plate as a rigid body,
two external forces are applied: one is caused by the incident and reflected waves
(pi C pr) and the other is due to the motion of the plate (zwv). The inertia force is
equal to �h, the mass per unit area, times the acceleration dv/dt. As discussed above,
pr D pi (2zs)/(zs C zw) and, if the impedance of the solid is much larger than that of
water, pr � pi.

Applying Newton’s law, gives the equation of motion originally derived by
Taylor [114] in 1941

¡h
dv

dt
C zwv D 2po e�t=td (57)

Solving Eq. (57) gives the velocity of the plate

v D 2po

zw

�
e�t=td � e�t=to

���
1 � to

td

�
(58)

where the mechanical impedance zw D ¡wcw is the product of the density of the
water and the speed of sound in the water. The constant to D ¡h=zw is called by
Kirkwood the damping time of the plate (see Kennard [115]). The total pressure on
the wet face of the plate is

Qp D 2po e�t=td � zw v D 2po

�
� to

td
e�t=td C e�t=to

���
1 � to

td

�
(59)

This pressure becomes zero for time tm when � t0
td

e�tm=td C e�tm=t0 D 0 which
gives

tm D td
td
to

� 1
ln

td
to

(60)
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Fig. 10 Air-backed steel plate subjected to exponential pulse with po D 1 MPa, to D 200 �s.
Pressure on the wet side of the plate and velocity as a function of time (�s) for three values of
the thickness h

The velocity of the plate at that time is

v D 2po

zw
e�tm=td D 2po

zw

�
td
to

�1
.�

1� td
to

�
(61)

Figure 10 shows results for a steel plate obtained assuming that the density of
steel is 7,850 kg/m3, the density of water is 1,000 kg/m3, the speed of sound is
1,500 m/s, po D 1 MPa, and to D 200 �s. On the wet surface of the plate, the
pressure becomes negative once t exceeds the value tm predicted by Eq. (60) which
defines the limit of the model. Figure 10 shows that this cavitation occurs shortly
after the plate velocity reaches its maximum.

The loss of contact with the fluid implies that the impulse Io is not fully applied
to the plate. The impulse transmitted to the plate is given by

I D Ÿ Io (62)

where Ÿ D §§=.1�§/ and § D td=to. Kambouchev et al. [116, 117] extended Taylor’s
model to the case of explosions in air. In that case, the reflection coefficient for the
shock wave reflecting from the front face of the plate varies between 2 and 8 instead
of 2 for underwater explosions. In the work of Kennard [115] and Dawson and
Sullivan [118], the plate rests on an elastic foundation.
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Fig. 11 Water-backed steel
plate subjected to exponential
pulse with po D 1 MPa,
to D 200 �s. Incident
pressure pi and pressures on
the left and right sides of the
plate as a function of time
(�s) for a thickness h D 5 mm

4.2.4 Water Backed Plates

The back face of the plate could also be in contact with water and in that case we
will have a Water Backed Plate (WBP) as opposed to the Air backed Plate (ABP)
previously considered. Both ABP and WBP were studied in [109, 111, 119, 120].

Equation 57 was developed for an air-backed plate, for a water backed plate,
the mechanical impedance zw should be replaced by z0

w D 2 zw to account for the
fact that there is water on both sides of the plate. The pressure on the back face
is obtained by multiplying the plate velocity by the impedance zw. With the same
parameter used for the ABP, we consider a 5 mm thick WBP steel plate assuming
that the density of steel is 7,850 kg/m3, the density of water is 1,000 kg/m3, the
speed of sound is 1,500 m/s, po D 1 MPa, and t0 D 200 �s. Figure 11 shows a very
different behavior: after approximately 35 �s the pressures on both the left and the
right surfaces of the plate are nearly identical to the incident pulse. For this reason,
it is sometimes said that the plate is almost “transparent” to the wave. There is a
reduction in the maximum amplitude and, while the incident wave is a shock wave
since it rises instantly from zero to its maximum pressure, the pressure pulse on
the left rises progressively. It can also be seen that the pressure on the left surface
remains positive.

5 Shock Wave Interactions with Submerged Shells

5.1 Previous Studies

The effect of shock waves on submerged cylindrical or spherical shells has been
studied for many years because of naval applications. Without attempting an
exhaustive review, we note the analytical approaches of Huang and co-workers
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Fig. 12 Geometry of the
problem. The explosion
source S is located at a
distance D D 5R to the left of
a cylindrical shell of radius R.
Lines ST1 and ST2 define the
illuminated and shadow
regions of the shell

[121–130], Payton [131], Tang and Yen [132], the analytical and numerical analyses
in [133–139] and the experimental results of Hung et al. [140, 141]. In these
references, pressure, velocity or acceleration at a few points around the shell is
plotted as a function of time. Ref. [131] gives one figure showing the position of
various wave fronts at one particular instant. Detailed studies of the interaction
of shock waves with submerged cylindrical shells showing the progression of the
various wave fronts as a function of time were presented by Iakovlev [142–153],
Leblond et al. [154–158], Hasheminejad [159–161], and others [162–164].

5.2 Interaction of a Cylindrical Wave with an Evacuated Shell

Considering the interaction of a shock wave with a submerged air-filled cylindrical
shell, this subsection presents an approach to determine the position of several wave
fronts in the surrounding water. Wave fronts due to the direct, reflected and creeping
waves propagating in the water and those due to waves radiated in the fluid because
of the motion of the shell are determined using a ray tracing procedure.

With the geometry used in Iakovlev [142–153], a cylindrical shell of radius R is
subjected to a cylindrical shock wave emanating from a source located at a distance
D D 5R from the axis of the shell (Fig. 12). From the source S, drawing two lines
ST1 and ST2 tangent to the surface of the shell, defines the illuminated region T1LT2

and the shadow region T1RT2 of the shell. In the fluid, the region delimited by the
two tangents and located to the right of the arc T1RT2 is called the shadow zone.

The shock wave propagates in all directions at the speed of sound in the water.
The direct wave front, undisturbed by the presence of the shell, is a circle of radius
r centered at S and SA is a typical ray (Fig. 13). The shock wave interferes with
the shell when r > D-R. Then, rays reaching a point P in the illuminated region is
reflected so that the reflected angle i2 is equal to the incident angle i1 and the total
length SP C PB D SA D r. The wave fronts for the direct wave and the reflected wave
labeled D and R in Fig. 14 are drawn using this ray tracing procedure. Following
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Fig. 13 Generation of a
direct wave front by rays not
interfering with the shell (ray
SA) and reflected wave fronts
(ray SPB)

Fig. 14 Wave fronts
generated by the interaction
of a cylindrical shock wave
and a cylindrical air-filled
shell for d/R D 1.5 (D Direct
wave, R reflected wave, CW
creeping wave, A
anti-symmetric radiated
wave)

the same convention as in [142–153] we define the penetration distance d D r-D C R
and plot the position of the various wave front for d/R D 1.5 as in Ref. [147]. The D
and R wave fronts meet along the tangents from the source to the shell. The curve
joining that point to the surface of the shell is the wave front for the creeping waves
in the shadow zone.

Creeping waves also known as Franz waves propagate in the shadow zone as the
speed of sound in the fluid. As illustrated in Fig. 15, starting from the tangent point
T1, a creeping wave propagates along the circumference and then radiates into the
fluid in a tangential direction. The total length ST1 C T1Q C QC is equal to r. When
T1Q D 0, the creeping wave meets the direct wave and reflected wave fronts and
when ST1 C T1Q D 0, it reaches the surface of the shell.

The shock wave excites the propagation of waves in the shell along the
circumferential direction. The lowest symmetrical and anti-symmetrical modes are
excited. Anti-symmetrical modes tend to propagate at speeds near that of shear
waves in a solid. In the calculations we assume a shear wave speed c2 D 3,100 m/s
in steel and a speed of sound of 1,480 m/s in water. Figure 16 shows an incident
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Fig. 15 Ray tracing
procedure for creeping waves
in the shadow region of
cylindrical shell
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i1Fig. 16 Ray tracing
procedures for waves caused
by oscillations of the shell

ray SP1 making an angle i1 with the radial direction. If this ray excites waves
propagating in the circumferential direction, that is with a refracted angle i2 of 90ı,
according to Snell’s law, the critical angle for exciting the oscillations of the shell
wall is given by

sin i1 D c1 = c2 (63)

which gives a value of 28.52ı in this case. Then, anti-symmetric waves in the shell
propagate along the circumference with a velocity c2 (arc P1-P2 in Fig. 16) and
radiate back into the fluid at an angle i1 as shown. The total length SP1 C P1P2

(c2/c1) C P2D is equal to r, the radius of the direct wave front. The two radiated
wave fronts shown in Fig. 14 are drawn using this ray tracing procedure. Symmetric
modes for the shell tend to propagate at speeds near that of longitudinal waves in
a solid: about 5,000 m/s for steel. The same procedure can be used to obtain those
wave fronts.

The procedure presented here yield results that are in excellent agreement with
those of Ref. [146] for this particular example and can be applied successfully to
examples from [142–164]. The four types of wave fronts shown in Fig. 14 are
predicted accurately without having to solve a complex fluid–structure interaction
problem. Another advantage is that it brings insight into the physics of the problem.
With a numerical approach, the interpretation of the results is not always clear.
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Fig. 17 Interaction with a
fluid-filled cylindrical shell.
Sonic case: d/R D 0.6,
c2/c1 D 1. Direct and
reflected wave fronts

5.3 Interaction of a Cylindrical Wave with a Fluid-Filled Shell:
Sonic Case

Considering the interaction of a shock wave generated by an underwater explosion
with a submerged cylindrical shell, we examine the case in which the liquid inside
the shell is the same as the liquid surrounding it (c2/c1 D 1). Since the shell is filled
with a liquid, waves will propagate through the inside fluid, they will in part reflect
from the inside surface of the shell and inpart be transmitted back into the outside
fluid. Therefore, there will be several new wave front in addition to those discussed
in Sect. 5.2.

In Fig. 17, d/R D 0.6 and the shell is “transparent” to the direct wave in the sense
that the wave front propagates through as if the shell was not there. The position of
the wave front for the reflected wave is not affected by the presence of the inside
fluid. Rays emanating from the source S do not reflect from the inside surface of the
shell until the direct wave reaches the tangent point T1 (Fig. 12). This occurs when
r D

p
D2 � R2 or r D R

p
24 for the present geometry. In other words, internal

reflections will occur when

d

R
>

s
D2

R2
� 1 �

�
D

R
� 1

�
(64)

In this case, D/R D 5 so we must have d=R >
p

24 � 4 D 0:89898 for waves to
reflect from the inside of the shell.

For a larger value of the d/R ratio (d/R D 1.7), we also note the presence of
creeping waves in the outside fluid and of an additional wave front in the inside
(Fig. 18). This new wave front is due to the reflection of rays from the inside surface
of the shell. It is called R1 because the rays reflect from the inside surface only once.
This wave front has a cusp singularity and it starts where the direct wave crosses the
shell (Fig. 18b). That figure also indicates that the R1 wave front does not meet the
CW wave front as they cross the shell.
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Fig. 18 Interaction with a
fluid-filled cylindrical shell.
Sonic case: d/R D 1.7,
c2/c1 D 1. (a) general view;
(b) expanded view

The R1 wave front is drawn as indicated in Fig. 19. For a given value of the angle
™, the distances SA and AE are given by

SA D R
q

D2

R2 C 1 � 2 D
R cos ™ AE D 2R cos .”/

where ” D sin�1
�

D
SA sin ™

�
is the angle between both SA and AE and the radial

direction. The distance from E to the center of the center of the shell given by
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when D/R D 5 and d/R D 1.7, OE � 1 when 94:3o � 
 � 130:5o. With this
construction, when 78:46o � 
 � 94:3o, point E is located outside the shell which
means that this reflected ray has reached the inside surface of the shell and has been
in part transmitted into the outside fluid and in part reflected back inside. The R1
wave front outside the shell is seen to meet the CW and D wave fronts along ST1,
the tangent to the circle. The wave front corresponding to the second reflection from
the inside of the shell is too small to be drawn on this figure.

When d/R D 2.2, the size of the two R1 wave fronts became larger and joined
together and we note the presence of two additional wave fronts labeled R2 (Fig. 20).
R2 indicates that those wave fronts are obtained by considering rays that reflect from
the inside surface of the shell twice. R2 wave fronts start where the R1 wave fronts
cross the shell. Figure 20b shows how the R1 front meets the CW and D fronts in
the outside fluid. The R2 front follows the same pattern in the outside fluid but that
part is not drawn here to keep the figure legible.

When d/R D 2.9, the R1 wave fronts are no longer singular (Fig. 21). In that case,
two R3 wave fronts also appear and we see that the R1 wave fronts are connected
to two R2 wave fronts which in turn are connected to the R3 wave fronts. The R3

wave fronts do not quite reach the CW front which indicates that there are R4 fronts
which are not shown here because they are very small. Results shown in Figs. 19,
20 and 21 for cases where d/R D 1.7, 2.2, and 2.9 are in excellent agreement with
those shown by Iakovlev et al. [143].

Figure 22 shows that inside the shell, the first reflected rays form a caustic in the
upper right quadrant. That figure also shows that the singular points of the R1 wave
fronts are located on that caustic when d/R D 1.7 and 2.2. For d/R D 2.9, there is
no singular point since the wave front goes beyond the caustic. Similarly, Fig. 23
shows the caustic generated after two reflections from the inside surface and the R2

fronts for d/R D 2.2, 2.9, and 4.21. All three of these wave fronts have a singular
point located on the caustic.

Results in Figs. 24 and 25 are in good agreement with those in Iakovlev et al.
[143].
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Fig. 20 Interaction with a
fluid-filled cylindrical shell.
Sonic case: d/R D 2.2,
c2/c1 D 1. (a) general view;
(b) expanded view

5.4 Interaction of a Cylindrical Wave with a Fluid-Filled Shell:
Subsonic Case

When waves propagate slower in the inside fluid than in the outside (c2/c1 < 1) fluid
different phenomena occur. In the present example, c2/c1 D 0.43. Figure 26 shows a
different shape for the direct wave inside the shell compared to Fig. 17. This reflects
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Fig. 21 Interaction with a fluid-filled cylindrical shell. Sonic case: d/R D 2.9, c2/c1 D 1

Fig. 22 Caustic and R1

reflected wave fronts for
d/R D 1.7 (red), 2.2 (blue),
2.9 (black). Sonic case,
c2/c1 D 1

the fact that waves propagate at slower speeds inside. From Fig. 27 we find that, for
a given angle ™, the angles ’, i1 and i2 are given by

’ D tan�1
	
sin ™

ı�
D
R � cos ™

� 

; i1 D ™ C ’; i2 D sin�1

�
c2

c1

sin i1

�
(65)

The penetration distance is AF D c2

c1
R
n

D
R � 1 C d

R �
q

D2

R2 C 1 � 2 D
R cos ™

o
:
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Fig. 23 Caustic and R2

reflected wave fronts for
d/R D 2.2 (red), 2.9 (blue),
4.21 (black). Sonic case,
c2/c1 D 1

Fig. 24 Interaction with a
fluid-filled cylindrical shell.
Sonic case: d/R D 3.9,
c2/c1 D 1. First three reflected
wave fronts (R1: blue, R2:
red, R3: black) and CW front
(dashed red line) when

In Fig. 28, the line AF is extended until F reaches the inside of the shell. That
is, until AF D 2 cos (i2). It shows that direct rays do not reach the entire volume
inside the shell and they also form a caustic in the upper right quadrant. This results
in direct wave fronts that do not reach the shell when d/R > 0.8990 and in some
cases cusp singularities occur on the caustic. When d/R D 4.21 this wave front is
singular since it reaches the caustic. The DWI start reflecting from the inside surface
when d/R > 2 c1/c2 D 4.651. We also note that these wave fronts all start on the ray
emanating from the tangent point T1 in Fig. 12.



Interaction of Underwater Blasts and Submerged Structures 131

Fig. 25 Interaction with a
fluid-filled cylindrical shell.
Sonic case: d/R D 4.20,
c2/c1 D 1. First three reflected
wave fronts (R1: blue, R2:
red, R3: black) and CW front
(dashed red line)

Fig. 26 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 0.6,
c2/c1 D 0.43

The creeping wave propagating around the outside circumference of the shell has
a 90ı angle of incidence relative to the radial direction. According to Snell’s law this
wave is transmitted to the inside fluid at an angle given by

i2 D sin�1.c2 =c1 /
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Fig. 27 Ray tracing
procedure for direct wave
inside when c2/c1 ¤ 1

Fig. 28 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: c2/c1 D 0.43.
Direct rays inside the shell
and corresponding wave
fronts for d/R D 2.2, 2.9,
4.21, and 4.7

In the present example, c2/c1 D 0.43 so i2 D 25.5ı. Figure 29 shows that a ray
from the source S to the tangent point T1, followed by a creeping wave from T1
to an arbitrary point P on the circumference is followed by a ray PG in the inside
fluid. The total length ST1 C T1P C PG.c2/c1 is equal to the radius of the direct
wave in the outside fluid. The wave front generated by this creeping wave after it
is transmitted to the inside fluid is labeled CWI. This CWI wave front connects
smoothly to the DWI (Fig. 30).

Rays generating the CWI wave front make an angle i2 D sin�1 .c2 =c1 / with
the radial direction. Their envelope is the circle of radius Rc2/c1 shown in Fig. 31.
The dashed line in that figure starts from the tangent point T1 and makes an
angle i2 with the radial direction. It can be shown that the CWI wave front
starts on the line AB when 0.89890< d/R < 5.0982. That wave front is smooth
when 0.89890 < d/R < 2.9986 and becomes singular when 2.9986 < d/R < 5.0982
as shown in Fig. 31.

When d/R D 2.9, the top and bottom creeping wave fronts cross each other
as they circumvent the shell on the outside, and same occurs for the CWI wave
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T1

S i2q

Fig. 29 Interaction with a
fluid-filled cylindrical shell.
Subsonic case. Ray tracing
procedure for creeping waves
inside (CWI)

Fig. 30 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 2.2,
c2/c1 D 0.43

Fig. 31 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: c2/c1 D 0.43.
CWI wave fronts and related
caustic

fronts inside the shell (Fig. 32). d/R D 4.21 both DWI and CWI wave fronts have
cusp singularities (Fig. 33) as already indicated in Figs. 28 and 31. After a single
reflection from the inside of the shell, rays form the pattern shown in Fig. 34 where
it can be seen that the wave fronts are restricted to a small region and that a caustic
is formed in the lower left quadrant.
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Fig. 32 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 2.9,
c2/c1 D 0.43

Fig. 33 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 4.21,
c2/c1 D 0.43

Fig. 34 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: c2/c1 D 0.43.
R1 caustic and wave fronts
for several values of d/R
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Fig. 35 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 6,
c2/c1 D 0.43

Fig. 36 Interaction with a
fluid-filled cylindrical shell.
Subsonic case: d/R D 8,
c2/c1 D 0.43

When d/R D 6 we notice three types of wave fronts (Fig. 35): the CWI wave
front, the portion of the CWI wave front that is reflected from the inside surface of
the shell, and the R1 wave front previously shown in Fig. 34. Figure 35 only shows
wave fronts generated by initial rays starting above the horizontal axis. Initial rays
below that axis generate three more wave fronts that are mirror images of those
shown on the figure. They are not shown in order to keep the figure simple. On
the other hand, Fig. 36 shows both sets wave fronts are drawn for d/R D 8. In this
case the reflected CWI wave fronts also have a singularity and they cross along the
horizontal axis. The R1 wave front also has a singularity as indicated in Fig. 34 and
it meets the CWI wave front at that singular point.
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Fig. 37 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 0.15,
c2/c1 D 1.5

5.5 Interaction of a Cylindrical Wave with a Fluid-Filled Shell:
Supersonic Case

A different behavior is observed when the speed of sound is higher inside the shell
than outside (c2/c1 > 1). In this example, c2/c1 D 1.5. The main result is that rays
traveling though the inside fluid generate new wave fronts in the outside fluid.

First, using the construction shown in Fig. 27, we find that the refracted angle
i2 D 90ı when the incident angle i1 D 41.8ı and that occurs when ™ D 34.15ı and
d/R D 0.2100. When d/R < 0.21, wave fronts for the direct wave outside and the
direct wave inside meet as they both reach the shell as shown in Fig. 37 when
d/R D 0.15. Waves propagate faster inside the shell. When d/R > 0.21, the two
wavefronts (DWO and DWI) no longer meet along the circumference of the shell as
shown in Fig. 38 for d/R D 0.6. We find that, for this particular example (D/R D 5,
d/R D 0.6), when 32.045ı < ™ < 34.15ı refracted rays reach the inside of the shell
and generate refracted rays in the inside fluid and transmitted rays outside (Fig. 37).
The incident ray SA makes an angle i1 with the radial direction while AB makes an
angle i2 with that direction. At B, the reflected ray BC makes an angle i2 with the
radial direction while the transmitted ray BD is at an angle i1. Snell’s law relates the
angle i2 to i1. When ™ D 34.15ı, the transmitted wave front meets the reflected wave
front on a line making a 41.8ı angle with the radial direction at point A.

Figure 38 shows another wave front for rays traveling through the inside fluid and
out into the outside fluid but the R1 reflected front is too small to be clearly visible
(Fig. 39). However it is clearly visible when d/R D 1.0 (Fig. 40). The IO wave front
is seen to start from where the R1 wave front starts and it joins smoothly with the
reflected wave front R. When d/R D 1.4 the direct rays have all reached the back of
the shell and have reflected to give a R1 wave front inside and in the outside fluid
the two IO fronts shown in Figs. 38 and 40 merged together (Fig. 41).
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Fig. 38 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 0.6,
c2/c1 D 1.5

A

B

C

DFig. 39 Construction of
transmitted wave front (T)
and reflected wave front R1
for supersonic case

Fig. 40 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 1.0,
c2/c1 D 1.5
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Fig. 41 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 1.4,
c2/c1 D 1.5

Fig. 42 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 1.7,
c2/c1 D 1.5

For d/R D 1.7, R2 wave fronts corresponding to two reflections from the inside
of the shell are seen in the inside fluid (Fig. 42). A second wave front labeled IO2
initiates from the start of the R2 front and then joins smoothly with the IO front.
When d/R D 2.4, the same pattern is observed (Fig. 43) and in addition we see a
third IO front starting from the end the R2 wave front inside. The end of R2 is also
the beginning of R3 which is not shown on the figure because it is too small. In
Fig. 43, the R1 front does not have a singularity. Results in Figs. 38, 40, 41, 42 and
43 are in good agreement with those shown in Fig. 9 of Iakovlev [145].

The evolution of the shape and size of the R1 wave fronts can be seen in Fig. 44.
When d/R D 1.0, 1.4, and 1.7 the wave front has a singularity when it reaches the
caustic formed by the reflected rays. For d/R D 2.4, the R1 front is smooth.
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Fig. 43 Interaction with a
fluid-filled cylindrical shell.
Supersonic case: d/R D 2.4,
c2/c1 D 1.5

Fig. 44 Rays after one
reflection from the inside of
the shell, caustic, and wave
fronts for several values of
d/R, c2/c1 D 1.5

6 Related Problems

The approach developed to study shock wave interactions with submerged structures
can be applied to other areas. This section describes how it can be applied to better
understand a commonly used medical procedure called lithotripsy and to understand
the development of traumatic brain injury (TBI) caused by impacts and explosions.
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6.1 Lithotripsy

Shock wave lithotripsy (SWL) is a noninvasive procedure for kidney stone removal
that was introduced in the United States in 1984. An overview of SWL is given by
Bailey et al. [165, 166]. The device used for this procedure is called a extracorporeal
shock wave lithotripter and it has three main components, a shock wave source, a
method of acoustically coupling shock waves to the patient, and an imaging system
for targeting. Lithotripters produce decaying pulses that can be described by the
expression introduced by Friedlander for explosions in air

p D po

�
1 � t

to

�
e�’ t=to (66)

where to is the duration of the positive phase, po is the maximum pressure, and ’

indirectly defines the magnitude of the negative phase. Typically, a positive pressure
spike with a duration of 1 �s followed by a 5 �s duration, negative pressure trough.
Peak positive amplitudes range from 15 to 150 MPa and negative pressures are in
the �8 to �15 MPa range. Typically, 2,000–4,000 shock waves are administered at
a rate between 0.5 and 2 Hz. With this procedure, the shock waves break up the
kidney stones.

Dahake et al. [167, 168] studied the interaction of shock waves with 22 mm
cylinder made out of plaster immersed in water. Plaster is used to simulate kidney
stones and, in that material, longitudinal waves propagates with velocity cL D
3:3 mm=�s and shear waves with cs D 1.75 mm/�s. The speed of sound in water is
cw D 1:5 mm=�s. Using the method developed in the present study we consider a
source located 90 mm to the left of the cylinder.

Figure 45a shows the position of the shock wave in the water 6 �s after it has
reached the cylinder. Inside the solid cylinder waves propagate faster than in the
water and Fig. 45 shows four wave fronts inside. As a ray reaches the surface of
the water it generates both a compressional wave PP and a shear wave PS in the
cylinder (Fig. 45b). Some PP rays reach the surface of the cylinder and are reflected
generating a PPP wave and PPS wave (Fig. 45c, d).

As the PP rays reach the surface of the cylinder, the reflected rays form a caustic
(Fig. 46). The PPP wave front has a fold type singularity and that singularity occurs
on the caustic.

After 8 �s, the PP wave front disappears and the PPP and PPS wave front have
changed shape as shown in Fig. 47. The PPs wave front becomes singular as it
reaches its caustic (Fig. 48).

The present approach gives precise prediction for the position of the various
wave fronts which is difficult to obtain using numerical approaches such as the finite
difference method used by Dahake et al. [168] for example. Several other authors
have studied the propagation of shock waves in kidney stones [169–171].
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Fig. 45 Lithotripsy. Interaction of water borne shock wave with a plaster cylinder. (a) wave fronts
for t D 6 �s; (b) Ray tracing procedure for the direct compression (PP) and shear wave (PS) fronts;
(c) Ray tracing procedure for the PPP front; (d) Ray tracing procedure for the PPS front

6.2 Traumatic Brain Injury

Many articles have been devoted to the study of impacts on the human head. Young
[172] modeled the head as a spherical fluid-filled shell. In the impact model, the
head makes contact with a surface though a nonlinear spring representing the local
deformation according to Hertz’s contact law. That nonlinear spring acts in series
with a linear spring that accounts for the deformation of the shell. Using this model,
closed form solutions were obtained for the impact duration and the maximum
impact force. The response of the fluid inside the shell is expected to remain
hydrostatic if the duration of the impact is larger than 4 times the period of the
first n D 2 spheroidal mode of the shell [172]. Analyses of the natural frequencies
and mode shapes of fluid-filled spherical shells are found in [173–175].

A simple analysis for understanding the propagation of waves through the brain
is provided by Babbs [176, 177]. In this model, an elastic bar is impacting a
rigid surface with an initial velocity. Elastic waves propagate along the bar, reflect
from the free end and return towards the impact point. The dynamic response
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Fig. 46 Lithotripsy.
Interaction of water borne
shock wave with a plaster
cylinder. 6 �s

Fig. 47 Lithotripsy.
Interaction of water borne
shock wave with a plaster
cylinder. The PS, PPP, and
PPS wave fronts 8 �s after
the shock wave has reached
the cylinder

Fig. 48 Lithotripsy.
Interaction of water borne
shock wave with a plaster
cylinder. Caustic and PPS
wave front for t D 8 �s
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of a fluid-filled spherical shell subjected to a radial impulsive load was studied
analytically by Engin [178] in order to predict both skull fracture and brain damage.
This model was extended by Kenner and Goldsmith [179, 180]. Finite element
models of a human head subject to an impact force were developed by many authors
including Engin et al. [181] who produced many contour plots for pressure levels
inside the brain at different times.

A number of studies [e.g. 182, 183] used numerical simulations to study the role
of blast wave interactions with the human head in producing traumatic brain injury.
Grujicic et al [184] used a six layer one-dimensional model to simulate the effect
of blasts on the head of a soldier wearing a helmet with polyurea suspension pads.
The six layers are: a layer of air, a Kevlar-phenolic layer representing the helmet
shell, a layer of polyurea, the skull, the cerebro-spinal fluid and the cerebrum. The
objective is to assess the ability of polyurea to mitigate the effects of blast loading
and, in turn, to reduce the possibility for TBI. A full three-dimensional analysis of
this problem [185] showed the propagation of waves through the brain and through
the skull at a faster speed. Simulations of blast waves with human head wearing a
helmet can also be found in [186].

7 Conclusion

This chapter presented an overview of the physics of underwater explosions and
wave propagation in solids and along fluid–structure interfaces. A geometrical
approach is used to study the shock wave interactions with submerged structures
and predict the position of wave fronts as a function of time. This simple approach
gives a whole field view of these interactions and brings insights that are difficult
to gain from numerical simulations. Several examples are presented for interactions
with fluid-filled cylindrical shells and the method accurately predicted the evolution
of complex patterns with many wave fronts. Singularities in some wave fronts were
explained in terms of caustics formed by the rays generating these wave fronts.
Singularities occur when the wave front reaches the caustic and singular points
are located on the caustic. The method is shown to apply to other problems in the
medical field.
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