
Chapter 8
Systematics and Prediction in Franck-Condon
Factors

Ray Hefferlin, Jonathan Sackett, and Jeremy Tatum

Abstract It is the hypothesis of this chapter that diatomic molecular Franck-
Condon factors echo the periodicities of atoms. This means that in isoelectronic
series, entire Deslandres tables for molecules that are one proton shift away from
rare-gas molecules have distinctive behavior relative to other Deslandres tables in
the series. An example is in the 21-electron sequence where BeCl, whose chlorine
atom is next to the closed-shell magic-number atom argon. The periodicity is found
quantitatively and indeed allows for prediction of the vibration frequency for a
hypothetical 2… upper state for CCl.

8.1 Introduction

The Franck-Condon factors (FCFs) for the strongest bands of a band system are
located in a (v0,v00) table such that a parabola (the Condon locus) often tracks through
them [1–3]. The tilt of this parabola, and its latus rectum, can be calculated from the
spectroscopic constants of the upper and lower electronic states of the transition. It
is relatively rare that the spectroscopic constants and the FCFs are available for any
given molecule; the availability is most common for isoelectronic sequences. Hence,
we calculate these two properties for the Condon loci of similar band systems
for the molecules in isoelectronic sequences. The hypothesis of the work is that
these loci will manifest the periodicities of the constituent atoms in the diatomic
molecules.
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Data for a study by Kuz’menko and Chumak [3] showed that the hypothesis is
satisfied for q(v0,v00) D q(0,0) in isoelectronic sequences with 14 and 21 electrons;
Hefferlin and Kuznetsova [4] showed that the hypothesis is satisfied for transition
moments, another measure of band system intensities. In this chapter, we extend the
test of the hypothesis to many more band systems.

8.2 Theory

The transition of a diatomic molecule from one electronic state to another takes
place almost instantaneously, in a time that is very short compared with the period
of molecular vibration. That is to say, the transition takes place with virtually no
change in internuclear distance. For that reason, a transition can be indicated in
energy level diagrams by means of a vertical line.

A vibrating molecule spends more time in its position of greatest extension
(greatest internuclear distance) or greatest compression (least internuclear distance),
when the speed of the atoms is least, than it does in its equilibrium position, when
the relative speed of the atoms is greatest. This is equally true of a classical model
or a wave-mechanical model. (In the latter case, the wavefunctions are greatest at
the extrema of the motion.)

Here, we provide formulas that will enable the calculation of the Condon locus
in terms of molecular constants for parabolic potential energy functions. Figure 8.1
shows schematically the parabolic energy curves of two simple harmonic oscillators
and their discrete vibrational energy levels.

We suppose that the parabolas can be represented by the equations

T D T 0
e C k0

2hc
.r � r 0

e/
2; (8.1a)

T D T 00
e C k00

2hc
.r � r 00

e /2: (8.1b)

Here, T 0
e and T 00

e are the electronic contributions to the term values (energy
divided by hc), and the second terms are the potential energy terms expressed in
wave number units (m�1). r is the internuclear distance, and re is its equilibrium
value. k is the force constant, related to the molecular constant !e by

k D 4�2mc2!2
e ; (8.2)

and

m D m1m2

.m1 C m2/
; (8.3)
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Fig. 8.1 Potential energy curves of two simple harmonic oscillators and their discrete vibrational
energy levels (the numbers on the axes are arbitrary). The vertical separations of the discrete
vibrational levels within the two parabolas are inversely proportional to the latera recta of the
parabolas. That is to say, the narrower the parabola, the more widely spaced are the vibrational
levels

where m is the “reduced mass” of the molecule. The single primes and the number
1 refer to the upper electronic level, and the double primes and the number 2 to the
lower level, in accordance to the usual convention of molecular spectroscopy.

The problem is to draw a horizontal line T D T 0 to intersect the upper curve, then
to drop vertical lines from the two points of intersection, and finally to find the two
values of T00 where these vertical lines intersect the lower curve. It is mathematically
straightforward. The line T D T 0 intersects the upper curve at r values given by

r D r 0
e ˙

r
2hc

k0 .T 0 � T 0
e/: (8.4)

The corresponding T 0 values in the lower curve are given by

T 00 D T 00
e C k0

2hc

 
r 0

e ˙
r

2hc

k0 .T 0 � T 0
e/ �r 00

e

!2

: (8.5)

We now introduce the term values of the vibrational levels in terms of the
vibrational constants !00

e and !0
evia
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T 00 D T 00
e C

�
v00 C 1

2

�
!00

e (8.6a)

and

T 0 D T 0
e C

�
v0 C 1

2

�
!0

e (8.6b)

We also make use of

k0 D 4�2mc2!00
e

2 and k00 D 4�2mc2!00
e

2 (8.7)

so that

2hc

k00 D „
�mc!00

e
2

(8.8a)

and

2hc

k0 D „
�mc!00

e
2

(8.8b)

The constant „=�mc has the dimension of a length, and we use the symbol L for
it. If m is expressed in amu, L has the dimensionless numerical value:

L D 6:743052 � 10�17

m
: (8.9)

Further, we introduce the dimensionless molecular constants

�00 D 1

L!00
e
; (8.10a)

�0 D 1

L!0
e
; (8.10b)

and

� D r 00
e � r 0

e

L
: (8.11)

When these substitutions have been made, we obtain

�00
�

�00 C 1

2

�
D
 

� ˙
s

�0
�

�0 C 1

2

�!2

: (8.12)
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Equation (8.12) is the equation to the Condon parabola in the (�00,�0) plane, in
a form that is convenient to compute and to draw. For analysis, it may be more
convenient to write it in the standard form for a conic section, namely,

ax2 C 2hxy C by2 C 2gx C 2fy C c D 0; (8.13)

in which

x D �00 C 1

2
; (8.14a)

y D v0 C 1

2
; (8.14b)

a D �002; (8.14c)

b D �02; (8.14d)

c D �4; (8.14e)

f D ��2�0; (8.14f)

g D ��2�00; (8.14g)

h D ��00�0: (8.14h)

Equation (8.13) makes it even clearer that Eq. (8.12) describes a parabola. Its
axis makes an angle � with the �00 axis; � is given by

Tan � D !0
e

!00
e

(8.15)

The length 2l of its latus rectum (dimensionless) is

2l D 4�2�00�0
�
�002 C �02�3=2

D 4.r 00
e � r 0

e/
2
!00

e
2
!0

e
2

L
�
!00

e
2 C !0

e
2
�3=2

: (8.16)

Several points are of interest. If !0
e D !00

e , the angle that the axis of the parabola
makes with the �00 axis is 45ı, and [3] the parabola degenerates into a straight line.
If r 0

e D r 00
e , the parabola also becomes a straight line. The vertical and horizontal

tangents of the parabola are both at � D –0.5.
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As an example, let us take the following values from [5] for the B-X system of
CN: m D 6.46427 amu, so that L D 1.04331 � 10�17 m

r 0
e D 1:1506 � 10�10 m

r 00
e D 1:1718 � 10�10 m

!0
e D 2:16413 � 105 m�1

!00
e D 2:068705 � 105 m�1

In this case,

� D 2:0320 � 105

�0 D 4:42898 � 1011

�00 D 4:63328 � 1011

The resulting Condon parabola is shown in Fig. 8.2.

8.3 Preparation of the Data for Investigations
of Isoelectronic Molecules

The obvious starting point would be to compute the data (the angle and the length
of the latus rectum) for the Condon locus of the band systems of each fixed-period
diatomic molecule (e.g., both atoms from period 2). This procedure suffers from a
severe lack of such data. The density of data is greater among isoelectronic series.
Table 8.1 shows the isoelectronic series and related data.

For each total electron count, members of isoelectronic sequences were listed
in the order (Z1,Z2), with Z1 and Z2 representing the first and second atom in the
molecular symbol. In many cases, the atoms are in reverse order compared to
standard notation (e.g., SN). The lists were cut into partitions bounded on both
ends by a rare-gas molecule. A rare-gas molecule is one having at least one rare-
gas molecule (e.g., ONe). A search was made for partitions having at least three
members with the same upper and lower state angular momentum quantum number
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Fig. 8.2 The Condon locus for the B-X band system of CN with simple harmonic potentials
assumed for the upper and lower states. A Franck-Condon factor lies at each integer intersection.
The curve is calculated from the numerical values given in the text. The axis of the parabola makes
an angle of 46.29ı with the �00 axis, and the length of the latus rectum is 0.129 v units. In what
follows, this Condon parabola would be described as “narrow”

and multiplicity and with at least one member no more than one proton shift away
from a rare-gas molecule (e.g., BeCl next to BAr). Most of the lower electronic
states in the chosen partitions have X designations; the highest encountered upper
state is the twelfth above X (including a triplet state), but most have A and B
designations. Using FCFs from [5] and spectroscopic constants from [6] for each
band system, computation employing the formulas given in Sect. 1.2 provides the
latus rectum, the angle ™, and a plot of Condon locus. Those with more than three
digits after the decimal point have been truncated so that they show three. The scale
of the latera recta is the same as that for v0 and v00 in their Deslandres table. CCl is
included for purposes of the prediction described in Sect. 8.5. Figure 8.3 shows �

for members of an isoelectronic sequence plotted on Z1–Z2.
Some of the symmetry symbols in Table 8.1 are taken from [7] and [8]. The latera

recta of the Condon loci in some cases increase along with the ™ and in the other
cases oppositely; in all cases, they behave much more irregularly than do the angles.
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y = 0.415x2 + 36.75
R² = 0.983
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Fig. 8.3 The angle ™ of the Condon loci for the14-electron 3…C-1†C portion of Table 8.1. For
these unusually well-behaved band systems, the Condon loci are very wide in the center, wide, and
narrow from center to end. The excited states for N2 (center), CO, and BF (ends) are the second,
fifth, and second states above the ground state

8.4 Fitting Errors and Pitfalls in the Data

Plots for 11 isoelectronic sequences having more than three data, or having three
centered on jZ1–Z2j D zero, were prepared, one of which is shown in Fig. 8.3.
Six of the plots have six data points, and three more have five points (one in the
center and two duplicated on each side); the remainder have three non-redundant
points. The average standard deviation of fitting for these is 2.595ı. Figure 8.4 has
the largest scatter around its trend line (� D 3.951ı), so it is used as an example of
what the (n � 1) standard deviations look like. There is no theoretical basis for using
quadratic trend lines; they are used for sake of simplicity.

There is no evident correlation between the scatter in the graphs (estimated by eye
or calculated as standard deviations), the violation of the rule forbidding multiplicity
changes during transitions, the upper electronic states being close to or far above the
ground states, the lower electronic states not being ground states, or even the extent
to which the two state designations are the same.

8.5 A Predicted Upper State Vibration Frequency

It is possible to predict the upper 2…-state vibrational frequency of CCl (top portion
of Table 8.1) by finding ™ from the trend-line equation of the fitting parabola in the
figure appropriate to that sequence (not shown). Eq. (8.15) gives !0

e as

!0 D !00
e Tan � (8.17)



190 R. Hefferlin et al.

Fig. 8.4 The angles of the Condon loci for the least well-behaved sequence, the †-† partition
of the 21-electron molecules in Table 8.1. The parabola minimum is at Z1 – Z2 D 8.401. The
data are provided with average (n-1) standard deviation derived from all sequences with sufficient
numbers of points. From left to right, the loci are narrow, wide, wide, narrow, wide, and narrow in
appearance

Putting x D 11 into the trend-line equation results in a predicted angle � of
55.08ı which, when substituted into Eq. (8.17), yields !0

e D 1; 240 cm�1 for the
hypothetical 2… upper state. Using the average of the six deviations found above,
2.595ı, the expected standard deviation of this predicted value is 9.27 %.

8.6 Summary

All 11 data plots indicate that the hypothesis of this chapter is correct, i.e., that
Franck-Condon factor tables echo the periodicities of the atoms comprising di-
atomic molecules. The 11 graphs show that in isoelectronic series, entire Deslandres
tables that are one proton shift away from rare-gas molecules have a distinctive
property relative to other tables in the series. The theory has allowed the prediction
of the vibration frequency for the first excited 2…, as yet undiscovered, state of CCl.
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