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to Ultrafast Processes
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Abstract The density matrix method is a powerful theoretical technique to describe
the ultrafast processes and to analyze the femtosecond time-resolved spectra in
the pump-probe experiment. The dynamics of population and coherence of the
system can be described by the evolution of density matrix elements. In this
chapter, the applications of density matrix method on internal conversion and
vibrational relaxation processes will be presented. As an example, the ultrafast
internal conversion process of   * ! n * transition of pyrazine will be presented,
in which case the conical intersection is commonly believed to play an important
role. A treatment with Q-dependent nonadiabatic coupling will be applied to deal
with the internal conversion rate. Another important ultrafast process, vibrational
relaxation, which usually takes place in sub-ps and ps range, will be treated using
adiabatic approximation. Then the vibrational relaxation in water dimer and aniline
will be chosen to demonstrate the calculation.

Y.L. Niu
Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan, ROC

Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary
Molecular Science, National Chiao Tung University, Hsinchu, Taiwan, ROC

C.K. Lin • C.Y. Zhu (�) • Y. Fujimura • S.H. Lin (�)
Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary
Molecular Science, National Chiao Tung University, Hsinchu, Taiwan, ROC
e-mail: cyzhu@mail.nctu.edu.tw; sheng@mail.nctu.edu.tw

H. Mineo • S.D. Chao
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, ROC

M. Hayashi
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan, ROC

K. Nishikawa et al. (eds.), Quantum Systems in Chemistry and Physics,
Progress in Theoretical Chemistry and Physics 26, DOI 10.1007/978-94-007-5297-9 4,
© Springer ScienceCBusiness Media Dordrecht 201

79

2



80 Y.L. Niu et al.

4.1 Introduction

Pump-probe experiment is an efficient approach to detect the ultrafast processes
of molecules, clusters, and dense media. The dynamics of population and coher-
ence of the system can be theoretically described using density matrix method.
In this chapter, for ultrafast processes, we choose to investigate the effect of
conical intersection (CI) on internal conversion (IC) and the theory and numerical
calculations of intramolecular vibrational relaxation (IVR). Since the 1970s, the
theories of vibrational relaxation have been widely studied [1–7]. Until recently,
the quantum chemical calculations of anharmonic coefficients of potential-energy
surfaces (PESs) have become available [8–10]. In this chapter, we shall use the water
dimer (H2O)2 and aniline as examples to demonstrate how to apply the adiabatic
approximation to calculate the rates of vibrational relaxation.

The CI of the adiabatic PESs is a common phenomenon in molecules [11–
13]. The singular nonadiabatic coupling (NAC) associated with CI is the origin
of ultrafast non-Born-Oppenheimer transitions. For a number of years, the effects
of CI on IC (or other nonadiabatic processes) have been much discussed and
numerous PESs with CIs have been obtained [11, 12] for qualitative discussion.
Actual numerical calculations of IC rates are still missing. In this chapter, we
shall calculate IC rate with Q-dependent nonadiabatic coupling for the pyrazine
molecule as an example to show how to deal with the IC process with the effect of
CI. Recently, Suzuki et al. have researched the   * state lifetimes for pyrazine in
the fs time-resolved pump-probe experiments [13]. The population and coherence
dynamics are often involved in such fs photophysical processes. The density matrix
method is ideal to describe these types of ultrafast processes and fs time-resolved
pump-probe experiments [14–19].

This chapter is organized as follows: In Sect. 4.2, the theory of density matrix
method is introduced. In Sect. 4.3, we use a theoretical model to manifest the
condition of nonexponential decay. In Sect. 4.4, conical intersection in the IC
process will be dealt with. In Sect. 4.5, the vibrational relaxation process in the
framework of adiabatic approximation will be discussed. And at last, we will give a
conclusion in Sect. 4.6.

4.2 Density Matrix Method

The dynamics of an isolated (or total) system is governed by the Liouville equation
[14–21]

d O�
dt

D � i

„ Œ OHt; O�� D �i OLt O� (4.1)
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Here, OHt is the Hamiltonian of the total system. The subscript “t” here refers to
the “total system”. OHt can be written as

OHt D OHs C OHb C OH 0 (4.2)

where OHs, OHb, and OH 0 are the Hamiltonians of the system, heat bath, and the
interaction between the system and the heat bath, respectively. The symbol O� in
Eq. (4.1) denotes the density operator of the total system. OLt represents the
Liouville operator corresponding to OHt. The time-dependent behavior of the system
is described by the reduced density matrix O�, which can be obtained by eliminating
the heat bath variables:

�mn D
X

˛

�m˛;n˛ (4.3)

That is,

O� D Trb Œ O�� (4.4)

Define project operator OD

O�1 D OD O�; O�2 D .1 � OD/ O� (4.5)

where the matrix elements of OD can be represented as [21]

D
m0˛0 ;n0ˇ0

m˛;nˇ � ı˛˛0ımm0ınn0ıˇˇ0ı˛ˇ (4.6)

OD can project the density matrix elements onto the diagonal matrix elements of
the bath. Apply Laplace transformation to density operator O� :

O�.p/ D
Z 1

0

e�pt O�.t/dt (4.7)

Insert Eq. (4.7) into Eq. (4.1):

p O�1.p/ � O�1.0/ D �i OD OLt O�1.p/ � i OD OLt
1

p C i
�
1 � OD

� OLt

O�2.0/ � OM.p/ O�1.p/

(4.8)

Here, OM.t/ or OM .p/ denotes the memory kernel:

OM.p/ D OD OLt

1

p C i
�
1 � OD

� OLt

�
1 � OD

� OLt (4.9)
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It follows that

d O�
dt

D �i NL O� �
Z t

0

NM.�/ O�.t � �/d� (4.10)

where

NL D Trb

h OD OLt O�.b/
i

(4.11)

and

NM.�/ D Trb

h OM.�/ O�.b/
i

(4.12)

Applying Markoff approximation, Eq. (4.10) becomes

d O�
dt

D �i NL O� � O� O� (4.13)

That is, the evolution of population dynamics is described by

d�nn

dt
D � �nn

nn �nn �
X

m

0�mm
nn �mm � i

„
h OHs; O�

i

nn

D
X

m

�
�nn

mm�nn � �mm
nn �mm

� � i

„
h OHs; O�

i

nn

(4.14)

where

�mm
nn D �2�

„
˛¤ˇX

˛

X

ˇ

0�.b/

ˇˇ

ˇ̌
H 0

m˛;nˇ

ˇ̌2
ı

�
Em˛ � Enˇ

�
(4.15)

represents the rate constant for m ! n transition, and

�nn
nn D �

X

m

0�nn
mm (4.16)

represents the total transition rate constant of state n. Similarly, the coherence (or
phase) dynamics is described by

d�mn

dt
D ��mn

mn �mn � i

„
h OHs; O�

i

mn
(4.17)

�mn
mn D 1

2

�
�mm

mm C �nn
nn

� C �mn
mn .d/ (4.18)
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Fig. 4.1 Sketch of
pump-probe experiment
process

and

�mn
mn .d/ D �

„2

X

˛

X

ˇ

0�.b/
˛˛

�
H 0

m˛;mˇ � H 0
n˛;nˇ

�2
ı.!˛ˇ/ (4.19)

In the presence of an optical interaction OV .t/, the Liouville equation becomes

d O�
dt

D � i

„
h OHs; O�

i
� i

„
h OV .t/; O�

i
� O� O� (4.20)

This equation can be applied to study the dynamics of the systems with OV .t/ D 0,
linear and nonlinear optics, and pump-probe experiments, etc.

In femtosecond experiments, as shown in Fig. 4.1, the pump-probe methods are
most commonly used to study the dynamic processes in chemical compounds or
materials. It should be noted that for probing, one can use the optical excitation,
photoionization up-conversion, and stimulated emission [18]. From the uncertainty
principle, 	E	t � „=2, we can see that 	E depends on the pumping-pulse
duration 	t. For short 	t, both population and coherence (or phase) can be created.
In other words, in this case, both population and coherence dynamics have to be
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treated. Thus, the density matrix method is ideal for this purpose. In pump-probe
experiments, the Liouville equation takes the form

d O�
dt

D � i OL0 O� � i

„
h OV .t/; O�

i
� O� O� D �i OL0

0 O� � i OL0.t/ O�

D � i

„ Œ OHs; O�� � i

„
h OV .t/; O�

i
� O� O�

(4.21)

where OV .t/ D � E
� EE.t/, E
 is the dipole operator, and OV .t/ describes the interaction
between the system and the pumping (or probing) laser.

For the probing experiment, applying the perturbation method, the first-order
solution of Eq. (4.21) is given by

�.1/
nm.t/ D � 1

„
X

n0

�.	t/nn0

E
n0m

! C !0
n0m � i=TP

� EE0.�!/eit!L0.t/ (4.22)

where 	t D t � ti and Tp represents the duration of the probing laser. Here, OV .t/

is denoted by

OV .t/ D � E
 �
h EE.!/e�i t! C EE.�!/eit!

i
L0.t/ (4.23)

and L0.t/ denotes the laser-pulse shape function. Next, we calculate the polarization
EP .t/

EP .t/ D EP .1/.t/ D Tr
� E
 O�.1/.t/

� D
X

n

X

m

E
nm�.1/
nm.t/ (4.24)

or

EP .t/ D � 1

„
X

n

X

n0

X

m

�.	t/nn0

E
mn E
n0m

! C !0
n0m � i=TP

� EE0.�!/eit!L0.t/ (4.25)

and the linear optical susceptibility

�.!/ D � 1

„
X

n

X

n0

X

m

�.	t/nn0

E
n0m E
mn

! C !nm C i�nm C i=TP

(4.26)

As shown from Eq. (4.26), the dynamics of both population �.	t/nn and
coherence �.	t/nn0.n ¤ n0/is involved in the time-resolved experiment (the probe
experiment here), and Eq. (4.26) can be applied to optical absorption and stimulated
emission. Furthermore, we recover the ordinary linear response theory where �nn0 D
0 and �nn represents the Boltzmann distribution. In other words, Eq. (4.26) denotes
the generalized linear response theory (GLRP). Pumping experiments can be treated
similarly by using Eq. (4.21). With a short-pulse pumping laser, both population
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and coherence excitations can be created and the nonadiabatic processes such as
photoinduced electron transfer take place afterward. With a similar derivation as
shown above, we obtain the coherence created by the pumping laser with electric
field EEpu and frequency !pu as

. O�i /nn0 D �2
pu

„2

h
E
ng � EEpu.!pu/

i h
E
gn0 � EEpu.�!pu/

i
O�0 (4.27)

where �pu denotes the pump-laser pulse duration and O�0 is the density matrix of the
system before the arrival of the pump laser. It is assumed that initially only the g
state is populated. Here . O�i /nn0by setting n0 D n, we obtain the population . O�i /nn.
Other pumping conditions can be treated similarly by using Eq. (4.21).

4.3 Application to a Case of Bixon-Jortner Model

In intermediate or small systems, their population dynamic behaviors often exhibit
nonexponential decay or even oscillatory decay like the vibrational relaxation of
C6H5NH2 in Sect. 5.2. To show how the density matrix method can be applied to
study these systems, the Bixon-Jortner model is considered in this section. For this
purpose, we consider the following model (see Fig. 4.2). j0i and jii .i D 1; n/

are the eigenstates of the Hamiltonian OH0. For simplicity, we assume that only the
perturbation matrix elements between j0i and jii states are nonzero. That is,

H 0
00 D 0

H 0
0i D H 0�

i0 D E 0 ¤ 0

H 0
ij D 0; i; j � 1

(4.28)

The state of the system driven by the Hamiltonian OH D OH0 C OH 0 at time t can
be expanded by j0i and jii states:

j‰.t/i D C0.t/ j0i C
X

i

Ci .t/ jii (4.29)

Fig. 4.2 Bixon-Jortner
model for decay from j0i
state
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Then, the population of state j0i can be expressed as

�00.t/ D jC0.t/j2 (4.30)

The density operator will evolve according to the Liouville equation

d O�
dt

D � i

„
h OH; O�

i
� O� O� (4.31)

In order to simulate the damping process of states jii (i D 1, n), the imaginary
energies have been added:

Ei ! Ei � iE
 (4.32)

Define

� � H 0
0i

"
D E 0

"
(4.33)

where " denotes the energy interval between the eigenstate jii and ji C 1i. For this
model, we set n D 100, which means that n C 1 eigenstates including j0i have been
involved in this evolution process. We set the damping parameter E
 D 20 cm�1

and the energy interval " D 20 cm�1. Assuming that at the beginning, C0.0/ D 1

and Ci .0/ D 0 for i � 1, and then the population of state j0i, �00.t/, is calculated
and plotted in Fig. 4.3. When � D 1, E 0 D ", the decay of �00.t/ appears near
exponential character. With the increasing of perturbation E 0, the population �00.t/

decays rapidly, and the oscillation appears. The reason of this phenomenon is due
to the increasing of the perturbation speeding up the dynamics between j0i and jii
states, which results in the nonexponential decay.

The purpose of this section is to show how to employ the density matrix method
to study the population dynamics of a system. From the model shown in Fig. 4.2,
we can see that due to the fact that there is only one “system” state, there is
no system coherence (or phase). However, quantum beat may be observed under
certain conditions. It should be noticed that the master equations of this model can
be solved exactly and analytically. Likewise, its Schrödinger equation can also be
solved exactly and analytically.

4.4 A Model of Conical Intersection

Recently, the pump-probe experiment for studying the ultrafast dynamics
  * ! n * of pyrazine has been carried out by Suzuki et al. [13]. Figure 4.4 shows
the absorption spectra, pump and probe beam profiles, and energy level diagram.
The adiabatic electronic excitation energies are taken from the Refs. [22–26]. It
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Fig. 4.3 The population �00.t/ of the state j0i. Set the damping parameter E
 D 20 cm�1 and
the energy interval " D 20 cm�1. Different value of � corresponds to different perturbation E 0

Fig. 4.4 The experimental
results of pyrazine from Ref.
[13]. Ultraviolet
photoabsorption spectra of (a)
S1, S2, and S3 of pyrazine-h4
vapor (thin solid line) and
pyrazine-d4 vapor (thin
dashed line) at room
temperature. The spectra of
their pump (264 nm, 4.70 eV)
and probe (198 nm, 6.26 eV)
pulses are also shown in solid
lines. (b) Schematic energy
diagram of pyrazine
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Fig. 4.5 Temporal profiles of
total photoelectron signals in
(1 C 10) REMPI of (a)
pyrazine-h4 and (b)
pyrazine-d4 from Ref. [13].
The observed data (solid
circles with error bars) are
well explained by three
components: the
single-exponential decay of
S2 (dotted line), the
corresponding increase in S1

(dashed line) in the
positive-time delay, and the
single-exponential decay of
S3 (dash-dotted line) in the
negative-time delay. The
fitting result is shown as a
solid line

should be noted that the photoionization method has been employed for probing.
Due to the particular use of pumping and probing lasers, the probing signals contain
the dynamics information of S2 and S3 states. Employing the 22-fs duration lasers,
Suzuki et al. obtained the lifetimes for pyrazine as �(S2) D 22 ˙ 2 fs and �(S3) D 40–
43 fs. Their experimental results of temporal profiles of total photoelectron signals
are shown in Fig. 4.5. For the equalization discussion of their experimental results,
the potential surfaces obtained by Domcke et al. [27] have been used (see Fig. 4.6).

Next, we shall propose a treatment of IC   * ! n * with conical intersection.
This model can be commonly used to describe the CI of   * and n * electronic
states of the pyrazine molecule. Near the bottom of the two potential surfaces, the
two electronic states in the “diabatic” approximation are described by ˆd

1(n *) and
ˆd

2(  *). The adiabatic approximation ˆad
1 and ˆad

2 will be employed to describe
the electronic states in the CI region. Thus,

ˆd
1 D cos �ˆad

1 C sin �ˆad
2 (4.34)

and

ˆd
2 D � sin �ˆad

1 C cos �ˆad
2 (4.35)
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Fig. 4.6 A cut through the
potential-energy surfaces of
pyrazine along the normal
coordinate Q6a from Ref.
[27]. The vertical energy
differences and shifts are
drawn on scale. The shaded
areas symbolize the
ionization continua. The
arrows on the right-hand side
indicate a possible two
photon transition (Reprinted
with permission from Ref.
[27] Copyright (1991),
American Institute of
Physics)

The adiabatic PESs of ˆad
1 and ˆad

2 are given by [12]

U1 D
.H11 C H22/ C

h
.H11 � H22/2 C 4H 2

12

i 1
2

2
(4.36)

and

U2 D
.H11 C H22/ �

h
.H11 � H22/2 C 4H 2

12

i 1
2

2
(4.37)

where

tan 2� D 2H12

H11 � H22

(4.38)

Here, the Hij (i; j D 1; 2) are the Hamiltonian matrix elements in the diabatic
representation [12]. To analyze the nonadiabatic dynamic data of pyrazine reported
by Suzuki et al. [13] and to use the PESs of Domcke et al. [27], we use the
dimensionless normal coordinate
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Qj D
r

!j

„
X

i

Lij M
1
2

i qi (4.39)

where !j is the angular frequency of the j th mode. Lij represents the element
of eigenvector matrix of Hessian matrix. qi is the Cartesian coordinate, and Mi is
the corresponding nuclear mass, respectively. Apply the linear coupling approxi-
mation [12]

H11 � H22 D N� �
Qt � NQt

�
; H12 D N�Qc (4.40)

where Qt and Qc denote the totally symmetric mode (i.e., an accepting mode
or tuning mode), describing the displacement between the   * surface and n *
surface, and the vibronic coupling mode (i.e., the promoting mode), respectively.
The point .Qt; Qc/ D . NQt; 0/ is just the crossing point of the   * surface and n *
surface (i.e., U1 D U2). Notice that

.H11 � H22/2 C 4H 2
12 D N�2

�
Qt � NQt

�2 C 4 N�2Q2
c (4.41)

At the points other than .Qt; Qc/ D . NQt; 0/, U1 and U2 represent conical
surfaces.

Next, we discuss the calculation of the IC rate of   * ! n * transition. The
IC rate for the electronic transition a ! b based on the breakdown of the Born-
Oppenheimer adiabatic approximation

‰av D ˆad
a ‚ad

av; ‰bu D ˆad
b ‚ad

bu (4.42)

can be expressed as

Wav D 2�

„
X

u

ˇ̌
ˇ̌
ˇ

*
‚ad

bu

ˇ̌
ˇ̌
ˇ�

X

i

„!i

�
ˆad

b

ˇ̌
ˇ̌ @

@Qi

ˇ̌
ˇ̌ ˆad

a

	ˇ̌
ˇ̌
ˇ

@‚ad
av

@Qi

+ˇ̌
ˇ̌
ˇ

2

D .Ebu � Eav/

(4.43)

where D .Ebu � Eav/ denotes the line-shape function. In this case, it could be the
Lorentzian function:

D .Ebu � Eav/ D 1

�
� �bu;av

.Ebu � Eav/
2 C �2

bu;av

(4.44)

Qcin Eq. (4.40) and Qi in Eq. (4.43) represent the promoting mode (i.e., the
coupling mode for the pyrazine case). Notice that

�
ˆad

b

ˇ̌
ˇ̌ @

@Qi

ˇ̌
ˇ̌ ˆad

a

	
D

D
ˆad

b

ˇ̌
ˇ @V

@Qi

ˇ̌
ˇ ˆad

a

E

Ua � Ub

(4.45)
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For the pyrazine case, the molecule is optically pumped from the ground
electronic state to the diabatic state ˆd

2; in this case, we have

�
ˆd

2

ˇ̌
ˇ̌ @

@Qc

ˇ̌
ˇ̌ ˆd

1

	
D

D
ˆd

2

ˇ̌
ˇ @V

@Qc

ˇ̌
ˇ ˆd

1

E

H11 � H22

(4.46)

And to avoid the divergence of Eq. (4.46), we change the basic set from (ˆd
2,

ˆd
1), the “diabatic” approximation, to (ˆad

2 , ˆad
1 ), the adiabatic approximation.

Substituting Eqs. 4.34 and 4.35 into 4.46 yields

�
ˆd

2

ˇ̌
ˇ̌ @

@Qc

ˇ̌
ˇ̌ ˆd

1

	
D @�

@Qc
C

D
ˆad

2

ˇ̌
ˇ @V

@Qc

ˇ̌
ˇ ˆad

1

E

U1 � U2

(4.47)

According to the Eq. (4.38),

@�

@Qc
D

N�cos22�

H11 � H22

D
N� .H11 � H22/

.H11 � H22/
2 C 4H 2

12

(4.48)

For practical calculations, we use the following relation:

�
ˆad

2

ˇ̌
ˇ̌ @V

@Qc

ˇ̌
ˇ̌ ˆad

1

	
D cos 2�

�
ˆd

2

ˇ̌
ˇ̌ @V

@Qc

ˇ̌
ˇ̌ ˆd

1

	
(4.49)

Using the calculated   * and n * surfaces obtained by Domcke et al., we obtain

�
ˆd

2

ˇ̌
ˇ̌ @

@Qc

ˇ̌
ˇ̌ ˆd

1

	
D 2 N� N� �

Qt � NQt
�

N�2
�
Qt � NQt

�2 C 4 N�2Q2
c

(4.50)

The surface properties of the electronic states obtained by Domcke et al. are
shown in Tables 4.1 and 4.2. The gradients of the excitation energies of the S1 and
S2 are coming from Ref. [12], where

�j D @Uj

@Qt

ˇ̌
ˇ̌
0

(4.51)

and

N� D 	� D �2 � �1 (4.52)

and we assume that

N� D � D @Uj

@Qc

ˇ̌
ˇ̌
0

(4.53)
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Table 4.1 Harmonic vibrational frequencies (in cm�1) of Ag

and B1g normal modes of pyrazine in the electronic ground
state from Ref. [12]

v1 v2 v6a v8a v9a v10a

MP2 [11] 1,027 3,280 597 1,633 1,264 914
Expt. [25] 1,015 3,055 596 1,582 1,230 919

Reprinted with permission from Ref. [12]. Copyright (1994),
American Institute of Physics
Comparison of MP2 results (DZP basis set) with experiment

Table 4.2 Gradients of the excitation energies of the S1 and S2 states
of pyrazine with respect to the totally symmetric normal coordinates
defined at the reference geometry in MRCI (including the Davidson
correction) method, from Ref. [12]

Q1 Q2 Q6a Q8a Q9a

�(1) (eV) �0.0470 0.0368 �0.0964 �0.0623 0.1594
�(2) (eV) �0.2012 0.0211 0.1193 0.0348 0.0484
	� (eV) �0.1542 �0.0157 0.2157 0.0971 �0.1110
S 0.7333 0.0008 4.2461 0.1150 0.2508

Reprinted with permission from Ref. [12]. Copyright (1994), American
Institute of Physics
S is Huang-Rhys factor

Then, Huang-Rhys factor S can be obtained from the following formula:

S D 1

2



	�

„!

�2

(4.54)

The vibronic coupling constant �10a is set to 1,472 cm�1 according to Ref. [12]
in MRCI method. We then obtain the Q-dependent nonadiabatic coupling IC rate as

Wa0 D�„!2
c

X

ut

X

fuj g

ˇ̌
ˇ̌
ˇ

*
�but �b1c

ˇ̌
ˇ̌
ˇ

�
Qt � NQt

�

At
�
Qt � NQt

�2 C AcQ2
c

ˇ̌
ˇ̌
ˇ �a0t �a0c

+ˇ̌
ˇ̌
ˇ

2

�
Y

j .¤t; c/

ˇ̌˝
�buj

ˇ̌
�a0j

˛ˇ̌2
D .Ea0 � Ebu/

(4.55)

where

At � 	�

2 N� ; Ac � 2 N�
	�

(4.56)

In the Condon approximation at equilibrium geometry of ground state, the Q-
independent nonadiabatic coupling IC rate is

Wa0 D �„!2
c

ˇ̌
ˇ̌ �

EVert

ˇ̌
ˇ̌
2 X

fuj g

Y

j .¤c/

ˇ̌˝
�buj

ˇ̌
�a0j

˛ˇ̌2
ı .Ea0 � Ebu/ (4.57)
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Fig. 4.7 Lifetimes of S2 state of pyrazine versus broadening parameter � , with equal different
vertical excitation energy from 0.50 to 1.00 eV

Next, we define the Iut and I CI
ut

to compare the difference between the Franck-
Condon factor without and with conical intersection:

Iut � jh�but j �a0t ij2 (4.58)

I CI
ut

�
ˇ̌
ˇ̌
ˇ
EVert

�

*
�but�b1c

ˇ̌
ˇ̌
ˇ

�
Qt � NQt

�

At
�
Qt � NQt

�2 C AcQ2
c

ˇ̌
ˇ̌
ˇ �a0t �a1c

+ˇ̌
ˇ̌
ˇ

2

(4.59)

It should be noted that the IC lifetime should depend on the line-shape function
(see 4.43). The formula (4.59) is calculated numerically. The nonradiative lifetime
versus broadening � has been plotted in Fig. 4.7. The vertical excited energy
changes from 0.50 to 1.00 eV. In Fig. 4.7, it shows that when the vertical excited
energies are 0.50 or 0.70 eV, and when the broadening parameter � tends to 0,
the lifetime tends to about 50 fs. From Fig. 4.7, we can see that the nonadiabatic
transition rates depend on � and the energy gap.

The main purpose of using the dynamics of the   * ! n * transition of pyrazine
as an example is to show how to treat the effect of CI on IC. Suzuki et al. have
employed the 22-fs laser pulse for pumping in their studies of the   * ! n *
dynamics of pyrazine. In this case, the dynamics of both population and coherence
should be considered. Using the notations of bu and av to describe the vibronic
states of   * and n *, we obtain
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d�bu;bu0

dt
D �

�
i!bu;bu0 C �

bu;bu0

bu;bu0

�
�bu;bu0 � i

„
h OV .t/; O�

i

bu;bu0

� i

„
h OHs0.t/; O�

i

bu;bu0

(4.60)

for the coherence, and

d�bu;bu

dt
D � i

„
h OV .t/; O�

i

bu;bu
� i

„
h OHs0.t/; O�

i

bu;bu
(4.61)

for the population. OHs0 describes the dynamics of IC, and OV .t/ describes the
pumping process. In the pyrazine case, since its lifetime is also 22 fs, both pumping
and decay should be considered simultaneously.

From the discussion of the fs pump-probe experiments, when the fs laser pulse
is used for pumping, from the uncertainty principle 	!	t � 1, one can expect that
when the pulse duration of 	t is employed, the coherence corresponding to 	! �
1=	t will be created, and the corresponding quantum beat will be observed. This
can indeed be seen from Fig. 4.5 for the pyrazine case. In this case, 	! � 560cm�1

is corresponding to the mode v6a, which has the largest Huang-Rhys factor and can
be most effectively pumped.

For the analysis of the   * ! n * dynamics, the potential surfaces of Domcke
et al. have been commonly used (including Suzuki et al.). However, recently, we
have shown that their surfaces are imperfect because in pyrazine there are two
n * states, but Domcke et al. have only considered one n * surface. Recently, we
have calculated the location of the second n * state and its effect on the spectra of
pyrazine [28].

The purpose of Fig. 4.7 is to show the effect of electronic energy gap and
dephasing (or damping) constant on the nonadiabatic transition rate by using the
surface of Domcke et al.

The dephasing (or damping) constants involved in the nonadiabatic processes
like IC of   * ! n * of pyrazine are mainly due to vibrational relaxation and
dephasing of the n * state (see Eq. 4.44).

4.5 Vibrational Relaxation

In this section, we shall propose to the intramolecular vibrational relaxation. We
shall first describe the problem associated with the harmonic approximation of
molecular vibration. In the harmonic oscillator approximation, we have

T D
X

i

1

2
PQ2

i ; U D
X

i

1

2
!2

i Q2
i ; E D T C U (4.62)

and

dE

dt
D

X

i

PQi

� RQi C !2
i Qi

� D 0 (4.63)
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This indicates that the energy conservation holds for each individual mode. That
is, energy exchange between different normal modes is impossible. Taking the
anharmonic coupling into account, the anharmonic potential-energy function can
be expressed as

U D
X

i

1

2Š



@2U

@Q2
i

�

0

Q2
i C

X

ijk

1

3Š



@3U

@Qi @Qj @Qk

�

0

QiQj Qk C � � � (4.64)

Cross terms can lead to energy flow from one mode to another.
Recently, developments in quantum chemical calculations have made it possible

to perform the calculations of the potential surfaces expressed in the form of
Eq. (4.64) for polyatomic PESs [10]. The anharmonic potential can modify the
energy level spacing, produce a maximum quantum number for a vibrational mode,
and introduce mode-mode coupling. These make the IR spectra exhibit not only
fundamental transition bands but also overtone and combination bands, side bands,
and often new bands.

Next, we consider the solution of the Schrödinger equation of vibrational motion
with the anharmonic PESs

OH‰ D E‰ (4.65)

where OH is the molecular Hamiltonian, and

OH D OT C U (4.66)

Two methods will be presented in this chapter, the self-consistent field (SCF)
method and the adiabatic approximation method [29–31]; for demonstration, we
shall apply these methods to the example

OH D �1

2

@2U

@Q2
i

C 1

2
!2

i Q2
i � 1

2

@2U

@q2
˛

C 1

2
!2

˛q2
˛ C V .Qi ; q˛/ (4.67)

where

V .Qi ; q˛/ D �
�
Q2

i q˛ C 
q3
˛

�
(4.68)

We shall first consider the SCF method. Notice that

‰ D '˛.q˛/'i .Qi/ (4.69)

W D
D
‰

ˇ̌
ˇ OH

ˇ̌
ˇ ‰

E

h‰ j ‰i (4.70)

h‰ j ‰i D 1; h'˛ j '˛i D 1; h'i j 'i i D 1 (4.71)
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According to the variational method, we have

OH D OH˛ C OHi C V.q˛; Qi/ (4.72)

OH˛ D OT˛ C 1

2
!2

˛q2
˛ (4.73)

OHi D OTi C 1

2
!2

i Q2
i (4.74)

W 0 D
D
‰

ˇ̌
ˇ OH

ˇ̌
ˇ ‰

E
C "˛ .1 � h'˛ j'˛ i/ C "i .1 � h'i j'i i/ (4.75)

and

ıW 0 D
D
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ˇ OH˛ C Ei C h'i jV .q˛; Qi/j 'ii

ˇ̌
ˇ '˛

E

C
D
ı'i

ˇ̌
ˇ OHi C E˛ C h'˛ jV .Q˛; qi /j '˛i

ˇ̌
ˇ 'i

E

C"˛ .� hı'˛ j'˛ i/ C "i .� h'i j'i i/ C c:c:
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(4.76)

where

Ei D
D
'i

ˇ̌
ˇ OHi

ˇ̌
ˇ 'i

E
; E˛ D

D
'˛

ˇ̌
ˇ OH˛

ˇ̌
ˇ '˛

E
(4.77)

From Eq. (4.76), we obtain

� OH˛ C Ei C h'i jV j 'i i
�

'˛ D "˛'˛ (4.78)

and
� OHi C E˛ C h'˛ jV j '˛i

�
'i D "i'i (4.79)

Equations (4.78) and (4.79) have to be solved in the SCF manner.
Next, we consider the adiabatic approximation model, which is similar to

the Born-Oppenheimer approximation model for molecules, that is, electronic
motion corresponding to Qi , nuclear motion corresponding to fq˛g, UV-visible
spectra corresponding to IR vibrational spectra, and IC corresponding to vibrational
relaxation. It follows that to solve

OH‰av.Q; q/ D Eav‰av.Q; q/ (4.80)
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Table 4.3 Comparison of uncoupled harmonic oscillator (HO), exact
quantum (EQ) [32–35], semiclassical (SC) [34], self-consistent field (SCF)
[30], adiabatic approximation (AA), and NA eigenvalues

n v HO EQ SC SCF AA NA ˛

!2
˛ D 0:29375, !2

i D 2:12581, � D �0:1116, 
 D 0:08414

0 0 1.0000 0.9916 0.9920 0.9925 0.9918 0.9917 98
0 1 1.5420 1.5159 1.5164 1.5190 1.5170 1.5169 96
0 2 2.0840 2.0308 2.0313 2.0364 2.0344 2.0342 93
1 0 2.4580 2.4188 2.4194 2.4214 2.4194 2.4193 99
!2

˛ D 0:49, !2
i D 1:69, � D �0:1, 
 D 0:1

0 0 1.0000 0.9955 0.9955 0.9963 0.9956 0.9955 98
0 1 1.7000 1.6870 1.6870 1.6895 1.6873 1.6872 98
0 2 2.3000 2.2781 2.2782 2.2800 2.2783 2.2782 99

Data from Ref. [31]. Reprinted with permission from Ref. [34]. Copyright
(1983), Taylor & Francis Ltd˛ is defined in [30]

where

OH D OTQ C OTq C V D OTq C OHQ (4.81)

we first solve

OHQˆa.QI q/ D Ua.q/ˆa.QI q/ (4.82)

and then solve
h OTq C Ua.q/

i
‚av.q/ D Eav‚av.q/ (4.83)

and

‰av.Q; q/ D ˆa.QI q/‚av.q/ (4.84)

Here, semicolon means that q is regarded as parameter in ˆa.QI q/. Numerical
results for this model are shown in Table 4.3 [31]. The performance for these cases
for the adiabatic approximation is acceptable.

Next we consider the general case with adiabatic approximation

OH D OTQ C OTq C V.q; Q/ (4.85)

OTQ D �
X

n

„2

2

@2

@Q2
n

(4.86)

OTq D �
X

i

„2

2

@2

@q2
i

(4.87)
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V.Q; q/ D VH.Q/ C VL.q/ C Vint.Q; q/ (4.88)
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NVIJKi QIQJQKqi C � � �
(4.91)

where NV are the anharmonic expansion coefficients of the PES. In Eq. (4.91), for
example,

VIJi �
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0

(4.92)

NVIJi � 1

3Š
VIJi (4.93)

Vibrational IR spectra can be then calculated according to
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Qi C � � � (4.95)

and Pvn denotes the Boltzmann distribution function. Fundamental, overtone,
combination, and side bands based on the adiabatic approximation method can then
be calculated.

In the B-O approximation, the IC a ! b can be expressed as
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For vibrational relaxation in the adiabatic approximation, the above equation can
be used by changing (a, b) into the vibrational quantum numbers of high-frequency
modes and by changing (u, v) into the quantum numbers of low-frequency modes.
For example, the coupling becomes

@V

@qk

D 6
X

l

NVIlkQIql C � � � D
X

l

VIlkQIql C � � � (4.99)

We consider the relaxation of QI mode. Notice that fqlg consist of the promoting
modes and the accepting modes. The displacement of low-frequency mode qj comes
from the anharmonic coupling term NVIIj in first-order perturbation theory

UNI.qj / D 1

2
!2

j q2
j C ˝

NI

ˇ̌
3 NVIIj Q2

I qj

ˇ̌
NI

˛ � 1

2
!2

j

�
qj C dj .NI/

�2 C � � � (4.100)

where

dnj .NI/ D 3 NVIIj .NI C . 1
2
//„

!2
j !I

(4.101)

represents the displacement of mode j for the specific vibrational state jNIi of high-
frequency mode. Then, we define the displacement between j1Ii and j0Ii as

	dIj � dIj .1/ � dIj .0/ D 3 NVIIj „
!2

j !I
(4.102)

and the corresponding Huang-Rhys factor is

SIj D !I

2„	d 2
Ij (4.103)

Similar to IC, the vibrational relaxation rate formula can be expressed as
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(4.104)

and the total decay rate is given by

W 0
I D

X

l6k

W 0
Ilk (4.105)

where

RIlk D VIlk

„!I
(4.106)
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Fig. 4.8 Structure of water
dimer, calculated in Gaussian
09, DFT/CAM-B3LYP/6-
311CCg(d,p) long-range
corrected version of B3LYP
functional

Table 4.4 The symmetries and harmonic frequencies of water dimer

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Symmetry a00 a0 a00 a0 a0 a00 a0 a0 a0 a0 a0 a00
Frequency (cm�1) 138 165 175 206 374 692 1,606 1,623 3,739 3,853 3,932 3,951

and

VIlk D @3V

@QI@ql@qk

s
„3

!I!l!k

(4.107)

4.5.1 Vibrational Relaxation of Water Dimer

As an example to apply the adiabatic approximation theory of vibrational relaxation,
the hydrogen-bonded water dimer (H2O)2 will be studied in this work. The structure
of (H2O)2 was optimized using Gaussian 09 program [36] with DFT method and
CAM-B3LYP/6-311CCg(d,p) long-range corrected version of B3LYP functional.
The optimized structure is shown in Fig. 4.8.

The point group of water dimer is CS. There are eight symmetric modes and four
antisymmetric modes. The frequencies have been listed in Table 4.4.

Employing Eq. (4.103), Huang-Rhys factors SIj can be calculated and listed in
Table 4.5. The Huang-Rhys factor is related with mode displacement in Eq. (4.101),
which is determined by the anharmonic expansion coefficient VIIj . I and j are the
indexes of high-frequency mode and low-frequency mode, respectively. According
to group theory, VIIj with antisymmetric low-frequency mode j is vanished. This
means that only symmetric low-frequency mode can contribute to the Huang-Rhys
factor, which can be obviously observed in Table 4.5.

Overall vibrational relaxation rates for modes 7–12 are calculated according
to Eq. (4.105) and listed in Table 4.6, while detailed vibrational relaxation rates
are listed in Table 4.7. From these tables, we can see that the fastest vibrational
relaxation rate is 1.93 � 1010 s�1 for the mode 9. The rates are consistent with the
experimental data of Miller et al. [37], estimating from the spectral bandwidth. An
important feature is that the detailed relaxation rates like W11;8;8, W11;7;7, W10;8;8,
W10;7;7,W9;8;8, W9;7;7, W8;6;6, and W7;6;6 play important roles in the vibrational
relaxation of (H2O)2.
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Table 4.5 Huang-Rhys factors of water dimer in adiabatic approximation

S7j (�10�3) S8j (�10�3) S9j (�10�3) S10j (�10�3) S11j (�10�3) S12j (�10�3)

1 0 0 0 0 0 0
2 0.0085 1.7311 10.2435 0.4038 0.3522 1.0797
3 0 0 0 0 0 0
4 0.1028 0.3378 0.3926 0.0375 0.0079 0.1278
5 0.6162 1.9333 0.3049 0.2603 0.6763 0.5117
6 0 0 0 0 0 0
7 0.1604 0.0590 0.7028 1.6853
8 0.0191 0.0169 1.1456 0.8310

Table 4.6 The overall
vibrational relaxation rate Mode Frequency (cm�1) Rate (s�1) Lifetime (ps)

7 1,606 2.24 � 109 446

8 1,623 4.53 � 107 22; 079

9 3,739 1.93 � 1010 52

10 3,853 4.15 � 109 241

11 3,932 2.80 � 109 357

12 3,951 7.94 � 108 1; 259

Another vibrational energy flow pathway is due to the vibrational energy transfer
through the dipole-dipole interaction:
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for example.
It should be noted that our attempt to calculate vibrational relaxation for clusters

and complex systems should be regarded as a preliminary attempt because the
anharmonic potential function, themselves, are approximate and their performance
should be carefully examined by calculating IR spectra in addition to vibrational
relaxation.

4.5.2 Intramolecular Vibrational Relaxation of Aniline

IVR is one of the most important dynamics of the vibrationally excited polyatomic
molecules. In most cases, IVR is the first dynamical step prior to chemical reactions
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Table 4.7 Vibrational relaxation paths. Accepting energy D !n �
!l � !k

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

7 6 1 0:183 775 1.51 � 105

7 6 3 0:134 738 1.83 � 105

7 6 6 0:058 221 2.24 � 109

8 6 1 0:351 792 4.52 � 106

8 6 3 0:106 755 8.36 � 106

8 6 6 0:006 237 3.99 � 107

9 6 3 0:311 2; 872 1.24 � 105

9 6 6 �0:444 2; 354 5.23 � 106

9 7 2 �0:078 1; 968 5.82 � 105

9 7 4 0:033 1; 927 1.40 � 105

9 7 5 �0:069 1; 759 1.98 � 106

9 7 7 �0:033 527 2.43 � 109

9 8 2 �0:103 1; 952 1.35 � 107

9 8 4 0:038 1; 911 2.39 � 106

9 8 5 �0:101 1; 743 4.42 � 107

9 8 7 �0:035 510 6.09 � 106

9 8 8 �0:057 494 1.68 � 1010

10 7 7 0:055 641 2.78 � 109

10 8 7 �0:046 624 3.65 � 105

10 8 8 0:027 608 1.36 � 109

11 6 6 �0:116 2; 548 4.82 � 106

11 7 2 �0:123 2; 162 8.53 � 107

11 7 4 0:050 2; 120 1.69 � 107

11 7 5 �0:120 1; 953 2.12 � 108

11 7 7 0:015 720 7.97 � 108

11 8 2 �0:159 2; 145 7.51 � 107

11 8 4 0:063 2; 104 1.45 � 107

11 8 5 �0:159 1; 936 2.08 � 108

11 8 8 0:021 687 1.39 � 109

12 6 2 0:149 3; 095 1.24 � 106

12 7 3 0:247 2; 171 2.15 � 108

12 7 6 0:052 1; 654 1.10 � 108

12 8 3 �0:188 2; 154 3.24 � 108

12 8 6 �0:040 1; 637 1.41 � 108

[6, 38, 39]. The IVR of the NH2 symmetric and antisymmetric stretching vibrations
of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV
pump-probe spectroscopy [40, 41]. Aniline has two NH2 stretching modes (see
Fig. 4.9): symmetric stretching vibration (vs) with the frequency of 3,423 cm�1

and antisymmetric stretch (va) with 3,509 cm�1 [42]. In the picosecond pump-probe
experiment, the IVR of the NH2 stretch is described by two-step tier model as shown
in Fig. 4.10. The symmetric or antisymmetric stretching mode is initially excited to
the vibrational excited state. In the first step, the energy flows into the doorway
states [43, 44]. Then in the second step, the energy is further redistributed to dense
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Fig. 4.9 IR spectra of aniline
in a supersonic beam from
Ref. [41]. The upper trace
was obtained by IR-UV
double-resonance
spectroscopy with the use of
the nanosecond laser system.
The inset shows the expanded
spectrum in the CH stretch
region. The lower trace is the
ionization gain IR spectrum
obtained with the picosecond
laser system (Reprinted with
permission from Ref. [41].
Copyright (2005), American
Institute of Physics)

Fig. 4.10 The two-step tier
model of IVR from Ref. [41].
Vanh1 and Vanh2 indicate the
anharmonic coupling matrix
elements in each step, and k1

and k2 are the rate constants
(Reprinted with permission
from Ref. [41]. Copyright
(2005), American Institute of
Physics)

base states. By fitting the transient (1 C 1) REMPI spectra of aniline, the IVR
rates of NH2 symmetric and antisymmetric stretching vibrations are summarized
as follows [41]:

1. vs (3,423 cm�1) : k1 D 5.6 � 1010 s�1, and k2 D (0.1–5) � 1010 s�1

2. va (3,509 cm�1) : k1 D 2.9 � 1010 s�1, and k2 D (0.1–2) � 1010 s�1

In this chapter, we calculate the IVR rates of NH2 symmetric and antisymmetric
stretching vibrations of aniline and compare the results with the first vibrational
state k1.

The structure of aniline was optimized using Gaussian 09 program [36] with DFT
method and B3LYP/6-311CCg(d,p). The optimized structure is shown in Fig. 4.11.
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Fig. 4.11 Structure of
aniline, calculated in
Gaussian 09,
DFT/B3LYP/6-311CCg(d,p)

Table 4.8 Vibrational relaxation paths for symmetric stretching
mode of NH2 (mode 35)

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

35 29 29 0.010 242 8.24 � 1010

35 29 28 0.005 261 1.58 � 1010

35 28 28 0.002 281 0.24 � 1010

Total 10.11 � 1010

Tables 4.8 and 4.9 list the vibrational relaxation paths for symmetric and antisym-
metric stretching vibrational modes, which IVR rates are larger than 1 � 109 s�1.
The theoretical results of IVR rates, vs D 10.11 � 1010 s�1 and va D 1.59 � 1010 s�1,
are as the same orders of magnitude as the experimental values. It also shows that
the IVR rate of symmetric mode is larger than that of antisymmetric mode. Due
to selection rule, the NH2 scissoring and C–C stretching symmetric modes 28 and
29 can accept relaxation energy from symmetric mode 35 at the same time. This
makes that the accepting energy for symmetric mode 35 be smaller than that for
antisymmetric mode 36 and then enhances the IVR rate according to energy gap
law. It should be noted that, in Yamada’s work [41], it is thought that the doorway
states consist of the CH stretching modes because the deuterium substitution of the
CH group significantly reduces the IVR rate constant of the first step. However,
the theoretical study shows that modes 28 and 29 may be the doorway states in
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Table 4.9 Vibrational relaxation paths for antisymmetric stretching
mode of NH2 (mode 36)

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

36 29 18 0.012 939 0.26 � 1010

36 29 19 �0.009 869 0.24 � 1010

36 29 27 �0.002 377 0.18 � 1010

36 29 25 0.003 504 0.18 � 1010

36 29 24 0.004 636 0.14 � 1010

36 28 18 0.006 958 0.13 � 1010

36 28 19 �0.005 888 0.12 � 1010

Total 1.59 � 1010

this study. Considering the cubic anharmonic coupling (see Eq. 4.99) between NH2

stretching modes and CH stretching modes, the CH stretching modes may also be
the doorway states.

The main reason for choosing the treatment of vibrational relaxation of (H2O)2

and C6H5NH2 is to show that the quantum chemistry programs can now provide the
anharmonic vibrational potentials so that the first-principle calculation of vibrational
relaxation has become possible. Their dynamical behaviors may be described by the
density matrix method through the Bixon-Jortner model (see Sect. 4.3).

4.6 Discussion

The aim of this chapter is to show how to apply the density matrix method for
ultrafast dynamics of the systems and fs time-resolved experiment, such as pump
probes, and to show the applications. Two important examples, the effect of CI on
the IC   * ! n * of pyrazine and intramolecular vibrational relaxation of water
dimer and aniline, are presented. This chapter consists of five parts. The first part
is the general introduction to the purpose and contents of this chapter. The second
part concerns with the derivation of the general master equation resulted from the
reduced density matrix. The third part is an application of the density matrix method
to study the dynamical behavior of the system. We have solved the master equation
for a system state coupled with a group of bath states and shown the condition of
nonexponential decay. We have shown that the density matrix method can treat a
whole experiment including pump and probe processes. We are concerned with the
use of fs pump-probe experiment to study fs nonadiabatic processes. In other words,
the density matrix method can describe not only the fs pump-probe experiments
but also the fs processes. A distinct feature in this case is that due to the use of
fs time-resolved laser for pumping, both population and coherence excitations are
created and hence their dynamics have to be treated. Since the diagonal elements of
the density matrix can provide the time-dependent information of the population
of the system and the off-diagonal elements of the density matrix can provide
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the time-dependent information of coherence (or phase) of the system, the density
matrix method is an ideal method for treating ultrafast dynamical processes.

In the fourth part, we study the effect of CI on IC. It was applied to study the
  * ! n * transition of the pyrazine molecule. In this nonadiabatic process, the
CI of the   * and n * PESs is believed to play a major role in the nonadiabatic
fs transition. In fact, the CI has been widely proposed to play the key factor in
an IC, and quantum trajectory calculations have been used to calculate the IC
rates [45]. However, this method cannot properly take into account of the initial
conditions of the population and coherence of the system created by the fs pumping
laser. In this chapter, we propose to develop a method to calculate the IC with
conical intersections. It should be known that for the IC between S1 and S0 in
most molecules (in these cases, the energy gap between S1 and S0 is of several
eV), the surface crossings do not take place due to the anharmonic effect in the
two PESs. Thus, the CI should not play any role in these cases. We have proposed
one method to calculate the IC rate of   * ! n * of the pyrazine molecule. The
experimental measurement of its   * state lifetime is determined to be 22 fs. In
their determination of this lifetime, Suzuki et al. [13] have employed the calculated
potential surfaces obtained by Domcke et al. It should be noted that in pyrazine,
there should exist two n * states [28]. But they only include one n * state in
their treatments of nonadiabatic processes. The work in progress is to calculate the
lifetime of   * by using the new set of PESs of pyrazine.

In the fifth part of this chapter, we reported our theoretical studies of vibrational
relaxation, which can be applied to that in isolated molecules, molecular cluster, and
dense media. In other words, the type of vibrational relaxation studied in this chapter
is mainly due to anharmonic couplings among different vibrational modes. This type
of potential surfaces has become available in recent quantum chemistry programs.
Although theories of vibrational relaxation have been proposed, its numerical
calculations have only become possible recently. The vibrational relaxation under
consideration depending on the size of the system takes place in the time range of
sub-picoseconds to picoseconds. In this chapter, we have chosen the water dimer
(H2O)2 as the system for investigation. The PES includes the harmonic and cubic
anharmonic contributions. In this case, the vibrational relaxation will be similar to
IC. That is, in our treatment of vibrational relaxation, we will also have “promoting”
modes and “accepting” modes; it follows that there are usually several paths of
vibrational relaxation. In the case of (H2O)2, the fastest vibrational relaxation rate
is of order 102 ps.

Another system aniline C6H5NH2 has also been studied. We found that the
vibrational relaxation rates of symmetric and antisymmetric stretching modes of
NH2 take in the ps range in good agreement with experiment.

In this chapter, we only apply the first-order perturbation theory to the adiabatic
approximation to deal with the vibrational relaxation process. This will be improved
in the next step.
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