
Chapter 2
The Dirac Electron: Spin, Zitterbewegung,
the Compton Wavelength, and the Kinetic
Foundation of Rest Mass

Jean Maruani

Abstract The Dirac equation, which was derived by combining, in a consistent
manner, the relativistic invariance condition with the quantum superposition princi-
ple, has shown its fecundity by explaining the electron spin, predicting antimatter,
and enabling Schrödinger’s trembling motion (Zitterbewegung). It has also yielded
as expectation value for the electron speed the velocity of light. But the question has
hardly been raised as to the effect of this intrinsic motion on the electron mass. In
this chapter, we conjecture that the internal structure of the electron should consist
of a massless charge describing, at light velocity, a vibrating motion in a domain
defined by the Compton wavelength, the measured rest mass being generated by
this very internal motion.

Around 1950, I had the rare opportunity of meeting Albert Einstein : : : . The professor
addressed my colleague: ‘Vot are you studying?’ ‘I’m doing a thesis on quantum theory’.
‘Ach!’ said Einstein, ‘a vaste of time!’

He turned to me: ‘And vot are you doing?’ I was more confident: ‘I’m studying
experimentally the properties of pions’. ‘Pions, pions! Ach, vee don’t understand de
electron! Vy bother mit pions?’ : : :
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2.1 Introduction

The atomic theory of matter, which was conjectured on qualitative empirical
grounds as early as the sixth century BC, was shown to be consistent with increasing
experimental and theoretical developments since the seventeenth century AD, and
definitely proven by the quantitative explanation of the Brownian motion by Einstein
and Perrin early in the twentieth century [1]. It then took no more than a century
between the first measurements of the electron properties in 1896 and of the
proton properties in 1919 and the explosion of the number of so-called elementary
particles – and their antiparticles – observed in modern accelerators to several
hundred (most of which are very short lived and some, not even isolated). Today,
the ‘standard model’ assumes all particles to be built from three groups of four
basic fermions – some endowed with exotic characteristics – interacting through
four basic forces mediated by bosons – usually with zero charge and mass and with
integer spin [2].

In this zoo of particles, only the electron, which was discovered even before the
atomic theory was proven and the atomic structure was known, is really unsecable,
stable, and isolatable. The proton also is stable and isolatable, but it is made up
of two quarks up (with charge C2/3) and one quark down (with charge �1/3). As
for the quarks, while expected to be stable, they have not been isolated. The other
particle constitutive of the atomic nucleus, the neutron, is also made up of three
quarks, one up and two down, but it is not stable when isolated, decaying into a
proton, an electron, and an antineutrino (with a 15-min lifetime). The fermions in
each of the higher two classes of the electron family (muon and tau) and of the two
quark families (strange/charmed and bottom/top) are unstable (and not isolatable for
the quarks). Only the elusive neutrinos in the three classes, which were postulated
to ensure conservation laws in weak interaction processes, are also considered as
being unsecable, stable, and isolatable.

Although quantum chromodynamics has endeavoured to rationalize the world
of quarks, gluons, the strong interaction, and composite particles [2], it is not as
in a developed stage as quantum electrodynamics, where electrons, photons, the
electromagnetic interaction, and the whole domain of chemical physics are unified
in a refined manner [3, 4]. This latter theory is but an extension of the Dirac theory
[5, 6], which treated the electron in a consistent quantum-relativistic manner while
its interaction with the electromagnetic field was considered semi-classically, to a
full quantum-relativistic treatment of charged particles interacting with each other
and with a quantized electromagnetic field by exchanging virtual photons.

Traditional attributes of matter are opacity (to light), resistance (to penetration),
inertia (to motion), and weight. A transparent glass has no opacity (to visible light),
but it requires a very hard material (a diamond cutter) to be penetrated. Pure air also
shows transparency, but it shows resistance to penetration only at very high speeds
(blasts, storms, planes, parachutes). These two attributes are well understood today
as quantum effects due to the interactions of molecules with electromagnetic fields
and with other molecules.
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The attribute of inertia was identified by Galileo as being a resistance to ac-
celeration/deceleration (rather than to uniform linear motion), while the attribute
of weight (also investigated by Galileo) was related by Newton to the attraction
by a massive body (as expressed in Kepler’s rules). These two attributes were
later correlated in general relativity theory by Einstein. But the quantum theory
has not been directly involved in either inertia or weight until Dirac’s attempt to
bring together quantum and relativistic conditions in a matrix linear equation for
the electron, using the total energy mc2 rather than the kinetic energy p2/2m0 in his
Hamiltonian operator.

In this chapter, we shall reassess some of the physical implications of the
Dirac equation [5, 6], which were somehow overlooked in the sophisticated formal
developments of quantum electrodynamics. We will conjecture that the internal
structure of the electron should consist of a massless charge describing at light
velocity an oscillatory motion (Zitterbewegung) in a small domain defined by the
Compton wavelength, the observed spin momentum and rest mass being jointly
generated by this very internal motion.

2.2 Compton Wavelength and de Broglie Wavelength

Although the corpuscular aspect of electromagnetic radiation, which was surmised
by Newton in the seventeenth century, was used by Planck in 1900 to explain Wien’s
black body radiation law and by Einstein in 1905 to explain Lenard’s photoelectric
effect, its most spectacular demonstration was Compton’s explanation in 1923 of
the anomalous scattering of X-rays by bound electrons.

If an incident photon (p1, E1 D p1c) hits an electron considered as nearly at rest
(0, m0c2), producing an electron recoil (p0, E0), the direction of the scattered photon
(p2, E2 D p2c) makes an angle � with that of the incident photon. Applying the laws
of conservation of energy and momentum to the scattering process:

p1 D p2 C p0; p1c C m0c
2 D p2c C �

m2
0c

4 C p2
0c2

� 1
2 ; (2.1)

one derives

m0c.p1 � p2/ D p1p2.1 � cos �/: (2.2)

Using the incident and scattered photon wavelengths, �1 D h/p1, �2 D h/p2, and
introducing the electron Compton wavelength, �C D h/m0c, one obtains

�2 � �1 D �C .1 � cos �/: (2.3)

This expression is rigorous with the relativistic treatment we have used. But the
occurrence of the Compton wavelength �C is not a relativistic effect since Eq. (2.2)
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also holds (to first order, except around � D 0ı) if one uses the classical formula,
E0 D p2

0=2m0, for the kinetic energy of the ejected electron. In fact, the occurrence
of this electron wavelength stems from the assumption that light is made of particles
endowed with kinetic momentum, p D h/�, as well as with energy, E D p c.

The question remains as to how the electron interacts, at the subquantum level,
to scatter the photon. One could speculate on the fact that for � D �/2 (orthogonal
scattering) the Compton wavelength adds to the photon wavelength while the
electron recoils along � � ��/4 (as would a tiny mirror inclined at �/4), while for
� D 0 (no scattering) the photon wavelength remains unchanged and the electron
unmoved. Adding the electron Compton wavelength to the orthogonally scattered
photon wavelength reduces the photon energy by the amount used for the electron
ejection.

The Compton wavelength, �C D h/m0c, is different from the de Broglie wave-
length, �B D h/m0v, in that it is unrelated to the particle velocity but solely depends
on its rest mass (and light velocity). The larger the rest mass, the smaller the
wavelength or, one could say, the larger the Compton wavelength, the smaller the
particle rest mass.

2.3 The Dirac Equation

It will be useful to recall the Lorentz transformation equations of the space and time
coordinates of a free particle between two inertial frames S and S0:

x0 D �.x � ˇct/ (2.4a)

ct 0 D �.�ˇx C ct/ (2.4b)

where ˇ D v/c and � D (1 � ˇ2)�1/2, v being the velocity of frame S0 relative to
frame S and c, the velocity of light. In similar transformation equations for the
electromagnetic field (ruled by Maxwell’s equations), the electric field components
play the role of space coordinates and the magnetic field’s that of a time coordinate.

It can be seen that, while the space and time coordinates depend on the reference
frame, the combination

x2
0 � .ct/2 � r2 � x2

4 � x2
1 � x2

2 � x2
3 (2.5a)

is relativistically invariant under any change of frame (its square root is Minkowski’s
proper interval). This formula can alternatively be written as

x2
4 D x2

0 C x2
1 C x2

2 C x2
3 : (2.5b)
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The dependence of the measured time on the inertial frame (the �ˇx term in
Eq. 2.4b), which entails � ¤ 1, stems from the invariance of c with respect to the
frame. Einstein’s equivalence relation E D mc2 arises from the resulting intrication
of space and time. One of the clues that led de Broglie to the idea of matter waves
(and to the explanation of quantization rules in atomic spectra by assuming standing
waves in electron orbits) was a comparison of this relation with that expressing the
quantization of light, E D h c/�, which yields m D h/� c for photons and, by analogy,
� D h/mv for particles with non-zero rest mass.

The Dirac equation was derived in several steps [5, 6], starting with the time-
dependent wave equation for a free particle in the Schrödinger representation:

i„ @‰

@t
D H ‰; or i„ @‰

@.ct/
D mc ‰; (2.6)

where the Hamiltonian operator was given the relativistic form: H D mc2. The term
expressing the external motion is embedded in the relativistic formula for the mass:
m D m0� . In order to unveil this term, H is transformed to the form

H D mc2 D
�

m2
0c

6

.c2 � v2/

�1=2

D
�
m2

0c
4 C m2

0c
4v2

.c2 � v2/

�1=2

D

D �
m2

0c
4 C p2c2

�1=2 D �
m2

0c
2 C p2

�1=2
c;

or mc D �
m2

0c
2 C p2

�1=2
; (2.7a)

with p D m0�v D mv D p0� . When v � c, H reduces to the usual form: H0 D
.m0c

2C/ p2
0=2m0 .C : : :/.

In Eq. (2.7a), p2 D p2
1 C p2

2 C p2
3 with pi D mvi along xi, and from Eqs. (2.5)

and (2.6) one can define an additional ‘momentum’ p4 � mc, corresponding to the
time ‘coordinate’ x4 � ct, and an invariant ‘momentum’ p0 � m0c, for a particle at
rest. Equation (2.7a) can then be written as

p2
4 D p2

0 C p2
1 C p2

2 C p2
3: (2.7b)

Comparing Eqs. (2.7b) and (2.5b) shows that the relativistically invariant ‘mo-
mentum’ p0 corresponds to the relativistically invariant ‘coordinate’ x0. To the
‘Pythagorean relation’ between the generalized coordinates, x2

4 D x2
0 C r2, cor-

responds a similar relation between the generalized momenta, p2
4 D p2

0 C p2.
By analogy with the non-relativistic case, one can write

p1 ! �i„ @

@x
; p2 ! �i„ @

@y
; p3 ! �i„ @

@z
; p4 ! i„ @

@.ct/
; (2.8)
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the last expression being introduced to bring time on the same footing as the space
coordinates. At this stage, the operator associated with p0 is just p0. Equation (2.6)
can then be written as

h
p4 � �

p2
0 C p2

1 C p2
2 C p2

3

�1=2
i

‰ D 0; (2.9)

which is linear in p4 but not in the other pi’s and, therefore, not fully satisfactory
from the relativistic point of view.

The second step was thus to multiply this equation on the left side byh
p4 C �

p2
0 C p2

1 C p2
2 C p2

3

�1= 2
i
, yielding the more symmetric form

�
p2

4 � �
p2

0 C p2
1 C p2

2 C p2
3

��
‰ D 0; (2.10)

where only those solutions belonging to positive values of p4 are also solutions of
Eq. (2.9). This is the so-called Klein-Gordon equation, which reduces to the wave
equation for m0 D 0 and is suitable for the description of zero-spin free particles.

Although Eq. (2.10) fulfils the relativistic condition of space-time equivalence,
it does not fulfil the quantum requirement of linearity so that the superposition
principle, probability density formula and uncertainty principle could apply [5, 6].

The third step was to look for an analogous equation linear in all p�’s, that is,

Œp4 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/� ‰ D 0; (2.11)

where the ˛�’s must be matrices independent of the p�’s and of the x�’s in free
space. Multiplying to the left side by [p4 C (˛0p0 C ˛1p1 C ˛2p2 C ˛3p3)] yields

h
p2

4 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/
2
i

‰ D 0: (2.12)

This coincides with Eq. (2.10) only if one has, for �, 	 D 0, 1, 2, 3:

˛2
� D 1; ˛�˛	 C ˛	˛� D 0: (2.13)

In addition to being normalized and anticommutative, these matrices, of course,
must be Hermitian. These conditions are similar to those for the three components

x, 
y, 
 z of the spin operator � and of their Pauli representations as 2D matrices:


x � .0 1/ 
y � .0 � i/ 
z � .C1 0/

.1 0/ .Ci 0/ .0 � 1/
(2.14)

But now we have four components for the four-vector (p1, p2, p3, p0), and the
four ˛� matrices fulfil the above requirements only if they possess at least four
dimensions; e.g. [5, 6], using the 2D Pauli matrices as off-diagonal elements of the
4D Dirac matrices relative to the p�’s:
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˛1 � .0 � x/ ˛2 � .0 � y/ ˛3 � .0 � z/ ˛0 � .C1 0/

.� x 0/ .� y 0/ .� z 0/ .0 � 1/
: (2.15)

A result is that for a vector to be representative of the wave function � it must
have four components or, alternatively, that � must contain a variable taking on
four values. Dirac has explained why the electron has spin, which was known as
requiring the wave function � to have two components, and that this number must
be doubled because the quasi-linear Eq. (2.11), which is equivalent to the quadratic
Eq. (2.10) under the conditions (2.13), has additional, negative-energy solutions,
which he assigned to an antielectron having opposite charge [5].

As expected, Eq. (2.11) is invariant under Lorentz transformations [5, 6]. It was
noticed by de Broglie [6] that the process leading from Eq. (2.10) to (2.11) is
similar to that leading from the second-order equations for the electric and magnetic
fields E and B of electromagnetic radiation to the four coupled, first-order, Lorentz-
invariant Maxwell equations.

Although spin was first introduced phenomenologically (see Sect. 2.4) and shown
to require only 2D matrices for its representation (Eq. 2.14), the theoretical proof for
its existence required a four-component wave vector, yielding additional negative-
energy states. This hints that spin, as well as Zitterbewegung (see Sect. 2.4), must
be related to these states. This appears in the entanglement of the four components
of � when Eq. (2.11) is written explicitly in the form of four coupled equations [6].

One may notice that the matrices ˛i multiplying the components pi of the
momentum that describe the external trajectory of the particle are off-diagonal,
whereas the matrix ˛0 multiplying the momentum p0 related to the rest mass energy
m0c2 is diagonal. This suggests there is some internal motion orthogonal to the
external trajectory, as hinted in Eq. (2.7b) where the generalized momentum mc
appears as a Pythagorean sum of the two orthogonal momenta m0c and p.

Indeed, three internal motions (which have been shown to be related) have
been discussed by Dirac from his equation. One involves the well-established spin
angular momentum, which gives rise to the measured magnetic moment; another is
the Zitterbewegung (proper oscillatory motion) derived by Schrödinger from Dirac’s
equation; and finally there is an internal motion adding to that defining the external
trajectory of the particle to give it the computed velocity c. We shall comment on
these three motions.

2.4 The Electron Internal Motion: Spin, Zitterbewegung,
and Light Velocity

The electron spin entered quantum mechanics in two different ways. The first was
the explanation, by Goudsmit and Uhlenbeck (1925), of the Zeeman splitting of
the spectral lines of atoms by a magnetic field (1896) and of the Stern and Gerlach
deflection of the trajectory of atoms by an inhomogeneous field (1922). The electron
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was endowed with an intrinsic magnetic moment and, since it has electric charge,
with a rotational internal motion adding to its quantized motion around a nucleus.
This electron property was later shown to be responsible for most of materials’
magnetism, known for long: ferro (and anti) and ferri (and anti), as well as para
(but not dia). Electron paramagnetic resonance (EPR) spectroscopy and related
techniques [7] are based on this property, and on a similar property proposed by
Pauli for nuclei [1924], which is at the basis of nuclear magnetic resonance (NMR).

Various models have been designed to account for the magnetic properties of the
electron [6]. In the simple model of a loop with radius r described by a point charge
�e, the measured magnitude of the induced magnetic moment � orthogonal to the
loop can be used to derive the rotational velocity v:

� D I:S D
��e:v

2�r

	
:�r2 D � e:v r

2

D �



1

2

�
e „
2m0

! v D „
2m0r

:

(2.16)

If one identifies r with the measured Compton radius, rC D -h/2 m0c (Sect. 2.2 and
Eq. 2.34), this formula yields: v D c!

The second intrusion of the electron spin came through a non-energetic, sym-
metry requirement, the so-called Fermi-Dirac statistics for systems of identical,
half-integer spin particles, which results in total antisymmetry of the Schrödinger
wave function in a combined space and spin coordinate domain. This entails the
Pauli exclusion principle (1925) in the framework of the independent-particle,
Slater-determinantal model. The expression of atomic and molecular wave functions
as linear combinations of Slater determinants has been the basis of most of the sub-
sequent methodologies of quantum chemistry, thermodynamics, and spectroscopy.

These two aspects of the electron spin, that of an internal dynamical variable
introduced to satisfy a symmetry requirement and that related to an intrinsic
magnetic moment interacting with an external field, were elucidated by Dirac from
his quantum-relativistic equation. But it also yielded an electron moving at the speed
of light!

To have the electron magnetic moment show up, it is necessary to make it interact
with an external magnetic field; and to have its spin momentum appear, it has to be
combined with an orbital momentum. Equation (2.11) was thus extended to include
interactions with an electromagnetic field. Let us call A4 and A the scalar and vector
potentials in MKSA units (in earlier formulations of the Dirac equation [5, 6], A was
divided by c due to the use of cgs units). We can write

�

p4 C e A4

c

�
� ˛0p0 � ˛:

�
p C e A

�

	�
‰ D 0: (2.17)

It can be noticed that the internal momentum p0 remains unchanged in the presence
of a field. In the Heisenberg picture, which is more suitable to make comparisons
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between classical and quantum mechanics, the equations of motion are determined
by the Hamiltonian

H D c p4 D �e A4 C c˛0p0 C c˛:.p C e A
�

/�: (2.18)

This gives, using the forms and properties of the ˛� matrices (Eqs. 2.13, 2.14, and
2.15), especially the fact that ˛0 is normalized and anticommutes with ˛i (i D 1, 2,
3) while commuting with (p C eA):



p4 C e A4

c

�2

D �
˛0p0 C ˛:.p C e A

�

/
�2 D p2

0 C �
� :.p C e A

�

/
�2

: (2.19)

If one uses the general relation for any two 3D vectors C and D commuting with the
� i’s, which results from the properties of the Pauli matrices (Eqs. 2.14),

.� :C
�

/:.� :D
�

/ � C
�

:D
�

D i � :C
�

�D
�

;

one obtains for C D D D (p C eA), substituting p D�i -hr then B (r, t) D r � A (r, t),

h
� :.p C e A/

i2 � .p C e A/2 D i e � : .p � A C A � p/ D
D „ e � : r

�

� A D „ e � :B
�

:

Equation (2.19) then becomes



p4 C e A4

c

�2

D p2
0 C .p C e A/2 C e „ � :B

�

: (2.20)

In order to compare this expression with the non-relativistic one, H is written in
the perturbative form: H D m0c2 C H0. To first order, this yields

H 0 D �e A4 C .p C e A/2

2m0

C



e „
2m0

�
� :B: (2.21)

In addition to the potential and kinetic energy terms of the classical Hamiltonian
for a slow electron, there appears an extra term, which can be seen as expressing
the interaction of the electron with a magnetic field B through an intrinsic magnetic
moment, � D �(e -h/2m0) � , in agreement with Eq. (2.16). This extra term arises
naturally from the factor � embedded in Eq. (2.19).

The spin angular momentum itself does not give rise to any potential energy. To
show its existence, Dirac computed the angular momentum integrals for an electron
moving in a central electric field, that is, from Eq. (2.18):

H D �e A4.r/ C c ˛0p0 C c ˛:p: (2.22)
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In the Heisenberg picture, one obtains, for the l1 component, say, of the orbital
angular momentum l D �i -hr � r,

i„ @l1

@t
D Œl1; H � D c Œl1:.˛p/ � .˛p/:l1� D
D c ˛.l1:p � p: l1/ D �i„ c

�

.˛3:p2 � ˛2:p3/ ¤ 0I
(2.23)

similarly, for the corresponding component of the Pauli matrix operator,

i„ @
1

@t
D Œ
1; H� D c Œ
1:.˛p/ � .˛p/:
1� D
D c .
1˛ � ˛
1/:p D 2 i c .˛3:p2 � ˛2:p3/ ¤ 0:

(2.24)

From Eq. (2.23) it is seen that l1 is not a constant of the motion, but from Eq. (2.24)
it is seen that

@l1

@t
C


„
2

�
@
1

@t
D 0: (2.25)

Dirac interpreted this as the electron having a spin angular momentum, s D (-h/2)
� , that has to be added to the orbital angular momentum l to get a constant of the
motion. It is the same matrix/operator vector � that fixes the direction of s and that
of the magnetic moment � derived from Eq. (2.21), and this justifies the simple
model leading to Eq. (2.16).

Following considerations developed by Bohr, Darwin, and Pauli, de Broglie [6]
showed that it is not possible to separate the electron spin momentum from its
orbital momentum because, in any direct measurement, the uncertainties on the
components of the orbital momentum would be larger than the spin momentum.
This is due to the electron having a finite size, defined by the Compton radius.

Equations (2.25) and (2.21) do not tell us at which velocity the electron ‘rotates’
to acquire kinetic and magnetic spin momenta. This is provided by another compu-
tation by Dirac [5]. He used a Heisenberg picture with a field-free Hamiltonian (but
the conclusion would also hold with a field present):

H D c .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/: (2.26)

The linear momentum p obviously commutes with H and thus is a constant of the
motion. Making use of the properties of the ˛k’s (Eqs. 2.13), one can further write,
for an arbitrary component vk (k D 1, 2, 3) of the electron velocity,

i„ @xk

@t
D Œxk; H� D c .xk ˛:p � ˛:p xk/ D c ˛k .xkpk � pkxk/

D i„ c ˛k ! vk D
ˇ
ˇ̌
ˇ
@xk

@t

ˇ
ˇ̌
ˇ D ˙c;

(2.27)
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showing the electron moves at light velocity! If we used the classical expression for
the energy of a free particle, H D p2/2 m0, in Eq. (2.26), we would recover, through
Eq. (2.27), the classical relation between velocity and momentum, vk D pk/m0,
which we expect also to hold in the relativistic case.

The paradox was elucidated through the ‘trembling motion’ (Zitterbewegung)
discovered by Schrödinger [8] while investigating the velocity operators ˛k in-
troduced by Dirac to linearize his equation. The equation of motion of a velocity
component, vk D c˛k, can be written as

i„ @˛k

@t
D ˛kH � H˛k:

Since c ˛k anticommutes with all the terms in Eq. (2.26) except c ˛kpk, one also has

˛kH C H˛k D ˛k.c ˛kpk/ C .c ˛kpk/ ˛k D 2cpk:

These two equations together yield

i„ @˛k

@t
D 2˛kH � 2cpk:

Since H and pk are time independent, this entails

i„ @2˛k

@t2
D 2



@˛k

@t

�
H:

This differential equation in @˛k/@t can be integrated twice, yielding the explicit
time dependence of the velocity, then position, operators. One first obtains

vk D c ˛k D c2pkH �1 C



i„c

2

�
�0

k e�i!tH �1; (2.28)

where ! D 2H/-h and �0
k D @˛k=@t at t D 0. As H D mc2, the first term is a constant

of the order of pk/m, the classical relation between momentum and velocity. But
there is an extra term, here also, oscillating at the frequency:

	0 D 2mc2

h
; (2.29)

which stems mainly from the rest mass energy m0c2 in the power expansion of H
following Eq. (2.7a).

Only the constant part is observed in a practical measurement, which gives
the average velocity through a time interval much larger than 	�1; whereas the
oscillatory part explains why the instantaneous velocity has eigenvalues˙c [5, 6].
Further integration yields the time dependence of the electron coordinate xk, and it
is seen that the amplitude of the oscillatory motion is of the order of -h/2m0c, the
Compton radius of the relativistic electron (Sect. 2.2 and Eq. 2.34).
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Zitterbewegung vanishes when one takes expectation values over wave packets
made up solely of positive (or negative) energy states [8], which are not full solu-
tions of the wave equation because of the coupling of the four components of �

in Eq. (2.11). This motion was interpreted as being due to a wave beat between
the states with energies ˙mc2, the beat frequency being the difference of the two
wave frequencies: ˙mc2/h [6]. It was also shown (e.g. [9]) that transitions between
positive and negative energy states are possible whenever the electron potential
energy undergoes variations of at least m0c2 over distances of at most h/m0c. This
is another clue that the Compton wavelength, internal motion, and negative energy
states are deeply related. Recently [10] it has been shown that Zitterbewegung can
affect harmonic generation by strong laser pulse and that stimulated Zitterbewegung
can be generated by laser-induced transitions between positive and negative energy
states.

Comparing the preceding results with those expressed in Eqs. (2.16) and (2.21)
makes it clear that the internal motion giving rise to the kinetic and magnetic spin
momenta is nothing but Zitterbewegung. A classical relativistic model was proposed
[11] in which spin appears as the orbital angular momentum of Zitterbewegung.
Moreover, the quantum-relativistic relation of the Zitterbewegung frequency to the
inertial mass together with the general-relativistic equivalence of this latter to the
gravitational mass establish a link between spin and gravitation. In a stochastic
electrodynamics (SED) model [12], Zitterbewegung arises from the electromagnetic
interaction of a semi-classical particle with the vacuum zero-point field, and the
van der Waals force generated by this oscillatory motion is identified with the
Newtonian gravitational field. More generally, there have been various attempts to
involve general relativity into quantum mechanics (e.g. [13, 14]) or to derive one
from the other (e.g. [15, 16]).

In his detailed analysis of Dirac’s theory [6], de Broglie pointed out that, in
spite of his equation being Lorentz invariant and its four-component wave function
providing tensorial forms for all physical properties in space-time, it does not have
space and time playing full symmetrical roles, in part because the condition of
hermiticity for quantum operators is defined in the space domain while time appears
only as a parameter. In addition, space-time relativistic symmetry requires that
Heisenberg’s uncertainty relations,


pi:
xi � „ .i D 1; 2; 3/; (2.30)

be completed by a similar relation for the energy, the ‘time component’ of the four-
vector momentum whose space components are the pi’s. This did not seem to be
consistent with the energy corresponding to the Hamiltonian H rather than to the
operator i-h @/@t. However, consistency can be recovered by writing


H:
t D 
.mc2/:
t D 
.mc/:
.ct/ D 
.p4/:
.x4/ � „; (2.31)

assigning the full momentum p4 D mc to the time component x4 D ct, the corre-
sponding operator being i-h @/@(ct), in accordance with Eq. (2.8).
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If, in Eq. (2.31), mc is replaced by m0�c (with � defined in Eqs. 2.4), it comes


.m0�c/:
.ct/ D 
.m0c/:
.ct�/ D 
.m0c/:
.c�0/ � „; (2.32)

where �0 is the proper time of the electron, which defines its internal clock. To the
internal time coordinate c�0 D x0 is associated the rest mass momentum m0c D p0.
If one removes the �’s, one obtains

m0c:c�0 � „ ! �0 � „
m0c2

D 1

2�	0

; (2.33)

where 	0 is half the Zitterbewegung frequency for the electron at rest. For this latter,
pi D 0 (i D 1, 2, 3) and, using the expression for ˛0 in Eq. (2.15) and the vector form
for � , Eq. (2.11) reduces to

i„ @‰j

@t
D C m0c

2‰j ! ‰j D ‰j 0 exp .�2�i	0t/ D ‰j 0 exp



� i t

�0

�
;

i„ @‰k

@t
D � m0c

2‰k ! ‰k D ‰k0 exp .C2�i	0t/ D ‰k0 exp



C i t

�0

�
;

where j D 1, 2; k D 3, 4; and 	0 D m0c2/h. The difference (beat) frequency 	0
0 D 2	0

of the positive and negative energy states is the Zitterbewegung frequency for the
electron at rest. In the complex exponential argument, �0 � 1.29 � 10�21 s defines
the time scale of the electron internal motion.

2.5 The Electron Radii

The spin angular momentum and associated magnetic moment of the electron
emerged naturally from Dirac’s quantum-relativistic treatment. What also came out
from the Dirac equation is that the oscillatory motion (Zitterbewegung) giving rise
to these momenta involves negative energy states and takes place at light velocity.
As the rest masses of both electron and positron are non-zero, one may wonder why
they do not go to infinity at that velocity. A first clue is that, since the electron and
positron ‘rest masses’ are opposite and since the ‘trembling motion’ involves both
positive and negative energy states, the ‘vibrating entity’ has zero average mass,
departures from this value being allowed by Heisenberg’s uncertainty principle.

There have been a number of speculations on the foundations of inertia, gra-
vitation, and mass (e.g. [15–17]). In the following, we present a novel conjecture
based on the previous discussion.

Let us consider again the simple classical picture of a particle endowed with
charge e and mass m0 moving at velocity c around a loop of radius rC. In this
picture, the intrinsic angular momentum would be s D m0c.rC D rC.2�-h/�C, from
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the definition of �C in Eq. (2.3). As in the Bohr model for the orbital motion of an
electron around a nucleus, the spin s/-h of the electron takes a (half) integer value
if the loop circumference 2�rC involves a (half) integer number of wavelengths
�C (the ‘half’ stemming from the loop being actually a sphere in space-time).
This ‘loop’ could then be considered as some kind of ‘intrinsic orbit’ with radius
rC D �C/4� . From the definition of the Compton wavelength (Eq. 2.3), one may
express the rest mass as a function of the inverse of this ‘orbit radius’:

m0 D „
2c rC

; rC D �C

4�
: (2.34)

One may then say that this intrinsic orbit (which defines the ‘internal structure’
of the particle) is described at velocity c (as results from the Dirac equation), while
the external orbit (in an atom for instance) is described at velocity v. However, this
makes it necessary to consider that the charged entity describing the intrinsic orbit
has zero rest mass. This suggests that the rest mass observed with respect to an
external body (such as an atomic nucleus) arises from the very intrinsic motion of
the charged entity at velocity c.

The above picture should, of course, be amended to account for the contraction
of the loop radius with this fast motion. In fact, if a charged entity describes a
spherical motion at light velocity it should look as punctual to an external observer
(or a nucleus). But this would violate Heisenberg’s uncertainty principle. The
quantization condition of the ‘intrinsic orbit’ can actually be recovered from the
relation: �p.�r � -h/2 (the quotient 2 being due to the half-integer value of the spin).
If one replaces �r by rC and �p by m0c then rC can be written as rC � -h/2 m0c,
yielding 4�rC � h/m0c D �C, the Compton wavelength. This derivation is similar to
that of the Bohr radius a0 (which expresses the non-collapse of the electron onto the
nucleus) by substituting �r by a0 and �p by p in the quantum condition, �p.�r � -h,
and using the balance condition: p2=m a0 D e2=4�"0a

2
0.

It should be noted, however, that, while we know what holds the electron in
a confined region around the Bohr radius, the attraction by the nucleus, we do
not know what holds the conjectured, massless charged entity in a confined region
around the Compton radius. One may think of a pressure generated by interactions
with virtual particles of the Dirac sea, yielding a kind of Brownian motion at the
subquantum level, the Zitterbewegung. However, contrary to the Brownian motion,
the electron internal motion is not random, since it gives rise to observable spin
momentum and magnetic moment.

Another property of the electron is the so-called classical radius r0, which is the
size that the electron would need to have its rest mass m0 entirely due to its electric
potential energy E0. According to classical electrostatics, the energy required to
assemble a sphere of radius r0 and charge e is given by E0 D k e2/4�"0r0, where
k D ½ if the charge is evenly distributed on the surface and grows larger for a
density increasing towards the centre. Assuming all the rest mass energy m0c2 is of
electrostatic origin yields, for k D 1, r0 D e2/4�"0m0c2 (Table 2.1). This is the length
scale at which renormalization becomes important in quantum electrodynamics.
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Table 2.1 Some universal constants and electron and proton properties

Name Symbol Formula Dimension Value Unit

Gravitational
constant

G Fgrav D G m m0

/d2
M�1L3T�2 6.672 � 10�11 N.m2kg�2

Free space
permittivity

"0 Felec D (4�"0)�1

e e0/d2
M�1L�3T4I2 8.85419 � 10�12 F.m�1

Light velocity c Constant in all
frames

L.T�1 2.99792 � 108 m.s�1

Planck’s
constant

h �E D h	
-h D h /2�

M.L2T�1 6.62618 � 10�34 J.s

Elementary
charge

e Negative or
positive

I.T 1.60219 � 10�19 C

Fine-structure
constant

˛ e2/4�"0
-hc Dimensionless 1/137.036 Pure number

Electron rest
mass

me Negative for
positrons

M 9.10953 � 10�31 kg

Gravitational
invariant

ı Gme
2/-hc Dimensionless 1.75122 � 10�45 Pure number

Classical
electron
radius

r0 e2/4�"0mec2 L 2.81794 � 10�15 m

Compton
electron
radius

rC
-h/2mec L 1.93080 � 10�13 m

Hydrogen Bohr
radius

a0 4�"0
-h2/mee2 L 5.29177 � 10�11 m

Gravitational
electron
radius

rG (G/c2) me L 6.763 � 10�58 m

Electron mass
density

�e me/ (4� /3)rC
3 M.L�3 30.2131 � 106 kg.m�3

Proton rest
mass

mP Negative for
antiprotons

M 1.67265 � 10�27 kg

Proton mass
density

�P mP/ (4� /3)rP
3 M.L�3 34.3425 � 1019 kg.m�3

Hydrogen
non-rel. I.P.

IH (1s) e2/8�"0a0 M.L2T�2 13.6058 eV

The classical radius r0 is related to the Compton radius rC by the relation:
r0 /2rC D e2/4�"0

-hc D ˛, ˛ being the fine-structure constant (˛ D c�1 in atomic
units). The electron classical radius r0 is also related to the hydrogen Bohr radius a0

(Table 2.1) by the relation: r0:a0 D „2=m2
0c

2, or 2�r0.2�a0 D �2
C D (4�rC)2. This

shows that the Compton radius rC is a kind of geometric average of the classical
radius r0 and the Bohr radius a0; hence, the harmonic relation

2rC

a0

D r0

2rC

D ˛; ˛ D e2

4�"0„c
� 0:7297 � 10�2: (2.35)
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If then the electron is considered as the ‘lowest (stable) state’ of some kind of
‘hidden structure’ similar to the Bohr atom, the related muon and tau particles could
be seen as ‘excited (unstable) states’ of this internal system. In hydrogenoid atoms,
the smaller the ‘Bohr’ (average) radius <r>n of a given (spherically symmetric)
ns orbital, the larger the ionization energy In from this state, according to the
formula: In <r>n � (Z/4�"0) e2. Analogically, in the electron family, the smaller
the ‘Compton’ radius rC of a particle, the larger its rest mass energy m0c2: according
to Eq. (2.34), m0c2rC � -hc/2. However, In (governed by the electromagnetic inter-
action) increases practically as the square of the radial quantum number n, while m0

(governed by an undetermined interaction) increases hyper-exponentially with the
rank of the particle (n D 1, 2, 3 for the electron, muon, and tau particles).

Other radii that could be considered are those related to the space-time curvature
in general relativity theory. If the electron is viewed as a micro-universe with a rest
mass m0 uniformly distributed within a 3D sphere of radius rG, then the space-time
‘inside’ the electron would be endowed with a Gaussian 2D curvature increasing
with the mass-energy density �G, according to the formula [18, 19]

6

r2
G

D 8�



G

c4

�
�G: (2.36)

Using �G D m0 c2/(4� /3) r3
G yields

rG D



G

c2

�
m0; (2.37)

which is about 6.763 � 10�58 m with the values listed in Table 2.1. This electron
‘gravitational radius’ rG is over 1042 times smaller than the ‘classical radius’
r0 because the gravitational interaction is that smaller than the electromagnetic
interaction, the two radii being in the same ratio as the two forces (Table 2.1):

r0

rG

D



e2

4�"0m0c2

�
�



c2

G m0

�
D .4�"0/

�1e2

G m2
0

D Felec

Fgrav
D 4:167 � 1042:

(2.38)

Another point of view is to consider the space-time curvature induced by the
rest mass m0 of the electron ‘outside’ a volume of radius rQ. According to general
relativity theory, the curvature radius RG around the electron would be given by
[18, 19]:

RG D



c2

G

�
r2

Q

m0

D r2
Q

rG

: (2.39)
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This yields a harmonic relation similar to Eq. (2.35) which, when rQ is the Compton
radius rC, relates to a gravitational invariant ı similar to the fine-structure constant
˛ (Table 2.1):

rG

2rC

D 2rC

4RG

D ı; ı D Gm2
0

„c
� 0:175 � 10�44: (2.40)

If rQ is the Compton radius rC , then RG D 5.512 � 1031 m � 0.58 � 1016 light years.
The outside curvature RG equals the frontier radius rQ only if rQ D rG, which is far
below the Compton radius.

For the proton, due to Eq. (2.34), Eq. (2.39) gives a value (1,836.15)3 times
smaller: RG D 0.8904 � 1022 m � 0.94 � 106 light years. For a quasi-fermion with
the mass and size of the Earth (M D 5.974 � 1024 kg, R D 6.371 � 106 m), it
gives RG D 9.118 � 1015 m � 0.97 light year; and with the mass and size of the
Sun (M D 1.989 � 1030 kg, R D 6.970 � 108 m), RG D 0.329 � 1015 m � 12.78
light days. The contribution of the electron rest mass to the space-time curvature is
absolutely negligible - even in its vicinity - relative to that of the other masses in the
universe (which result in an overall radius rG � 13.7 � 109 light years).

From Eqs. (2.37) and (2.39), it is clear that the confinement of a charged entity
oscillating at light velocity within a Compton radius defined by Eq. (2.34) cannot
be related directly to the gravitational space-time curving.

To summarize the above discussion, the Compton radius rC appears as playing
a privileged role in the description of the electron. If one considers the electro-
magnetic force, rC is the geometric average of the classical electron radius r0

and the Bohr hydrogen radius a0, yielding a harmonic relation with ˛ as ratio. If
one considers the gravitational force, rC is the geometric average of the curvature
rG within the particle and the curvature RG at distance rC from the core, also yielding
a harmonic relation with a ratio ı related to ˛ by the ratio of the two forces.

Of the various definitions of electron radii, only that emerging from the descrip-
tion of the Compton scattering has direct experimental evidence. This radius also
defines the amplitude of the ‘trembling’ (oscillatory) motion, which is responsible
for the spin momentum and magnetic moment of the electron.

It should be noted that in this model, where the electron appears as a quasi-Bohr
subsystem with radius rC, there is no Coulomb singularity, according to Gauss’
theorem, and no cusp condition is required if the wave equation is reformulated to
account for the electron size.

2.6 The Rest Mass as Related to the Spin Motion

The essential idea in this chapter is that the rest mass of the electron stems from
the rotational motion at light velocity, in a confined region defined by the Compton
radius, of a massless charged entity. That a mass may stem from motion is nothing
new since an inertial mass m0 gains extra value with increasing speed v, according to



40 J. Maruani

the relativistic formula: mv D m0 / (1 � v2/c2)1/2 (! 1 when v ! c). That a massless
entity travelling at light velocity may display mass properties is nothing new either
since a photon has a kinetic momentum (e.g. in the Compton effect) defined by
p D h/� and a gravitational mass (e.g. in the Mössbauer shift) defined by m D p/c.

Relativity theory tells that length, interval, and mass vary with velocity, not
charge. If the electron mass essentially results from the rotational motion, at light
velocity, of a massless charge on a sphere of radius rC, then the contribution of the
electrostatic potential due to the charge distribution over this sphere is

E0 � e2

8�"0rC

D ˛:m0c
2; (2.41)

that is, less than 1% of the rest mass energy (electromagnetic and gravitational con-
tributions are even smaller). But this contribution is still 2/˛ times larger than the
potential (ionization) energy of the electron in a hydrogen 1s orbital (Table 2.1):

IH .1s/ D e2

8�"0a0

D



1

2

�
˛2m0c

2: (2.42)

How does the hidden confined motion of the massless charge at velocity c relate
to the visible free motion of the resulting particle at velocity v? If one uses again the
semi-classical picture of an electron ball, the radius rv parallel to the direction of the
motion decreases as rv D rC (1 � v2/c2)1/2 (! 0 when v ! c), yielding the expected
mass increase:

mv D „
2rvc

D mC

.1 � v2=c2/
1=2

: (2.43)

The contraction of the radius of the visible particle along the direction of the
outer motion when its velocity increases entails a decrease in the amplitude of the
inner motion of the hidden entity. Resistance to acceleration (inertia) can then be
seen as a resistance to the resulting ‘motion distortion’. If indeed the spin motion
occurs at light velocity and if the rest mass stems from this very motion, this may
be the deep reason why c is a limiting speed for all motions and why inertial frames
play a specific role in relativity theory.

These are only qualitative considerations. The problem of combining a spherical
motion approaching light velocity [20–22] with a linear motion of increasing
speed is very complex indeed and requires the mathematical formalism of general
relativity theory. This will be the subject of further work.

2.7 Other Elementary Particles

The number of so-called elementary particles – and their antiparticles – observed
in modern accelerators has reached several hundred (most of them being very short
lived and some, not even isolated). Ultimately, they disintegrate into nucleons (made
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Table 2.2 For all known particles of the electron family and for a few other common particles,
measured rest mass (in MeV) and computed ‘Compton radius’ (in nm)

Particle Rest mass/MeV Charge/e Spin/„
‘Compton
radius’/nm Lifetime/s Discovery

Electron 0.5110 �1 1/2 1.931�10�2 Stable 1896
Cambridge

Muon 105 �1 1/2 0.940�10�4 �2�10�6 1936
Caltech

Tau 1,700 �1 1/2 0.580�10�5 �3�10�13 1975
Stanford

Neutrino(s) <10�6 0 1/2 >0.987�104

� 10 �

Oscillating 1956–1962
–2001

Proton 938.272 C1 1/2 10.508�10�6 �1034 years 1919
0.842�10�6

Neutron 939.565 0 1/2 10.501�10�6 �15 min 1932
0.341�10�6

Photon <0.76�10�37 0 1 >1.30�1035 Exchanging 1905

Big Bang
singularity

�1022 ? ? �10�26 �10�43 �1930’s

The charge, spin, and measured lifetime of these particles and values (in italics) of the proton and
neutron charge radii measured by electron scattering are also given. The correspondence between
units used in Tables 2.1 and 2.2 is: 1 MeV D 1.60219 � 10�13 J D 1.78268�10�30 kg; 1 light
year D 0.94605� 1025 nm

up of quarks), electrons, and neutrinos. In addition to the electron, the only stable
and isolatable particles are the proton and the neutrino. One may add the neutron,
which decomposes into a proton, an electron, and an antineutrino when isolated. As
the Dirac equation in free space does not refer to the charge (or the stability) of the
electron, the only conditions for other particles to obey this equation are to have a
rest mass and spin ½. All that was said for the electron should then hold for these
three particles, as well as for the others in the electron and neutrino families.

In Table 2.2, we have gathered the measured rest mass and computed ‘Compton
radius’ for these particles. The electron, muon, and tau form a homogeneous family,
which shows decreasing lifetime with increasing mass. The proton and the neutron,
being sensitive to the strong interaction, belong to a different family. Although
they are not sensitive to the electromagnetic field, particles of the neutrino family,
which are endowed with spin ½, should follow the Dirac equation, if they have non-
zero rest mass. The charge does not enter when one uses Heisenberg’s uncertainty
relation to estimate the Compton radius of a particle. However, for neutrinos (not
composite as the neutron), there is no magnetic moment associated with the spin.

The proton and the neutron being composite particles, their measured radius rN

(N standing for nucleon) strongly differs from their ‘Compton radius’ rC and their
magnetic moment �N from the nuclear magneton �P D e c rP (rP being the Compton
radius for the proton) by factors 2.79285 and �1.91315, respectively (for electrons,
the corresponding factor is 1.00116, the decimals stemming from qed effects).
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Although the photon has zero rest mass and spin 1 and thus does not follow
the Dirac equation [5], Table 2.2 also gives a computed ‘rest mass’ for a photon
travelling freely across the universe, assuming for the latter a radius of �13.7�109

light years. If the universe were flat and infinite, the photon ‘rest mass’ would be
zero. The value given here is purely formal, not only because it is very small but
also because it could be detected only by an observer ‘external’ to our universe!

In the lower row of Table 2.2, there are also given the so-called Planck’s energy
EP, Planck’s length rP, and Planck’s time �P, which define the Big Bang singularity
and are similarly, in accordance with Heisenberg’s uncertainty principle, related
through Compton’s formula: rP � -h/2mPc � -h c/2EP and �P � -h/EP � 2 rP/c.

It may be interesting to assess what would be the equivalent of the Bohr radius for
a neutrino orbiting around a neutron under the sole influence of gravitation, the two
particles being deprived of charge. They are also sensitive to the weak interaction but
this latter, though much larger than gravitation, is very short ranged and negligible
at these distances.

Assuming Heisenberg’s relations can still be used for the gravitational field, one
can write that at the equilibrium, ‘Bohr-like’ distance a	 , if n and 	 are the neutron
and neutrino masses, respectively, the ‘inertial force’, p	

2/ 	 a	 , is balanced by the
‘gravitational force’, G n 	/a	

2, yielding


p2:
r2 � p2
	:a2

	 � G n	2a	 � „2 ! a	 D „2

G n	2
: (2.44)

This is about 3.28�1024 light years with the numerical values given in Tables 2.1
and 2.2. Comparing the above formula with that for the neutrino ‘Compton radius’,
rC D -h /2	 c, yields the ratio

2rC

av
D G n	

„c
D ı n	

m2
0

D 2:11 � 1015 n	: (2.45)

This equation is similar to Eq. (2.35), with ˛ replaced by ı defined in Eq. (2.40).

2.8 The Photon as a Composite of Two Conjugate Fermions

In one of his conjectures [23], de Broglie described the photon as resulting from
the ‘fusion’ of two spin-½ particles, an electron and a positron (whose spins would
add and charges cancel) or a neutrino and its antineutrino. Although de Broglie
managed to derive Maxwell’s equations from this model, his idea was not retained
in further developments of quantum electrodynamics. But it was somehow revived
in the ‘standard model’ of quantum chromodynamics, where it is assumed that the
strong interaction between quarks constitutive of nucleons is mediated by massless
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vector gauge gluons, each gluon carrying a ‘colour charge’ (blue, green, or red) and
an ‘anticolour charge’ (antiblue, antigreen, or antired), while mesons result from the
‘fusion’ of two quarks of a given colour and the corresponding anticolour.

The ‘fusion’ model can be simply pictured as follows. An electron approaching
light velocity would appear to an external observer as a flattened ellipsoid orthogo-
nal to the direction of the motion, our ‘massless charged entity’ rotating around the
linear motion axis, say z. A positron could then be seen as a similar entity rotating
in the opposite sense. The composition of the two motions yields 0 along an axis
orthogonal to z, say x, and, along the third axis, y, it yields y D 2re cos 2�	et, with
2re D �C/2� (Eq. 2.34) and 	e D c /2�re (the two entities rotating at light velocity
around z). The maximum (positive) value of y for the particle-antiparticle pair is
reached when 2�	e� e D 2k� (k D 0, ˙1, : : : ), at time intervals given by � e D 1/	e.

During this rotating period, the pair has travelled, at light velocity, over the linear
distance c.� e D c/	e D 2�re D �C/2. This is the distance on the linear path of two
maxima along the circular path and thus has the meaning of a wavelength. If one
identifies the pair with the photon then one can write: E D h 	e D 2h c/�C D 2m0c2,
the sum of the two particle energies, or the energy required for a � photon to yield
an electron-positron pair.

Also according to this model, the metastable hydrogenoid species positronium
(� � 0.1 ns) may be seen as a couple of oppositely charged vortices (with Compton
radius rC D a0.˛/2 and velocity c) rotating around a barycentre at distance ae D 4a0

with velocity v D c.˛/4 (a0 being the Bohr radius and ˛ the fine-structure constant,
Table 2.1). The spins of the two vortices may be opposite (S D 0) or aligned (S D 1).
As in the ‘Fujiwara effect’ in fluid dynamics [24], the two vortices would attract
each other when they spin in the same direction and eventually merge into a single
vortex, which would be our ‘compound’ photon (the positive charge vortex being
equivalent to a reversed negative charge vortex).

In the above description of a photon as a ‘fusion’ of an electron and a positron, an
electron charge would oscillate along the y axis, say, generating an electromagnetic
field with the oscillating electric component parallel to the motion of the charge and
the in-phase magnetic component orthogonal to y and z.

However, this description holds only for photons with energies E D 2m0c2. But
electromagnetic radiation ranges from radio waves to cosmic rays. One could then
conjecture that, whereas there is a discrete spectrum of rest masses (and other
properties) for particles that can be isolated, photons are made up of ‘virtual’
particles that exist only in combination. A similar assumption is made in quantum
chromodynamics, where quarks exist only in combinations in gluons, mesons, or
baryons. A photon of arbitrary energy E0 D h	0 could then be seen as a ‘virtual’
particle-antiparticle pair with ‘Compton wavelength’ 2c/	0 and ‘rest mass’ h	0/2c2.
When a photon transfers part of its energy to an electron, as in the Compton effect
(Sect. 2.2), it trades with the ‘Dirac sea’ its constitutive ‘virtual pair’ of Compton
wavelength �1 against a lower-energy ‘virtual pair’ with �2 given by Eq. (2.3).
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2.9 Conclusions

In this chapter, we have revisited the Dirac equation in its original form and
investigated its implications regarding the electron structure and rest mass. On the
basis of this discussion, the following conclusions have been drawn:

1. The spin angular momentum and intrinsic magnetic moment of the electron
(or positron) stem from its ‘trembling motion’ (Zitterbewegung). This latter is
due to a wave beat of coupled positive and negative energy states with energies
corresponding to the electron and positron rest masses. The value ½ of the spin
results from the factor 2 in the difference of the interfering frequencies: ˙m0c2/h.
Therefore, every particle endowed with spin ½, including neutrinos, should have
rest mass, however small it may be.

2. Alternatively, the electron (or positron) rest mass can be seen as arising from
the spinning motion of a massless charge at light speed. The rest mass involved
in external motions (or interactions) would then be due mainly to this internal
motion. The ratio between the electrostatic (classical) and kinetic (rotational)
contributions to the rest mass in this model is equal to the fine-structure constant:
˛ � 1/137.

3. The magnitudes of the spinning radius rC and of the rest mass m0 are related by
the Compton formula: rC.m0c D -h/2, which expresses the uncertainty principle
for ‘position’ rC and ‘momentum’ m0c. Rest mass and spin motion thus appear
as essentially related quantum properties, a kind of zero-point vibration energy
for a charged entity with respect to some inertial frame.

4. The Compton diameter 2rC is the geometric average of the classical electron
radius r0 and the Bohr hydrogen radius a0, the ratio of this harmonic relation
being the fine-structure constant: ˛ � 1/137. It is also the geometric average of
the gravitational curvature radii ‘inside’ and ‘outside’ the electron, rG and 4RG

respectively, the ratio of this harmonic relation being a gravitational invariant:
ı � 1.75�10�45.

5. Due to the connection between spin motion and inertial mass revealed by the
Dirac equation, and to the equivalence between inertial and gravitational masses
implied by general relativity theory, there is a deep (though not yet very clear)
connection between spin and gravitation.

6. By relating the rest mass to the internal motion, quantum theory brings an insight
into the bearing of such relativistic concepts as Lorentz-invariant, Minkowski’s
proper interval x0. As the property m0c is the ‘residual momentum’ when the
linear part p2 is subtracted from the total entity m2c2 (Eq. 2.7b), the property x0

is the ‘residual interval’ when the space coordinate r2 is subtracted from the time
coordinate c2t2 (Eq. 2.5b).

7. The reason why time plays a specific role in physics may then be that it relates to
the inner clock, �0 D x0 /c; spin momentum, s D p0rC; and rest mass, m0 D p0 /c,
of the matter particles. This may also be why inertial frames, which involve time
through spin and mass, play a privileged role in physics. Time would not exist
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in a universe made solely of light, where there would be no inertial frames to
measure velocities. The emergence of time seems to be intimately related to the
‘splitting’ of ‘genderless’ photon (or boson) particles to yield matter (and anti-
matter) particles.

8. If the electron is seen as the ‘ground state’ of a subsystem analogous to the Bohr
atom, then the parent mu and tau leptons could be seen as its ‘excited states’,
with a Compton radius decreasing as the rest mass increases.

9. This picture is consistent with de Broglie’s theory of photons resulting from the
‘fusion’ of particle pairs.

Formal developments on the combination of circular and linear motions at
relativistic speeds are in progress.
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