
Chapter 14
Description of Core-Ionized and Core-Excited
States by Density Functional Theory
and Time-Dependent Density Functional Theory

Yutaka Imamura and Hiromi Nakai

Abstract This chapter discusses descriptions of core-ionized and core-excited
states by density functional theory (DFT) and by time-dependent density functional
theory (TDDFT). The core orbitals are analyzed by evaluating core-excitation
energies computed by DFT and TDDFT; their orbital energies are found to contain
significantly larger self-interaction errors in comparison with those of valence or-
bitals. The analysis justifies the inclusion of Hartree-Fock exchange (HFx), capable
of reducing self-interactions, and motivates construction of hybrid functional with
appropriate HFx portions for core and valence orbitals. The determination of the
HFx portions based on a first-principle approach is also explored and numerically
assessed.

14.1 Introduction

Kohn-Sham density functional theory (KS-DFT) [1–4] has been established as
a computational tool for estimating physical properties of ground states such as
standard enthalpies of formation, because of the cost-effective performance. The
establishment of KS-DFT was achieved by development of exchange-correlation
(XC) functionals such as the local density approximation (LDA) [5, 6], generalized
gradient approximation (GGA) [7–9], meta-GGA [10], global hybrid [11–13], and
long-range corrected (LC) and short-range corrected hybrid [14–18] functionals.
Although long-standing KS-DFT deficiencies such as the lack of van der Waals
interaction in XC functionals were pointed out in 2000s, the recipes for overcoming
the deficiencies have been proposed [19–23] and largely removed those deficiencies.
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In addition to the descriptions of ground states, excited states have been also
computed by time-dependent density functional theory (TDDFT) [24–28]. Valence-
excitation energies are accurately estimated without exhibiting a tendency of
overestimation, which is typically confirmed for configuration interaction singles
(CIS) calculations [28]. TDDFT has been plagued by the underestimation of the
charge-transfer (CT) and Rydberg excitation energies owing to the lack of the long-
range Coulomb interaction [29, 30]. The recently proposed and widely accepted
LC functional [15] alleviates the obstacle and is a powerful tool for practical
applications.

Although DFT and TDDFT have been utilized for describing valence orbitals in
the ground and excited states, description of core orbitals still needs to be theoreti-
cally and numerically investigated because of the peculiar localized distributions of
core electrons. Core electrons provide important information regarding molecular
structure and dynamics through X-ray photoabsorption and electron energy loss
spectra. Numerous theoretical attempts to describe core orbitals [31–62] have been
proposed. Green function [31–33] and wave function [34–36] approaches including
recent studies by the symmetry adapted cluster configuration interaction (SAC-
CI) [34] and multiconfigurational self-consistent-field multireference perturbation
theory (MCSCF-MRPT) [35] have been reported. However, this chapter focuses on
DFT-based approaches. See a good review on this matter [37] in more details if you
are interested.

In DFT, transition potential [38–42] and �self-consistent field (�SCF) [42–44]
have been major methodologies for describing core orbitals. They offer relatively
accurate descriptions for core orbitals, but their applicabilities are limited by
symmetries because the desired state cannot be necessarily produced by specifying
occupation numbers. TDDFT with the van Leeuwen-Baerends 94 (LB94) functional
[45, 57, 58] was reported. However, more extensive studies on core orbitals by DFT
and TDDFT have been demanded, and a great number of other developments in the
framework of DFT and TDDFT have progressed [46–62].

This chapter describes our several attempts [46–56] to accurately describe
core orbitals in the DFT approach. Section 14.2 analyzes CO core orbitals for
core-excitation energies in terms of self-interaction. Section 14.3 explains the
core-valence Becke-three-Lee-Yang-Parr (CV-B3LYP) functional [50–52] includ-
ing Hartree-Fock exchange (HFx) portions designed to reproduce valence as well as
core-excitation energies. Section 14.4 reviews orbital-specific (OS) functionals [53–
56] that are considered as an extension of CV-B3LYP. Finally, general conclusions
are addressed.

14.2 Analysis of Core Orbitals

Description of core orbitals is investigated by estimating core-excitation energies
of carbon monoxide, computed by the self-interaction corrected (SIC)-�SCF and
SIC-TDDFT methods. First, the formulations of SIC-�SCF and SIC-TDDFT are
briefly introduced, and subsequently numerical analysis is demonstrated.
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14.2.1 Theoretical Aspects

14.2.1.1 SIC-�SCF

The excitation energy by the �SCF method is given as follows:

!�SCF .i� ! a� / D EES
�
‰a�
i�

� � EGS .‰0/ : (14.1)

The spatial orbital indices fi; j; : : :g, fa; b; : : :g, and fp; q; : : :g are used for the
occupied, unoccupied, and general orbitals, respectively. � and � denote spins.
EGS . 0/ is the ground-state energy, and EES

�
 a�i�

�
is the i� ! a� excited-state

energy, which is calculated self-consistently in the spin-unrestricted formalism with
the constraint that the occupation numbers of orbitals i� and a� are 0 and 1,
respectively. In the�SCF method, the difference of total energies plays an essential
role in determining excitation energies.

The Perdew-Zunger or one-electron self-interaction error in the�SCF method is
written as [63]

ESIE D
X

i;�

Exc Œ�i� ; 0�C J Œ�i� �; (14.2)

whereExc and J represent an XC functional and Coulomb interaction, respectively.
When the exact XC functional, that is, self-interaction-free (SIF) functional, is used,
the following relation automatically holds:

ESIE D 0: (14.3)

The SIC total energy is simply defined as

ESIC D E �ESIE: (14.4)

The SIC excitation energy by the �SCF method is estimated as

!SIC��SCF .i� ! a�/ D ESIC
ES

�
‰a�
i�

� � ESIC
GS .‰0/ ; (14.5)

where ESIC
GS . 0/ and ESIC

ES

�
 a�i�

�
are the SIC total energies of the ground and i� !

a� excited states, respectively. In the study all Perdew-Zunger SIEs are estimated in
a post-SCF manner.

14.2.1.2 SIC-TDDFT

The excitation energies ! for TDDFT are computed by solving the following non-
Hermitian eigenvalue equation [25–28]:

�
A B

B� A�
� �

X

Y

�
D !TDDFT

�
1 0

0 �1
� �

X

Y

�
: (14.6)
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The matrix elements in Eq. (14.6) are given by

Aai�;bj� D ıij ıabı�� ."a� � "i� /C .a� i� jj�b� /� cHFı�� .a�b� jj� i� /
C cDFT .a� i� jw�� jj�b� / (14.7)

and

Bai�;bj� D .a� i� jb�j� / � cHFı�� .a�j� jb� i� /C cDFT .a� i� jw�� jb�j� / ; (14.8)

where cHF and cDFT represent portions of HFx and DFT XC functional, respectively.
The wterm is given by

.p�q� jw�� jr�s� / D
Z
drdr0��

p� .r/ �q� .r/
ı2Exc

ı�� .r/ ı�� .r0/
��
r�

�
r0� �s�

�
r0� ;

(14.9)

where � represents a KS orbital. In this method, the difference of orbital energies is
the key for estimating excitation energies.

The Perdew-Zunger SIE for an occupied orbital energy can be defined in a way
similar to Ref. [63]:

"SIE
i� D J Œ�i� �C .i� jVxc Œ�i� � ji� / ; (14.10)

where Vxc represents the XC potential. If the exact XC functional is used, "SIE
i� D

0 for each occupied orbital. Here, the SIC occupied orbital energy is defined as
follows:

"SIC
i� D "i� � "SIE

i� : (14.11)

For unoccupied orbitals, the SIE should be defined in a different fashion; once an
electron excites from the occupied orbital i to the unoccupied orbital a, the SIE can
be defined as follows:

"SIE
a� .i ! a/ D cHFJia� CKia� C cDFT .i�a� jwxcji�a� / : (14.12)

In time-dependent Hartree-Fock (TDHF) and TDDFT calculations, the self-
interactions for unoccupied orbitals are automatically corrected. Here, in order to
remove the SIEs of occupied orbitals, the following modified A matrix is adopted
to estimate SIC core-excitation energies:

ASIC
ai�;bj� D ıij ıabı��

�
"a� � "SIC

i�

� C .a� i� jj�b� / � cHFı�� .a�b� jj� i� /
C cDFT .a� i� jw�� jj�b� / : (14.13)
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The combination of Eq. (14.8) with Eq. (14.13) leads to SIC core-excitation
energies. In this study, all Perdew-Zunger SIEs are estimated in a post-SCF manner.

14.2.2 Analysis on Self-Interaction of Core Electrons

In this chapter, the Perdew-Zunger SIEs of the CO molecule were calculated in the
KS-DFT scheme with Becke-Lee-Yang-Parr (BLYP) [7, 8], B3LYP [11, 12], and
Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) [64] functionals. Since the LYP
functional is SIF, the SIEs of BLYP and BHHLYP come from an approximate
exchange functional: Becke88 (B88) [7]. The correlation part of B3LYP consists of
LYP (nonlocal part) [8] and Vosko-Wilk-Nusair (VWN) (local part) [6], which is not
SIF. The main contribution of SIEs is still from the B88 exchange functional because
the magnitude of the correlation part of B3LYP is relatively small. The cc-pCVTZ
basis set [65, 66] combined with the Dunning-Hay basis functions [67] was adopted.
6d and 10f basis functions were used. Since SIEs cannot be invariant under unitary
transformations, degenerate orbitals of 2p  and 2p * are designed to be fixed on
the x- and y-axes where the z-axis is the CO-bonding direction. The coordinates of
CO molecule were optimized at the B3LYP/cc-pVTZ [65] level. Calculations were
carried out in the Gaussian 03 suite of programs [68].

14.2.2.1 Comparison Between �SCF and SIC-�SCF

The SIEs for total energies given in Eq. (14.3) are examined, which play the key role
in the�SCF method. Table 14.1 lists SIEs of total and respective orbitals for the CO
ground and excited states such as C1s ! *, C1s ! 3s, O1s ! *, and O1s ! 3s
states, respectively. The total SIEs are negative for the ground and excited states. For
the ground state, the SIEs for BLYP, B3LYP, and BHHLYP are �14.89, –11.30, and
�7.24 eV, respectively. For the excited states, the SIEs have slightly larger negative
values. The C and O 1s ! * SIEs tend to be slightly larger than those of C and O
1s ! 3s excitations. The total SIEs increase for not only the ground state but also
excited states according to the order of functional: BHHLYP, B3LYP, and BLYP,
which is consistent with the HFx portions. This behavior can be explained by the
exact cancellation between HFx and Coulomb interaction.

Next, the SIEs to core and valence orbitals are examined. The sign of SIEs
depends on orbital type, namely, they are positive for core orbitals and negative for
valence orbitals. Error cancellation occurs if core and valence orbitals are occupied.
However, if an electron excites from a core orbital to an unoccupied orbital, SIEs
may increase by reduction of error cancellation. As shown in Table 14.1, the total
SIEs of the excited states have larger negative values than that of the ground
state. For example, the total SIEs of BLYP is �14.89 eV for the ground state and
�17.80 eV for the C1s ! 2p * state.

Table 14.2 summarizes CO core-excitation energies calculated by the �SCF and
SIC-�SCF methods using HF and KS-DFT with BLYP, B3LYP, and BHHLYP.
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Table 14.1 SIEs of �SCF calculations for the CO molecule at DFT/cc-
pCVTZ with the Dunning-Hay basis functions in eV

Functional State Core (C) Core (O) Valencea Total

BLYP Ground state 0.76 0.48 �16:14 �14:89
C1s ! 2p * 0.50 0.48 �18:78 �17:80
C1s ! 3s 0.50 0.49 �17:79 �16:80
O1s ! 2p * 0.76 0.37 �20:51 �19:38
O1s ! 3s 0.76 0.37 �19:15 �18:03

B3LYP Ground state 1.30 0.77 �13:38 �11:30
C1s ! 2p * 0.77 0.77 �15:44 �13:90
C1s ! 3s 0.77 0.78 �14:69 �13:15
O1s ! 2p * 1.30 0.51 �16:92 �15:11
O1s ! 3s 1.31 0.51 �15:88 �14:06

BHHLYP Ground state 0.40 0.27 �7:91 �7:24
C1s ! 2p * 0.26 0.27 �9:23 �8:70
C1s ! 3s 0.26 0.27 �8:74 �8:22
O1s ! 2p * 0.40 0.19 �10:20 �9:60
O1s ! 3s 0.40 0.19 �9:48 �8:88

aFor Rydberg excitations, SIEs of valence and Rydberg orbitals are
evaluated

Table 14.2 CO core-excitation energies by �SCF using DFT/cc-pCVTZ with the Dunning-Hay
basis functions in eV

BLYP B3LYP BHHLYP

Transition �SCF SIC-�SCF �SCF SIC-�SCF �SCF SIC-�SCF HF Expt.

C1s ! 2p * 286.36 290:85 286:47 290:27 287:02 289:39 287:14 287.4a

(�1.04) .3:45/ .�0:93/ .2:87/ .�0:38/ .1:99/ .�0:26/
C1s ! 3s 292.26 295:39 292:62 295:38 293:46 295:10 293:90 292.37b

(�0.11) .3:02/ .0:25/ .3:01/ .1:09/ .2:73/ .1:53/

O1s ! 2p * 533.55 536:45 533:33 535:92 533:66 535:12 533:14 534.2a

(�0.65) .2:25/ .�0:87/ .1:72/ .�0:54/ .0:92/ .�1:06/
O1s ! 3s 538.34 540:25 538:29 540:14 538:77 539:74 538:94 538.8c

(�0.46) .1:45/ .�0:51/ .1:34/ .�0:03/ .0:94/ .0:14/

aRef. [40]
bRef. [69]
cRef. [70]

The deviations from experimental values are shown in parentheses. Core-excitation
energies of the �SCF and SIC-�SCF methods do not differ greatly in spite
of the large SIEs in Table 14.1. The reason is that SIE cancellation occurs
between SIEs of the ground and excited states. The�SCF and SIC-�SCF methods
provide considerably smaller deviations than TDHF because they are capable of
incorporating orbital relaxation [46], which is considered one of the main sources of
errors in TDHF calculations. For core ! Rydberg and core ! valence excitations,
the�SCF method with KS-DFT tends to slightly underestimate excitation energies,
while the SIC-�SCF method with KS-DFT overestimates. The deviations of the
�SCF method are smaller than those of the SIC-�SCF method, which is supposed
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to yield accurate excitation energies because it satisfies the physical condition: no
self-interaction. However, this is not the case. The B88 exchange functional was
constructed on the assumption that total energy of the B88 exchange has the SIE.
Thus, if the SIE is removed from the total energies, the balance may be lost in the
�SCF calculations.

As is widely known, KS-DFT succeeds in reproducing standard enthalpies of
formation of the small G2 set within 3–7 kcal/mol with commonly used functionals
[71]. Since the �SCF method estimates excitation energies from total energies of
two different states, the accuracy for the core-excitation energies is predictable.

14.2.2.2 Comparison Between TDDFT and SIC-TDDFT

The SIEs are examined for orbital energies, which play the key role in TDDFT.
Table 14.3 shows the SIEs of CO occupied orbital energies for BLYP, B3LYP,
and BHHLYP. The HF result is omitted because HF occupied orbitals are SIF. All
SIEs are positive for all functionals. In particular, the SIEs of BLYP are 47.55 and
35.06 eV for C and O 1s orbitals, respectively. As HFx portions increase, SIEs
decrease: BHHLYP and B3LYP give approximately 0.5 and 0.8 times the values of
the BLYP SIEs for O 1s and C 1s orbitals, respectively. Compared with those of
core orbitals, the SIEs of valence orbitals are significantly smaller: the SIEs of 2p 
and 2p¢ are 3.33 and 4.40 eV for BLYP. B3LYP does not give approximately 0.8
times the value of BLYP SIEs for 2p  and 2p¢ .

Table 14.4 shows SIEs for CO unoccupied orbital energies. These SIEs defined in
Eq. (14.12) are calculated by TDHF and TDDFT with BLYP, B3LYP, and BHHLYP.
TDDFT with BLYP gives small SIEs for all cases, while SIEs decrease as HFx
portion decreases. For example, the SIEs for C1s ! 2p * are 6.76, 5.37, 3.13, and

Table 14.3 SIEs of orbital energies for the CO molecule at
DFT/cc-pVTZ with the Dunning-Hay basis functions in eV

BLYP B3LYP BHHLYP

O1s 47.55 36.50 23.84
C1s 35.06 26.55 17.60
2s¢ 7.63 5.01 3.81
2s¢* 5.10 3.10 2.60
2p  3.33 1.68 1.67
2p¢ 4.40 2.65 2.31

Table 14.4 SIEs of unoccupied orbital energies for the CO molecule at
DFT/cc-pCVTZ with the Dunning-Hay basis functions in eV

Virtual orbital Transition BLYP B3LYP BHHLYP TDHF

2p * O1s ! 2p * �0.06 2.83 5.07 6.92
C1s ! 2p * �0.03 3.13 5.37 6.76

3s O1s ! 3s �0.02 0.93 2.14 9.46
C1s ! 3s �0.02 0.89 2.07 10.95
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Table 14.5 Core-excitation energies calculated by TDDFT and SIC-TDDFT with cc-pCVTZ with
the Dunning-Hay basis functions in eV

BLYP B3LYP BHHLYP

Transition TDDFT SIC-TDDFT TDDFT SIC-TDDFT TDDFT SIC-TDDFT TDHF Expt.

C1s ! 2p * 271.29 306.35 276.17 302.71 283.55 301.14 294.39 287.4a

(�16.11) (18.95) (�11.23) (15.31) (�3.85) (13.74) (6.99)
C1s ! 3s 272.76 307.81 279.40 305.94 289.40 307.00 304.68 534.2a

(�19.61) (15.44) (�12.97) (13.57) (�2.97) (14.63) (12.31)
O1s ! 2p * 512.29 559.84 519.82 556.32 531.65 555.49 550.10 292.37b

(�21.91) (25.64) (�14.38) (22.12) (�2.55) (21.29) (15.90)
O1s ! 3s 513.78 561.32 522.70 559.20 536.39 560.22 557.82 538.8c

(�25.02) (22.52) (�16.10) (20.40) (�2.41) (21.42) (19.02)
aRef. [40]
bRef. [69]
cRef. [70]

�0.03 eV for TDHF and TDDFT with the BHHLYP, B3LYP, and BLYP functionals,
respectively. Similarly, the SIEs for C1s ! 3s are 10.95, 2.07, 0.89, and �0.02 eV,
respectively. This trend is the opposite of occupied orbitals.

Table 14.5 lists CO core-excitation energies calculated by TDHF, TDDFT,
and SIC-TDDFT with BLYP, B3LYP, and BHHLYP. !SIC�TDDFT represents the
excitation energies obtained by diagonalizing the non-Hermitian matrix composed
of Eqs. (14.8) and (14.13). The deviations from experimental values are shown
in parentheses. TDDFT and SIC-TDDFT with BLYP, B3LYP, and BHHLYP for
core ! Rydberg and core ! valence show different behaviors: underestimation and
overestimation for TDDFT and SIC-TDDFT, respectively. These results indicate
that elimination of SIEs reverses the trend of the underestimation. !TDDFT is
strongly dependent on the XC functionals; for example, the TDDFT deviations for
BLYP, B3LYP, and BHHLYP are �16.11, –11.23, and �3.85 eV for C1s ! 2p *,
respectively. On the other hand,!SIC�TDDFT is less dependent on them; for example,
the SIC-TDDFT deviations for BLYP, B3LYP, and BHHLYP are 18.95, 15.31,
and 13.74 eV, respectively. The core excitations from the O 1s orbital yield larger
deviations than those from the C 1s orbital for SIC-TDDFT and TDHF, while hybrid
TDDFT with a 50 % exchange, BHHLYP, provides core-excitation energies with
a similar accuracy. These results indicate that SIC-TDDFT fails to yield accurate
core-excitation energies and rather increases deviations despite no self-interaction.

14.2.3 Discussion

KS-DFT using self-interaction-contained XC functionals does not retain a relation
between the total and orbital energies:

E D
X

i�

"i� � 1

2

X

i�;j�

< i�j� jji�j� >; (14.14)
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which is satisfied for HF because Koopmans’ theorem holds for HF but does not
hold for DFT with self-interaction-contained XC functionals. Thus, the total energy
and orbital energies are not directly correlated for self-interaction-contained XC
functionals, which brings us to the fact that the Perdew-Zunger SIEs in orbital
energies greatly differ from those in total energies as shown in the previous section.

Let us examine in greater detail how the SIEs of orbital energies and total
energies differ for the Slater-Dirac exchange [5], with which the B88 exchange
functional becomes equivalent for the homogeneous electron gas. A similar analysis
has been performed previously [63]. The Slater-Dirac exchange is given by

ESlater
x D �

X

�

Z
CX�

4=3
� dr; (14.15)

where CX D .3 =4/ 3
p
6 =	 . The self-interaction of the exchange interaction in

occupied orbital energies is given by

"SI
i�

�
ESlater

x

� D
�
i� j ıE

Slater
x

ı�
Œ�i� �j i�

�
D

X

�

�4
3
CX�

4=3
i� : (14.16)

The self-interaction of the Coulomb interaction in orbital energies is given by

"SI
i� .ECoulomb/ D .i� i� ji� i�/: (14.17)

Suppose that the following relation is satisfied:

ESlater
x Œ�i� � D �

Z
CX�

4=3
i� dr � EHF

x Œ�i� � D 1

2
.i� i� ji� i�/ : (14.18)

The assumption is justified by the fact that the Slater-Dirac exchange functional
can reproduce approximately 90 % of the HFx [3]. The condition for being SIF is

"SI
i�

�
ESlater
x

� D "SI
i� .ECoulomb/ : (14.19)

For the Slater-Dirac exchange, the next relation is instead obtained using
Eq. (14.18):

"SI
i�

�
ESlater
x

� D 2

3
"SI
i� .ECoulomb/ : (14.20)

Therefore, the self-interaction of HFx is approximately underestimated by a
factor of 2/3. The underestimation of HFx leads to larger SIEs in orbital energies
than those in total energies.
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14.2.4 Brief Summary

We applied the SIC-�SCF and SIC-TDDFT methods to CO core excitations. The
SIC-�SCF and SIC-TDDFT methods are supposed to provide more accurate core-
excitation energies than those of the �SCF and TDDFT methods because of the
absence of self-interaction. However, the SIC-TDDFT severely overestimates core-
excitation energies, while the SIC-�SCF method slightly overestimates. These
behaviors originate in the fact that the error cancellation occurs for the �SCF
method but does not occur for TDDFT. The present analysis suggests that the
reduction of self-interaction is important for the TDDFT calculations. Based
on the analysis, we have developed a new XC functional, CV-B3LYP with the
appropriate inclusion of HFx, which reduces self-interaction [50–52].

14.3 Development of Core-Valence B3LYP for Second-Row
Elements

The theoretical analysis [47] on core orbitals given in the previous section and
numerical assessment [46] on widely used DFT functionals motivated us to develop
CV-B3LYP, which is designed to select appropriate HFx portions for core and
valence orbitals. First, the theory for CV-B3LYP is introduced, and its numerical
assessment is subsequently demonstrated.

14.3.1 Theory for Core-Valence B3LYP Functional

14.3.1.1 Energy Expression of Core-Valence B3LYP

The appropriate portion of HFx for core excitations is different from that for valence
excitations [46]: BHHLYP including 50 % portions of HFx is appropriate for the
descriptions of core excitations, while B3LYP with 20 % portions of HFx is well
known to show better performance for valence excitations as well as other valence
properties than BHHLYP. Therefore, the newly developed CV-B3LYP functional is
designed to use appropriate portions of HFx for core and valence regions separately.
In CV-B3LYP, the electronic energy is decomposed into core-core (cc), core-valence
(cv), and valence-valence (vv) interactions, and the portions of HFx in the cc, cv,
and vv interactions are determined, respectively. Thus, while the XC energy Exc of
B3LYP or BHHLYP is written by

Exc D a
X

ij

��Kij

� C bESlater
x C cEB88

x C dEVWN5
c C eELYP

c ; (14.21)
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Table 14.6 Coefficients of XC functionals in the BHHLYP, B3LYP, and CV-B3LYP func-
tionals

CV-B3LYP

TDHF BHHLYP B3LYP BLYP cc cv vv

a (HFx) 1 0.5 0.2 0 0.5 0.35 0.2
b (Slater-Dirac exchange) 0 0 0.08 0 0 0.04 0.08
c (B88 exchange) 0 0.5 0.72 1 0.5 0.61 0.72
d (VWN5 correlation) 0 0 0.19 0 0 0.095 0.81
e (LYP correlation) 0 1 0.81 1 1 0.905 0.19

Coefficients in CV-B3LYP are given for each index

that of CV-B3LYP is given as

Exc D acc

cX

kl

.�Kkl/Cacv

cX

k

vX

m

.�Kkm/Cacv

vX

m

cX

k

.�Kmk/Cavv

vX

mn

.�Kmn/

C bccE
Slater
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(14.22)

where the a, b, c, d, and e are the coefficients of HFx, Slater-Dirac exchange, B88
exchange, VWN5 correlation, and LYP correlation functionals, respectively. The
subscripts i and j for occupied orbitals, a and b for virtual orbitals, and p, q, r, and
s for general orbitals are used; occupied orbitals are classified into core orbitals k
and l, and valence orbitals as m and n. The appropriate portions of HFx can be used
by determining acc, acv, and avv adequately. The practical values of the coefficients
used in this study are shown in Table 14.6. �, �c, and �v are the total, core, and
valence electron densities:

� D
occX

i

j�i j2; �c D
cX

k

j�kj2; �v D
vX

m

j�mj2: (14.23)

For the exchange and correlation functionals, the contributions of �c and �v

correspond to the cc and vv interactions. Since cv elements of the density are zero,
the cv interaction is represented as the subtraction of Exc[�c] and Exc[�v] from
Exc[�].
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14.3.1.2 Kohn-Sham Equation for Core-Valence B3LYP

In CV-B3LYP, electronic energy is decomposed into cc, cv, and vv interactions:
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(14.24)

where the exchange and correlation functionals Ex and Ec are collected as Exc with
the coefficient b0. The coefficients in the XC energies depend on the combinations
of the orbitals. We define the Coulomb operators Jc and Jv associated with the core
and valence orbitals, respectively, the total Coulomb operator Jtot, HFx operators Kc

and Kv, and the first derivatives of Exc[�], Exc[�c], and Exc[�v] by

Jc D
cX

k

Jk; Jv D
vX

m

Jm; Jtot D
occX

i

Ji D Jc C Jv;

Kc D
cX

k

Kk; Kv D
vX

m
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Vxc Œ�� D ıExc Œ��

ı�
; Vxc Œ�c� D ıExc Œ�c�

ı�c
; Vxc Œ�v� D ıExc Œ�v�

ı�v
:

(14.25)

By applying the variational principle to Eq. (14.4), two Fock operators are
obtained:

Fc D hC 2Jtot � .accKc C acvKv/C �
b0

cc � b0
cv

�
Vxc Œ�c�C b0

cvVxc Œ�� ; (14.26)

Fv D hC 2Jtot � .acvKc C avvKv/C �
b0

vv � b0
cv

�
Vxc Œ�v�C b0

cvVxc Œ�� : (14.27)

To combine these two Fock operators, we use the coupling-operator technique of
Roothaan [72–74]. Since the invariance under the unitary transformation between
core and valence orbitals is not guaranteed, Euler equations have the form

Fc�k D �k"kk C
vX

m

�m
mk; (14.28)

Fv�m D �m"mm C
cX

k

�k
km: (14.29)
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To satisfy the Hermiticity of " matrix, the following condition should be
imposed:

"km D h�kjFc j�mi D h�mjFv j�ki D "mk: (14.30)

This condition leads to the coupling operators:
"

Fc �
vX

m

j�mi h�mj ‚c/

#

j�ki D
cX

l

j�li h�l jFc j�ki; (14.31)

"

Fv �
cX

k

j�ki h�kj ‚v/

#

j�mi D
vX

n

j�ni h�njFv j�mi; (14.32)

where‚c and‚v are defined as

‚c D .1 � �/Fc C �Fv; (14.33)

‚v D �Fc C .1 � �/Fv: (14.34)

Here, � and � are arbitrary nonzero numbers. To ensure the Hermiticity of the
left-hand sides of Eqs. (14.31) and (14.32), we define Rc and Rv as

Rc D �
vX

m

fj�mi h�mj ‚c/C .‚c j�mi h�mj g; (14.35)

Rv D �
cX

k

fj�ki h�kj ‚v/C .‚v j�ki h�kj g; (14.36)

and obtain the following equations:

.Fc CRc/ j�ki D
cX

l

j�li
lk D j�ki "0
k; (14.37)

.Fv CRv/ j�mi D
vX

n

j�ni
nm D j�mi "0
m: (14.38)

The above-mentioned technique corresponds to the Roothaan double-Fock oper-
ator method. In the present study, � and� are set to 0.5 and �0.5, which simplify the
operators in the left-hand side of Eqs. (14.37) and (14.38) to 0.5(Fc � Fv) for core-
valence elements. In this case, the one-electron operator and Coulomb operator in
Fc and Fv are canceled out and only exchange terms remain. The virtual-virtual
elements of the Fock matrices are arbitrary when we use the double-Fock operator
method. The present study adopted Fv as the virtual-virtual Fock matrix so that the
virtual orbitals of CV-B3LYP are close to those of B3LYP.
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14.3.2 Assessment of the Core-Valence B3LYP Functional

The CV-B3LYP functional was implemented into the GAMESS program [75].
When solving the KS equations, we determined the coefficients in Eq. (14.22) as
listed in Table 14.6. The coefficients of cc and vv are set to those of BHHLYP
and B3LYP, respectively. The coefficients of cv interactions are set to the mean
values of those of BHHLYP and B3LYP. The standard enthalpies of formation for
the G2-1 set were calculated by the procedure mentioned in Ref. [76] with the use
of the cc-pVTZ basis sets of Dunning. In the subsequent TDDFT calculations, we
approximately used the matrix form of B3LYP with CV-B3LYP orbital energies and
orbital coefficients instead of implementing the TDDFT equations with CV-B3LYP,
which are rigorously formulated above. It means that acc, acv, avc, and avv are equal
to a of B3LYP, and b0

cc, b0
cv, b0

vc, and b0
vv are equal to b0 of B3LYP. The basis sets

used for the calculations of the excitation energies were the cc-pCVTZ basis set of
Dunning. All molecular structures are optimized at B3LYP/6-31G(2df,p) [77] level
for the calculation of standard enthalpies of formation and at B3LYP/cc-pVTZ level
for those of excitation energies.

14.3.2.1 Orbital Energies and Standard Enthalpies of Formation

DFT calculations for the ground state were performed with BHHLYP, CV-B3LYP,
and B3LYP. The calculated orbital energies of N2 molecule are summarized in
Table 14.7. The differences from experimental IPs with minus signs are shown
in parentheses. For CV-B3LYP, KS equations proposed above were solved. In
Table 14.7, two core- and four valence-occupied orbital energies are listed. The
calculated core-orbital energies of CV-B3LYP are closer to those of BHHLYP than
to those of B3LYP. The core-orbital energies of CV-B3LYP and BHHLYP are about
13 eV lower than those of B3LYP. In contrast, the valence-orbital energies of CV-
B3LYP are closer to those of B3LYP than to those of BHHLYP. The valence-orbital
energies of CV-B3LYP and B3LYP are 2–4 eV higher than those of BHHLYP. Thus,
it is confirmed that the orbital energies of CV-B3LYP behave according to the design
of the functional.

Table 14.7 Orbital energies of the N2 molecule using BHHLYP, CV-B3LYP, and
B3LYP functionals with cc-pCVTZ in eV

Orbital BHHLYP CV-B3LYP B3LYP Expt. -IP

1s¢ �405:70 (4.20) �405:05 (4.85) �392:31 (17.59) �409:9a

1s¢* �405:62 (4.28) �404:98 (4.92) �392:26 (17.64) .�409:9/
2s¢ �34:58 (�) �30:83 (�) �30:75 (�)
2s¢* �17:60 (1.15) �15:11 (3.64) �15:03 (3.72) �18:75b

2p * �14:57 (2.36) �12:75 (4.18) �12:78 (4.15) �16:93b

2p¢ �14:11 (1.47) �11:79 (3.79) �11:78 (3.80) �15:58b

aRef. [78]
bRef. [62]
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Table 14.8 Statistical date of differences from
experimental standard enthalpies of formation for
the G2-1 set using BHHLYP, CV-B3LYP, and
B3LYP functionals with cc-pVTZ in kcal/mol

BHHLYP CV-B3LYP B3LYP

MAEa 12.4 4.2 2.9
RMSb 15.8 5.5 4.1
MAX. (C) 51.3 22.5 19.2
MAX. (�) �7.5 �6.8 �7.8
aMean absolute error
bRoot mean square

All orbital energies are overestimated in comparison with experimental IPs
with minus signs. For core orbitals, the deviations for B3LYP are more than
15 eV. BHHLYP reduces the deviations but still provides IPs with more than 4 eV
deviations. For valence orbitals, the deviations are relatively smaller than those of
core orbitals; BHHLYP estimates IPs within 2.5 eV.

The results for standard enthalpies of formation for the G2-1 set of 55 small
molecules are shown in Table 14.8. The performance of CV-B3LYP is significantly
better than that of BHHLYP and slightly worse than that of B3LYP: The mean
absolute errors (MAEs) of CV-B3LYP, BHHLYP, and B3LYP are 4.2, 12.4, and
2.9 kcal/mol, respectively. The better performance of CV-B3LYP over BHHLYP is
due to the improvement of the description of valence orbitals. The valence orbitals
of CV-B3LYP are designed to be similar to those of B3LYP.

14.3.2.2 Excitation Energies

Table 14.9 shows the core- and valence-excitation energies of N2 molecule calcu-
lated with the cc-pCVTZ basis set. The errors of the calculated results from
the experimental values are shown in parentheses. The CT excitations are not
numerically assessed here since CV-B3LYP determines the appropriate HFx por-
tions for respective orbitals and does not have those optimized for well-separated
occupied and unoccupied orbitals involved in the CT excitations. The 1s ! 2p *

core-excitation energy of CV-B3LYP is close to that of BHHLYP: The errors of
CV-B3LYP and BHHLYP are 0.3 and �3.0 eV, respectively. B3LYP yields the
largest error, –12.5 eV. For the valence excitations, the accuracy of CV-B3LYP is
comparable to that of B3LYP. BHHLYP fails to reproduce the order of the 1…g,
1…u

�, and 1�u states because of the underestimation of the  ! * excitation
energies. CV-B3LYP represents the correct order of the three states as well as
B3LYP does. The behavior of the excitation energies of CV-B3LYP in Table 14.9
corresponds to that of the orbital energies in Table 14.7, which significantly affect
the calculated excitation energies.

Table 14.10 shows the 1s– * core-excitation energies of acetylene (C2H2),
ethylene (C2H4), formaldehyde (CH2O), CO, and N2 molecules. The deviations
from the experimental values are shown in parentheses. The core-excitation energies
of CV-B3LYP are close to those of BHHLYP rather than B3LYP for all molecules in
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Table 14.9 Excitation energies of the N2 molecule using BHHLYP, CV-
B3LYP, and B3LYP functionals with cc-pCVTZ (in eV)

BHHLYP CV-B3LYP B3LYP Expt.

1s ! 2p * 398.0 401.3 388.5 401.0a

(�3.0) (C0.3) (�12.5)
2p¢ ! 2p *(1…g) 9.63 9.47 9.42 9.31b

(C0.32) (C0.16) (C0.11)
2p ! 2p *(1†�

u ) 9.05 9.53 9.52 9.92b

(�0.87) (�0.39) (�0.40)
2p ! 2p *(1�u) 9.59 9.93 9.92 10.27b

(�0.68) (�0.34) (�0.35)
aRef. [79]
bRef. [15]
Differences from the experimental data are shown in parentheses

Table 14.10 1s– *

Core-excitation energies of
C2H2, C2H4, CH2O, CO, and
N2 molecules using
BHHLYP, CV-B3LYP, and
B3LYP functionals (in eV)

Molecule BHHLYP CV-B3LYP B3LYP Expt.

C2H2 283.6 286.1 275.3 285.8b

(�2.2) (C0.3) (�10.5)
C2H4 282.5 285.1 274.3 284.7b

(�2.2) (C0.4) (�10.4)
CH2O 283.0 286.0 275.2 286.0b

(�3.0) (C0.0) (�10.8)
CO 283.5 286.9 276.1 287.4b

(�3.9) (�0.5) (�11.3)
N2 397.9 401.3 388.5 401.0c

(�3.1) (C0.3) (�12.5)
CH2O 528.1 531.4 516.7 530.8b

(�2.7) (C0.6) (�14.1)
CO 531.6 534.5 519.8 534.2b

(�2.6) (C0.3) (�14.4)
MAEa 2.8 0.3 12.0
aMean absolute error
bRef. [39]
cRef. [79]
Differences from the experimental data are shown in
parentheses
Core excitations occur in bold atoms

Table 14.10. CV-B3LYP shows the best performance among the three functionals.
The MAE of CV-B3LYP is about half of that of BHHLYP and considerably smaller
than that of B3LYP: the MAEs of CV-B3LYP are less than 1 eV, while those of
BHHLYP and B3LYP are more than 2 and 11 eV, respectively.

The valence-excitation energies of N2, C2H2, C2H4, cis-2-butene (cis-C4H8), 1-
3-butadiene (C4H6), benzene (C6H6), 1,3,5-trans-hexatriene (C6H8), CH2O, and CO
molecules are listed in Table 14.11. For valence excitations, the accuracy of CV-
B3LYP is comparable to that of B3LYP: The MAEs of CV-B3LYP and B3LYP are
0.25 eV and that of BHHLYP is 0.36 eV. As is well known, the  ! * excitation
energy is red-shifted for longer  -conjugation systems. CV-B3LYP describes the
red shift correctly as well as the conventional BHHLYP and B3LYP functionals.
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Table 14.11  - *
valence-excitation energies
of N2, C2H2, C2H4, C4H8,
C4H6, C6H6, C6H8, CH2O,
and CO molecules using
BHHLYP, CV-B3LYP, and
B3LYP functionals in eV

Molecule BHHLYP CV-B3LYP B3LYP Expt.

N2 9.05 9.53 9.52 9.92b

(�0.87) (�0.39) (�0.40)
C2H2 6.62 6.86 6.86 7.10c

(�0.48) (�0.24) (�0.24)
C2H4 7.87 7.85 7.90 8.00b

(�0.13) (�0.15) (�0.10)
C4H8 7.18 7.04 7.04 7.55d

(�0.37) (�0.51) (�0.51)
C4H6 6.04 5.85 5.85 5.92e

(C0.12) (�0.07) (�0.07)
C6H6 5.69 5.47 5.46 4.90b

(C0.79) (C0.57) (C0.56)
C6H8 5.01 4.76 4.76 4.95e

(C0.06) (�0.19) (�0.19)
CH2O 4.17 4.06 4.02 3.94b

(C0.23) (C0.12) (C0.08)
CO 9.67 9.82 9.81 9.88b

(�0.21) (�0.06) (�0.07)
MAEa 0.36 0.25 0.25
aMean absolute error
bRef. [15]
cRef. [80]
dRef. [81]
eRef. [82]
Differences from the experimental data are shown in parentheses

14.3.3 Brief Summary

We assessed the conventional XC functionals and proposed the new hybrid func-
tional CV-B3LYP for the precise description of both core and valence excitations.
By the assessment of TD-BLYP, TD-BHHLYP, TD-B3LYP, and TDHF methods,
the portion of HFx is found to be important to describe core-excitation energies
accurately. Based on this assessment, the CV-B3LYP functional is designed to
possess the appropriate portions of HFx for core and valence regions separately.
The KS equation for CV-B3LYP is derived using the coupling-operator method
of Roothaan [72–74]. The TDDFT scheme for CV-B3LYP is also presented. DFT
and TDDFT calculations are performed with the use of CV-B3LYP, BHHLYP, and
B3LYP functionals. For the ground state, the orbital energies calculated with CV-
B3LYP are close to those of BHHLYP and B3LYP for core and valence orbitals,
respectively. CV-B3LYP reproduces standard enthalpies of formation for G2 set
with reasonable accuracy as well as B3LYP does. TDDFT calculations demonstrate
that the accuracy of CV-B3LYP is comparable to those of BHHLYP and B3LYP
for core- and valence-excited states, respectively. The numerical results confirm
that TDDFT calculations using CV-B3LYP are useful for describing both core- and
valence-excited states with high accuracy.
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14.4 Extension of Core-Valence B3LYP for Third-Row
Elements

The core orbitals in the third-row elements have been also examined by estimating
core-excitation energies [52]. The numerical assessment demonstrates that 70 and
50 % portions of HFx are appropriate for K-shell and L-shell electrons, which
requires to modify CV-B3LYP so as to deal with three different HFx portions,
20, 50, and 70 % for valence, L-shell, and K-shell electrons. The following is the
extension of CV-B3LYP.

14.4.1 Extension of Core-Valence B3LYP

In the previous CV-B3LYP [51, 52], the occupied orbitals are distinguished into
core (C) and occupied-valence (OV) orbitals. In the present modified CV-B3LYP,
the occupied orbitals are distinguished into three groups, namely, K-shell (C1),
L-shell (C2), and occupied-valence (OV) orbitals. Thus, the electronic energy is
decomposed into C1-C1, C1-C2, C1-OV, C2-C2, C2-OV, and OV-OV interactions:
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C bC2OV .Exc Œ�C2COV� � Exc Œ�C2� � Exc Œ�OV�/ ; (14.39)
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Table 14.12 Coefficients of XC functionals in the modified CV-B3LYP functional

C1C1 C1C2 C1OV C2C2 C2OV OVOV

a (HFx) 0.7 0.6 0.45 0.5 0.35 0.2
b (Slater-Dirac exchange) 0 0 0.04 0 0.04 0.08

(B88 exchange) 0.3 0.4 0.51 0.5 0.61 0.72
(VWN5 correlation) 0 0 0.095 0 0.095 0.19
(LYP correlation) 1 1 0.905 1 0.905 0.81

where H and J are one-electron and Coulomb integrals. a and b are the coefficients
of HFx and DFT XC functionals. The “C1,” “C2,” and “OV” on the † mean
that the summation runs over the K-shell, L-shell, and occupied-valence orbitals,
respectively; therefore, suffixes (k, l), (m, n), and (p, q) correspond to K-shell, L-
shell, and occupied-valence orbitals. The definitions of the electron densities are as
follows:

�C1 D
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k

j�kj2; �C2 D
C2X

m

j�mj2; �OV D
OVX
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ˇ
ˇ�p

ˇ
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j�i j2; �C1COV D
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j�i j2; �C2COV D
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i

j�i j2: (14.40)

� is the Kohn-Sham orbital. The “¤C1”, “¤C2”, and “¤OV” on the † mean
that the summation runs over all occupied orbitals without the K-shell, L-shell, and
occupied-valence orbitals, respectively. The C1-C2 interaction is represented as the
subtraction ofExc Œ�C1� andExc Œ�C2� fromExc Œ�C1CC2�, and the same applies to C1-
OV and C2-OV interactions. In Eq. (14.39), the three- and higher-body interactions
in DFT XC energies are neglected. However, our preliminary calculations have
shown that the energy differences due to the truncation are small enough to be
negligible. The XC functional in CV-B3LYP consists of Slater exchange, B88
exchange, VWN5 correlation, and LYP correlation functionals. The coefficients aY

and bY (Y D C1C1, C1C2, C1OV, C2C2, C2OV, and OVOV) used in the present
calculations are listed in Table 14.12. The coefficients of C1C1, C2C2, and OVOV
are set to those of HF C B88 C LYP (70 %), BHHLYP, and B3LYP. The coefficients
of C1C2, C1OV, and C2OV are set to the mean values of fC1C1 and C2C2g, fC1C1
and OVOVg, and fC2C2 and OVOVg, respectively. The sum of the coefficients in
each group becomes 1.

Applying the variational principle to Eq. (14.39) leads to three kinds of Fock
operators:

FC1 D hC 2J � .aC1C1KC1 C aC1C2KC2 C aC1OVKOV/

C .bC1C1�bC1C2�bC1OV/ Vxc Œ�C1�CbC1C2Vxc Œ�C1CC2�CbC1OVVxc Œ�C1COV�;

(14.41)
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FC2 D hC 2J � .aC1C2KC1 C aC2C2KC2 C aC2OVKOV/

C .bC2C2�bC1C2�bC2OV/ Vxc Œ�C2�CbC1C2Vxc Œ�C1CC2�CbC2OVVxc Œ�C2COV�;

(14.42)

FOV D hC 2J � .aC1OVKC1 C aC2OVKC2 C aOVOVKOV/

C .bOVOV�bC1OV�bC2OV/ Vxc Œ�OV�CbC1OVVxc Œ�C1COV�CbC2OVVxc Œ�C2COV�:

(14.43)

h is one-electron operator. J and K in and after Eq. (14.41) are Coulomb and HFx
operators. HFx operators and the first derivatives of Exc are as follows:
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; Vxc Œ�C1COV� D ıExc Œ�C1COV�

ı�C1COV
;

Vxc Œ�C2COV� D ıExc Œ�C2COV�

ı�C2COV
:

(14.44)

In order to guarantee the invariance under the unitary transformation, the
coupling-operator technique of Roothaan is adopted. Introducing the operators R,

RC1 D �
C2X

m

fj�mi h�mj ‚C1C2/C .‚C1C2 j�mi h�mj g

�
OVX

p

˚ˇ
ˇ�p

˛ ˝
�p

ˇ
ˇ ‚C1OV/C �

‚C1OV

ˇ
ˇ�p

˛ ˝
�p

ˇ
ˇ �
; (14.45)

RC2 D �
C1X

k

fj�ki h�kj ‚C2C1/C .‚C2C1 j�ki h�kj g

�
OVX

p

˚ˇ
ˇ�p

˛ ˝
�p

ˇ
ˇ ‚C2OV/C �

‚C2OV

ˇ
ˇ�p

˛ ˝
�p

ˇ
ˇ �
; (14.46)

ROV D �
C1X

k

fj�ki h�kj ‚OVC1/C .‚OVC1 j�ki h�kj g

�
C2X

m

fj�mi h�mj ‚OVC2/C .‚OVC2 j�mi h�mj g; (14.47)
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we obtain the following:

F 0
C1 D FC1 CRC1; (14.48)

F 0
C2 D FC2 CRC2; (14.49)

F 0
OV D FOV CROV; (14.50)

where‚s are

‚C1C2 D .1 � �/FC1 C �FC2; (14.51)

‚C2C1 D ��FC1 C .1C �/FC2; (14.52)

‚C1OV D .1 � �/FC1 C �FOV; (14.53)

‚OVC1 D ��FC1 C .1C �/FOV; (14.54)

‚C2OV D .1 � �/ FC2 C �FOV; (14.55)

‚OVC2 D ��FC2 C .1C �/ FOV: (14.56)

�, �, and � are arbitrary nonzero numbers and set to 0.1 in the present study.
Thus, Fock operator for occupied orbitals is rewritten as follows:

F D
C1X

k

F 0
C1 j�ki h�kj C

C2X

m

F 0
C2 j�mi h�mj C

OVX

p

F 0
OV

ˇ
ˇ�p

˛ ˝
�p

ˇ
ˇ: (14.57)

The virtual orbitals are treated in the similar way as the previous CVR-B3LYP
[51], in which Rydberg orbitals are distinguished by using second moments of the
orbitals. FOV and the Fock operators formed in HF method were adopted as the
Fock operator forms of unoccupied-valence and Rydberg orbitals, respectively. In
the TDDFT calculations, we adopted an approximation similar to that for previous
studies [50–52], in which we used the A and B matrix forms of B3LYP, while using
the orbital energies and coefficients of CVR-B3LYP.

14.4.2 Assessment of Modified Core-Valence B3LYP

The descriptions of K-shell, L-shell, and valence electrons by the modified CV-
B3LYP functional are assessed by calculating core- and valence-excitation energies
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Table 14.13 1s and 2p core-excitation energies of SiH4, PH3, H2S, HCl, and Cl2 molecules by
TDDFT with the modified CV-B3LYP functional with cc-pCVTZ plus Rydberg basis functions in
eV

1s excitation 2p excitation

Molecule Assignment CV-B3LYP Expt. Assignment CV-B3LYP Expt.

SiH4 Si1s ! ¢* 1846.6 1842.5b Si2p ! ¢* 103.7 102.8f,g

(C4.1) (C0.9)
PH3 P1s ! ¢*(e) 2148.9 2145.8c P2p ! ¢* 133.1 132.3f,g

(C3.1) (C0.8)
H2S S1s ! 3b2(¢*) 2474.7 2473.1d S2p ! ¢* 166.1 164.5h

(C1.6) (C1.6)
S1s ! 4pb2 2477.4 2476.3d S2p ! 4s 168.3 166.5h

(C1.1) (C1.8)
HCl Cl1s ! 3p¢* 2824.8 2823.9e Cl2p ! 3p¢* 202.0 201.0f

(C0.9) (C1.0)
Cl1s ! 4p  2827.9 2827.8e Cl2p ! 4p  205.0 204.6f

(C0.1) (C0.4)
Cl2 Cl1s ! 3p¢u* 2822.1 2821.3e Cl2p ! 3p¢u* 199.1 198.7g,i

(C0.8) (C0.4)
Cl1s ! 4p 2829.2 2828.5e Cl2p ! 4s 205.8 204.8g,i

(C0.7) (C1.0)
MAEa 1.5 1.0
aMean absolute error
bRef. [84]
cRef. [85]
dRef. [86]
eRef. [87]
fRef. [88]
gRef. [89]
hRef. [90]
iRef. [91]

and standard enthalpies of formations. In the CV-B3LYP calculations, the portions
of HFx for K-shell, L-shell, and occupied-valence orbitals were determined to
70, 50, and 20 % by using the coefficients given in Table 14.12. The scalar
relativistic effects were included by using the relativistic scheme by eliminating
small-components (RESC) method [83]. The basis sets and geometries of molecules
used in CV-B3LYP calculations are the same as those used in Sect. 14.3 [52].

Table 14.13 shows the 1s and 2p core-excitation energies of SiH4, PH3, H2S,
HCl, and Cl2 molecules calculated with the modified CV-B3LYP functional. The
MAEs of CV-B3LYP in Table 14.13 (1.5, 1.1 eV) for (1s, 2p) core-excitation
energies clarify that the modified CV-B3LYP provides well-balanced results for
third-row elements. Thus, it is demonstrated that the modified CV-B3LYP shows
high performance both for K-shell and L-shell core excitations.

In order to assess the accuracy of the description of occupied-valence electrons,
excitation energies from occupied-valence orbitals of SiH4, PH3, H2S, HCl, and
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Table 14.14 Valence- and Rydberg-excitation energies of SiH4, PH3, H2S, HCl, and Cl2

molecules by TDHF and TDDFT with BLYP, B3LYP, BHHLYP, and the modified CV-B3LYP
functionals with cc-pCVTZ plus Rydberg basis functions (in eV)

Molecule Assignment BLYP B3LYP BHHLYP TDHF CV-B3LYP Expt.

SiH4 t2 ! 4s 8.0 8.5 9.2 9.9 9.4 8.8b

(�0.8) (�0.3) (C0.4) (C1.1) (C0.6)
PH3 n ! 4p 6.8 7.2 8.0 8.4 8.8 7.8c

(�1.0) (�0.6) (C0.2) (C0.6) (C1.0)
H2S 2b1 ! ¢* 5.8 6.0 6.1 6.2 6.0 5.5c

(C0.4) (C0.5) (C0.6) (C0.8) (C0.6)
HCl 3p ! 4s 8.3 8.9 9.8 10.5 9.8 9.6d

(�1.3) (�0.7) (C0.2) (C0.9) (C0.2)
Cl2  g ! ¢u 3.2 3.3 3.6 4.0 3.3 3.8d

(�0.6) (�0.4) (�0.2) (C0.2) (�0.5)
MAEa 0.8 0.5 0.3 0.7 0.6
aMean absolute error
bRef. [92]
cRef. [93]
dRef. [94]

Cl2 molecules were calculated by TDHF and TDDFT with B3LYP, BHHLYP,
and the modified CV-B3LYP. Table 14.14 lists the calculated excited energies.
In Table 14.14, BHHLYP shows high performance, and the accuracy of BLYP,
B3LYP, and TDHF is slightly worse than BHHLYP: MAEs of BLYP, B3LYP,
BHHLYP, and TDHF are 0.8, 0.5, 0.3, and 0.7 eV, respectively. The excitation
energies of CV-B3LYP are close to and higher than those of B3LYP for occupied-
valence ! unoccupied-valence and occupied-valence! Rydberg excitations, re-
spectively. This is because the valence and Rydberg orbitals of CV-B3LYP are
designed to be similar to those of B3LYP and HF. The MAE of CV-B3LYP is
0.6 eV, which is comparable to that of B3LYP. Therefore, CV-B3LYP describes
valence-excitation energies with reasonable accuracy as like as conventional DFT
methods.

The standard enthalpies of formation of SiH4, PH3, H2S, HCl, and Cl2 molecules,
which are the valence-electron properties in the ground states, were calculated by
the procedure mentioned in Ref. [76]. The results of HF and DFT calculations with
the BLYP, B3LYP, BHHLYP, and CV-B3LYP functionals are shown in Table 14.15.
DFT gives more accurate results than HF does: The MAE of HF method is
52.0 kcal/mol, while all of the MAEs of DFT are less than 10 kcal/mol. The accuracy
of BLYP and B3LYP is significantly high among the DFT methods, whose MAEs
are 2.0 and 1.5 kcal/mol. The accuracy of CV-B3LYP with the MAE of 1.9 kcal/mol
is comparable to BLYP and B3LYP. Thus, we confirm that CV-B3LYP is capable of
describing the behaviors of not only K-shell and L-shell electrons but also valence
ones with reasonable accuracy, while BHHLYP is appropriate only for K-shell and
L-shell excitations, respectively.
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Table 14.15 Standard enthalpies of formation of SiH4, PH3, H2S, SO2, HCl,
and Cl2 molecules by HF and DFT with the BLYP, B3LYP, BHHLYP, HF, and
modified CV-B3LYP functionals with cc-pCVTZ plus Rydberg basis functions
in eV

BLYP B3LYP BHHLYP HF CV-B3LYP Expt.b

SiH4 13.3 7.9 7.9 75 5.9 8:2

(C5.1) (�0.3) (�0.3) (C66.8) (�2.3)
PH3 1.2 �0.4 3.4 71.7 �2.5 1:3

(�0.1) (�1.7) (C2.1) (C70.4) (�3.8)
H2S �2.8 �3.7 0.5 48.7 �5.4 �4:9

(C2.1) (C1.2) (C5.4) (C53.6) (�0.5)
HCl �19.9 �20.3 �17.5 7.7 �21.5 �22:1

(C2.2) (C1.8) (C4.6) (C29.8) (C0.6)
Cl2 �0.5 2.7 10.3 39.4 2.1 0:0

(�0.5) (C2.7) (C10.3) (C39.4) (C2.1)
MAEa 2.0 1.5 4.5 52 1.9
aMean absolute error
bRef. [76]

14.4.3 Brief Summary

The CV-B3LYP functional has been extended to core-excited-state calculations of
the molecules containing third-row elements. Since the assessment of TDDFT cal-
culations with conventional XC functionals demonstrates that 70 and 50 % portions
of HFx are appropriate for calculating K-shell and L-shell core-excitation energies
[52], the CV-B3LYP functional is modified to possess the appropriate portions of
HFx for K-shell, L-shell, and occupied-valence regions separately. TDDFT calcu-
lations on several molecules containing third-row elements show that the modified
CV-B3LYP functional reproduces the K-shell and L-shell core-excitation energies
with reasonable accuracy. For valence properties, the calculations of valence-
excitation energies and standard enthalpies of formation confirm that CV-B3LYP
describes valence electrons accurately as well as B3LYP does. The numerical
assessments have revealed the high accuracy of CV-B3LYP for the descriptions of
all of the K-shell, L-shell, and valence electrons.

14.5 Development of Orbital-Specific Functionals

As explained in the previous sections, we have developed an OS hybrid functional:
CV-B3LYP hybrid functional for second- and third-row elements [50–52]. However,
the HFx portions were determined by the numerical assessments. A more physically
motivated determination is demanded. To this end, we have used the linearity
condition for orbital energies (LCOE) in order to construct XC functionals [53–56].
The LCOE is that the second derivative of the total energy with respect to occupation
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numbers should be 0 [60, 94–98]. The LCOE has been investigated extensively:
Yang group [95–97] discussed the LCOE for the highest occupied molecular orbital
(HOMO). Vydrov et al. [98] and Song et al. [60] also examined the effect of the
short- and long-range parts of HFx on the linearity, respectively. Livshits and Baer
have used the LCOE for tuning a range-determining parameter [99]. Studies on the
orbital energies related to Koopmans’ theorem have been carried out by Salzner and
Baer [100] and Tsuneda et al. [101].

This section explains how to use the LCOE to global hybrid functionals and
assesses their performance regarding orbital energies. Numerical assessments on
ionization potentials (IPs) and concluding remarks are also given.

14.5.1 Theory of Orbital-Specific Functionals

14.5.1.1 Linearity Condition for Orbital Energies

Janak’s theorem [102] in KS-DFT states that the first derivative of the total energy
with respect to the occupation number fi of the ith KS orbital is equivalent to its
orbital energy:

@E

@fi
D "i : (14.58)

In particular, the following relation for HOMO is clarified by Almbladh and von
Barth [103]:

@E

@fHOMO
D "HOMO D �IP: (14.59)

Namely, the HOMO energy is proven to be equivalent to the first IP with the
opposite sign. Since the IP should be constant, the following LCOE is derived:

@E

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

D "i D const:; (14.60)

or

@2E

@f 2
i

ˇ
ˇ
ˇ
ˇ
06fi61

D @"i

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

D 0: (14.61)

Although Eq. (14.61) is exact for HOMO, it may not be necessarily satisfied for
the other orbitals. However, Eq. (14.61) can offer a better description since it can
remove SIEs [47, 50–52].
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14.5.1.2 Construction of Orbital-Specific Functionals

We describe two procedures of how to construct the OS global hybrid functionals
using Eq. (14.61): the determination of OS parameters and estimation of orbital
energies.

Assume that the XC functional has the following form:

Exc Œ˛� D .1 � ˛/EDFT
x C ˛EHF

x C EDFT
c ; (14.62)

where EDFT
x , EHF

x , and EDFT
c are the DFT exchange (DFTx), HFx, and DFT

correlation (DFTc) energies, respectively. ˛ represents a portion for HFx. The
corresponding orbital energy "xc Œ˛� is expressed as

"i Œ˛� D "T C "Ne C "J C .1 � ˛/ "DFT
x C ˛"HF

x C "DFT
c

D .1�˛/ ˚
"TC"NeC"JC"DFT

x C"DFT
c

� C˛ ˚
"TC"NeC"J C "HF

x C "DFT
c

�
;

(14.63)

where "T, "Ne, "J, "DFT
x , "HF

x , and "DFT
c are the kinetic, nuclear attraction, Coulomb,

DFTx, HFx, and DFTc contributions for the orbital energy, respectively. Here, we
introduce the assumption:

"i Œ˛� Š .1 � ˛/ "DFT
i C ˛"HFCDFTc

i : (14.64)

"DFT
i and "HFCDFTc

i represent the pure DFT and HF C DFTc orbital energies. As
our previous assessment revealed [50–52], the OS ˛ exhibits an orbital dependence;
therefore, ˛i for the ith KS orbital is determined as follows:

@"i Œ˛i �

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

Š .1 � ˛i / @"
DFT
i

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

C ˛i
@"HFCDFTc
i

@fi

ˇ
ˇ
ˇ
ˇ
ˇ
06fi61

D 0: (14.65)

Then, the orbital energy is estimated with the determined ˛i by the following
relation:

"i Œ˛i � Š .1 � ˛i / "
DFT
i C ˛i"

HFCDFTc
i : (14.66)

Here, we choose the following DFT XC functionals: SVWN5, BLYP, Perdew-
Burke-Ernzerhof (PBE) [9], Tao-Perdew-Staroverov-Scuseria (TPSS) [10] XC
functionals.

The procedure of the estimation of the orbital energies is as follows: The
derivatives @"DFT

i =@fi and @"HFCDFTc
i =@fi are numerically estimated at fi D 1:0

with �fi D 0:0001. Using the derivatives, we determine ˛i by Eq. (14.65) and
estimate orbital energies by Eq. (14.66) using DFT and HF C DFTc orbital energies
at fi D 1:0. Namely, the OS global hybrid functionals are constructed for respective
orbitals. All calculations are carried out by the modified version of the GAMESS
program.
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14.5.2 Numerical Applications

14.5.2.1 Orbital Energy for Fractional Occupation Numbers

The behavior of the orbital energies of OCS molecule is examined with respect to
fractional occupation number (FON) electrons for the OS global hybrid functionals
of SVWN5, BLYP, PBE, and TPSS XC functionals. The cc-pCVTZ basis set was
adopted, and geometrical parameters were optimized at the B3LYP/cc-pVTZ level.
Figures 14.1 demonstrate orbital energies of HOMO, O1s, and S1s of OCS molecule
with respect to FON electrons. As shown in Fig. 14.1, HOMO energies decrease
for HFx C DFTc functional as the number of electrons increases. This behavior is
different from that of long-range corrected HFx C LYP [53]. Thus, the inclusion
of short-range HFx varies the slopes of the HOMO energies. Contrarily, as the
number of electrons increases, HOMO energies increase for the conventional DFT
XC functionals, which is ascribed to SIE. The dependences of DFTc functionals for
HFx C DFTc are slightly larger than those for the conventional XC functionals. The
selection of appropriate ˛HOMO by the LCOE reproduces approximately constant
curves for the OS global hybrid functional of the LDA, GGA, and meta-GGA
functionals whose ˛HOMO are estimated to be approximately 0.75.

Figures 14.1 illustrate the O1s and S1s orbital energies with respect to FON
electrons. A similar tendency is observed for the O1s and S1s orbitals: As the
number of electrons increases, orbital energies of HFx C DFTc functional decrease
and those of the conventional DFT XC functionals increase. In contrast to HOMO,
the dependences of DFTc functionals for HFx C DFTc are smaller than those for
the conventional XC functionals. The curves of the OS global hybrid functionals
with appropriate ˛i determined through the LCOE are approximately flat for O1s
and S1s. The OS parameters f˛O1s, ˛S1sg are approximately f0.57, 0.71g, which are
slightly larger than those of CV-B3LYP, determined by numerical assessment for
core excitations [50–52].

In order to assess the performance of the OS global hybrid functionals from a
different point of view, we also compare the orbital energies and IPs of valence and
core orbitals for OCS molecule in a sense of Koopmans’ theorem. IPs obtained
by the OS hybrid functionals are shown in Table 14.16. The deviations from
experimental IPs [53] and values of ˛i are shown in parentheses and square brackets,
respectively. For HOMO, the OS global hybrid functionals provide comparatively
similar IPs: 11.45, 10.99, 11.18, and 11.17 eV for SVWN5, BLYP, PBE, and TPSS
functionals, and the corresponding deviations are at most 0.25 eV. The OS hybrid
functionals also reproduce O1s and S1s IPs within the deviation of 2.5 eV for the
LDA, GGA, and meta-GGA functionals, though the accurate estimation of large IPs
is rather difficult.
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Fig. 14.1 Orbital energy
variations "i [eV] of (a)
HOMO, (b) O1s orbital, (c)
S1s orbital of OCS as a
function of the electron
number N

14.5.2.2 IP and HFx Portion

For comparative assessment, IPs were estimated for eight molecules containing not
only second- but also third-row elements: CO, H2O, NH3, HCHO, PH3, H2S, HCl,
and OCS. The following XC functionals such as SVWN5, BLYP, PBE, and TPSS
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Table 14.16 OCS IPs (eV) by OS global hybrid functionals of SVWN5, BLYP, PBE, and TPSS
functionals and ’i determined for the OS in eV

SVWN5 BLYP PBE TPSS Expt.a

S1s 2478.81 (�1.49) 2480.68 (0.38) 2479.76 (�0.54) 2481.01 (0.71) 2480.3
[0.7133] [0.7125] [0.7124] [0.7011]

O1s 541.1 (0.80) 542.29 (1.99) 541.94 (1.64) 542.64 (2.34) 540.3
[0.5796] [0.5777] [0.5792] [0.5623]

HOMO 11.45 (0.25) 10.99 (�0.21) 11.18 (�0.02) 11.17 (�0.03) 11.2
[0.7500] [0.7496] [0.7470] [0.7426]

aRef. [53]

Table 14.17 Mean absolute errors of IPs estimated by conventional and OS global
hybrid functionals of SVWN5, BLYP, PBE, and TPSS functionals in eV

MAD

Type Functional 1s (P, S, Cl) 1s (C, N, O), 2s (S) Valence Overall

SVWN5 SVWN5 85.22 29.18 5.22 27.54
OS SVWN5 0.60 1.41 0.48 0.85
[’i] [0.716] [0.624] [0.701] [0.674]

BLYP BLYP 74.88 25.58 5.42 24.56
B3LYP 50.77 21.25 3.60 16.50
OS BLYP 1.58 2.05 0.44 1.23
[’i] [0.715] [0.621] [0.698] [0.671]

PBE PBE 76.37 26.14 5.29 24.95
PBE0 46.45 19.02 3.27 14.95
OS PBE 0.88 1.70 0.44 0.98
[’i] [0.715] [0.622] [0.700] [0.673]

TPSS TPSS 67.93 23.07 5.05 22.29
TPSSh 54.79 23.73 4.18 18.19
OS TPSS 1.86 2.11 0.47 1.32
[’i] [0.704] [0.608] [0.693] [0.663]

are examined for the OS global hybrid functionals. For comparison, the results of the
OS functional of the LC hybrid functional, long-range corrected BLYP (LC-BLYP)
[16], and the conventional XC functionals including pure and hybrid functionals are
also tabulated. The geometries optimized at the B3LYP/cc-pVTZ level are adopted.
For molecules containing third-row elements, the scalar relativistic effect is included
by using the RESC method [82]. Table 14.17 lists MAEs from experimental IPs for
conventional and OS XC functionals of LC-BLYP, SVWN5, BLYP, PBE, and TPSS
using the cc-pCVTZ basis set. The mean values of ˛i are also shown in square
brackets. The groups of fP1s, S1s, Cl1sg and fC1s, N1s, O1s, S2sg are labeled as
C1 and C2 orbitals.

The conventional SVWN5 functional, which is a typical LDA functional,
provides large MAEs owing to severe underestimation by SIEs [47], for example,
85.22 eV for 1s IPs of the third-row elements. The MAEs decrease from a deeper
core to valence orbitals: 29.18 and 5.22 eV of C2 and valence orbitals, respectively.
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On the other hand, the LCOE drastically reduces the MAEs: the overall MAE is
0.85 eV reduced from 27.54 eV, and the largest MAE is at most 1.41 eV for C2. The
average determined ˛i values range 0.624–0.716.

The conventional BLYP and PBE functionals, which are typical GGA func-
tionals, provide smaller MAEs than those of SVWN5 for core and inner valence
orbitals. The tendency is similar to that of SVWN5: the larger IPs lead to larger
deviations. A slight difference in the performance for HOMO is confirmed in
comparison to SVWN5. The conventional hybrid functionals B3LYP and PBE-
1-parameter-PBE (PBE0) [13] provide smaller overall MAEs in comparison with
the corresponding pure functionals: 16.50 and 14.95 eV, respectively. For core
orbitals, the OS global hybrid functionals based on BLYP and PBE also provide
significantly small MAEs, which are slightly larger than those of SVWN5. The
˛i values determined by the GGA functionals are slightly smaller than those of
SVWN5 and are significantly larger than the corresponding HFx portions used in
B3LYP and PBE0. It is interesting that the MAEs exhibit relatively large changes
although the changes in ˛i are significantly less.

Let us discuss the meta-GGA functional, TPSS. The MAEs decrease from the
GGA and LDA functionals approximately by 10 and 17 eV for C1 orbitals and by
6 and 3 eV for C2 orbitals. The widely used hybrid version of TPSS (TPSSh) [71]
exhibits a better performance against TPSS but yields a larger MAE in comparison
with B3LYP and PBE0. By determining ˛i through the LCOE, MAEs are reduced,
especially for core orbitals: 1.86 from 67.93 eV and 2.11 from 23.07 eV for C1 and
C2 orbitals. The determined ˛i slightly but gradually decreases as ingredients such
as the density gradient and the kinetic density are more involved. The values of ˛i
for valence orbitals are larger than that of TPSSh.

The above assessment reveals that the LCOE improves FON dependence and
estimation of IPs significantly for all global hybrid functionals, which bases
SVWN5, BLYP, PBE, and TPSS XC functionals and an added HFx term. Finally, let
us compare the results of the OS functional based on LC-BLYP. For core orbitals,
the global hybrid-based OS functionals basically perform slightly better than the
OS functional of LC-BLYP does, although the obtained ˛i values are relatively
different. For valence orbitals, all OS functionals provide MAEs less than 0.5 eV.
The MAE of the conventional LC-BLYP is the smallest among all functionals,
which is consistent with the previous reports [100, 101]. The overall MAEs of the
OS functional of LC-BLYP are comparable to those of the LDA, GGA, and meta-
GGA functionals.

14.5.3 Brief Summary

We have constructed and assessed the OS global hybrid functionals satisfying the
LCOE for core and valence orbitals. As was reported for LC hybrid functionals [53],
the LCOE drastically reduces the FON dependence and enables accurate estimates
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of IPs for not only core but also valence orbitals for HFx C DFTxc such as LDA,
GGA, and meta-GGA. This numerical assessment leads to the conclusion that the
LCOE is generally effective for constructing XC functionals.

The valence’s OS HFx portions obtained for global hybrid functionals are
significantly larger than those for LC hybrid functionals [53], although the core’s
ones are similar to those of LC hybrid functionals. The effect of HFx has been
discussed theoretically and numerically from various points of view.

14.6 General Conclusions

The descriptions of core-ionized and core-excited states by DFT and TDDFT were
discussed in this chapter. The core orbitals are significantly difficult to describe by
conventional DFT methods because the core electron distribution, which is more
localized than that of valence electron, leads to significant SIE. The numerical
assessment on HFx contributions capable of reducing SIE motivated us to develop
the new hybrid functional, CV-B3LYP, which selects the appropriate HFx portions
for core and valence electrons for second-row elements. Although this chapter
focuses on core orbital, an extension of CV-B3LYP to Rydberg orbitals is also
demonstrated and succeeded in reproducing accurate core and valence excitations
as well as Rydberg excitations [51]. The determination of HFx portions using a
physical constraint, LCOE, was also explored and is promising for constructing XC
functionals.

Core orbitals seem to attract more attention in connection with free-electron
laser (FEL). The appearance of FEL, which has been developed in the world, may
open a new science field: FEL has enabled to produce laser pulses strong enough
to fully ionize molecules in short-wavelength regime [104]. The high intensity of
FEL also enables to determine molecular structures without crystallization [105–
107] and create multiply ionized and excited states involving core ionizations and
core excitations [36, 104, 108]. These FEL experiments, however, do not provide
the detailed information for specifying all processes including as the intermediate
ones in the multiple photoionization processes. Theoretical analysis is required for
analyzing chemical and physical phenomena caused by FEL. We believe that the
improvement of description for core orbitals definitely enhances progress of the
FEL science.
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