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Department of Chemistry
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PTCP Aim and Scope

Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and chemical
physics and biophysics.

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment:
theory is used to interpret experimental results and may suggest new experiments;
experiment helps to test theoretical predictions and may lead to improved theories.
Theoretical Chemistry (including Physical Chemistry and Chemical Physics) pro-
vides the conceptual and technical background and apparatus for the rationalisation
of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from initiatives from authors or translations.

The basic theories of physics – classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics –
support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the valence theories, which allow to interpret the structure of molecules, and for
the spectroscopic models, employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous
with Theoretical Chemistry; it will, therefore, constitute a major part of this book
series. However, the scope of the series will also include other areas of theoretical
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vi PTCP Aim and Scope

chemistry, such as mathematical chemistry (which involves the use of algebra
and topology in the analysis of molecular structures and reactions); molecular
mechanics, molecular dynamics and chemical thermodynamics, which play an
important role in rationalizing the geometric and electronic structures of molecular
assemblies and polymers, clusters and crystals; surface, interface, solvent and solid
state effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific
research, based on the exploitation of fast electronic digital computers. Computation
provides a method of investigation which transcends the traditional division between
theory and experiment. Computer-assisted simulation and design may afford a
solution to complex problems which would otherwise be intractable to theoretical
analysis, and may also provide a viable alternative to difficult or costly laboratory
experiments. Though stemming from Theoretical Chemistry, Computational Chem-
istry is a field of research in its own right, which can help to test theoretical
predictions and may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
to the role of molecules in the biological sciences. Therefore, it involves the
physical basis for geometric and electronic structure, states of aggregation, physical
and chemical transformations, thermodynamic and kinetic properties, as well as
unusual properties such as extreme flexibility or strong relativistic or quantum-field
effects, extreme conditions such as intense radiation fields or interaction with the
continuum, and the specificity of biochemical reactions.

Theoretical Chemistry has an applied branch (a part of molecular engineering),
which involves the investigation of structure-property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or
genetic engineering. Relevant properties include conductivity (normal, semi- and
super-), magnetism (ferro- and ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, biological and pharmaceutical
activities, as well as properties favouring self-assembling mechanisms and combi-
nation properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical and computational chemistry in
their research programs. It is also intended to provide the graduate student with
a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.



Preface

This volume collects 33 selected papers from the scientific contributions presented
at the Sixteenth International Workshop on Quantum Systems in Chemistry and
Physics (QSCP-XVI), which was organized by Pr. Kiyoshi Nishikawa at the
Ishikawa Prefecture Museum of Art in Kanazawa, Ishikawa, Japan, from September
11 to 17, 2011. Close to 150 scientists from 30 countries attended the meeting.
Participants of QSCP-XVI discussed the state of the art, new trends, and future
evolution of methods in molecular quantum mechanics, as well as their applications
to a wide range of problems in chemistry, physics, and biology.

The particularly large attendance to QSCP-XVI was partly due to its coordination
with the VIIth Congress of the International Society for Theoretical Chemical
Physics (ISTCP-VII), which was organized by Pr. Hiromi Nakai at Waseda Univer-
sity in Tokyo, Japan, just a week earlier, and which gathered over 400 participants.
These two reputed meetings were therefore exceptionally successful, especially
considering that they took place barely five months after the Fukushima disaster.
As a matter of fact, they would have both been cancelled if it wasn’t for the courage
and resilience of our Japanese colleagues and friends as well as for the wave of
solidarity of both QSCP-XVI and ISTCP-VII faithful attendees.

Kanazawa is situated in the western central part of the Honshu island in Japan,
and the Ishikawa Prefecture Museum of Art (IPMA) sits in the heart of the city
centre – which offers a variety of museums including the 21st Century Museum
of Contemporary Art – and next to the Kenrokuen Garden, one of most beautiful
gardens in Japan. IPMA is the main art gallery of Ishikawa Prefecture and its
collection includes a National Treasure and various important cultural properties
in its permanent exhibition halls.

Details of the Kanazawa meeting including the scientific program can be found
on the website: http://qscp16.s.kanazawa-u.ac.jp.Altogether, there were 24 morning
and afternoon sessions, where 12 key lectures, 50 plenary talks and 28 parallel
talks were given, and 2 evening poster sessions, each with 25 flash presentations
of posters which were displayed in the close Shiinoki Cultural Complex. We
are grateful to all the participants for making the QSCP-XVI workshop such a
stimulating experience and great success.

vii



viii Preface

The QSCP-XVI workshop followed traditions established at previous meetings:

QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy)
QSCP-II, by Stephen Wilson in 1997 at Oxford (England)
QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain)
QSCP-IV, by Jean Maruani in 1999 at Marly le Roi (Paris, France)
QSCP-V, by Erkki Brändas in 2000 at Uppsala (Sweden)
QSCP-VI, by Alia Tadjer in 2001 at Sofia (Bulgaria)
QSCP-VII, by Ivan Hubac in 2002 at Bratislava (Slovakia)
QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece)
QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (Grenoble, France)
QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia)
QSCP-XI, by Oleg Vasyutinskii in 2006 at Pushkin (St Petersburg, Russia)
QSCP-XII, by Stephen Wilson in 2007 near Windsor (London, England)
QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA)
QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Spain)
QSCP-XV, by Philip Hoggan in 2010 at Cambridge (England)

The lectures presented at QSCP-XVI were grouped into seven areas in the field
of Quantum Systems in Chemistry and Physics:

1. Concepts and Methods in Quantum Chemistry and Physics
2. Molecular Structure, Dynamics, and Spectroscopy
3. Atoms and Molecules in Strong Electric and Magnetic Fields
4. Condensed Matter; Complexes and Clusters; Surfaces and Interfaces
5. Molecular and Nano Materials, Electronics, and Biology
6. Reactive Collisions and Chemical Reactions
7. Computational Chemistry, Physics, and Biology

The breadth and depth of the scientific topics discussed during QSCP-XVI are
reflected in the contents of this volume of proceedings of Progress in Theoretical
Chemistry and Physics, which includes six parts:

I. Fundamental Theory (three chapters)
II. Molecular Processes (nine chapters)

III. Molecular Structure (six chapters)
IV. Molecular Properties (three chapters)
V. Condensed Matter (six chapters)

VI. Biosystems (six chapters)

In addition to the scientific program, the workshop had its share of cultural
activities. There was an impressive traditional drum show on the spot. One afternoon
was devoted to a visit in a gold craft workshop, where participants had a chance to
test gold plating. There was also a visit to a zen temple, where they could discuss
with zen monks and practice meditation for a few hours. The award ceremony of
the CMOA Prize and Medal took place in the banquet room of the Kanazawa Excel
Hotel Tokyu.



Preface ix

The Prize was shared between three of the selected nominees: Shuhua Li
(Nanjing, China); Oleg Prezhdo (Rochester, USA); and Jun-ya Hasegawa (Kyoto,
Japan). The CMOA Medal was awarded to Pr Hiroshi Nakatsuji (Kyoto, Japan).
Following an established tradition at QSCP meetings, the venue of the following
(XVIIth) workshop was disclosed at the end of the banquet: Turku, Finland.

We are pleased to acknowledge the support given to QSCP-XVI by the Ishikawa
Prefecture, Kanazawa City, Kanazawa University, the Society DV-X’, Quantum
Chemistry Research Institute, Inoue Foundation of Science, Concurrent Systems,
HPC SYSTEMS, FUJITSU Ltd, HITACHI Ltd, Real Computing Inc., Sumisho
Computer System Corporation, and CMOA. We are most grateful to all members of
the Local Organizing Committee (LOC) for their work and dedication, which made
the stay and work of the participants both pleasant and fruitful. Finally, we would
like to thank the Honorary Committee (HC) and International Scientific Committee
(ISC) members for their invaluable expertise and advice.

We hope the readers will find as much interest in consulting these proceedings as
the participants had in attending the meeting.

The Editors
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J. Sackett Department of Physics, Southern Adventist University, Collegedale,
TN, USA

S. Saidi Laboratoire des Interfaces et Matériaux Avancés, Département de
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Chapter 1
The Relativistic Kepler Problem and Gödel’s
Paradox

Erkki J. Brändas

Abstract Employing a characteristic functional model that conscripts arrays of
operators in terms of energy and momentum adjoined with their conjugate operators
of time and position, we have recently derived an extended superposition principle
compatible both with quantum mechanics and Einstein’s laws of relativity. We have
likewise derived a global, universal superposition principle with the autonomous
choice to implement, when required, classical or quantum representations. The
present viewpoint amalgamates the microscopic and the macroscopic domains
via abstract complex symmetric forms through suitable operator classifications
including appropriate boundary conditions. An important case in point comes from
the theory of general relativity, i.e. the demand for the proper limiting order at the
Schwarzschild radius. In this example, one obtains a surprising relation between
Gödel’s incompleteness theorem and the proper limiting behaviour of the present
theory at the Schwarzschild singularity. In the present study, we will apply our
theoretical formulation to the relativistic Kepler problem, recovering the celebrated
result from the theory of general relativity in the calculation of the perihelion
movement of Mercury.

1.1 Introduction

In this chapter, we will focus on some irreconcilable viewpoints in physical and
mathematical sciences. In particular, we will concentrate on the problem to unify
quantum mechanics with classical theories like special and general relativity as
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4 E.J. Brändas

well as the assertion of the inherent limitations of nontrivial axiomatic systems,
the latter known as Gödel’s inconsistency theorem(s) [1]. A surprising result
is the interconnection between the two problems above, which also leads to
reverberating consequences for the biological evolution [2, 3]. A crucial property
of the derivations is the extension of the dynamical equations to the evolution of
open (dissipative) systems, corresponding to specific biorthogonal formulations of
general complex symmetric forms [2] or alternatively operator equations including
non-positive metrics [3]. To display the generality of the formulation, we will
apply the functional model to recover the correct solution of the relativistic Kepler
problem. The conventional idea expresses the empirical Kepler laws as derivable
from classical Newton gravity. There is, however, a relativistic extension that
accounts for the famous rosette orbit, experimentally confirmed as the perihelion
motion of the planet Mercury, see e.g. Refs. [4–6]. The latter writes under the name
of the “relativistic Kepler problem”, see e.g. Ref. [4] for an approximate derivation
within the theory of special relativity. Along these lines, we will portray the explicit
connection between Gödel’s paradox and the imperative limiting condition at the
Schwarzschild boundary intrinsic to the present operator derivation of the theory of
general relativity.

Since we will especially focus on the relativistic problem, we will not say
anything more on the actual connections to condensed matter or rather to complex
enough systems like biological order and microscopic self-organisation [2, 3].
In doing so, we have already referred to Löwdin’s pedagogical and very intriguing
analysis of the Kepler problem demonstrating some rather surprising properties of
special relativity. The difficulties to analyse experimental conditions and predictions
in comparing Newton’s and Einstein’s theories [5] have been excellently described
already in the mid-1980s [6]. For a modern appraisal of Einstein’s legacy, where
the evolution of science, as unavoidably intertwined by the master’s illustrious
mistakes, is magnificently portrayed, see e.g. Ref. [7]. The consensus so far is that
Einstein is essentially right.

In Sects. 1.2 and 1.3, we will give the background facts for the mathematical
procedures used for (i) merging classical and quantum approaches, including
relativity with quantum theory, (ii) including a global superposition principle
combining abstract operations with materialistic notions and (iii) (see also the
conclusion) the interrelation between the Schwarzschild peripheral boundary limit
and Gödel’s (in)famous incompleteness theorem.

In Sect. 1.4, we will demonstrate the validity of the method by analysing
the relativistic Kepler problem by computing the perihelion motion of the planet
Mercury, followed by Sect. 1.5, displaying the explicit connection between the
Schwarzschild singularity and Gödel’s theorem. The final conclusion summarises
the modus operandi and its subsequent consequences.
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1.2 Extended Operator Equations and Global
Superposition Principles

In order to consider the positions mentioned above, we will revisit our general
theoretical development founded on complex symmetric forms [2]. Our operator
formulation is very general, yet comparatively simple, simultaneously regulating
straightforwardly space-time degrees of freedom with the corresponding conjugate
energy-momentum four-vector. For example, we will consider abstract kets in terms
of the coordinate Ex and linear momentum Ep

ˇ
ˇEx; ict ˛ ;

ˇ
ˇ
ˇ
ˇ
Ep; iE
c

�

(1.1)

cf. the general scalar product for a free particle

�

Ex;�ict j Ep; iE
c

�

D .2�„/�2e i
„
. Ep�Ex�Et/ (1.2)

In Eq. (1.2), we refer to a more general scalar product including all four
dimensions. In view of the fact that the construction should be complex symmetric,
see e.g. Refs. [2, 3], we have appended a minus sign before ict in the bra-position.
In general our biorthogonal construction should read

�

.Ex; ict/�j Ep; iE
c

�

(1.3)

which will be particularly important in connection with the so-called complex
scaling method [8, 9] and more generally when analytic continuation is achieved
via one or several parameters being made complex. The scalar product Eq. (1.3)
contains operators and their conjugate partners (in terms of time and coordinate
derivatives and Planck’s constant divided by 2�) related as usual, e.g.

Eop D i„ @
@t

I Ep D �i„ Er (1.4)

and

� D Top D �i„ @

@E
I Ex D i„ Erp (1.5)

Our objective is to find a complex symmetric formulation that contains the seed
of the relativistic frame invariants. The trick is to entrench an apposite matrix of
operators whose characteristic equation mimics the Klein–Gordon equation (or in
general the Dirac equation). Intuitively, one might infer that we have realised the
feat of obtaining the negative square root of the aforementioned operator matrix.
Thus, the entities of the formulation are operators and furthermore since they permit
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more general characterisations, compared to standard self-adjoint ones, they must
be properly extended. We will not at present devote more time on the mathematical
background except referring to relevant work in the past [2, 3, 10]. Making use of
the operator construction allocated above, the formulation becomes (E D mc2)

OH D jm; Nmi

0

B
B
@

m
�i Ep
c

�i Ep
c

�m

1

C
C
A

�
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.6)

with jmi D ˇ
ˇ Ep; iE=c˛ and j Nmi D ˇ

ˇ Ep;�iE=c˛ (note the complex conjugation in
the bra-position, required to characterise a complex symmetric form, see e.g. [2])
and references therein, and

OT D j�; N�i
�
c� �i Ex

�i Ex �c�
� �

��
N��

ˇ
ˇ
ˇ
ˇ

(1.7)

with j�i D ˇ
ˇEx; ict ˛ and j N�i D ˇ

ˇEx;�ict ˛. Note that the entities presented in Eqs.
(1.6) and (1.7) are general (vector) operators in both the matrix and in the bra-
ket. Furthermore, we have separated the formulation of the energy-momentum and
the space-time; notwithstanding they are coupled via Eqs. (1.4) and (1.5). This
relationship compels that space-time develops concurrently with energy-momentum
dynamics and vice versa.

It is quite simple, see Refs. [2, 3, 10], to solve the biorthogonal characteristic
equation corresponding to OH; OT , defining the eigenvalues �˙ D ˙m0 and �˙ D
˙�0 from

�2 D m2
0 D m2 � p2c�2

�2 D �20 D �2 � x2c�2
(1.8)

with Ep � Ep D p2I Ex � Ex D x2. The problems engendered by the vectorial components
in the operator matrices in Eqs. (1.6, 1.7) are easily solved as follows: the secular
determinant gives way to expressions in terms of p2 and x2; decomposing the kinetic
energy operator for instance into one of the eleven sets of orthogonal coordinate
systems in which the Helmholtz equation separates, one may hence substitute
the “vector entity” with the appropriate degrees of freedom being in accordance
with the conditions under study. When applied to gravitational interactions, to be
detailed below, polar coordinates will be preferable. To develop the formulation in
correspondence with (classical) special relativity, we must distinguish the proper
operator that in classical terminology goes with the velocity � , cf. the customary
parameter ˇ D p=mc D (“classical particles”) D �=c, � D jE�j being the group
velocity of the particle/wave. Via the plane wave, see Eq. (1.2), we obtain basically
for the latter

E� D dEx
dt

D dE

d Ep (1.9)
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Even though Eq. (1.9) obtains from classical (Newton) dynamics, it is not hard
to prove that the relation dE D d.mc2/ D E� d Ep is valid also in the theory of special
relativity as well, see e.g. Löwdin [4]. From Eqs. (1.6–1.8), we obtain the general
result (using Ex D E��)

m D m0
p

1 � ˇ2 I � D �0
p

1 � ˇ2
I x D x0

p

1 � ˇ2
(1.10)

The solutions, Eq. (1.10), correspond each to a root of the characteristic
equation Eqs. (1.6–1.8). Although the general setting of the complex symmetric
forms ensures biorthogonality, the eigenvectors for OH (and similarly for OT ) obtain
simply as

jm0i Dc1 jmi C c2 j Nmi I �C D m0

j Nm0i D � c2 jmi C c1 j Nmi I �� D �m0

jmi Dc1 jm0i � c2 j Nm0i
j Nmi Dc2 jm0i C c1 j Nm0i

(1.11)

c1 D
r

1CX

2X
I c2 D �i

r

1 �X
2X

I X D
p

1 � ˇ2I c21 C c22 D 1:

Note that the formal superposition, Eq. (1.11), reproduces a physical attribute,
yielding the present derivation of special relativity a tangible conception outside
a purely abstract understanding. Another important observation, associated with
the biorthogonal setting of the system, entails that the analysis shows that the
formulation turns out to be nonstatistical. We notice moreover that the description
for a zero rest mass particle (photon) corresponds to a degenerate singularity of the
equations since

OHu D jm; Nmi

0

B
@

p

c

�ip
c

�ip
c

�p
c

1

C
A

�
m

Nm
ˇ
ˇ
ˇ
ˇ

D ˇ
ˇ0; N0˛

0

@
0
2p

c
0 0

1

A

�
0
N0
ˇ
ˇ
ˇ
ˇ

jm0i ! j0i D 1p
2

jmi � i 1p
2

j Nmi I
j Nm0i ! ˇ

ˇN0˛ D 1p
2

jmi C i 1p
2

j Nmi : (1.12)

In Eq. (1.12), we have chosen a momentum p in an arbitrary direction with the
mass consistently given by p/c. We also note another detail. The operator matrix and
its representation must, as we have demonstrated above, have a complex conjugate
in the bra-position. However, since we here encounter a degeneracy with the Segrè
characteristic equal to two, we have attained a so-called Jordan block “in disguise”.
To display the more familiar canonical (triangular) form of the description, we
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must find the proper similitude by turning to the conventional description in terms
of unitary transformation in the standard Hilbert space. Hence, we signify the
operator with the subscript “u”. There is in fact an entrenched point here, viz. that
the unitary formalism of standard quantum mechanics via analytic continuation –
to account e.g. for so-called unstable states [2, 9] – by necessity presupposes a
biorthogonal picture, which then permits the mapping of the co- and contravariant
formulation of the global superposition principle of classical legitimacy. It is within
this epitomised picture that we have made the statement that we advocate non-
probabilistic formulations of our universe including biological organisation and
immaterial evolution [2, 3, 10].

It is thus not surprising that the transformation which brings the matrix to the
Jordan canonical form is unitary for the degenerate situation corresponding to a
Jordan block, a degenerate eigenvalue (m0 D 0) with Segrè characteristic equal to
two (the dimension of the block). The unitarity of the transformation implies that the
canonical representation contains an equal amount of particle-antiparticle character
(charge neutral) and that orthonormality between the base vectors is conserved.
This behaviour, Eq. (1.12), signifies that zero rest mass particles here cannot be
separated into particle-antiparticle pairs, yet the dimensionality of the singularity
is two corresponding to the (linearly independent) base vectors j0i I ˇˇN0˛, cf. the
two linearly independent solutions of Maxwell’s equation. Although one would
sometimes say that the photon is its own antiparticle, this is consequently not
correct. As can be seen from Eq. (1.12), the corresponding expansion coefficients
of the orthogonal vectors are simply related by complex conjugation. A further
difference, comparing particles with and without rest mass, comes from the limiting
procedure in the case of the former, i.e. of letting � ! c, for more details see e.g.
[2, 3] and references therein. In the next section, we will give the crucial extension
to incorporate gravitational interactions in order to demonstrate its efficacy and
accuracy by determining the perihelion motion of Mercury.

1.3 Operator Algebra and the Theory of General Relativity

In analogy with the aforementioned formulation, the general structure sets up a char-
acteristic operator equation in terms of energy and momenta, see e.g. Refs. [2, 3],
and their conjugate operators, i.e. the time and the position. The interrelated forms
of the operators and the associated conjugates include in principle the specific tensor
properties of gravitational interactions. As displayed before [2, 3], we will not only
re-establish Einstein’s laws of relativity but we will also benefit from the option of
selecting separate classical and/or a quantum representations. Thus, with the proper
choice of appropriate operator realisations, e.g. the present perspective of uniting
the microscopic and the macroscopic views, various representations of reality maps
out. In this connection, one may mention related issues [2, 3], e.g. the idea of
decoherence, or protection thereof, referring to classical reality, or the law of light
deflection, the gravitational redshift and the time delay in Einstein general relativity.
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With this proviso, incorporating gravity is quite easy. The main problem will be
to augment the conjugate pair formulation with the dynamics by appending, to our
previous model in the generalised basis jm; Nmi, the interaction

m�.r/ D m	

r
I 	 D G �M

c2
(1.13)

thereby supporting a modified Hamiltonian (operator) matrix initially for the case
m0 ¤ 0

OH D jm; Nmi

0

B
B
@

m.1� �.r//
�i Ep
c

�i Ep
c

�m.1 � �.r//

1

C
C
A

�

m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.14)

where 	 is the gravitational radius, G the gravitational constant and M a spherically
symmetric nonrotating mass distribution (which does not change sign when m !
�m). The fundamental nature of M and the materialisation of black hole-like objects
are discussed in some detail in Ref. [10].

To sum up, we find that the operator �.r/ > 0 depends formally on the operator r
of the particle m, which represents the distance to the mass object M. The conjugate
operators Ex and � , corresponding to the energy and the momentum, will, all things
considered, restore the curved space-time scales indicative of classical theories.
Continuing further, one might in principle use the formulas obtained above by
incorporating the p0 D p.1 � �.r//�1 instead of p, or alternatively solving for the
proper values of Eq. (1.14) in analogy with Eq. (1.11), one obtaining

�2 D m2.1 � �.r//2 � p2

c2

�˙ D ˙m0.1 � �.r//
(1.15)

It is important to emphasise that the relations obtained from Eq. (1.15) do not
lead to a unique relation between the mass and the rest mass. The reason is quite
deep since it involves two principal problems. First, one needs to account for the
commensuration between the conjugate operators and second to unite the formula-
tion with respect to particles with rest mass m0 ¤ 0 and m0 D 0. The latter is a
blessing in disguise since, as we know, Einstein’s law of general relativity predicts
that a photon deviates twice as much as estimated by Newton’s classical theory.

In order to make a slight detour suitable for our final goal, i.e. the determination
of the perihelion motion of Mercury, we will consider the following model; see be-
low and also Refs. [2, 10]. First, we will portray Mercury as a particle, with nonzero
rest mass m, orbiting a gravitational source, the Sun being represented as a spherical
black hole-like object with mass M, M � m. Second, assuming a nonrotating
object M, one derives, since the angular momentum is a constant of motion, the
relationm�r D m	c, by postulating a limit velocity c at the limiting distance at the
gravitational radius 	. Actually, we are measuring the distance between the particle
(Mercury) m from M (the Sun), in units of 	, i.e. N	, where N is a large number,
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interpreting the condition as m�r D mN	c=N . In the last relation, m is the mass
operator (nonzero eigenvalue!), r the radial distance in “gravitational units”, while
the velocity is given in fractions of c. Consequently, the constant angular momentum
in, e.g. the z-direction prompted by the velocity ¤ in the x-y plane, with unit vector
En, acquiesces the given condition specified as Eq. (1.17) below.

It is interesting to note the boundary condition derived above, depending on the
large difference in the masses between m and M and subject to distances down to
microscopic dimensions, makes for a circular trajectory in a plane perpendicular to
the direction of the angular momentum. Nevertheless, as we will see, the boundary
condition to be obtained below will be commensurate with the perihelion shift of
Mercury, see also Ref. [10]. In general, one obtains in the macroscopic domain

E� D dEx
dt

D dEx
d'

D

r2
I d

dt
D D

r2
d

d'
(1.16)

where the area velocity D is a constant of motion in classical dynamics and D
multiplied by m is a constant of motion in the case of special relativity [4]. Here, we
will also derive an analogous condition for the general case, see more below.

To sum up, we have derived a boundary condition for a bound (quasi-) stationary
trajectory using the proper polar representation jr; icti I jpr ; iE=ci

� D �.r/c D 	c

r
(1.17)

Accordingly the complex symmetric representation, with �=c D �.r/, becomes

OH D jm; Nmi
�
m.1� �.r// �im�.r/En
�im�.r/En �m.1 � �.r//

� �
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.18)

leading to the formal scaling relation, where we have removing the vector En in the
matrix for simplicity (in the actual calculation in the next section, it will of course
be preserved!)

m

�
.1 � �.r// �i�.r/

�i�.r/ �.1 � �.r//
�

! m

�p

.1 � 2�.r// 0

0 �p.1 � 2�.r//
�

(1.19)

The diagonal part in Eq. (1.19) reveals the scaling property of the mass (m0 ¤ 0).
However, the most interesting point is the divulgence of a Jordan block singularity
at r D 2	 at the celebrated Schwarzschild radius representing the canonical form
at the degenerate point �.r/ D 1

2

m

0

B
B
@

1

2
�i 1
2

�i 1
2

�1
2

1

C
C
A

!
�
0 m

0 0

�

(1.20)
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under the unitary transformation, see the analogy with the previous section,

jm0i ! j0i D 1p
2

jmi � i
1p
2

j Nmi I

j Nm0i ! ˇ
ˇN0˛ D 1p

2
jmi C i

1p
2

j Nmi :
(1.21)

Returning to the conjugate problem, we see a more complex situation compared
to the case of special relativity. As already pointed out, photons or particles of zero
rest mass (m0 D 0), exhibit a different gravitational law compared to particles
with m0 ¤ 0. The latter, i.e. the well-known prediction and the experimentally
confirmed fact of the light deviation in the Sun’s gravitational field, measured during
a solar eclipse, instantly boosted Einstein to international fame. Therefore, we need
to account for this “inconsistency” for zero rest mass particles, by introducing the
notation �0.r/ D G0 �M=.c2r/. Hence, one obtains (m0 D 0) that

m.1 � �0.r// D p

c
(1.22)

where �0.r/ is to be uniquely determined below. From the fact that OH is singular,
cf. Eq. (1.12), and one obtains

0

B
B
@

p

c

�ip
c

�ip
c

�p
c

1

C
C
A

!
0

@
0
2p

c

0 0

1

A (1.23)

cf. the analogous unitary transformation in the previous section. As expected from
the special theory, light particles in the complex symmetric formulation correspond
to Jordan blocks for all values of r. To be consistent, we require Eq. (1.22) to be
compatible with the boundary condition Eq. (1.17) and the relations, Eqs. (1.19,
1.20). Hence, in order to be commensurate with the case m0 ¤ 0, we impose zero
average momentum, Eq. (1.22), at the Schwarzschild radius r D 2	 D RLS , i.e.
that Np D 0 at �.r/ D 1=2 and hence that G0 D 2G or

�0.r/ D 2�.r/ (1.24)

Equation (1.24) is nothing but Einstein’s famous law of light deflection, i.e. that
photons deflect twice the amount predicted by Newton’s gravity law for nonzero
rest mass particles.

Returning to the conjugate problem, we have previously, see Refs. [2, 3, 10],
proved that the renowned Schwarzschild gauge obtains from the similarity

�
cds 0

0 �cds
�

/
�
cAd� �iBd Ex

�iBd Ex �cAd�

�

(1.25)
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where the conjugate operator, defined by Eqs. (1.4, 1.5), now becomes

i„ @
@t

D Eop.t/ D i„ @
@s

@s

@t
D Eop.s/

p

1 � 2�.r/

Es
p

1 � 2�.r/ D Et I @s
@t

D p

1 � 2�.r/I s D �i„ @

@Es
(1.26)

From Eq. (1.26), we conclude that Es and Et represent the energy of the system
at the space-time “point” s and (t,r) respectively, where the system consists of a
“particle-antiparticle” configuration and the black hole system denoted by M. Note
that Es includes also the rest mass energy and appropriate kinetic energy (m0 ¤ 0).
As mentioned, the result is compatible with the Schwarzschild metric, see [2, 3, 10]
and further below.

Deriving the apposite gauge, one finds that

A D B�1 D .1 � 2�.r//
1
2 (1.27)

and, thus, the celebrated line element expression (in the spherical case) becomes

�c2ds2 D �c2dt2.1 � 2�.r//C dr2.1 � 2�.r//�1 (1.28)

First, we notice that the relations between the quantities dependent on s and t, as
given in Eq. (1.26), are compatible with Eq. (1.25). This leads, see e.g. [3], directly
to the renowned Einstein laws, the gravitational redshift and the gravitational time
delay. Second, we observe that the area velocity multiplied by the mass is a constant
of motion. In analogy with the special case [4], where

mD D m0A0I m D m0
p

1 � ˇ2 I D D A0
p

1 � ˇ2 (1.29)

one obtains

mD D msAsIm D ms

p

1 � 2�.r/IAs D D
p

1 � 2�.r/ (1.30)

where depending on the actual situation msAs can be further decomposed according
to Eq. (1.29).

In order to prepare for the computation of the perihelion movement of planet
Mercury, we need to discuss a final point. As is well-known, see standard physics
texts or [4], the force law, the momentum law and the energy law are not compatible
in the relativistic domain. For instance, from

E D mc2.1 � �.r//I dE D 0 (1.31)
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follows that

f D nG

�
mM

r2

�

.1 � �.r//�1I n D �r

r
(1.32)

i.e. that the force gets modified by the extra factor .1 � �.r//�1. The reason for this
discrepancy lies clearly in the inability of the Eqs. (1.31, 1.32) to account for the
conjugate problem as well as the boundary condition at the Schwarzschild radius.

To cope with this inconsistency, we introduce the modified Hamiltonian (opera-
tor) matrix for the case m0 ¤ 0, cf. Eq. (1.14),

bH mod D jm; Nmi
 

m
�i Np
c�i Np

c
�m

! �
m�
Nm�

ˇ
ˇ
ˇ
ˇ

(1.33)

where Np D p=.1 � �.r//obtaining

E D Es
p

1 � 2�.r/ D .1� �.r//E mod (1.34)

Note that E D mc2, Es D msc2 and Emod D mmodc2 appearing in Eq. (1.34) contain
appropriate rest mass and kinetic energies commensurate with our present relativity
theory. Alternatively, one might propose the classical ansatz

� 0 D �

.1 � 	=r/
I � D dr

dt
I � 0 D dQr

dt
D dr

dt

�
r

.r � 	/
�

Qr D h.r/ D
Z

h0.r/dr I h0.r/ D r

.r � 	/

Qr D
rZ

2	

u

.u � 	/du D r � 2	C 	 log

�
.r � 	/

	

�

(1.35)

which yields the converse connection

r

	 � 1
D f

� Qr
	C 1

�

I f .x/ Dx � log ff .x/g

f 0.x/ D f .x/

1C f .x/
I (1.36)

and the corresponding links Qr D 0 $ r D 2	 and r � Qr for r >> 	. We observe
that these natural (classical) gravitational coordinates impart an apt spectral range
for the operator r since Qr is zero inside the Schwarzschild radius. Furthermore, the
consistency relations Eqs. (1.31, 1.32), albeit not exact in the general case, agrees
to first order of �.r/. (In fact, an exact relationship for the force can be found if
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the variations above are carried out in the coordinates r I dr D dr .1 � �.r//) In
analogy, one obtains for

E D mc2
p

1 � 2�.r/I dE D 0 (1.37)

and getting similarly

f D nG

�
mM

r2

�

.1 � 2�.r//�1 D nG

�
msM

r2

��p

1 � 2�.r/
	�1

(1.38)

Consequently, since we will carry out the calculation in the next section in terms
of covariant energies and masses, we will use the following equations

E D mc2
p

1 � 2�.r/ D msc
2.1 � 2�.r//

f D nG

�
msM

r2

��p

1 � 2�.r/
	�1 D nmsc

2 �.r/

r
.1C �.r/C :::/ (1.39)

which together with Eqs. (1.29, 1.30) will serve as constants of motion in the
determination of the perihelion rosette orbit. In passing, we note that zero rest mass
particles, e.g. the photons, will follow the law

E D mc2.1 � 2�.r//

f D n2G

�
mM

r2

�

.1 � 2�.r//�1 D n2mc2
�.r/

r
.1C 2�.r/C :::/ (1.40)

in analogy with Eqs. (1.37, 1.38) and in accordance with Eqs. (1.22, 1.24).

1.4 The General Kepler Problem

Since this will primarily be a “classical” computation, it is important to realise
that our global formalism, combining the classical and the quantum interpretation,
incorporates boundary conditions as obtained from the present picture thrown as a
characteristic operator array formulation. Using simple generalisations of the so-
called Binet’s formulas in classical mechanics, we will consider the computation
in the following way, see e.g. any textbook on classical mechanics or Ref. [4] for
details. First, we give a summarising documentation of the essential steps of the
classical Kepler problem (m the mass of Mercury and M the mass of the Sun); then
we will proceed by the corresponding extension to the relativistic case in particular
pointing out the relevant alterations enforced by the boundary conditions derived
above, see particularly Eq. (1.39).
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Using the area velocity D, see Eq. (1.16), which is a constant of motion, D D A
in the classical case of the central force problem, one derives straightforwardly the
following relations in standard polar coordinates r; ' (here, the particle motion is in
a plane perpendicular to the angular momentum vector L)

�r D dr

dt
D �D du

d'
I�' D �Du

�2 D .�r /
2 C .�'/

2 D D2

(�
du

d'

�2

C u2
)

(1.41)

where for convenience the variable u D 1/r has been introduced. In addition to the
velocity formulas, one obtains for the acceleration

ar D �dD

dt

du

d'
�D2u2

(

d2u

d'2
C u

)

a' D �u
dD

dt
(1.42)

From Eqs. (1.41, 1.42) and a' D 0, one obtains straightforwardly (G being the
gravitational constant as before)

�
�
A2

r2

�(

d2u

d'2
C u

)

D �GM
r2

(1.43)

or simply

d2u

d'2
C u D ˛I ˛ D G

M

A2
(1.44)

Note that Eq. (1.44) has the standard solution u D ˛ C ˇ cos.' � '0/, which for
simplicity we can take '0 D 0. As is well-known, the conic intersections in polar
coordinates take the form

u D ˛ C ˇ cos' (1.45)

In the present context, we realise that ˛ > jˇj yields an elliptic orbit, where ˇ
can be expressed in terms of E and ˛ via

E D1

2
m�2 �GmM u D 1

2
mA2

(�
du

d'

�2

C u2
)

�GmM u

E D1

2
mA2.ˇ2 � ˛2/

(1.46)
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Incidentally, we note that the deviation of a particle with mass m passing a large
sphere with mass M gives a hyperbolic orbit (˛ < jˇj) yielding the exact formula
(considering the point u D 0)

2
 D 2arcsin

�
˛

ˇ

�

I 
 D ' � �

2
(1.47)

and finally, to complete the picture, a parabolic orbit obtains for ˛ D jˇj.
In order to generalise this description to the relativistic domain, we will, see

also previous section, represent Mercury as a particle, with a nonzero rest mass
m, orbiting the gravitational source, the Sun, the latter being characterised as a
nonrotating spherical black hole-like object with mass M. Furthermore, we assume
M � m, so that the Schwarzschild radius of Mercury is negligible compared to
that of the Sun. Noting that we have a central force, one gets

�
dm

dt

�

�' Cma' D 0 (1.48)

from which, using Eqs. (1.41, 1.42), it follows that mD D msAs is a constant of
motion, cf. Eqs. (1.16, 1.29, 1.30) above. Employing further the energy law and the
force law, where the total energy also is a constant of motion, Eq. (1.39) yields,
introducing the parameters q D ms=m0 and the energy quotient � D Es=E0 (note
that we are expressing the mass and the area velocity with the subindex “s”)

q D ms

m0

D 1
p

1 � ˇ2 I˛ D G
M

A2s

� D Es

m0c2
D q .1 � 2	u// I 	 D G

M

c2
(1.49)

It is important to note that Eq. (1.49) contains a factor 2	 in the expression for
� above while the force still is given by Eq. (1.39). In analogy with Eq. (1.41), we
find that

�2 D D2

(�
du

d'

�2

C u2
)

D
�
A2s
q2

�(�
du

d'

�2

C u2
)

(1.50)

which with the definitions given in Eq. (1.49)

q D �

.1 � 2	u/
I �2 D c2

�

1 � 1

q2

�

(1.51)

yields

�
du

d'

�2

C u2 D
�
c2

A2s

�



q2 � 1
�

(1.52)
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Expressing the differential equation in terms of the parameters ˛ and � in
Eq. (1.49), one obtains after taking the derivative with respect to ® and dividing
by 2 .du=d'/

d2u

d'2
C u D ˛�2

.1 � 2	u/3
(1.53)

This is a differential equation separable in the classical variables u and ®. Note
also the difference between this study and the one using the theory of special
relativity, where the factor 2 in front of 	 is missing in Eq. (1.53), see Ref. [4]
for more details.

An approximate solution to Eq. (1.53) can be derived by expanding the right-
hand side in a power series in �(u) D	u which gives

d2u

d'2
C u




1 � 6˛	�2
� D ˛�2 C 24	2u2�2C::: (1.54)

To first order in 	u, Eq. (1.53) generates the formula, cf. the classical case

u D ˛1 C ˇ cos'1

'1 D '



1 � 6˛	�2� 12

˛1 D ˛�2



1 � 6˛	�2��1 (1.55)

where ˇ can be obtained in analogy with the classical case above, i.e. from the
quotient � in Eq. (1.49), Eq. (1.52) gives

�	

˛

	
(�

du

d'

�2

C u2
)

D �2

.1 � 	u/2
� 1 (1.56)

Finding optimum values for u, i.e. for which du
d' D 0, yields

�2 D
�

1 � 	

R

	2
�

1C
�	

˛

	� 1

R2

��

I R D .˛1 C ˇ/�1 (1.57)

To first order of 	/R, neglecting higher orders, Eq. (1.57) yields the wanted result
for .ˇ2 � ˛21/, i.e.

�2 D 1C 	

˛1
.ˇ2 � ˛21/ (1.58)

Using the energy quotient � D Es=E0, it follows that for jˇj>’1 (�> 1), one
obtains a hyperbolic type orbit, for jˇj D’1 (�D1) a parabolic orbit and for jˇj<’1
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(� <1) an elliptic type orbit, cf. the classical case. The latter condition corresponds
to a rosette orbit comprising an ellipse with a perihelion motion matching maximum

values, for the angles '1 D 2�n or ' D 2�n



1 � 6˛	�2�� 1
2 D 2�n.1C 3˛	�2 C

� � � /, of u D 1=r , indicating that for each rotation the perihelion moves an angle

�' D 6�˛	�2 (1.59)

which on account of Eq. (1.58) or � � 1 writes �' D 6�˛	. In terms of the
eccentricity, e, of the ellipse, Eq. (1.59) can be written

�' D 6�	

a.1 � e2/
(1.60)

with e D d/a and the ellipse, Eq. (1.55), has been expressed in Cartesian coordinates

.x � d/2

a2
C y2

b2
D 1

We may also consider the deviation of a particle with nonzero rest mass passing a
large sphere with mass M. Approximately one obtains in analogy with the classical
case when r D 1 or u D 0 giving the condition cos'1 D �˛1=ˇ (real solution in
the hyperbolic case). Using Eqs. (1.50, 1.55, 1.57) one obtains for small values of
˛1=ˇ, cf. Eq. (1.47), introducing the angle 
 D ' � �=2

2
 � 2
˛1

ˇ
D 2

	

R

�
c

�0

�2

(1.61)

where �0 is the value of � at u D 0. Here, we observe that for photons using
Eq. (1.40) and �0 D c that

2
 � 4
˛1

ˇ
D 4

	

R
(1.62)

Equations (1.59, 1.60, 1.62) agree with the results of Einstein’s theory of general
relativity for the perihelion movement of Mercury and the law that a photon deviates
in a gravitational field twice the amount as predicted by Newton’s gravitational law.

1.5 Relation Between the Schwarzschild Singularity
and Gödel’s Theorem

In order to discuss the relation between the singularity (Jordan block) occurring at
r D 2	 D RLS , where RLS is the renowned Schwarzschild radius, and Gödel’s
paradox, we will return to the discussion in connection with Eq. (1.19), i.e.,
considering the matrix mG where
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G D
�
1 � �.r/ �i�.r/
�i�.r/ 1 � �.r/

�

(1.63)

obtained from the operator ansatz in terms of energy and momenta for the
gravitational problem. Before adjusting to the conjugate problem, we recapitulate
that the matrix G results from the requirement of the boundary condition given by
Eq. (1.17). In particular, we emphasise the occurrence of Jordan blocks (dimension
2) as being the consequence at the degenerate point at the Schwarzschild radius.

To convey the unexpected relation with the Gödelian theorem, we refer to our
procedure to convert the exegesis of a truth-functional proposition calculus to a
linear algebra terminology, see e.g. for details and further references [3, 11]. In
brief, we consider two propositions P and Q D :P as expressed in the following
table, where : is the operation of logical negation

true false

Truth Table D true
false

�
P.x/ Q.x/

:Q.x/ :P.x/
�

(1.64)

The table will be understood as follows: “the first row” is true when P is true
and Q is false, and the second row reads false if Q is true and P is false. The map
entails the translation of the truth table, Eq. (1.64), into a truth matrix P by means of
probability operators/functions p and q D (1�p) referring to a basis in Dirac notation
jtruei and jfalsei allocating a negative signature to the negation row:

jtruei jfalsei
P D jtruei

jfalsei
�

p .1 � p/

�.1 � p/ �p
�

(1.65)

Note that P by definition relates to the so-called bias operator since it conveys
classical probability information through the system operators �˙ D 1

2
.I ˙ P2/

through (I is the unit matrix)

1

2
.I C P2/ D pI I 1

2
.I � P2/ D .1� p/I

The matrix, Eq. (1.65), is easy to diagonalise (if p ¤ 1
2
), i.e.

P D
�

p .1 � p/

�.1 � p/ �p
�

!
�
�C 0

0 ��

�

�2 D p2 � .1 � p/2I �˙ D ˙p2p � 1 (1.66)

for more details, see e.g. Refs. [3, 11]. It easy to see what happens when p D 1
2
, i.e.

when the bias is zero and neither P nor Q D :P can be true (or false) since
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bP D .jtruei ; jfalsei/
�

1
2

1
2

� 1
2

� 1
2

� � htruej
hfalsej

�

D ˇ
ˇtrue

˛ ˝

false
ˇ
ˇ (1.67)

or

bP D 
ˇ
ˇtrue

˛

;
ˇ
ˇfalse

˛�
�
0 1

0 0

� � ˝

true
ˇ
ˇ

˝

false
ˇ
ˇ

�

ˇ
ˇtrue

˛ D 1p
2

fjtruei � jfalseig
ˇ
ˇfalse

˛ D 1p
2

fjtruei C jfalseig (1.68)

or in terms of the truth table, Eq. (1.64)

jtruei jfalsei ˇ
ˇtrue

˛ ˇ
ˇfalse

˛

P D jtruei
jfalsei

0

B
B
@

1

2

1

2

�1
2

�1
2

1

C
C
A

D
ˇ
ˇtrue

˛

ˇ
ˇfalse

˛

 
0 1

0 0

!

(1.69)

The result, Eqs. (1.68, 1.69), reveals an exceptional interpretation of the de-
generate situation, since it charts a self-referential statement, see more below, as
a Jordan block (Segrè characteristic equal to two) in the present general (quantum)
logical framework. Thus choosing P D G, where G is the famous Gödel arithmetical
proposition with neither G nor :G provable within the given set of axioms of
elementary arithmetic [1]. The paradox epitomises a singularity, since P is non-
diagonal, while simultaneously the truth table conveys that G is not true and :G
is not false or both G and :G are false. The fundamental conclusion is that
decoherence of classical truth values (cf. the wave-function collapse in quantum
mechanics) is forbidden at the degenerate point p D 1

2
. Nevertheless, we recover

the classical result since P2 D 0, i.e. without some bias at hand our information is
zero, i.e. p D .1 � p/ D 1

2
.

As discussed earlier, the present interpretation of the truth table can be obtained
from conventional representations with the use of a non-positive definite metric
�; �11 D ��22D1; �12D�12D0. In this picture, we can use conventional bra-
ket nomenclature, while for another selection of �, leading e.g. to a complex
symmetric choice, it would require complex symmetric realisations. In both cases,
the formulation is biorthogonal. With this realisation, we can make an identification
between Eqs. (1.63) and (1.66), making the replacement q D �.r/, where q is
related to the probability function/operator of the simple proposition Q D :P.
Hence, we realise a probabilistic origin combined with the nonclassical, self-
referential character of gravitational interactions. Note also the analogy between
the formulations, i.e. that the result of a classical measurement, i.e. the truth or
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falsity of the statement Q, entails that either q D 1 or that q D 0. The (in)famous
Gödel proposition (neither provable right nor wrong within the given axiomatic
system) is logically formulated here as a special point singularity, see Eqs. (1.67–
1.69). Similarly, decoherence to a particle or antiparticle is impossible at �.r/ D 1

2

attributing via the self-referentiability property of gravitation, an automatic code
protection principle at the Schwarzschild fringe. This relationship prompts the
label “Gödelian time arrow” as combining the cosmological expansion with the
gravitational collapse at the black hole boundary; see more in Ref. [11].

1.6 Conclusion

In conclusion, we emphasise the following points: (i) we have re-derived a
previously obtained operator array formulation, which in its complex symmetric
form permits a viable map of gravitational interactions within a combined quantum-
classical structure; (ii) the choice of representation allows the implementation of
a global superposition principle valid both in the classical as well as the quantum
domain; (iii) the scope of the presentation has focused on obtaining well-known
results of Einstein’s theory of general relativity particularly in connection with the
correct determination of the perihelion motion of the planet Mercury; (iv) finally, we
have obtained a surprising relation with Gödel’s celebrated incompleteness theorem.

In particular, we have considered the exacting determination of perihelion
motions as acquired commensurate with the theory of general relativity. We also
noted and explained that the theory of special relativity yields half the correct
perihelion shift since it does not take account of the proper background dependence.
In this chapter, we have emphasised that in order to recover the relativistic Kepler
problem correctly, one must set up and explicitly prepare the precise boundary
condition at the Schwarzschild boundary. The interconnection, alluded to in the
title, ensues from the simple fact that the condition, Eq. (1.17), together with Eqs.
(1.18–1.20), yields a singularity in Eq. (1.63). The latter is trivially formulated as an
analogue of Gödel’s incompleteness theorem via the translation of the conventional
truth-functional proposition calculus to regular linear algebra generalised to include
general non-positive definite metrics.

In a separate contribution [11], we have analysed within the present framework
an assessment of the various arrows of time and the possible symmetry violations
instigated by gravitation including the fundamental problem of molecular chirality
[12]. Other related developments involve Penrose’s concept of objective reduction
(OR), i.e. gravity’s role in quantum state reduction and decoherence as a fun-
damental concept that relates micro-macro domains including theories of human
consciousness [13], see also Ref. [3] for more details. Note also efforts to derive
quantum mechanics from general relativity [14].

There are finally many consequences that follow from the present formulation,
i.e. fundamental symmetry violations, scale invariance and the non-probabilistic
traits of evolution due to the regulation of self-reference [11]. In principle, the
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present analogy supports the derivation of the gravitational law from the viewpoint
of a general truth-functional proposition calculus. The functional behaviour for �(r)
then drives from a quotient between the 2D surface surrounding a 3D sphere at the
point “s” and the 3D surface surrounding a 4D volume, the latter by instigating an
extra dimension from cdt D dr.1 � 2�.r//�1.
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Chapter 2
The Dirac Electron: Spin, Zitterbewegung,
the Compton Wavelength, and the Kinetic
Foundation of Rest Mass

Jean Maruani

Abstract The Dirac equation, which was derived by combining, in a consistent
manner, the relativistic invariance condition with the quantum superposition princi-
ple, has shown its fecundity by explaining the electron spin, predicting antimatter,
and enabling Schrödinger’s trembling motion (Zitterbewegung). It has also yielded
as expectation value for the electron speed the velocity of light. But the question has
hardly been raised as to the effect of this intrinsic motion on the electron mass. In
this chapter, we conjecture that the internal structure of the electron should consist
of a massless charge describing, at light velocity, a vibrating motion in a domain
defined by the Compton wavelength, the measured rest mass being generated by
this very internal motion.

Around 1950, I had the rare opportunity of meeting Albert Einstein : : : . The professor
addressed my colleague: ‘Vot are you studying?’ ‘I’m doing a thesis on quantum theory’.
‘Ach!’ said Einstein, ‘a vaste of time!’

He turned to me: ‘And vot are you doing?’ I was more confident: ‘I’m studying
experimentally the properties of pions’. ‘Pions, pions! Ach, vee don’t understand de
electron! Vy bother mit pions?’ : : :
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2.1 Introduction

The atomic theory of matter, which was conjectured on qualitative empirical
grounds as early as the sixth century BC, was shown to be consistent with increasing
experimental and theoretical developments since the seventeenth century AD, and
definitely proven by the quantitative explanation of the Brownian motion by Einstein
and Perrin early in the twentieth century [1]. It then took no more than a century
between the first measurements of the electron properties in 1896 and of the
proton properties in 1919 and the explosion of the number of so-called elementary
particles – and their antiparticles – observed in modern accelerators to several
hundred (most of which are very short lived and some, not even isolated). Today,
the ‘standard model’ assumes all particles to be built from three groups of four
basic fermions – some endowed with exotic characteristics – interacting through
four basic forces mediated by bosons – usually with zero charge and mass and with
integer spin [2].

In this zoo of particles, only the electron, which was discovered even before the
atomic theory was proven and the atomic structure was known, is really unsecable,
stable, and isolatable. The proton also is stable and isolatable, but it is made up
of two quarks up (with charge C2/3) and one quark down (with charge �1/3). As
for the quarks, while expected to be stable, they have not been isolated. The other
particle constitutive of the atomic nucleus, the neutron, is also made up of three
quarks, one up and two down, but it is not stable when isolated, decaying into a
proton, an electron, and an antineutrino (with a 15-min lifetime). The fermions in
each of the higher two classes of the electron family (muon and tau) and of the two
quark families (strange/charmed and bottom/top) are unstable (and not isolatable for
the quarks). Only the elusive neutrinos in the three classes, which were postulated
to ensure conservation laws in weak interaction processes, are also considered as
being unsecable, stable, and isolatable.

Although quantum chromodynamics has endeavoured to rationalize the world
of quarks, gluons, the strong interaction, and composite particles [2], it is not as
in a developed stage as quantum electrodynamics, where electrons, photons, the
electromagnetic interaction, and the whole domain of chemical physics are unified
in a refined manner [3, 4]. This latter theory is but an extension of the Dirac theory
[5, 6], which treated the electron in a consistent quantum-relativistic manner while
its interaction with the electromagnetic field was considered semi-classically, to a
full quantum-relativistic treatment of charged particles interacting with each other
and with a quantized electromagnetic field by exchanging virtual photons.

Traditional attributes of matter are opacity (to light), resistance (to penetration),
inertia (to motion), and weight. A transparent glass has no opacity (to visible light),
but it requires a very hard material (a diamond cutter) to be penetrated. Pure air also
shows transparency, but it shows resistance to penetration only at very high speeds
(blasts, storms, planes, parachutes). These two attributes are well understood today
as quantum effects due to the interactions of molecules with electromagnetic fields
and with other molecules.
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The attribute of inertia was identified by Galileo as being a resistance to ac-
celeration/deceleration (rather than to uniform linear motion), while the attribute
of weight (also investigated by Galileo) was related by Newton to the attraction
by a massive body (as expressed in Kepler’s rules). These two attributes were
later correlated in general relativity theory by Einstein. But the quantum theory
has not been directly involved in either inertia or weight until Dirac’s attempt to
bring together quantum and relativistic conditions in a matrix linear equation for
the electron, using the total energy mc2 rather than the kinetic energy p2/2m0 in his
Hamiltonian operator.

In this chapter, we shall reassess some of the physical implications of the
Dirac equation [5, 6], which were somehow overlooked in the sophisticated formal
developments of quantum electrodynamics. We will conjecture that the internal
structure of the electron should consist of a massless charge describing at light
velocity an oscillatory motion (Zitterbewegung) in a small domain defined by the
Compton wavelength, the observed spin momentum and rest mass being jointly
generated by this very internal motion.

2.2 Compton Wavelength and de Broglie Wavelength

Although the corpuscular aspect of electromagnetic radiation, which was surmised
by Newton in the seventeenth century, was used by Planck in 1900 to explain Wien’s
black body radiation law and by Einstein in 1905 to explain Lenard’s photoelectric
effect, its most spectacular demonstration was Compton’s explanation in 1923 of
the anomalous scattering of X-rays by bound electrons.

If an incident photon (p1, E1 D p1c) hits an electron considered as nearly at rest
(0, m0c2), producing an electron recoil (p0, E0), the direction of the scattered photon
(p2, E2 D p2c) makes an angle 
 with that of the incident photon. Applying the laws
of conservation of energy and momentum to the scattering process:

p1 D p2 C p0; p1c Cm0c
2 D p2c C 


m2
0c
4 C p20c

2
� 1
2 ; (2.1)

one derives

m0c.p1 � p2/ D p1p2.1 � cos 
/: (2.2)

Using the incident and scattered photon wavelengths, �1 D h/p1, �2 D h/p2, and
introducing the electron Compton wavelength, �C D h/m0c, one obtains

�2 � �1 D �C .1 � cos 
/: (2.3)

This expression is rigorous with the relativistic treatment we have used. But the
occurrence of the Compton wavelength �C is not a relativistic effect since Eq. (2.2)
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also holds (to first order, except around 
 D 0ı) if one uses the classical formula,
E0 D p20=2m0, for the kinetic energy of the ejected electron. In fact, the occurrence
of this electron wavelength stems from the assumption that light is made of particles
endowed with kinetic momentum, p D h/�, as well as with energy, E D p c.

The question remains as to how the electron interacts, at the subquantum level,
to scatter the photon. One could speculate on the fact that for 
 D�/2 (orthogonal
scattering) the Compton wavelength adds to the photon wavelength while the
electron recoils along � ��/4 (as would a tiny mirror inclined at �/4), while for

 D 0 (no scattering) the photon wavelength remains unchanged and the electron
unmoved. Adding the electron Compton wavelength to the orthogonally scattered
photon wavelength reduces the photon energy by the amount used for the electron
ejection.

The Compton wavelength, �C D h/m0c, is different from the de Broglie wave-
length, �B D h/m0v, in that it is unrelated to the particle velocity but solely depends
on its rest mass (and light velocity). The larger the rest mass, the smaller the
wavelength or, one could say, the larger the Compton wavelength, the smaller the
particle rest mass.

2.3 The Dirac Equation

It will be useful to recall the Lorentz transformation equations of the space and time
coordinates of a free particle between two inertial frames S and S0:

x0 D �.x � ˇct/ (2.4a)

ct 0 D �.�ˇx C ct/ (2.4b)

where ˇD v/c and � D (1 �ˇ2)�1/2, v being the velocity of frame S0 relative to
frame S and c, the velocity of light. In similar transformation equations for the
electromagnetic field (ruled by Maxwell’s equations), the electric field components
play the role of space coordinates and the magnetic field’s that of a time coordinate.

It can be seen that, while the space and time coordinates depend on the reference
frame, the combination

x20 � .ct/2 � r2 � x24 � x21 � x22 � x23 (2.5a)

is relativistically invariant under any change of frame (its square root is Minkowski’s
proper interval). This formula can alternatively be written as

x24 D x20 C x21 C x22 C x23 : (2.5b)
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The dependence of the measured time on the inertial frame (the �ˇx term in
Eq. 2.4b), which entails � ¤ 1, stems from the invariance of c with respect to the
frame. Einstein’s equivalence relation E D mc2 arises from the resulting intrication
of space and time. One of the clues that led de Broglie to the idea of matter waves
(and to the explanation of quantization rules in atomic spectra by assuming standing
waves in electron orbits) was a comparison of this relation with that expressing the
quantization of light, E D h c/�, which yields m D h/� c for photons and, by analogy,
�D h/mv for particles with non-zero rest mass.

The Dirac equation was derived in several steps [5, 6], starting with the time-
dependent wave equation for a free particle in the Schrödinger representation:

i„ @‰

@t
D H ‰; or i„ @‰

@.ct/
D mc ‰; (2.6)

where the Hamiltonian operator was given the relativistic form: H D mc2. The term
expressing the external motion is embedded in the relativistic formula for the mass:
m D m0� . In order to unveil this term, H is transformed to the form

H D mc2 D
�

m2
0c
6

.c2 � v2/

1=2

D
�

m2
0c
4 C m2

0c
4v2

.c2 � v2/

1=2

D

D 


m2
0c
4 C p2c2

�1=2 D 


m2
0c
2 C p2

�1=2
c;

or mc D 


m2
0c
2 C p2

�1=2
; (2.7a)

with p D m0�v D mv D p0� . When v � c, H reduces to the usual form: H0 D
.m0c

2C/ p20=2m0 .C : : :/.
In Eq. (2.7a), p2 D p21 C p22 C p23 with pi D mvi along xi, and from Eqs. (2.5)

and (2.6) one can define an additional ‘momentum’ p4 � mc, corresponding to the
time ‘coordinate’ x4 � ct, and an invariant ‘momentum’ p0 � m0c, for a particle at
rest. Equation (2.7a) can then be written as

p24 D p20 C p21 C p22 C p23: (2.7b)

Comparing Eqs. (2.7b) and (2.5b) shows that the relativistically invariant ‘mo-
mentum’ p0 corresponds to the relativistically invariant ‘coordinate’ x0. To the
‘Pythagorean relation’ between the generalized coordinates, x24 D x20 C r2, cor-
responds a similar relation between the generalized momenta, p24 D p20 C p2.

By analogy with the non-relativistic case, one can write

p1 ! �i„ @

@x
; p2 ! �i„ @

@y
; p3 ! �i„ @

@z
; p4 ! i„ @

@.ct/
; (2.8)
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the last expression being introduced to bring time on the same footing as the space
coordinates. At this stage, the operator associated with p0 is just p0. Equation (2.6)
can then be written as

h

p4 � 


p20 C p21 C p22 C p23
�1=2

i

‰ D 0; (2.9)

which is linear in p4 but not in the other pi’s and, therefore, not fully satisfactory
from the relativistic point of view.

The second step was thus to multiply this equation on the left side by
h

p4 C 


p20 C p21 C p22 C p23
�1= 2

i

, yielding the more symmetric form

�

p24 � 


p20 C p21 C p22 C p23
��

‰ D 0; (2.10)

where only those solutions belonging to positive values of p4 are also solutions of
Eq. (2.9). This is the so-called Klein-Gordon equation, which reduces to the wave
equation for m0 D 0 and is suitable for the description of zero-spin free particles.

Although Eq. (2.10) fulfils the relativistic condition of space-time equivalence,
it does not fulfil the quantum requirement of linearity so that the superposition
principle, probability density formula and uncertainty principle could apply [5, 6].

The third step was to look for an analogous equation linear in all p	’s, that is,

Œp4 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/�‰ D 0; (2.11)

where the ˛	’s must be matrices independent of the p	’s and of the x	’s in free
space. Multiplying to the left side by [p4 C (˛0p0 C ˛1p1 C ˛2p2 C ˛3p3)] yields

h

p24 � .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/
2
i

‰ D 0: (2.12)

This coincides with Eq. (2.10) only if one has, for 	, �D 0, 1, 2, 3:

˛2	 D 1; ˛	˛� C ˛�˛	 D 0: (2.13)

In addition to being normalized and anticommutative, these matrices, of course,
must be Hermitian. These conditions are similar to those for the three components
�x, �y, � z of the spin operator � and of their Pauli representations as 2D matrices:

�x � .0 1/ �y � .0 � i/ �z � .C1 0/

.1 0/ .Ci 0/ .0 � 1/ (2.14)

But now we have four components for the four-vector (p1, p2, p3, p0), and the
four ˛	 matrices fulfil the above requirements only if they possess at least four
dimensions; e.g. [5, 6], using the 2D Pauli matrices as off-diagonal elements of the
4D Dirac matrices relative to the p	’s:
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˛1 � .0 � x/ ˛2 � .0 � y/ ˛3 � .0 � z/ ˛0 � .C1 0/

.� x 0/ .� y 0/ .� z 0/ .0 � 1/ : (2.15)

A result is that for a vector to be representative of the wave function � it must
have four components or, alternatively, that � must contain a variable taking on
four values. Dirac has explained why the electron has spin, which was known as
requiring the wave function � to have two components, and that this number must
be doubled because the quasi-linear Eq. (2.11), which is equivalent to the quadratic
Eq. (2.10) under the conditions (2.13), has additional, negative-energy solutions,
which he assigned to an antielectron having opposite charge [5].

As expected, Eq. (2.11) is invariant under Lorentz transformations [5, 6]. It was
noticed by de Broglie [6] that the process leading from Eq. (2.10) to (2.11) is
similar to that leading from the second-order equations for the electric and magnetic
fields E and B of electromagnetic radiation to the four coupled, first-order, Lorentz-
invariant Maxwell equations.

Although spin was first introduced phenomenologically (see Sect. 2.4) and shown
to require only 2D matrices for its representation (Eq. 2.14), the theoretical proof for
its existence required a four-component wave vector, yielding additional negative-
energy states. This hints that spin, as well as Zitterbewegung (see Sect. 2.4), must
be related to these states. This appears in the entanglement of the four components
of � when Eq. (2.11) is written explicitly in the form of four coupled equations [6].

One may notice that the matrices ˛i multiplying the components pi of the
momentum that describe the external trajectory of the particle are off-diagonal,
whereas the matrix ˛0 multiplying the momentum p0 related to the rest mass energy
m0c2 is diagonal. This suggests there is some internal motion orthogonal to the
external trajectory, as hinted in Eq. (2.7b) where the generalized momentum mc
appears as a Pythagorean sum of the two orthogonal momenta m0c and p.

Indeed, three internal motions (which have been shown to be related) have
been discussed by Dirac from his equation. One involves the well-established spin
angular momentum, which gives rise to the measured magnetic moment; another is
the Zitterbewegung (proper oscillatory motion) derived by Schrödinger from Dirac’s
equation; and finally there is an internal motion adding to that defining the external
trajectory of the particle to give it the computed velocity c. We shall comment on
these three motions.

2.4 The Electron Internal Motion: Spin, Zitterbewegung,
and Light Velocity

The electron spin entered quantum mechanics in two different ways. The first was
the explanation, by Goudsmit and Uhlenbeck (1925), of the Zeeman splitting of
the spectral lines of atoms by a magnetic field (1896) and of the Stern and Gerlach
deflection of the trajectory of atoms by an inhomogeneous field (1922). The electron
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was endowed with an intrinsic magnetic moment and, since it has electric charge,
with a rotational internal motion adding to its quantized motion around a nucleus.
This electron property was later shown to be responsible for most of materials’
magnetism, known for long: ferro (and anti) and ferri (and anti), as well as para
(but not dia). Electron paramagnetic resonance (EPR) spectroscopy and related
techniques [7] are based on this property, and on a similar property proposed by
Pauli for nuclei [1924], which is at the basis of nuclear magnetic resonance (NMR).

Various models have been designed to account for the magnetic properties of the
electron [6]. In the simple model of a loop with radius r described by a point charge
�e, the measured magnitude of the induced magnetic moment � orthogonal to the
loop can be used to derive the rotational velocity v:

	 D I:S D
��e:v
2�r

	

:�r2 D � e:v r

2

D �
�
1

2

�
e „
2m0

! v D „
2m0r

:

(2.16)

If one identifies r with the measured Compton radius, rC D -h/2 m0c (Sect. 2.2 and
Eq. 2.34), this formula yields: v D c!

The second intrusion of the electron spin came through a non-energetic, sym-
metry requirement, the so-called Fermi-Dirac statistics for systems of identical,
half-integer spin particles, which results in total antisymmetry of the Schrödinger
wave function in a combined space and spin coordinate domain. This entails the
Pauli exclusion principle (1925) in the framework of the independent-particle,
Slater-determinantal model. The expression of atomic and molecular wave functions
as linear combinations of Slater determinants has been the basis of most of the sub-
sequent methodologies of quantum chemistry, thermodynamics, and spectroscopy.

These two aspects of the electron spin, that of an internal dynamical variable
introduced to satisfy a symmetry requirement and that related to an intrinsic
magnetic moment interacting with an external field, were elucidated by Dirac from
his quantum-relativistic equation. But it also yielded an electron moving at the speed
of light!

To have the electron magnetic moment show up, it is necessary to make it interact
with an external magnetic field; and to have its spin momentum appear, it has to be
combined with an orbital momentum. Equation (2.11) was thus extended to include
interactions with an electromagnetic field. Let us call A4 and A the scalar and vector
potentials in MKSA units (in earlier formulations of the Dirac equation [5, 6], A was
divided by c due to the use of cgs units). We can write

��

p4 C e A4

c

�

� ˛0p0 � ˛:
�

p C e A
�

	

‰ D 0: (2.17)

It can be noticed that the internal momentum p0 remains unchanged in the presence
of a field. In the Heisenberg picture, which is more suitable to make comparisons
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between classical and quantum mechanics, the equations of motion are determined
by the Hamiltonian

H D c p4 D �e A4 C c˛0p0 C c˛:.p C e A
�
/�: (2.18)

This gives, using the forms and properties of the ˛	 matrices (Eqs. 2.13, 2.14, and
2.15), especially the fact that ˛0 is normalized and anticommutes with ˛i (i D 1, 2,
3) while commuting with (p C eA):

�

p4 C e A4

c

�2

D �

˛0p0 C ˛:.p C e A
�
/
�2 D p20 C �

� :.p C e A
�
/
�2
: (2.19)

If one uses the general relation for any two 3D vectors C and D commuting with the
� i’s, which results from the properties of the Pauli matrices (Eqs. 2.14),

.� :C
�
/:.� :D

�
/� C

�
:D

�
D i � :C

�
	D

�
;

one obtains for C D D D (p C eA), substituting p D�i -hr then B (r, t) D r 	 A (r, t),

h

� :.p C e A/
i2 � .p C e A/2 D i e � : .p 	AC A 	 p/ D

D „ e � : r
�

	 A D „ e � :B
�
:

Equation (2.19) then becomes

�

p4 C e A4

c

�2

D p20 C .p C e A/2 C e „ � :B
�
: (2.20)

In order to compare this expression with the non-relativistic one, H is written in
the perturbative form: H D m0c2 C H0. To first order, this yields

H 0 D �e A4 C .p C e A/2

2m0

C
�
e „
2m0

�

� :B: (2.21)

In addition to the potential and kinetic energy terms of the classical Hamiltonian
for a slow electron, there appears an extra term, which can be seen as expressing
the interaction of the electron with a magnetic field B through an intrinsic magnetic
moment, 	D �(e -h/2m0) � , in agreement with Eq. (2.16). This extra term arises
naturally from the factor � embedded in Eq. (2.19).

The spin angular momentum itself does not give rise to any potential energy. To
show its existence, Dirac computed the angular momentum integrals for an electron
moving in a central electric field, that is, from Eq. (2.18):

H D �e A4.r/C c ˛0p0 C c ˛:p: (2.22)
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In the Heisenberg picture, one obtains, for the l1 component, say, of the orbital
angular momentum l D �i -hr 	 r,

i„ @l1

@t
D Œl1;H � D c Œl1:.˛p/ � .˛p/:l1� D
D c ˛.l1:p � p: l1/ D �i„ c

�
.˛3:p2 � ˛2:p3/ ¤ 0I

(2.23)

similarly, for the corresponding component of the Pauli matrix operator,

i„ @�1

@t
D Œ�1;H� D c Œ�1:.˛p/� .˛p/:�1� D
D c .�1˛ � ˛�1/:p D 2 i c .˛3:p2 � ˛2:p3/ ¤ 0:

(2.24)

From Eq. (2.23) it is seen that l1 is not a constant of the motion, but from Eq. (2.24)
it is seen that

@l1

@t
C
�„
2

�
@�1

@t
D 0: (2.25)

Dirac interpreted this as the electron having a spin angular momentum, s D (-h/2)
� , that has to be added to the orbital angular momentum l to get a constant of the
motion. It is the same matrix/operator vector � that fixes the direction of s and that
of the magnetic moment � derived from Eq. (2.21), and this justifies the simple
model leading to Eq. (2.16).

Following considerations developed by Bohr, Darwin, and Pauli, de Broglie [6]
showed that it is not possible to separate the electron spin momentum from its
orbital momentum because, in any direct measurement, the uncertainties on the
components of the orbital momentum would be larger than the spin momentum.
This is due to the electron having a finite size, defined by the Compton radius.

Equations (2.25) and (2.21) do not tell us at which velocity the electron ‘rotates’
to acquire kinetic and magnetic spin momenta. This is provided by another compu-
tation by Dirac [5]. He used a Heisenberg picture with a field-free Hamiltonian (but
the conclusion would also hold with a field present):

H D c .˛0p0 C ˛1p1 C ˛2p2 C ˛3p3/: (2.26)

The linear momentum p obviously commutes with H and thus is a constant of the
motion. Making use of the properties of the ˛k’s (Eqs. 2.13), one can further write,
for an arbitrary component vk (k D 1, 2, 3) of the electron velocity,

i„ @xk

@t
D Œxk;H� D c .xk ˛:p � ˛:p xk/ D c ˛k .xkpk � pkxk/

D i„ c ˛k ! vk D
ˇ
ˇ
ˇ
ˇ

@xk

@t

ˇ
ˇ
ˇ
ˇ

D ˙c;
(2.27)
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showing the electron moves at light velocity! If we used the classical expression for
the energy of a free particle, H D p2/2 m0, in Eq. (2.26), we would recover, through
Eq. (2.27), the classical relation between velocity and momentum, vk D pk/m0,
which we expect also to hold in the relativistic case.

The paradox was elucidated through the ‘trembling motion’ (Zitterbewegung)
discovered by Schrödinger [8] while investigating the velocity operators ˛k in-
troduced by Dirac to linearize his equation. The equation of motion of a velocity
component, vk D c˛k, can be written as

i„ @˛k

@t
D ˛kH �H˛k:

Since c ˛k anticommutes with all the terms in Eq. (2.26) except c ˛kpk, one also has

˛kH CH˛k D ˛k.c ˛kpk/C .c ˛kpk/ ˛k D 2cpk:

These two equations together yield

i„ @˛k

@t
D 2˛kH � 2cpk:

Since H and pk are time independent, this entails

i„ @2˛k

@t2
D 2

�
@˛k

@t

�

H:

This differential equation in @˛k/@t can be integrated twice, yielding the explicit
time dependence of the velocity, then position, operators. One first obtains

vk D c ˛k D c2pkH
�1 C

�
i„c
2

�

�0ke
�i!tH�1; (2.28)

where !D 2H/-h and �0k D @˛k=@t at t D 0. As H D mc2, the first term is a constant
of the order of pk/m, the classical relation between momentum and velocity. But
there is an extra term, here also, oscillating at the frequency:

�0 D 2mc2

h
; (2.29)

which stems mainly from the rest mass energy m0c2 in the power expansion of H
following Eq. (2.7a).

Only the constant part is observed in a practical measurement, which gives
the average velocity through a time interval much larger than ��1; whereas the
oscillatory part explains why the instantaneous velocity has eigenvalues˙c [5, 6].
Further integration yields the time dependence of the electron coordinate xk, and it
is seen that the amplitude of the oscillatory motion is of the order of -h/2m0c, the
Compton radius of the relativistic electron (Sect. 2.2 and Eq. 2.34).
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Zitterbewegung vanishes when one takes expectation values over wave packets
made up solely of positive (or negative) energy states [8], which are not full solu-
tions of the wave equation because of the coupling of the four components of �
in Eq. (2.11). This motion was interpreted as being due to a wave beat between
the states with energies ˙mc2, the beat frequency being the difference of the two
wave frequencies: ˙mc2/h [6]. It was also shown (e.g. [9]) that transitions between
positive and negative energy states are possible whenever the electron potential
energy undergoes variations of at least m0c2 over distances of at most h/m0c. This
is another clue that the Compton wavelength, internal motion, and negative energy
states are deeply related. Recently [10] it has been shown that Zitterbewegung can
affect harmonic generation by strong laser pulse and that stimulated Zitterbewegung
can be generated by laser-induced transitions between positive and negative energy
states.

Comparing the preceding results with those expressed in Eqs. (2.16) and (2.21)
makes it clear that the internal motion giving rise to the kinetic and magnetic spin
momenta is nothing but Zitterbewegung. A classical relativistic model was proposed
[11] in which spin appears as the orbital angular momentum of Zitterbewegung.
Moreover, the quantum-relativistic relation of the Zitterbewegung frequency to the
inertial mass together with the general-relativistic equivalence of this latter to the
gravitational mass establish a link between spin and gravitation. In a stochastic
electrodynamics (SED) model [12], Zitterbewegung arises from the electromagnetic
interaction of a semi-classical particle with the vacuum zero-point field, and the
van der Waals force generated by this oscillatory motion is identified with the
Newtonian gravitational field. More generally, there have been various attempts to
involve general relativity into quantum mechanics (e.g. [13, 14]) or to derive one
from the other (e.g. [15, 16]).

In his detailed analysis of Dirac’s theory [6], de Broglie pointed out that, in
spite of his equation being Lorentz invariant and its four-component wave function
providing tensorial forms for all physical properties in space-time, it does not have
space and time playing full symmetrical roles, in part because the condition of
hermiticity for quantum operators is defined in the space domain while time appears
only as a parameter. In addition, space-time relativistic symmetry requires that
Heisenberg’s uncertainty relations,

�pi:�xi � „ .i D 1; 2; 3/; (2.30)

be completed by a similar relation for the energy, the ‘time component’ of the four-
vector momentum whose space components are the pi’s. This did not seem to be
consistent with the energy corresponding to the Hamiltonian H rather than to the
operator i-h @/@t. However, consistency can be recovered by writing

�H:�t D �.mc2/:�t D �.mc/:�.ct/ D �.p4/:�.x4/ � „; (2.31)

assigning the full momentum p4 D mc to the time component x4 D ct, the corre-
sponding operator being i-h @/@(ct), in accordance with Eq. (2.8).
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If, in Eq. (2.31), mc is replaced by m0�c (with � defined in Eqs. 2.4), it comes

�.m0�c/:�.ct/ D �.m0c/:�.ct�/ D �.m0c/:�.c�0/ � „; (2.32)

where �0 is the proper time of the electron, which defines its internal clock. To the
internal time coordinate c�0 D x0 is associated the rest mass momentum m0c D p0.
If one removes the �’s, one obtains

m0c:c�0 � „ ! �0 � „
m0c2

D 1

2��0
; (2.33)

where �0 is half the Zitterbewegung frequency for the electron at rest. For this latter,
pi D 0 (i D 1, 2, 3) and, using the expression for ˛0 in Eq. (2.15) and the vector form
for � , Eq. (2.11) reduces to

i„ @‰j

@t
D Cm0c

2‰j ! ‰j D ‰j0 exp .�2�i�0t/ D ‰j0 exp

�

� i t
�0

�

;

i„ @‰k

@t
D �m0c

2‰k ! ‰k D ‰k0 exp .C2�i�0t/ D ‰k0 exp

�

C i t

�0

�

;

where j D 1, 2; k D 3, 4; and �0 D m0c2/h. The difference (beat) frequency �0
0 D 2�0

of the positive and negative energy states is the Zitterbewegung frequency for the
electron at rest. In the complex exponential argument, �0 � 1.29 	 10�21 s defines
the time scale of the electron internal motion.

2.5 The Electron Radii

The spin angular momentum and associated magnetic moment of the electron
emerged naturally from Dirac’s quantum-relativistic treatment. What also came out
from the Dirac equation is that the oscillatory motion (Zitterbewegung) giving rise
to these momenta involves negative energy states and takes place at light velocity.
As the rest masses of both electron and positron are non-zero, one may wonder why
they do not go to infinity at that velocity. A first clue is that, since the electron and
positron ‘rest masses’ are opposite and since the ‘trembling motion’ involves both
positive and negative energy states, the ‘vibrating entity’ has zero average mass,
departures from this value being allowed by Heisenberg’s uncertainty principle.

There have been a number of speculations on the foundations of inertia, gra-
vitation, and mass (e.g. [15–17]). In the following, we present a novel conjecture
based on the previous discussion.

Let us consider again the simple classical picture of a particle endowed with
charge e and mass m0 moving at velocity c around a loop of radius rC. In this
picture, the intrinsic angular momentum would be s D m0c.rC D rC.2�-h/�C, from



36 J. Maruani

the definition of �C in Eq. (2.3). As in the Bohr model for the orbital motion of an
electron around a nucleus, the spin s/-h of the electron takes a (half) integer value
if the loop circumference 2�rC involves a (half) integer number of wavelengths
�C (the ‘half’ stemming from the loop being actually a sphere in space-time).
This ‘loop’ could then be considered as some kind of ‘intrinsic orbit’ with radius
rC D�C/4� . From the definition of the Compton wavelength (Eq. 2.3), one may
express the rest mass as a function of the inverse of this ‘orbit radius’:

m0 D „
2c rC

; rC D �C

4�
: (2.34)

One may then say that this intrinsic orbit (which defines the ‘internal structure’
of the particle) is described at velocity c (as results from the Dirac equation), while
the external orbit (in an atom for instance) is described at velocity v. However, this
makes it necessary to consider that the charged entity describing the intrinsic orbit
has zero rest mass. This suggests that the rest mass observed with respect to an
external body (such as an atomic nucleus) arises from the very intrinsic motion of
the charged entity at velocity c.

The above picture should, of course, be amended to account for the contraction
of the loop radius with this fast motion. In fact, if a charged entity describes a
spherical motion at light velocity it should look as punctual to an external observer
(or a nucleus). But this would violate Heisenberg’s uncertainty principle. The
quantization condition of the ‘intrinsic orbit’ can actually be recovered from the
relation:�p.�r � -h/2 (the quotient 2 being due to the half-integer value of the spin).
If one replaces �r by rC and �p by m0c then rC can be written as rC � -h/2 m0c,
yielding 4�rC � h/m0c D�C, the Compton wavelength. This derivation is similar to
that of the Bohr radius a0 (which expresses the non-collapse of the electron onto the
nucleus) by substituting�r by a0 and�p by p in the quantum condition,�p.�r � -h,
and using the balance condition: p2=m a0 D e2=4�"0a

2
0.

It should be noted, however, that, while we know what holds the electron in
a confined region around the Bohr radius, the attraction by the nucleus, we do
not know what holds the conjectured, massless charged entity in a confined region
around the Compton radius. One may think of a pressure generated by interactions
with virtual particles of the Dirac sea, yielding a kind of Brownian motion at the
subquantum level, the Zitterbewegung. However, contrary to the Brownian motion,
the electron internal motion is not random, since it gives rise to observable spin
momentum and magnetic moment.

Another property of the electron is the so-called classical radius r0, which is the
size that the electron would need to have its rest mass m0 entirely due to its electric
potential energy E0. According to classical electrostatics, the energy required to
assemble a sphere of radius r0 and charge e is given by E0 D k e2/4�"0r0, where
k D ½ if the charge is evenly distributed on the surface and grows larger for a
density increasing towards the centre. Assuming all the rest mass energy m0c2 is of
electrostatic origin yields, for k D 1, r0 D e2/4�"0m0c2 (Table 2.1). This is the length
scale at which renormalization becomes important in quantum electrodynamics.
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Table 2.1 Some universal constants and electron and proton properties

Name Symbol Formula Dimension Value Unit

Gravitational
constant

G Fgrav D G m m0

/d2
M�1L3T�2 6.672 � 10�11 N.m2kg�2

Free space
permittivity

"0 Felec D (4�"0)�1

e e0/d2
M�1L�3T4I2 8.85419 � 10�12 F.m�1

Light velocity c Constant in all
frames

L.T�1 2.99792 � 108 m.s�1

Planck’s
constant

h �E D h�
-h D h /2�

M.L2T�1 6.62618 � 10�34 J.s

Elementary
charge

e Negative or
positive

I.T 1.60219 � 10�19 C

Fine-structure
constant

˛ e2/4�"0
-hc Dimensionless 1/137.036 Pure number

Electron rest
mass

me Negative for
positrons

M 9.10953 � 10�31 kg

Gravitational
invariant

ı Gme
2/-hc Dimensionless 1.75122 � 10�45 Pure number

Classical
electron
radius

r0 e2/4�"0mec2 L 2.81794 � 10�15 m

Compton
electron
radius

rC
-h/2mec L 1.93080 � 10�13 m

Hydrogen Bohr
radius

a0 4�"0
-h2/mee2 L 5.29177 � 10�11 m

Gravitational
electron
radius

rG (G/c2) me L 6.763 � 10�58 m

Electron mass
density

�e me/ (4� /3)rC
3 M.L�3 30.2131 � 106 kg.m�3

Proton rest
mass

mP Negative for
antiprotons

M 1.67265 � 10�27 kg

Proton mass
density

�P mP/ (4� /3)rP
3 M.L�3 34.3425 � 1019 kg.m�3

Hydrogen
non-rel. I.P.

IH (1s) e2/8�"0a0 M.L2T�2 13.6058 eV

The classical radius r0 is related to the Compton radius rC by the relation:
r0 /2rC D e2/4�"0

-hc D ˛, ˛ being the fine-structure constant (˛D c�1 in atomic
units). The electron classical radius r0 is also related to the hydrogen Bohr radius a0

(Table 2.1) by the relation: r0:a0 D „2=m2
0c
2, or 2�r0.2�a0 D�2CD (4�rC)2. This

shows that the Compton radius rC is a kind of geometric average of the classical
radius r0 and the Bohr radius a0; hence, the harmonic relation

2rC

a0
D r0

2rC
D ˛; ˛ D e2

4�"0„c � 0:7297 	 10�2: (2.35)
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If then the electron is considered as the ‘lowest (stable) state’ of some kind of
‘hidden structure’ similar to the Bohr atom, the related muon and tau particles could
be seen as ‘excited (unstable) states’ of this internal system. In hydrogenoid atoms,
the smaller the ‘Bohr’ (average) radius <r>n of a given (spherically symmetric)
ns orbital, the larger the ionization energy In from this state, according to the
formula: In<r>n � (Z/4�"0) e2. Analogically, in the electron family, the smaller
the ‘Compton’ radius rC of a particle, the larger its rest mass energy m0c2: according
to Eq. (2.34), m0c2rC � -hc/2. However, In (governed by the electromagnetic inter-
action) increases practically as the square of the radial quantum number n, while m0

(governed by an undetermined interaction) increases hyper-exponentially with the
rank of the particle (n D 1, 2, 3 for the electron, muon, and tau particles).

Other radii that could be considered are those related to the space-time curvature
in general relativity theory. If the electron is viewed as a micro-universe with a rest
mass m0 uniformly distributed within a 3D sphere of radius rG, then the space-time
‘inside’ the electron would be endowed with a Gaussian 2D curvature increasing
with the mass-energy density �G, according to the formula [18, 19]

6

r2G
D 8�

�
G

c4

�

�G: (2.36)

Using �G D m0 c2/(4� /3) r3G yields

rG D
�
G

c2

�

m0; (2.37)

which is about 6.763 	 10�58 m with the values listed in Table 2.1. This electron
‘gravitational radius’ rG is over 1042 times smaller than the ‘classical radius’
r0 because the gravitational interaction is that smaller than the electromagnetic
interaction, the two radii being in the same ratio as the two forces (Table 2.1):

r0

rG
D
�

e2

4�"0m0c2

�

	
�

c2

G m0

�

D .4�"0/
�1e2

G m2
0

DFelec

Fgrav
D 4:167 	 1042:

(2.38)

Another point of view is to consider the space-time curvature induced by the
rest mass m0 of the electron ‘outside’ a volume of radius rQ. According to general
relativity theory, the curvature radius RG around the electron would be given by
[18, 19]:

RG D
�
c2

G

�
r2Q

m0

D r2Q

rG
: (2.39)
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This yields a harmonic relation similar to Eq. (2.35) which, when rQ is the Compton
radius rC, relates to a gravitational invariant ı similar to the fine-structure constant
˛ (Table 2.1):

rG

2rC
D 2rC

4RG
D ı; ı D Gm2

0

„c � 0:175 	 10�44: (2.40)

If rQ is the Compton radius rC , then RG D 5.512 	 1031 m � 0.58 	 1016 light years.
The outside curvature RG equals the frontier radius rQ only if rQ D rG, which is far
below the Compton radius.

For the proton, due to Eq. (2.34), Eq. (2.39) gives a value (1,836.15)3 times
smaller: RG D 0.8904 	 1022 m � 0.94 	 106 light years. For a quasi-fermion with
the mass and size of the Earth (M D 5.974 	 1024 kg, R D 6.371 	 106 m), it
gives RG D 9.118 	 1015 m � 0.97 light year; and with the mass and size of the
Sun (M D 1.989 	 1030 kg, R D 6.970 	 108 m), RG D 0.329 	 1015 m � 12.78
light days. The contribution of the electron rest mass to the space-time curvature is
absolutely negligible - even in its vicinity - relative to that of the other masses in the
universe (which result in an overall radius rG � 13.7 	 109 light years).

From Eqs. (2.37) and (2.39), it is clear that the confinement of a charged entity
oscillating at light velocity within a Compton radius defined by Eq. (2.34) cannot
be related directly to the gravitational space-time curving.

To summarize the above discussion, the Compton radius rC appears as playing
a privileged role in the description of the electron. If one considers the electro-
magnetic force, rC is the geometric average of the classical electron radius r0

and the Bohr hydrogen radius a0, yielding a harmonic relation with ˛ as ratio. If
one considers the gravitational force, rC is the geometric average of the curvature
rG within the particle and the curvature RG at distance rC from the core, also yielding
a harmonic relation with a ratio ı related to ˛ by the ratio of the two forces.

Of the various definitions of electron radii, only that emerging from the descrip-
tion of the Compton scattering has direct experimental evidence. This radius also
defines the amplitude of the ‘trembling’ (oscillatory) motion, which is responsible
for the spin momentum and magnetic moment of the electron.

It should be noted that in this model, where the electron appears as a quasi-Bohr
subsystem with radius rC, there is no Coulomb singularity, according to Gauss’
theorem, and no cusp condition is required if the wave equation is reformulated to
account for the electron size.

2.6 The Rest Mass as Related to the Spin Motion

The essential idea in this chapter is that the rest mass of the electron stems from
the rotational motion at light velocity, in a confined region defined by the Compton
radius, of a massless charged entity. That a mass may stem from motion is nothing
new since an inertial mass m0 gains extra value with increasing speed v, according to
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the relativistic formula: mv D m0 / (1 � v2/c2)1/2 (! 1 when v ! c). That a massless
entity travelling at light velocity may display mass properties is nothing new either
since a photon has a kinetic momentum (e.g. in the Compton effect) defined by
p D h/� and a gravitational mass (e.g. in the Mössbauer shift) defined by m D p/c.

Relativity theory tells that length, interval, and mass vary with velocity, not
charge. If the electron mass essentially results from the rotational motion, at light
velocity, of a massless charge on a sphere of radius rC, then the contribution of the
electrostatic potential due to the charge distribution over this sphere is

E0 � e2

8�"0rC
D ˛:m0c

2; (2.41)

that is, less than 1% of the rest mass energy (electromagnetic and gravitational con-
tributions are even smaller). But this contribution is still 2/˛ times larger than the
potential (ionization) energy of the electron in a hydrogen 1s orbital (Table 2.1):

IH .1s/ D e2

8�"0a0
D
�
1

2

�

˛2m0c
2: (2.42)

How does the hidden confined motion of the massless charge at velocity c relate
to the visible free motion of the resulting particle at velocity v? If one uses again the
semi-classical picture of an electron ball, the radius rv parallel to the direction of the
motion decreases as rv D rC (1 � v2/c2)1/2 (! 0 when v ! c), yielding the expected
mass increase:

mv D „
2rvc

D mC

.1 � v2=c2/1=2
: (2.43)

The contraction of the radius of the visible particle along the direction of the
outer motion when its velocity increases entails a decrease in the amplitude of the
inner motion of the hidden entity. Resistance to acceleration (inertia) can then be
seen as a resistance to the resulting ‘motion distortion’. If indeed the spin motion
occurs at light velocity and if the rest mass stems from this very motion, this may
be the deep reason why c is a limiting speed for all motions and why inertial frames
play a specific role in relativity theory.

These are only qualitative considerations. The problem of combining a spherical
motion approaching light velocity [20–22] with a linear motion of increasing
speed is very complex indeed and requires the mathematical formalism of general
relativity theory. This will be the subject of further work.

2.7 Other Elementary Particles

The number of so-called elementary particles – and their antiparticles – observed
in modern accelerators has reached several hundred (most of them being very short
lived and some, not even isolated). Ultimately, they disintegrate into nucleons (made
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Table 2.2 For all known particles of the electron family and for a few other common particles,
measured rest mass (in MeV) and computed ‘Compton radius’ (in nm)

Particle Rest mass/MeV Charge/e Spin/„
‘Compton
radius’/nm Lifetime/s Discovery

Electron 0.5110 �1 1/2 1.931�10�2 Stable 1896
Cambridge

Muon 105 �1 1/2 0.940�10�4 �2�10�6 1936
Caltech

Tau 1,700 �1 1/2 0.580�10�5 �3�10�13 1975
Stanford

Neutrino(s) <10�6 0 1/2 >0.987�104

� 10 �
Oscillating 1956–1962

–2001
Proton 938.272 C1 1/2 10.508�10�6 �1034 years 1919

0.842�10�6

Neutron 939.565 0 1/2 10.501�10�6 �15 min 1932
0.341�10�6

Photon <0.76�10�37 0 1 >1.30�1035 Exchanging 1905

Big Bang
singularity

�1022 ? ? �10�26 �10�43 �1930’s

The charge, spin, and measured lifetime of these particles and values (in italics) of the proton and
neutron charge radii measured by electron scattering are also given. The correspondence between
units used in Tables 2.1 and 2.2 is: 1 MeV D 1.60219 � 10�13 J D 1.78268�10�30 kg; 1 light
year D 0.94605� 1025 nm

up of quarks), electrons, and neutrinos. In addition to the electron, the only stable
and isolatable particles are the proton and the neutrino. One may add the neutron,
which decomposes into a proton, an electron, and an antineutrino when isolated. As
the Dirac equation in free space does not refer to the charge (or the stability) of the
electron, the only conditions for other particles to obey this equation are to have a
rest mass and spin ½. All that was said for the electron should then hold for these
three particles, as well as for the others in the electron and neutrino families.

In Table 2.2, we have gathered the measured rest mass and computed ‘Compton
radius’ for these particles. The electron, muon, and tau form a homogeneous family,
which shows decreasing lifetime with increasing mass. The proton and the neutron,
being sensitive to the strong interaction, belong to a different family. Although
they are not sensitive to the electromagnetic field, particles of the neutrino family,
which are endowed with spin ½, should follow the Dirac equation, if they have non-
zero rest mass. The charge does not enter when one uses Heisenberg’s uncertainty
relation to estimate the Compton radius of a particle. However, for neutrinos (not
composite as the neutron), there is no magnetic moment associated with the spin.

The proton and the neutron being composite particles, their measured radius rN

(N standing for nucleon) strongly differs from their ‘Compton radius’ rC and their
magnetic moment	N from the nuclear magneton	P D e c rP (rP being the Compton
radius for the proton) by factors 2.79285 and �1.91315, respectively (for electrons,
the corresponding factor is 1.00116, the decimals stemming from qed effects).
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Although the photon has zero rest mass and spin 1 and thus does not follow
the Dirac equation [5], Table 2.2 also gives a computed ‘rest mass’ for a photon
travelling freely across the universe, assuming for the latter a radius of �13.7	109

light years. If the universe were flat and infinite, the photon ‘rest mass’ would be
zero. The value given here is purely formal, not only because it is very small but
also because it could be detected only by an observer ‘external’ to our universe!

In the lower row of Table 2.2, there are also given the so-called Planck’s energy
EP, Planck’s length rP, and Planck’s time �P, which define the Big Bang singularity
and are similarly, in accordance with Heisenberg’s uncertainty principle, related
through Compton’s formula: rP � -h/2mPc � -h c/2EP and �P � -h/EP � 2 rP/c.

It may be interesting to assess what would be the equivalent of the Bohr radius for
a neutrino orbiting around a neutron under the sole influence of gravitation, the two
particles being deprived of charge. They are also sensitive to the weak interaction but
this latter, though much larger than gravitation, is very short ranged and negligible
at these distances.

Assuming Heisenberg’s relations can still be used for the gravitational field, one
can write that at the equilibrium, ‘Bohr-like’ distance a� , if n and � are the neutron
and neutrino masses, respectively, the ‘inertial force’, p�2/ � a� , is balanced by the
‘gravitational force’, G n �/a�2, yielding

�p2:�r2 � p2�:a
2
� � G n�2a� � „2 ! a� D „2

G n�2
: (2.44)

This is about 3.28	1024 light years with the numerical values given in Tables 2.1
and 2.2. Comparing the above formula with that for the neutrino ‘Compton radius’,
rC D -h /2� c, yields the ratio

2rC

av
D G n�

„c D ı n�

m2
0

D 2:11 	 1015 n�: (2.45)

This equation is similar to Eq. (2.35), with ˛ replaced by ı defined in Eq. (2.40).

2.8 The Photon as a Composite of Two Conjugate Fermions

In one of his conjectures [23], de Broglie described the photon as resulting from
the ‘fusion’ of two spin-½ particles, an electron and a positron (whose spins would
add and charges cancel) or a neutrino and its antineutrino. Although de Broglie
managed to derive Maxwell’s equations from this model, his idea was not retained
in further developments of quantum electrodynamics. But it was somehow revived
in the ‘standard model’ of quantum chromodynamics, where it is assumed that the
strong interaction between quarks constitutive of nucleons is mediated by massless
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vector gauge gluons, each gluon carrying a ‘colour charge’ (blue, green, or red) and
an ‘anticolour charge’ (antiblue, antigreen, or antired), while mesons result from the
‘fusion’ of two quarks of a given colour and the corresponding anticolour.

The ‘fusion’ model can be simply pictured as follows. An electron approaching
light velocity would appear to an external observer as a flattened ellipsoid orthogo-
nal to the direction of the motion, our ‘massless charged entity’ rotating around the
linear motion axis, say z. A positron could then be seen as a similar entity rotating
in the opposite sense. The composition of the two motions yields 0 along an axis
orthogonal to z, say x, and, along the third axis, y, it yields y D 2re cos 2��et, with
2re D�C/2� (Eq. 2.34) and �e D c /2�re (the two entities rotating at light velocity
around z). The maximum (positive) value of y for the particle-antiparticle pair is
reached when 2��e� e D 2k� (k D 0, ˙1, : : : ), at time intervals given by � e D 1/�e.

During this rotating period, the pair has travelled, at light velocity, over the linear
distance c.� e D c/�e D 2�re D�C/2. This is the distance on the linear path of two
maxima along the circular path and thus has the meaning of a wavelength. If one
identifies the pair with the photon then one can write: E D h �e D 2h c/�C D 2m0c2,
the sum of the two particle energies, or the energy required for a � photon to yield
an electron-positron pair.

Also according to this model, the metastable hydrogenoid species positronium
(� � 0.1 ns) may be seen as a couple of oppositely charged vortices (with Compton
radius rC D a0.˛/2 and velocity c) rotating around a barycentre at distance ae D 4a0

with velocity v D c.˛/4 (a0 being the Bohr radius and ˛ the fine-structure constant,
Table 2.1). The spins of the two vortices may be opposite (S D 0) or aligned (S D 1).
As in the ‘Fujiwara effect’ in fluid dynamics [24], the two vortices would attract
each other when they spin in the same direction and eventually merge into a single
vortex, which would be our ‘compound’ photon (the positive charge vortex being
equivalent to a reversed negative charge vortex).

In the above description of a photon as a ‘fusion’ of an electron and a positron, an
electron charge would oscillate along the y axis, say, generating an electromagnetic
field with the oscillating electric component parallel to the motion of the charge and
the in-phase magnetic component orthogonal to y and z.

However, this description holds only for photons with energies E D 2m0c2. But
electromagnetic radiation ranges from radio waves to cosmic rays. One could then
conjecture that, whereas there is a discrete spectrum of rest masses (and other
properties) for particles that can be isolated, photons are made up of ‘virtual’
particles that exist only in combination. A similar assumption is made in quantum
chromodynamics, where quarks exist only in combinations in gluons, mesons, or
baryons. A photon of arbitrary energy E0 D h�0 could then be seen as a ‘virtual’
particle-antiparticle pair with ‘Compton wavelength’ 2c/�0 and ‘rest mass’ h�0/2c2.
When a photon transfers part of its energy to an electron, as in the Compton effect
(Sect. 2.2), it trades with the ‘Dirac sea’ its constitutive ‘virtual pair’ of Compton
wavelength �1 against a lower-energy ‘virtual pair’ with �2 given by Eq. (2.3).
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2.9 Conclusions

In this chapter, we have revisited the Dirac equation in its original form and
investigated its implications regarding the electron structure and rest mass. On the
basis of this discussion, the following conclusions have been drawn:

1. The spin angular momentum and intrinsic magnetic moment of the electron
(or positron) stem from its ‘trembling motion’ (Zitterbewegung). This latter is
due to a wave beat of coupled positive and negative energy states with energies
corresponding to the electron and positron rest masses. The value ½ of the spin
results from the factor 2 in the difference of the interfering frequencies: ˙m0c2/h.
Therefore, every particle endowed with spin ½, including neutrinos, should have
rest mass, however small it may be.

2. Alternatively, the electron (or positron) rest mass can be seen as arising from
the spinning motion of a massless charge at light speed. The rest mass involved
in external motions (or interactions) would then be due mainly to this internal
motion. The ratio between the electrostatic (classical) and kinetic (rotational)
contributions to the rest mass in this model is equal to the fine-structure constant:
˛� 1/137.

3. The magnitudes of the spinning radius rC and of the rest mass m0 are related by
the Compton formula: rC.m0c D -h/2, which expresses the uncertainty principle
for ‘position’ rC and ‘momentum’ m0c. Rest mass and spin motion thus appear
as essentially related quantum properties, a kind of zero-point vibration energy
for a charged entity with respect to some inertial frame.

4. The Compton diameter 2rC is the geometric average of the classical electron
radius r0 and the Bohr hydrogen radius a0, the ratio of this harmonic relation
being the fine-structure constant: ˛� 1/137. It is also the geometric average of
the gravitational curvature radii ‘inside’ and ‘outside’ the electron, rG and 4RG

respectively, the ratio of this harmonic relation being a gravitational invariant:
ı� 1.75	10�45.

5. Due to the connection between spin motion and inertial mass revealed by the
Dirac equation, and to the equivalence between inertial and gravitational masses
implied by general relativity theory, there is a deep (though not yet very clear)
connection between spin and gravitation.

6. By relating the rest mass to the internal motion, quantum theory brings an insight
into the bearing of such relativistic concepts as Lorentz-invariant, Minkowski’s
proper interval x0. As the property m0c is the ‘residual momentum’ when the
linear part p2 is subtracted from the total entity m2c2 (Eq. 2.7b), the property x0

is the ‘residual interval’ when the space coordinate r2 is subtracted from the time
coordinate c2t2 (Eq. 2.5b).

7. The reason why time plays a specific role in physics may then be that it relates to
the inner clock, �0 D x0 /c; spin momentum, s D p0rC; and rest mass, m0 D p0 /c,
of the matter particles. This may also be why inertial frames, which involve time
through spin and mass, play a privileged role in physics. Time would not exist
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in a universe made solely of light, where there would be no inertial frames to
measure velocities. The emergence of time seems to be intimately related to the
‘splitting’ of ‘genderless’ photon (or boson) particles to yield matter (and anti-
matter) particles.

8. If the electron is seen as the ‘ground state’ of a subsystem analogous to the Bohr
atom, then the parent mu and tau leptons could be seen as its ‘excited states’,
with a Compton radius decreasing as the rest mass increases.

9. This picture is consistent with de Broglie’s theory of photons resulting from the
‘fusion’ of particle pairs.

Formal developments on the combination of circular and linear motions at
relativistic speeds are in progress.
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Chapter 3
Molecular Parity Violation and Chirality:
The Asymmetry of Life and the Symmetry
Violations in Physics

Martin Quack

Abstract After a brief introduction into some basic asymmetries observed in
nature, such as the biomolecular homochirality in living species on earth, the
dominance of matter over antimatter in the observable universe, and irreversibility
in physical-chemical processes providing a preferred arrow of time, we provide a
discussion of the concepts of fundamental symmetries in physics and of the three
different kinds of symmetry breakings, spontaneous, de facto, and de lege, by means
of the example of the dynamics of chiral molecules. We then give a brief review
of the current status of the theory and experiments on molecular parity violation.
We discuss the various hypotheses on the origin of biomolecular homochirality
and conclude with some cosmological speculations related to the fundamental
symmetry breakings. These include possibilities of observing CPT violation in
future experiments providing a possible fundamental basis for irreversibility, as well
as possibilities for observing heavy “right-handed” neutrinos as one possible basis
for “dark matter” in the universe.

3.1 Introduction: Strange Asymmetries of Space, Time,
and Matter in an Almost Symmetrical Nature

“Naturally there are, and not only when it pertains to the historical framework, still many
open questions. For example: on which level is the handedness or chirality of biological
macromolecules determined? We know that all proteins, as long as they are produced
through the information-guided synthesis apparatus of the cell, exclusively use “left-
handed” amino acids and therefore build left turned structures. In the case of the nucleic
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acids it is the “right-handed” monomers which are chosen, which for their part build right-
as well as left-turned double spiraled structures.
....................

Here we have rather too many than too few answers. We are not confronted here with a
paradoxon for which there is no possible explanation. The problem is that physics and
chemistry offer an overabundance of choices of alternative explanations. Although research
groups throughout the world are working on questions of this kind, until now only few of the
possible mechanisms have been experimentally examined in detail.” (Manfred Eigen [1]).

“The time at my disposition also does not permit me to deal with the manifold
biochemical and biological aspects of molecular chirality. Two of these must be mentioned,
however, briefly. The first is the fact that although most compounds involved in fundamental
life processes, such as sugars and amino acids, are chiral and although the energy of both
enantiomers and the probability of their formation in an achiral environment are equal, only
one enantiomer occurs in Nature; the enantiomers involved in life processes are the same
in men, animals, plants and microorganisms, independent on their place and time on Earth.
Many hypotheses have been conceived about this subject, which can be regarded as one of
the first problems of molecular theology. One possible explanation is that the creation of
living matter was an extremely improbable event, which occurred only once.”

(Vladimir Prelog, Nobel Lecture 12 December 1975 [2])

The present contribution to the special issue of Progress in Theoretical Chemistry
and Physics resulting from QSCP XVI (Kanazawa, Japan, September 2011) is on
one hand related to the lecture presented at this conference [3] but on the other
hand and even more closely to an earlier lecture which appeared in print [4] but is
available only in German. This chapter is in fact a somewhat adapted translation
of the available German text into English in order to make this material more
easily accessible to a wider audience. The emphasis of our chapter is thus on the
conceptual background of the theory and experiments on molecular chirality and
parity violation and its relation to the homochirality of living systems as well as
other asymmetries observed in nature. For further more general background, we
refer to an extensive recent review [5] in a recent handbook [6, 7].

Both quotations with which we begin this chapter pertain to a remarkable asym-
metry in the living nature, the homochirality of biopolymers. With this we describe
the fact that in all forms of life which we know on Earth, only one of the two
mirror-image enantiomers of chiral amino acids (the L-amino acids) and of chiral
sugars (the D-sugars) is important in the assembly of biopolymers (proteins and
nucleic acids). The corresponding mirror-image, symmetrically equivalent forms
(the D-amino acids and L-sugars) also arise for a few special applications in the
biochemistry of nature, but are not involved in the important construction of the
biopolymers. The consequences of this were first noticed by the discoverer of
molecular chirality, Louis Pasteur, in the nineteenth century, and proposed as a basic
characteristic of the chemistry of life [8–10].

In the “usual” organic chemistry of inanimate nature, on the other hand, both
mirror-image forms of molecules occur with equal probability. This can be derived
from a symmetry of physics [11], which was accepted until the middle of the
twentieth century as exact: the exact mirror-image symmetry or parity symmetry
of space (see below). This symmetry is referred to in the quote from V. Prelog.
This would lead to the two enantiomers of chiral molecules, which relate to each
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Fig. 3.1 The energies of
enantiomers are different
because of a symmetry
violation. The energy
difference �pvE0 D �pvE

and the reaction enthalpy
�pvH

–o
0 D ˇ

ˇNA�pvE0
ˇ
ˇ for the

reaction R D S can be
described with the
spectroscopic schematic
diagram shown here. This is
estimated to be 10–11 J mol–1

for CHFClBr [12]. How
important is this energy
difference for chemistry?
What are the consequences
for biology? (see also [13])

other as image and mirror image or idealized left or right hand, to be energetically
exactly equivalent and having therefore the exact same ground state energies, energy
level spectra, and enthalpy of combustion. Today, however, we must say that this
equivalence is only approximate. Figure 3.1 provides an example for such nearly
equivalent enantiomers from the point of view of recent calculations [12, 13].

We take here a prototype molecule, CHFClBr, as an example. If one replaces
the three halogen atoms F, Cl, and Br with an amino group –NH2, the –COOH
functional groups of organic acids, and a further organic substituent R, one obtains
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Table 3.1 Asymmetries in
the world as we observe it Observations: we live in a world

Symmetry
1. Comprised of matter (mainly), not

antimatter
C, CP, CPT

2. With biopolymers (proteins, DNA, RNA)
out of L-amino acids and D-sugars (not
D-amino acids and L-sugars) in usual
life forms

P

3. In which the time runs forward, not
backward

T

the natural chiral alpha-amino acids, the building blocks of the proteins. With
RDCH3, one obtains, for example, the amino acid alanine, and through variations
on R, one obtains many other natural amino acids.

Figure 3.1 illustrates that there is actually a very small asymmetry. The enan-
tiomers are not exactly mirror images of each other, and there is a reaction enthalpy
for the enantiomerization or stereomutation reaction:

R D S I j�rH
–o
0 j � 10�11J mol�1 (3.1)

One speaks of a violation of the symmetry (here parity violation). It should be
noted that the modern R, S nomenclature is used in the figure, whereby the R-amino
acids normally correspond to the D-amino acids in the old nomenclature and the
S-amino acids correspond to the L-amino acids. We shall use both nomenclatures
here, because the D, L terminology is widely used in biochemistry. In physics, one
tends to use the R, L nomenclature which simply stands for Right/Left. If one takes
into account the chemical equilibrium (3.1) at room temperature, the small enthalpy
of reaction is reflected in the equilibrium constant:

K D QS

QR

exp

���rH
–o
0

RT

�

' 1 � �rH
–o

RT
' ŒS�

ŒR�
D 1C X

ŒR�
' 1˙ 4 	 10�15

(3.2)

With the partition functions QR, QS, and j�rH
–oj � jRT j, one therefore obtains

a relative difference jX j = ŒR� in the equilibrium concentration of 4 	 10�15 or for a
mole R (NA D 6:02	 1023 molecules/mol) a difference of approximately 2:4	 109
molecules. This minimal difference vanishes in the statistical noise (the square root
of NA corresponding to 8	 1011 molecules for Poisson noise for one mole), and one
can ask whether the small value of jX j = ŒR� or of �pvE in biochemistry can play a
role at normal temperatures. We shall return to this point and see that this remains
an open question [13].

At first, however, we would like to draw attention to a different notable
asymmetry, which has a qualitatively similar consequence (Table 3.1).

If we observe the universe today, we find in the visible matter (stars, planets,
interstellar gas clouds, etc.) which consists mainly of the elements of the periodic
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table (in fact, quantitatively mainly hydrogen and helium) almost exclusively
the normal matter, no antimatter, although for each particle of normal matter, a
symmetrically equivalent antiparticle of antimatter with the opposite charge exists.
For example, for the electron e– there exists as antiparticle the positron eC, which is
produced in small quantities by natural radioactive decay, but is then annihilated
through reaction with the more common electrons, resulting in the emission of
gamma radiation.

Antimatter is also present in cosmic radiation. One can produce the antiproton
(with the same mass as the proton but opposite charge) in accelerators, after which it
is also quickly annihilated by the more common protons in normal matter. We know
of no galaxies comprised of antimatter. Cosmologically, this excess of normal matter
is notable, because in the modern big bang theory of the origin of the universe,
at the beginning, approximately the same amounts of matter and antimatter were
produced. Both disappeared almost completely through annihilation and emission of
radiation. A small leftover of matter remained. From the presently observed photon
density of the very exactly measured cosmic background radiation, one can estimate
that the ratio of the baryon number nB to the photon number n” is approximately [14]

nB

n”
' 6 	 10�10 (3.3)

With the assumption that the photon number is approximately the number of
particles present initially, one arrives at a very rough estimation of the order of
magnitude of the initial surplus:

ŒMatter�

ŒAntimatter�
' 109 C 1

109
D 1C 10�9 (3.4)

Here also, then, a very small initial asymmetry led seemingly to a complete
dominance of the normal matter present today. The exact origin of the cosmic
asymmetry is not known [14]. However, we know a small fundamental asymmetry
in the so-called charge conjugation (C) and also in the combination CP of charge
conjugation with parity (P). Hypotheses exist, which make this fundamental asym-
metry responsible for the nearly complete asymmetry observed in the cosmos today,
but their validity is doubtful. This question, thus, also remains open at the time. We
shall address these symmetries in more detail below.

One finds in nature a still more puzzling asymmetry: the asymmetry with respect
to time reversal (T). Time runs forward and not backward. The nature of this
asymmetry is very subtle, and we shall discuss it below [15].

Of all the observed asymmetries described here, the homochirality of biochem-
istry is perhaps the most relevant to the everyday life of the chemist, and it also could
be the one enigma of the three for which a solution will first be found. An initial step
toward solving this problem shall be discussed here in the framework of the theory
of molecular parity violation and possible experiments on this phenomenon.
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We shall discuss here the basics of the underlying concepts. Our short article
is based upon our more detailed earlier discussions [5, 13, 15–22], which we
recommend for further reading.

It might seem astonishing that some basic, long recognized phenomena pertain-
ing to asymmetry in the natural sciences have still not been completely explained.
These can be phrased as four open questions in the sense of “What is : : : ?”:

1. The nature of molecular chirality
2. The origin of biomolecular chirality
3. The origin of the abundance of matter as opposed to antimatter and, with it, the

origin of the presently observable universe
4. The nature of the irreversibility of physical-chemical processes, which corre-

spond to our observations of a time which possesses a given direction

In a certain sense, one can consider these asymmetries to be quasi-fossils in the
evolution of the entire universe. If this is valid, then they contain coded information
about the history of the universe from the start of time and matter up to the evolution
of life. We shall see here that we are able to answer the first question about the nature
of molecular chirality at least theoretically, even though important experimental
confirmations are still missing. On the basis of this question, we shall explain also
important common concepts of symmetry breaking in the following sections.

The three other questions remain largely open today. The nature of our ignorance,
for example, in the question of homochirality, is remarkable. The ignorance is
not based upon a shortage of explanations. There are actually many plausible
explanations which are also consistent with the presently available information.
However, they contradict each other. In such a situation, we simply do not know
the truth. The quote which we took from the book of Manfred Eigen and used at the
beginning of the chapter indicates this situation of ignorance.

A similar situation is found in the question of the nature of irreversibility which
is seen by many to have been answered long ago. This is, however, incorrect. For
further discussion, the reader is referred to [5, 15–17, 20].

3.2 Fundamental Symmetries of Physics and Concepts
of Symmetry Breaking: spontaneous, de facto, de lege

“Pauca sed matura.” (motto as cited in [5], attributed to C. F. Gauss)

A careful explanation of the fundamental terms is important for the later
understanding of this topic. We shall follow here for the most part, in part literally,
our earlier discussions [5, 15–23].
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3.2.1 Fundamental Symmetries of Molecular Physics

The following symmetry operations leave a molecular Hamiltonian operator gener-
ally invariant ([5, 24–27], for limitations see below):

1. Any translation in space
2. Any translation in time
3. Any rotation in space
4. Reflection of the particle coordinates at the origin (parity operation P or E*)
5. Time reversal or reversing momenta and spins of the particles (T for tempus or

time)
6. Every permutation of the indices of identical particles (the atomic nuclei, the

nucleons, the electrons)
7. The replacement of all particles by their antiparticles (charge conjugation C)

These symmetry operations form the symmetry group of the Hamiltonian
operator. In correspondence with Emmy Noether’s theorem, a conserved quantity
is associated with a symmetry. Still more interesting is the interpretation that a
nonobservable quantity is associated with each exact symmetry [5, 15, 28]. The
first three symmetries correspond to continuous operations with symmetry groups
of infinite order; the four last discrete operations lead to groups of finite order.
We shall concern ourselves here in detail only with these discrete symmetries. The
symmetries P, C, and T and the combination CP are not exact; they have been found
to be violated in some experiments, whereas their combination CPT is accepted as
exact. It serves as a foundation of the entire modern theory of matter as summarized
in the so-called standard model of particle physics (SMPP) and has to date not been
disproven. The same holds true for the permutation symmetry, point 6 in the list
above, with N! symmetry operations for N identical particles, which leads to the
generalized Pauli principle [5, 15, 24, 25]. We have, however, already speculated
earlier that possibly all discrete symmetries are violated [5, 17–20, 23, 29]. It is
important to define the terms symmetry violation and symmetry breaking more
carefully, which we can do with the use of the geometrically easily understandable
example of molecular chirality, which is connected with the parity operation or the
right-left symmetry.

Figure 3.2 illustrates the parity operation P. This is a reflection of the coordinates
at the origin of a Cartesian coordinate system. It transforms a right-handed
coordinate system into a left-handed coordinate system. If one then rotates the left-
handed coordinate system in Fig. 3.2 by an angle of 180º around the x-axis, then
the two coordinate systems shown here behave as the image and its mirror image
in a normal plane mirror. Because the rotation by 180º is one of the infinitely many
symmetry operations of rotation in space (see point 3 of the list above), the reflection
in a mirror is in this sense also a symmetry of the molecular Hamilton operator. This
type of reflection is mostly used in discussions of enantiomers of chiral molecules,
which behave as image and mirror image of a handed system (see Fig. 3.1; the
word chiral comes from the Greek ¦©š¡, hand; the Greek word ©�’�£šo− means
“standing opposite,” and �©¡o− is “a part of the whole,” meaning that the definition



54 M. Quack

Ê *

P
x

y

z

x

y

z

x -x

y -y

z -z

Fig. 3.2 Reflection OE� or
parity operation P (After
[13])

of “enantiomer” is “consisting of parts which are so arranged that they stand
opposite to each other as image and mirror image.”) The important common aspect
of the two symmetries, of reflection from a plane mirror and reflection at the center
of coordinates, is the transformation of a “left-handed” into an equivalent “right-
handed” system (molecule). The additional rotation, which differentiates the two
symmetry operations, is not of importance for the freely moving isolated molecule
in this context.

3.2.2 Basic Concepts of Symmetry Breaking: spontaneous,
de facto, and de lege, as Related to the Geometric
Example of Molecular Chirality

We provide here a short analysis of the three different concepts for symmetry
breaking, because often they are not carefully distinguished from each other, and
we refer the reader to [5, 15–23] for a more complete discussion. If we consider the
example of the chiral hydrogen peroxide molecule H2O2 (Fig. 3.3), we can represent
the stereomutation as a one-dimensional torsion about the angle � 0 .' q below/ and
represent it with one potential function with two minima corresponding to the two
enantiomers and a low potential barrier in the planar trans conformation [30].

The hydrogen peroxide molecule is, in its equilibrium geometry (Fig. 3.3), a very
simple example for a molecule with axial chirality. This simplifies the discussion of
the stereomutation process. The transition states are planar and achiral, one with
trans geometry and a low barrier

H

O

H

O

Etrans ' 4:3 kJmol�1

.361 cm�1/
(3.5)
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Fig. 3.3 Image and mirror-image form of H2O2 (HOOH) in the chiral equilibrium geometry of
the PCPSDE-potential hypersurface [30]. Image and mirror image are enantiomers which cannot
be converted into each other through a rotation in space but instead through an internal rotation
about the OO-axis preferably via the trans geometry [30]. White, H; blue, O (After [15])

and a substantially higher barrier in the planar cis configuration

H

O

H

O

Ecis ' 31:6 kJmol�1

.2645 cm�1/
(3.6)

We therefore can illustrate the process of the stereomutation as the movement
of a point mass in a one-dimensional double minimum potential with a low barrier
(Fig. 3.4). The real stereomutation dynamics take place in a six-dimensional space.

Classically, the point mass reaches both symmetrically equivalent space regions
at high energies. The mechanical state shows then on the average the symmetry of
the underlying potential. If one reduces the energy, then in principle a symmetric
state at the maximum in the middle of the potential function in Fig. 3.4 can be
assumed. This corresponds to an unstable mechanical equilibrium. In practice,
however, with the reduction of the energy, a state at the minimum energy either left
(œ) or right (¡) is realized. These states do not show the symmetry of the potential,
and one speaks of a spontaneous symmetry breaking. Spontaneous symmetry
breaking is in essence a classical concept, even though it can be extended to quantum
mechanical systems with infinitely many degrees of freedom [31, 32]. In molecular
quantum mechanics, the superposition principle demands that superposition states
of positive parity (symmetric with respect to the reflection at qc)



56 M. Quack

Fig. 3.4 Symmetry breaking and symmetry violation (After [22]). In the classical limit, the left-
hand picture can also be used for illustrating “spontaneous” symmetry breaking (see text)

�C D 1p
2
.œC ¡/ (3.7)

and negative parity (antisymmetric)

��� D 1p
2
.œ� ¡/ (3.8)

are possible states. These are delocalized at the same time both left and right. In
fact, such states are the eigenstates of the Hamilton operator and are differentiated
from each other by the small energy difference�E˙ (Fig. 3.4).

Following Hund [33, 34], one can, however, generate left or right localized states
œ and ¡, in which the symmetry is broken de facto:

� D 1p
2
.�C � ��/ (3.9)

� D 1p
2
.�C C ��/ (3.10)

These states are time dependent. The quantum dynamics of the stereomutation as
also the quantum dynamics of atoms and molecules in general is described through
the time-dependent Schrödinger equation (with i D p�1)

i
h

2 

@‰.q; t/

@t
D OH‰.q; t/ (3.11)

with the solution

‰.q; t/ D
X

k

ck®k.q/ exp

��2  iEkt

h

�

(3.12)
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The ck are complex coefficients. The functions ®k.q/ and the energies Ek are
obtained as eigenfunctions and eigenvalues of the solution of the time-independent
Schrödinger equation:

OH®k.q/ D Ek®k.q/ (3.13)

If one takes into account for purposes of simplification only two quantum
states, for example, the two lowest states with the energies E1 D EC and
E2 D E� and the energy difference �E˙ D E� � EC, one can represent the
time-dependent dynamics of H2O2 following Eq. (3.12) in a simplified fashion as
two-state dynamics using

‰.q; t/ D 1p
2

exp.�2  iECt/
�

�C C �� exp

��2  i�E˙t
h

�

(3.14)

The observable probability density, which is the quantum mechanical equivalent
of the time-dependent molecular structure, can be represented as

P.q; t/ D ‰.q; t/‰�.q; t/ D j‰j2 D 1
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ˇ
ˇ
ˇ
ˇ

�
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�ˇ
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ˇ

2

(3.15)

This follows a periodic motion with the period:

� D h

�E˙
(3.16)

One can easily recognize from Eq. (3.15) that the probability density changes
from a left localized state œ (Eq. 3.9) into a right localized state ¡ (Eq. 3.10) in a
half period, which we can also relate to the stereomutation time �œ!¡:

�œ!¡ D h

2�E˙
D 1

2c� Q� (3.17)

That this transformation takes place at an energy below the potential barrier,
which would be forbidden in classical mechanics, permits one to speak of a quantum
mechanical tunneling effect (pictorially, as though there were a tunnel through the
potential barrier).

If, however,�E˙ is very small, the chiral states are in effect stable, because ��!�

in Eq. (3.17) will become very large. As opposed to spontaneous symmetry breaking
in classical mechanics, which is necessary at small energies, the de facto symmetry
breaking of quantum mechanics through the choice of the initial conditions is
possible but not necessary.

In the de lege symmetry breaking, the potential no longer has a symmetric form,
and the rules (Latin word lex D law or rule, “de lege” meaning by law) for the
dynamics show no symmetry. When the departure from exact symmetry is small,
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one can speak of a symmetry being present, which is “broken” or violated through
small asymmetric additional terms in the Hamilton operator, in this case “de lege.”

By the introduction of this nomenclature, one distinguishes the natural (God-
given) law (lex) from the arbitrary human law (ius) (thus not in this case “de iure”).

It is in view of this example obvious that the symmetry breakings de facto and
de lege are fundamentally different descriptions of an observed asymmetry of a
phenomenon. The distinction between the two, which is geometrically very easy to
understand in the example of chirality, is analogous to that of other asymmetric
phenomena, for example, the asymmetry of time, which is apparent from the
observed irreversibility. It is also clear that the distinction between de facto and
de lege symmetry breaking is not one of language and “philosophy” but instead
rather completely scientific, subject to possible tests by experiment. Through careful
investigation of the potential, a possible asymmetry (de lege) could be identified,
even when perhaps the potential had appeared to be symmetric in initial experiments
of low accuracy. One could, of course, argue that under these conditions, the
description of an asymmetrical phenomenon through a de lege symmetry breaking
could never be ruled out experimentally. This would be true because one could
always have a small asymmetry of the potential, smaller than the capability of
current state-of-the-art experiments to prove this. However, the question as to a de
lege or de facto symmetry breaking also has quantitative aspects. This has to do
with the relative size of the tunneling splitting �E˙ leading to delocalization in
the symmetric case, as compared with the symmetry violating potential asymmetry
(�Eœ¡ Š �pvE being the approximate energy difference between the minima, the
index pv representing “parity violation”). Whenever

�E˙ � �pvE (3.18)

is true, one can speak essentially of a symmetry breaking de facto even when�pvE

is not zero. Whenever

�pvE � �E˙ (3.19)

is true, the symmetry breaking de lege dominates the phenomenon.
In the case of the stereomutation of H2O2, we know today, for example, that

�E˙ � �pvE is true and the symmetry breaking is here, essentially, de facto.
On the other hand, we also know that in the case of the chiral isolated methane
derivatives (CHFClBr, Fig. 3.1, amino acids, etc.), the chirality is dominated by a
symmetry breaking de lege. However, this theoretically well-founded statement still
requires experimental confirmation [22].

When we presented in 1989 a systematic analysis of the hypotheses of the
foundations of chirality [16], it was discovered, surprisingly, that there were at least
five fundamentally different hypotheses to this seemingly simple, basic question
about structures in chemistry. Their supporters barely communicated with each
other. An experimental confirmation of one or the other hypothesis, then as now, was
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Table 3.2 Communities of belief concerning structural hypotheses for chiral molecules
(After [16])

De facto Spontaneous De lege

Hypothesis of Hund 1927 “Classical” hypothesis Electroweak interaction with
parity violation

- van’t Hoff and le Bel 1874
- Lee and Yang 1956, Wu

et al. 1957
- Cahn, Ingold, Prelog

(1956/1966)
- Yamagata 1966

“External perturbation” or
“environmental” hypothesis

- Rein, Hegström, and
Sandars 1979, 1980

- Mason, Tranter,
McDermott et al. 1983 ff
(calculations)

- Simonius 1978, Harris and
Stodolsky 1981, Davies
1978/1979

- Quack 1980/1986
(proposed experiments on
�pvE , see also [5, 21, 22]
for more recent theory)Superselection rule hypothesis

- Pfeifer, Primas 1980
- A. Amann 1989f

not available. The same situation exists in the area of the analysis and interpretation
of biochemical dissymmetry or homochirality, as well as the question of time
asymmetry or irreversibility.

Table 3.2 provides an overview of the various communities of belief which hold
different views about the hypotheses for the structure of chiral molecules, classified
according to the type of symmetry breaking. It should be noted here that the two
concepts of de facto symmetry breaking and spontaneous symmetry breaking, in
many descriptions, simply get tossed into one pot, which is not exactly correct: in
principle and in practice, they can be experimentally differentiated from each other.
The original classical mechanical concept of spontaneous symmetry breaking can
be extended to the quantum mechanics of systems with (infinitely) many degrees
of freedom [31, 32, 35]. For a further discussion with many references, we refer
particularly to [15, 16, 23].

It should also be noted here that H2O2 was the first example for which the full,
six-dimensional quantum mechanical wave packet dynamics of stereomutation was
demonstrated, which goes much further than the simple one-dimensional picture
which we have used here for the discussion of the concepts (see [36, 37]). Such
investigations are of great importance for the present understanding of quantum
chemical kinetics of molecules containing many atoms and have led to new results
for kinetics through the tunneling processes in “quasiadiabatic channels” far above
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the energy barrier for the reaction (“quasiadiabatic above barrier tunneling”). They
are, however, less important for the basic concepts discussed here.

The concepts of symmetry breaking discussed here with the example of molec-
ular chirality find its analog in the investigation of time reversal symmetry and
irreversibility in chemical processes [15–20, 38].

3.3 The Theory of Molecular Parity Violation
in Chiral Molecules

“The underlying physical laws for the mathematical theory of a large part of physics and
the whole of chemistry are thus completely known and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying quantum mechanics
should be developed, which can lead to an explanation of complex atomic systems without
too much computation.” (Paul Adrien Maurice Dirac (1929) as cited in [39])

In the previous section, we have seen that the relative size of the energy
for the splitting �E˙ of the ground state through the tunneling process in the
symmetrical potential and the asymmetry �pvE of the potential is important for
the understanding of the nature of molecular chirality. The tunneling splitting can
be understood with the help of the usual, parity conserving molecular quantum
mechanics and also investigated experimentally (spectroscopically). A number of
these “traditional” investigations have been conducted during the previous decades
(see, e.g., the corresponding chapters in [6]). In contrast to this, one must carry out
a new type of theoretical calculations in the framework of the so-called electroweak
quantum chemistry [40, 41] in order to obtain the parity violating potentials and
asymmetry energies �pvEel . Electroweak quantum chemistry including parity vio-
lation fundamentally goes beyond the parity conserving “electromagnetic” quantum
chemistry implied by the quotation from Dirac at the beginning of this section. As
we shall see, parity violation is important for the stereomutation of ordinary chiral
molecules and in this sense from our knowledge today, Dirac’s statement concerning
“the whole of chemistry” is incorrect (he obviously did not know about molecular
parity violation at the time).

The discussion of these calculations must be preceded by some more detailed
comments about the concept of such potentials. The usual electronic (“adiabatic” or
“Born-Oppenheimer”) potential function is effectively a hypersurface of potential
energies V.q1; q2; q3 : : : qS/ as a function of S D 3N � 6 internal coordinates
for an N atom molecule (e.g., S D 6 for H2O2). It conserves parity and can be
calculated using the methods of ordinary quantum chemistry. This means that it is
strictly symmetric upon reflection, and that the difference VR.q1; q2; q3 : : : qS / �
VS. Nq1; Nq2; Nq3 : : : NqS/ of the potential energies is exactly zero for enantiomeric
structures described by the complementary set of coordinates .q1; q2; q3 : : : qS / and
Nq1; Nq2; Nq3 : : : NqS for enantiomeric structures.
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Incidentally, the typical potential energy differences for various chemically
relevant structures fall in the range of 1–100 kJ mol–1 (as molar energies). As
opposed to this, the parity violating contributions to the potential calculated with
the methods of electroweak quantum chemistry are antisymmetric relative to the
reflection and yield a parity violating energy difference of

�pvEel .q1; q2; q3 : : : qS/ D VpvR.q1; q2; q3 : : : qS/ � VpvS . Nq1; Nq2; Nq3 : : : NqS/
(3.20)

for enantiomeric structures. These energy differences fall typically in the order of
magnitude of 100 aeV corresponding to about 10–11 J mol–1. Strictly speaking, the
ground state energy differences are quantum mechanical average values over the
ground states of the enantiomers, which also are often near to the values of �pvEel
for the equilibrium geometries. We distinguish these quantities for this reason only
explicitly in our nomenclature where it is particularly important.

Early calculations of parity violation in chiral molecules were already carried out
following earlier theories for parity violation in atoms [42]. Work on molecules by
Hegström, Rein, and Sandars started about in 1980 [43]. Later, these calculations
were continued by Mason, Tranter, and MacDermott [44–46]. Our theoretical work
after 1990, however, showed that the earlier calculations for prototype molecules
like H2O2 and H2S2 and others were incorrect by approximately one to two orders
of magnitude. Our new calculations yielded much larger values for �pvE than
had been previously estimated (although still quite small) [40, 41, 47–49]. This is
important also in the planning of experiments [50]. The results for biochemically
important molecules like alanine were also completely revised by our more recent
theoretical work [51]. These results have been confirmed in the meantime by
independent work by other research groups and can be seen as well accepted,
although the experimental confirmation of these theoretical results is still lacking.

We cannot provide a complete overview of the recent theoretical results here,
but refer the reader to several articles which provide an overview from various
perspectives [5, 13, 15, 21, 22, 39, 41, 52]. Figure 3.5 provides a graphical survey of
the big jump in theory provided by our work in the early 1990s and later confirmed
with a variety of theoretical methods.

Table 3.3 provides a summary of the parity violating energy differences �pvE

and tunneling splittings�E˙ for a series of simple axially chiral molecules of type
XYZX analogous to H2O2. This is an important summary table for our discussion.
One recognizes that the inequality (3.18) is valid in the case of H2O2 and many
similar hydrides, for which reason the parity violation de lege hardly plays a role
here. It is, however, true that the chirality of these molecules is very short lived, often
on the order of ps. For molecules like ClOOCl and ClSSCl, on the other hand, the
inequality (3.19) is valid and �pvE is a measureable ground state energy difference
between the enantiomers.

This is the case for all molecules for which one generates enantiomers as stable
chiral molecules and can store them for a long time. The transition between the
limiting cases is dependent upon the single case under observation, but one must
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Fig. 3.5 Theoretical results for parity violating energy differences in H2O2 near the equilibrium
geometry illustrating the order of magnitude change in 1995. The results are taken from the more
extensive summary in [21, 22], where further references can be found. The early results with SDE-
RHF (1980–1995) are from [43, 44], the CIS-RHF results from [40, 41, 47], the CASSCF(MC)-LR
results from [48, 49], the relativistic four-component theory Dirac-Hartree-Fock (DHF) from [53],
and Rel-ZORA (two-component theory) from [54]. Recent results with a coupled cluster approach
reported at the Faraday Discussion on Frontiers in Spectroscopy 2011 are in agreement with the
large values for �pvE as well [55] (After [56])

remember that it occurs when the tunneling period in the hypothetical, symmetric
potential is a time significantly longer than a second.

With this, one has obtained a significant semiquantitative statement about
question 1 from the introduction, namely, to the question as to the nature of and the
quantum dynamical origin of molecular chirality. The parity violation de lege is the
dominant effect in the characterization of quantum dynamics of molecular chirality
for all long lived (� � 1s), isolated chiral molecules, and is much more important
than the symmetry breaking de facto as described in the work of F. Hund. This
importance of parity violation for the normal case of chiral molecules is perhaps
surprising and provides, at least for the time being, valid theoretical answers to
question 1 about the nature of molecular chirality. The experimental confirmation
of the theoretical values for �pvE is not yet available, but can be expected in the
near future.

As an example for the calculation of parity conserving and parity violating
potentials in a molecule, in which in principle a measurement of the parity violating
ground state energy difference �pvE is possible, we show the torsional potential
V.�/ for ClSSCl in Fig. 3.6. One recognizes that the normal parity conserving
potential for the torsional motion is symmetric with respect to the planar geometry
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Table 3.3 Tuning tunneling splittings j�E˙j and parity violation
�

�Eel
pv

	

in a

series of molecules (After [57] and [22])

Molecule
ˇ
ˇ
ˇ�Eel

pv

ˇ
ˇ
ˇ




hc cm�1
� j�E˙j 
hc cm�1

�

Literature

H2O2 4 � 10–14 11 [36, 37, 40, 41, 48, 49]
D2O2 4 � 10–14 2 [36, 37, 40, 41, 48, 49]
T2O2 4 � 10–14 0.5 [36, 37, 40, 41, 45, 48]
Cl2O2 6 � 10–13 7 � 10–25 [58]
HSOH 4 � 10–13 2 � 10–3 [59]
DSOD 4 � 10–13 1 � 10–5 [59]
TSOT 4 � 10–13 3 � 10–7 [59]
HClOHC 8 � 10–13 2 � 10–2 [57]
DClODC –a 2 � 10–4 [57]
TClOTC –a 7 � 10–6 [57]
H2S2 1 � 10–12 2 � 10–6 [60]
D2S2 1 � 10–12 5 � 10–10 [60]
T2S2 1 � 10–12 1 � 10–12 [60]
Cl2S2 1 � 10–12 �10–76b [61]
H2Se2 2 � 10–10c 1 � 10–6 [62]
D2Se2 –a 3 � 10–10 [62]
T2Se2 –a 4 � 10–13 [62]
H2Te2 3 � 10–9d 3 � 10–8 [57]
D2Te2 –a 1 � 10–12 [57]
T2Te2 –a 3 � 10–16 [57]
aApproximately the same value as for the H-isotopomer
bExtrapolated value
cCalculated value from [53]
dCalculated by Laerdahl and Schwerdtfeger [53] for the P-structure (rTeTe D 284 pm,
rHTe D 164 pm, ˛HTeTe D 92ı, and �HTeTeH D 90ı) and the corresponding M-
structure. An earlier calculation from Wiesenfeld [63] resulted in a value of
�pvE D .hc/ 8 � 10�10 cm�1 for the structure (rTeTe D 271.2 pm, rHTe D 165.8 pm,
˛HTeTe D 90ı, and �HTeTeH D 90ı)

at 180ı, while the parity violating potential is antisymmetric (and therefore parity
violating). The tunneling splitting for small energies is in this example vanishingly
small (Table 3.3).

3.4 Experiments on Parity Violation in Chiral Molecules

“The greatest inspiration is a challenge to attempt the impossible.”

(Albert A. Michelson [as cited in [5]])

Experiments to detect parity violation in chiral molecules are very difficult
because of the very small size of the effects. In our opinion, the experiment we
proposed in 1986 for the measurement of parity violation by time evolution after
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Fig. 3.6 In the upper part of the figure, we show the chiral equilibrium geometry of dichlorodisul-
fane Cl–S–S–Cl. In the lower part, we show the calculated torsional potential (full line, right
ordinate scale) and the parity violating potential (left ordinate scale, lines with various symbols
for various approximations). The definition of the torsional angle � (we use the symbol � 0 ' q

elsewhere in the text in order to distinguish it from the period � of motion) is shown in the upper
part of the figure (After [23, 61])

preparation of a parity isomer [50] is the most promising concept so far. However,
experiments based on this have not yet been successful. These experiments were
long said (and are thought by many today) to be “impossible” [5]. In addition to the
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clear advances in the theory described in the preceding section, during the past few
decades we have also been able to make considerable progress in the preparation
of such experiments. An important step was the first rotationally resolved analysis
of rotation-vibration spectra of chiral molecules, which provided an essential basis
for all current approaches to the observation of parity violation in chiral molecules
[64–66]. Approximately ten such analyses have been carried out successfully to date
on chiral molecules [5, 22].

We would however like to point out a further conceptually interesting aspect of
such experiments. According to the diagram in Fig. 3.1, one can, in principle, arrive
at the parity violating energy difference by using the combination difference of the
spectral lines which correspond to the transitions shown with the broken arrows (½)
[16, 50]. To do this, one would also need a resolving power �=�� 
 1016 [5, 21, 22]
or a resolution�� of about 1 mHz in the IR region, which is at the moment almost
attainable with current experiments, but still not quite possible.

As an alternative, one can carry out a time-dependent kinetics experiment in
which one uses an intermediate state of well-defined parity (C) and then creates by
means of stimulated emission a superposition state of (well-)defined parity (–) in the
ground state (The relevant states are identified by appropriate analysis as discussed
above.)

For such an experiment, only the “usual” fully rotationally resolved spectral
structure is necessary to obtain the selection, and we can achieve this using lasers
with resolution in the range of �� ' 1MHz (or better). The requirements for
the resolution are then about nine orders of magnitude less than for the frequency-
resolved combination differences experiment mentioned above.

The preparation of such a “parity isomer” of a stable chiral molecule in the “high
barrier” range of molecular quantum dynamics being dominated by parity violation
(�pvE � �E˙), Eq. (3.19), remains difficult and has not yet been realized. In
the case of molecules with a tunneling-dominated quantum dynamics like H2O2

(�E˙ � �pvE), Eq. (3.18), the parity isomers are the natural isomers and easy to
create.

The kinetic steps of the time-resolved experiment can then be summarized as

R .or S/
h��! X�.C/ .or X�.�// (3.21)

in which X�.C/ corresponds to the highest level in the diagram in Fig. 3.1. One
then selects through the electric dipole selection rule (C $ �) a state of negative
parity (–).

X�.C/ hv0

�! X0.�/ (3.22)

This state is a superposition of R and S states and is not an energy eigenstate. It
develops with time as

X�.�/ �! X0.C/ (3.23)
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S, λ
(or racemic mixture)

Selection 1

Preparation 2

Selective Excitation 3

Ionisation and Sensitive
Detection

1
exp(–iEλt / h)[λ + ρ exp(–iΔpv E t / h)]Ψ(t) =

2

+

–

–via

+
evolution

Fig. 3.7 Sequence of steps in the experiment on molecular parity violation (After [56])

This change from a parity isomer of negative parity (X
0

(–)) to a parity isomer
of positive parity (X

0

(C)) obeys a rate law for the concentration (or number of
particles) of the X

0

(C) isomer (not present initially), expressed as a mole fraction
y  D c =.c	 C c / as a function of time in Eq. (3.24):

y  D sin2
�
 t�pvE

h

�

(3.24)

From this, one can also obtain the parity violating energy difference �pvE .
Because the highly resolved spectra of both parity isomers X

0

(C) and X
0

(–)
are different because of the electric dipole selection rule, one can obtain the
concentration c  of X(C) through the determination of the increase of the initially
“forbidden” spectral lines (c .t D 0/ D 0). For short times with sin2x ' x2, the
following approximation holds

y .small t/ '  2t2�pvE
2

h2
(3.25)

One has then at the beginning a quadratic time development, which can be used
to distinguish the “real” effect from the linear noise effects. Figure 3.7 shows a
graphical description of the kinetic scheme discussed here.

For further aspects of such experiments, we refer to [5, 15, 16, 22, 39, 50]. When
they work, they make possible, on the one hand, a measurement of �pvE and with
it a test of the various theories discussed above. These theories can then be used
for the investigation of mechanisms of biochemical evolution of homochirality.
On the other hand, the combination of exact measurements and calculations of
�pvE can also be used to obtain fundamental parameters of the standard model
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Fig. 3.8 Schematic high-resolution line-resolved spectra of the parity isomers (positive shown in
blue and negative shown in red). The normal line spectrum of a chiral molecule (either enantiomers
or racemate) is a combination of two separate spectra from parity isomers. If one pure parity isomer
is prepared, only its spectrum is observed initially, but as time proceeds, the forbidden lines of the
other isomer will appear because of parity violation. n D �/�0 is the normalized frequency, and s(n)
is the spectral signal (After [22])

of physics, which otherwise would only be accessible through experiments of
high energy physics and sometimes not even through these. The experiments very
briefly and simply described here for molecular parity violation belong to one of
the fascinating frontiers of spectroscopy today [5, 56]. Figure 3.8 shows also for
illustration a schematic drawing of the high-resolution spectra of the parity isomers
discussed here [22]. We have omitted here for brevity a discussion of other types
of experiments, which could detect molecular parity violation and we refer to the
much more comprehensive review [5] for a critical overview of these.

3.5 Hypotheses About the Evolution of Biochemical
Homochirality

“If the foundations of life are dissymmetric, then because of dissymmetric cosmic forces
operating at their origin; this, I think, is one of the links between the life on this earth and
the cosmos, that is the totality of forces in the universe.”

(Louis Pasteur as cited and translated in [16])
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In the case of the evolution of homochirality, one can distinguish in principle two
steps:

1. The initial generation of a (possibly small) excess of one enantiomer
2. The reinforcement of this excess through various physical-chemical mechanisms,

which can be abiotic as well as biotic

Naturally, both steps can be connected with each other. There are many mecha-
nisms known, which in step 2 amplify the excess of one enantiomer, independent of
how the original enantiomeric excess arose. Over the past few decades, a multitude
of processes have been investigated and more or less well characterized. No limits
seem to be set here for the creativity of chemists, and we cannot refer to the very
extensive literature here. We refer simply to the most important concepts, which are
associated with the various “communities of belief” (see [15] for details).

1. A stochastic “all or nothing” selection of an enantiomer (D or L) can take place
as a result of a biochemical selection mechanism [1, 67–73] or also abiotically,
for example, through crystallization and adsorption [74, 75]. According to this
hypothesis, only one enantiomer is selected with every single evolution, but at
the same time in many, separate evolution experiments, D and L molecules are
selected with equal probability or equal frequency on the average.

2. An accidental external chiral influence of a one-time evolutionary step selects in
a preferred manner one enantiomer. Pasteur and later van’t Hoff considered such
possibilities, and since that time there have been innumerable different proposals
of this type. As an example, we mention the start of an evolution on a random
chiral matrix, for example, a “left-quartz” (L-quartz) crystal [75]. When a favored
enantiomer is formed, it could propagate itself and then remain dominant [76]. A
currently popular possibility is the generation of an excess of one enantiomer in
an interstellar gas cloud through polarized light. This excess could be then carried
by meteorites to the early Earth and would provide favorable starting conditions
for one type of enantiomer. The observation of an excess of enantiomers of chiral
biological precursor molecules in meteorites has persuaded many to favor this
hypothesis [77].

3. A low-temperature phase transition causes prebiotically (or, more generally,
abiotically) a pure enantiomer on the basis of the parity violating weak inter-
action. Enantiomerically pure or enriched organic starting material provides the
foundations for a later biotic selection [78–80].

4. An enantiomer which is slightly favored, by virtue of thermodynamics or
kinetics, by the parity violating weak interaction, gains an advantage through
nonlinear kinetic mechanisms and in the end is then exclusively selected [46,
81–84] (see also [39]).

These four basic hypotheses can themselves, like the structural hypotheses of
chirality, be grouped into de facto selection hypotheses (1) and (2); one could also
use here the term “spontaneous,” depending on whether one has a quantum or
classical picture of the process and the two de lege selection hypotheses (3) and (4).
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The hypotheses also can be grouped into the two large categories “by chance”
(hasard, Zufall) and “of necessity” (nécessité, Notwendigkeit) [85]. These cat-
egories of the evolution of homochirality can in principle be distinguished ex-
perimentally. If one repeats evolution following the mechanism of the category
“chance,” life based on L-amino acids will be generated in approximately 50% of
the cases, and life based on D-amino acids will be generated in the other 50% of the
cases. When a mechanism of the type “necessity” dominates, one would obtain as a
result always (or mostly) our L-amino acid life form.

In principle, in order to distinguish the categories experimentally, one must
repeat and understand the mechanisms of the origin of life and of evolution in the
laboratory. At the moment we seem to be far removed from this, in any case further
removed than we are from a measurement of parity violation in chiral molecules.
We have pointed out that we even do not know whether an “enantiomeric life form”
would function in the same way as its “normal” mirror image [86]. One could
speculate about the total synthesis of mirror-image bacteria from D-amino acid
proteins and L-sugars DNA/RNA [86]. We also seem to be still quite far removed
from this [13, 87], although in recent times large advances have been made in the
experiments pertaining to the “evolution machine” (see [88]).

3.6 Concluding Remarks and Speculations as to the Role
of Symmetry in Cosmology and Evolution:
The World Game

“L’ingénuité même d’un regard neuf (celui de la science l’est toujours) peut parfois éclairer
d’un jour nouveau d’anciens problèmes.”

(Jacques Monod [85])

If we return to our four questions from the introduction, we can answer at present
only the first one on the basis of theoretical calculations: for normal, stable, isolated
chiral molecules, such as the isolated amino acids and sugars as building blocks of
the biopolymers, the nature of molecular chirality is dominated by the quantum
dynamics of parity violation (de lege) as opposed to the tunneling processes in
symmetrical potentials which would lead to a symmetry violation de facto. Further
effects are important in dense media, which however do not change this conclusion.
These theoretical conclusions must still be examined and confirmed (or refuted)
experimentally. The large advances which our group has made on the way to such
experiments are expected to yield at least some initial results in the near future. With
these, the theoretical results, if confirmed experimentally, will also be provided with
a more solid foundation and can serve as a starting point for the investigation of the
question of the evolution of biochemical homochirality. Even more fundamentally,
the combination of theory and experiments on molecular parity violation can lead to
results on the fundamental parameters of the standard model of high energy physics,
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for example, the energy dependence of the Weinberg parameter [5]. It must be
noted here that only spectroscopic experiments on isolated molecules in the gas
phase make this kind of analysis possible. Experiments on the parity violation of
molecules in the condensed phase do not allow safe conclusions due to the large
(potentially chiral) influence of the surrounding medium. For this reason, we have
completely avoided discussion of such experiments in the condensed phases here
(see also [13]).

Concerning answers to the other questions of the introduction, one can presently
only speculate. There are many hypotheses for the origin of biochemical homochi-
rality which contradict each other: many of them are credible, but none of them has
been proven. The question as to the origin of the cosmic excess of matter as opposed
to antimatter is also still completely open today. We have not addressed the nature
of irreversibility in detail and refer the reader to [5, 15, 17, 20, 23, 25, 38]. Despite
contradictory claims in many textbooks and publications, the question remains open
in the sense that as well a de facto symmetry breaking could be the root of the
observed irreversibility (this would be a standard textbook explanation), as well
as a deeper de lege symmetry breaking. Similar to the case of molecular chirality,
the question here can be related to the quantitative question about the relative
magnitudes and influences of the relevant parameters. Even the theoretical ground
work is at present missing to answer this question pertaining to irreversibility [5].

We conclude here with a cosmological speculation, which touches upon the
general considerations of symmetry breaking [5, 15, 19, 23, 29].

Figure 3.9 provides an overview of chiral molecules in their four different
enantiomeric forms being made of matter and antimatter. As we have discussed
in [29], spectroscopic investigations of these four “isomeric” molecules are well
suited, in principle, for a very exact test of the underlying CPT symmetry of the
combination of C, P, and T. Such experiments are certainly imaginable [23] with
sources of antimatter being in principle available today; however, they are not to be
expected in the near future.

One can view the diagram in Fig. 3.9 also in another fashion, highly speculative,
and interpret it without a “solid” theoretical basis [5]. If one takes L as the normal,
left-handed (strictly speaking, left helical) neutrino, then R* would correspond to
the right-handed antineutrino (antimatter). The right-handed neutrino (R) made of
normal matter has not been observed: the simplest assumption is that it does not
exist. One can, however, imagine that it exists as a particle of very large mass;
�pvE D mc2 would then be the parity violating energy difference, for which one in
complete absence of further information could assume values up to the GeV or TeV
region. An interesting aspect of this speculation is the possibility of such primordial
heavy neutrinos being the cause of the so-called dark matter, which has been proven
by astrophysicists to exist because of its gravitational effects. Its effects dominate
over those of the “visible” matter (mainly H and He). The nature of dark matter
is unknown. The so-called WIMPs (weakly interacting massive particles) are one
possibility. Heavy neutrinos could be one kind of such WIMPs and contribute to the
dark matter [89, 90].
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Fig. 3.9 Diagram of enantiomeric molecules (L and R) made of matter and antimatter (L* and
R*) with the notation “Left” and “Right,” used by physicists for the enantiomers instead of
D/L or R/S. With CPT symmetry, the pair L and R* (L* and R) have the same energy. Thus,
ˇ
ˇ�Epv

ˇ
ˇ D

ˇ
ˇ
ˇ�E�

pv

ˇ
ˇ
ˇ D ˇ

ˇ�EL
cv

ˇ
ˇ D ˇ

ˇ�ER
cv

ˇ
ˇ. The experiment proposed in [29] could observe a

departure from this relationship and a CPT symmetry violation with a relative precision of about
�m=m D 10�30. If one interprets L and R* as neutrino and antineutrino, then R would be a
possible heavy enantiomeric neutrino (see text, after [5, 29])

A further cosmological speculation also points to the importance of the symmetry
violations. In Refs. [23, 26], we proposed a “world game” which is illustrated in
Fig. 3.10.

This was inspired by the book of Eigen and Winkler, which discusses various
other types of “games” [68]. In our world game, there is a leader of the game,
who draws tetrahedral dice of the type illustrated in Fig. 3.10 out of one of two
boxes (shown at the bottom of the figure). The sides of the dice L, L*, R, and R*
correspond to the chiral molecules in the diagram in Fig. 3.9. In the de lege box, one
finds four different types of dice, in which each individual die shows one symbol on
all four sides (e.g., L on all four sides or L* on all four sides) In the de facto box,
there are only identical dice, but these have four different sides L, L*, R, and R*.
The players (the scientists) are permitted to make one throw of one die which the
game leader has drawn and are only permitted to observe one side of this die: the
side facing them. They must then guess from which box the die has been drawn (de
facto or de lege). Guessing correctly means winning.

If the de lege box has the same number of dice of each type, and the game
leader is honest (statistical) when he draws the dice, there is only chance or luck
as an overall strategy (therefore, no real strategy). If however a player knows that
the distribution in the de lege box is not uniform (symmetry violation, e.g., 40% L
and 20% each from the three others), then he will win if he guesses always that
the dice are from the de lege box when he sees the L side of a die. Otherwise,
he will guess that the dice are from the de facto box. The analogy to the current
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Fig. 3.10 The world game.
The different types of dice
used in the game are shown
schematically with their four
tetrahedral faces and the de
lege box (bottom left) and the
de facto box (bottom right).
In the middle, we show the
single face allowed for
observation (After [23, 26])

situation of scientists, who observe an L-amino acid world, is obvious [23, 26]. If
one understood the mechanisms of symmetry violation and their consequences on
the evolution of matter and life in detail, then “de lege” would have to be at the
moment the correct and best possible answer.

Acknowledgments I would like to thank my colleagues, who are listed more completely in
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Forschergruppen in aller Welt an Fragestellungen dieser Art arbeiten, sind bisher nur wenige
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Chapter 4
Application of Density Matrix Methods
to Ultrafast Processes

Y.L. Niu, C.K. Lin, C.Y. Zhu, H. Mineo, S.D. Chao, Y. Fujimura, M. Hayashi,
and Sheng H. Lin

Abstract The density matrix method is a powerful theoretical technique to describe
the ultrafast processes and to analyze the femtosecond time-resolved spectra in
the pump-probe experiment. The dynamics of population and coherence of the
system can be described by the evolution of density matrix elements. In this
chapter, the applications of density matrix method on internal conversion and
vibrational relaxation processes will be presented. As an example, the ultrafast
internal conversion process of   * ! n * transition of pyrazine will be presented,
in which case the conical intersection is commonly believed to play an important
role. A treatment with Q-dependent nonadiabatic coupling will be applied to deal
with the internal conversion rate. Another important ultrafast process, vibrational
relaxation, which usually takes place in sub-ps and ps range, will be treated using
adiabatic approximation. Then the vibrational relaxation in water dimer and aniline
will be chosen to demonstrate the calculation.
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4.1 Introduction

Pump-probe experiment is an efficient approach to detect the ultrafast processes
of molecules, clusters, and dense media. The dynamics of population and coher-
ence of the system can be theoretically described using density matrix method.
In this chapter, for ultrafast processes, we choose to investigate the effect of
conical intersection (CI) on internal conversion (IC) and the theory and numerical
calculations of intramolecular vibrational relaxation (IVR). Since the 1970s, the
theories of vibrational relaxation have been widely studied [1–7]. Until recently,
the quantum chemical calculations of anharmonic coefficients of potential-energy
surfaces (PESs) have become available [8–10]. In this chapter, we shall use the water
dimer (H2O)2 and aniline as examples to demonstrate how to apply the adiabatic
approximation to calculate the rates of vibrational relaxation.

The CI of the adiabatic PESs is a common phenomenon in molecules [11–
13]. The singular nonadiabatic coupling (NAC) associated with CI is the origin
of ultrafast non-Born-Oppenheimer transitions. For a number of years, the effects
of CI on IC (or other nonadiabatic processes) have been much discussed and
numerous PESs with CIs have been obtained [11, 12] for qualitative discussion.
Actual numerical calculations of IC rates are still missing. In this chapter, we
shall calculate IC rate with Q-dependent nonadiabatic coupling for the pyrazine
molecule as an example to show how to deal with the IC process with the effect of
CI. Recently, Suzuki et al. have researched the   * state lifetimes for pyrazine in
the fs time-resolved pump-probe experiments [13]. The population and coherence
dynamics are often involved in such fs photophysical processes. The density matrix
method is ideal to describe these types of ultrafast processes and fs time-resolved
pump-probe experiments [14–19].

This chapter is organized as follows: In Sect. 4.2, the theory of density matrix
method is introduced. In Sect. 4.3, we use a theoretical model to manifest the
condition of nonexponential decay. In Sect. 4.4, conical intersection in the IC
process will be dealt with. In Sect. 4.5, the vibrational relaxation process in the
framework of adiabatic approximation will be discussed. And at last, we will give a
conclusion in Sect. 4.6.

4.2 Density Matrix Method

The dynamics of an isolated (or total) system is governed by the Liouville equation
[14–21]

d O�
dt

D � i„ Œ
OHt; O�� D �i OLt O� (4.1)
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Here, OHt is the Hamiltonian of the total system. The subscript “t” here refers to
the “total system”. OHt can be written as

OHt D OHs C OHb C OH 0 (4.2)

where OHs, OHb, and OH 0 are the Hamiltonians of the system, heat bath, and the
interaction between the system and the heat bath, respectively. The symbol O� in
Eq. (4.1) denotes the density operator of the total system. OLt represents the
Liouville operator corresponding to OHt. The time-dependent behavior of the system
is described by the reduced density matrix O�, which can be obtained by eliminating
the heat bath variables:

�mn D
X

˛

�m˛;n˛ (4.3)

That is,

O� D Trb Œ O�� (4.4)

Define project operator OD

O�1 D OD O�; O�2 D .1 � OD/ O� (4.5)

where the matrix elements of OD can be represented as [21]

D
m0˛0 ;n0ˇ0

m˛;nˇ � ı˛˛0ımm0ınn0ıˇˇ0ı˛ˇ (4.6)

OD can project the density matrix elements onto the diagonal matrix elements of
the bath. Apply Laplace transformation to density operator O� :

O�.p/ D
Z 1

0

e�pt O�.t/dt (4.7)

Insert Eq. (4.7) into Eq. (4.1):

p O�1.p/� O�1.0/ D �i OD OLt O�1.p/ � i OD OLt
1

p C i
�

1 � OD
	 OLt

O�2.0/� OM.p/ O�1.p/

(4.8)

Here, OM.t/ or OM.p/ denotes the memory kernel:

OM.p/ D OD OLt 1

p C i
�

1 � OD
	 OLt

�

1 � OD
	 OLt (4.9)
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It follows that

d O�
dt

D �i NL O� �
Z t

0

NM.�/ O�.t � �/d� (4.10)

where

NL D Trb

h OD OLt O�.b/
i

(4.11)

and

NM.�/ D Trb
h OM.�/ O�.b/

i

(4.12)

Applying Markoff approximation, Eq. (4.10) becomes

d O�
dt

D �i NL O� � O� O� (4.13)

That is, the evolution of population dynamics is described by

d�nn
dt

D � �nnnn�nn �
X

m

0�mmnn �mm � i

„
h OHs; O�

i

nn

D
X

m




�nnmm�nn � �mmnn �mm
� � i

„
h OHs; O�

i

nn

(4.14)

where

�mmnn D �2�„
˛¤ˇ
X

˛

X

ˇ

0�.b/ˇˇ
ˇ
ˇH 0

m˛;nˇ

ˇ
ˇ
2
ı



Em˛ �Enˇ
�

(4.15)

represents the rate constant for m ! n transition, and

�nnnn D �
X

m

0�nnmm (4.16)

represents the total transition rate constant of state n. Similarly, the coherence (or
phase) dynamics is described by

d�mn
dt

D ��mnmn�mn � i

„
h OHs; O�

i

mn
(4.17)

�mnmn D 1

2




�mmmm C �nnnn
�C �mnmn .d/ (4.18)
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Fig. 4.1 Sketch of
pump-probe experiment
process

and

�mnmn .d/ D �

„2
X

˛

X

ˇ

0�.b/˛˛



H 0
m˛;mˇ �H 0

n˛;nˇ

�2
ı.!˛ˇ/ (4.19)

In the presence of an optical interaction OV .t/, the Liouville equation becomes

d O�
dt

D � i„
h OHs; O�

i

� i

„
h OV .t/; O�

i

� O� O� (4.20)

This equation can be applied to study the dynamics of the systems with OV .t/ D 0,
linear and nonlinear optics, and pump-probe experiments, etc.

In femtosecond experiments, as shown in Fig. 4.1, the pump-probe methods are
most commonly used to study the dynamic processes in chemical compounds or
materials. It should be noted that for probing, one can use the optical excitation,
photoionization up-conversion, and stimulated emission [18]. From the uncertainty
principle, �E�t � „=2, we can see that �E depends on the pumping-pulse
duration�t. For short�t, both population and coherence (or phase) can be created.
In other words, in this case, both population and coherence dynamics have to be
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treated. Thus, the density matrix method is ideal for this purpose. In pump-probe
experiments, the Liouville equation takes the form

d O�
dt

D � i OL0 O� � i

„
h OV .t/; O�

i

� O� O� D �i OL0
0 O� � i OL0.t/ O�

D � i

„ Œ
OHs; O�� � i

„
h OV .t/; O�

i

� O� O�
(4.21)

where OV .t/ D � E	� EE.t/, E	 is the dipole operator, and OV .t/ describes the interaction
between the system and the pumping (or probing) laser.

For the probing experiment, applying the perturbation method, the first-order
solution of Eq. (4.21) is given by

�.1/nm.t/ D �1„
X

n0

�.�t/nn0

E	n0m

! C !0
n0m � i=TP

� EE0.�!/eit!L0.t/ (4.22)

where �t D t � ti and Tp represents the duration of the probing laser. Here, OV .t/
is denoted by

OV .t/ D � E	 �
h EE.!/e�i t! C EE.�!/eit!

i

L0.t/ (4.23)

andL0.t/ denotes the laser-pulse shape function. Next, we calculate the polarization
EP.t/

EP.t/ D EP .1/.t/ D Tr
� E	 O�.1/.t/� D

X

n

X

m

E	nm�.1/nm.t/ (4.24)

or

EP .t/ D �1„
X

n

X

n0

X

m

�.�t/nn0

E	mn E	n0m

! C !0
n0m � i=TP

� EE0.�!/eit!L0.t/ (4.25)

and the linear optical susceptibility

�.!/ D �1„
X

n

X

n0

X

m

�.�t/nn0

E	n0m E	mn
! C !nm C i�nm C i=TP

(4.26)

As shown from Eq. (4.26), the dynamics of both population �.�t/nn and
coherence �.�t/nn0.n ¤ n0/is involved in the time-resolved experiment (the probe
experiment here), and Eq. (4.26) can be applied to optical absorption and stimulated
emission. Furthermore, we recover the ordinary linear response theory where �nn0 D
0 and �nn represents the Boltzmann distribution. In other words, Eq. (4.26) denotes
the generalized linear response theory (GLRP). Pumping experiments can be treated
similarly by using Eq. (4.21). With a short-pulse pumping laser, both population
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and coherence excitations can be created and the nonadiabatic processes such as
photoinduced electron transfer take place afterward. With a similar derivation as
shown above, we obtain the coherence created by the pumping laser with electric
field EEpu and frequency !pu as

. O�i /nn0 D �2pu

„2
h

E	ng � EEpu.!pu/
i h

E	gn0 � EEpu.�!pu/
i

O�0 (4.27)

where �pu denotes the pump-laser pulse duration and O�0 is the density matrix of the
system before the arrival of the pump laser. It is assumed that initially only the g
state is populated. Here . O�i /nn0by setting n0 D n, we obtain the population . O�i /nn.
Other pumping conditions can be treated similarly by using Eq. (4.21).

4.3 Application to a Case of Bixon-Jortner Model

In intermediate or small systems, their population dynamic behaviors often exhibit
nonexponential decay or even oscillatory decay like the vibrational relaxation of
C6H5NH2 in Sect. 5.2. To show how the density matrix method can be applied to
study these systems, the Bixon-Jortner model is considered in this section. For this
purpose, we consider the following model (see Fig. 4.2). j0i and jii .i D 1; n/

are the eigenstates of the Hamiltonian OH0. For simplicity, we assume that only the
perturbation matrix elements between j0i and jii states are nonzero. That is,

H 0
00 D 0

H 0
0i D H 0�

i0 D E 0 ¤ 0

H 0
ij D 0; i; j 
 1

(4.28)

The state of the system driven by the Hamiltonian OH D OH0 C OH 0 at time t can
be expanded by j0i and jii states:

j‰.t/i D C0.t/ j0i C
X

i

Ci .t/ jii (4.29)

Fig. 4.2 Bixon-Jortner
model for decay from j0i
state
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Then, the population of state j0i can be expressed as

�00.t/ D jC0.t/j2 (4.30)

The density operator will evolve according to the Liouville equation

d O�
dt

D � i„
h OH; O�

i

� O� O� (4.31)

In order to simulate the damping process of states jii (i D 1, n), the imaginary
energies have been added:

Ei ! Ei � iE� (4.32)

Define

� � H 0
0i

"
D E 0

"
(4.33)

where " denotes the energy interval between the eigenstate jii and ji C 1i. For this
model, we set n D 100, which means that nC 1 eigenstates including j0i have been
involved in this evolution process. We set the damping parameter E� D 20 cm�1
and the energy interval " D 20 cm�1. Assuming that at the beginning, C0.0/ D 1

and Ci.0/ D 0 for i 
 1, and then the population of state j0i, �00.t/, is calculated
and plotted in Fig. 4.3. When � D 1, E 0 D ", the decay of �00.t/ appears near
exponential character. With the increasing of perturbation E 0, the population �00.t/
decays rapidly, and the oscillation appears. The reason of this phenomenon is due
to the increasing of the perturbation speeding up the dynamics between j0i and jii
states, which results in the nonexponential decay.

The purpose of this section is to show how to employ the density matrix method
to study the population dynamics of a system. From the model shown in Fig. 4.2,
we can see that due to the fact that there is only one “system” state, there is
no system coherence (or phase). However, quantum beat may be observed under
certain conditions. It should be noticed that the master equations of this model can
be solved exactly and analytically. Likewise, its Schrödinger equation can also be
solved exactly and analytically.

4.4 A Model of Conical Intersection

Recently, the pump-probe experiment for studying the ultrafast dynamics
  * ! n * of pyrazine has been carried out by Suzuki et al. [13]. Figure 4.4 shows
the absorption spectra, pump and probe beam profiles, and energy level diagram.
The adiabatic electronic excitation energies are taken from the Refs. [22–26]. It
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Fig. 4.3 The population �00.t/ of the state j0i. Set the damping parameter E� D 20 cm�1 and
the energy interval " D 20 cm�1. Different value of � corresponds to different perturbation E 0

Fig. 4.4 The experimental
results of pyrazine from Ref.
[13]. Ultraviolet
photoabsorption spectra of (a)
S1, S2, and S3 of pyrazine-h4
vapor (thin solid line) and
pyrazine-d4 vapor (thin
dashed line) at room
temperature. The spectra of
their pump (264 nm, 4.70 eV)
and probe (198 nm, 6.26 eV)
pulses are also shown in solid
lines. (b) Schematic energy
diagram of pyrazine
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Fig. 4.5 Temporal profiles of
total photoelectron signals in
(1 C 10) REMPI of (a)
pyrazine-h4 and (b)
pyrazine-d4 from Ref. [13].
The observed data (solid
circles with error bars) are
well explained by three
components: the
single-exponential decay of
S2 (dotted line), the
corresponding increase in S1

(dashed line) in the
positive-time delay, and the
single-exponential decay of
S3 (dash-dotted line) in the
negative-time delay. The
fitting result is shown as a
solid line

should be noted that the photoionization method has been employed for probing.
Due to the particular use of pumping and probing lasers, the probing signals contain
the dynamics information of S2 and S3 states. Employing the 22-fs duration lasers,
Suzuki et al. obtained the lifetimes for pyrazine as �(S2) D 22 ˙ 2 fs and �(S3) D 40–
43 fs. Their experimental results of temporal profiles of total photoelectron signals
are shown in Fig. 4.5. For the equalization discussion of their experimental results,
the potential surfaces obtained by Domcke et al. [27] have been used (see Fig. 4.6).

Next, we shall propose a treatment of IC   * ! n * with conical intersection.
This model can be commonly used to describe the CI of   * and n * electronic
states of the pyrazine molecule. Near the bottom of the two potential surfaces, the
two electronic states in the “diabatic” approximation are described by ˆd

1(n *) and
ˆd
2(  *). The adiabatic approximation ˆad

1 and ˆad
2 will be employed to describe

the electronic states in the CI region. Thus,

ˆd
1 D cos 
ˆad

1 C sin 
ˆad
2 (4.34)

and

ˆd
2 D � sin 
ˆad

1 C cos 
ˆad
2 (4.35)
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Fig. 4.6 A cut through the
potential-energy surfaces of
pyrazine along the normal
coordinate Q6a from Ref.
[27]. The vertical energy
differences and shifts are
drawn on scale. The shaded
areas symbolize the
ionization continua. The
arrows on the right-hand side
indicate a possible two
photon transition (Reprinted
with permission from Ref.
[27] Copyright (1991),
American Institute of
Physics)

The adiabatic PESs of ˆad
1 and ˆad

2 are given by [12]

U1 D
.H11 CH22/C

h

.H11 �H22/
2 C 4H2

12

i 1
2

2
(4.36)

and

U2 D
.H11 CH22/�

h

.H11 �H22/
2 C 4H2

12

i 1
2

2
(4.37)

where

tan 2
 D 2H12

H11 �H22

(4.38)

Here, the Hij (i; j D 1; 2) are the Hamiltonian matrix elements in the diabatic
representation [12]. To analyze the nonadiabatic dynamic data of pyrazine reported
by Suzuki et al. [13] and to use the PESs of Domcke et al. [27], we use the
dimensionless normal coordinate



90 Y.L. Niu et al.

Qj D
r
!j

„
X

i

LijM
1
2

i qi (4.39)

where !j is the angular frequency of the j th mode. Lij represents the element
of eigenvector matrix of Hessian matrix. qi is the Cartesian coordinate, and Mi is
the corresponding nuclear mass, respectively. Apply the linear coupling approxi-
mation [12]

H11 �H22 D N� 
Qt � NQt
�

; H12 D N�Qc (4.40)

where Qt and Qc denote the totally symmetric mode (i.e., an accepting mode
or tuning mode), describing the displacement between the   * surface and n *
surface, and the vibronic coupling mode (i.e., the promoting mode), respectively.
The point .Qt;Qc/ D . NQt; 0/ is just the crossing point of the   * surface and n *
surface (i.e., U1 D U2). Notice that

.H11 �H22/
2 C 4H2

12 D N�2
Qt � NQt
�2 C 4 N�2Q2

c (4.41)

At the points other than .Qt;Qc/ D . NQt; 0/, U1 and U2 represent conical
surfaces.

Next, we discuss the calculation of the IC rate of   * ! n * transition. The
IC rate for the electronic transition a ! b based on the breakdown of the Born-
Oppenheimer adiabatic approximation

‰av D ˆad
a ‚

ad
av; ‰bu D ˆad

b ‚
ad
bu (4.42)

can be expressed as
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@Qi
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ˇ
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ˇ
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D .Ebu � Eav/

(4.43)

where D .Ebu � Eav/ denotes the line-shape function. In this case, it could be the
Lorentzian function:

D .Ebu � Eav/ D 1

�
� �bu;av

.Ebu �Eav/
2 C �2bu;av

(4.44)

Qcin Eq. (4.40) and Qi in Eq. (4.43) represent the promoting mode (i.e., the
coupling mode for the pyrazine case). Notice that

�

ˆad
b

ˇ
ˇ
ˇ
ˇ

@

@Qi

ˇ
ˇ
ˇ
ˇ
ˆad
a

�

D
D

ˆad
b

ˇ
ˇ
ˇ
@V
@Qi

ˇ
ˇ
ˇˆad

a

E

Ua � Ub
(4.45)
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For the pyrazine case, the molecule is optically pumped from the ground
electronic state to the diabatic state ˆd

2; in this case, we have

�

ˆd
2

ˇ
ˇ
ˇ
ˇ

@

@Qc

ˇ
ˇ
ˇ
ˇ
ˆd
1

�

D
D

ˆd
2

ˇ
ˇ
ˇ
@V
@Qc

ˇ
ˇ
ˇˆd

1

E

H11 �H22

(4.46)

And to avoid the divergence of Eq. (4.46), we change the basic set from (ˆd
2,

ˆd
1), the “diabatic” approximation, to (ˆad

2 , ˆad
1 ), the adiabatic approximation.

Substituting Eqs. 4.34 and 4.35 into 4.46 yields
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(4.47)

According to the Eq. (4.38),

@
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N�cos22
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.H11 �H22/
2 C 4H2

12

(4.48)

For practical calculations, we use the following relation:
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(4.49)

Using the calculated  * and n * surfaces obtained by Domcke et al., we obtain

�
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ˇ
ˇ
ˇ

@

@Qc

ˇ
ˇ
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ˇ
ˆd
1

�

D 2 N� N� 
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�

N�2
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�2 C 4 N�2Q2

c

(4.50)

The surface properties of the electronic states obtained by Domcke et al. are
shown in Tables 4.1 and 4.2. The gradients of the excitation energies of the S1 and
S2 are coming from Ref. [12], where

�j D @Uj

@Qt

ˇ
ˇ
ˇ
ˇ
0

(4.51)

and

N� D �� D �2 � �1 (4.52)

and we assume that

N� D � D @Uj

@Qc

ˇ
ˇ
ˇ
ˇ
0

(4.53)
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Table 4.1 Harmonic vibrational frequencies (in cm�1) of Ag

and B1g normal modes of pyrazine in the electronic ground
state from Ref. [12]

v1 v2 v6a v8a v9a v10a

MP2 [11] 1,027 3,280 597 1,633 1,264 914
Expt. [25] 1,015 3,055 596 1,582 1,230 919

Reprinted with permission from Ref. [12]. Copyright (1994),
American Institute of Physics
Comparison of MP2 results (DZP basis set) with experiment

Table 4.2 Gradients of the excitation energies of the S1 and S2 states
of pyrazine with respect to the totally symmetric normal coordinates
defined at the reference geometry in MRCI (including the Davidson
correction) method, from Ref. [12]

Q1 Q2 Q6a Q8a Q9a

�(1) (eV) �0.0470 0.0368 �0.0964 �0.0623 0.1594
�(2) (eV) �0.2012 0.0211 0.1193 0.0348 0.0484
�� (eV) �0.1542 �0.0157 0.2157 0.0971 �0.1110
S 0.7333 0.0008 4.2461 0.1150 0.2508

Reprinted with permission from Ref. [12]. Copyright (1994), American
Institute of Physics
S is Huang-Rhys factor

Then, Huang-Rhys factor S can be obtained from the following formula:

S D 1

2

�
��

„!
�2

(4.54)

The vibronic coupling constant �10a is set to 1,472 cm�1 according to Ref. [12]
in MRCI method. We then obtain the Q-dependent nonadiabatic coupling IC rate as

Wa0 D�„!2c
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(4.55)

where

At � ��

2 N� ;Ac � 2 N�
��

(4.56)

In the Condon approximation at equilibrium geometry of ground state, the Q-
independent nonadiabatic coupling IC rate is

Wa0 D �„!2c
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ˇ
2
ı .Ea0 �Ebu/ (4.57)
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Fig. 4.7 Lifetimes of S2 state of pyrazine versus broadening parameter � , with equal different
vertical excitation energy from 0.50 to 1.00 eV

Next, we define the Iut and ICI
ut

to compare the difference between the Franck-
Condon factor without and with conical intersection:

Iut � jh�but j �a0t ij2 (4.58)
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ˇ
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2

(4.59)

It should be noted that the IC lifetime should depend on the line-shape function
(see 4.43). The formula (4.59) is calculated numerically. The nonradiative lifetime
versus broadening � has been plotted in Fig. 4.7. The vertical excited energy
changes from 0.50 to 1.00 eV. In Fig. 4.7, it shows that when the vertical excited
energies are 0.50 or 0.70 eV, and when the broadening parameter � tends to 0,
the lifetime tends to about 50 fs. From Fig. 4.7, we can see that the nonadiabatic
transition rates depend on � and the energy gap.

The main purpose of using the dynamics of the  * ! n * transition of pyrazine
as an example is to show how to treat the effect of CI on IC. Suzuki et al. have
employed the 22-fs laser pulse for pumping in their studies of the   * ! n *
dynamics of pyrazine. In this case, the dynamics of both population and coherence
should be considered. Using the notations of bu and av to describe the vibronic
states of   * and n *, we obtain
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d�bu;bu0

dt
D �

�

i!bu;bu0 C �
bu;bu0

bu;bu0

	

�bu;bu0 � i

„
h OV .t/; O�

i

bu;bu0
� i

„
h OHs0.t/; O�

i

bu;bu0

(4.60)

for the coherence, and

d�bu;bu

dt
D � i„

h OV .t/; O�
i

bu;bu
� i

„
h OHs0.t/; O�

i

bu;bu
(4.61)

for the population. OHs0 describes the dynamics of IC, and OV .t/ describes the
pumping process. In the pyrazine case, since its lifetime is also 22 fs, both pumping
and decay should be considered simultaneously.

From the discussion of the fs pump-probe experiments, when the fs laser pulse
is used for pumping, from the uncertainty principle �!�t � 1, one can expect that
when the pulse duration of �t is employed, the coherence corresponding to �! �
1=�t will be created, and the corresponding quantum beat will be observed. This
can indeed be seen from Fig. 4.5 for the pyrazine case. In this case,�! � 560cm�1
is corresponding to the mode v6a, which has the largest Huang-Rhys factor and can
be most effectively pumped.

For the analysis of the   * ! n * dynamics, the potential surfaces of Domcke
et al. have been commonly used (including Suzuki et al.). However, recently, we
have shown that their surfaces are imperfect because in pyrazine there are two
n * states, but Domcke et al. have only considered one n * surface. Recently, we
have calculated the location of the second n * state and its effect on the spectra of
pyrazine [28].

The purpose of Fig. 4.7 is to show the effect of electronic energy gap and
dephasing (or damping) constant on the nonadiabatic transition rate by using the
surface of Domcke et al.

The dephasing (or damping) constants involved in the nonadiabatic processes
like IC of   * ! n * of pyrazine are mainly due to vibrational relaxation and
dephasing of the n * state (see Eq. 4.44).

4.5 Vibrational Relaxation

In this section, we shall propose to the intramolecular vibrational relaxation. We
shall first describe the problem associated with the harmonic approximation of
molecular vibration. In the harmonic oscillator approximation, we have

T D
X

i

1

2
PQ2
i ; U D

X

i

1

2
!2i Q

2
i ; E D T C U (4.62)

and

dE

dt
D
X

i

PQi


 RQi C !2i Qi

� D 0 (4.63)
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This indicates that the energy conservation holds for each individual mode. That
is, energy exchange between different normal modes is impossible. Taking the
anharmonic coupling into account, the anharmonic potential-energy function can
be expressed as

U D
X

i

1

2Š

�
@2U

@Q2
i

�

0

Q2
i C

X

ijk

1

3Š

�
@3U

@Qi@Qj@Qk

�

0

QiQjQk C � � � (4.64)

Cross terms can lead to energy flow from one mode to another.
Recently, developments in quantum chemical calculations have made it possible

to perform the calculations of the potential surfaces expressed in the form of
Eq. (4.64) for polyatomic PESs [10]. The anharmonic potential can modify the
energy level spacing, produce a maximum quantum number for a vibrational mode,
and introduce mode-mode coupling. These make the IR spectra exhibit not only
fundamental transition bands but also overtone and combination bands, side bands,
and often new bands.

Next, we consider the solution of the Schrödinger equation of vibrational motion
with the anharmonic PESs

OH‰ D E‰ (4.65)

where OH is the molecular Hamiltonian, and

OH D OT C U (4.66)

Two methods will be presented in this chapter, the self-consistent field (SCF)
method and the adiabatic approximation method [29–31]; for demonstration, we
shall apply these methods to the example

OH D �1
2

@2U

@Q2
i

C 1

2
!2i Q

2
i � 1

2

@2U

@q2˛
C 1

2
!2˛q

2
˛ C V .Qi ; q˛/ (4.67)

where

V .Qi ; q˛/ D �



Q2
i q˛ C �q3˛

�

(4.68)

We shall first consider the SCF method. Notice that

‰ D '˛.q˛/'i .Qi/ (4.69)

W D
D

‰
ˇ
ˇ
ˇ OH
ˇ
ˇ
ˇ‰
E

h‰ j ‰i (4.70)

h‰ j ‰i D 1; h'˛ j '˛i D 1; h'i j 'i i D 1 (4.71)
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According to the variational method, we have

OH D OH˛ C OHi C V.q˛;Qi/ (4.72)

OH˛ D OT˛ C 1

2
!2˛q

2
˛ (4.73)

OHi D OTi C 1

2
!2i Q

2
i (4.74)

W 0 D
D

‰
ˇ
ˇ
ˇ OH
ˇ
ˇ
ˇ‰
E

C "˛ .1� h'˛ j'˛ i/C "i .1 � h'i j'i i/ (4.75)

and
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D
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ˇ
ˇ
ˇ'˛

E
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where

Ei D
D

'i

ˇ
ˇ
ˇ OHi

ˇ
ˇ
ˇ 'i

E

; E˛ D
D

'˛

ˇ
ˇ
ˇ OH˛

ˇ
ˇ
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E

(4.77)

From Eq. (4.76), we obtain

� OH˛ C Ei C h'i jV j'i i
	

'˛ D "˛'˛ (4.78)

and
� OHi CE˛ C h'˛ jV j '˛i

	

'i D "i'i (4.79)

Equations (4.78) and (4.79) have to be solved in the SCF manner.
Next, we consider the adiabatic approximation model, which is similar to

the Born-Oppenheimer approximation model for molecules, that is, electronic
motion corresponding to Qi , nuclear motion corresponding to fq˛g, UV-visible
spectra corresponding to IR vibrational spectra, and IC corresponding to vibrational
relaxation. It follows that to solve

OH‰av.Q; q/ D Eav‰av.Q; q/ (4.80)
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Table 4.3 Comparison of uncoupled harmonic oscillator (HO), exact
quantum (EQ) [32–35], semiclassical (SC) [34], self-consistent field (SCF)
[30], adiabatic approximation (AA), and NA eigenvalues

n v HO EQ SC SCF AA NA ˛

!2˛ D 0:29375, !2i D 2:12581, � D �0:1116, � D 0:08414

0 0 1.0000 0.9916 0.9920 0.9925 0.9918 0.9917 98
0 1 1.5420 1.5159 1.5164 1.5190 1.5170 1.5169 96
0 2 2.0840 2.0308 2.0313 2.0364 2.0344 2.0342 93
1 0 2.4580 2.4188 2.4194 2.4214 2.4194 2.4193 99
!2˛ D 0:49, !2i D 1:69, � D �0:1, � D 0:1

0 0 1.0000 0.9955 0.9955 0.9963 0.9956 0.9955 98
0 1 1.7000 1.6870 1.6870 1.6895 1.6873 1.6872 98
0 2 2.3000 2.2781 2.2782 2.2800 2.2783 2.2782 99

Data from Ref. [31]. Reprinted with permission from Ref. [34]. Copyright
(1983), Taylor & Francis Ltd˛ is defined in [30]

where

OH D OTQ C OTq C V D OTq C OHQ (4.81)

we first solve

OHQˆa.QI q/ D Ua.q/ˆa.QI q/ (4.82)

and then solve
h OTq C Ua.q/

i

‚av.q/ D Eav‚av.q/ (4.83)

and

‰av.Q; q/ D ˆa.QI q/‚av.q/ (4.84)

Here, semicolon means that q is regarded as parameter in ˆa.QI q/. Numerical
results for this model are shown in Table 4.3 [31]. The performance for these cases
for the adiabatic approximation is acceptable.

Next we consider the general case with adiabatic approximation

OH D OTQ C OTq C V.q;Q/ (4.85)

OTQ D �
X

n

„2
2

@2

@Q2
n

(4.86)

OTq D �
X

i

„2
2

@2

@q2i
(4.87)
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V.Q; q/ D VH.Q/C VL.q/C Vint.Q; q/ (4.88)
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X

I

1

2
!2I Q

2
I C

X

IJK

NVIJKQIQJQK C
X

IJKL

NVIJKLQIQJQKQL C � � � (4.89)
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C
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X

IJKi

NVIJKiQIQJQKqi C � � �
(4.91)

where NV are the anharmonic expansion coefficients of the PES. In Eq. (4.91), for
example,

VIJi �
�

@3V

@QI@QJ@qi

�

0

(4.92)

NVIJi � 1

3Š
VIJi (4.93)

Vibrational IR spectra can be then calculated according to

˛ .!/ D 4�2!
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@Qi

�

0

Qi C � � � (4.95)

and Pvn denotes the Boltzmann distribution function. Fundamental, overtone,
combination, and side bands based on the adiabatic approximation method can then
be calculated.

In the B-O approximation, the IC a ! b can be expressed as
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For vibrational relaxation in the adiabatic approximation, the above equation can
be used by changing (a, b) into the vibrational quantum numbers of high-frequency
modes and by changing (u, v) into the quantum numbers of low-frequency modes.
For example, the coupling becomes

@V

@qk
D 6

X

l

NVIlkQIql C � � � D
X

l

VIlkQIql C � � � (4.99)

We consider the relaxation ofQI mode. Notice that fqlg consist of the promoting
modes and the accepting modes. The displacement of low-frequency mode qj comes
from the anharmonic coupling term NVIIj in first-order perturbation theory

UNI.qj / D 1

2
!2j q

2
j C ˝

NI

ˇ
ˇ3 NVIIjQ

2
I qj

ˇ
ˇNI

˛ � 1

2
!2j
�

qj C dj .NI/
�2 C � � � (4.100)

where

dnj .NI/ D 3 NVIIj .NI C . 1
2
//„

!2j !I
(4.101)

represents the displacement of mode j for the specific vibrational state jNIi of high-
frequency mode. Then, we define the displacement between j1Ii and j0Ii as

�dIj � dIj .1/� dIj .0/ D 3 NVIIj„
!2j!I

(4.102)

and the corresponding Huang-Rhys factor is

SIj D !I

2„�d
2
Ij (4.103)

Similar to IC, the vibrational relaxation rate formula can be expressed as

W 0
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(4.104)

and the total decay rate is given by

W 0
I D

X

l6k
W 0

Ilk (4.105)

where

RIlk D VIlk

„!I
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Fig. 4.8 Structure of water
dimer, calculated in Gaussian
09, DFT/CAM-B3LYP/6-
311CCg(d,p) long-range
corrected version of B3LYP
functional

Table 4.4 The symmetries and harmonic frequencies of water dimer

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Symmetry a00 a0 a00 a0 a0 a00 a0 a0 a0 a0 a0 a00
Frequency (cm�1) 138 165 175 206 374 692 1,606 1,623 3,739 3,853 3,932 3,951

and

VIlk D @3V

@QI@ql@qk

s

„3
!I!l!k

(4.107)

4.5.1 Vibrational Relaxation of Water Dimer

As an example to apply the adiabatic approximation theory of vibrational relaxation,
the hydrogen-bonded water dimer (H2O)2 will be studied in this work. The structure
of (H2O)2 was optimized using Gaussian 09 program [36] with DFT method and
CAM-B3LYP/6-311CCg(d,p) long-range corrected version of B3LYP functional.
The optimized structure is shown in Fig. 4.8.

The point group of water dimer is CS. There are eight symmetric modes and four
antisymmetric modes. The frequencies have been listed in Table 4.4.

Employing Eq. (4.103), Huang-Rhys factors SIj can be calculated and listed in
Table 4.5. The Huang-Rhys factor is related with mode displacement in Eq. (4.101),
which is determined by the anharmonic expansion coefficient VIIj . I and j are the
indexes of high-frequency mode and low-frequency mode, respectively. According
to group theory, VIIj with antisymmetric low-frequency mode j is vanished. This
means that only symmetric low-frequency mode can contribute to the Huang-Rhys
factor, which can be obviously observed in Table 4.5.

Overall vibrational relaxation rates for modes 7–12 are calculated according
to Eq. (4.105) and listed in Table 4.6, while detailed vibrational relaxation rates
are listed in Table 4.7. From these tables, we can see that the fastest vibrational
relaxation rate is 1.93 	 1010 s�1 for the mode 9. The rates are consistent with the
experimental data of Miller et al. [37], estimating from the spectral bandwidth. An
important feature is that the detailed relaxation rates like W11;8;8, W11;7;7, W10;8;8,
W10;7;7,W9;8;8, W9;7;7, W8;6;6, and W7;6;6 play important roles in the vibrational
relaxation of (H2O)2.
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Table 4.5 Huang-Rhys factors of water dimer in adiabatic approximation

S7j (�10�3) S8j (�10�3) S9j (�10�3) S10j (�10�3) S11j (�10�3) S12j (�10�3)

1 0 0 0 0 0 0
2 0.0085 1.7311 10.2435 0.4038 0.3522 1.0797
3 0 0 0 0 0 0
4 0.1028 0.3378 0.3926 0.0375 0.0079 0.1278
5 0.6162 1.9333 0.3049 0.2603 0.6763 0.5117
6 0 0 0 0 0 0
7 0.1604 0.0590 0.7028 1.6853
8 0.0191 0.0169 1.1456 0.8310

Table 4.6 The overall
vibrational relaxation rate Mode Frequency (cm�1) Rate (s�1) Lifetime (ps)

7 1,606 2.24 � 109 446

8 1,623 4.53 � 107 22; 079

9 3,739 1.93 � 1010 52

10 3,853 4.15 � 109 241

11 3,932 2.80 � 109 357

12 3,951 7.94 � 108 1; 259

Another vibrational energy flow pathway is due to the vibrational energy transfer
through the dipole-dipole interaction:

D
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for example.
It should be noted that our attempt to calculate vibrational relaxation for clusters

and complex systems should be regarded as a preliminary attempt because the
anharmonic potential function, themselves, are approximate and their performance
should be carefully examined by calculating IR spectra in addition to vibrational
relaxation.

4.5.2 Intramolecular Vibrational Relaxation of Aniline

IVR is one of the most important dynamics of the vibrationally excited polyatomic
molecules. In most cases, IVR is the first dynamical step prior to chemical reactions
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Table 4.7 Vibrational relaxation paths. Accepting energy D !n �
!l � !k

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

7 6 1 0:183 775 1.51 � 105

7 6 3 0:134 738 1.83 � 105

7 6 6 0:058 221 2.24 � 109

8 6 1 0:351 792 4.52 � 106

8 6 3 0:106 755 8.36 � 106

8 6 6 0:006 237 3.99 � 107

9 6 3 0:311 2; 872 1.24 � 105

9 6 6 �0:444 2; 354 5.23 � 106

9 7 2 �0:078 1; 968 5.82 � 105

9 7 4 0:033 1; 927 1.40 � 105

9 7 5 �0:069 1; 759 1.98 � 106

9 7 7 �0:033 527 2.43 � 109

9 8 2 �0:103 1; 952 1.35 � 107

9 8 4 0:038 1; 911 2.39 � 106

9 8 5 �0:101 1; 743 4.42 � 107

9 8 7 �0:035 510 6.09 � 106

9 8 8 �0:057 494 1.68 � 1010

10 7 7 0:055 641 2.78 � 109

10 8 7 �0:046 624 3.65 � 105

10 8 8 0:027 608 1.36 � 109

11 6 6 �0:116 2; 548 4.82 � 106

11 7 2 �0:123 2; 162 8.53 � 107

11 7 4 0:050 2; 120 1.69 � 107

11 7 5 �0:120 1; 953 2.12 � 108

11 7 7 0:015 720 7.97 � 108

11 8 2 �0:159 2; 145 7.51 � 107

11 8 4 0:063 2; 104 1.45 � 107

11 8 5 �0:159 1; 936 2.08 � 108

11 8 8 0:021 687 1.39 � 109

12 6 2 0:149 3; 095 1.24 � 106

12 7 3 0:247 2; 171 2.15 � 108

12 7 6 0:052 1; 654 1.10 � 108

12 8 3 �0:188 2; 154 3.24 � 108

12 8 6 �0:040 1; 637 1.41 � 108

[6, 38, 39]. The IVR of the NH2 symmetric and antisymmetric stretching vibrations
of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV
pump-probe spectroscopy [40, 41]. Aniline has two NH2 stretching modes (see
Fig. 4.9): symmetric stretching vibration (vs) with the frequency of 3,423 cm�1

and antisymmetric stretch (va) with 3,509 cm�1 [42]. In the picosecond pump-probe
experiment, the IVR of the NH2 stretch is described by two-step tier model as shown
in Fig. 4.10. The symmetric or antisymmetric stretching mode is initially excited to
the vibrational excited state. In the first step, the energy flows into the doorway
states [43, 44]. Then in the second step, the energy is further redistributed to dense
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Fig. 4.9 IR spectra of aniline
in a supersonic beam from
Ref. [41]. The upper trace
was obtained by IR-UV
double-resonance
spectroscopy with the use of
the nanosecond laser system.
The inset shows the expanded
spectrum in the CH stretch
region. The lower trace is the
ionization gain IR spectrum
obtained with the picosecond
laser system (Reprinted with
permission from Ref. [41].
Copyright (2005), American
Institute of Physics)

Fig. 4.10 The two-step tier
model of IVR from Ref. [41].
Vanh1 and Vanh2 indicate the
anharmonic coupling matrix
elements in each step, and k1

and k2 are the rate constants
(Reprinted with permission
from Ref. [41]. Copyright
(2005), American Institute of
Physics)

base states. By fitting the transient (1 C 1) REMPI spectra of aniline, the IVR
rates of NH2 symmetric and antisymmetric stretching vibrations are summarized
as follows [41]:

1. vs (3,423 cm�1) : k1 D 5.6 	 1010 s�1, and k2 D (0.1–5) 	 1010 s�1

2. va (3,509 cm�1) : k1 D 2.9 	 1010 s�1, and k2 D (0.1–2) 	 1010 s�1

In this chapter, we calculate the IVR rates of NH2 symmetric and antisymmetric
stretching vibrations of aniline and compare the results with the first vibrational
state k1.

The structure of aniline was optimized using Gaussian 09 program [36] with DFT
method and B3LYP/6-311CCg(d,p). The optimized structure is shown in Fig. 4.11.
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Fig. 4.11 Structure of
aniline, calculated in
Gaussian 09,
DFT/B3LYP/6-311CCg(d,p)

Table 4.8 Vibrational relaxation paths for symmetric stretching
mode of NH2 (mode 35)

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

35 29 29 0.010 242 8.24 � 1010

35 29 28 0.005 261 1.58 � 1010

35 28 28 0.002 281 0.24 � 1010

Total 10.11 � 1010

Tables 4.8 and 4.9 list the vibrational relaxation paths for symmetric and antisym-
metric stretching vibrational modes, which IVR rates are larger than 1 	 109 s�1.
The theoretical results of IVR rates, vs D 10.11 	 1010 s�1 and va D 1.59 	 1010 s�1,
are as the same orders of magnitude as the experimental values. It also shows that
the IVR rate of symmetric mode is larger than that of antisymmetric mode. Due
to selection rule, the NH2 scissoring and C–C stretching symmetric modes 28 and
29 can accept relaxation energy from symmetric mode 35 at the same time. This
makes that the accepting energy for symmetric mode 35 be smaller than that for
antisymmetric mode 36 and then enhances the IVR rate according to energy gap
law. It should be noted that, in Yamada’s work [41], it is thought that the doorway
states consist of the CH stretching modes because the deuterium substitution of the
CH group significantly reduces the IVR rate constant of the first step. However,
the theoretical study shows that modes 28 and 29 may be the doorway states in
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Table 4.9 Vibrational relaxation paths for antisymmetric stretching
mode of NH2 (mode 36)

I l k Rnlk Accepting energy (cm�1) Rate (s�1)

36 29 18 0.012 939 0.26 � 1010

36 29 19 �0.009 869 0.24 � 1010

36 29 27 �0.002 377 0.18 � 1010

36 29 25 0.003 504 0.18 � 1010

36 29 24 0.004 636 0.14 � 1010

36 28 18 0.006 958 0.13 � 1010

36 28 19 �0.005 888 0.12 � 1010

Total 1.59 � 1010

this study. Considering the cubic anharmonic coupling (see Eq. 4.99) between NH2

stretching modes and CH stretching modes, the CH stretching modes may also be
the doorway states.

The main reason for choosing the treatment of vibrational relaxation of (H2O)2

and C6H5NH2 is to show that the quantum chemistry programs can now provide the
anharmonic vibrational potentials so that the first-principle calculation of vibrational
relaxation has become possible. Their dynamical behaviors may be described by the
density matrix method through the Bixon-Jortner model (see Sect. 4.3).

4.6 Discussion

The aim of this chapter is to show how to apply the density matrix method for
ultrafast dynamics of the systems and fs time-resolved experiment, such as pump
probes, and to show the applications. Two important examples, the effect of CI on
the IC   * ! n * of pyrazine and intramolecular vibrational relaxation of water
dimer and aniline, are presented. This chapter consists of five parts. The first part
is the general introduction to the purpose and contents of this chapter. The second
part concerns with the derivation of the general master equation resulted from the
reduced density matrix. The third part is an application of the density matrix method
to study the dynamical behavior of the system. We have solved the master equation
for a system state coupled with a group of bath states and shown the condition of
nonexponential decay. We have shown that the density matrix method can treat a
whole experiment including pump and probe processes. We are concerned with the
use of fs pump-probe experiment to study fs nonadiabatic processes. In other words,
the density matrix method can describe not only the fs pump-probe experiments
but also the fs processes. A distinct feature in this case is that due to the use of
fs time-resolved laser for pumping, both population and coherence excitations are
created and hence their dynamics have to be treated. Since the diagonal elements of
the density matrix can provide the time-dependent information of the population
of the system and the off-diagonal elements of the density matrix can provide
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the time-dependent information of coherence (or phase) of the system, the density
matrix method is an ideal method for treating ultrafast dynamical processes.

In the fourth part, we study the effect of CI on IC. It was applied to study the
  * ! n * transition of the pyrazine molecule. In this nonadiabatic process, the
CI of the   * and n * PESs is believed to play a major role in the nonadiabatic
fs transition. In fact, the CI has been widely proposed to play the key factor in
an IC, and quantum trajectory calculations have been used to calculate the IC
rates [45]. However, this method cannot properly take into account of the initial
conditions of the population and coherence of the system created by the fs pumping
laser. In this chapter, we propose to develop a method to calculate the IC with
conical intersections. It should be known that for the IC between S1 and S0 in
most molecules (in these cases, the energy gap between S1 and S0 is of several
eV), the surface crossings do not take place due to the anharmonic effect in the
two PESs. Thus, the CI should not play any role in these cases. We have proposed
one method to calculate the IC rate of   * ! n * of the pyrazine molecule. The
experimental measurement of its   * state lifetime is determined to be 22 fs. In
their determination of this lifetime, Suzuki et al. [13] have employed the calculated
potential surfaces obtained by Domcke et al. It should be noted that in pyrazine,
there should exist two n * states [28]. But they only include one n * state in
their treatments of nonadiabatic processes. The work in progress is to calculate the
lifetime of   * by using the new set of PESs of pyrazine.

In the fifth part of this chapter, we reported our theoretical studies of vibrational
relaxation, which can be applied to that in isolated molecules, molecular cluster, and
dense media. In other words, the type of vibrational relaxation studied in this chapter
is mainly due to anharmonic couplings among different vibrational modes. This type
of potential surfaces has become available in recent quantum chemistry programs.
Although theories of vibrational relaxation have been proposed, its numerical
calculations have only become possible recently. The vibrational relaxation under
consideration depending on the size of the system takes place in the time range of
sub-picoseconds to picoseconds. In this chapter, we have chosen the water dimer
(H2O)2 as the system for investigation. The PES includes the harmonic and cubic
anharmonic contributions. In this case, the vibrational relaxation will be similar to
IC. That is, in our treatment of vibrational relaxation, we will also have “promoting”
modes and “accepting” modes; it follows that there are usually several paths of
vibrational relaxation. In the case of (H2O)2, the fastest vibrational relaxation rate
is of order 102 ps.

Another system aniline C6H5NH2 has also been studied. We found that the
vibrational relaxation rates of symmetric and antisymmetric stretching modes of
NH2 take in the ps range in good agreement with experiment.

In this chapter, we only apply the first-order perturbation theory to the adiabatic
approximation to deal with the vibrational relaxation process. This will be improved
in the next step.
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Chapter 5
Quantum Master Equation Study
of Electromagnetically Induced Transparency
in Dipole-Coupled Dimer Models

Takuya Minami and Masayoshi Nakano

Abstract The intermonomer interaction effect on electromagnetically induced
transparency (EIT) in dipole-coupled dimer models with different orientations and
intermonomer distances is investigated. The absorption properties are evaluated
using the imaginary part of the dynamic polarizability ˛ calculated by the quantum
master equation method. It is found that EIT can be observed even in the dimer sys-
tems with near-degenerate excited states originating in an intermonomer interaction
by adjusting the incident field frequency.

5.1 Introduction

As is well known, light absorption occurs when the frequency of light (probe
light) resonates with the energy difference between two quantum states. However,
the irradiation of an additional laser light (coupling light) is known to suppress
the absorption of probe light and to make a material transparent in the original
resonant (absorption) region. This phenomenon is called “electromagnetically
induced transparency (EIT)” [1, 2]. EIT was first described by Harris in 1990 [3] in
his theoretical study on the nondegenerate sum-frequency generation, which is one
of the third-order nonlinear optical (NLO) phenomena. Immediately after his work,
the first experimental observation of EIT is performed in several atomic systems
such as Pb by Field et al. [4] and Sr by Bolloer et al. [5]. Several researchers have
also succeeded to observe EIT in solid systems [6]. Moreover, EIT has been recently
observed in various kinds of materials such as quantum dot [7], metamaterials [8],
and even in organic molecules in photonic microcell [9]. The importance of EIT
stems from the fact that it retains or rather enhances the NLO response of a material
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Fig. 5.1 ƒ-shaped three-state model (a) and Im[’] in the presence (�c ¤ 0) and in the absence
(�c D 0) of coupling field indicated by solid and dashed lines, respectively (b)

in the frequency region of the induced transparency of the system while the linear
optical response is strongly suppressed in that region. This advantageous feature
leads to several intriguing applications of EIT to NLO processes, e.g., giant Kerr
nonlinearity in a four-level system[10], slow group velocity of light [11], NLO
process at low-intensity light [12], and optical information storage [13], as well
as the prototypical example of the nondegenerate sum-frequency generation using
EIT [3]. In addition, recent progress in quantum optics makes it possible to control
EIT in single atom confined in a cavity [14]. It is also noted that EIT is a promising
phenomenon for realizing optical switching because the frequency of a transmitted
light can be controlled by an external laser field. These various applications of
EIT are expected to contribute to the development of the forthcoming quantum
information technology.

The fundamental mechanism of EIT is often explained based on the ƒ-type
three-state model interacting with a coupling field, which resonates with the energy
difference between the intermediate state 3 and the metastable state 2 of the system
(see Fig. 5.1a). A coupling field modifies the optical response of a system by
creating a “dressed state,” which is known as the system-field coupled state [2].
The !P and !C (!P ¤!C) represent the frequencies of probe and coupling fields,
respectively, the detunes of which are written as �1 and �2, respectively. The �21

and �31 represent the damping factors from excited states 2 and 3 to the ground state
1, respectively. The polarizability ˛ of this system is derived from the perturbation
theory as [2]

˛ D j	13j2.�1 ��2 C i�21/

j�Cj � .�1 C i�31/.�1 ��2 C i�21/
: (5.1)
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�C represents the Rabi frequency of the coupling field

�C D 	23EC; (5.2)

where EC is the amplitude of coupling field and 	˛ˇ represents the transition dipole
moment between states ˛ and ˇ. In the absence of the coupling field (EC D 0,
�C D 0), the absorption spectra, which corresponds to the imaginary part of the
linear polarizability ˛, gives the well-known Lorentzian spectrum as shown in
the dotted line in Fig. 5.1b. The maximum value of Im[˛] appears when the
probe field resonates with state 1–3 energy difference (�1 D 0). On the other
hand, in the presence of the coupling field (�C ¤ 0) resonating with 2–3 energy
difference (�2 D 0), the absorption spectrum takes a minimum at the original
resonant frequency of the probe field (�1 D 0), while the two maxima appear on
both sides of the minimum (see Eq. 5.1 and solid line in Fig. 5.1b). This means
that the coupling field reduces the optical absorption of the probe light and makes
material transparent in the original resonant frequency region. This is why this
phenomenon is referred to as the electromagnetically induced transparency (EIT).

Since most studies on EIT are based on the theoretical model without inter-
monomer interaction due to its simplicity, the intermonomer interaction effect on
EIT has not been clarified sufficiently. Although a few studies examine interacting
dimer systems, they have focused only on the creation of three-state systems which
induce EIT through the interaction between two-state monomers [15]. However,
an intermonomer interaction is predicted to significantly affect the optical response
due to the modification of the energy difference and transition moment as well as
to the generation of complicated transition pathways. In this chapter, therefore, we
investigate EIT in dimer systems composed of three-state monomers to clarify the
intermonomer interaction effect on EIT. The perturbation formula of polarizability
(Eq. 5.1) is no longer applicable to this study because there exist several transition
paths in resonance with the probe and coupling fields, though Eq. 5.1 assumes
only three states. Therefore, we have employed an alternative method based on
the definition of the dynamic polarizability [16], which is obtained from the time
evolution of the density matrix of the excited states by numerically solving the
quantum master equation (QME) [17]. This QME method has an advantage for the
present purpose because it can be straightforwardly applicable to arbitrary multilevel
systems coupled with multimode laser fields. In Sect. 5.2, the QME method
and a calculation scheme of dynamic polarizability are presented. In Sect. 5.3.1,
the electronic structures of the model systems are explained. In Sect. 5.3.2, the
polarizability spectra of monomer system obtained using the perturbation theory
based on Eq. 5.1 are compared with that by the QME method in order to confirm
the reliability of the QME method. In Sects. 5.3.3 and 5.3.4, the absorption spectra
for the dimer systems are examined.
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5.2 Theory

5.2.1 Quantum Master Equation Method

In this section, we briefly explain our calculation scheme, the quantum master
equation (QME) method based on a dipole-dipole-coupled aggregate system [17, 18,
21]. First, we consider a model Hamiltonian HS for a molecular aggregate composed
of three-state monomers, expressed by [19]

HS D
NX

k

3X

ik

!ik a
C
ik
aik C 1

2

NX

k;l

3X

ik; i
0
k

il ; i
0
l

J
k;l
ik i 0k il i 0l

aC
ik
ai 0k a

C
il
ai 0l : (5.3)

Here, aC
ik

and aik represent the creation and annihilation operators for the ik-

th state (1 � ik � 3) of monomer k, N is the number of monomers, and J k;lik i 0k il i 0l

represents the dipole-dipole coupling between transition dipoles 	kiki 0k and 	lil i 0l for
monomers k and l, given by

J k;l
ik i 0k il i 0l

D 1

R3ij
	kik i 0k	

l
il i 0l

fcos.
kl � 
lk/� 3 cos 
kl cos 
lkg : (5.4)

Rkl is an intermolecular distance and 
 kl (
 lk) is the angle between the transition
moment of monomer k(l) and the vector drawn from monomer k to l. We use the
vacuum j0i, one-exciton jii, and two-exciton jij i bases, which satisfy the following
completeness relation:

1 D j0i h0j C
NX

i

jii hi j C
NX

ij

jij i hij j: (5.5)

Each basis is constructed by the direct product of states for isolated monomers.
The excited states j ˛i in the two-exciton model [22] are obtained by diagonalizing
the Hamiltonian matrix HS (Eq. 5.3) and satisfy the following eigenvalue equation:

HS j ˛i D !˛ j ˛i : (5.6)

The number of excited states, M, is equal to 1 C N C N(N � 1)/2 for the two-
exciton model, and ’D 1 indicates the vacuum state of exciton. We consider the M
state quantum system interacting with NF linearly polarized external electric fields
presented by

F.t/ D
NFX

f

"f .!f /.ei!t C e�i!t / D
NFX

f

Ef .!f / cos!f t (5.7)
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where "f .!f / and !f indicate the amplitude and frequency of the f -th field,
respectively, andEf .!f / D 2"f .!f /. The time evolution of density matrices in the
exciton state fj ˛ig is performed using the QME in the Born-Markov approximation
[17, 18, 21]:

d

dt
�˛ˇ D �i.1 � ı˛ˇ/.!˛ � !ˇ/�˛ˇ � .��/˛ˇ

C i

NFX

f

F.!/ cos!t �
MX

m

.	˛m�mˇ � �˛m	mˇ/
(5.8)

where the second and third terms of the right-hand side represent the relaxation
and system-field interaction, respectively. The 	˛ˇ represents the transition moment
vector from states ˛ to ˇ. The on- and off-diagonal relaxation terms in Eq. 5.8 are
given by [21]

�.��/˛˛ D ��˛˛�˛˛ C
MX

m¤˛
�m˛�mm; (5.9)

and

�.��/˛ˇ D ��˛ˇ�˛ˇ; (5.10)

which represent the population and coherent relaxation terms, respectively. The
relationship between population damping �˛˛ and feeding factor �m˛ (from state
m to ˛) is given by

�˛˛ D
MX

m¤˛
�m˛; (5.11)

which preserves Tr[�] D 1. The coherence damping term �˛ˇ is expressed as

�˛ˇ D �˛˛ C �ˇˇ

2
C � 0̨

ˇ: (5.12)

The � 0̨
ˇ is the pure dephasing term, which is assumed to be zero in this study. We

adopt an approximation that the feeding factor �˛1 depends on the exciton energy
[20, 21]:

�˛1 D C!˛; (5.13)

which represents the population damping rate from excited state (˛) to the ground
state (1) and C is fixed to 0.0001 in this study. We perform a numerical calculation



114 T. Minami and M. Nakano

to solve Eq. 5.8 and then to provide �˛ˇ.t/ by the fourth-order Runge-Kutta method.
Using these solutions, the electric polarization P(t) is calculated by

P.t/ D h	i D Tr Œ	�.t/� D
X

˛ˇ

	˛ˇ�ˇ˛ (5.14)

5.2.2 Dynamic Linear Polarizability

The electric polarization P(t) in the time domain is transformed into the P(¨) in the
frequency domain using the following Fourier transformation:

P.!/ D 1

2�

Z 1

�1
P.t/e�i!tdt (5.15)

The Fourier transformation is carried out by the discrete Fourier transformation
of the time-series data of P(tk) [21]:

P.!j /
1

Nd

Nd�1
X

kD0
P.tk/exp

�
2�ijk

Nd

�

; .j D 0; 1; : : : ; Nd; k D 0; 1; : : : ; Nd � 1/

(5.16)

The used number of time-series data is Nd, and the k-th discrete frequency
!j D (2 /L)j, where the minimum t value (t0) is 0 and the maximum t value (tNd�1)
is L. Similarly, the external field "(!) in the frequency domain is calculated from
the time-series "(tk). Using the ratio between these frequency domain quantities, we
calculate the intensity-dependent linear polarizability ˛g(!) [16]:

˛g.!/ D p.!/

".!/
: (5.17)

5.3 Results and Discussion

5.3.1 Electronic Structure of Molecular Aggregate Models

Figure 5.2 shows molecular aggregate models examined in this study. We assume a
ƒ-type three-state monomer with the excitation energies of 10,000 and 30,000 cm�1

and the transition moments of 5 D. The H- and L-shaped dimer models are also
investigated in order to clarify .the molecular orientation effect on EIT. The excited
states of the molecular aggregate models are calculated by solving Eq. 5.6 under
the assumption of the dipole-dipole coupling between monomers. The excitation
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Fig. 5.2 Molecular aggregate
models together with the
coordinate axis. Monomer
(a), H-shaped dimer (b), and
L-shaped dimer (c)

Table 5.1 Excitation
energies (cm�1) of dimer
models

State H-shaped dimer L-shaped dimer

2 10,000 10,000
3 10,000 10,000
5 29,984 29,976
6 30,016 30,024

Table 5.2 Transition
moments (x-component) (D)
of dimer models

Transition H-shaped dimer L-shaped dimer

1–5 0:00 �3:54
1–6 7:07 �3:54
2–5 0:00 2:50

2–6 �5:00 2:50

3–5 5:00 �2:50
3–6 0:00 �2:50

energies and transition moments of several primary excited states of the H- and L-
shaped dimer models are listed in Tables 5.1 and 5.2, respectively. As is well known,
the optically allowed (	1˛ ¤ 0) excitation frequency of the H-shaped dimer shifts
to higher frequency (30,016 cm�1) compared to that of monomer (30,000 cm�1)
due to the repulsive interaction between transition dipoles. On the other hand, the
L-shaped dimer shows the split optically allowed excitation frequencies (29,976 and
30,024 cm�1) due to the mutually orthogonal orientation between monomers. It is
therefore noted that the L-shaped dimer gives two absorption peaks, whereas the
H-shaped dimer gives only a single absorption peak.

5.3.2 EIT Spectra of Monomer Model

Before discussing the results of the dimer models, the polarizability spectrum of
the monomer model obtained using the perturbation theory (Eq. 5.1) is compared
with that calculated by the QME method (Eqs. 5.8, 5.14, 5.17) to confirm the
reliability of our results for EIT phenomenon. Figure 5.3 shows the real/imaginary
parts of the polarizability spectra (Re[˛] and Im[˛], respectively) as the functions
of the frequency of the probe field (!P). Im[˛] of Fig. 5.3a, b corresponds to the
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Fig. 5.3 Real (Re[˛]) and imaginary (Im[˛]) polarizability spectra obtained using the perturbation
theory (dotted line, Eq. 5.1) and the QME method (solid line, Eqs. 5.8,5.14,5.17) in the absence
(a) and in the presence (b) of the coupling field

absorption spectra in the absence (�C D 0) and in the presence (�C ¤ 0) of the
coupling field, respectively. The intensities of the probe and coupling fields are
fixed to be 0.01 and 10 MW/cm�1, respectively. As shown in both Fig. 5.3a, b,
the perturbation and QME spectra show good agreement. The irradiation of the
coupling field significantly reduces the optical absorption (Im[˛]) in the original
resonant region around !P D 30,000 cm�1.

5.3.3 EIT Spectra of Dimer Models

In this section, we explore the polarizability spectra of the H- and L-shaped dimer
models. The intermonomer distances (R) on the dimer models are fixed to be 30 a.u.
(see Fig. 5.2), and the intensities of the probe and coupling fields are fixed to be
0.01 and 10 MW/cm�1, respectively. Figure 5.4 represents the absorption spectra
(Im[’]) of the H-shaped (Fig. 5.2a) and L-shaped (Fig. 5.2b) dimer models in the
absence (�C D 0) and in the presence (�C ¤ 0) of the coupling field. In the absence
of coupling field (�C D 0), the H-shaped dimer gives the single absorption peak
blue-shifted relative to that of monomer, while the L-shaped dimer gives the split
absorption peaks, corresponding to the intermonomer-interaction-induced change in
the excitation energies from monomer as shown in Table 5.1. When we apply the
coupling fields, of which frequencies (!C) are set to be 20,016 and 20,024 cm�1

for the H- and L-shaped models, respectively, EITs are observed in the original
resonant region. It is noted that in case of L-shaped dimer, EIT appears only on
the right-hand side absorption peak (30,024 cm�1) while the left-hand side peak
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Fig. 5.4 Absorption spectra (Im[˛]) of the probe fields (with !P) for the H-shaped (a) and L-
shaped (b) dimers of R D 30 a.u. in the absence (�C D 0) and in the presence (�C ¤ 0) of the
coupling field. The frequencies of the coupling fields are fixed to be !C D 20,016 and 20,024 cm�1

for H- and L-shaped dimers, respectively

Fig. 5.5 Absorption spectra (Im[’]) of the L-shaped dimer model in the presence of a coupling
field resonating with the energy difference between states 2(3) and 5 (!C D 19,976 cm�1) (a) and
with that between states 2(3) and 6 (!C D 20,024 cm�1) (b). The inserted numbers (2, 3, 5, 6)
represent the indices of the excited states

(29,976 cm�1) is not affected by the coupling field (see Fig. 5.4b). This originates
in the resonance of the coupling field with the energy difference between states 2(3)
and 6 (corresponding to the right-hand side peak), not between states 2(3) and 5. In
fact, when we alternatively tune the frequency of the coupling field so as to resonate
with the energy difference between states 2(3) and 5(corresponding to the left-hand
side peak), we can see the reduction of the absorption spectra in the corresponding
frequency region. This is summarized in Fig. 5.5. This result shows that EIT can be
selectively realized in an intended frequency region by tuning the frequency of the
coupling field.
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Fig. 5.6 Absorption spectra (Im[’]) of the probe field (with !P) for H-shaped (a) and L-shaped
(b) dimers with different intermonomer distances in the absence (�C D 0) and in the presence
(�C ¤ 0) of the coupling field. The black dotted line represents the 30,000 cm�1, which is the
resonance frequency of the monomer

5.3.4 Robustness of EIT for Intermonomer Interaction

In this section, we examine the robustness of EIT for intermonomer interaction
by varying the intermonomer distance. Figure 5.6 shows the absorption spectra
(Im[˛]) of the probe field (with !P) for the different intermonomer distances
of R D 30, 60, and 90 a.u. The intensities of the probe and coupling fields are
fixed to be 0.01 and 10 MW/cm�1, respectively. The frequencies of the coupling
fields (with !C) are chosen so as to resonate with the energy difference between
the intermediate and metastable states (states 2 and 6 for the H-shaped dimer
and states 2 and 5 for the L-shaped dimer). In case of the H-shaped dimer, the
frequency of the absorption peak gradually shifts to the lower frequency region
with increasing the intermonomer distance due to the change in the intermonomer
interaction between the transition dipoles, while its peak intensity almost remains.
On the other hand, the L-shaped dimer shows the increase in the peak intensities
as well as the mutual approach of the split peaks with increasing the intermonomer
distance because the split absorption peaks fuse into one peak with decreasing the
intermonomer interaction. It is noted here that the reduction of the absorption peak
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Fig. 5.7 Variation in the absorption peak intensity for original resonant frequency in the absence
(�C D 0) and in the presence (�C ¤ 0) of the coupling field

by EIT for the L-shaped dimer is clearly observed even when the two absorption
peaks significantly approach to each other, though the probe and coupling fields
resonate with several excited states. In order to clarify the robustness of EIT for the
intermonomer interaction, we show in Fig. 5.7 the change in the maximum Im[’] in
the absence of the coupling field (�C D 0) (MAX Im[’]) and the minimum Im[’]
caused by EIT (�C ¤ 0) (MIN Im[’]) as the function of intermonomer distance R.
Apparently, the reduced absorption by EIT shown as MIN Im[’] is independent
of the intermonomer distance both for the H- and the L-shaped dimer models,
whereas MAX Im[’] gradually increases with the increase in R (the decrease in the
intermonomer interaction) in case of the L-shaped dimer model. This result shows
that EIT can be realized even when several states contribute to the optical response
for the probe and coupling fields. This robustness of EIT is considered to originate
in the frequency matching between the coupling field and the energy difference
between the intermediate and metastable states.

5.4 Conclusion

In this study, using the quantum master equation method, we have investigated EIT
phenomena in dipole-coupled dimer models in order to clarify the intermonomer
interaction effect on EIT. It is found that EIT at multiple frequencies are realized
by adjusting the intermonomer interaction through the modification of monomer
configuration and intermonomer distance. In addition, such EIT is robustly observed
even when the probe and coupling fields simultaneously interact with several excited
states. Namely, such plural excited states in molecular aggregates are beneficial
for realizing transmitted lights with different frequencies by tuning the external



120 T. Minami and M. Nakano

coupling lights. The present result thus stimulates the researchers to develop a
novel type of EIT-based multiple optical switch, which can simultaneously process
multimode incident lights by tuning the external multimode coupling lights. Further
investigations on EIT are highly expected for general aggregate models composed
of N-mers with various configurations, which will open a path to realizing multiple
signal processing.
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Chapter 6
Laser-Induced Electronic and Nuclear Coherent
Motions in Chiral Aromatic Molecules

Manabu Kanno, Hirohiko Kono, Sheng H. Lin, and Yuichi Fujimura

Abstract The results of theoretical studies on laser-induced electronic and nuclear
motions of chiral aromatic molecules are reviewed. The control schemes for
 -electron rotation (ring current) and nonadiabatically coupled molecular vibration
in chiral aromatic molecules by means of ultrashort linearly polarized laser pulses
are presented. Ansa (planar-chiral) aromatic molecules with a six-membered ring,
which are pyrazine derivatives, are adopted as model systems. We provide the pulse-
design scheme to induce  -electron rotation and show that the rotation direction,
clockwise or counterclockwise, can be controlled by the polarization direction
of the incident linearly polarized laser pulse. The linearly polarized laser pulse
creates a linear combination of quasi-degenerate excited states. Then the results
of nuclear wave-packet simulation taking into account the nonadiabatic coupling
between optically induced -electron rotation and molecular vibration are compared
to those obtained within the Born-Oppenheimer approximation. Strong dependence
of the vibrational amplitudes on rotation direction of   electrons as a consequence
of nonadiabatic coupling was found. Vibrational wave packets on the potential
surfaces in the two electronic states are produced, and they interfere with each other,
constructively or destructively. This suggests that attosecond  -electron rotation
can be identified by spectroscopic detection of femtosecond molecular vibrations.
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Photon polarization-dependent nonadiabatic coupling effects of coherently excited
quasi-degenerate electronic states are also explained by an analytical treatment.

6.1 Introduction

Observation and control of ultrafast electron dynamics in atoms and molecules
by means of attosecond/several-femtosecond laser pulses are challenging subjects
in natural and optical sciences. For example, tomographic imaging of molecular
orbitals has been achieved for a nitrogen molecule N2 [1, 2] and carbon dioxide CO2

[3] from their high harmonic generation spectra. Recently, from both theoretical
and experimental viewpoints, time-resolved photoelectron angular distribution has
been extensively utilized to monitor ultrafast electron dynamics through conical
intersections, for example, in the nonadiabatic transition in nitrogen dioxide
NO2 [4], in the photodissociation of carbon disulfide CS2 [5], and in the internal
conversions of larger molecules such as pyrazine [6, 7], furan [8], and 2-picoline [9].

Toward the precise control of intramolecular electron dynamics in more complex
systems than diatomic or triatomic molecules, there remain fundamental and crucial
issues to be clarified, one of which is how to manipulate the direction of electron
motion by ultrashort laser pulses. The simplest and most suitable system to deal
with this central problem is aromatic molecules, which are represented by benzene.
Indeed, the above-mentioned hydrocarbons, that is, pyrazine, furan, and 2-picoline,
are all in this family. An aromatic molecule is characterized by   electrons
delocalized over its aromatic ring. Compared to ¢ electrons, which are tightly
bound and localized to a chemical bond,   electrons in aromatic molecules are
movable and can be excited by ultraviolet (UV)/visible light. Ring current, which is
induced by   electrons traveling in either a clockwise or counterclockwise direction
along an aromatic ring, is a model case to study the manipulation of ultrafast
electron dynamics in complex polyatomic molecules. Results of model simulations
of electron dynamics in a ring-shaped molecule excited by circularly polarized
intense laser pulses have also been reported [10–12]. Ulusoy and Nest have shown
by a simulation based on optimal control theory that benzene can be selectively
switched into nonaromatic target states [13].

Barth et al. performed a quantum simulation of laser-driven electron dynamics in
Mg porphyrin, which is an aromatic molecule of D4h symmetry [14]. The results of
their simulation showed that   electrons of Mg porphyrin can be rotated around its
aromatic ring by an ultrashort circularly polarized UV laser pulse propagating along
its C4 axis. The rotation direction of   electrons is predetermined in a laboratory
frame by that of the polarization plane of the circularly polarized laser pulse, that is,
by photon angular momentum.

This chapter is dedicated to reviewing our recent theoretical results for ultrafast
 -electron rotations and associated nonadiabatic vibrational dynamics in chiral
aromatic molecules induced by a nonhelical, linearly polarized UV laser pulse [15–
18]. In a chiral molecule, electron dynamics should be significantly affected by its
unique asymmetric potential. In addition, laser light of linear polarization has no
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angular momentum. Therefore, in a combination of a chiral aromatic molecule and
linearly polarized light, the rotation direction of   electrons should be intrinsic to
the molecule and determined in a molecular frame.

In Sect. 6.2, we introduce the concept of electronic angular momentum eigen-
states of aromatic molecules with degenerate excited states, which is the key to
understanding the mechanism of laser-induced  -electron rotation. The generation
of an angular momentum eigenstate can be linked with molecular symmetry and
photon polarization in terms of molecular orbital (MO) theory. Then we extend the
concept to the case of ultrashort-pulse-excited aromatic molecules that have a pair
of quasi-degenerate excited states.

In Sect. 6.3, we first provide the pulse-design scheme to induce and control
 -electron rotation in a chiral aromatic molecule. Next, on the basis of dynamical
simulations in a semiempirical model, we demonstrate that the initial direction of
 -electron rotation depends on the spatial configuration of each enantiomer with
respect to the polarization direction of a linearly polarized laser pulse and then
  electrons continue to rotate clockwise and counterclockwise (or counterclock-
wise and clockwise) in turn. Moreover, a pump-dump control scheme to prevent
the switching of the rotation direction and realize a consecutive unidirectional
 -electron rotation is presented.

In Sect. 6.4, we report the characteristic effects of nonadiabatic interaction
between laser-induced ultrafast  -electron rotation and molecular vibration. Theo-
retical treatments of  -electron rotation in Refs. [10] and [11] have been carried out
within a frozen-nuclei approximation. However, in general, electronic and nuclear
motions may be coupled when  -electron rotation lasts as long as the period of
molecular vibrations (several tens of femtoseconds). In this context, we construct
the potential energy surfaces (PESs) of a model aromatic molecule using ab initio
MO methods and conduct nuclear wave-packet (WP) simulations on the PESs under
two different conditions: One adopts the Born-Oppenheimer (BO) approximation
[19] and the other explicitly takes into account the nonadiabatic coupling between
the quasi-degenerate excited states. A comparison of the results of the two cases
revealed the following important findings:

1. Nonadiabatic transition of nuclear WPs between the quasi-degenerate states
gradually reduces electronic angular momentum.

2. The nuclear WPs interfere with each other in the nonadiabatic transition, and
the initial direction of  -electron rotation determines whether the interference is
constructive or destructive.

3. The interference varies the amplitude of molecular vibration.

We explain these nonadiabatic coupling effects of coherently excited quasi-
degenerate electronic states in terms of a simplified one-dimensional model
analysis.

In Sect. 6.5, we show that attosecond  -electron rotation can be identified by
observing vibrational amplitudes with optical transient spectroscopy.

In Sect. 6.6, we conclude this chapter and provide some comments on our
ongoing and future works on laser control of  -electron dynamics in chiral aromatic
molecules.
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6.2 Laser-Induced  -Electron Rotation in Aromatic
Ring Molecules

Ultrafast  -electron rotations can be induced in aromatic ring molecules with
degenerate electronic angular momentum eigenstates by applying circularly polar-
ized laser pulses. In this section, after a short introduction of the eigenstates in highly
symmetric aromatic molecules, we briefly describe the mechanism of  -electron
rotations in aromatic ring molecules with quasi-degenerate electronic states induced
by linearly polarized ultrashort pulses.

6.2.1 Angular Momentum Eigenstates: Complex
and Real Orbitals

Let us consider angular momentum eigenstates of   electrons in an aromatic
molecule of DNh symmetry. The z axis is set to the CN axis. Complex MOs fj�mig
of the molecule are given as linear combinations of atomic orbitals (LCAO-MOs)
in the form [20]

j�mi D 1

N 1=2

NX

jD1
exp




imj
� ˇ
ˇpzj

˛

; (6.1)

where  j (�2 j/N) and
ˇ
ˇpzj

˛

denote the azimuthal angle and pz orbital at the
jth atom in the aromatic ring, respectively. When N is an odd (even) number,
the integer m reads m D �(N � 1)/2, : : : 0, : : : (N � 1)/2(�N/2 C 1, : : : , 0, : : : ,
N/2). The energy levels of fj�mig are often called a Frost circle [21]: j�0i is the
lowest MO and, for the other values of m, j�Cmi and j��mi are degenerate. For
odd N,

ˇ
ˇ�˙.N�1/=2

˛

are the highest MOs; for even N,
ˇ
ˇ�N=2

˛

is nondegenerate and
highest. If a molecular polygon is approximated by a complete cylindrical ring, the
symmetry of the molecule becomes D1h, and the z component of electronic angular
momentum is quantized. The expansion coefficients N�1=2 exp




imj
�

in Eq. 6.1
are the eigenfunctions of the angular momentum operator

Ò
z D �i„ @

@
; (6.2)

except for the normalization constant. Hence, the complex MO j�mi can be regarded
as an angular momentum eigenstate, and its eigenvalue of Ò

z is m¯ for degenerate
MOs or zero for nondegenerate ones. Here, real MOs j�mxi and

ˇ
ˇ�my

˛

(m> 0)
are defined in terms of linear combinations of the complex degenerate ones j�Cmi
and j��mi as

j�mxi D 2�1=2 .j�Cmi C j��mi/ ; ˇ
ˇ�my

˛ D �2�1=2 i .j�Cmi � j��mi/ : (6.3)
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The expansion coefficients for
ˇ
ˇpzj

˛

in j�mxi and
ˇ
ˇ�my

˛

are .2 =N /1=2 cos



mj
�

and .2 =N /1=2 sin



mj
�

, respectively. From Eq. 6.3, complex MOs are expressed
in terms of real MOs as

j�˙mi D 2�1=2 
j�mxi ˙ i
ˇ
ˇ�my

˛�

: (6.4)

The relation between complex and real MOs described above corresponds to that
between complex AOs

ˇ
ˇ2pC1

˛

and j2p�1i of an electron in a hydrogen atom, which
are electronic angular momentum eigenstates, and real ones j2pxi and

ˇ
ˇ2py

˛

with
the azimuthal functions ��1=2 cos and ��1=2 sin, respectively.

6.2.2 Mechanisms of Laser-Induced �-Electron Rotations

6.2.2.1 Aromatic Ring Molecules with Degenerate Excited States

We now consider the mechanism of  -electron rotations in highly symmetric
aromatic ring molecules. For this purpose, we take Mg porphyrin interacting with a
circularly polarized laser pulse [14]. Mg porphyrin belongs to the D4h point group,
and its highest occupied and lowest unoccupied MOs (HOMO and LUMO) are
nondegenerate a1u and doubly degenerate eg orbitals, respectively [22, 23]. The
degenerate LUMOs are one-electron angular momentum eigenstates with m D ˙1.
As for multielectron states, Mg porphyrin has doubly degenerate 1Eu excited states
whose major components are single excitations from the HOMO to the LUMOs.
The degenerate excited states are viewed as eigenstates of the multielectron angular
momentum operator OLz with the quantum number M D ˙1. The multielectron
angular momentum eigenstates

ˇ
ˇ1Eu˙

˛

with M D ˙1 can be expressed as linear
combinations of real excited states

ˇ
ˇ1Eux

˛

and
ˇ
ˇ1Euy

˛

:

ˇ
ˇ1Eu˙

˛ D 2�1=2 
ˇˇ1Eux
˛˙ i

ˇ
ˇ1Euy

˛�

: (6.5)

When a circularly polarized laser pulse is applied to Mg porphyrin, the spin angular
momentum of a photon selects

ˇ
ˇ1EuC

˛

or
ˇ
ˇ1Eu�

˛

, and   electrons start to rotate in the
clockwise or counterclockwise direction. In other words, a linearly polarized laser
pulse, which has no spin angular momentum, cannot induce  -electron rotations in
Mg porphyrin. In general, a linearly polarized pulse cannot rotate   electrons in an
aromatic ring molecule with degenerate excited states.

6.2.2.2 Aromatic Ring Molecules with Quasi-Degenerate Excited States

If the molecular symmetry is lowered by, for example, introducing functional groups
and/or replacing some carbon atoms in the aromatic ring with heteroatoms, an
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exact angular momentum eigenstate cannot be produced by laser pulses since there
exist no degenerate eigenstates of OLz. However, it is possible to transiently create
approximate eigenstates of OLz when ultrashort laser pulses coherently prepare a
linear combination of optically allowed quasi-degenerate excited states. With the
notations jLi and jHi for the lower and higher states of the quasi-degenerate real
excited states, respectively, the approximate angular momentum eigenstates jCi and
j�i are expressed as

j˙i D 2�1=2 .jLi ˙ i jHi/ ; (6.6)

where the matrix elements
D

˙
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ˙
E

are close to the eigenvalues ˙¯. We denote

the angular frequency of jLi (jHi) by !L (!H). From the energy gap between the
quasi-degenerate states, jCi or j�i produced by a linearly polarized laser pulse
subsequently evolves in time as a coherent nonstationary state:

e�i OH0t=„ j˙i D e�i!Lt 2�1=2 
jLi ˙ ie�i2�!t jHi� ; (6.7)

where OH0 is the field-free electronic Hamiltonian and 2�!�!H �!L. Approxi-
mate angular momentum eigenstates can be transiently created within a period of
the electronic state change T � /�! except for the global phase factor e�i!Lt .
Selective generation of an approximate angular momentum eigenstate induces
transient rotation of   electrons along an aromatic ring.

In the following, we take a chiral aromatic molecule as a target system to
study laser-induced  -electron rotation, although chirality is not necessary to break
the degeneracy of the relevant excited states. Ring current and nonadiabatically
coupled molecular vibration in chiral aromatic molecules have interesting potential
applications as will be shown in Sect. 6.4.

6.3 Control of  -Electron Rotation in a Chiral Aromatic
Molecule Within a Frozen-Nuclei Approximation

In this section, a pulse-design scheme to induce and control  -electron rotation in a
chiral aromatic molecule is provided within a frozen-nuclei approximation. We per-
form electron WP simulations and show that the initial direction of  -electron
rotation in a chiral aromatic molecule depends on the polarization direction of a
linearly polarized laser pulse. A pump-dump method for performing unidirectional
rotation of   electrons is also presented [15]. An ansa (planar-chiral) aromatic
molecule with a six-membered ring, 2,5-dichloro[n](3,6)pyrazinophane (DCPH;
Fig. 6.1), was chosen.
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Fig. 6.1 S (left) and R (right) enantiomers of DCPH. The directions of transition moments �LG

and �HG of an R enantiomer are shown as well as those of photon polarization vectors e˙ defined
as �LG � e˙ D ˙�HG � e˙. The magnitudes of �LG and �HG are 2.02ea0 and 1.63ea0, respectively
(Reprinted from Ref. [15]. Copyright (2006) by John Wiley and Sons)

6.3.1 2,5-Dichloro[n](3,6)pyrazinophane

The molecule was assumed to be preoriented, for example, fixed to a surface by
the ansa group, and all nuclei are treated as frozen. The positive integer n ('10)
specifies the length of the ansa group, ethylene bridge (CH2)n. We simply assumed
that the CC and CN bond lengths are 1.40 Å, the CCl bond length is 1.80 Å, and
†NCCl D 120ı. The unit bond length d is then 1.40 Å. A semiempirical model was
adopted to obtain -electronic excited states of DCPH [24–28]. DCPH was regarded
as being of C2h symmetry and having eight pz orbitals (localized at four carbon, two
nitrogen, and two chlorine atoms) and ten   electrons (one per carbon or nitrogen
atom and two per chlorine atom) for  -electron dynamics. LCAO-MO coefficients
of these   orbitals were obtained by numerically solving the secular equation.

DCPH has a pair of quasi-degenerate  -electronic excited states, jLi D ˇ
ˇ51Bu

˛

and jHi D ˇ
ˇ61Bu

˛

, with energy gap 2¯�!D 0.11 eV. In this semiempirical model,

the angular momentum operator OLz is defined as

OLz D
X

m;�

m„ O�m�; (6.8)

where O�m� is an occupation-number operator of   electrons in the orbital j�mi
defined by Eq. 6.1 with a spin � and the summation is taken for degenerate
MOs. The approximate angular momentum eigenstates, jCi and j�i, in DCPH
consist of the quasi-degenerate excited states jLi and jHi as in Eq. 6.6, where
D

˙
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ˙
E

D ˙0.86¯.   electrons with positive (negative) angular momentum

travel counterclockwise (clockwise) around the ring in Fig. 6.1.
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6.3.2 Propagation Method for �-Electron Wave Packets

For propagation of  -electron WPs, we use the time-dependent Hamiltonian of a
chiral aromatic molecule interacting with a laser field ©(t), which is expressed in the
semiclassical treatment as

OH.t/ D OH� � O� � ©.t/: (6.9)

Here, OH� is the field-free semiempirical  -electronic Hamiltonian and O� is the
electric dipole moment operator. O� is expanded in terms of

˚ Onj�
�

as

O� D �e
X

j;�

Rj Onj� ; (6.10)

in which Onj� is an occupation-number operator of a   electron in
ˇ
ˇpzj

˛

with a spin
� at the site j. Equation 6.10 implies that a   electron occupying

ˇ
ˇpzj

˛

is assumed
to be localized just at the nuclear coordinate Rj. The time-dependent Schrödinger
equation (TDSE) for a  -electron WP is

i„ @
@t

j‰.t/i D OH.t/ j‰.t/i (6.11)

with the initial condition j‰.0/i D jGi, where jGi D ˇ
ˇ11Ag

˛

is the ground state. We

solve Eq. 6.11 by expanding j‰.t/i in terms of 136 singlet eigenstates fjkig of OH�

obtained at the level of configuration interaction with single and double excitations
(CISD):

j‰.t/i D
X

k

ck.t/e
�i!k t jki (6.12)

with !G D 0. By inserting Eq. 6.12 into Eq. 6.11, we can derive coupled equations
of motion for the expansion coefficients fck.t/g, which are numerically solved by
the Runge-Kutta method.

For quantitative evaluation of  -electron rotation in DCPH, we calculate the

angular momentum expectation value Lz.t/ �
D

‰.t/
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ‰.t/

E

. In a circular

motion of an electron, angular velocity of the electron is equivalent to its angular
momentum divided by the electron mass and the square of the circulation radius.
Thus, the rotational angle of   electrons, (t), can be defined as

.t/ � 1

meb2

Z t

0

dt 0Lz



t 0
�

; (6.13)

where b is the radius of the ring. For a six-membered ring, b is equal to the unit bond
length d. Integration with respect to t 0 in Eq. (6.13) can be performed numerically
using Simpson’s rule. The expectation values Lz(t) and (t) are utilized as measures
of  -electron rotation.
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6.3.3 Angular Momentum Induced by a Linearly Polarized
Laser Pulse

Let us design a linearly polarized laser pulse to transfer as much of the population as
possible from the ground state jGi to either of the approximate angular momentum
eigenstates jCi or j�i. The linearly polarized laser pulse ©(t) is assumed to have
the form

©.t/ D f sin2
�
�t

td

�

cos .!t/ e (6.14)

for 0< t< td and otherwise zero. Here, f is field strength, td is pulse duration, ! is
central frequency, and e is the polarization unit vector. Throughout this chapter, the
sin2 envelope is employed as in Eq. 6.14 for convenience. The central frequency !
is chosen to be resonant with the average energy of the quasi-degenerate states. The
polarization vector eC (e�) is chosen as �LG �e˙ D ˙�HG �e˙ for each enantiomer.
The directions of e˙ for an R enantiomer of DCPH as well as those of �LG and �HG

are illustrated in Fig. 6.1.
Let us consider time evolution of   electrons excited by a delta function

with eC (e�) polarization. At the moment of irradiation (t D ti), the pulse with
eC (e�) produces an in-phase superposition jLi C jHi (out-of-phase superposi-
tion jLi � jHi) in j‰ .ti/i. At t> ti, the electron WP undergoes free propaga-
tion. Hence, jLi ˙ jHi in j‰ .ti/i temporally evolves as jLi ˙ e�i
.t/ jHi with

.t/ � 2�! .t � ti/ except for the global phase factor. Relative phase factor
e�i
.t/ changes as C1 ! �i ! �1 ! Ci ! C1 ! : : : with the progression of t � ti,
0 ! T/4 ! T/2 ! 3T/4 ! T ! : : : , where T ��/�!. In the first quarter period of
T after excitation, jLi � i jHi, namely, j�i, is created. Thus, the initial direction
of  -electron rotation depends on the polarization direction. Since the system is a
simple two-level system, the rotation changes its direction between clockwise and
counterclockwise with the period T. If a molecule is highly symmetric, for example,
benzene, e�i
.t/ takes an infinite time to reach �i since �!D 0. This means that
lowering the molecular symmetry is essential for the selective generation of either
jCi or j�i by a linearly polarized laser pulse.

6.3.4 �-Electron Rotations Induced by a Single Pulse

We present the results of a numerical simulation for single-pulse-induced -electron
rotations in an R enantiomer of DCPH on the basis of the three-level model analysis
described in the preceding subsection. The electron WP j‰.t/i was expanded in
terms of 136 states, and a linearly polarized laser pulse ©(t) was designed to initially
create j�i, in which   electrons start to rotate clockwise around the ring in Fig. 6.1
with a negative angular momentum. For aromatic molecules of DNh symmetry with
doubly degenerate excited states, population inversion from the ground state to one
of the exact angular momentum eigenstates can be achieved by the so-called  pulse
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Fig. 6.2 (a) The linearly
polarized laser pulse ©(t) to
initially create j�i in an R
enantiomer of DCPH. The
polarization vector of ©(t) is
eC. (b) Temporal behavior in
the populations of jGi (thick
solid line), jCi (thin solid
line), and j�i (thin dotted
line) denoted as PG(t), PC(t),
and P�(t), respectively. (c)
Expectation value of angular
momentum Lz(t). (d)
Expectation value of
rotational angle (t)
(Reprinted from Ref. [15].
Copyright (2006) by John
Wiley and Sons)

[14, 29]. Following this idea, despite the quasi-degenerate nature of this system,
the values of the laser parameters were determined from those of the   pulse:
f D 1.63 GVm�1, td D 26.6 fs, !D 7.72 eV/¯, and e D eC. Figure 6.2a shows the
temporal behavior in ©(t).

Figure 6.2b shows the temporal behavior in the populationsPk.t/ � jhkj‰.t/ij2
(k D G, C, and �, which are denoted by thick solid, thin solid, and thin dotted lines,
respectively). If the pulse duration td is shorter than the oscillation period T, the
pulse peak td/2 can be regarded as the moment of irradiation ti in the short-pulse
limit, although PC(td/2) and P�(td/2) are not exactly equal. At t> td/2 D 13.3 fs, a
significant amount of the population is transferred to jLi � i jHi, that is, j�i, and
accordingly   electrons start to rotate clockwise as expected. When the laser pulse
is turned off at t D td D 26.6 fs, the total population of   electrons in jCi and j�i,
PC (td) C P� (td), reaches 0.91. From the energy-time uncertainty relation,
PC (td) C P� (td) is maximum at the pulse duration td D 26.6 fs. At t> 26.6 fs,
the population of 0.91 is exchanged between jCi and j�i since the system is
isolated and the laser field is absent as described in the preceding subsection.

Figure 6.2c and d show the corresponding expectation values of the rotational
angular momentum Lz(t) and the rotational angle (t), respectively. Lz(t) and (t)
oscillate with the period of T D 39.5 fs, and from these figures,   electrons are
estimated to circulate around the ring more than nine times within this period.
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Fig. 6.3 (a) Pump and dump
pulses for clockwise
 -electron rotation in an R
enantiomer of DCPH. The
polarization vectors of the
pump and dump pulses are
eC and e�, respectively. (b)
Temporal behavior in the
populations of jGi (thick
solid line), jCi (thin solid
line), and j�i (thin dotted
line) denoted as PG(t), PC(t),
and P�(t), respectively. (c)
Expectation value of angular
momentum Lz(t). (d)
Expectation value of
rotational angle (t)
(Reprinted from Ref. [15].
Copyright (2006) by John
Wiley and Sons)

6.3.5 Unidirectional Rotation by the Pump-Dump
Control Method

The numerical results shown in Fig. 6.2 confirm that the rotation direction of  
electrons temporally changes between clockwise and counterclockwise in the case
of a single-pulse control. Switching of the rotation direction can be prevented
efficiently, and unidirectional rotation of  electrons can be realized consecutively in
a simple manner. In the three-level model analysis in a short-pulse limit, as already
stated, the pulse with eC (e�) creates a coherent superposition jLiCjHi (jLi�jHi),
and jLi C jHi created by a pump pulse with eC evolves as jLi C jHi ! jLi � i jHi.
Then the population in j�i can be dumped to jGi by applying a dump pulse with e�
just after the created state has completely shifted as jLi � i jHi ! jLi � jHi. Thus,
only clockwise rotation can be generated. Figure 6.3 shows the results of a pump-
dump control simulation of an R enantiomer of DCPH. The values of the parameters
of the pump pulse were f D 2.24 GVm�1, td D 19.4 fs, !D 7.72 eV/¯, and e D eC,
and those of the dump pulse were f D 2.37 GVm�1, td D 19.4 fs, !D 7.72 eV/¯,
and e D e�. The delay time between the pulses was 19.4 fs.

After j�i is generated, around the peak of the dump pulse at t D 29.1 fs,
PC(t) and P�(t) are almost equal to each other; in other words, an out-of-phase
superposition jLi � jHi is created. At t> 29.1 fs, most of the population is dumped
to jGi. As can be seen in Fig. 6.3, the value of Lz.t/ is almost zero. This means that
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reverse rotation is successfully prevented. A pair of pump and dump pulses realizes
unidirectional rotation of   electrons. Moreover, repetition of the unidirectional
rotation can be achieved by applying a sequence of pulse pairs.
 -Electron rotation in an S enantiomer can be controlled in the same way. By

reflecting the polarization directions of the pump and dump pulses to a mirror plane
as an R enantiomer is converted to an S enantiomer,   electrons in an S enantiomer
are rotated counterclockwise in Fig. 6.1.

6.4 Nonadiabatic Coupling Effects

In the previous section, we treated  -electron rotation within a frozen-nuclei
approximation. However, the effects of nonadiabatic coupling should not be ignored
when the duration of  -electron rotations becomes close to the period of molecular
vibrations. Therefore, in this section, we explicitly take into account vibrational
degrees of freedom and perform nuclear WP simulations in a model chiral aromatic
molecule irradiated by a linearly polarized laser pulse. The potentials of the vibra-
tional modes were determined by ab initio MO methods [12]. For reducing com-
putational time, while maintaining properties of  -electronic structures, we used
2,5-dichloropyrazine (DCP, Fig. 6.4) instead of 2,5-dichloro[n](3,6)pyrazinophane
(DCPH), in which the ansa group is replaced by hydrogen atoms.

6.4.1 Ab Initio MO Results for Electronic Structures
and Effective Vibrational Modes

First, ab initio electronic structure computations for DCP were all carried out using
the quantum chemistry program MOLPRO [30] with the 6-31G* Gaussian basis
set [31]. Geometry optimization for the ground state of DCP was carried out at the
level of the second-order Møller-Plesset perturbation theory (MP2) [31] followed
by a single-point ground- and excited-state calculation at the complete-active-
space self-consistent field (CASSCF) [31] level with ten active electrons and eight
active orbitals. DCP is of C2h symmetry at the optimized geometry in the ground

NN

Cl

Cl H

a b

H

NN

Cl

Cl H

H

Breathing mode Distortion mode

Fig. 6.4 Breathing and
distortion modes of DCP.
Vibrational vectors of the (a)
breathing and (b) distortion
modes of DCP are indicated
by arrows (Reprinted from
Ref. [16]. Copyright (2010)
by the American Physical
Society)
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state jGi D ˇ
ˇ11Ag

˛

and has a pair of optically allowed quasi-degenerate excited
states, jLi D ˇ

ˇ31Bu
˛

and jHi D ˇ
ˇ41Bu

˛

, with the energy gap 2¯�! D 0.44 eV.

In ab initio MO methods, the angular momentum operator OLz is given by the
partial differential operators with respect to electronic coordinates. The approximate
angular momentum eigenstates jCi and j�i in DCP are given by superpositions

of jLi and jHi, where
D

˙
ˇ
ˇ
ˇ OLz

ˇ
ˇ
ˇ˙
E

D ˙0.98¯.   electrons with positive (negative)

angular momentum travel counterclockwise (clockwise) around the ring in Fig. 6.4.
Next, we selected effective vibrational degrees of freedom for nuclear WP

simulations. From geometry optimization for jLi and jHi at the CASSCF(10,8)
level, it turned out that DCP is also of C2h symmetry at the optimized geometry
of jLi and that of jHi. Hence, the displacements from the optimized geometry of
jGi to that of jLi and jHi are totally symmetric. Furthermore, vibrational modes that
couple these two excited states also belong to totally symmetric Ag modes. For these
reasons, we consider two types of Ag normal modes with large potential displace-
ments and nonadiabatic coupling matrix element, namely, breathing and distortion
modes (Fig. 6.4a and b) whose ground-state harmonic wave numbers are 1,160
and 1,570 cm�1, respectively. Nonadiabatic couplings between the ground and two
excited states are neglected because there is no potential crossing between them near
the Franck-Condon region. The two-dimensional adiabatic PESs of jLi and jHi with
respect to the breathing and distortion modes were calculated at the CASSCF(10,8)
level. There exists an avoided crossing (not a conical intersection) between the
PESs, at which the energy gap corresponds to the wave number of about 190 cm�1.
Results of calculation at the level of the second-order CAS perturbation theory
(CASPT2) [31] show that the avoided crossing remains unchanged when dynamical
electron correlation is taken into account, while the PESs are lowered by ca. 3 eV.

6.4.2 Nuclear Wave-Packet Simulation Within
the Born-Oppenheimer Approximation

The results shown in Figs. 6.2 and 6.3 indicate that the system can be treated as
a three-level one consisting of jGi, jLi, and jHi, and therefore, we expanded the
state vector of the system in terms of the three adiabatic states. The initial nuclear
WP was set to be the vibrational ground-state wave function of jGi, and the system
is then electronically excited by a linearly polarized laser pulse ©(t) of the form in
Eq. 6.14. The time evolution of the expansion coefficients for jki (k D G, L, and
H),  k .Q; t/, where Q is the two-dimensional mass-weighted normal coordinate
vector, can be obtained from the following coupled equations [32]:

i„ @
@t
 k .Q; t / D

�

�„2
2

r2 CWk .Q/


 k .Q; t/

C
X

k0

ŒFkk0 .Q/� �kk0 .Q/ � ©.t/�  k0 .Q; t/; (6.15)
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Fig. 6.5 Results of the nuclear WP simulations within the BO approximation. (a) Expectation
value of electronic angular momentum Lz(t). (b) Expectation value of vibrational coordinate Q(t).
The thick and thin lines denote the expectation values for eC and e� excitations, respectively. The
values of Q(t) are plotted up to t D 40 fs. The laser pulse vanishes at t D 7.26 fs

where r is the nabla with respect to Q. Wk(Q) are the adiabatic potentials, and Fkk’

(Q) are the nonadiabatic terms defined as

Fkk0 .Q/ � �„2
2


˝

k
ˇ
ˇr2k0˛C 2

˝

k
ˇ
ˇrk0˛ � r� : (6.16)

To highlight the effects of nonadiabatic coupling, we first assume BO approxima-
tion, that is, remove Fkk0 (Q) from Eq. 6.15. Then, the coupled equations can be
integrated numerically with the split-operator method for a multisurface Hamilto-
nian [33]. A comparison of the results obtained within the BO approximation and
those for nonadiabatic dynamics will be made in the next subsection. The linear
polarization vectors eC and e� for ©(t) are defined as �LG.0/ � e˙ D ˙�HG.0/ � e˙,
in which �LG(0) and �HG(0) are the transition moments evaluated at the optimized
geometry of jGi (Q D 0). Note that an ultrashort laser pulse ©(t) ceases before the
WPs created on the two adiabatic PESs start to run, and, hence, the coordinate
dependence of the transition moments �LG(Q) and �HG(Q) is important only in
the vicinity of the optimized geometry of jGi, in which they are almost constant.

Figure 6.5a and b show the temporal behavior in the expectation value of elec-
tronic angular momentum Lz(t) and that of vibrational coordinate Q(t), respectively,
by applying a laser pulse with e D eC and that with e D e� (hereafter termed eC and
e� excitations). The values of the laser parameters were determined to create the
largest possible excited-state population following the idea of   pulse [14, 29]: for
eC excitation, f D 5.53 GVm�1, td D 7.26 fs, and !D 9.62 eV/¯; for e� excitation,
f D 9.02 GVm�1, td D 7.26 fs, and !D 9.62 eV/¯. As a consequence, for eC (e�)
excitation, the population of 0.83 (0.91) is excited from jGi and divided almost
equally between jLi and jHi. Obviously, the individual populations of the three
states are conserved at t> td D 7.26 fs in the absence of nonadiabatic coupling.
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Fig. 6.6 Propagation of the adiabatic WPs on the two-dimensional adiabatic PESs of jLi and jHi
within the BO approximation. The origin of the PESs is the optimized geometry of jGi. The bold
contours represent the probability densities j L .Q; t/j2 and j H .Q; t/j2, and the arrows indicate
the motion of the center of the WPs. The avoided crossing is signified by a circle

In Fig. 6.5a, the initial direction of  -electron rotation depends on the photon
polarization vector, that is, clockwise (counterclockwise) direction for eC (e�)
excitation, which has been described in Sect. 6.3. However, the amplitudes of
Lz(t) temporally vary for both cases, due to the decrease of the overlap between
the nuclear WPs moving on the relevant two adiabatic PESs as depicted later in
Fig. 6.6. This is one of the characteristic behaviors that are absent in a frozen-
nuclei model. As for nuclear motions, DCP vibrates during  -electron rotation as
seen in Fig. 6.5b, but the behavior of Q(t) differs only slightly between eC and e�
excitations.

Temporal behaviors in the WP dynamics on the relevant two adiabatic PESs
displayed in Fig. 6.6a and b evidence the features in Lz(t) and Q(t). For eC (e�)
excitation, the WPs created in the two excited states are in phase (out of phase) from
the definition of the polarization vectors, while the probability densities j L .Q; t/j2
and j H .Q; t/j2 at t � 5 fs have almost the same shape as that of the initial WP
j G .Q; 0/j2 for both cases. Yet, the relative quantum phase between  L .Q; t / and
 H .Q; t/ makes no difference in the subsequent WP dynamics since the coupling
between them is ignored in the BO approximation. For both eC and e� excitations,
the WPs simply start to move along the gradient of each PES, and accordingly,
the amplitudes of Q(t) in Fig. 6.5b are almost the same. The panels at t D 19.6 fs
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in Fig. 6.6a and b clearly show that the overlap between  L .Q; t / and  H .Q; t /
becomes small at t � 20 fs, which is responsible for the transient reduction in the
amplitudes of Lz(t) in Fig. 6.5a.

6.4.3 Nuclear Wave-Packet Simulation
for Nonadiabatic Dynamics

Now, let us include the effects of nonadiabatic couplings on both the electronic
angular momentum and the nuclear WP propagation. In general, it is difficult to
evaluate the nonadiabatic terms Fkk’ (Q) defined by Eq. 6.16 and solve Eq. 6.15
directly without using the BO approximation. Therefore, we resort to the diabatic
representation. Rigorous construction of the adiabatic-diabatic unitary transforma-
tion matrix requires the derivative coupling matrix hkjrk0i [34, 35], which is, as
noted above, difficult to compute. Instead, we use the quasi-diabatization scheme
proposed by Simah et al. [36] that is based on an analysis of CI vectors; it has been
implemented by the original authors in MOLPRO. The state vector of the system
was expanded in terms of the three diabatic states

˚ˇ
ˇkD

˛�

, each of which is a linear
combination of the adiabatic states jGi, jLi, and jHi. The diabatic WPs  D

k .Q; t /
(expansion coefficients for

ˇ
ˇkD

˛

) can be propagated by solving the coupled equations
of motion [32]

i„ @
@t
 D
k .Q; t/ D � „2

2
r2 D

k .Q; t /

C
X

k0

�

W D
kk0 .Q/� �D

kk0 .Q/ � ©.t/
�

 D
k0 .Q; t/ ; (6.17)

where W D
kk0 .Q/ are the diabatic potentials (k D k’) and couplings (k ¤ k’) and

�D
kk0 .Q/ are the transition moments between the two diabatic states. The split-

operator method [33] is applicable to the numerical integration of Eq. 6.17 as well.
The resultant diabatic WPs  D

k .Q; t / are converted to adiabatic WPs  k .Q; t/.
The expectation value Lz(t) calculated with the above-mentioned propagation

method is plotted in Fig. 6.7a. The linearly polarized laser pulses applied are the
same as those in Figs. 6.5 and 6.6. The amplitudes of Lz(t) gradually decay for both
eC and e� excitations. In addition to the decrease of the overlap between the WPs,
which occurs even within the BO approximation, the major factor for the decay
of the angular momentum is electronic relaxations due to nonadiabatic coupling.
It should be noted that there are some differences between the oscillatory decays of
the angular momentum for eC and e� excitations. For eC excitation, Lz(t) can be
approximately expressed in a sinusoidal exponential decay form with its oscillation
period of T ��/�!D 9.4 fs and lifetime of ca. 7 fs at t< 30 fs. In contrast, the
amplitude of Lz(t) for e� excitation does not undergo a monotonic decrease but
makes a small transient recovery around t � 14–20 fs. Furthermore, its oscillation
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Fig. 6.7 Results of the nuclear WP simulations for nonadiabatic dynamics. (a) Expectation value
of electronic angular momentum Lz(t). (b) Expectation value of vibrational coordinate Q(t). The
thick and thin lines denote the expectation values for eC and e� excitations, respectively. The
values of Q(t) are plotted up to t D 40 fs. The laser pulse vanishes at t D 7.26 fs (Reprinted from
Ref. [16]. Copyright (2010) by the American Physical Society)

period is slightly shorter than that for eC excitation in this time range. The difference
in the oscillation period for eC and e� excitations originates from that in the energy
gap between the two adiabatic PESs for the regions in which the WPs run.

The calculated expectation value of Q(t) is plotted in Fig. 6.7b. It should be noted
that the behaviors of Q(t) are strongly dependent on the polarization of the incident
pulse or the initial phase of the electronic-state coherence. The amplitude of Q(t) for
e� excitation is more than two times larger than that for eC excitation. This finding is
remarkable in the sense that the initial direction of -electron rotation greatly affects
the amplitudes of subsequent molecular vibration through nonadiabatic couplings.
This suggests that molecular chirality can be identified by analyzing vibrational
spectra since the rotational direction is opposite between enantiomers.

6.4.4 Interference Between Nuclear Wave Packets Through
Nonadiabatic Coupling

Temporal behaviors in the populations and adiabatic WPs of the quasi-degenerate
excited states are displayed in Fig. 6.8a and b. The populations are defined as
Pk.t/ � R

dQj k .Q; t/j2 (k D L and H). For both eC and e� excitations, the
WPs of the two excited states at t D 5.1 fs are similar to those in Fig. 6.6a and b;
nevertheless, their subsequent motions are totally different.

For e� excitation, a significant population transfer occurs from jHi to jLi by
nonadiabatic transition. Consequently, PL(t) is more than seven times larger than
PH(t) at t ca. 10 fs, although they are almost equal at t ca. 5 fs.  L .Q; t/ moves in
the high-potential region following the potential gradient of jLi, which leads to the
large-amplitude vibration in Fig. 6.8b.
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Fig. 6.8 Left panel: temporal behavior in the populations of jLi (thick line) and jHi (thin line)
denoted as PL(t) and PH(t), respectively, obtained from the nuclear WP simulations involving the
nonadiabatic coupling. Right panels: propagation of the adiabatic WPs on the two-dimensional
adiabatic PESs of jLi and jHi in nonadiabatic dynamics. The origin of the PESs is the
optimized geometry of jGi. The bold contours represent the probability densities j L .Q; t/j2 and
j H .Q; t/j2, and the arrows indicate the motion of the center of the WPs. The avoided crossing
is signified by a circle (Reprinted from Ref. [16]. Copyright (2010) by the American Physical
Society)

In contrast, for eC excitation, a small amount of the population shifts from jLi
to jHi around t � 5–10 fs. Then, a considerable population transfer takes place in
the reverse way around t ca. 10–14 fs when the WPs come closer to the avoided
crossing.

The photon polarization dependence of the populations and WPs in Fig. 6.8a
and b can be interpreted in terms of interferences between the WP existing on the
original PES and that created by nonadiabatic coupling. We qualitatively illustrate
the interference effects in one-dimensional conceptual diagrams in Fig. 6.9 [17]. As
mentioned above, a pulse with e� produces  L .Q; t/ and  H .Q; t/ out of phase,
and their relative quantum phase evolves as the WPs move on each PES. The WP
created by nonadiabatic coupling gains an additional phase shift and interferes with
that on the other PES. We do not quantify the additional phase, but the downward
population transfer around t � 5–10 fs in Fig. 6.8a indicates that they are almost
in phase (out of phase) and experience constructive (destructive) interference on
the lower (higher) PES. The constructive interference works particularly on high
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Fig. 6.9 One-dimensional conceptual diagrams illustrating the interference between the adiabatic
WPs  L .Q; t/ and  H .Q; t/. The WPs and the adiabatic PESs of jLi and jHi are depicted by one-
dimensional curves. The colors of the Gaussian-like curves represent the relative quantum phase
between the WPs. In particular, the WPs drawn by red (purple) and blue (green) curves have the
opposite phases [17] (Figure reprinted from Ref. [17]. Copyright (2011) with kind permission of
Springer Science C Business Media)

vibrational quantum states in  L .Q; t/. The direction of the population transfer
switches as the relative quantum phase evolves. For eC excitation in which the
two excited WPs are in phase, the interference effects are reversed: destructive
(constructive) interference on the lower (higher) PES around t � 5–10 fs. The
resultant upward population transfer is small because the amount of the WP created
by the nonadiabatic transition from jLi to jHi is less than that for the transition
from jHi to jLi.  L .Q; t/ and  H .Q; t/ thus reach the avoided crossing, and the
reverse population transfer occurs around t � 10–14 fs. The interference enhances
low vibrational quantum states in  L .Q; t/, exhibiting the clear node in Fig. 6.8b.

6.4.5 Analytical Treatment for Interference Between Nuclear
Wave Packets

In the preceding subsection, the interference effects between nuclear WPs of DCP
were numerically treated. In this subsection, to confirm the interference effects,
we present the results of an analytical treatment in a simplified one-dimensional
model shown in Fig. 6.10. Here, q is the dimensionless normal coordinate of the
effective breathing mode. The potentials in the ground and two electronic excited
states (b and c, which correspond to L and H, respectively) were assumed to
be displaced and undistorted ones. At least two vibrational eigenstates in each
electronic state are needed for consideration of both the electronic and vibrational
coherences in the simplified model. Here, b0 (c0) and b1 (c1) denote the lowest
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Fig. 6.10 A simplified model
for a nonadiabatic interaction
between coherently excited
quasi-degenerate vibronic
states (Reprinted from Ref.
[18]. Copyright (2012) by
Elsevier)

and the first excited vibrational eigenstates belonging to the b (c) quasi-degenerate
electronic state. Optical excitation processes were omitted except for the case in
which comparison was made with results obtained by nuclear WP simulations.

The time evolution of the quantum system in the low temperature limit can be
expressed as

‰.t/ Dcg0.t/
ˇ
ˇˆgXg0

˛C cc1.t/ jˆcXc1i C cc0.t/ jˆcXc0i
C � .cb0.t/ jˆbXb0i C cb1.t/ jˆbXb1i/ :

(6.18)

Here, ˆ and X denote the electronic and vibrational wave functions, respectively.
Time-dependent coefficients c(t) are obtained by solving the TDSE:

i„ @
@t

j‰.t/i D
� OH0 C OV C U.t/

	

j‰.t/i : (6.19)

Here, OH0 is the molecular Hamiltonian in the BO approximation, and OV is the
nonadiabatic coupling operator. U.t/ D �	 � ©.t/ cos.!l t/ is the pulse excitation
operator. Here, ©(t) is the amplitude of the laser pulse with photon polarization
vector e, and !l is laser central frequency. In Eq. 6.18, � denotes the parameter
depending on photon polarization direction of the linearly polarized laser pulse:
�D 1 for the polarization vector eC, while �D �1 for e�.

The nonadiabatically coupled system shown in Fig. 6.10 consists of two nona-
diabatic transition processes: one is c1 $ b0 and the other is c0 $ b1. Other
processes, c0 $ b0 and c1 $ b1, were omitted. This is because nonadiabatic
coupling matrix elements between the two vibronic states with equal vibrational
quantum numbers approximately give zero for the displaced harmonic potential
model with dimensionless potential displacement j�cbj � 1.

First, let us consider the nonadiabatic transition process c1 $ b0. The initial con-
dition is set as cg0(0) D 0, cb0(0) ¤ 0, and cc1(0) ¤ 0, omitting the pulse excitation
effects. The dynamical behaviors can be obtained by solving the following coupled
equation:

i„ @
@t

�
cc1.t/

cb0.t/

�

D
�

Ec1 �Vc1;b0
�Vb0;c1 Eb0

��
cc1.t/
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�

: (6.20)
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Here, Vc1,b0 is the nonadiabatic coupling matrix element between vibronic state
c1 with energy Ec1 and vibronic state b0 with energy Eb0. In the displaced and
undistorted potential model, Eb1 � Eb0 D Ec1 � Ec0 is satisfied. The solution is given
by solving the equation

�
Ec1 � � �Vc1;b0

�Vb0;c1 Eb0 � �

��
A

A0
�

D 0: (6.21)

A general solution can be expressed as
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with �’s

�1 D E0
c1;b0 � �c1;b0

2
I �2 D E0
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2
; (6.23a)

where

E0
c1;b0 D Ec1 C Eb0

2
; (6.23b)

�c1;b0 D
q

.�Ec1;b0/
2 C 4jVc1;b0j2; (6.23c)

and �Ec1,b0 D Ec1 � Eb0. As can be easily determined using both Eq. 6.21 and the
initial condition
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Finally, the time-dependent coefficients for c1 $ b0 can be expressed as
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In a similar way, for the nonadiabatic transition process c0 $ b1, we obtain
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Here,

�1 D E0
c0;b1 � �c0;b1
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; (6.27a)
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; (6.27b)
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2 C 4jVc0;b1j2; (6.27c)

and�Ec0,b1 D Ec0 � Eb1.
The time evolution of populations of two vibronic states, c1 and b0, can be

expressed by using Eqs. 6.25 and 6.26 as
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and
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respectively. In a similar way, �c0,c0(t) and �b1,b1(t) can be expressed.
For simplicity, in the case in which all of the initial vibronic states are equally

distributed, that is, cc1(0) D cb0(0) D c(0), Eqs. 6.28a and 6.28b are simplified as

�c1;c1.t/ D c.0/2
�

1C 2�Vc1;b0�Ec1;b0

�c1;b02

n

1 � cos
��c1;b0
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(6.29a)

and

�b0;b0.t/ D c.0/2
�

1 � 2�Vc1;b0�Ec1;b0

�c1;b02

n

1 � cos
��c1;b0

„ t
	o

; (6.29b)

respectively. It can be seen from Eq. (6.29) that temporal behaviors of populations
depend on the phase of �Vc1,b0�Ec1,b0, that is, that of �Vc1,b0 since �Ec1,b0> 0.
Parameter �Vc1,b0 determines constructive or destructive interference between the
two vibronic states. For the upper vibronic state, a positive value of the parameter
gives constructive interference and increases in the population at the initial stage
before the reversible process takes place, while for the lower vibronic state, it gives
destructive interference and decreases in the population.

Figure 6.11a shows the results of calculated time evolution of the two vibronic
states: �b0,b0(t) and �c1,c1(t). Here, �Vc1,b0> 0 was adopted for the phase pa-
rameter. Values of the parameters used were jVc1,b0j D 0.025 eV as the magni-
tude of the nonadiabatic coupling matrix element and �Ec1,b0 D 0.225 eV and
�Ec0,b1 D �0.075 eV as the energy differences between the two vibronic states
for the nonadiabatic transition process. These parameters were taken from the
results for potential energy surfaces of 2,5-dichloropyrazine shown in the pre-
ceding subsection. The relation between the two nonadiabatic coupling matrix
elements, Vc0,b1 D �Vc1,b0, was used. The oscillation in Fig. 6.11a indicates pop-
ulation transfer between c and b electronic excited states with recurrence time of
� rec � 2�¯/� c1,b0 D 18.3 fs.

Figure 6.11b shows the population changes taking into account effects of pulse
excitation in order to make a comparison with the temporal behaviors (see Fig. 6.8)
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Fig. 6.11 Photon polarization-dependent populations as a function of time. (a) The solid line
denotes �b0,b0(t) and the broken line denotes �c1,c1(t). (b) The solid line denotes the population
in lower electronic state b, and the broken line denotes the population in upper electronic state c.
An excitation process from the ground state was taken into account for comparison with the results
of WP simulations in Fig. 6.8 (Reprinted from Ref. [18]. Copyright (2012) by Elsevier)

obtained in the nuclear WP simulation. The amplitude of the laser pulse used, ©(t),
is shown by the dotted line in Fig. 6.11b. The four vibronic states are coherently
excited by the pulse. A comparison clearly shows that the analytical results
reproduce the photon polarization-dependent dynamic behaviors that appeared in
the nuclear WP simulation, especially at the early time regime before one cycle
of the oscillation. This demonstrates that the simplified model used here is valid
to explain the characteristic features and that the photon polarization-dependent
populations originate from the interference between the two coherently excited
vibronic states. It should be noted in Fig. 6.11b that there are overall steady increases
or decreases in the populations of the electronic states b and c, respectively, after the
laser pulse. This is in contrast to the oscillatory behaviors shown in Fig. 6.11a. The
main differences between the two cases originate from the additional contribution of
the nonradiative coupling between c0 and b1 for Fig. 6.11b. The recurrence time of
the population transfer between c0 and b1 is approximately one third of that between
c1 and b0, which is estimated from their energy differences, j�c1;b0=�c0;b1j � 3.

The coherent dynamics are reversible since the system is isolated and there
are no bath modes in the simplified one-dimensional model. Therefore, if the two
electronic states are coherently excited by a linearly polarized pulse, the dynamic
behaviors are invariant with respect to change in the direction of polarization, �D 1
(eC) or �D �1 (e�). Time-dependent behavior of �c1,c1(t) with eC (e�) is the same
as �b0,b0(t) with �D �1 (�D 1). In real molecules with many vibrational degrees of
freedom, the invariance is broken, and dephasing time of the vibrational coherence
in lower excited state b is shorter than that in higher state c because multimode
effects induced by potential couplings and/or anharmonicity play a much more
dominant role in lower state b than in higher state c.
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6.5 Transient Vibrational Spectroscopy for Identification
of  -Electron Rotation

In a previous section, it was found that time evolutions of WPs taking into account
nonadiabatic couplings strongly depend on the initial in-phase or out-of-phase
coherent excitation of two quasi-degenerate states. This suggests that the initial
direction of  -electron rotation can be identified by analyzing vibrational spectra.
It is well known that Fourier transform of the autocorrelation function of WPs
gives its frequency spectrum [37]. The frequency spectrum of  L .Q; t/ after the
nonadiabatic transition from jHi to jLi is defined as

SL .!/ � Re
Z tf

tn

dte.i!�1=� /.t�tn/
Z

dQ �
L .Q; tn/  L .Q; t /; (6.30)

where � is a parameter introduced to smooth the spectra and is set at 39.6 fs, which
is longer than the vibrational periods of the breathing and distortion modes (28.8
and 21.2 fs). The values of tn for eC and e� excitations were 14.0 and 10.0 fs,
respectively, and tf – tn D 99.1 fs for both cases.

Figure 6.12 shows the vibrational spectra for eC and e� excitations. For eC
excitation, the maximum value of SL(!) appears at Q�� 1,400 cm�1 and another
peak is found at Q�� 2,500 cm�1, while for eC excitation, the spectrum reaches
its maximum at Q�� 2,500 cm�1 and also exhibits a couple of strong peaks at
Q� > 3,000 cm�1. The wave numbers of 1,400, 2,500, and 3,000 cm�1 are very
close to those of the lowest three vibrational states of jGi owing to the similarity
between jGi and jLi in the PES around its minimum. The spectral features
emerging in Fig. 6.12 confirm that at t> tn L .Q; t/ consists of different vibrational
quantum states between eC and e� excitations. The vibrational structure changes
of aromatic molecules can be measured experimentally with femtosecond optical
spectroscopic methods, for example, transient impulsive Raman spectroscopy [38].

Fig. 6.12 The vibrational
frequency spectra of
 L .Q; t/, SL(!), defined by
Eq. (6.30). The thick and thin
lines denote the spectra for
eC and e� excitations,
respectively. In each case the
values of SL(!) are scaled so
that the maximum value is
unity (Reprinted from Ref.
[16]. Copyright (2010) by the
American Physical Society)



146 M. Kanno et al.

Thus, information on attosecond  -electron rotation can be obtained by detecting
femtosecond molecular vibrations with spectroscopy, although this type of detection
is not a direct imaging of ultrafast electron dynamics.

6.6 Conclusions

In this review chapter, we have shown theoretically that ring currents (electron
flow) can be induced in chiral aromatic systems by applying a nonhelical, UV laser
pulse, which has no angular momentum. Selective generation of an approximate
angular momentum eigenstate, which consists of optically allowed quasi-degenerate
 -electronic excited states, is necessary for  -electron rotation in chiral aromatic
molecules. The initial direction of  -electron rotation can be controlled by the
photon polarization direction with respect to the spatial configuration of each
enantiomer. The reverse rotation can be prevented efficiently by pump and dump
pulses whose polarization directions are properly designed, leading to consecutive
unidirectional rotation of   electrons.

We have also investigated the nonadiabatic coupling between laser-induced
ultrafast  -electron rotation and molecular vibration. A comparison of the results
of nuclear WP simulations obtained within the BO approximation and those
involving the nonadiabatic coupling revealed that electronic relaxations caused by
nonadiabatic transition reduce the angular momentum of   electrons. In contrast,
the amplitudes of molecular vibration coupled to  -electron rotation depend signif-
icantly on their initial rotation direction, which is determined by the polarization
direction of the laser pulse. This important finding is attributed to the interference
of nuclear WPs in nonadiabatic transition governed by their initial quantum
phases, which are also controlled by photon polarization. The photon polarization-
dependent nuclear quantum dynamics is clarified by an analytical treatment as
well. Attosecond  -electron rotational dynamics can be identified by spectroscopic
detection of femtosecond molecular vibrations. Although the mapping from nuclear
to electron motions on different time scales requires a sophisticated theory as given
above, this may offer a new path for observation of ultrafast electronic and nuclear
coherent motions in large molecules.

This chapter focused on the role of photon polarization in producing ultrafast
 -electron rotation by a single-color laser. If a two-color laser is employed, its
relative optical phase can be another controlling factor for the rotation direction
of   electrons [17, 39]. The next step is to extend the series of our studies to
cover ultrafast nonadiabatic dynamics of chiral aromatic molecules in laser fields
of arbitrary polarization.
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Chapter 7
Simulation of Nuclear Dynamics of C60: From
Vibrational Excitation by Near-IR Femtosecond
Laser Pulses to Subsequent Nanosecond
Rearrangement and Fragmentation

N. Niitsu, M. Kikuchi, H. Ikeda, K. Yamazaki, M. Kanno, H. Kono,
K. Mitsuke, M. Toda, K. Nakai, and S. Irle

Abstract Impulsive Raman excitation of C60 by single or double near-IR femtosec-
ond pulses of �D 1,800 nm was investigated by using a time-dependent adiabatic
state approach combined with the density functional theory method. We confirmed
that the vibrational energy stored in a Raman active mode of C60 is maximized
when Tp � Tvib/2 in the case of a single pulse, where Tp is the pulse length and Tvib

is the vibrational period of the mode. In the case of a double pulse, mode selective
excitation can be achieved by adjusting the pulse interval � . The energy of a Raman
active mode is maximized if � is chosen to equal an integer multiple of Tvib, and
it is minimized if � is equal to a half-integer multiple of Tvib. The energy stored
can be larger than the barrier heights for rearrangement or fragmentation processes.
The picosecond or nanosecond dynamics of resulting Stone-Wales rearrangement
(SWR) and fragmentation are also investigated by using the density functional-
based tight-binding semiempirical method. We present how SWRs are caused by
the flow of vibrational kinetic energy on the carbon network of C60. In the case
where the hg(1) prolate-oblate mode is initially excited, the number of SWRs prior
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to fragmentation is larger than in the case of ag(1) mode excitation for the same
excess vibrational energy. Fragmentation by C2-ejection is found to occur from
strained, fused pentagon/pentagon defects produced by a preceding SWR, which
confirms the earliest mechanistic speculations of Smalley et al. (J. Chem. Phys. 88,
220, 1988). The fragmentation rate of C60 ! C58 C C2 in the case of hg(1) prolate-
oblate mode excitation does not follow a statistical description as employed for
instance in the Rice-Ramsperger-Kassel (RRK) theory, whereas the rate for ag(1)
mode excitation does follow predictions made by RRK. We also found for the hg(1)
mode excitation that the nonstatistical nature still remains in the distribution of
barycentric velocities of fragments C58 and C2. This result suggests that it is possible
to control rearrangement and subsequent bond breaking in a “nonstatistical” way by
initial selective mode excitation.

7.1 Introduction

The flourishing field of nanocarbon chemistry or science has started with the
discovery of C60 in the mid-1980s [1]. A wealth of experimental and theoretical
studies on the structure and dynamics of C60 still continues to reveal its unique
properties originating from the highly symmetric cage structure of the icosahedral
point group Ih, 174 nuclear degrees of freedom, 60 essentially equivalent delocalized
 -electrons, and 180 localized ¢-electrons [2–4]. The binding or evaporation energy
for C2 emission from neutral C60 [5] is exceptionally large (�10 eV) [6], even larger
than the ionization potential of C60, 7.6 eV [7]. C60 is tough to dissociate because
of its large dissociation energy and a large number of nuclear degrees of freedom.
This type of unique molecules including other fullerenes can hence contain a large
energy before fragmentation occurs, which allows a wide variety of processes, after
large energy deposition, such as ionization, redistribution of energy among different
degrees of freedom, and structural change of the cage (rearrangement).

Ample experimental and theoretical evidence has shown that C60 is very resilient
and can absorb a surprisingly high amount of energy on a femtosecond timescale
before fragmentation such as C2-evaporation (Smalley’s so-called “shrink-wrap”
mechanism) [5]. Energy much larger than 100 eV can be injected into C60 by using
laser pulses [4, 5, 8, 9] or fast collision with charged particles [10, 11], which process
is followed by ionization or fragmentation. Experimentally observed fragmentation
patterns for nanosecond excitation, typically, the so-called bimodal pattern of large
and small fragments [4] (C58, C56, C54, : : : vs. C2, C3, C4, : : : ), are interpreted
on the basis of statistical energy distribution among all the degrees of freedom [12].
The electronic relaxation of C60 through vibronic (electron-phonon) coupling occurs
on a timescale of 150–300 fs [13]. Upon excitation by a nanosecond laser pulse,
complete equilibration of electronic and vibrational energy is achieved through
coupling between electronic and vibrational degrees of freedom, before the end of
the interaction with the nanosecond pulse.
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On the other hand, in the case where the pulse duration is shorter than the
timescale of energy redistribution among the electronic degrees of freedom or
among different electronic states (<70 fs), many equivalent electrons of C60 can be
excited simultaneously and coherently. I. Shchatsinin et al. reported that significant
amounts of ions and large fragments are produced through the well-known giant
plasmon resonance of C60 even with an ultrashort 9 fs near-infrared (IR) pulses (at
wavelength �� 800 nm and light intensities up to 3.7 	 1014 W/cm�2), and that
ionization processes to high charge states do not occur sequentially. They attributed
this excitation to nonadiabatic multielectron dynamics [14], where “nonadiabatic”
means that the electronic response of the system is nonadiabatic with respect to
temporal change in the laser electric field. This primary excitation process requires a
conceptual idea beyond the conventional single active electron model [15, 16] based
on the assumption that only a single electron is activated during the interaction with
an applied field.

Recently, multielectron excitation of C60 by intense femtosecond pulses is
experimentally evidenced by Hertel et al. [17, 18]. They have observed that the
ellipticity of light significantly affects the yields of ions and fragments of C60

excited by intense 27-fs laser pulses (�D 797 nm). At light intensities below
1014 W/cm2, the ion yields are reduced for circular polarization in comparison
with the linear polarization case, which follows the prediction on the assumption of
two-photon processes. This type of reduction hence establishes that the LUMO C 1
(t1g) state is prepared by coherent two-photon transition as a doorway state for
energy deposition or ionization, followed by efficient multielectron dynamics. In
multielectron dynamics, many electrons are simultaneously excited and energy
exchange among electrons participates in the excitation process; thus, the total
energy that electrons gain does not depend on the polarization direction of light.

Multielectron excitation has also been evidenced in previous simulations based
on tight-binding methods by Torralva et al. [19] and Zhang et al. [20]. Theoretical
studies showed that the number of electrons excited from the occupied molecular
orbitals (MOs) to unoccupied MOs can exceed 30 for intense, near-IR pulses.
Multielectron excitation by intense, femtosecond pulses of �� 800 nm is essentially
nonadiabatic with respect to steep temporal change in the laser electric field.
As a result, many electronically excited states are created, and the relaxation
processes therefrom proceed through different channels, which lead to single and
multiple ionizations and various fragmentation channels. The results of these
simulations indicate that besides statistical (thermal) fragmentation, nonstatistical
fragmentations occur from nonequilibrium states.

T. Laarmann et al. used temporally shaped femtosecond laser pulses with closed-
loop, optimal control feedback (pulse shaping) to obtain detailed information on
ultrafast electronic and nuclear dynamics in C60 excited by near-IR pulses [9, 21].
They found that the branching ratios of fragments of C60, for example, CC

50

ı

CC
60 ,

can be controlled by femtosecond laser pulses (�� 800 nm) tailored by pulse
shaping. The optimal pulses that maximized the yields of fragments were pulse
trains at constant intervals; the excitation by pulse trains of characteristic time
intervals results in significant enhancement of C2-evaporation, a typical energy loss
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channel of vibrationally hot C60. The experimental results indicate that the tailored
optimal pulses maximize the energy deposited into vibrational modes. TDDFT
calculations have shown that many electrons homogeneously excited through the
LUMO C 1 state by an intense laser pulse couple to the totally symmetric breathing
ag(1) vibrational mode [9]. The experimentally observed periods (pulse intervals in
a train) are connected with the calculated, laser-induced giant ag(1) motion. The
observed period (80–127 fs) depends on the number of excited electrons (deposited
energy) and the degree of ionization [21]. Despite various electronic and nuclear
degrees of freedom, this essentially one-dimensional motion of the ag(1) mode
prevails for up to six vibrational cycles with an oscillatory amplitude of up to 130%
of the molecular diameter.

There is another way to store large energy into C60. The polarizability of C60 is
as large as 520 a30 [22], where a0 is the Bohr radius. Consequently, its derivatives
with respect to the coordinates of Raman active vibrational modes are also large. It
is thus possible to inject large amounts of energy directly into vibrational degrees
of freedom of C60. Bhardwaj et al. experimentally showed that intense, short laser
pulses of wavelengths 1,200–2,200 nm (I � 1015 W/cm2 and Tp � 70 fs) can be used
to ionize C60 up to C12C60 [23]. C12C60 is the highest charge state of C60 ever detected by
time-of-flight (TOF) mass spectrometry. In the long-wavelength case, fragmentation
is greatly suppressed compared to the case of 800 nm excitation.

Bhardwaj et al. estimated the internal vibrational energy deposited in C60 by
laser-induced dipole force with a classical charge model. We have theoretically
investigated the effects of nonlinear interactions with intense, near-IR pulses on
C60 [24] by combining an ab initio molecular dynamics (MD) method with a
time-dependent adiabatic state approach (first-principles approach) [25–27]. In the
time-dependent adiabatic state approach, the total wave function is expanded in
terms of time-dependent adiabatic electronic states defined as the eigenfunctions
of the instantaneous electronic Hamiltonian including the electric dipole interaction
with the applied field. The time-dependent adiabatic states of C60 are obtained by
density functional theory (DFT), and the motion of nuclei is treated classically. The
results we obtained [24] indicate that large amplitude motion is induced for Raman
active modes: for example, for the peak light intensity Ipeak � 7 	 1014 W/cm2 and
the pulse duration Tpg D 70 fs of a Gaussian form, a vibrational energy of 30 eV is
acquired and stored mainly in the low-frequency Raman active hg(1) mode (prolate-
oblate mode). The mechanism of this vibrational excitation is interpreted as impulse
Raman excitation: the acquired vibrational energy is maximized at Tp � Tvib/2 for a
Raman active mode under consideration, where Tp is the pulse length and Tvib is the
vibrational period of the mode. Raman active modes that satisfy Tp � Tvib/2 can be
efficiently excited.

We demonstrated that the field-induced large amplitude vibration of the hg(1)
mode persists for a rather long period (a few to several picoseconds), owing to
slow intramolecular vibrational energy redistribution (IVR) [28]. Mode selective
excitation can therefore be achieved by adjusting the pulse intervals in a pulse
train [24], as in the experiment reported by Laarmann et al. [9]. In this chapter,
by using the time-dependent adiabatic state approach, we first demonstrate that
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large amplitude oscillation can be induced in a specific vibrational mode by
changing the pulse interval of a double pulse. We then present the results of
simulations of the subsequent nanosecond dynamical process up to fragmentation
after the initial impulsive Raman excitation. Nanosecond nuclear dynamics is
carried out by a density functional-based tight-binding (DFTB) method [29–31].
We confirmed that the main fragmentation process is C2-evaporation after Stone-
Wales rearrangements (SWR) [32, 33] and investigated the detailed mechanism of
SWR from the viewpoint of rapid vibrational energy migration in the bond network
of the fullerene cage.

By using the DFTB method, Irle et al. discovered a combined size-up/size-
down self-assembly and shrinking mechanism of giant fullerenes that qualitatively
explains the formation of C60, C70, and larger fullerenes [34]. They found that
between most C2-evaporation events, the cage of a hot giant fullerene has time
to undergo (inverse) Stone-Wales and related transformations that eventually may
lead to the kinetically most stable isomer of a given-size fullerene cage. This
carbon structure is also the thermodynamically most stable isomer at that cage size.
A recent method to evaluate the kinetic stability of carbon nanostructures based on a
statistical analysis of their vibrations succeeded in correlating the observed fullerene
cage abundances with their kinetic stability, as opposed to thermodynamic stability,
which monotonically increases with increasing cage size [35].

From our simulation, we found that in the case of C60, SWR occurs once or many
times at different locations on the cage before fragmentation by C2-evaporation
occurs, confirming Smalley’s earliest mechanistic speculations for the “shrink-
wrap” process [5]. The time evolution of the carbon bond network of C60, prior to
fragmentation, is thus governed by a series of SWRs. The number of SWRs depends
on the initially excited vibrational mode. Presumably, different network structures
produced via SWRs result in different fragmentation patterns. This suggests that
the controllability of SWR is another mechanism of nonstatistical fragmentation of
C60, though fragmentation in the nanosecond range is considered “statistical.” In
this chapter, we mainly discuss the effects of mode selective excitation on SWRs
and the role of SWRs as an intermediate step toward statistical and nonstatistical
fragmentation.

7.2 Computational Outline

7.2.1 Molecular Dynamics Simulations in the Presence
and in the Absence of an External Field

We employ the time-dependent adiabatic state approach [24–26] to examine the
dynamical behavior of C60 vibrationally excited by near-IR laser pulses (impulsive
Raman excitation [36]). The time-dependent adiabatic potentials En(R, t) and time-
dependent adiabatic electronic states  n(R, t) used in the approach are functions
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Table 7.1 Comparison between different levels of calculation and experimental results for
properties of C60

B3LYP/
3-21G

B3LYP/
6-31G(d)

Non-SCC-
DFTB SCC-DFTB Experiment

hg(1) normal mode
frequency/cm�1

271 266 270 270 267b

ag(1) normal mode
frequency/cm�1

491 497 566 566 495b

Polarizability/Bohr3 437.96 468.81 –a 387.02 516.77 ˙ 54.04c

The B3LYP/3-21G level of DFT and the non-SCC-DFTB give frequencies and polarizability that
semiquantitatively agree with the B3LYP/6-31G(d) level of DFT or experimental results
aNot available for non-SCC-DFTB
bRef. [39]
cRef. [22]

of time t and nuclear coordinates R. The En(R, t) and  n(R, t) are defined as the
eigenvalues and eigenfunctions of the instantaneous electronic Hamiltonian Hel(R,
t) which includes the electric dipole interaction with the laser electric field "(t):

Hel .R; t/  n .R; t/ D En .R; t/  n .R; t/ : (7.1)

Nuclear motion can be described by quantum mechanical propagation of the
vibrational wave function or classical motion on the time-dependent adiabatic
potentials. In our approach, the classical equations of motion are solved by the
velocity Verlet algorithm. The typical time increment for integration,�t, was 0.5 fs.

In this study, we focus on the excitation dynamics of C60 induced by near-
IR pulses of wavelength �D 1,800 nm (h�D 0.69 eV), which corresponds to the
long-wavelength excitation condition of the experiments on the ionization and
fragmentation of C60 by Bhardwaj et al. [23]. The probability of electronic excitation
in this case is relatively low in comparison to prevalent cases of 800 nm excitation
[24]. We thus consider the dynamics only on the lowest time-dependent state
adiabatically connected to the ground electronic state in a zero field. The nuclei
are treated as classical particles on the lowest time-dependent adiabatic potential;
all the vibrational degrees of freedom in C60 are taken into account classically. The
potentials En(R, t) in Eq. (7.1) to evaluate the force for MD simulations are obtained
at the B3LYP/3-21G level of the DFT method implemented in Gaussian 03 [37]
and Gaussian 09 [38] suites. As shown in Table 7.1, this level of calculation gives
frequencies and polarizabilities that almost agree with the experimental results [22,
39] and the calculated values for the larger basis set B3LYP/6-31G(d). The two
vibrational modes, hg(1) and ag(1), in Table 7.1 are the modes mainly excited by
near-IR pulses, and the energy stored in these modes can be large enough to go over
the barriers for rearrangement and fragmentation, as discussed later.

We propose a sequential ionization model to include the effects of ionization
of C60 during the interaction with laser pulses. In this model, C.Z�1/C

60 is assumed
to be vertically ionized to CZC

60 when the instantaneous light intensity I(t) reaches
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the saturation intensity Isat(Z) for CZC
60 (at which the yield of CZC

60 is saturated). At
first, the nuclei of C60 move on its lowest time-dependent adiabatic potential. C60 is
vertically ionized to CC

60 when I(t) reaches the saturation intensity for CC
60, Isat(1);

then the nuclei move on the lowest time-dependent potential of CC
60. Likewise, CC

60

is vertically ionized to C2C60 when I(t) reaches Isat(2). We use the values of Isat(Z)
reported by V. R. Bhardwaj et al. for �D 1,500 nm and Tp D 70 fs [23].

Nanosecond scale simulations are required for the investigation of fragmentation
dynamics after near-IR laser excitation. It is however computationally demanding
to perform such a long-time calculation by using conventional DFT methods.
We therefore used density functional-based tight-binding (DFTB) semiempirical
method [29–31] in combination with the standard mio-0-1 C–C parameter set [31,
40]. DFTB is known [41] to give better results of geometries and energies of
fullerene isomers than other semiempirical methods such as AM1 and PM3. DFTB
has been applied for MD calculation of fullerene formation [42, 43] and collision-
induced fusion of fullerenes [44].

In the DFTB calculation, the electronic energy of a system is obtained by solving
the tight-binding eigenvalue equation, and the parameters involved in the tight-
binding eigenvalue equation are determined from DFT calculations. DFTB is based
on the zeroth- or second-order expansion of the Kohn-Sham total energy with
respect to electron density fluctuation. The former is denoted by non-self-consistent
charge (non-SCC) DFTB [29, 30] and the latter is denoted by self-consistent charge
DFTB (SCC-DFTB) [31]. In the latter, the charge distribution in a molecule,
represented by point charges, is obtained in an iterative self-consistent manner.
On the other hand, in the non-SCC-DFTB, electron density fluctuation is not
considered. The computational cost of non-SCC-DFTB is less than one-tenth of that
of SCC-DFTB (the difference is roughly the number of required iterations to obtain
self-consistent charges). Because the charge distribution in C60 is considered to be
nearly homogeneous, the non-SCC-DFTB method was used to calculate energies
and forces on the fly in our direct, long-run MD simulations (in the following
denoted by DFTB/MD). We used the DFTB C program developed by Thomas
Frauenheim’s group in the Bremen Center for Computational Materials Science.
The vibrational frequencies of hg(1) and ag(1) calculated by the non-SCC-DFTB
and SCC-DFTB implemented in DFTB C are also listed in Table 7.1, which are in
semiquantitative agreement with the experimental values.

7.2.2 Time-Frequency Analysis of Vibrational Dynamics

We extract the excited vibrational modes from the dynamics of C60 (or C12C60 ) and
quantify the energies of excited modes. To that end, the frequency components of
the vibrational motion are calculated by Fourier transforming the coordinates fxj(t),
yj(t), zj(t)g of all carbon atoms fjg with a window function w(t) that supports the
range between ti and tf as
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8

<̂

:̂

Xj .!/ D R tf
ti
xj .t/ w.t/e�i!tdt

Yj .!/ D R tf
ti
yj .t/ w.t/e�i!tdt

Zj .!/ D R tf
ti

zj .t/ w.t/e�i!tdt
; (7.2)

where tf � ti � Ts is the sampling region. The function w(t) to avoid the sudden turn-
on and turn-off of signals in the sampling region is

w.t/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1

2

n

1 � cos
h �

W
.t � ti /

io

for ti � t � ti CW

1 for ti CW � t � tf �W
1

2

n

1 � cos
h �

W




tf � t�
io

for tf �W � t � tf

; (7.3)

where Ts � 2W is the plateau width of the window. This window that satisfies
derivative continuity at both ends of the plateau is spectrally smooth and much
information of dynamics of C60 remains if W � Ts.

We next present a method to analyze the temporal changes of the energies
of vibrational modes. To separate the motion of C60 into vibrational modes, we
divide the obtained spectra fXj(!), Yj(!), Zj(!)g in Eq. (7.2) into the frequency
ranges characteristic of individual vibrational modes and then inverse-transform the
frequency components in a divided frequency range under consideration:

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Nxj .t/ D 1

2�

Z !2

!1

Xj .!/ ei!td!

Nyj .t/ D 1

2�

Z !2

!1

Yj .!/ ei!td!

Nzj .t/ D 1

2�

Z !2

!1

Zj .!/ ei!td!

; (7.4)

where !1 and !2 are the lower and upper limits of the divided frequency range,
respectively. The kinetic energies K(t) of each vibrational mode are calculated
from the velocities fd Nxj .t/ =dt , d Nyj .t/ =dt , dNzj .t/ =dt g. The potential energies
V(t) at the structure f Nxj .t/, Nyj .t/, Nzj .t/g can be obtained by electronic structure
calculations. The total vibrational energy for a mode characterized by the range
[!1, !2] is given by the sum of K(t) and V(t).

7.3 Vibrational Impulsive Raman Excitation
by a Single Pulse

In our previous study, we calculated one-dimensional wave packet dynamics for the
prolate-oblate hg(1) mode and reported that vibrational energy deposited into hg(1)
can be controlled by adjusting the pulse length Tp [24, 45, 46]. Large vibrational
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excitation is expected for a Raman active mode if Tp is close to the half of the
vibrational period Tvib, that is, if Tp � Tvib/2. This result can be explained by using
the time-dependent picture of adiabatic states as below.

Time-dependent adiabatic potentials E(R, t) in a laser electric field (t) can be
expanded as

E .R; t/ D E0.R/ � 	.R/".t/� 1

2
˛.R/".t/2 � � � � ; (7.5)

where E0(R), 	(R), and ˛(R) are the field-free potential, permanent electric dipole
moment, and polarizability of a molecule, respectively. We assume the form of
"(t) D f (t) sin(!Lt), where f (t) and !L are the (slowly varying) envelope function
and optical frequency of the field, respectively. Since the optical cycle of a near-IR
field, 2�/!L, is much shorter than the vibrational periods Tvib, nuclei cannot follow
the temporal change of near-IR electric fields. The motion of nuclei rather follows
the effective potential NE .R; t/ which is the average of E(R, t) over one optical cycle
[25, 47]:

NE .R; t/ D !L

2�

Z tC�=!L

t��=!L

E



t 0
�

dt 0: (7.6)

If the pulse contains many optical cycles, that is, Tp � 2�/!L, the change in
f (t) for one optical cycle is negligible: the cycle-averaged potential NE .R; t/ is
approximated as

NE .R; t/ � E0.R/ � 1

4
˛.R/f .t/2 � � � � : (7.7)

The leading interaction term in NE .R; t/ is the cycle-averaged polarization energy
proportional to ˛(R). The polarizability can be expanded with respect to nuclear
coordinates:

˛.R/ D ˛



Req
�C d˛

dR

ˇ
ˇ
ˇ
ˇ
RDReq




R �Req
�C � � � ; (7.8)

where Req denotes the nuclear configuration of an equilibrium structure. When the
derivative of the polarizability with respect to nuclear coordinates has a nonzero
value (Raman active modes), NE .R; t/ is deformed in comparison with the field-free
potential and vibrational excitation occurs.

To qualitatively understand the mechanism of impulsive Raman excitation, we
apply the above-mentioned cycle average condition to the harmonic oscillator model
for a Raman active mode l of which the reduced mass and vibrational frequency
are 	l and !l, respectively. The applied pulse is assumed to be rectangular, and the
duration is Tp. f (t) is constant, that is, f (t) D f for the pulse duration. From Eqs. (7.7)
and (7.8), we can derive the classical equation of motion for Ql. The field-induced
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force exerted on the mode l is found to be proportional to Id˛/dQl, where I D f2/2
and Ql are the light intensity and the normal coordinate for the mode l, respectively:

dE .Ql; t/

dQl

D �	l!l 2Ql C I

2

d˛

dQl

sin2 .!Lt/ : (7.9)

The classical equation of motion for Ql is therefore

d2Ql

dt2
D �!2l Ql C 1

2	l

Id˛

dQl

sin2 .!Lt/ � �!2l Ql C I

4	l

Id˛

dQl

; (7.10)

where the condition for cycle average, !L �!l, is applied. For the initial condition
of Ql D PQl D 0, the amplitude of Ql at the end of the pulse is given by

Ql




t D Tp
� D I

4	l!
2
l

d˛

dQl




1 � cos!lTp
�

: (7.11)

This equation shows that the amplitude of the Raman active mode is maximized
when Tp D�/!l D Tvib/2.

For an applied Gaussian pulse of which the light intensity profile has a full
width at half maximum (FWHM) of Tpg, we found that the maximum amplitude is
obtained when Tpg � 0.4Tvib [24]. We simulated the interaction of C60 with intense
laser pulses (I> 1014 W/cm2) by using the time-dependent adiabatic state approach,
in which all the vibrational degrees of freedom of C60 were treated classically. We
confirmed that the total vibrational energy of the hg(1) mode gained by impulsive
Raman excitation can be very large (>20 eV), and it is maximized at Tpg � 0.4Tvib

(hg(1)), where Tvib (hg(1)) is the vibrational period of the hg(1) mode, 125 fs.
Zhou et al. also examined the maximum excitation condition in the case where
the envelope f (t) is a half cycle sine function. They found for harmonic oscillator
models that maximum excitation can be achieved when Tps D 0.42Tvib, where Tps

is the FWHM of the light intensity of the applied half cycle sine pulse [48]. The
relation of Tps D 0.42Tvib for maximum excitation was confirmed for C60 and a
carbon nanotube by using Ehrenfest dynamics based on DFTB [48], though the
applied fields used in the simulation were weak so that the vibrational energies
stored in various modes were less than a several eV (The vibration can be regarded
as a set of independent harmonic oscillators.) The results of both studies using
realistic MD simulations clearly indicate that a Raman active mode can be excited
most efficiently by adjusting the pulse length to a characteristic time of the mode
(�Tvib/2).

In this study, at first, we further examine the efficiency of impulsive Raman
excitation for two models: the sequential ionization model and the neutral model
where C60 remains neutral without ionization. MD simulations were performed by
using the time-dependent adiabatic state approach with the B3LYP/3-21G method
of DFT. Figures 7.1 and 7.2 show snapshots of the dynamics in the sequential
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Fig. 7.1 Snapshots of the dynamics of the sequential ionization model of C60. The DFT/B3LYP
method with the 3-21G basis set is used. The applied pulse is a Gaussian pulse of Tpg D 30 fs,
Ipeak D 7.0 � 1014 W/cm2, and �D 1,800 nm. The polarization direction is the vertical direction.
“Time D 0 fs” is the time of the peak of the laser pulse. The temporal profile of the applied electric
field is sketched in the upper left corner of each snapshot of C60; the open circle in the field
profile designates the field strength at the time. In this model, C60 is sequentially ionized from
“charge D 0” to C12C60 denoted by “charge D 12” under laser irradiation. C60 is elongated along the
polarization direction during the pulse irradiation and keeps prolate-oblate hg(1)-like vibration for
a few picoseconds after the end of the laser pulse. The vibrational energy stored was 21.1 eV

Fig. 7.2 Snapshots of the dynamics of neutral C60. The applied pulse is the same Gaussian pulse
as used in Fig. 7.1. As in the case of the sequential ionization model, hg(1)-like vibration is excited
by the laser pulse and continues even after the end of the laser pulse. The vibrational energy stored
was 18.8 eV
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Fig. 7.3 Averaged vibrational spectra S(!) defined in Eq. (7.12) for different cases: Tpg D 70 fs
in the neutral model (dotted line), Tpg D 30 fs in the neutral model (broken line), and Tpg D 30 fs
in the sequential model (solid line). The parameters for the widow function w(t) are as follows:
ti D 60 fs, tf D 1,060 fs, and W D 20 fs. The peaks near 250 and 490 cm�1 correspond to the hg(1)
mode and the ag(1) mode, respectively. Inserted is an enlarged plot between 350 and 600 cm�1

ionization model and in the neutral model, respectively. “Time D 0 fs” is the
time of the peak of the applied laser pulse. The parameters of the applied near-
IR Gaussian pulse are as follows: wavelength �D 1,800 nm, peak light intensity
Ipeak D 7.0 	 1014 W/cm2, and Tpg D 30 fs. Since this peak light intensity exceeds
Isat(12) D 5.8 	 1014 W/cm2, C60 is ionized to C12C60 in the present sequential
ionization model.

In both models, C60 is elongated along the polarization direction during the pulse
irradiation and exhibits hg(1)-like vibration (Tvib � 125 fs) for a few picoseconds
after the end of the laser pulse. The total vibrational energy stored in the molecule
is 21.1 eV for the sequential ionization model and 18.8 eV for the neutral model.
The energies deposited in C60 in the two models are almost the same. This result
comes from the fact that the vibrational frequencies and equilibrium structures of
C60 cations are not significantly different from those of neutral C60 [45, 46]. For an
excess vibrational energy of �20 eV, C12C60 cations produced by intense, short laser
pulses of wavelengths �1,800 nm can have fragmentation lifetimes on the order
of microseconds [46], which is consistent with the experimental TOF detection of
C12C60 by Bhardwaj et al. [23].

Figure 7.3 shows the averaged vibrational spectra S(!) for the neutral model
(Tpg D 30 and 70 fs) and the sequential ionization model (Tpg D 30 fs) in the region
between 60 and 1,060 fs:

S .!/ D 1

60

60X

jD1

�ˇ
ˇXj .!/

ˇ
ˇ
2 C ˇ

ˇYj .!/
ˇ
ˇ
2 C ˇ

ˇZj .!/
ˇ
ˇ
2
	

: (7.12)
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Fig. 7.4 Temporal change in vibrational energy of the five lowest frequency Raman active modes
for two pulses (a) Tpg D 30 fs and (b) Tpg D 70 fs in the neutral model: hg(1) (broken line), hg(2)
(thin solid line), ag(1) (dotted line), hg(3) (thin broken line), and hg(4) (dash-dotted line). The solid
line represents the total energy of these five low-frequency modes

The vibrational energy stored in C60 is 30 eV for Tpg D 70 fs in the neutral model.
The peaks at 250 and 490 cm�1 in the neutral model correspond to the hg(1) mode
(for the harmonic mode, Q�vib D 271 cm�1 and Tvib D 123 fs) and the ag(1) mode ( Q�vib

D 491 cm�1, Tvib D 68 fs), respectively. Roughly speaking, the energy deposited
into a mode l is proportional to !2l S .!l/ (For the time-dependent energies of various
modes, see Fig. 7.4). Since the wave number 250 cm�1 corresponds to 134 fs, Tvib

of the induced, hg(1) motion is longer than that of the harmonic mode (123 fs). This
is due to anharmonicity of the large amplitude hg(1) motion.

The peaks of hg(1) and ag(1) in Fig. 7.3 do not overlap with each other; that
is, in the initial excitation stage, C60 can be treated as an ensemble of independent
oscillators, though all the anharmonic mode couplings are taken into account in the
MD simulations. It is shown in the neutral model that the peak of the ag(1) mode
increases when Tpg decreases from 70 to 30 fs. As expected, the Raman active mode
is efficiently excited if Tp � Tvib/2. Although the peaks of hg(1) and ag(1) in the
sequential ionization model shift to the lower frequency sides of the neutral ones (of
which the frequencies correspond to those of C12C60 ), the two spectra for Tpg D 30 fs
indicate that impulsive Raman excitation in the neutral model qualitatively agrees
with that in the sequential ionization model.

The “time-dependent” energies of Raman active modes for the neutral model are
calculated by the procedure in Sect. 7.2.2. The results for the five lowest frequency
modes hg(1), hg(2), ag(1), hg(3), and hg(4) are shown in Fig. 7.4. The vibrational
modes that have a higher frequency than the highest frequency mode hg(4) ( Q�vib D
783 cm�1, Tvib D 43 fs) among the five modes are classified as “high-frequency
modes” in the present discussion. In the case of Tpg D 30 fs, the ag(1) mode is
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Fig. 7.5 Averaged vibrational spectra S(!) (Ts D 200 fs, W D 20 fs) in the case of the neutral
model for Tpg D 30 fs at different times: just after the pulse irradiation, ti D 60 fs (solid line); 2 ps
after the pulse irradiation, ti D 2,060 fs (gray line); 4 ps after the pulse irradiation, ti D 4,060 fs
(dotted line); 6 ps after the pulse irradiation, ti D 6,060 fs (broken line). Following the calculation
up to 60 fs by the time-dependent adiabatic state approach combined with the B3LYP/3-21G
method of DFT, we used the DFTB/MD method to calculate the spectra for the subsequent
dynamics. The vibration of the hg(1) and ag(1) modes continued at least for one or two picoseconds
after the irradiation of the laser pulse

considerably excited besides the mainly excited hg(1) mode, while the hg(1) mode
is preferentially excited in the case of Tpg D 70 fs. This result reinforces that the
condition for high excitation efficiency of a Raman active mode, suggested in
previous studies [24, 45, 46, 48], is also valid for high vibrational energy (> 20 eV).

The process of IVR due to anharmonic couplings [28] depends on Tpg. For
Tpg D 30 fs, the energy of the hg(1) mode is initially the largest among all the
vibrational modes, and part of the energy moves to the ag(1) and hg(4) modes in
200 fs. Afterward, energy transfers to high-frequency modes because of IVR. As a
matter of fact, the total energy of the five low-frequency modes begins to decrease
after the initial peak around t D 150 fs. High-frequency modes, such as local C–
C bond stretching and bending, play a key role in rearrangement or fragmentation
processes, as discussed later. In Fig. 7.4b, where only the hg(1) mode is shown to
be dominantly excited, no strong anharmonic interactions with the other four low-
frequency modes are observed till �1 ps. The energy of the hg(1) mode is transferred
directly to high-frequency modes after 1 ps.

Figure 7.5 shows the time-resolved averaged vibrational spectra for the dynamics
up to 6 ps after t D 60 fs, that is, after the interaction with the laser pulse of
Tpg D 30 fs. For this long-run dynamics, the direct DFTB/MD technique based
on the non-SCC-DFTB method was used. The dynamics up to 60 fs is provided
by the time-dependent approach combined with the B3LYP/3-21G method. The
two peaks around 250 and 550 cm–1, corresponding to the hg(1) and ag(1) modes,
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Fig. 7.6 C and C2 emissions from C60 in the sequential ionization model. The applied pulse is
a Gaussian pulse of Tpg D 70 fs, Ipeak D 2.0 � 1015 W/cm2, and �D 1,800 nm. The polarization
direction is the vertical direction. The cage structure of C60 broke up and 12 C and 4 C2 fragments
were emitted before the laser pulse reached its peak intensity

become lower and broader as time passes, but significant change is not observed
till �2 ps. These results obtained by the non-SCC-DFTB method also indicate that
the lifetimes of large amplitude vibrations of the hg(1) and ag(1) modes are about
1 � 2 ps. The results of Figs. 7.4 and 7.5 suggest that control of the ratio in energy
of these two modes can be achieved by using pulse trains such as double pulses of
which the intervals are less than 1 ps.

We furthermore simulated the dynamics of C60 interacting with a more intense
laser pulse (�D 1,800 nm, Ipeak D 2.0 	 1015 W/cm2, Tpg D 70 fs) in the sequential
ionization and neutral models. In both models, C60 undergoes fragmentation during
pulse irradiation. Figure 7.6 shows C and C2 emissions from C60 in the sequential
ionization model. Before the laser pulse reached its maximum, C60 was rapidly
ionized to C12C60 , and the amplitude of the induced hg(1)-like vibration is extremely
large. Consequently, the cage structure of C60 broke up, and 12 C and 4 C2 fragments
were emitted before the laser pulse reached its peak intensity. In the neutral model,
the same numbers of C and C2 fragments were observed as well. These results
indicate that a large amount of energy deposited by such an intense laser pulse
immediately breaks the cage structure of C60.

This ultrafast fragmentation is classified as field-induced nonstatistical one.
The fragmentation dynamics of C60 irradiated with intense, femtosecond near-IR
pulses was studied by Hertel et al. with one-color pump-probe spectroscopy [49].
They reported that small neutral fragments C, C2, and C3 are formed by a pump
pulse, which are then positionized by a delayed probe pulse. The respective ion
signals detected by the time-of-flight mass spectrometry dramatically increase on a
timescale of 10–20 ps of the pump-probe delay. Using a two-color femtosecond
pump-probe setup, they revealed that the timescale for the appearance of small
neutral fragments is even subpicosecond [50]. This ultrafast detection of fragments
indicates the existence of field-induced nonstatistical one.



164 N. Niitsu et al.

7.4 Control of the Dynamics of C60 Interacting with Double
Pulses

In this section, we present the results of simulations of the vibrational dynamics of
C60 interacting with double pulses consisting of two single pulses of �D 1,800 nm,
Tpg D 30 fs, and Ipeak D 7.0 	 1014 W/cm2. We here used the neutral model. The
vibrational dynamics of C60 can be controlled by adjusting the time interval between
the centers of the two pulses, � [24]. In the case of � D 134 fs (� Tvib of the
hg(1) mode excited by a single pulse), the hg(1) mode was excited stronger than
in the single pulse case shown in Fig. 7.7. The total vibrational energy stored in
C60 was 60.1 eV, which is three times as large as that in the single pulse case
(Fig. 7.2). As shown in Fig. 7.2, C60 excited by a single pulse initially elongates
along the coordinate of the hg(1) mode, Qhg.1/, where Qhg.1/ > 0 indicates an
elongated prolate structure and Qhg.1/ < 0 indicates an oblate one. The C60 of a
prolate form then takes an oblate form and returns to an icosahedral (Ih) structure
of Qhg.1/ � 0 at t � 134 fs. The molecule is then about to elongate again toward
Qhg.1/ > 0. If the second pulse of which the peak is located at t D 134 fs is
turned on, the additional force towardQhg.1/ > 0 enhances the amplitude ofQhg.1/.
The amplitude of a Raman mode can be enhanced (quadrupled at most) if the
second pulse is synchronized with the motion, that is, if � � nTvib where n is an
integer.

In the case of � D 201 fs (� three times as long as Tvib of the ag(1) mode and
1.5 	 Tvib of the hg(1) mode), the hg(1) mode initially excited by the first pulse is
suppressed by the second pulse, and the vibrational mode that was predominantly
excited is switched to the ag(1) mode. (The vibrational energy stored in C60

Fig. 7.7 Snapshots of the dynamics of C60 interacting with a double pulse (pulse interval
� D 134 fs). The parameters of the double pulse are given in the text. The polarization direction is
the vertical direction. “Time D 0 fs” is the time of the peak of the first pulse. The amplitude of the
hg(1) mode was enhanced by the second pulse for this pulse interval
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Fig. 7.8 Averaged vibrational spectra S(!) of C60 interacting with double pulses: (gray line)
pulse interval � D 134 fs (ti D 194 fs and tf D 1,194), (solid line) � D 201 fs (ti D 261 fs and
tf D 1,261 fs). The sampling time after the irradiation of the second pulse and the window width
are Ts D 1.0 ps and W D 20 fs. In the case of � D 134 fs, the hg(1) mode is strongly enhanced by
the second pulse; in the case of � D 201 fs, the hg(1) mode is suppressed by the second pulse, and
the mainly excited mode is switched to the ag(1) mode of 490 cm�1

was 20.2 eV.) C60 returns to an Ih structure at t � 201 fs (from Qhg.1/ > 0 to
Qhg.1/ D 0) and moves toward an oblate structure (to Qhg.1/ < 0). However, the
second pulse suppressed this motion by exerting a force toward Qhg.1/ > 0; on the
other hand, the second pulse enhances the ag(1) motion by synchronization.

The vibrational spectra S(!) after the second pulse in the cases of � D 134 and
201 fs are shown in Fig. 7.8, which clearly indicate that the amplitude of the hg(1)
mode is enhanced for � D 134 fs and the predominant mode is switched to the ag(1)
mode for � D 201 fs. In short, a Raman active mode is strongly excited if � is chosen
to equal an integer multiple of its vibrational period Tvib, and the energy of the mode
takes the minimum if � is equal to a half-integer multiple of Tvib. This is known to be
valid for the harmonic oscillator model. We proved that this is also the case for the
potential surface of highly excited C60 which includes anharmonic mode couplings
by nature.

Figure 7.9 depicts the dynamics of C60 interacting with a double pulse of
� D 134 fs (� Tvib of the hg(1) mode), where the polarization directions of the two
pulses are perpendicular to each other. The polarization direction of the first pulse is
the vertical direction z, while that of the second pulse is the horizontal direction x.
As shown by the upper right panel of Fig. 7.7, just before the turn-on of the second
pulse, C60 is oblate and about to elongate along the z-axis toward a prolate structure
of Qhg.1/ > 0. In this case, however, the second pulse exerts an additional force on
C60 along the x-axis. Consequently, the superposition of the prolate structures in
the two directions z and x forms an oblate-like structure with respect to the y-axis,
as shown in the lower left panel; it eventually generates oblate-prolate vibration
along the y-axis. See the lower right panel for t D 160 fs. Thus, the direction of
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Fig. 7.9 Snapshots of the dynamics of C60 interacting with a double pulse (� D 134 fs) of which
the first and second pulses have vertical (z) and horizontal (x) polarization directions, respectively.
The intensity and frequency of the pulse are the same as in Fig.7.7. Two orthogonal views from the
x and y directions are displayed at four different points of time. The additional force exerted in the
x direction by the second pulse resulted in hg(1)-like vibration in the y direction

the hg(1) mode vibration excited by the first pulse was switched from z to y by the
second pulse. It turned out that the direction of the vibrational motion of C60 can be
controlled by adjusting the polarization directions of double pulses.

7.5 Stone-Wales Rearrangement on Picosecond
and Nanosecond Timescales

We next present the results of simulations of rearrangement and fragmentation
obtained using the DFTB/MD method. We assumed that large amplitude vibration
was induced by near-IR pulses in the hg(1) or ag(1) mode of neutral C60, as
demonstrated in previous sections. The initial structures of C60 for DFTB/MD
simulations were prepared by stretching C60 from an Ih structure to a structurally
expanded one, along the normal coordinate of the hg(1) or ag(1) mode. The
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Fig. 7.10 Illustration of Stone-Wales rearrangement (SWR) and fragmentation from the non-IPR
structure C to F via D. Fragmentation along the broken line is dynamically unfavorable. The kinetic
energies of the six carbons with filled circles are monitored as a local energy that can be used for
SWR. See Fig. 7.12

coordinates of these modes are obtained by the normal mode analysis performed
at the B3LYP/3-21G level of DFT. The initial velocities of all nuclei were set to
be zero; the total energy as a parameter for MD simulation is given by the initial
potential energy.

As shown in Sect. 7.3, IVR is completed in several picoseconds after the
initial vibrational excitation. As a result of IVR, the vibrational energy initially
stored in either the hg(1) or ag(1) mode is distributed among many vibrational
modes including high-frequency modes such as local C–C bond stretching and
bending modes. This suggests that distributed vibrational energies are spatially
localized and then migrate among many carbon atoms of C60 on the timescale
of high-frequency modes. We show in this section that such energy flow triggers
Stone-Wales rearrangements (SWRs) [32] and fragmentation. SWRs are known to
change the bond network structure of nanocarbons (fullerenes, carbon nanotubes,
graphenes, etc.).

Figure 7.10 is an illustration of paths of SWR and fragmentation of C60. The most
stable structure of C60 satisfies the isolated pentagon rule (IPR), where the pentagons
are not adjacent to each other, surrounded by hexagons. The structure A in Fig. 7.10
represents an IPR structure. The path from A to C via B shown in Fig. 7.10 is an
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Fig. 7.11 Snapshots of Stone-Wales rearrangement in 606 ps after the initial injection of 63 eV
into the ag(1) mode. The single bonds C2–C3 and C2–C4 cleave, and then the double bond between
C1 and C2 rotates. The bond network structure of C60 is changed to a non-IPR structure

SWR, which produces a non-IPR cage structure. Two pairs of directly connected
pentagons, that is, two pentalene-like units, are formed in the non-IPR structure C.
A fused pentagon pair is known to be energetically unfavorable [51]. The structure
C is higher in energy than the IPR one A by 1.7 eV, and the activation barrier for the
transition state B is 7.4 eV (evaluated by B3LYP/3-21G, etc.) [52].

Figure 7.11 shows snapshots of an SWR process of C60 obtained in the case
where an energy of 63 eV is initially injected into the ag(1) mode. In the first step of
Fig. 7.11, the single bond C2–C3 shared by adjacent pentagon and hexagon ruptures,
as well as the C2–C4 bond. As a result, the dangling C2 atom of the C1DC2
double bond in the hexagon stands up (motion toward larger radial distances), as
shown in Fig. 7.11b; then, the C2 rotates above the surface of C60 to form a non-
IPR structure (from Fig. 7.11c to d). This two-step process of “asymmetric” bond
breaking and bond formation is the main dynamical path in SWR, which differs
from the symmetric rotation path with concerted bond breaking and formation on
the surface of the C60 cage, that is, the minimum energy path A ! B ! C shown in
Fig. 7.10. Theoretical investigation of the asymmetric path has been also given in
Ref. [53].

We found that a process of SWR is completed, typically within 100 fs once it is
initiated. To understand how SWR is caused by energy flow on the bond network of
C60, we focus on the dynamics of 30 units that consist of two C atoms of a double
bond and its surrounding four C atoms (carbons with filled circles in Fig. 7.10).
The surrounding four atoms are also shared by other units. Figure 7.12 shows
temporal change of the total kinetic energy of six carbons in a unit where SWR
occurs (rearrangement unit) and the potential energy of the whole C60. As shown
in Fig. 7.12a, a large kinetic energy of 4�6 eV flows into and flows out of the
rearrangement unit many times before the SWR at t � 606.1 ps (owing to energy
exchange among units). The average interval between large energy flows is 500 fs.
(See the peaks higher than �6 eV in Fig.7.12a.) The inflow and outflow of kinetic
energy are as rapid as several ten femtoseconds as shown in Fig. 7.12b (for instance,
the peak just before t D 606.1 ps in the kinetic energy plot of Fig. 7.12b is as narrow
as 40 fs). As indicated by the solid and broken line arrows in Fig. 7.12b, when an
SWR occurs around t D 606.1 ps, the potential energy of the whole C60 increases by
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Fig. 7.12 Temporal change in various quantities related to the Stone-Wales rearrangement process
shown in Fig.7.11: (a) the kinetic energy of the rearrangement unit as a function of time; (b) the
kinetic energy of the rearrangement unit (solid line) and the potential energy of the whole C60

(broken line) around the time when an SWR occurs (�606.1 ps). The dotted line in panel b is
the length of the bond C2–C4 in Fig. 7.11 that breaks in the SWR. Elongation of this bond means
progression of SWR. As shown in panel a, large kinetic energy flow (in and out) of 4–6 eV (relative
to the minima) occurs many times at intervals of �500 fs. Panel b shows that the peak of the kinetic
energy just before 606.1 ps decays within 40 fs, and this decrement in local kinetic energy is used to
go over the SWR barrier, which is clearly indicated by the corresponding increase in the potential
energy and the relevant C2–C4 bond length

7�8 eV, whereas the kinetic energy of the rearrangement unit decreases by �6 eV.
Accordingly, the length of the bond C2–C4 in Fig. 7.11 increases, as clearly shown
by the dotted line in Fig.7.12b, which evidences that the decrement in kinetic energy
is used to overcome the SWR barrier.

This SWR mechanism is also supported by Fig. 7.13, which depicts the temporal
development of SWR in the rearrangement unit. The definitions of the vertical
and horizontal axes in Fig. 7.13a are illustrated in Fig. 7.13b: the vertical axis r
represents the distance (radius) between the center of mass of the whole C60 and
that of the C1DC2 bond; the horizontal one corresponds to the angle 
 between
the C1DC2 bond and the line that connects the C3 and C5 atoms projected onto the
plane perpendicular to the radius. Crossing the angle 
 D 0 means the rotation of the
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Fig. 7.13 (a) Temporal development of SWR in the rearrangement unit and (b) illustration of the
coordinates. The ordinate in panel a represents the distance (radius) r between the center of mass of
the whole C60 and that of the C1DC2 double bond; the abscissa corresponds to the angle between
the C1DC2 bond and the line that connects C3 and C5 projected onto the plane perpendicular to
the radial direction. Crossing the angle 
 D 0 means the rotation of the C1DC2 bond toward SWR.
Points A, B, C, and D of time denote t D 606.06, 606.07, 606.08, and 606.13 ps, respectively. The
C1DC2 rotation from C to D is completed within 40 fs

C1DC2 bond leading to SWR. The kinetic energy of the rearrangement unit begins
to rise at t D 606.06 ps (which is the point designated by “A” in Fig. 7.13a) and then
takes a maximum value at t D 606.07 ps (“B”). During this period between 606.06
and 606.07 ps, the C1DC2 bond moves only slightly. Afterward, the radius becomes
larger rapidly as the kinetic energy falls off. After passing point C at t D 606.08 ps,
the angle 
 shifts to the negative region, and the C2–C4 bond starts stretching as
shown in Fig. 7.12b. The C1DC2 rotation is completed at t D 606.13 ps (“D”), that
is, at the bottom of the kinetic energy. This clearly indicates that most of the kinetic
energy flowing into the rearrangement unit is consumed efficiently to induce SWR
as fast as possible without wasted motion.

Although large kinetic energy flow into a unit occurs many times (once per
�500 fs), SWRs take place only in a few cases. The reason for this is the rapidity
of large kinetic energy flow. An SWR does not occur unless it is completed within
the timescale of a large kinetic energy flow (several ten femtoseconds). Indeed, the
C1DC2 rotation from point C to point D is completed within 40 fs, as shown in
Fig. 7.13a. The inflow of kinetic energy into the rearrangement unit must be used for
SWR before a rapid outflow of kinetic energy occurs. The following two conditions
must be satisfied for an SWR to occur: a sufficient energy to go over the barrier near
the transition state geometry flows in the unit of a CDC bond and its surrounding
atoms; the induced motion is directed toward the direction from the initial IPR
structure to the transition state (from A to B in Fig. 7.10) within the timescale of
rapid kinetic energy migration.
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7.6 Statistical and Nonstatistical Characters
in Fragmentation

There exist two major processes in fragmentation of C60: direct fragmentation from
a cage structure of C60 after SWRs as shown in Fig. 7.14 and fragmentation after the
cleavage of a cage structure as shown in Fig. 7.15. SWR occurs once or more times
at different locations of the cage of C60 before fragmentation. We observed that
the former type of fragmentation occurs for low excess energies less than 70 eV,
where fragmentation takes place through the transition state D in Fig. 7.10. The
activation energy for fragmentation from the non-IPR structure created by an SWR
(structure C) is less than that from the IPR one by �1.7 eV. This energy difference is
considerable compared to the inflow of kinetic energy into a rearrangement unit (i.e.,
4–6 eV). SWRs hence represent a doorway to fragmentations. C2 is ejected from
near a non-IPR rearrangement unit after SWRs, as shown in Fig. 7.14, following the
mechanism proposed early on by Smalley et al. [5]. The non-IPR structure is subject
to higher local stress around rearrangement units compared to the IPR structure.
Consequently, fragmentations occur from near rearrangement units. Fragmentation
through the direct path from A to D in Fig. 7.10 did not occur.

Fig. 7.14 C2-evaporation after the SWR in Fig. 7.11. Fragmentation occurs from near a non-IPR
unit (from one of fused pentagons in the upper left part) of the structure C in Fig. 7.10. A carbon
atom rises up in D and pulls up another carbon atom in E. A heptagon unit appears after C2-
ejection, as illustrated in panel F of Fig. 7.10

Fig. 7.15 Fragmentation
after cage cleavage of C60 in
the case where the excess
vibrational energy is larger
than 70 eV. Carbon chains
like C2 are ejected from bond
cleavage sites with dangling
bonds on the rim of the cage
opening
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Fig. 7.16 C2-ejection rate
and its fitting by the rate
formula of the RRK theory.
The vertical axis is log(1/T)
corresponding to the
C2-ejection rate, where T is
the time from the initial
vibrational excitation to the
first C2-evaporation. The
values for the hg(1) excitation
and ag(1) excitation are
denoted by triangles and
circles, respectively. The
solid line is the rate formula
of the RRK theory, Eq.
(7.13), fitted to the result for
the ag(1) excitation
(E0 D 6.8 eV, S D 144)

Figure 7.16 shows C2-ejection rates as a function of excess vibrational energy
in the cases of the hg(1) and ag(1) mode excitations. For the hg(1) mode excitation,
the rate changes stepwise depending on the fragmentation type. The cage cleaves
before C2-evaporation for excess energies >70 eV. The C2-ejection rate for the
hg(1) mode excitation jumps around �70 eV and levels off at higher energies.
The scale of the rate jump is on the two orders of magnitude, which is beyond
the range of numerical errors. On the other hand, the rate increases monotonically
with increasing excess energy in the case of the ag(1) mode excitation. The rates for
the ag(1) mode excitation on average follow the curve of the microcanonical rate
constant reported by Lifshitz [54]. As shown in Fig. 7.16, we fitted these rates to the
formula of the Rice-Ramsperger-Kassel (RRK) statistical theory [55, 56]

k.E/ D A

�
E � E0

E

�S�1
; (7.13)

where A, E0, and S are the proportionality constant, activation energy, and number
of vibrational modes involved, respectively. The best fitting values for the ag(1)
mode excitation are as follows: E0 D 6.8 eV and S D 144. The value of S is regarded
as an effective number of vibrational degrees of freedom in the process under
consideration, which is usually a value from one fourth to two third of the total
number of vibrational degrees of freedom. The value of 6.8 eV for E0 is close to
the dissociation barrier obtained by the non-SCC-DFTB, �7.5 eV. The rates for the
ag(1) excitation follow the statistical formula in the wide range of excess energy
[12]; however, the hg(1) excitation does not.
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Fragmentation by the hg(1) excitation does not follow statistical theory, while
the ag(1) excitation follows. The most notable difference between the two excitation
conditions is the number of SWRs prior to fragmentation. The number is larger in
the hg(1) mode excitation than in the ag(1) mode excitation for the same excess
energy. When an energy of 67 eV was injected to the ag(1) mode, for example,
only two pairs of directly connected pentagons are formed in the non-IPR structure.
Contrary to this, when the same amount of energy was injected to the hg(1) mode,
the non-IPR structure is more complex: two heptagons, a pair of directly connected
pentagons (a fused pentagon pair), a group of directly connected three pentagons,
and a group of directly connected four pentagons are formed. We presume that
different non-IPR structures resulting from SWRs lead to different fragmentation
characters or different fragmentation patterns (differences in fragment yields)
because the lifetimes of individual non-IPR structures are much longer than the
period of vibrational energy migration on the bond network of C60(�500 fs). This
result implies that it is possible to control rearrangement and subsequent bond
breaking by inducing large amplitude motion in a specific mode with pulse shaping
techniques.

We analyze the sum of the translational kinetic energies of fragments C58 and
C2, which is denoted by Etra. The results obtained also suggest a nonstatistical
fragmentation character of the hg(1) excitation. Etra is derived from the law of
momentum conservation as

Etra D 1

2
m .C58/ �COM.C58/

2

�

1C m.C58/

m .C2/

�

; (7.14)

where m(C58), m(C2), and vCOM(C58) are the masses of C58 and C2 and barycentric
velocity of C58, respectively [57, 58]. Figure 7.17 shows Etra as a function of the
excess energy for the hg(1) excitation (triangles) and the ag(1) excitation (closed
circles). We also plotted the total translational kinetic energy of C58 and C2 on the
assumption that the excess energy E is equally distributed among vibrational modes

E �D
Neff

; (7.15)

where Neff and D are the effective number of the energy-sharing modes and the
dissociative barrier for C60 ! C58 C C2 (7.5 eV in the non-SCC-DFTB calculation),
respectively. The dash-dotted and solid lines in Fig. 7.17 denote the total transla-
tional kinetic energies of C58 and C2 for Neff D 3 	 60 � 6 D 174 and Neff D S D 144,
respectively. In the case of the ag(1) excitation, the translational kinetic energy
roughly follows the statistical prediction, Eq. (7.15); the solid line for Neff D S is
very close to the best fitting line for Neff D 139. In the case of the hg(1) excitation,
the variance from the statistical prediction is very large. These results suggest
that nonstatistical characters exist in the nanosecond fragmentation process of
C60 ! C58 C C2 for the hg(1) excitation.

We have so far discussed the processes of SWR and fragmentation in the neutral
stage of C60. The energies of non-IPR structures go down to the energy of the IPR
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Fig. 7.17 Total translational
kinetic energies Etra of C58

and C2 as a function of excess
vibrational energy. The values
for the hg(1) excitation and
ag(1) excitation are denoted
by triangles and closed
circles, respectively. The
dash-dotted and solid lines
are based on the statistical
model Eq. (7.15) for
Neff D 174 and
Neff D S D 144, respectively.
The best fitting line for the
ag(1) excitation is obtained
for Neff D 139

structure as the charge of C60 increases [59]. An SWR occurs in high charge states
with relatively low excess energies. We have observed that multiple SWRs occur
in C12C60 before C2-evaporation (which occurs on a timescale of �500 ps for excess
energy of �60 eV). The first SWR occurred around t D 10 ps which is much earlier
than in the neutral model (�500 ps). Fragmentation of C60 cations up to C20e
in a subpicosecond regime had previously been also investigated by tight-binding
MD simulations [60, 61]. The fact that charged carbon cages more readily emit
small carbon fragments is consistent with the experimentally observed increase in
the yield of fullerene C60 due to the presence of electron concentration waves in
carbon-helium plasma [62], if one assumes that fullerene formation occurs along
the “shrinking hot giant” road [34, 35].

7.7 Conclusions

We theoretically investigated the vibrational impulsive Raman excitation of C60

by single and double near-IR pulses of �D 1,800 nm. The dynamical behavior of
C60 was described by using the time-dependent adiabatic state approach combined
with the B3LYP/3-21G level of density functional theory. We confirmed that the
amplitude of a Raman active mode is maximized in the case of a single pulse when
the pulse length Tp is half of the vibrational period Tvib; a Raman active mode is
strongly excited in the case of a double pulse if the pulse interval � is chosen to
equal an integer multiple of Tvib, and the energy of the mode is minimized if �
is equal to a half-integer multiple of Tvib. A large energy (>60 eV) can be stored
in a specific mode by tailored femtosecond pulses such as pulse trains. This mode
selectivity is due to the fact that field-induced large amplitude vibration persists for
a rather long period (a few to several picoseconds), owing to relatively slow IVR.



7 Simulation of Nuclear Dynamics of C60: From Vibrational Excitation . . . 175

Mode selective excitation can therefore be achieved by adjusting the pulse intervals
in a pulse train, which supports the interpretation of the optimal control experiment
by Laarmann et al. [9], though the applied pulses used in the experiment were of
�D 800 nm. More direct comparison with our theoretical results can be achieved
by using longer wavelengths in the optimal control experiments of C60.

We also investigated the nanosecond nuclear dynamics of SWR and fragmenta-
tion using the DFTB semiempirical method. The migration of vibrational energy on
the bond network of C60 is examined by monitoring the kinetic energies of “units”
consisting of a CDC bond and its surrounding four atoms (six C atoms in total).
From this analysis, we found that an SWR occurs only when a sufficient energy
to go over the barrier near the transition state geometry flows in a unit, and that
the motion of nuclei induced by the large energy flow into a unit must be directed
toward the transition state so that the SWR is completed as fast as possible within
the timescale of vibrational energy migration on the bond network.

SWR, which produces highly strained, fused pentagon pairs, results in fragmen-
tation by C2-evaporation, in agreement with Smalley’s “shrink-wrap” mechanism
[5]. Fragmentation occurs from near an SW rearrangement unit (non-IPR unit)
with structural strain. Different non-IPR structures created by an SWR or SWRs
presumably lead to different fragmentation patterns. The numbers of SWRs and
resultant non-IPR units depend on the initially excited vibrational mode; for
example, the number of SWRs prior to fragmentation is larger in the case of
hg(1) mode than in the case of ag(1) mode excitation for the same excess energy.
It is thus possible to control rearrangement and subsequent bond breaking in a
“nonstatistical” way by selective mode excitation (which can be achieved by using
tailored pulses such as pulse trains). We also compared the barycentric velocities of
fragments to the prediction based on the statistical model where the excess energy is
equally distributed among many vibrational degrees of freedom. In the case where
the hg(1) mode is mainly excited, the sum of the barycentric kinetic energies of C58

and C2 deviates largely from the statistical prediction, while the ag(1) excitation
follows the statistical prediction. This result suggests that nonstatistical characters
still remain in the long nanosecond fragmentation process of C60 ! C58 C C2 for
the hg(1) excitation.
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8. Reinköster A, Korica S, Prümper G, Viefhaus J, Godehusen K, Schwarzkopf O, Mast M,

Becker U (2004) J Phys B 37:2135
9. Laarmann T, Shchatsinin I, Stalmashonak A, Boyle M, Zhavoronkov N, Handt J, Schmidt R,

Schulz CP, Hertel IV (2007) Phys Rev Lett 98:058302
10. Foltin V, Foltin M, Matt S, Scheier P, Becker K, Deutsch H, Märk TD (1998) Chem Phys Lett

289:181
11. Jensen J, Zettergren H, Schmidt HT, Cederquist H, Tomita S, Nielsen SB, Rangama J,

Hvelplund P, Manil B, Huber BA (2004) Phys Rev A 69:053203
12. Campbell EEB, Raz T, Levine RD (1996) Chem Phys Lett 253:261
13. Hansen K, Hoffmann K, Campbell EEB (2003) J Chem Phys 119:2513
14. Shchatsinin I, Laarmann T, Stibenz G, Steinmeyer G, Stalmashonak A, Zhavoronkov N, Schulz

CP, Hertel IV (2006) J Chem Phys 125:194320
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Chapter 8
Systematics and Prediction in Franck-Condon
Factors

Ray Hefferlin, Jonathan Sackett, and Jeremy Tatum

Abstract It is the hypothesis of this chapter that diatomic molecular Franck-
Condon factors echo the periodicities of atoms. This means that in isoelectronic
series, entire Deslandres tables for molecules that are one proton shift away from
rare-gas molecules have distinctive behavior relative to other Deslandres tables in
the series. An example is in the 21-electron sequence where BeCl, whose chlorine
atom is next to the closed-shell magic-number atom argon. The periodicity is found
quantitatively and indeed allows for prediction of the vibration frequency for a
hypothetical 2… upper state for CCl.

8.1 Introduction

The Franck-Condon factors (FCFs) for the strongest bands of a band system are
located in a (v0,v00) table such that a parabola (the Condon locus) often tracks through
them [1–3]. The tilt of this parabola, and its latus rectum, can be calculated from the
spectroscopic constants of the upper and lower electronic states of the transition. It
is relatively rare that the spectroscopic constants and the FCFs are available for any
given molecule; the availability is most common for isoelectronic sequences. Hence,
we calculate these two properties for the Condon loci of similar band systems
for the molecules in isoelectronic sequences. The hypothesis of the work is that
these loci will manifest the periodicities of the constituent atoms in the diatomic
molecules.
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Data for a study by Kuz’menko and Chumak [3] showed that the hypothesis is
satisfied for q(v0,v00) D q(0,0) in isoelectronic sequences with 14 and 21 electrons;
Hefferlin and Kuznetsova [4] showed that the hypothesis is satisfied for transition
moments, another measure of band system intensities. In this chapter, we extend the
test of the hypothesis to many more band systems.

8.2 Theory

The transition of a diatomic molecule from one electronic state to another takes
place almost instantaneously, in a time that is very short compared with the period
of molecular vibration. That is to say, the transition takes place with virtually no
change in internuclear distance. For that reason, a transition can be indicated in
energy level diagrams by means of a vertical line.

A vibrating molecule spends more time in its position of greatest extension
(greatest internuclear distance) or greatest compression (least internuclear distance),
when the speed of the atoms is least, than it does in its equilibrium position, when
the relative speed of the atoms is greatest. This is equally true of a classical model
or a wave-mechanical model. (In the latter case, the wavefunctions are greatest at
the extrema of the motion.)

Here, we provide formulas that will enable the calculation of the Condon locus
in terms of molecular constants for parabolic potential energy functions. Figure 8.1
shows schematically the parabolic energy curves of two simple harmonic oscillators
and their discrete vibrational energy levels.

We suppose that the parabolas can be represented by the equations

T D T 0
e C k0

2hc
.r � r 0

e/
2; (8.1a)

T D T 00
e C k00

2hc
.r � r 00

e /
2: (8.1b)

Here, T 0
e and T 00

e are the electronic contributions to the term values (energy
divided by hc), and the second terms are the potential energy terms expressed in
wave number units (m�1). r is the internuclear distance, and re is its equilibrium
value. k is the force constant, related to the molecular constant !e by

k D 4�2mc2!2e ; (8.2)

and

m D m1m2

.m1 Cm2/
; (8.3)
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Fig. 8.1 Potential energy curves of two simple harmonic oscillators and their discrete vibrational
energy levels (the numbers on the axes are arbitrary). The vertical separations of the discrete
vibrational levels within the two parabolas are inversely proportional to the latera recta of the
parabolas. That is to say, the narrower the parabola, the more widely spaced are the vibrational
levels

where m is the “reduced mass” of the molecule. The single primes and the number
1 refer to the upper electronic level, and the double primes and the number 2 to the
lower level, in accordance to the usual convention of molecular spectroscopy.

The problem is to draw a horizontal line T D T 0 to intersect the upper curve, then
to drop vertical lines from the two points of intersection, and finally to find the two
values of T00 where these vertical lines intersect the lower curve. It is mathematically
straightforward. The line T D T 0 intersects the upper curve at r values given by

r D r 0
e ˙

r

2hc

k0 .T
0 � T 0

e/: (8.4)

The corresponding T 0 values in the lower curve are given by

T 00 D T 00
e C k0

2hc

 

r 0
e ˙

r

2hc

k0 .T
0 � T 0

e/�r 00
e

!2

: (8.5)

We now introduce the term values of the vibrational levels in terms of the
vibrational constants !00

e and !0
evia
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T 00 D T 00
e C

�

v00 C 1

2

�

!00
e (8.6a)

and

T 0 D T 0
e C

�

v0 C 1

2

�

!0
e (8.6b)

We also make use of

k0 D 4�2mc2!00
e
2 and k00 D 4�2mc2!00

e
2 (8.7)

so that

2hc

k00 D „
�mc!00

e
2

(8.8a)

and

2hc

k0 D „
�mc!00

e
2

(8.8b)

The constant „=�mc has the dimension of a length, and we use the symbol L for
it. If m is expressed in amu, L has the dimensionless numerical value:

L D 6:743052	 10�17

m
: (8.9)

Further, we introduce the dimensionless molecular constants

�00 D 1

L!00
e
; (8.10a)

�0 D 1

L!0
e
; (8.10b)

and

� D r 00
e � r 0

e

L
: (8.11)

When these substitutions have been made, we obtain

�00
�

�00 C 1

2

�

D
 

�˙
s

�0
�

�0 C 1

2

�!2

: (8.12)
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Equation (8.12) is the equation to the Condon parabola in the (�00,�0) plane, in
a form that is convenient to compute and to draw. For analysis, it may be more
convenient to write it in the standard form for a conic section, namely,

ax2 C 2hxy C by2 C 2gx C 2fy C c D 0; (8.13)

in which

x D �00 C 1

2
; (8.14a)

y D v0 C 1

2
; (8.14b)

a D �002; (8.14c)

b D �02; (8.14d)

c D �4; (8.14e)

f D ��2�0; (8.14f)

g D ��2�00; (8.14g)

h D ��00�0: (8.14h)

Equation (8.13) makes it even clearer that Eq. (8.12) describes a parabola. Its
axis makes an angle 
 with the �00 axis; 
 is given by

Tan 
 D !0
e

!00
e

(8.15)

The length 2l of its latus rectum (dimensionless) is

2l D 4�2�00�0



�002 C�02�3=2
D 4.r 00

e � r 0
e/
2
!00

e
2
!0

e
2

L



!00
e
2 C !0

e
2
�3=2

: (8.16)

Several points are of interest. If !0
e D !00

e , the angle that the axis of the parabola
makes with the �00 axis is 45ı, and [3] the parabola degenerates into a straight line.
If r 0

e D r 00
e , the parabola also becomes a straight line. The vertical and horizontal

tangents of the parabola are both at �D –0.5.
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As an example, let us take the following values from [5] for the B-X system of
CN: m D 6.46427 amu, so that L D 1.04331 	 10�17 m

r 0
e D 1:1506	 10�10 m

r 00
e D 1:1718 	 10�10 m

!0
e D 2:16413	 105 m�1

!00
e D 2:068705	 105 m�1

In this case,

� D 2:0320 	 105

�0 D 4:42898	 1011

�00 D 4:63328	 1011

The resulting Condon parabola is shown in Fig. 8.2.

8.3 Preparation of the Data for Investigations
of Isoelectronic Molecules

The obvious starting point would be to compute the data (the angle and the length
of the latus rectum) for the Condon locus of the band systems of each fixed-period
diatomic molecule (e.g., both atoms from period 2). This procedure suffers from a
severe lack of such data. The density of data is greater among isoelectronic series.
Table 8.1 shows the isoelectronic series and related data.

For each total electron count, members of isoelectronic sequences were listed
in the order (Z1,Z2), with Z1 and Z2 representing the first and second atom in the
molecular symbol. In many cases, the atoms are in reverse order compared to
standard notation (e.g., SN). The lists were cut into partitions bounded on both
ends by a rare-gas molecule. A rare-gas molecule is one having at least one rare-
gas molecule (e.g., ONe). A search was made for partitions having at least three
members with the same upper and lower state angular momentum quantum number
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Fig. 8.2 The Condon locus for the B-X band system of CN with simple harmonic potentials
assumed for the upper and lower states. A Franck-Condon factor lies at each integer intersection.
The curve is calculated from the numerical values given in the text. The axis of the parabola makes
an angle of 46.29ı with the �00 axis, and the length of the latus rectum is 0.129 v units. In what
follows, this Condon parabola would be described as “narrow”

and multiplicity and with at least one member no more than one proton shift away
from a rare-gas molecule (e.g., BeCl next to BAr). Most of the lower electronic
states in the chosen partitions have X designations; the highest encountered upper
state is the twelfth above X (including a triplet state), but most have A and B
designations. Using FCFs from [5] and spectroscopic constants from [6] for each
band system, computation employing the formulas given in Sect. 1.2 provides the
latus rectum, the angle ™, and a plot of Condon locus. Those with more than three
digits after the decimal point have been truncated so that they show three. The scale
of the latera recta is the same as that for v0 and v00 in their Deslandres table. CCl is
included for purposes of the prediction described in Sect. 8.5. Figure 8.3 shows 

for members of an isoelectronic sequence plotted on Z1–Z2.

Some of the symmetry symbols in Table 8.1 are taken from [7] and [8]. The latera
recta of the Condon loci in some cases increase along with the ™ and in the other
cases oppositely; in all cases, they behave much more irregularly than do the angles.
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Fig. 8.3 The angle ™ of the Condon loci for the14-electron 3…C-1†C portion of Table 8.1. For
these unusually well-behaved band systems, the Condon loci are very wide in the center, wide, and
narrow from center to end. The excited states for N2 (center), CO, and BF (ends) are the second,
fifth, and second states above the ground state

8.4 Fitting Errors and Pitfalls in the Data

Plots for 11 isoelectronic sequences having more than three data, or having three
centered on jZ1–Z2j D zero, were prepared, one of which is shown in Fig. 8.3.
Six of the plots have six data points, and three more have five points (one in the
center and two duplicated on each side); the remainder have three non-redundant
points. The average standard deviation of fitting for these is 2.595ı. Figure 8.4 has
the largest scatter around its trend line (� D 3.951ı), so it is used as an example of
what the (n � 1) standard deviations look like. There is no theoretical basis for using
quadratic trend lines; they are used for sake of simplicity.

There is no evident correlation between the scatter in the graphs (estimated by eye
or calculated as standard deviations), the violation of the rule forbidding multiplicity
changes during transitions, the upper electronic states being close to or far above the
ground states, the lower electronic states not being ground states, or even the extent
to which the two state designations are the same.

8.5 A Predicted Upper State Vibration Frequency

It is possible to predict the upper 2…-state vibrational frequency of CCl (top portion
of Table 8.1) by finding ™ from the trend-line equation of the fitting parabola in the
figure appropriate to that sequence (not shown). Eq. (8.15) gives !0

e as

!0 D !00
e Tan 
 (8.17)
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Fig. 8.4 The angles of the Condon loci for the least well-behaved sequence, the †-† partition
of the 21-electron molecules in Table 8.1. The parabola minimum is at Z1 – Z2 D 8.401. The
data are provided with average (n-1) standard deviation derived from all sequences with sufficient
numbers of points. From left to right, the loci are narrow, wide, wide, narrow, wide, and narrow in
appearance

Putting x D 11 into the trend-line equation results in a predicted angle 
 of
55.08ı which, when substituted into Eq. (8.17), yields !0

e D 1; 240 cm�1 for the
hypothetical 2… upper state. Using the average of the six deviations found above,
2.595ı, the expected standard deviation of this predicted value is 9.27 %.

8.6 Summary

All 11 data plots indicate that the hypothesis of this chapter is correct, i.e., that
Franck-Condon factor tables echo the periodicities of the atoms comprising di-
atomic molecules. The 11 graphs show that in isoelectronic series, entire Deslandres
tables that are one proton shift away from rare-gas molecules have a distinctive
property relative to other tables in the series. The theory has allowed the prediction
of the vibration frequency for the first excited 2…, as yet undiscovered, state of CCl.
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Chapter 9
Electron Momentum Distribution and Atomic
Collisions

Takeshi Mukoyama

Abstract The momentum representation of the electron wave functions is obtained
for the nonrelativistic hydrogenic, the Hartree-Fock-Roothaan, the relativistic hy-
drogenic, and the relativistic Hartree-Fock-Roothaan models by means of Fourier
transformation. All the momentum wave functions are expressed in terms of
Gauss-type hypergeometric functions. The electron momentum distributions are
calculated by the use of these expressions, and the relativistic effect is demon-
strated. The results are applied for calculations of inner-shell ionization cross
sections by charged-particle impact in the binary-encounter approximation. The
relativistic effect and the wave-function effect on the ionization cross sections are
discussed.

9.1 Introduction

In quantum chemistry, the state of a physical system is usually described by a
wave function in the position space. However, it is also well known that a wave
function in the momentum space can provide complementary information for
electronic structure of atoms or molecules [1]. The momentum-space wave function
is especially useful to analyse the experimental results of scattering problems, such
as Compton profiles [2] and (e,2e) measurements [3]. Recently it is also applied to
study quantum similarity in atoms and molecules [4]. In the present work, we focus
our attention on the inner-shell ionization processes of atoms by charged-particle
impact and study how the electron momentum distribution affects on the inner-shell
ionization cross sections.
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The momentum wave functions in various atomic models are calculated for
arbitrary atomic orbitals. The nonrelativistic hydrogenic, the Hartree-Fock, the
relativistic hydrogenic, and the Dirac-Fock models are considered. The momentum
wave functions are obtained as a Fourier transform of the wave function in the
position space. The Hartree-Fock and the Dirac-Fock wave functions in atoms
are given in terms of Slater-type orbitals (STO’s), i.e. the Hartree-Fock-Roothaan
(HFR) method and the relativistic HFR (RHFR) method. All the wave functions
in the momentum space can be expressed analytically in terms of hypergeometric
functions.

The momentum wave functions thus obtained are used to calculate inner-
shell ionization cross sections by charged-particle impact in the binary-encounter
approximation (BEA) [5]. The wave-function effect and the electronic relativistic
effect on the inner-shell ionization processes are studied.

9.2 Electron Wave Functions in Momentum Space

9.2.1 Hydrogenic Wave Function

The hydrogenic wave function in the position space for electron with principal
quantum number n, orbital momentum quantum number l , and magnetic quantum
numberm is expressed in the form [6]

 nlm.r/ D Rnl.r/ Ylm.
; /; (9.1)

where Rnl.r/ is the radial part of the wave function, Ylm.
; / is the spherical
harmonics corresponding to the angular part, and 
 and  are the polar and
azimuthal angles of the position vector r . The radial part is written by

Rnl.r/ D 1

.2l C 1/Š

�
.nC l/Š

.n � l � 1/Š 2n

1=2 �
2Z

n

�3=2

	 exp

�

�Z
n
r

� �
2Z

n
r

�l

F

�

�nC l C 1; 2l C 2I 2Z
n
r

�

; (9.2)

where Z is the atomic number and F.a; bI x/ is the confluent hypergeometric
function.

The wave function in the momentum space corresponding to Eq. (9.1) is ex-
pressed as [7]

'nlm.p/ D Pnl.p/ Ylm.
p; p/; (9.3)

where 
p and p is the polar and azimuthal angles of the momentum vector p. The
radial part is given by
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Pnl .p/ D
r

2

�
i�l

Z 1

0

jl .pr/Rnl .r/ r
2 dr; (9.4)

where jl .x/ is the spherical Bessel function of the first kind with order l .
The momentum wave function can be calculated analytically and expressed as

Pnl .p/ D i�l
2 pl

.2l C 1/Š �.l C 3=2/

�
.nC l/Š

.n � l � 1/Š 2n

1=2 � n

Z

	lC3=2

	
n�l�1X

mD0

.�nC l C 1/m

.2l C 2/m

2m

mŠ
�.2l CmC 3/

	 2F1

�
2l CmC 3

2
;
2l CmC 4

2
I l C 3

2
I � n2

Z2
p2
�

; (9.5)

where .l/m means the Pochhammer symbol, i.e. .l/m D l.l C 1/ � � � .l C m � 1/,
�.x/ is the gamma function, and 2F1.a; bI cI x/ is the Gauss-type hypergeometric
function. The electron momentum distribution is given by

P.p/ p2 dp D jPnl.p/j2 p2 dp: (9.6)

9.2.2 Hartree-Fock-Roothaan Wave Function

The wave function in the Hartree-Fock-Roothaan model is expressed in the manner
similar to Eq. (9.1), but its radial part is written by Clementi and Roetti [8]

Rnl.r/ D
X

i

Ci �il .r/: (9.7)

The basis function is selected to be the STO:

�il .r/ D Ni r
ni�1 e��i r ; (9.8)

where ni and �i are the parameters and the normalization factor is

Ni D 1

Œ.2ni /Š�1=2
.2�i /

niC1=2:

The parameter ni and the size of the basis set are fixed, and the values of �i and the
expansion coefficient Ci are determined by the variational method.
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Inserting Eq. (9.8) into Eq. (9.4), the wave function in the momentum space is
expressed as

Pnl .p/ D i�l
X

i

Ci Ni Il .ni ; �i ; p/; (9.9)

where

Il .n; �; p/ D pl�.l C nC 2/

2lC1=2�lCnC2�.l C 3=2/2
F1

�
l C nC 2

2
;
l C nC 3

2
I l C 3

2
I �p

2

�2

�

:

(9.10)

9.2.3 Relativistic Hydrogenic Wave Function

The relativistic hydrogenic wave function in the position space is given by Rose [9]

 n�	.r/ D
 

gn�.r/ �
	
� .
; /

ifn�.r/ �
	��.
; /

!

; (9.11)

where � is the relativistic quantum number, � is its projection, gn�.r/ and fn�.r/
are the large and small components of the radial wave function, and �	� .
; / is the
spin-angular wave function.

The radial wave functions are written as

gn�.r/ D C .1CW /1=2 .2 �r/��1 e��r

	
�

�n0 F.�n0 C 1; 2� C 1I 2�r/�
�

� � Z

�

�

F.�n0; 2� C 1I 2�r/


;

fn�.r/ D �C .1 �W /1=2 .2 �r/��1 e��r

	
�

n0 F.�n0 C 1; 2� C 1I 2�r/�
�

� � Z

�

�

F.�n0; 2� C 1I 2�r/


;

where � D ˛Z, n0 D n � j�j, � D .�2 � �2/1=2, ˛ is the fine structure constant and

W D
"

1C
�

�

n0 C �

�2
#�1=2

;

� D Z

Œn2 � 2n0 .j�j � �/�1=2 ;

C D .2�5/1=2

�.2� C 1/

�
�.2� C n0 C 1/

n0Š Z .Z � ��/

1=2

:
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According to Rubinowicz [10], the relativistic momentum wave function is
expressed as

'n�	.p/ D
�
N.p/ �

	
� .
p; p/

iM.p/ �	��.
p; p/

�

: (9.12)

The radial wave functions in the momentum space are obtained through the Fourier-
Bessel transformation:

N.p/ D i�l
r

2

�

Z 1

0

jl .pr/ gn�.r/ r
2 dr ; (9.13)

M.p/ D i
Nl
r

2

�

Z 1

0

jNl .pr/ fn�.r/ r
2 dr; (9.14)

where l and Nl are the orbital angular momenta corresponding to � and ��,
respectively.

Substituting gn�.r/ and fn�.r/ into Eqs. (9.13) and (9.14) and using the integra-
tion formula [11], we obtain

N.p/ D i�l C .1CW /1=2 .2�/��1

	
�

�n0 I.�n0 C 1; 2� C 1; l; p/�
�

� � Z

�

�

I.�n0; 2� C 1; l; p/



;

M.p/ D i�Nl C .1 �W /1=2 .2�/��1

	
�

n0 I.�n0 C 1; 2� C 1; Nl ; p/ �
�

� � Z

�

�

I.�n0; 2� C 1; Nl ; p/


;

where

I.a; b; l; x/ D xl

2lC1=2
1

��ClC2 �.l C 3=2/

jaj
X

mD0

.a/m

bm

2m

mŠ
�.� C l CmC 2/

	 2F1

�
� C l CmC 2

2
;
� C l CmC 3

2
I l C 3

2
I �x

2

�2

�

: (9.15)

For K and L shells, the results obtained above reduce to the much simpler formula
in our previous work [12]. The relativistic momentum distribution of electrons is
calculated as

P.p/ p2 dp D 
jN.p/j2 C jM.p/j2�p2 dp : (9.16)
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9.2.4 Relativistic Hartree-Fock-Roothaan Wave Function

The RHFR wave function in the position space is expressed as [13]

 n�	.r/ D 1

r

 

Pn�.r/ �
	
� .
; /

iQn�.r/ �
	��.
; /

!

; (9.17)

where Pn�.r/ and Qn�.r/ are the large and small components of the radial wave
function multiplied by r . The radial wave functions are given in terms of STO’s
with non-integral principal quantum number:

Pn�.r/ D
X

q

�.l/nq f�q.r/; (9.18)

Qn�.r/ D
X

q

�.s/nq f�q.r/; (9.19)

where �.l/nq and �.s/nq are the expansion coefficients.
The STO is defined as

f�q.r/ D .2��q/
n0
�qC1=2

Œ�.2n0
�q C 1/�1=2

rn
0
�q e���qr ;

where

n0
�q D n�q C .�2 �Z2˛2/1=2 n�q D 0; 1; 2; � � � :

The momentum wave functions are given by Mukoyama and Kagawa [14]

N.p/ D i�l
X

q

�.l/nq C�q I.n
0
�q; ��q; l/ ; (9.20)

M.p/ D i�Nl X

q

�.s/nq C�q I.n
0
�q; ��q;

Nl/; (9.21)

where

I.n; �; l/ D pl �.l C nC 2/

2lC1=2 �lCnC2 �.l C 3=2/
2F1

�
l C nC 2

2
;
l C nC 3

2
I l C 3

2
I �p

2

�2

�

;

(9.22)
and

C�q D .2��q/
n0
�qC1=2

Œ�.2n0
�q C 1/�1=2

:
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9.3 Binary-Encounter Approximation

When the incoming projectile is a structureless particle, we can assume that
the projectile makes a classical collision only with a single orbital electron in
the target atom and all other particles, such as the target nucleus and atomic
electrons, are considered as spectators. In this model, the so-called binary-encounter
approximation, the ionization process takes place if the energy transfer from the
projectile to the target electron is larger than the binding energy of that electron.

The BEA for inner-shell ionization of atoms by charged-particle impact dates
back to the work of Thomson in 1912 [15]. He used the Rutherford scattering model
and obtained the expression for ionization cross section. In his model, the target
electron is initially free and at rest in the laboratory frame. This assumption for zero
initial velocity of the target electron was partially removed by Williams in 1927
[16]. However, his expression is valid only for limited range of the energy transfer.

The correct formula for an incoming projectile and the target electron moving
with a velocity was obtained by Thomas in the same year [17]. Unfortunately his
work was forgotten, and the Thomson theory with zero initial velocity, which is in
rather poor agreement with experiment, was adopted as the BEA for long time.

It was almost 40 years later that Gerjuoy [18] and Vriens [19] rederived the
Thomas’ formula, unaware of his work. Gryzinski also obtained the similar results
independently [20]. However, in the BEA of Thomas, Gerjuoy, and Vriens, the
target electron is assumed to have a constant velocity corresponding to the kinetic
energy equal to the ionization potential. Rudd et al. [21] pointed out that there
is deficiency in this model. They measured the single differential cross sections
with respect to energy of the ejected electron for protons on hydrogen molecule
and compared them with the BEA calculations. The theoretical values drop to
zero abruptly at a certain kinetic energy of the ejected electron and cannot explain
the experimental data for high-energy electron emission. This situation is greatly
improved by taking into account the initial velocity distribution of target electron,
which is obtained quantum mechanically, and by integrating the cross sections over
this velocity distribution [22]. On the other hand, Vriens [19] showed that if the BEA
cross sections are integrated over velocity distribution of the target electron, the total
ionization cross sections for protons on hydrogen in the BEA are in good agreement
with the quantum mechanical calculations in the plane-wave Born approximation
(PWBA).

These facts indicate that the initial velocity of the target electron has a strong
influence on the BEA cross sections and it is important to take into consideration the
electron velocity (momentum) distribution in the BEA. The inner-shell ionization
cross sections in the BEA with realistic velocity distribution are found to be
in agreement with those in the PWBA and in the semi-classical approximation
(SCA) [23].

The BEA cross section for ionization of atoms by heavy charged particles is given
by Vriens [19]. When v1 and v2 are the velocities in atomic units of the projectile
and the bound electron, respectively, and u D v20 is the ionization potential of the
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bound electrons concerned in Rydberg, the ionization cross section can be expressed
in units of �a20 by McDowell [24]

Q.s/ D Ne Z
2
1

Z 1

0

f .t/Q.s; t/ u1=2 dt; (9.23)

where a0 is the first Bohr radius of hydrogen, Ne is the number of electrons in the
shell, Z1 is the charge of the projectile, two dimensionless variables are defined as

s2 D v21
v20
; t2 D v22

v20
; (9.24)

and f .t/ is the momentum distribution of the target electron.
The ionization cross section Q.s; t/ for the bound electron with the kinetic

energy of t2 u is given by

u2 Q.s; t/ D 4

s2

�

1C 2 t2

3
� 1

4 .s2 � t2/

�

1 � 4s .s � t/;

D 2

s2 t

�
1

4 .s C t/
C t C ˚

2s3 C t3 � .1C t2/3=2
�


4s .s � t/ � 1 � 4s .s C t/; (9.25)

D 0 1 
 4s .s C t/:

The momentum distribution f .t/ is expressed in terms of momentum wave function
'.p/ as

f .t/ D 4� t2 u
ˇ
ˇ'.tu1=2/

ˇ
ˇ
2
; (9.26)

where the wave function in the momentum space is obtained from the Fourier
transform of the atomic electron wave function in the position space  .r/:

'.p/ D 1

.2�/3=2

Z

 .r/ eip�r dr: (9.27)

9.4 Results and Discussion

In Sect. 9.2, it was shown that for nonrelativistic hydrogenic, HFR, relativistic
hydrogenic, and RHFR models, the electron wave functions in the momentum space
can be expressed in terms of the Gauss-type hypergeometric function. Using these
results, electron momentum distributions have been calculated with four atomic
wave functions. In nonrelativistic and relativistic hydrogenic models, the screening
constant was introduced according to the Slater’s recipe [25]. In the case of the HFR
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Fig. 9.1 Momentum distribution for the K-shell electron in gold. Open circle: nonrelativistic
screened hydrogenic wave function; solid circle: relativistic screened hydrogenic wave function;
dotted curve: HFR; full curve: RHFR

model, the basis set was chosen to be double-zeta functions, and the parameters of
STO’s were taken from the table of McLean and McLean [26]. For the RHFR model,
the basis set similar to the HFR was used, but their parameters were determined by
fitting the numerical wave functions of the Dirac-Fock method [27] to the sum of
STO’s with the genetic algorithm [28].

In Fig. 9.1, the momentum distributions of K-shell electrons in Au are com-
pared for different atomic wave functions. It can be seen that the nonrelativistic
and relativistic screened hydrogenic wave functions are good approximation to
the corresponding realistic wave functions and their momentum distributions are
not discernible with each other. On the other hand, the difference between the
nonrelativistic and relativistic wave functions is large, as shown in the previous
work [14]. For small momenta, the nonrelativistic momentum distribution is
larger than the relativistic one, but on the contrary the relativistic momentum
wave function has a larger component for high-momentum region. This behaviour
corresponds to the so-called relativistic contraction of the wave functions in the
position space, i.e. the relativistic effect pulls in inner-shell electrons towards the
nucleus.

The similar trend are observed for L1- and L2-shell electrons in Au. The
momentum distribution for the L3-shell electrons is shown in Fig. 9.2. There is
small difference between the screened hydrogenic wave functions and the realistic
wave functions. This is called the wave-function effect. The relativistic effect can
be seen, but is smaller in comparison with the K-shell electrons. For the L3-shell
electrons, Talukdar et al. [29] reported that the relativistic effect depresses high-
momentum component and the relativistic momentum distribution is smaller than
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the nonrelativistic one at all values of momentum p. However, it is clear from the
figure that the relativistic effect does enhance the momentum distribution for high-
momentum region, as similar to the case of K-, L1-, and L2-shell electrons.

The momentum distributions thus obtained have been applied to calculate inner-
shell ionization cross sections by charged-particle impact in the BEA. Figure 9.3



9 Electron Momentum Distribution and Atomic Collisions 203

shows the calculated K-shell ionization cross sections for protons on Au as a
function of the incident energy. The screened hydrogenic models give almost same
values with the HFR and RHFR models, as expected from Fig. 9.1, and are not
included in the figure. For comparison, the experimental data measured by Kamiya
et al. [30] are also plotted. It can be said that the nonrelativistic calculations yield
much smaller values than experiment, except for very low energies. The relativistic
effect considerably increases the ionization cross sections, and the relativistic
BEA cross sections, both the screened hydrogenic and the RHFR, agree with the
experimental values. The reason for the relativistic effect can be ascribed to the fact
that the relativistic momentum distribution has larger values than the nonrelativistic
one at high-momentum region, where the minimum momentum transfer during
atomic collision is located in the present energy region [31].

However, the relativistic values in the low-energy region overpredict experimen-
tal data. This is due to the effects of the Coulomb deflection of the projectile by the
target nucleus as well as of increase in the binding energy of the target electron in
the presence of the projectile. The correction for these effects have been made with
Brandt-Lapicki method [32]. The corrected RHFR values, RHFR-BC, are in good
agreement with the experimental data in low-energy region but slightly smaller at
high energies. In the figure, the calculated values of the ECPSSR theory [32] are also
shown. This theory is based on the PWBA and corrected for the energy-loss effect,
the Coulomb-deflection effect, the binding-energy and polarization effects in the
perturbed-stationary-state approximation, and the electronic relativistic effect. The
numerical calculations were performed with the computer code DEKY developed
by us [33]. It is clear from the figure that the RHFR-BC values are in good agreement
with the ECPSSR ones.

The calculated L2-shell ionization cross sections of Au by proton impact are
shown in Fig. 9.4 and compared with the measured values of Cohen [34] and
Semaniak et al. [35]. It is found that there is the wave-function effect, i.e. the
screened hydrogenic cross sections, both nonrelativistic and relativistic, are slightly
larger than the values with realistic wave functions. However, the relativistic effect
plays more important role than the wave-function effect and increases the cross
sections significantly. The relativistic BEA cross sections are in agreement with the
experimental data, because the Coulomb-deflection and binding-energy effects are
smaller for L2-shell ionization cross sections in the energy region considered.

9.5 Conclusions

The momentum presentations were obtained for the nonrelativistic hydrogenic,
HFR, relativistic hydrogenic, and RHFR wave functions. All the results are
expressed in terms of the Gauss-type hypergeometric functions. Using these wave
functions, the electron momentum distributions were calculated. For K-shell elec-
trons in Au, the screened hydrogenic models are found to be a good approximation
to more realistic models, although small wave-function effect was observed for the
L subshells.
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On the other hand, the relativistic momentum distribution is clearly different
from the nonrelativistic one. The relativistic effect increases high-momentum
component in the momentum distribution. This corresponds to the relativistic
contraction of the electron wave function in the position space.

The momentum distributions thus obtained were applied to calculate inner-
shell ionization cross sections by charged-particle impact in the BEA. For K-shell
ionization process of Au by protons, the relativistic effect enhances the ionization
cross sections significantly, and the relativistic BEA cross sections agree with the
experimental values. On the other hand, the wave-function effect is negligible.

In the case of the L2-shell ionization cross sections for protons on Au, the wave-
function effect is observed both in nonrelativistic and relativistic calculations, but
the difference is small. The relativistic effect plays more dominant role, and the
relativistic BEA cross sections are in good agreement with the experimental data.

Present results indicate that the inner-shell ionization cross section in the BEA is
sensitive to the momentum distribution of the target electron in the initial state. The
momentum distribution is useful to study the relativistic and wave-function effects
on the ionization cross sections.

In the present work, we showed applications of the momentum distribution only
to K- and L-shell ionization processes. However, it would be interesting to apply the
present study in the BEA for outer-shell electrons, where the wave-function effect is
more important and quantum-mechanical calculations of the ionization cross section
become more tedious.
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Chapter 10
Ab Initio Path Integral Molecular Dynamics
Simulations of F2H� and F2HC

3

K. Suzuki, H. Ishibashi, K. Yagi, M. Shiga, and M. Tachikawa

Abstract The quantum nature of the strong hydrogen bonds for the F2H� and
F2HC

3 ions and their deuterated isotopomers at the room temperature has been
studied using ab initio path integral molecular dynamics (PIMD) simulations. It is
found that, for both of these ions, the hydrogen-bonded H/D atoms largely fluctuate
around the central position of two F atoms. The average FH/FF distances of F2H�
and F2HC

3 are longer than the average FD/FF distances of F2D� and F2DC
3 due

to the primary/secondary isotope effects, which stem from the difference of the
quantum nature of H and D nuclei. These results are compared with the family
of Zundel-type ions, O2H�

3 , N2H�
5 , O2HC

5 , and N2HC
7 , which have been studied

previously with the same ab initio PIMD approach. A comparison is also made with
the previous experimental and ab initio vibrational configuration interaction results
of F2H�.
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10.1 Introduction

Hydrogen is inherently quantum mechanical due to its small mass, and the basic
understanding of hydrogen bonding, which is ubiquitous in nature, should be
rooted in quantum mechanics and quantum statistics. In most cases, the bonded
proton belongs to a molecule weakly interacting with other molecules. However,
in some strongly hydrogen-bonded systems, which are usually found to be in
an ionic form, the proton is shared by the two molecular moieties forming low-
barrier hydrogen bonds or symmetric hydrogen bonds [1–4]. One representative
example is the Zundel cation of protonated water dimer, O2HC

5 [5–7], and its
isoelectronic species, such as F2HC

3 [8, 9] and N2HC
7 [10–12], as well as the

anionic variations, F2H�[13–22], O2H�
3 [5, 6, 23–26], and N2H�

5 [11]. Here, we
focus on the F2H� and F2HC

3 ions, which possess strong hydrogen bonds among
this family of Zundel-type ions. The bifluoride anion, F2H�, has been detected
experimentally [13–16] and is well-known to have the symmetric hydrogen bond
from the vibrational spectrum as well as ab initio electronic structure calculations
[17–22]. The spectroscopic characterization of the F2H� ion has been a challenging
issue for its strong anharmonic nature. Hirata et al. [21] have recently clarified the
assignment of vibrational spectra using vibrational configuration interaction (VCI)
calculation on a high-quality Born–Oppenheimer (BO) potential energy surface
[27]. There, it has been shown that the anharmonicity and mode coupling are
indispensable to understand the vibrational structure of F2H� ion. For the F2HC

3
cation, meanwhile, ab initio electronic structure calculations have reported that
its equilibrium structure has a symmetric hydrogen bond [8, 9]. However, the
effect of molecular vibration must be taken into account to be more quantitative.
In this chapter, we report ab initio path integral molecular dynamics (PIMD)
simulations of the F2H� and F2HC

3 ions and their deuterated isotopomers to
study the quantum nature of these strong hydrogen-bonded species at 300 K. The
ab initio PIMD is a first-principles approach, which is capable of providing insights
into complex many-body effects in hydrogen bonds [3–6, 11, 25, 26, 28–34]. In
this simulation, the nuclear quantum effect is fully taken into account for all
the vibrational degrees of freedom. Here, the important approximation is the BO
surface evaluated on the f ly during the simulation which is designated by the
quality of the electronic structure theory (i.e. in the present case, the second-
order Møller � Plesset perturbation theory (MP2) and 6-31++G�� basis set) and
the number of imaginary time slices in Suzuki–Trotter expansion (i.e., the number
of beads, P D 16 in this study). The results are compared with those of the
conventional ab initio molecular dynamics (MD) simulations in which the nuclei
are treated as classical particles in order to clarify the role of nuclear quantum effect
in these systems.
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10.2 Computational Details

The ab initio MD and ab initio PIMD simulations have been carried out in a
similar way as in the previous works [6, 11, 25, 26, 31–33] using our program code
[35]. The code implements the MD and PIMD routines, which runs in conjunction
with Gaussian 03 program package [36]. The BO energy and forces are calculated
on the f ly at the MP2/6-31++G�� level of ab initio theory. We have employed
massive NosKe � Hoover thermostat [37, 38] with the chain length L D 4 using
normal mode transformation [39] to strongly control the system temperature at
300 K. Ab initio PIMD simulations of F2H�(F2D�) and F2HC

3 (F2DC
3 ) with P D 16

beads have been run for 50,000 steps and 150,000 steps after a thermal equilibration
of 5,000 steps, respectively, using a time step size �t D 0:1 fs (�t D 0:15 fs). Ab
initio MD simulations of F2H� and F2HC

3 (corresponding to P D 1 condition) have
been run for 200,000 steps and 500,000 steps after a thermal equilibration of 5,000
steps, respectively, with the time step size �t D 0:1 fs. Note that the simulations
of F2HC

3 were run longer than those of F2H� since more statistics should be gained
with respect to the configurations of non-bonded protons. The statistical errors of
average bond lengths and bond angles have been estimated by the block average
method [40].

10.3 Results and Discussion

10.3.1 Static Calculations

Before starting the simulation, we have checked the quality of MP2/6-31++G��
method for F2H� (Fig. 10.1a) and F2HC

3 (Fig. 10.1b) in terms of the conventional
static ab initio calculations. The interatomic distance and the bond angle are

Fig. 10.1 Schematic
illustration of the equilibrium
structures of (a) F2H� and
(b) F2HC

3
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Table 10.1 Interatomic
distances RFH� , RFF (in Å),
bond angle 
FH�F (in
degrees), and barrier height
�E (in kcal/mol) obtained
from static ab initio
calculations of F2H� and
F2HC

3 using 6-31++G��

basis set

F2H� F2HC

3

Equilibrium Transition state

RFH� RFH� RFH� RFF 
FH�F �E

HF 1.125 1.132 1.133 2.259 170 1.60
B3LYP 1.151 1.155 1.156 2.300 168 1.52
MP2 1.149 1.151 1.152 2.293 168 1.61
CCSD 1.143 1.147 1.148 2.286 169 1.63
CCSD(T) 1.146 1.148 1.149 2.288 169 1.63

defined in Fig. 10.1, where the proton (deuteron) in the hydrogen bond is labeled
as H� (D�). The equilibrium structures of the F2H� and F2HC

3 ions have the
D1h and C2h symmetries, respectively, where the protons are located at the center
of two fluorine atoms. The F2HC

3 ion has a trans-conformation with = 180ı,
while the cis-conformation with = 0ı is a transition state with the barrier height
of �E D 1:6 kcal/mol from the equilibrium structure. This transition state has
the C2v symmetry wherein the 
FH�F angle is bent from 180ı to a small extent.
In Table 10.1, we list the equilibrium geometries obtained at the MP2/6-31++G��
level, as well as those at the level of Hartree–Fock theory (HF), density functional
theory with B3LYP exchange correlation functional, coupled-cluster singles and
doubles (CCSD), and CCSD with non-iterative triples correction (CCSD(T)) using
the same 6-31++G�� basis set. For both F2H� and F2HC

3 ions, the HF method
estimates the FF distance slightly shorter than the most accurate CCSD(T), while
B3LYP, MP2, and CCSD results are closer to the CCSD(T) result. However, it
is found that the barrier height �E is underestimated in B3LYP, while the result
of MP2 reasonably agrees with that of CCSD and CCSD(T). In the comparison
of F2H� between this work and previous result by Hirata et al. [21], the result
of 6-31++G�� basis set is slightly underestimated in CCSD/aug-cc-pCVTZ level
(1.136 Å). Thus, the present method (MP2/6-31++G��) overestimates though not
very seriously. As the MP2/6-31++G�� level should be sufficient for our purpose
to study the nuclear quantum effect with reasonable accuracy and efficiency, we
have decided to choose MP2/6-31++G�� for the ab initio MD and ab initio PIMD
simulations for the systems of current interest.

10.3.2 MD and PIMD Simulations

In Tables 10.2 and 10.3, we list the average distances RFH� , RFF, and RFH and the
average angles 
FH�F, 
HFF, and HFFH obtained by ab initio PIMD and ab initio MD
simulations for the F2H� and F2HC

3 ions. It is found that the average values of and
are systematically larger in the order of the equilibrium values, the average values in
the ab initio MD, the average values in the ab initio PIMD of the D-isotopomer, and
the ab initio PIMD of the H-isotopomer. It is also found that the average values of
and become smaller in the same order. This order exactly corresponds to the extent
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Table 10.2 Average values of interatomic distances RFH� , RFF (in Å), and bond angle 
FH�F

(in degrees) obtained from ab initio MD simulations of F2H� and ab initio PIMD simulations
of F2H� and F2D�. The root mean square values of distributions of RFH� , RFF, and 
FH�F are
given in the parenthesis

RFH� RFF 
FH�F

Ab initio MD, F2H� 1.158 ˙ 0.001 2.311 ˙ 0.001 173.4 ˙ 0.6
(0.065) (0.044) (3.6)

Ab initio PIMD, F2D� 1.163 ˙ 0.001 2.324 ˙ 0.001 169.6 ˙ 0.4
(0.097) (0.058) (5.4)

Ab initio PIMD, F2H� 1.165 ˙ 0.001 2.328 ˙ 0.002 166.7 ˙ 0.3
(0.111) (0.059) (6.9)

Table 10.3 Average values of interatomic distances RFH� , RFF (in Å), bond angle 
FH�F, and

torsion angle HFFH (in degrees) obtained from ab initio MD simulations of F2HC

3 and ab initio
PIMD simulations of F2HC

3 and F2DC

3 . The root mean square values of distributions ofRFH� ,RFF,
and 
FH�F are given in the parenthesis

RFH� RFF RFH

Ab initio MD, F2HC

3 1.163 ˙ 0.001 2.311 ˙ 0.001 0.9531 ˙ 0.0001
(0.067) (0.051) (0.0214)

Ab initio PIMD, F2DC

3 1.168 ˙ 0.001 2.322 ˙ 0.001 0.9635 ˙ 0.0002
(0.096) (0.059) (0.0570)

Ab initio PIMD, F2HC

3 1.173 ˙ 0.001 2.329 ˙ 0.001 0.9680 ˙ 0.0003
(0.108) (0.063) (0.0622)


FH�F 
HFF HFFH

Ab initio MD, F2HC

3 168.9 ˙ 0.3 120.6 ˙ 0.1 132 ˙ 4
(5.8) (9.1) (36)

Ab initio PIMD, F2DC

3 165.3 ˙ 0.4 121.4 ˙ 0.4 126 ˙ 4
(7.6) (10.3) (41)

Ab initio PIMD, F2HC

3 163.4 ˙ 0.4 121.5 ˙ 0.5 122 ˙ 8
(8.5) (11.3) (44)

of vibrational fluctuation due to classical thermal excitation and quantum zero-point
motion. To see this more clearly, we display the probability density with respect to
the distances and for F2H� and F2HC

3 ions, respectively, in Figs. 10.2 and 10.3.
We can see that the width of the distribution becomes broader and the peak position
makes a shift to a longer distance in the same order as above. For instance, the peaks
are found at (RFH� , RFF) = (1.15, 2.31 Å) for ab initio MD of F2H�, (1.16, 2.32 Å)
for ab initio PIMD of F2D�, and (1.17 Å, 2.34 Å) for ab initio PIMD of F2H�.
The same tendency is also found in the case of F2HC

3 . Therefore, it is concluded
that, in both cases of F2H� and F2HC

3 , the nuclear quantum effect stretches the
FH� and FF distances due to the potential anharmonicity. In Figs. 10.2 and 10.3,
we have also shown the probability density with respect to the relative position of
H�,ıFH� D RFH� � RH�F, to confirm that the H� atom is widely vibrating, but that
the distributions are peaked at the center of two fluorine atoms, ıFH� D 0.
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By comparing the results of ab initio MD and ab initio PIMD simulations, we
find that the average FH� and FF distances are shifted by about 0.007 and 0.017 Å,
respectively, for F2H� and about 0.005 and 0.013 Å, respectively, for F2D�. In the
previous study [21], the equilibrium FH� distance has been found to be 1.136 Å
while the FH� distance averaged over the zero-point vibrational state obtained from
ab initio VCI has been found to be 1.154 Å, and thus, the shift is 0.018 Å. In the
present study, the equilibrium FH� distance is 1.149 Å while the average distance in
ab initio PIMD simulation at 300 K is 1.165 Å, and thus, the shift is 0.016 Å. It is
interesting that the shifts obtained from the two different methods, i.e., PIMD and
VCI, are in good agreement. As the FH� vibration has a relatively high frequency,
the zero-point vibrational average in VCI and the nuclear quantum effect at the
temperature 300 K in PIMD may be effectively similar. Although the absolute value
of the FH� distance is affected by the difference in the level of ab initio BO potential
energy surfaces employed in these calculations, the shift seems to be relatively
insensitive to it. For the same reason as in the case of F2H�, the average FH� and FF
distances of F2HC

3 are shifted by about 0.010 and 0.018 Å., respectively, from the
equilibrium values, while the average FD� and FF distances of F2DC

3 are shifted by
about 0.005 and 0.011 Å, respectively, from the equilibrium values. The structural
shifts upon the isotopic substitution, which is called the geometrical isotope effect
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Table 10.4 Equilibrium interatomic distancesRXH� /RXD� / andRXX obtained from static ab initio
calculation, and average values of interatomic distances RXH� /RXD� / and RXX obtained from
ab initio PIMD simulations, where X D F, O, or N. The unit is in Å

Static MD PIMD Static MD PIMD

X RXH� RXH� RXD� RXH� RXH� -RXD� RXX RXX R
.D/
XX R

.H/
XX R

.H/
XX-R.D/XX

F F2H� 1.149 1.158 1.163 1.165 0.002 2.299 2.311 2.324 2.328 0.004

F2HC

3 1.151 1.163 1.168 1.173 0.005 2.302 2.311 2.322 2.329 0.007

O O2HC

5

a
1.194 – 1.220 1.224 0.004 2.386 – 2.418 2.422 0.004

O2H�
3

a 1.095/1.398 – 1.262 1.261 �0.001 2.491 – 2.504 2.498 �0.006

N N2HC

7
b

1.111/1.594 1.369 1.353 1.352 �0.001 2.705 2.727 2.687 2.678 �0.009
N2H�

5
b 1.053/1.855 1.500 1.508 1.480 �0.028 2.904 2.965 2.972 2.916 �0.056

aO2HC

5 and O2H�
3 [16]

bN2HC

7 and N2H�
5 [11]

(GIE), are purely a quantum mechanical effect, which is absent in the framework
of classical statistics. In the present case, it is considered that the shifts in the FH�
and FD� bond lengths are a direct consequence of GIE, while the shifts in the FF
separations are secondary consequences of GIE.

In our previous reports on the Zundel ion O2HC
5 [6] and its isoelectronic species

[11], it has been discussed that the GIE in strong hydrogen bonds may have two
competing effects either to shorten hydrogen bonds due to strengthening or to
lengthen due to weakening by substituting proton to deuteron. The former GIE is
dominant in the cases for O2HC

5 as well as O2H�
3 at low temperatures [25], while the

latter GIE becomes dominant for N2HC
7 , N2H�

5 [11], and O2H�
3 at high temperatures

[6, 25]. We summarize the data for this work as well as the previous works in
Table 10.4. Here we can see a tendency that the former GIE prevails for systems
with short heavy-atom separations, while the latter prevails for systems with long
heavy-atom separation. As the F2H� and F2HC

3 ions have strong hydrogen bonds,
they belong to the former category. Although the data is limited, the turnover of
these effects seems to occur when the heavy-atom separation is about 2.5 Å.

Finally, Fig. 10.4 shows the probability density with respect to the torsion angle
obtained from the ab initio MD and ab initio PIMD simulations of the F2HC

3
ion. Also a two-dimensional distribution with respect to and is shown in the
supporting information (S1). The results show that the ion is fluctuating around
the trans-conformation (= 180ı), but there is also non-negligible distribution at the
cis-conformation (= 0ı) allowing for a hindered rotation. The distribution at the cis-
conformation obtained from ab initio PIMD simulations is slightly larger than that
from the ab initio MD simulation. From Fig. S1, H-H bond length in ab initio PIMD
simulations tends to be longer as it becomes close to cis-conformation, contrary to
ab initio MD simulations. These results suggest that the effective free energy surface
of ab initio PIMD simulation is different from that of ab initio MD simulation due
to the nuclear quantum effect.
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Fig. 10.4 Probability density
of F2HC

3 with respect to
HFFH

10.4 Conclusions

The structures of the F2H� and F2HC
3 ions and their deuterated isotopomers at the

room temperature have been studied in detail by ab initio PIMD simulation. For
both ions, it is found that the hydrogen-bonded H/D atom is vibrating with large
amplitude around the center of two fluorine atoms due to thermal and quantum
effects. Large fluctuation is also found for the non bonded hydrogen in the F2HC

3
ion with respect to the cis-trans hindered rotation. Our calculation predicts that the
average FH/FF distance becomes longer upon deuteron substitution of F2H� and
F2HC

3 . It is presumably due to the nature of extremely strong hydrogen bond of these
species, similar to the case of O2HC

5 . This should be ascribed to nuclear quantum
effect (mainly zero-point effect) with respect to two FH/OH anharmonic vibrations.

Supporting Information

Figure S1 Probability density of with respect to HFFH and RHH obtained from (a)
ab initio PIMD simulation of F2HC

3 , (b) ab initio PIMD of F2DC
3 , (c) ab initio MD

of F2HC
3 . (d) Potential energy surface with respect to HFFH andRHH obtained from

ab initio geometry optimization calculation.
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Chapter 11
Relativistic Energy Approach to Cooperative
Electron-”-Nuclear Processes: NEET Effect

Olga Yu. Khetselius

Abstract A consistent relativistic energy approach to the calculation of probabil-
ities of cooperative electron-gamma-nuclear processes is developed. The nuclear
excitation by electron transition (NEET) effect is studied. The NEET process prob-
ability and cross section are determined within the S-matrix Gell-Mann and Low
formalism (energy approach) combined with the relativistic many-body perturbation
theory (PT). Summary of the experimental and theoretical works on the NEET
effect is presented. The calculation results of the NEET probabilities for the 189

76 Os,
193
77 Ir, and 197

79 Au atoms are presented and compared with available experimental
and alternative theoretical data. The theoretical and experimental study of the
cooperative electron-gamma-nuclear process such as the NEET effect is expected
to allow the determination of nuclear transition energies and the study of atomic
vacancy effects on nuclear lifetime and population mechanisms of excited nuclear
levels.

11.1 Introduction

Methods for influencing the radioactive decay rate have been sought from early
years of nuclear physics. Nuclear transmutation (i.e., change in the nuclear charge)
induced by nuclear reactions is often accompanied by a redistribution of the
electrons and positrons around the final transmuted nucleus. Electrons and positrons
(other particles) originally in the ground state of the target atom can be excited
reversibly either to the bound or continuum states. The rapid progress in laser
technology even opens prospects for nuclear quantum optics via direct laser-nucleus
coupling [1–5]. A principal possibility of storage of the significant quantities of the
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metastable nuclei in the nuclear technology processes and their concentration by
chemical and laser methods leads to problem of governing their decay velocity.

The elementary cooperative e-,’-,“-,”-nuclear processes in atoms and molecules
were considered in the pioneering papers by Migdal (1941), Levinger (1953),
Schwartz (1953), Carlson et al. (1968), Kaplan et al. (1973–1975), Goldanskii-
Letokhov-Ivanov (1973–1981), Freedman (1974), Law-Campbell (1975), Martin-
Cohen (1975), Isozumi et al. (1977), Mukouama et al. (1978), Batkin-Smirnov
(1980), Law-Suzuki (1982), Intemann (1983), and Wauters-Vaeck et al. (1997) [5–
17]. Naturally, in this context, the known Mössbauer, Szilard-Chalmers, and other
cooperative effects should be mentioned [7].

The elementary cooperative electron-”-nuclear processes were considered in
the papers by Levinger (1953), Hansen (1974), Watson (1975), Law (1977),
Anholt-Amundsen (1982), and Mukoyama-Ito et al. (1988) [6–13]. The cooperative
“shake-up” electron-”-nuclear processes in atoms and molecules are qualitatively in
the nonrelativistic approximation considered by Goldanskii et al. and Kaplan et al. in
Refs. [1, 5, 9]. In Ref. [16], a consistent relativistic energy approach combined with
the quantum-electrodynamics (QED) perturbation theory (PT) has been developed
and applied to calculation of the electron-� -transition spectra of nucleus in the
neutral atoms and multicharged ions. The intensities of satellites are defined in the
relativistic version of the energy approach (S-matrix formalism). The results of the
relativistic calculation for the electron-nuclear � -transition spectra (set of electron
satellites) of the nucleus in a number of the neutral atoms and multicharged ions
have been presented. The possible experiments for observation of the cooperative
“shake-up” effects in the thermalized plasma of the Ne- and O-like ions are
discussed. In Ref. [16], it has been also presented a consistent quantum approach
to calculation of the electron-nuclear ”-transition spectra (set of vibration-rotational
satellites in molecule) of nucleus in the diatomic and multiatomic molecules,
which generalizes the well-known Letokhov-Minogin model [2]. Estimates are
made for vibration-rotation nuclear transition probabilities in a case of the emission
and absorption spectrum of nucleus 127I (E” (0) D 203 keV) linked with molecule
H127I and the nucleus 191Ir (E” (0) D 82 keV) linked with molecular system IrO4

and spectrum of nucleus 188Os (E” (0) D 155 keV) in molecule of OsO4. In Ref.
[17], the cooperative electron-“-nuclear processes in atomic systems (e-“-nuclear
spectroscopy), including the processes of excitation, ionization, and electronic rear-
rangement induced by nuclear reactions and “-decay, are discussed. The relativistic
many-body PT with the optimized Dirac-Kohn-Sham zeroth approximation and
taking into account the nuclear, radiation, and exchange-correlation corrections is
used to calculate the “-decay parameters for a number of allowed (super allowed)
transitions (33P-33S, 241Pu-241Am, etc.) and study the chemical bond effect on
“-decay parameters. The half-life periods for “-transition in some systems are
estimated by taking into account the bound “-decay channel correction and some
other accompanying cooperative effects.

In Ref. [18], we have presented a generalized energy approach in the relativistic
theory of discharge of a metastable nucleus with emission of ” quantum and
further muon conversion, which initiates this discharge. The numerical calculation
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of the corresponding cooperative process probabilities is firstly carried out for the
scandium nucleus (A D 49, N D 21) with using the Dirac-Woods-Saxon model.
It has been noted that the theoretical and experimental study of the cooperative
electron-muon-”-nuclear interaction effects opens prospects for nuclear quantum
optics, probing the structural features of a nucleus and muon spectroscopy in atomic
and molecular physics.

This chapter goes on our work on studying the cooperative electron-gamma-
nuclear processes [16–18]. The important example of the cooperative electron-
gamma-nuclear process is so-called NEET (nuclear excitation by electron transi-
tion) effect [1, 19–23]. Naturally, the similar NEEC (nuclear excitation by electron
capture) process should be reminded too. In both NEEC and NEET, which are
at the borderline between atomic and nuclear physics, electronic orbital energy is
converted directly into nuclear energy. These effects offer therefore the possibility
to explore the spectral properties of heavy nuclei through the typical atomic physics
experiments. In this chapter, a new, consistent relativistic energy approach to
calculation of probabilities of the NEET is presented. In our approach, the NEET
process probability and cross section are determined within the S-matrix Gell-Mann
and Low formalism (energy approach) combined with the relativistic many-body
perturbation theory (PT) [24–31]. Further, a summary of the experimental and
theoretical works on the NEET effect is presented. The calculation results of the
NEET probabilities for the 18976 Os, 19377 Ir, and 197

79 Au atoms within different theoretical
models are presented and compared with available experimental data.

11.2 Review of Theoretical and Experimental Work on the
Process of Nuclear Excitation by Electron Transition

In fact, the NEET is a fundamental but rare mode of decay of an excited atomic state
in which the energy of atomic excitation is transferred to the nucleus via a virtual
photon. This process is naturally possible if within the electron shell there exists
an electronic transition close in energy and coinciding in type with nuclear one. In
fact, the resonance condition between the energy of nuclear transition !N and the
energy of the atomic transition !A should be fulfilled. Obviously, the NEET process
corresponds to time-reversed bound-state internal conversion. Correspondingly, the
NEEC process is the time-reversed process of internal conversion. Here, a free
electron is captured into a bound atomic shell with the simultaneous excitation of
the nucleus.

Let us remind that firstly the NEET and NEEC effects have been postulated in
1973 by Goldanskii-Letokhov-Namiot and Morita [1, 19]. Unlike the NEEC effect,
the NEET process has been observed experimentally in 197

79 Au by Kishimoto et al.
(Institute of Material Structure Science, KEK, and Japan Synchrotron Radiation
Research Centre, Japan) and in 189

76 Os by Ahmad et al. (Argonne National Labora-
tory, USA) [21, 22]. In Table 11.1, we present a summary of the experimental works
on NEET in 189

76 Os.
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Table 11.1 Experimental data on the NEET probabilities PNEET for the isotope
of 18976 Os

Year Experimental techniques PNEET

Otozai et al. 1973 e� Bombardment 75–85 keV 1�10�6

Otozai et al. 1978 e� Bombardment 72–100 keV (1.7 ˙ 0.2)�10�7

Saito et al. 1981 200-keV bremsstrahlung (4.3 ˙ 0.2)�10�8

Shinohara et al. 1987 “White” synchrotron radiation (5.7 ˙ 1.7)�10�9

Lakosi et al. 1995 300-keV bremsstrahlung (2.0 ˙ 1.4)�10�8

Ahmad et al. 2000 Monochromatic 100-keV X-rays <9�10�10

It should be noted that each of the experimental techniques has certain inherent
difficulties. Analysis of this problem has been presented by Ahmad et al. [22]. It
explains quite large difference between the results of different experiments. Saying
briefly, the cited difficulties are reduced to the problem of revealing a NEET
signal among the surrounding other effects. Really, use of an electron beam can
cause direct Coulomb excitation of a nucleus. In this case, it is hardly possible
to distinguish this component from that due to the NEET process. Use of a broad
continuous spectral distribution of synchrotron or bremsstrahlung X-rays results in
contribution from a direct nuclear photoabsorption into the nuclear state or into
a range of nuclear levels that can feed that state or the lower-lying metastable
state (look for more details in Refs. [22]). The theoretical models for the NEET
effect were developed in Refs. [1, 19–23]. The first estimates of PNEET for various
atomic/nuclear systems have been received beginning Goldanskii-Letokhov-Namiot
and Morita [1, 19]. Many of the early estimates involved the use of simplifying
approximations that led to results at considerable variance. More recently, Tkalya
[23] has proposed a model for description of the NEET process near the K-shell
ionization threshold of an atom. The QED PT with empirical estimates of the nuclear
and electron matrix elements and the Dirac-Fock code by Band and Fomichev
(taking into account the finite nuclear size) were used. New theoretical approach
by Ahmad et al. [22] is based on using the time-dependent amplitude coupled
equations. These authors calculated electron wave functions using the GRASP
code and tabulated values of the nuclear transition matrix elements. In Table 11.2,
we present a summary of the theoretical work on NEET in 189

76 Os (data till 2000
from Refs. [22]). Therefore, the theoretical models involved the use of different
consistency level approximations led to results at quite considerable variance.

It is obvious that more sophisticated relativistic many-body methods should be
used for correct treating the NEET effect. Really, the nuclear wave functions have
the many-body character (usually, the nuclear matrix elements are parameterized
according to the empirical data). The correct treating of the electron subsystem
processes requires an account of the relativistic, exchange-correlation, and nuclear
effects. Really, the nuclear excitation occurs by electron transition from the M
shell to the K shell. So, there is the electron-hole interaction, and it is of a great
importance a correct account for the many-body correlation effects, including
the intershell correlations, the post-act interaction of removing electron and hole,
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Table 11.2 Theoretical estimates of probabilities PNEET for the isotope of
189
76 Os

Model Year NEET (M1 transition) NEET (E2 transition)

Morita 1973 – 1.0�10�6

Okamoto 1977 – 1.5�10�7

Pisk et al. 1989 2.3�10�7 1.8�10�8

Bondarkov et al. 1991 1.1�10�7 2.5�10�9

Ljubicic et al. 1991 1.06�10�7 1.25�10�7

Tkalya 1992 1.1�10�10 7�10�13

Ho et al. 1993 2.1�10�9 –
Ahmad et al. 2000 1.3�10�10 3.8�10�13

Tkalya 2007 1.2�10�10 –
Present work 2009 1.9�10�10 8.5�10�13

and possibly the continuum pressure [23, 29, 30]. In any case, the theoretical
calculations for NEET occurring in scattering measurements are particularly useful,
especially in finding candidate isotopes and transitions suitable for experimental
observation.

11.3 Relativistic Energy Approach to the Process of Nuclear
Excitation by Electron Transition

The relativistic energy approach is based on the S-matrix Gell-Mann and Low
formalism combined with the relativistic many-body PT [24–31]. Let us remind
that in atomic theory, a convenient field procedure is known for calculating the
energy shifts�E of the degenerate states. Secular matrix M diagonalization is used.
In constructing M, the Gell-Mann and Low adiabatic formula for �E is used. A
similar approach, using this formula with the electrodynamical scattering matrix, is
applicable in the relativistic theory. In contrast to the nonrelativistic case, the secular
matrix elements are already complex in the PT second order (first order of the
interelectron interaction). Their imaginary parts relate to radiation decay (transition)
probability. The total energy shift of the state is usually presented as follows:

�E D Re�E C i Im�E; (11.1a)

Im �E D ��
2
; (11.1b)

where � is interpreted as the level width and the decay possibility P D� . The
whole calculation of energies and decay probabilities of a nondegenerate excited
state is reduced to calculation and diagonalization of the complex matrix M. To
start with the Gell-Mann and Low formula, it is necessary to choose the PT zero-
order approximation. Usually, the one-electron Hamiltonian is used, with a central
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potential that can be treated as a bare potential in the formally exact PT [25, 29].
The total probability of radiative decay (excitation, de-excitation) is connected
with imaginary part of �E of the system “atom plus field.” It corresponds to the
retarding effect in an interaction and self-interaction for radiative processes and can
be calculated within the relativistic PT [24, 32]. The corresponding corrections of
the PT for Im �E can be represented as a sum on the virtual states. In the lowest
PT, the separated terms of these sums correspond to the additive contributions of
different physical channels into the total decay probability. Naturally, the channel’s
interference effects will appear in the next PT orders.

The fundamental parameter of the cooperative NEET process is a probability
PNEET (cross section) of the nuclear excitation by electron transition. In fact, it can
be defined as the probability that the decay of the initial excited atomic state will
result to the excitation of and subsequent decay from the corresponding nuclear
state. Within the energy approach, the decay probability is connected with an
imaginary part of energy shift for the system (nuclear subsystem plus electron
subsystem) excited state. An imaginary part of the excited state I energy shift in
the lowest PT order can be in general form written as [18, 26]

Im�E D e2Imi � lim
�!0

“

d4x1d4x2e�.t1Ct2/�

�fD.rN1t1; rN2t2/ < ‰I j. OJN.x1/ OJN.x2//j‰I >
CD.re1t1; re2t2/ < ‰I j. Oje.x1/ Oje.x2//j‰I >g (11.2)

Here, D(r1t1,r2t2) is the photon propagator; OJN and Oje are the four-dimensional
components of a current operator for the nuclear and electron (hole) subsystems;
X D (rn, re, t) is the four-dimensional space-time coordinate of the particles,
respectively; and � is an adiabatic parameter.

One should use the exact electrodynamical expression for the photon propagator
(the Lorenz gauge):

D.r1t1; r2t2/ D � 1

8�2r12

1Z

�1
d! exp.i!t12 C i j!j r12/: (11.3)

The nuclear current can be written as follows:

J P.R; t/ D  C
N� OJ P N; (11.4)

where OJ P is the operator of an nuclear electromagnetic transition and N is a nuclear
wave function. The current operator for electron is

Nj	e D
_N e�

	
_

 e; (11.5)
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where �	 are the Dirac matrices. The Hamiltonian of the interaction of the electronic
hole current j	f i and the nuclear current J �f i .R/ is written as

Hint D
Z

d3r d3R j	f i D	v .!N; r �R/ J v
f i .R/: (11.6)

Below, we are limited by the lowest order of the QED PT. The energy shift can
be further represented as the PT set. After integration transformations, the final
expression for the imaginary part of energy shift can be represented as a sum of
the corresponding nuclear-electron (hole) contributions:

Im�E D ImEe C ImEN; (11.7)

ImEa D � z2a
4�

X

F

Z Z

dre1dre2

Z Z

drN1drN2� (11.8)

‰�
I .1/‰

�
F .2/

OTa.1; 2/‰F.1/‰I.2/; (11.9)

OTa.1; 2/ D sin.!IFra12/

ra12
(11.10)

Here, as usual, ra12 D jra1 � ra2j, !IF is the energy of transition between the
initial I and final F states; the sum on F means the summation on the final states of
a system, i.e., the total level width is represented as sum of the partial contributions,
connected with radiative decay into the concrete final states of a system. These
contributions are proportional to the probabilities of the corresponding transitions.
Naturally, the form of operator in (10) is determined by a gauge of the photon prop-
agator (look discussion in Ref. [26]). In the zeroth approximation, the dependence
‰F; ‰I on the nuclear and electron coordinates (RN, Re(h)) is factorized .� ˆeˆN/.
Therefore, the combined electron (hole)-nuclear one-photon transitions occur as
each of the operators TN and Te in (10) contains the combination of the nuclear
and electron variables. After factorization and some transformations, the expression
(10) can be presented in the following form:

ImEa D � z2a
4�

X

FeFN

Z Z

dRN1dRN2

Z Z

dRe1dRe2�ˆ�
Ie.Re1/ˆ

�
IN.RN1/ˆ

�
Fe.Re2/�

�ˆ�
FN.RN2/

sin!IFRa 12

Ra 12
ˆFe.Re1/ˆFN.RN1/ˆIe.Re2/ˆIN.RN2/:

(11.11)

The expansion of the operator sin.!IFRa12/ =Ra12 on the spherical harmonics
generates the decay probability multipole expansion. It can be written in the
following known form:
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sin j!jR12
Ra12

D �

2
p
R1R2

1X

�D0
.�/ J�C 1

2
.j!jRa1/ J�C 1

2
.j!jRa2/P� .cosRa1Ra2/;

(11.12)

where J is the Bessel function of the first kind and (œ) D 2œC 1. In fact, this
expansion coincides with the known power expansion; naturally, the strict decreas-
ing contribution on multipolarity corresponds to them. In our problem, the power
expansion parameters are the combinations!aIFRe and !N

IFRN. Further, the effects of
purely nuclear transition, purely electron (hole) transition, and combined electron-
nuclear transition in (11) can be distinguished. The corresponding technique of work
with these expansions is well developed [24–26] and often used in our precious
chapters (look [16–18, 27–29]). Finally, the NEET probability PNEET is connected
with the imaginary part of energy of the excited nuclear-electron state. It can be
shown that PNEET can be presented in the following form [23]:

PNEET D
�

1C �i

�f

�
M2

int

.!N � !A/
2 C .�i C �f/

2=4
: (11.13)

Here, as usual, i,f are the widths of the initial and final electron states and M2 is
averaged over initial states and summed over the final states the square modulus of
the Hamiltonian of the electron hole current-nuclear current interaction. It can be
written (MI-K transition) as follows (see details in Ref. [23]):

M2
int D 1

2jhK C 1

1

2JN C 1

X

mhK

X

meh M1

X

mN;mN�
jHionj2 (11.14)

or

M2
int D 4�e2!

2.�C1/
N




ji
1
2
�Ojjf

1
2

�2

Œ.2�C 1/ŠŠ�2

ˇ
ˇ
ˇR

E=M

� .!N/
ˇ
ˇ
ˇ

2

B.E=M�IJi ! Jf/: (11.15)

Here B[E/(M)�; Ji�Jf] is the reduced nuclear probability,
ˇ
ˇ
ˇR

E=M

� .!N /
ˇ
ˇ
ˇ are the

atomic radial matrix elements of electric (magnetic) [E/M] multipolarity �; ji ,f and
Ji,f are the angular momenta of the electronic and nuclear states correspondingly.
The atomic radial matrix elements

ˇ
ˇRM� .!N /

ˇ
ˇ of electric (magnetic) [E/M] multipo-

larity � are expressed by means of the integral:

1Z

0

drr2Z�.1/.!r/Œgi .r/ff .r/C fi .r/gf .r/�; (11.16)

where, as usual, f (r) and g(r) are the large and small components of the Dirac
electronic wave functions; Z function is usually defined as follows:
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Z
.1/

� D
�

2

j!j ˛Z
�C 1

2 J�C 1
2
.˛ j!j r/

r��



�C 3
2

� : (11.17)

Other details can be found in Refs. [24–31].

11.4 Results on Probabilities of the Nuclear Excitation
by Electron Transition

In concrete calculation of the NEET probabilities for different atomic/nuclear
systems, one should calculate the corresponding matrix elements. As we will
consider below M1 (E2) transition from the ground state to the first excited state
in the nuclei 18976 Os, 19377 Ir, and 197

79 Au, it should be noted that the values of B[E/(M)�;
Ji�Jf] are usually taken from the nuclear data tables [33] or can be estimated
according to the known formula (look [34, 35]). In order to calculate the electronic
wave functions and matrix elements, we have used the relativistic many-body PT
formalism [24–26, 28–30]. It allows to take into account accurately the relativistic,
exchange-correlation, nuclear, and radiative corrections (the PC code “Superatom-
ISAN”). The detailed description of the method is given in a number of Refs. (look,
e.g., [24–31]). Here we are limited by a brief comment. The corresponding code
contains the atomic and nuclear blocks. The zeroth approximation electronic wave
functions are found from the Dirac (or Dirac-Kohn-Sham) equation with potential,
which includes the SCF potential and the electric and polarization potentials of
a nucleus. As an account of the finite nuclear size has a sensitive effect on the
energy levels of the bound electron, we usually use the smooth Gaussian (or
Fermi) function of the charge distribution in a nucleus. The correlation corrections
of the second and high orders are taken into account within the Green function
method (with the use of the Feynman diagrams technique). They have taken into
account all correlation corrections of the second order and dominated classes of the
higher order diagrams (electron screening, particle-hole interaction, mass operator
iterations). The magnetic interelectron interaction is accounted in the lowest (on ’2

parameter, ’ being the fine-structure constant). The radiative corrections are taken
into account effectively, namely, the Lamb shift self-energy part is accounted within
the generalized Ivanov-Ivanova non-perturbative procedure and the polarization
part—in the generalized Uehling Serber approximation. The important feature of the
whole method is using the optimized one-quasiparticle representation in the zeroth
approximation, which is constructed within the method [26]. The nuclear part of the
general method includes a set of the nuclear shell models, including the relativistic
mean-field approach [36] and the Dirac-Bloumkvist-Wahlborn and Dirac-Woods-
Saxon models [35–37].

The calculation results on the NEET probability for the 189
76 Os, 19377 Ir, and 197

79 Au
atoms together with the alternative theoretical (by Tkalya and Ahmed et al.) [22, 23]
and experimental data [21, 22] are given in Table 11.3.
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Table 11.3 Theoretical and experimental data on probabilities PNEET (M1) for the
isotopes of 18976 Os, 19377 Ir, and 197

79 Au

Nucleus
Energy of nuclear
excitation (keV) Experimental values Theory Present work

189
76 Os 69.535 <9.5�10�10 1.2�10�10 1.9�10�10

1.3�10�10

193
77 Ir 73.04 (2.8 ˙ 0.4)�10�9 2.0�10�9 2.7�10�9

197
79 Au 77.351 (5.7 ˙ 1.2)�10�8 3.4�10�8 4.6�10�8

(4.5 ˙ 0.6)�10�8 4.5�10�8

Let us note that in 189
76 Os during the NEET process, the initial K-vacancy state

decays via an electronic transition from the M shell. The KMI (70.822 keV, M1),

KMIV (71.840 keV, E2), and KMV (71.911 keV, E2) atomic transitions can give
the contribution. The corresponding nuclear state at 69.535 keV can be excited via
M1 or E2 transitions from the 3/2� nuclear ground state. The following energy
parameters !N D 69.535 keV, ! D EMI�EK D 70.822 keV, �K D 42.6 eV, and
�M D 12.8 eV are used for the 189

76 Os atom. Correspondingly, the energy parameters
for 197

79 Au are as follows: !N D 77.351 keV, !A D 77.325 keV, �K D 52 eV, and
�M D 14.3 eV and for 193

77 Ir, !N D 73.04 keV, ! D 72.937 keV, �K D 45 eV, and
�M D 12.8 eV. Analysis of all presented theoretical data shows that these results
are consistent with each other and are in physically reasonable agreement with the
experimental results [21, 22].

11.5 Conclusion

In this chapter, a brief review of the experimental and theoretical works on the
NEET effect is given. A new, consistent relativistic energy approach to calculation
of the cooperative electron-gamma-nuclear NEET process combined with the
relativistic PT is presented. It should be noted that the presented approach can
be naturally generalized in order to describe the physics of the NEEC and other
similar cooperative processes. The calculation results are listed for the heavy
atomic systems 189

76 Os, 19377 Ir, and 197
79 Au and compared with available theoretical

and experimental data. It is important to note that the theoretical and experimental
study of the cooperative electron-gamma-nuclear process such as the NEET effects
is expected to allow the determination of nuclear transition energies and the study
of atomic vacancy effects on nuclear lifetime and population mechanisms of excited
nuclear levels. The cooperative e-”-nuclear spectroscopy of atomic/nuclear systems
opens new prospects in the bridging of nuclear physics and atomic spectroscopy.
These possibilities are significantly strengthened by quickly developed nuclear
quantum optics [1, 3, 5, 14, 17]. Really, a superintense laser (raser) field may provide
a definite measurement of the change in the dynamics of the cooperative electron-
”-nuclear processes.
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Chapter 12
Advanced Relativistic Energy Approach
to Radiative Decay Processes in
Multielectron Atoms and Multicharged Ions

Alexander V. Glushkov

Abstract We present the generalized advanced energy approach to relativistic
calculations of the radiative decay (transition) probabilities in neutral multielectron
atomic systems and multicharged ions. The approach is based on the Gell-Mann
and Low S-matrix formalism and relativistic many-body perturbation theory (PT),
using an optimized one-quasiparticle representation and an accurate account of
relativistic and correlation effects. In the relativistic case, the Gell-Mann and Low
formula expresses an energy shift �E through the electrodynamical scattering
matrix including an interaction with a laser field as a photon vacuum field. The last
case is corresponding to traditional definition of the radiative transition probabilities
for atoms and ions. The results of relativistic calculation of the radiative transition
probabilities and oscillator strengths are presented for a number of heavy atoms and
multicharged ions and compared with available theoretical and experimental data.
The role of the correlation corrections and gauge non-invariant contributions to the
radiation widths for different atoms and ions is discussed.

12.1 Introduction

It is well known that the accurate radiative decay widths and probabilities and
oscillator strengths of atomic transitions are needed in astrophysics and laboratory,
thermonuclear plasma diagnostics, fusion research and laser physics, etc. [1–27].
Spectral lines are usually characterized by their wavelength and oscillator strength.
Typically, transition probabilities are known less accurately than wavelengths.
Moreover, for many spectral lines of heavy atoms and especially multicharged
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ions, the radiative transition probabilities are not reliably known at all. Radiative
transition probabilities have been mainly determined from calculations and to
a much smaller extent from experiment [1, 2]. Many theoretical methods use
techniques which include extensive configuration interaction or multiconfiguration
treatments [2–22]. The well-known multiconfiguration Hartree-Fock method (the
relativistic effects are often taken into account in the Pauli approximation or
Breit Hamiltonian) allowed to obtain the useful spectral data on light and not
heavy atomic systems [8]. The multiconfiguration (MC) Dirac-Fock (DF) method
is the most reliable version of calculation for multielectron systems with a large
nuclear charge. In these calculations, the relativistic effects are taken into account
practically precisely [3–17]. The calculation program of Desclaux (the Desclaux
program, Dirac package) is compiled with proper account of the one- and two-
particle relativistic effects, a finiteness of the nucleus size, etc. In the last decades,
consistent quantum-electrodynamical (QED) techniques have been implemented
to atomic theory calculations (see [17]). It should be given a special attention
to two very general and important computer codes for relativistic and QED
calculations of atomic and molecular properties developed in the Oxford group
and known as GRASP (“GRASP”, “Dirac”; “BERTHA”, “QED”, “Dirac”) (see [3–
7] and references there). Besides the well-known density functional theory (DFT),
relativistic coupled-cluster approach and model potential approaches in heavy atoms
and ions should be mentioned too [18–24].

In order to determine a transition probability, one usually uses a standard ampli-
tude approach. Each of the theoretical approaches to calculation of transition prob-
abilities contains critical factors (configuration interaction or multiconfiguration
treatment, spectroscopic coupling schemes and relativistic corrections, exchange-
correlation corrections, convergence of results and of the dipole length and velocity
forms, accuracy of transition energies, etc.) which need to be adequately taken care
of to obtain reliable results (look details in Refs. [2–5]).

The purpose of this work is to present a generalized relativistic energy approach
to calculation of the radiative decay characteristics for atoms and multicharged ions
and to list new data on the transition probabilities for the most interesting atoms and
ions. The fundamental ideas of an energy approach to one-electron ions have been
considered by Labzovsky et al. [25]. Originally, an energy approach to radiative and
autoionization processes in multielectron atoms has been developed by Ivanova-
Ivanov et al. [22–24] (the PC code “Superatom-ISAN”). The relativistic many-body
PT with the empirical zeroth approximation has been used [22]. More accurate,
advanced version of the relativistic energy approach has been further developed
in Refs. [26, 27]. An advanced energy approach is based on the Gell-Mann and
Low S-matrix formalism combined with ab initio relativistic many-body PT. In
relativistic case, the Gell-Mann and Low formula expresses an energy shift �E
through the electrodynamical scattering matrix including an interaction with the
photon vacuum field as a laser field. The first case is corresponding to traditional de-
termination of the radiative decay characteristics of atomic systems. Earlier, we have
applied the corresponding generalized version of the relativistic energy approach
to many problems of atomic, nuclear and even molecular spectroscopy. One could
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mention studying the cooperative electron-gamma-nuclear “shake-up” processes,
electron-muon-beta-gamma-nuclear spectroscopy, spectroscopy of autoionization,
and multiphoton resonances in spectra of atoms in a laser field, etc. [28–34].

12.2 Relativistic Energy Approach to the Calculation
of Radiative Decay Processes in Multielectron Atoms

12.2.1 General Formalism

A multielectron atom is usually described by the Dirac relativistic Hamiltonian (the
atomic units are used):

H D
X

i

h .ri /C
X

i>j

V



ri rj
�

: (12.1a)

Here, h(r) is a one-particle Dirac Hamiltonian for electron in a field of the finite
size nucleus and V is a potential of the interelectron interaction. In order to take
into account the retarding effect and magnetic interaction in the lowest order on
parameter ˛2 (˛ is the fine structure constant), one could write [23]

V



ri rj
� D exp




i!ij rij
� �



1 � ˛i˛j
�

rij
; (12.1b)

where !ij is the transition frequency and ˛i,˛j are the Dirac matrices. The zeroth-
order Hamiltonian H0 and the perturbation operator can be presented as follows [23,
34, 35]:
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; (12.2)

where 

Er� are the one-electron functions (Dirac bispinors), Ei is the one-electron

energies and VC is the central field self-consistent potential of the Coulomb type.
The latter can be taken in the form of the usual Dirac-Fock potential (with the
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optimization parameter b; see below) or some model potential, which imitates an
effect of the electron subsystem. In many papers (look details in Refs. [22–28]), it
has been used the Ivanov-Ivanova effective potential, which can be written as a sum
of the contributions due to the K, L and M electronic shells (in the Coulomb units):

vK D 2
�

1 � e�2rb .1C rb/
�

Zr
; (12.3a)

vL D 8
�

1� e�br 
1C 0:75br C 0:25b2r2 C 0:0625b3r3
��

Zr
; (12.3b)

vM D .N � 10/
�

1 � 1
ı


1C br C b2r2 C b3r3
��

Zr
; (12.3c)

where Z is the nuclear charge of the atom with N electrons and b is the potential
parameter, which is usually fitted to the experimental results for atomic levels
energies [22–24]. An advanced ab initio procedure to determine the potential
parameter is described below.

Generally speaking, the majority of complex atomic systems possess a dense
energy spectrum of interacting states with essentially relativistic properties. In
the theory of the nonrelativistic atom, a convenient field procedure is known
for calculating the energy shifts �E of the degenerate states. This procedure is
connected with the secular matrix M diagonalization [24–26]. In constructing M, the
Gell-Mann and Low adiabatic formula for�Eis used. A similar approach, using the
Gell-Mann and Low formula with an electrodynamical scattering matrix, is applica-
ble in a theory of relativistic atom; the approach is consistently electrodynamical. In
contrast to the nonrelativistic case, the secular matrix elements are already complex
in the second order of the PT (first order of the interelectron interaction). Their
imaginary parts are connected with the radiation decay (transition) probability. The
total energy shift is usually presented in the following form:

�E D Re�E C i Im�E; (12.4a)

Im�E D ��
2
; (12.4b)

where �is interpreted as the level width and the decay possibility is P D � .
In this approach, the whole calculation of the energies and decay probabilities

of nondegenerate excited states is reduced to the calculation and diagonalization of
the complex matrix M. In the papers of different authors, the Re�E calculation
procedure has been generalized for the case of nearly degenerate states, whose
levels form a more or less compact group. One of these variants has been previously
[23, 26] introduced: for a system with a dense energy spectrum, a group of nearly
degenerate states is extracted and their matrix M is calculated and diagonalized. If
the states are well separated in energy, the matrix M reduces to one term, equal
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to �E . The nonrelativistic secular matrix elements are expanded into a PT series
for the interelectron interaction. The complex secular matrix M is represented in the
following form [23]:

M D M.0/ CM.1/ CM.2/ CM.3/ (12.5)

where M.0/ is the contribution of the vacuum diagrams of all order of PT and
M.1/, M.2/, and M.3/ are those of the one-, two- and three-quasiparticle diagrams,
respectively. M.0/ is a real matrix, proportional to the unit matrix. It determines
only the general level shift. It is usually assumed M.0/ D 0: The diagonal matrix
M.1/ can be presented as a sum of the independent one-quasiparticle contributions.
For simple systems (such as alkali atoms and ions), the one-quasiparticle energies
can be taken from the experiment. Substituting these quantities into (12.5), one
could have summarized all the contributions of the one-quasiparticle diagrams of
all orders of the formally exact relativistic PT. However, the necessary experimental
quantities are not often available. The first two-order corrections to ReM.2/ have
been analyzed previously [22–24, 35] using the Feynman diagrams technique. The
contributions of the first-order diagrams have been completely calculated. In the PT
second order, there are two kinds of diagrams: polarization and ladder ones. The
polarization diagrams take into account the quasiparticle interaction through the
polarizable core, and the ladder diagrams account for the immediate quasiparticle
interaction. An effective representation for a two-particle polarizable operator has
been proposed in Ref. [28]; it can be written as follows:

V d
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; (12.6)

where �0c is the core electron density (without account for the quasiparticle), X
is the numerical coefficient and c is the light velocity. The similar approximate
potential representation has been received for the exchange polarization interaction
of quasiparticles. Some of the ladder diagram contributions as well as some
of the three-quasiparticle diagram contributions in all PT orders have the same
angular symmetry as the two-quasiparticle diagram contributions of the first order.
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These contributions have been summarized by a modification of the central poten-
tial, which must now include the screening (anti-screening) of the core potential of
each particle by the two others (look details in Refs. [23, 26, 35]). The additional
potential modifies the one-quasiparticle orbitals and energies. Then, the secular
matrix can be approximated as follows: M � QM.1/ C QM.2/, where QM.1/ is
the modified one-quasiparticle matrix (diagonal) and QM.2/ is the modified two-
quasiparticle one. QM.1/ is calculated by substituting the modified one-quasiparticle
energies, and QM.2/ is calculated by means of the first PT order formulae for M.2/,
putting the modified radial functions of the one-quasiparticle states in the radial
integrals (look below).

Let us remind that in the QED theory, the photon propagator D (12) plays the role
of interparticle interaction. Naturally, the analytical form of D (12) depends on the
gauge, in which the electrodynamical potentials are written. Generally speaking,
the results of all approximate calculations are dependent on the gauge. Naturally,
the physically correct results must be gauge invariant. The gauge dependence of the
amplitudes of the photoprocesses in the approximate calculations is a well-known
fact. This problem was in detail investigated by Grant, Armstrong, Aymar, Luc-
Koenig and Glushkov-Ivanov et al. (look Refs. [1, 3, 26]). Grant has investigated
the gauge connection with the limiting nonrelativistic form of the transition operator
(the length and velocity forms) and has formulated the conditions for approximate
functions of the states, in which the amplitudes of the photoprocesses are gauge
invariant. These results remain true in our energy approach because the final
formulae for the probabilities coincide in both approaches.

12.2.2 Imaginary Part of the Secular Matrix and Transition
Probability

The radiative transition probabilities in an energy approach are determined by the
imaginary part of the interaction (12.1b) between the active quasiparticle and an
electrodynamic vacuum of an electronic field. The presence of the polarizable core
can be effectively accounted for by modification of the interaction (12.1b). This
corresponds to a modification of the radiation transition operator in the traditional
amplitude approach. A local form of the modified transition operator has been
previously treated by Hibbert, Migdalec, and Ivanova-Ivanov et al. (e.g., see Refs.
[9, 21–26]). An integral form of the additional polarization interaction, including
the imaginary part, has been deduced on the base of the analysis of the second-
order (the QED PT fourth order) polarization diagrams. In result, one could take
into account for the corresponding corrections to Im�E . The detailed description
of the accounting for the correlation corrections of the PT high orders within the
Green function method (with the use of the Feynman diagram’s technique) is given
in Refs. [22–24, 34, 35], where additional details can be found.

A transition probability is directly connected with the imaginary part of an
electron energy shift of the system, which is defined in the PT lowest order as
follows [22–24]:
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Im�E D � e2

4�

X

˛>n>f
Œ˛<n6f �

V j!˛nj
˛n˛n ; (12.7)

where
P

˛>n>f

is for electron and
P

˛<n6f
is for vacancy. The matrix element in (12.7)

is as follows:

V
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ijkl D
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j .r2/

sin j!j r12
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k .r2/‰

�
l .r1/: (12.8)

The individual terms of the sum in (12.8) represent the contributions of different
channels, and a probability of the dipole transition is as follows:

�an D 1

4�
� V j!˛n j

˛n˛n : (12.9)

The corresponding oscillator strength is usually defined as

gf D �2g � �˛n
6:67 � 1015 ; (12.10)

where g is the degeneracy degree and � is the wavelength in angstroms (
0

Å). When
calculating the matrix elements (12.8), one should use the angle symmetry of the
atomic task and write the corresponding expansion for sinj¨jr12/r12 on spherical
harmonics as follows:
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r12

D �

2
p
r1r2

1X

�D0
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cos br1r2
�

; (12.11)

where J is the Bessel function of first kind and (�) D 2�C 1. This expansion is
corresponding to the usual multipole expansion for probability of the radiative
transition. Substitution of the expansion (12.11) to matrix element of the interaction
gives the following expression:

V !
1234 D Œ.j1/ .j2/ .j3/ .j4/�

1
2

X

�	

.�1/	
�
j1 j3 �

m1 �m3 	

�

	 ImQ� .1234/;

Q� D Q
Qul
� CQBr

� : (12.12)

where ji are the single electron momentums and i their projections;QCul
� andQBr

� are
connected with the Coulomb and Breit (magnetic) parts of the operator (12.1b). The
total radiation width of a one-quasiparticle state is presented as follows:
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� .�/ D �2ImM1 .�/ D �2
X
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.2j C 1/ImQ�




n� l�j�nlj
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Q� D QCul
� CQBr

� : (12.13)

The individual terms of the
P

nlj sum correspond to the partial contributions of
the n�l�j� ! nlj transitions;

P

� is a sum of the contributions of the different
multiplicity transitions. The detailed expressions for the Coulomb and Breit parts
can be found in Refs. [22, 23, 35]. The imaginary part QCul

� contains the radial R�
and angular S� integrals. It can be written as follows:
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(12.14)

In the nonrelativistic limit, there remains only the first term in Eq. (12.14)
depending only on the large component f .r/ of the one-electron Dirac functions:

ImR� .12I 43/ D 1

2
.2�C 1/ �X� .13/X� .24/
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The angular coefficient has only a real part:

S� .12I 43/ D S� .13/ S� .24/ S� .13/ D f�l1l3g
�
j1 j3 �
1
2

� 1
2
0

�

: (12.16)

f� l1 l3g means that �; l1 and l3must satisfy the triangle rule and the sum
� C l1 C l3 must be an even number. The rest terms in Eq. (12.14) include
the small components of the Dirac functions. The tilde designates that the large
radial component f must be replaced by the small component g and, instead of
li ; Qli D li � 1, should be taken for ji < li and Qli D li C 1 for ji > li . The Breit
(magnetic) part can be written as

QBr
� D QBr

�;��1 CQBr
�;� CQBr

�;�C1: (12.17)

The corresponding imaginary part (12.17) is as follows:
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The angular part Sl� has the form

Sl� .12I 43/ D .2�C 1/ Sl� .13/ S
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� .24/ .�1/�ClC1; (12.19)

Sl� .12/ D .�1/l2Cj2 fll1l3g
�
j2 ji �

� 1
2

1
2
0

�

	
 

1

Œ2� .�C 1/�1
=2

h

.�1/j1Cj2C� .2j2C1/C .2j1C1/
i�

� 1 l

�1 1 0
�

C.�1/l2Cj1C�
�
� 1 l

0 0 0

��

(12.20)

The total probability of a � -pole transition is usually represented as a sum of the
electric PE

� and magnetic PM
� parts. The electric (or magnetic) � -pole transition

� ! ı connects two states with parities which differ by � (or � C 1) units. In our
designations one could write

PE
� .� ! ı/ D 2 .2j C 1/QE

� .�ıI �ı/ QE
� D QCul

� CQBr
�; ��1 CQBr

�; �C1

PM
� .� ! ı/ D 2 .2j C 1/QM

� .�ıI �ı/ QM
� D QBr

�; �: (12.21)

In the numerical calculations, a transition probability is usually expanded to the
series on the known parameter ˛! as follows:

Q
Qul
� � .˛!/

.�/; QBr
�;��1 � .˛!/�; QBr

�� � .˛!/�C3; Q�;�C1 � .˛!/�C5:
(12.22)

In a case of the two-quasiparticle states (e.g., this is a case of the Ne-like ion,
where the excited state can be represented as the state with two quasiparticles –
electron and vacancy above the closed-shell core 1s22s22p6), the corresponding
probability has the following form (say, transition – j1j2 ŒJ � ! Nj1j2

� NJ �):

P
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�

: (12.23)

It should be noted that all calculation is usually carried out in the jj-coupling
scheme representation. The transition to the intermediate coupling scheme is
realized by diagonalization of the secular matrix. Indeed, only ReM should be
diagonalized. The imaginary parts are converted by means of the matrix of
eigenvectors fCmkg, obtained after diagonalization of ReM :

ImMmk D
X

ij

C �
mi Mij Cjk (12.24)
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a b c

Fig. 12.1 (a) Second other PT diagram contributing the imaginary energy part related to the
radiation transitions; (b) and (c) fourth-order polarization diagrams

where Mij are the matrix elements in the jj-coupling scheme and Mmk in the
intermediate coupling scheme representation. This procedure is correct in terms of
the order of ImM =ReM .

Further, let us also underline that a tedious procedure of the phase convention
in calculating the matrix elements of different operators is avoided in the energy
approach, although certainly the final formulae must coincide with the formulae
obtained using the traditional amplitude method. Therefore, the energy approach
simplifies an analysis of complex atomic processes including processes with the
interference of different kinds of channels (i.e., radiation and autoionization decay
channels, etc.).

12.2.3 The One-Quasiparticle Optimized Representation

The problem of the searching for the optimal one-electron representation is one
of the oldest in the theory of multielectron atoms. Three decades ago, Davidson
had pointed the principal disadvantages of the traditional representation based
on the self-consistent field approach and suggested the optimal “natural orbitals”
representation. Nevertheless, there remain insurmountable calculational difficulties
in the realization of the Davidson program (see, e.g. Ref. [12]). One of the
simplified recipes represents, for example, the DFT method [18, 19]. Unfortunately,
this method does not provide a regular refinement procedure in the case of the
complicated atom with few quasiparticles (electrons or vacancies above a core of the
closed electronic shells). For simplicity, let us consider now the one-quasiparticle
atomic system (i.e., atomic system with one electron or vacancy above a core of the
closed electronic shells). The multi-quasiparticle case does not contain principally
new moments. In the lowest second order of the QED PT for the �E, there is the
only one-quasiparticle Feynman diagram a (Fig. 12.1), contributing the Im�E (the
radiation decay width).

In the next fourth order, there appear diagrams, whose contribution into the
Im�E accounts for the core polarization effects. This contribution describes
collective effects, and it is dependent upon the electromagnetic potential gauge
(the gauge non-invariant contribution). Let us examine the multielectron atom with
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one quasiparticle in the first excited state, connected with the ground state by the
radiation transition. In the PT zeroth approximation, one can use the one-electron
bare potential:

VN.r/C VC.r/; (12.25)

with VN(r) describing the electric potential of a nucleus and VC(r) imitating the
interaction of the quasiparticle (initial or any other appearing in the real and virtual
processes) with a core of the closed shells. The perturbation in terms of the second
quantization representation reads as

�VC.r/  
C.r/  .r/ � j	.x/ A

	.x/: (12.26)

The core potential VC(r) is related to the core electron density �C(r) in a standard
way. The latter fully defines the one-electron representation. Moreover, all the
results of the approximate calculations are the functionals of the density �C(r). Here,
the lowest-order multielectron effects, in particular, the gauge-dependent radiative
contributions for the certain class of the photon propagator gauge are treating.
This value is considered to be the typical representative of the electron correlation
effects, whose minimization is a reasonable criteria in searching for the optimal
one-electron basis of the PT. Besides, this procedure derives an undoubted profit
in the routine spectroscopic calculations as it provides the way of the refinement
of the atomic characteristic calculations, based on the “first principles.” Remember
that the closeness of the radiation probabilities calculated with the alternative forms
of the transition operator (the length and velocity forms) is commonly used as a
criterion of the multielectron calculation quality. It is of special interest to verify
the compatibility of the new optimization principle with the other requirements
conditioning a “good” one-electron representation.

The imaginary part of the diagram a (Fig. 12.1) contribution has been presented
previously as a sum of the partial contributions of ˛-s transitions from the initial
state ˛ to the final state s [26]:

Im�E˛.a/ D
X

S

Im �E .˛ � sI a/ : (12.27)

Two fourth-order polarization diagrams b, c (Fig. 12.1) should be considered
further. The contributions being under consideration are gauge dependent, though
the results of the exact calculation of any physical quantity must be gauge
independent. All the non-invariant terms are multielectron by their nature. Let us
take the photon propagator calibration as follows:

D D DT C CDL;

DT D ı	�



k20 � k2� ;

DL D �k	k�



k20 � k2� : (12.28)
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Here, C is the gauge constant; DT represents the exchange of electrons by
transverse photons and DL by longitudinal ones. One could calculate the contri-
bution of the a, b, c diagrams (Fig. 12.1) into the Im �E taking into account both
the DT and DL parts. The a diagram (Fig. 12.1) contribution into the Im �E related
to the ˛�s transition reads as

� e2

8�

Z Z

dr1 dr2  
C̨ .r1/  C

s .r2/
1 � ˛1˛2

r12
sin .!˛sr12/  ˛ .r2/  s .r1/ ;

(12.29)

for D D DT, and
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C!˛s .1C ˛1 n12˛2n12/ 	 cos .!˛sr12/g ˛ .r2/ s .r1/ ;
(12.30)

for D D DL, where !˛s is the ˛�s transition energy. According to the Grant theorem
[1], the D	�,L contribution vanishes if the one-quasiparticle functions ˛ ,  s satisfy
the same Dirac equation. Nevertheless, this term is to be retained when using
the distorted wave approximation, for example. Another very important example
is given by the formally exact operator PT approach. It is based on the bare
Hamiltonian defined by its spectrum without specifying its analytic form [26, 34].
Here, the non-invariant contribution appears already in the lowest order. When
calculating the fourth-order contributions, some approximations are inevitable.
These approximations have been formulated in Refs. [26], where the polarization
corrections to the atomic state energies have been considered.

Let us consider the direct polarization diagram b (Fig. 12.1) as an example. After
some transformations, the formal expression for the sought value looks as
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n .r3/�Œ.1�˛1˛2/=r12 ��fŒ˛3˛4�.˛3n34/ .˛4n34/�=r34

	 sin Œ!˛n .r12 C r34/�C Œ1C .˛3n34/ .˛4n34/� !˛n cos Œ!˛n .r12 C r34/�g
	‰m .r3/‰˛ .r4/‰n .r2/‰s .r1/ : (12.31)

Here, f is the boundary of the closed shells; n 
 f indicating the unoccupied
bound and the upper continuum electron states; m � f indicates the finite number
of states in the core and the states of the negative continuum (accounting for the
electron vacuum polarization). All the vacuum polarization and the self-energy cor-
rections to the sought-for values are omitted. Their numerical smallness compared
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with the other relativistic corrections to the different atomic characteristics had
been verified by the numerous calculations. The renormalization procedure is
not needed here. Nevertheless, the second-order vacuum polarization and self-
energy corrections can be additively added to the complex state energy. The
remaining expression includes summation over the bound and upper continuum
atomic states. To evaluate this sum, we use the analytic relation between the
atomic electron Fermi level and the core electron density �c (r), appropriate to
the homogeneous nonrelativistic electron gas (the Tomas-Fermi approximation).
Now the sum

P

n>f, m<f can be calculated analytically, and its value becomes
a functional of the core electron density. The resulting expression looks at the
correction due to the additional nonlocal interaction of the active quasiparticle with
a core of the closed electronic shells. Nevertheless, its calculation is reducible to
solving the system of the ordinary differential equations (1-D procedure) [26]. The
most important refinements can be introduced by accounting for the relativistic
and the density gradient corrections to the Tomas-Fermi formula (look details in
Refs. [23, 26]). The same program is realized for other polarization diagrams.
The minimization of the functional Im�Eninv(b C c) leads to the integro-differential
equation for the �c (the DF or Dirac-Kohn-Sham-like equations for the electron
density) that is numerically solved. In result, one can obtain the optimal one-
quasiparticle representation, which is further used in calculation of the radiative
(autoionization) transition characteristics (12.7)–(12.10).

12.3 Calculation Results and Discussion

12.3.1 Oscillator Strengths of Radiative Transitions in HgC,
Eu and Yb

Below we present the calculation results for transition probabilities and oscillator
strengths in three heavy atoms and ions: HgC, Eu and Yb. A great interest
to studying these systems, namely, HgC, is explained by the importance of
the corresponding data in laser effect research. The collision of atoms of the
Mendeleev’s table second row with ions of helium (other inert gases) leads
to creating ions in the excited states that is important for creating the inverse
populations and laser effect. Available data in the literature on radiative charac-
teristics for these atoms are definitely insufficient. An account of the relativistic
and correlation effects has a critical role in the cited systems as the studied
transitions occur in the external shells in a strong field of a nucleus with large
Z. Within the relativistic PT, the HgC ion states can be treated as one- and
three-quasiparticle states of electrons (6s2) and vacancy (5d�1) above the core
of the closed shells 5d106s2. The interaction “quasiparticle-core” is described
by the potential (12.3a, 12.3b, 12.3c), which imitates the DF potential. The
polarization interaction of the quasiparticles through the core is described by
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Table 12.1 The energies of the 5d96s2(D5/2,D3/2)- 5d106s (S1/2), 5d107p(P1/2,P3/2)-5d106s(S1/2),
5d107p(P1/2,P3/2)-5d107s(S1/2), 5d96s2(D5/2,D3/2)- 5d106s (S1/2) transitions in HgC (Ry): theoretical
data – HF, DF, REA; experimental data – Moore (NBS, Washington)

Method E6s 7P1/2- 6S1/2 7P3/2- 6S1/2 7P1/2- 7S1/2 7P3/2- 7S1/2 D3/2- S1/2 D5/2- S1/2

HF �1.07 0.721 0.721 0.095 0.095 0.863 0.863
DF �1.277 0.904 0.922 0.109 0.127 0.608 0.460
REA �1.377 0.986 1.019 0.114 0.147 0.462 0.325
Exp. �1.378 0.987 1.020 0.115 0.148 0.461 0.324

Table 12.2 Probabilities of the transitions 5d107p(P1/2,P3/2)-5d106s(S1/2),
5d107p(P1/2,P3/2)-5d107s(S1/2) in HgC (in s�1): HF – Hartree-Fock data, DF –
Dirac-Fock data, DF (Eexp) – DF data using the experimental transition energies; REA –
our method; experimental data – Moore (NBS, Washington)

Method 7P3/2-6S1/2 7P1/2- 6S1/2 7P3/2- 7S1/2 7P1/2- 7S1/2

HF 4.75�106 4.75�106 3.65�107 3.65�107

DF 8.45�107 1.67�107 6.89�107 4.71�107

DF (Eexp) 1.17�108 2.04�107 1.10�108 5.52�107

REA 1.49�108 (0.2%) 2.31�107(0.2%) 1.41�108 (0.2%) 6.33�107 (0.2%)
Exp. 1.53�108 2.35�107 1.44�108 6.37�107

Table 12.3 The E2 probabilities of the
5d96s2(D5/2,D3/2)- 5d106s (S1/2) transition in
HgC (in s�1): HF – Hartree-Fock data, DF –
Dirac-Fock data, DF (Eexp) – DF data with
using the experimental transitions energies;
REA – our method; experimental data –
Moore (NBS, Washington)

Method D3/2- S1/2 D5/2- S1/2

HF 1,360 1,360
DF 257.0 77.4
DF (Eexp) 63.9 13.3
REA 54.53 11.84
Exp. 53.5 ˙ 2.0 11.6 ˙ 0.4

the two-particle effective potential (12.6). All calculations are performed using
the modified atomic code “Superatom-ISAN”. In Tables 12.1, 12.2, and 12.3,
we list the experimental and theoretical energies, electric E1 (5d107p(P1/2,P3/2)-
5d106s(S1/2), 5d107p(P1/2,P3/2)-5d10 7s (S1/2)), and E2 (5d96s2 (D5/2, D3/2) – 5d106s
(S1/2)) probabilities of the transitions in spectra of HgC. The theoretical re-
sults are obtained within the Hartree-Fock (HF), DF method (with configuration
interaction), and our optimized relativistic energy approach (REA) [1, 20–22].

For comparison, we listed the theoretical Hartree-Fock (HF), DF, and DF (with
fitting to the experimental transition energies) values by Ostrovsky-Sheynerman
and experimental data by Moore (NBS, Washington) (from Refs.[1, 20, 21]) in
Tables 12.1, 12.2, and 12.3 too. The standard HF and DF approaches in the
single-configuration approximations do not allow to obtain quite accurate results.
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Table 12.4 Theoretical transition energies in EuI2, 21, 32

N Transition Wavelength (in Å)

1 4f7(8S)6s28S7/2 !4f7(8S)6s6p 8P5/2 4,661.88
2 4f7(8S)6s28S7/2 !4f7(8S)6s6p 8P7/2 4,627.22
3 4f7(8S)6s28S7/2 !4f7(8S)6s6p 8P9/2 4,592.03
4 4f7(8S)6s28S7/2 !4f7(8S)6s7p 8P5/2 2,743.28
5 4f7(8S)6s28S7/2 !4f7(8S)6s7p 8P9/2 2,738.57
6 4f7(8S)6s28S7/2 !4f7(8S)6s7p 8P7/2 2,731.37
7 4f7(8S)6s28S7/2 !4f7(8S)6s8p 8P9/2 2,471.14
8 4f7(8S)6s28S7/2 !4f7(8S)6s8p 8P7/2 2,461.78
9 4f7(8S)6s28S7/2 !4f7(8S)6s8p 8P5/2 2,560.50

From Refs. [2, 21, 32]

Table 12.5 The oscillator strengths of the E1 transitions in EuI
(Table 12.4): theoretical data – the Coulomb approximation method
(columns A, B and C are corresponding to the gauges of the photon
propagator: Coulomb, Babushkin, Landau), multiconfiguration DF
method (column D), experimental data (columns E1, E2)

N A B C D E1 E2 F

1 0.205 0.264 0.469 0.280 0.433 0.49 0.478
2 0.272 0.350 0.622 0.374 0.588 0.59 0.591
3 0.342 0.439 0.781 0.540 0.740 0.74 0.740
4 0.0228 0.0293 0.052 0.012 0.015
5 0.0381 0.0024 0.028
6 0.0303 0.0047 0.022
7 0.0157 0.0015 0.0017
8 0.0098 0.0060 0.0063
9 0.0075 0.0045 0.0049

Using the empirical transition energies significantly improves the theoretical results
as in fact it means an account for the important interparticle correlation effects.
In our approach, the corresponding exchange-correlation effects (the polarization
interaction of the quasiparticles, mutual screening, and anti-screening corrections,
etc.) are taken into account more accurately. The core polarization correction to
the transition probability is of great importance as it changes significantly the
probability value ( 15–40%). It should also be noted that the gauge non-invariant
contribution to radiation width is very small (0.2%; see row “REA” in Table 12.2)
that means equivalence of the calculation results in the standard amplitude approach
using the length and velocity forms for transition operator. From the other side, this
is an evidence of the successful choice of the PT zeroth approximation and accurate
account of the multiparticle correlation effects. The theoretical energies of some
transitions in spectra of EuI are listed in Table 12.4.

In Table 12.5, we present our results of calculating (column F) the oscillator
strengths of the electric dipole transitions (listed in Table 12.4). Here, the optimized
DF scheme within the REA has been used. For comparison, there are also listed
the results of calculations within the Coulomb approximation method (columns
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Table 12.6 The oscillator strengths gf of the ytterbium low-lying state transitions: experi-
ment – column E; theoretical data – the Coulomb approximation (CA; Coulomb gauge of the
photon propagator); MCDF method (column D); our method (REA; column F)

Transition � (A) gf, CA gf,MCDF gf,REA gfexp

4f146s21S0 - 4f146s6p 1P1 3,987.9 1.82 1.65 1.36a; 1.48b 1.2; 1.38; 1.12
4f146s21S0 – 4f146s7p 1P1 2,464.5 1.19 0.59 0.33a; 0.38b 0.22
acalculation with the optimized wave functions
bcalculation with the non-optimized wave functions

A, B and C are corresponding to the gauges of the photon propagator: Coulomb,
Babushkin, Lamdau), multiconfiguration DF method (D) and experimental data (E1,
E2) (from Refs. [1, 2, 21]).

An analysis of the presented data shows that the Coulomb approximation results
in different photon propagator gauges significantly differ from each other. In
our approach, this difference is not more than 0.1% for different gauges. The
contribution provided by the polarization and screening effects is very important
for EuI ( 35%). In Table 12.6, we present theoretical and experimental data for the
oscillator strengths of the ytterbium YbI low-lying states (from Refs.[1, 2, 21]).
The presented data confirm a complexity of the studied atom. The simple Coulomb
approximation may hardly provide the necessary accuracy.

All conclusions regarding the role of the correlation and gauge non-invariant
contributions are similar to previous case of the Eu atom.

12.3.2 Radiative Transition Probabilities and Oscillator
Strengths for Transitions in the Spectra of Zn-Like
Multicharged Ions

Further, we present the results of calculating the probabilities of the magnetic
(dipole, M1) and electric (E1, E2) transitions for Zn-like multicharged ions (Z D 32–
92). In our calculation, we have used the Ivanov-Ivanova model potential (3)
[23], which imitates the DF potential. In Table 12.7, we presented our results
(REA) on oscillator strengths of the 4 s2(1S0)- 4s4p (1P1

0) transition in the Zn-like
multicharged ions. For comparison in Table 12.7, we listed the theoretical HF, DF,
DF (with fitting to the experimental transition energies) and model potential (MP)
data too [10, 22, 28] (and Refs. therein).

Analysis of the presented data shows that energy approach (combined with ab
initio relativistic many-body PT) provides a physically reasonable agreement of
theoretical and experimental data. We have checked that the results for oscillator
strengths obtained within our approach in different photon propagator gauges are
practically equal (difference 0.1–0.3%). The calculation has confirmed a great
role of the interelectron correlation effects of the second and higher PT orders,
namely, effects of the interelectron polarization interaction and quasiparticle mutual
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Table 12.7 The experim-
ental and theoretical values
of the oscillator strengths of
4 s2(1S0)- 4s4p (1P1

0)
transition in the Zn-like ions

Ion Method � fL fN

GaC DF 0.3351 1.89 1.98
HF 0.2984 2.30 2.01
DF (Eexp) 0.3221 1.97 1.95
MP 0.3076 1.68 1.73
REA 0.3220 1.862 1.861
Exp. 0.3221 1.85 ˙ 0.15 1.85 ˙ 0.15

As3C DF 0.5247 1.87 1.86
REA 0.5142 1.575 1.574
Exp. 0.5141 1.56 ˙ 0.23 1.56 ˙ 0.23

Gd34C DF 4.6685 1.12 1.10
REA 4.6294 1.01 0.99

Yb40C DF 6.2564 1.12 1.10
REA 5.1788 0.97 0.96

Au40C DF 9.6361 1.18 1.15
REA 9,5256 1.02 1.01

Pb52C DF 11.1153 1.21 1.18
REA 10.9715 1.13 1.13

Table 12.8 The probabilities
of the forbidden M1 and E2
transitions in spectra of some
ions of ZnI isoelectronic
sequence (our data): (a)
4s4p



3P02
� ! 4s4p



3P01
�

,
(b) 4s4p



1P01
� ! 4s4p



3P02
�

Transition M1 (a) E2 (a) M1 (b) E2 (b)

GaC 0.009(1) 0.065(�3) 0.053(1) 0.39(0)
As3C 0.051(1) 0.018(�2) 0.015(2) 0.022(1)
Gd34C 0.081(6) 0.118(4) 0.047(6) 0.047(5)
Yb40C 0.039(7) 0.399(5) 0.145(6) 0.026(6)
Au40C 0.028(8) 0.104(6) 0.119(7) 0.029(7)
Pb52C 0.047(8) 0.067(7) 0.215(7) 0.058(7)

screening. In Table 12.8, we present the M1 and E2 transition probabilities in some
Zn-like ions (our calculation) for transitions (a) 4s4p



3P02
� ! 4s4p



3P01
�

and (b)
4s4p



1P01
� ! 4s4p



3P02
�

.
It should be noted that the M1 and E2 transition probability values increase very

quickly with a growth of the nuclear charge Z. This growth is about six orders under
transition from the Zn-like ion of As to the Zn-like ytterbium.

12.3.3 Radiative Transition Probabilities in Ne-Like
Multicharged Ions

The isoelectronic sequence of neon has been especially thoroughly investigated but,
nevertheless, remains of interest because the spectra of Ne-like ions are the source
of the most important information for the solution of a wide variety of problems in
the hot, dense, thermonuclear plasma spectroscopy, physics of the shortwave lasers,
etc. The detailed analysis of the spectra of the Ne-like ions has been performed,
for example, in Refs. [23, 24, 36]. In Ref. [23], it has been used the relativistic PT
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Table 12.9 Probabilities of radiation transitions between levels of the configu-
rations 2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of Ni XIX (in s�1;
total angle moment J D 1): a – the MCDF method; b – relativistic PT with the
empirical zeroth approximation (RPTMP); c1,2 – REA-PT data (without and with
account of the correlation corrections); exp. – experimental data (see text)

Level J D 1 Exp. a-MCDF b-RPTMP c1-REA-PT c2-REA-PT

2p3/23s1/2 7.6 C 11 9.5 C 11 1.3 C 12 9.7 C 11 8.1 C 11
2p1/23s1/2 6.0 C 11 1.8 C 12 1.0 C 12 7.6 C 11 6.2 C 11
2p3/23d3/2 1.4 C 11 2.2 C 11 1.5 C 11 1.7 C 11 1.4 C 11
2p3/23d5/2 1.2 C 13 2.1 C 13 1.2 C 13 1.5 C 13 1.2 C 13
2p1/23d3/2 3.2 C 13 4.8 C 13 3.6 C 13 4.0 C 13 3.3 C 13
2s1/2 3p1/2 – – 8.5 C 11 9.5 C 11 8.1 C 11
2s1/2 3p3/2 – – 5.1 C 12 5.6 C 12 4.7 C 12
2p3/24s1/2 3.3 C 11 – 3.6 C 11 4.1 C 11 3.4 C 11
2p1/24s1/2 2.0 C 11 – 3.0 C 11 3.1 C 11 2.4 C 11
2p3/24d3/2 4.5 C 10 – 5.2 C 10 5.4 C 10 4.8 C 10
2p3/24d5/2 8.3 C 12 – 8.3 C 12 9.2 C 12 8.2 C 12
2p1/24d3/2 8.1 C 12 – 7.9 C 12 8.9 C 12 8.0 C 12
2s1/24p1/2 – 6.3 C 11 5.7 C 11
2s1/24p3/2 – 2.7 C 12 2.4 C 12

Table 12.10 Probabilities of radiation transitions between levels of the configu-
rations 2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of Br XXVI (in s�1;
total angle moment J D 1): a – the DF method; b – RPTMP; c1,2 – REA-PT data
(without and with account of the correlation corrections); exp. – experimental data
[1–4, 8–11, 15, 18, 20, 21]

Level J D 1 Exp. a-MCDF b-RPTMP c1-QED PT c2-QED PT

2p3/23s1/2 4.5 C 12 6.2 C 12 4.4 C 12 5.5 C 12 4.4 C 12
2p1/23s1/2 3.1 C 12 4.8 C 12 2.8 C 12 3.6 C 12 2.7 C 12
2p3/23d3/2 2.8 C 11 3.9 C 11 2.9 C 11 3.5 C 11 2.8 C 11
2p3/23d5/2 6.1 C 13 8.0 C 13 6.3 C 13 7.5 C 13 6.1 C 13
2p1/23d3/2 8.6 C 13 9.5 C 13 8.7 C 13 9.9 C 13 8.6 C 13
2s1/2 3p1/2 3.9 C 12 – 4.2 C 12 4.7 C 12 4.0 C 12
2s1/2 3p3/2 1.4 C 13 – 1.5 C 13 1.8 C 13 1.4 C 13
2p3/24s1/2 1.1 C 12 – 1.2 C 12 1.5 C 12 1.1 C 12
2p1/24s1/2 2.1 C 12 – 2.5 C 12 2.8 C 12 2.3 C 12
2p3/24d3/2 2.8 C 10 – 7.3 C 10 6.9 C 10 6.3 C 10
2p3/24d5/2 – – 2.8 C 13 2.7 C 13 2.3 C 13
2p1/24d3/2 2.0 C 13 – 2.2 C 13 2.3 C 13 2.0 C 13
2s1/24p1/2 2.5 C 12 – – 2.9 C 12 2.6 C 12
2s1/24p3/2 7.1 C 12 – – 8.9 C 12 8.0 C 12

with the empirical zeroth approximation, and optimization of the one-quasiparticle
wave function bases is not specially fulfilled, though using the empirical information
about corresponding one-quasiparticle atomic ion energies allowed indirectly to
take into account the correlation corrections. In Tables 12.9 and 12.10, we present
the values of probabilities of the transitions between levels of the configurations
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2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ions of the Ni XIX and Br XXVI
(in s�1; total angle moment J D 1): a – the MCDF method, b – relativistic PT with
the empirical zeroth approximation (RPTMP), c1 – REA-PT data (without account
of the correlation corrections), c2 – REA-PT data (with account of the correlation),
and exp. – experimental data [23, 36] (and Refs therein).

Analysis of the presented data shows that the REA-PT method provides a
physically reasonable agreement between theoretical and experimental data. Let us
note that the transition probability values in the different photon propagator gauges
are practically equal. Besides, an account of the interparticle correlation effects is
of a great importance to provide the corresponding spectroscopic accuracy.

12.4 Conclusions

The generalized advanced energy approach to relativistic calculation of the radiative
decay probabilities for multielectron atoms and ions is presented. The approach
is based on the Gell-Mann and Low S-matrix formalism and the relativistic PT
using the optimized one-quasiparticle representation and an accurate accounting of
the relativistic and correlation effects. In relativistic case, the Gell-Mann and Low
formula expresses an energy shift through the electrodynamical scattering matrix
including the interaction with a laser field as the photon vacuum field. The last case
is corresponding to traditional definition of the radiative transition characteristics
of atoms and ions. The results of relativistic calculation of the radiative transition
probabilities, oscillator strengths for a number of neutral atoms, and multicharged
ions are (some part firstly) presented and compared with available experimental and
theoretical data. The role of the exchange-correlation corrections and gauge non-
invariant contributions to the radiation widths and oscillator strengths for different
atoms and ions is discussed.
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Chapter 13
Solving the Schrödinger Equation for
the Hydrogen Molecular Ion in a Magnetic
Field Using the Free-Complement Method

Atsushi Ishikawa, Hiroyuki Nakashima, and Hiroshi Nakatsuji

Abstract The hydrogen molecular ion (H2
C) in a magnetic field is investigated

theoretically using the free-complement (FC) method for solving the Schrödinger
equation. H2

C was placed in magnetic fields of moderate strengths. Our results
were shown to be highly accurate. Total energies, dissociation energies, quadrupole
moments, and electron densities were calculated for parallel and perpendicular
fields. The gauge-origin dependence of the wave function was examined in detail.
It was shown that the results of the FC method are always gauge independent when
the gauge-including function is employed as the initial function. Even when we start
from the gauge-nonincluding functions, the FC method gives the gauge-independent
result in some order, because the FC wave function becomes exact as the order
of the FC calculations increases. We observed that properties such as total energy,
potential energy curve, vibrational level, and electron density distribution became
gauge-origin independent as the order of the FC wave function increased.

13.1 Introduction

The structure and dynamics of atoms and molecules in external magnetic fields have
long attracted great interest. A motivation for such studies lies in their astronomical
importance; extremely strong (1012–1015 G) magnetic fields have been observed in
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astronomy for systems such as neutron stars or magnetars. Recently, an experimental
study showed that certain irregularities in a neutron star spectrum are due to
absorptions by interstellar atoms and molecules [1–6]. The hydrogen molecular ion
(H2

C) is considered an important candidate for such interstellar molecules. Because
such strong magnetic fields are not accessible experimentally on Earth, reliable
theoretical studies play a key role for understanding the properties of atoms and
molecules in strong magnetic fields.

Another motivation for studying H2
C in a magnetic field is related to fundamen-

tal questions: How is the chemical bond affected by the external magnetic field?
What is the appropriate wave function for atoms and molecules in a magnetic field?
The simplest molecule, H2

C, is a good starting point for investigating these issues.
To address these questions, the theory must be accurate enough [7–12]. Ideally,

the Schrödinger equation (SE) should be solved exactly or highly accurately. Under
the Born–Oppenheimer (BO) approximation, the SE of H2

C can be solved exactly
[13–17], but this is not true in the presence of a magnetic field. There is a long
history on this subject, such as variational calculations [18–35] and numerical
techniques such as finite element [36], Monte Carlo [37, 38], and Lagrange-mesh
methods [39, 40].

The functional form of the wave function is a critical factor, and in an extremely
strong magnetic field, the Landau orbital is often used. It is exact for hydrogen-
like atoms in an extremely strong magnetic field where the Coulomb force between
the electron and nuclei is negligibly small in comparison with the Lorentz force
on the electron. The first application of this form was performed by Demelo et al.
[18] and Khersonskij also used this form [27–29]. Despite the simplicity of the
wave function, their results were surprisingly accurate in strong magnetic fields.
This wave function form was extended by Larsen and Kappes and Schmelcher
to the product of a Landau function and the Guillemin–Zener or Hund–Mulliken
functions, respectively [20, 31–34]. With their wave functions, the accuracy is
improved in the weaker magnetic field regime (B< 1010 G), which is important
for chemical interests.

For the efficiency, that is, the accuracy versus the number of functions, the use of
elliptic coordinates is found to be advantageous over Cartesian or polar coordinates.
Wille employed the product of Hylleraas-type and Landau-type functions and
achieved quite accurate energies [30]. Kravchenko and Liberman employed the Jaffé
expansion, which becomes the exact wave function of H2

C without a magnetic
field in the infinite expansion limit. Their results are quite accurate when the
magnetic field is smaller than 1 au (D 2.35 	 109 G); however, they failed to achieve
converged results for stronger magnetic fields [35].

The wave functions discussed above usually assume that the magnetic field is
parallel to the internuclear axis. A wave function form that is accurate for any
direction of the magnetic field is another issue of interest. In this case, the orbital
angular momentum component along the internuclear axis is no longer a good
quantum number: the form of the wave function should be essentially different from
that for the parallel field. This issue has been studied by many researchers, such as
Larsen [20], Wille [30], Khersonskij [27–29], and Kappes and Schmelcher [31–34].
In perpendicular magnetic fields, a gauge-origin dependence of observables arises,
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different from the parallel case where a gauge-origin dependence does not exist
because of the cylindrical symmetry of H2

C. The importance of the gauge form and
the gauge origin was pointed out and extensively studied by Turbiner et al.; they
found that the gauge-origin dependence affects the computational results even at
qualitative levels, and thus proposed to include the gauge-origin parameters in the
wave function form to remedy this [21–26]. The gauge-origin dependence arises
from the inaccuracy of the wave function, because it does not appear when the wave
function is exact. The gauge-origin dependence is, in some sense, a measure of
the inaccuracy of the wave function used. Although elaborate wave functions give
accurate results, it is rather difficult to gain a simple and clear understanding or to
propose new wave functions based on them.

Recently, we have discovered a general method for solving the SE [41–47]. The
free-complement (FC) method [45] is the most popular method. A number of highly
accurate results have been obtained for various atoms and molecules [41–58]. This
was possible because the FC wave functions converge to the exact wave functions
as the accuracy (order) is increased. An important feature is that the complement
functions, which are the elements of the FC wave function, are automatically
produced by applying the Hamiltonian to a simple initial wave function [45].
Therefore, this method can be applied to any system where the analytical form of
the Hamiltonian is known.

In this chapter, we apply the FC method to the H2
C molecule in a magnetic

field. Linear parameters of the FC wave functions are determined by the variational
principle; thus, the present work should be categorized as a variational principle-
based method with analytical form of the wave functions. We will show that a highly
accurate wave function is provided by the FC method under various conditions, such
as parallel or nonparallel magnetic fields. Because all of the information about the
magnetic field is included in the Hamiltonian, we can expect that the appropriate
complement functions are generated by the Hamiltonian even when we start from a
simple initial function. We focus on the form of the complement functions that are
generated by the Hamiltonian. The gauge-origin dependence is also an important
criterion to examine the accuracy of the wave function; it should disappear as the
order of the FC wave function increases, whatever initial wave function is used,
because the FC wave function approaches the exact wave function as the order
increases.

13.2 Method

13.2.1 The Hamiltonian and the Coordinate System

Under the BO approximation, the Hamiltonian of H2
C under the magnetic field is

H D 1

2
Œ�ir C A .r/�2 �

�
1

ra
C 1

rb



C 1

R
; (13.1)
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where we denote the two nuclei as a and b. r corresponds to the position of the
electron, and ra and rb denote the distances between the electron and nuclei a and
b, respectively. R is the internuclear distance. We use atomic units unless otherwise
stated, that is, e D me D „ D 1. For the strength of the magnetic field, 1 au D 2.35
	 109 G. The symmetric gauge, which is useful for systems with a rotational
symmetry, is employed here [25]:

A .r/ D 1

2
.B 	 r/ : (13.2)

In this case, the explicit form of the Hamiltonian is written as

H D �1
2

r2 �
�
1

ra
C 1

rb



C B � l
2

C
h

B2r2 � .B � r/2
i

8
C 1

R
; (13.3)

where l D �i .r 	 r/ is the orbital angular momentum operator. Here, the Zeeman
spin–magnetic field interaction is not included in the energy expression. Parallel and
perpendicular magnetic fields are written in Cartesian coordinates as

B D �

0 0 B
�T

(13.4)

and

B D �

B 0 0
�T
; (13.5)

respectively, where we assume the internuclear axis corresponds to the z-axis.
In our calculation, we used elliptic coordinates throughout:

� D ra C rb

R
; 	 D ra � rb

R
; !; (13.6)

where ! is the rotational angle around the internuclear axis.

13.2.2 The FC Method

In the FC method, the wave function is expressed as a linear combination of the
complement functions that are generated automatically by the Hamiltonian applied
to the initial function. The FC wave function is known to converge to the exact wave
function [41–46]. However, when the original SE was used, diverging functions
were generated because of the singularity in the Coulomb potential. This difficulty,
the singularity difficulty, is overcome by introducing the SSE (scaled Schrödinger
equation):

g .H � E/ D 0; (13.7)
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which is equivalent to the original SE [45]. The function g.r/ > 0 scales the
singularities of the Coulomb potential at the origin (r D 0) to be finite. The choice of
g in actual calculations will be described later. With the SSE, we can formulate the
simplest iterative complement (SIC) method by

 nC1 D Œ1C Cng.H � En/�  n; (13.8)

to solve the SE of atoms and molecules without encountering the singularity prob-
lem. This SIC method has been proved to converge to the exact wave function [45].
However, a faster convergence is obtained by modifying the SIC method. Namely,
we have introduced the FC method by collecting all of the linearly independent
analytical functions from the right-hand side of Eq. (13.8) as fkg.n/; k D 1:::Mn

and giving independent coefficient to each function as

 nC1 D
MnX

kD1
ckk: (13.9)

We call each k a complement function because it is an element of the complete
functions fkg that span the exact wave function. Because of the increased freedom
in going from Eq. (13.8) to (13.9), the FC method converged faster to the exact
wave function than the original SIC method. The variables fckg.n/ are determined
by applying the variational principle to Eq. (13.9). When the integrals are difficult
to calculate, we can make use of the LSE (local Schrödinger equation) method [49].
In the present study, we calculate fckg.n/ by the variational principle because the
integrations involved in the overlap and Hamiltonian matrices are readily performed.
Because the secular equation should be solved to high accuracy, we used the GNU
multiple precision arithmetic library [59] and the symbolic operation program,
MAPLE [60].

13.3 Magnetic Field Parallel to the Internuclear Axis

The initial and the g functions employed for parallel field calculations are as follows:

 0 D exp .�˛�/

g D � 1

V
D R




�2 � 	2
�

4�
; (13.10)

where ˛ is the orbital exponent and is set to half of the internuclear distance R.
This Heitler–London-type initial function was also used in our previous study of
H2

C without a magnetic field [52]. The wave functions generated from this initial
function have the following form:
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 D
X

i

ci�
mi	ni exp .�˛�/; (13.11)

where ci is the variational parameter and mi is a positive or negative integer. ni on 	
is relevant with space symmetry in elliptic coordinates because the functions with
even or odd power of 	 correspond to gerade or ungerade symmetry, respectively.
The ground state (1�g) has gerade symmetry; thus, ni should be zero or a positive
even integer.

Total energies of the H2
C ground state at various strengths of the parallel

magnetic field are summarized in Table 13.1. The equilibrium internuclear distances
(Req) of [22] were used here. Despite the simplicity of the initial function, our
results are impressive for both weak and strong magnetic fields; for B D 109 G, the
calculated energy is accurate to 25 figures, and for B D 1 au, our results are more
accurate than the currently most accurate energy calculated by Baye et al. [40].

The form of the complement function, Eq. (13.11), is the so-called Hylleraas-
type function and has the same form as those of H2

C in the absence of a magnetic
field [13]. However, the dimension, that is, the number of complement functions,
is larger in the presence of a magnetic field than in the field-free case because
the vector potential part in the Hamiltonian contributes also to the complement
function generation. We evaluated the efficiency of these two FC functions by
comparing the energy accuracy with respect to the dimension; in Fig. 13.1,
log�E (�E D Ecalc � Eref) is plotted against the dimensions. We can see the faster
convergence of the FC functions with magnetic field terms. This comparison shows
that the FC method is highly efficient because the Hamiltonian gives appropriate
complement functions in each case.

In our energy calculation, the convergence is faster in weak magnetic fields,
although accurate results are also obtained in strong magnetic fields when the FC
order is increased. We think that the faster convergence in weaker fields is due
to the use of elliptic coordinates and the Heitler–London-type initial function. For
stronger magnetic fields, hyperbolic or cylindrical coordinates are more favorable,
and the Landau orbitals would be a better choice for the initial function. The FC
method has no difficulty in using them, as shown by our study on the hydrogen
atom in an extremely strong magnetic field [56]. Because our main interest in this
chapter lies in weak or moderately strong magnetic fields, we do not pursue these
possibilities. However, we will perform such studies in the near future, because H2

C
under extremely strong magnetic fields is important in astronomical studies.

13.4 Magnetic Field Orthogonal to the Internuclear Axis

For the case of a perpendicular field, we employed the same initial and g functions
(Eq. (13.10)) as in the parallel field case. The calculated energies of H2

C are shown
in Table 13.2. Similar to the parallel field case, the energies are more accurate in
weaker fields than in stronger fields, although accurate results are obtained in strong
fields at a sufficiently high FC order.
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Fig. 13.1 Comparison of the
convergence behavior
between the FC functions
generated by a magnetic field
and the field-free
Hamiltonians (B D 109 G,
R D 1.924 au). The g and
initial functions of Eq.
(13.10) are used for both

Table 13.2 Total energy (in au) for the ground state (1�g) of H2
C in a perpendicular magnetic field.

The gauge origin is placed at the midpoint of the two nuclei. Digits that are the same as higher FC orders
are shown in bold face

Magnetic field
strength

in G 109 2.35 � 109 1010 2.35 � 1010

in au 0.426 1.00 4.26 10.00

Req (au)a 1.875 1.635 1.059 0.772
Order Dimension
0 1 �0.475 518 �0.209 312 4.615 084 26.212 213
1 14 �0.568 376 �0.443 555 0.913 907 3.792 802
2 122 �0.569 154 452 �0.450 623 0.689 428 3.202 806
3 421 �0.569 154 949 854 �0.450 684 161 0.679 745 3.141 846
4 1,016 �0.569 154 952 148 181 �0.450 685 613 141 0.678 475 853 3.119 157
5 2,011 �0.569 154 952 167 822 �0.450 685 655 898 0.678 107 640 3.113 010 837
6 3,510 �0.569 154 952 168 045 �0.450 685 661 585 0.678 045 524 3.111 913 462
Turbiner [22] �0.568 687 �0.449 555 0.681 035 3.115 85
Wille [30] �0.569 172 0.678 060
Larsen [20] �0.449 4 3.164
Baye [40] �0.450 685 662 4 3.111 195 6
aReqs of [22] were used

In the perpendicular case, the rotational symmetry around the internuclear axis
no longer exists. Therefore, the wave function should be a linear combination of
the functions of various magnetic angular momentum quantum numbers (M). The
perpendicular field Hamiltonian takes this into consideration, as can be seen in the
following form of the wave function:

 D
X

i

ci�
mi	ni




�2 � 1
�M
2



1 � 	2�M2 exp .�˛�/ exp .iM!/ ; (13.12)

where mi is a positive or negative integer. ni is zero or an even positive integer
for even M and an odd positive integer for odd M. The expansion in M is
automatically introduced, although the same initial function with a parallel magnetic
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field is employed. The M expansion is introduced because of the B � l =2 and
h

B2r2 � .B � r/2
i

=8 terms in the perpendicular field Hamiltonian; the former

generates the complement functions with M ˙ 1 and the latter generates those with
M ˙ 2, and these are included in the wave function of the next FC order. In parallel
magnetic fields, these terms are written as

Bz � lz
2

D �i Bz

2

@

@!

B2

8

�

x2 C y2
� D B2

8

�
R2

4

�



�2 � 1
� 


1 � 	2
�

:
(13.13)

The B � l=2 term operates on the !-component of the wave function, that is,
exp .�iM!/. This does not lead to a mixture of different M quantum numbers upon
going to the next FC order. On the other hand, in perpendicular magnetic fields,
these terms are

Bx � lx
2

D �i Bx
2

p

.�2�1/ .1�	2/
.�2�	2/

�
exp .i!/� exp .�i!/

2i

� �

�
@

@	
�	 @

@�

�

B2

8




y2�z2
� D B2

8

�
R2

4

�"




�2�1� 
1�	2�
�

exp .i!/� exp .�i!/
2i

� 2

� �2	2
#

:

(13.14)

These terms include the !-component of M ˙ 1 and M ˙ 2; thus, applying
the perpendicular field Hamiltonian leads to a mixture of different Ms for the
wave function of the next FC order. Thus, the dimensions in the perpendicular
case are larger than those in the parallel case; see Tables 13.1 and 13.2. Note that
the M expansion is naturally introduced by the Hamiltonian, and we did not take
any consideration of the initial or g functions. This feature comes from the exact
structure of the FC wave function and shows an important merit of the FC method;
the correct wave function expansion is always achieved, even when we start from a
simple initial function.

13.5 Dissociation Energy and Electron Density
in a Magnetic Field

To see the magnetic field’s effect on the chemical bond of H2
C, the dissociation

energy (Table 13.3), quadrupole moments (Table 13.4), and the electron density
under various strengths of parallel and perpendicular magnetic fields (Fig. 13.2)
were calculated. Our results here are basically in agreement with previous studies
on H2

C in a magnetic field [18, 22, 25, 32]. Here, we briefly summarize our results:
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Fig. 13.2 Contour plots (at y D 0) for the H2
C electron density of the FC wave function

(order D 5). Parallel and perpendicular magnetic fields at equilibrium internuclear distances. The
gauge origin is placed at the midpoint of the two nuclei
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(1) the dissociation energy of H2
C becomes larger with an increase in the magnetic

field strength in both parallel and perpendicular directions, and (2) localization
of electron density in the internuclear region occurs. This effect is much more
significant in the perpendicular magnetic fields than in the parallel fields. Indeed,
the doubly peaked electron density becomes singly peaked at the middle between
the two protons upon going to 10 au from 1010 G fields, and (3) the localization
of electron density is apparent from

˝

x2
˛

,
˝

y2
˛

, and
˝

z2
˛

expectation values and the
quadrupole moment Q


D 1=2



3
˝

z2
˛ � ˝

r2
˛��

. In parallel magnetic fields, that is,
along the z direction,

˝

x2
˛

and
˝

y2
˛

values decrease with the growth of the magnetic
field, while the decrease of

˝

z2
˛

is more moderate than for other directions. This
means that the magnetic field causes the electron density to shrink along the z-axis,
as can be seen in Fig. 13.2. In perpendicular fields,Q steadily approaches zero upon
going to a magnetic field of 1010 G. This means that the electron density becomes
more spherical. In the stronger 10 au magnetic field,

˝

x2
˛

becomes larger than
˝

y2
˛

and
˝

z2
˛

: thus, the electron density is aligned toward the magnetic field direction.

13.6 Gauge-Origin Dependence

In this section, we investigate the gauge-origin dependence of the FC wave function.
We consider only the perpendicular field case, because the gauge-origin dependence
does not arise in the parallel field case. In most previous studies, the gauge origin
was placed at the midpoint of the two nuclei. This is the optimal choice when H2

C is
covalently bonded. For large internuclear distances, however, one of the two nuclei
would be a better choice because the electron will favor one of the two nuclei. We
consider these two choices of gauge origins; thus, the gauge-origin dependence
here means the difference in calculated results between these two gauge origins.
However, our discussion can be generalized to any gauge origin, as will be apparent
from the formalism in this section.

13.6.1 FC Method with Gauge-Including Initial Function

First, we consider the use of the gauge-including initial function for the FC method
to remove the gauge-origin dependence. When the gauge origin is placed on one of
the two nuclei, the Hamiltonian becomes

Hnuc D �1
2

r2C
�
1

ra
C 1

rb



CfB � .l�s 	 p/g
2

C
h

B2.r�s/2�fB � .r�s/g2
i

8
C 1

R
;

(13.15)
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where s D 


sx; sy; sz
�

is the position of the gauge origin, while the Hamiltonian
is Eq. (13.3) when the gauge origin is placed at the midpoint of the two nuclei. We
denote these Hamiltonians asHnuc andHmid , respectively. These two Hamiltonians
can be written in unitary-equivalent form as

Hnuc D exp

�

� i
c
f



Hmid exp

�
i

c
f



f D 1

2
f.B 	 s/ � rg ;

(13.16)

and, consequently, the wave functions of the two gauge origins are related to each
other as

 nuc D exp

�

� i
c
f



 mid : (13.17)

In the current case, Hmid does not include the position of the gauge origin (s)
because it is placed on the coordinate origin. In this sense,  nuc and  mid can
be called the gauge-including and gauge-nonincluding wave functions, respectively
[61]. Operating with Hnuc on this initial function, the order n C 1th FC function is
generated as follows:

 nuc; nC1 D nuc; n C gHnuc nuc; n

D nuc; n C g exp

�

� i
c
f



Hmid exp

�
i

c
f



exp

�

� i
c
f



 mid; n

D nuc; n C g exp

�

� i
c
f



Hmid mid; n

D exp

�

� i
c
f



. mid; n C gHmid mid; n/

D exp

�

� i
c
f



 mid; nC1: (13.18)

Thus, the generated nuc; nC1 is a unitary transformation of mid; nC1. This means
that the FC function is always a gauge-including function if its initial function is
gauge including. Because this can be extended to a general Hamiltonian and initial
functions, one can apply the gauge-including FC wave function to any atomic or
molecular system. We examined perpendicular field calculations with the same
conditions discussed in the previous section, with the use of the gauge-including
initial function. The FC method starting from  mid was applied to the SE with
Hmid , and exactly the same energies as from the SE of Hnuc with  nuc were
obtained. Therefore, the use of the gauge-including function completely removes
the gauge-origin dependence in the H2

C system.
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Table 13.5 Total energy (in au) for the ground state (1�g) of H2
C in a perpendicular magnetic

field for two gauge origins (upper line: the midpoint of two nuclei, lower line: on one nucleus)

Magnetic
field strength

in G 109 2.35 � 109 1010 2.35 � 1010

in au 0.426 1.00 4.26 10.00

Req (au) a) 1.875 1.635 1.059 0.772
Order Dimension
0 1 �0.476 �0.209 4.615 26.212

1 �0.433 �0.291 1.715 9.013
1 14 �0.568 376 �0.443 555 0.914 3.793

18 �0.564 825 �0.397 288 1.026 4.684
2 122 �0.569 154 452 �0.450 623 0.689 3.203

190 �0.569 153 254 �0.450 553 0.707 3.268
3 421 �0.569 154 950 �0.450 684 161 0.679 745 3.142

726 �0.569 154 882 �0.450 681 064 0.688 288 3.157
4 1016 �0.569 154 952 148 �0.450 685 613 0.678 476 3.119

1,828 �0.569 154 952 133 �0.450 685 382 0.679 060 3.128
5 2,011 �0.569 154 952 167 822 �0.450 685 656 0.678 108 3.113 011

3,704 �0.569 154 952 167 463 �0.450 685 639 0.678 254 3.117 205
Turbiner [22] �0.568 687 �0.449 555 0.681 035 3.115 85
Baye [40] �0.450 685 662 4 3.111 195 6
aReqs of [22] were used

13.6.2 FC Method with Gauge-Nonincluding Initial Function

In the previous section the gauge-including initial function was examined. Here,
an important question arises, namely, “what occurs when  mid is used for both
Hnuc and Hmid Hamiltonians?” This means using the gauge-nonincluding initial
function for the Hamiltonians with different gauge origins. In this case, the gauge-
origin dependence definitely arises, but it is expected to become smaller and smaller
and finally disappear with the increase in the FC order. This expectation comes from
the fact that the FC wave function converges to the exact wave function where no
gauge-origin dependence should arise.

To see the gauge-origin dependence of the FC wave function, we performed
perpendicular magnetic field calculations using  mid for both Hmid and Hnuc ; see
Table 13.5 for the energies at different FC orders. The g and initial functions of
Eq. (13.10) were used for both gauge origins. As can be seen from Table 13.5, the
energy dependence on the gauge origin is large at small FC orders; for example,
the energy difference between Hmid and Hnuc is 0.04 au at order D 0, for a 109 G
magnetic field. However, the energy dependence becomes small with increasing FC
order, and it finally decreases to 4.4 	 10–13 au at order D 5. The steady decrease in
the gauge-origin dependence indicates that the FC function converges to the exact
wave function. Note that the convergence of the gauge-origin dependence is rather
slow for stronger magnetic fields such as 10 au or 1010 G. As discussed before, we
think the use of hyperbolic or cylindrical coordinates or Landau-orbital-type initial
functions would decrease the gauge-origin dependence.
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When Hmid in a perpendicular magnetic field is applied to the gauge-
nonincluding initial function (Eq. 13.10), the following wave functions are
generated:

 D
X

i

ci�
mi	ni




�2 � 1
�M
2



1 � 	2�M2 exp .�˛�/ exp .iM!/ ; (13.19)

where mi and ni are positive and negative integers, respectively. A notable
difference withHmid is that odd numbers for ni are allowed for both even and odd M.
In Hnuc , gerade–ungerade symmetry is broken because the gauge origin is placed
at one nucleus. Therefore, we should use symmetry-broken functions to expand
the exact wave function. Such functions with odd ni are generated owing to the s-

dependent part of Hnuc , fB � .l � s 	 p/g =2 and
h

B2.r � s/2 � fB � .r � s/g2
i

=8 ,

which is not included in Hmid , where s D 0. This shows that the FC method
automatically generates the symmetry-broken wave function (Eq. 13.19) even when
we start from the simple initial function given by Eq. (13.10).

The FC wave functions with Hnuc and Hmid cases at order D 0; 1; 2; and 3
are plotted in Fig. 13.3. For Hmid , the ground and excited states correspond to
the gerade and ungerade symmetries, respectively, while Hnuc does not have such
symmetry. Therefore, the ground state wave function of Hmid is exactly symmetric
with respect to the internuclear plane irrespective of the FC orders. On the other
hand, that of Hnuc has a peak at one nucleus where the gauge origin is placed.
However, the wave function becomes symmetric when the FC order is increased.
Essentially the same behavior is observed for the excited state, that is, it has the
“correct” ungerade symmetry at higher FC orders. These results show that the
ground and excited state wave functions “recover” their proper symmetries at higher
n, even when the symmetry of the Hamiltonian is broken by the presence of the
gauge origin.

We also investigated the gauge-origin dependence with various internuclear
distances by comparing the potential energy curves (PECs) of two gauge origins
(109 G perpendicular field); see Fig. 13.4. We employed the Hund–Mulliken-type
function

 0 D exp Œ�˛ .�C 	/�C exp Œ�˛ .� � 	/� (13.20)

as the initial function because this is more appropriate for the dissociation limit than
the initial function of Eq. (13.10). For order D 0, the two PECs are quite different
at large internuclear distances; these PECs show that the gauge origin placed on the
midpoint gives a lower energy around Req, while it gives a much higher energy at
large internuclear distances. However, the PECs with increased FC orders show that
this is an artifact due to the inaccuracies in the wave function; the two PECs become
similar to each other and finally become indistinguishable at order D 3, as shown in
Fig. 13.4.
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Fig. 13.3 Wave function plots along the z-axis of H2
C in a perpendicular magnetic field

(B D 109 G) with two gauge origins (Hmid and Hnuc Hamiltonians). The wave functions are
projected onto the (x, y) D (0, 0) plane
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Fig. 13.4 Potential energy curves of H2
C in a perpendicular magnetic field (B D 109 G) with two

gauge origins (Hmid and Hnuc Hamiltonians)

We also calculated the vibrational energy levels of these PECs by the Fourier grid
discrete variable representation (DVR) method [62]. Differences in energy levels
for v D 0 � 5 and the residual sum of squares from v D 0 to v D 20 are shown in
Table 13.6, where v represents the vibrational quantum number. The PECs of the
perpendicular field with 109 G strength were used. As expected, the differences in
the vibrational energy levels decrease upon increasing the FC order. At order D 2
and 3, the differences are quite small. This indicates that the two PECs from the
different gauge origins become almost identical at large FC order. All of these
behaviors come from the fact that the FC wave function converges to the exact wave
function as the order increases [45].

13.7 Conclusions

In this study, the FC method was applied to the H2
C molecule in a magnetic field to

calculate its highly accurate wave functions. The effects of magnetic fields parallel
and perpendicular to the internuclear axis were examined. The FC method was
extremely efficient in both cases because the complement functions with suitable
forms are automatically generated by the Hamiltonian. The vector potential part
of the Hamiltonian was shown to accelerate the convergence of the FC wave
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Table 13.6 Differences in vibrational energy levels (v D 0–5) and residual sum of squares (v D 0–
20) of two PECs with different gauge origins (perpendicular magnetic field, B D 109 G) at different
FC orders

FC order

v 0 1 2 3

Vibration energy level
difference
(Evib; mid �Evib; nuc)

0 �3.105 � 10�2 �1.071 � 10�2 1.121 � 10�5 8.179 � 10�8

1 �2.798 � 10�2 �1.149 � 10�2 1.231 � 10�5 �2.817 � 10�7

2 �2.338 � 10�2 �1.253 � 10�2 1.859 � 10�5 4.707 � 10�7

3 �1.660 � 10�2 �1.347 � 10�2 3.711 � 10�5 2.854 � 10�7

4 �6.086 � 10�2 �1.380 � 10�2 4.638 � 10�5 1.134 � 10�6

5 8.781 � 10�2 �1.498 � 10�2 7.425 � 10�5 1.944 � 10�6

Residual sum of
squares (v D 0–20)

1.873 � 10�1 4.238 � 10�3 1.875 � 10�5 6.966 � 10�7

function toward the exact wave function. An increase in dissociation energy and the
localization of electronic density in the magnetic field were observed, in agreement
with previous studies of H2

C in a magnetic field. The gauge-origin problem was
also addressed. We have shown that the FC function naturally becomes gauge-
origin independent when we use a gauge-including initial function. Further, we
have shown that even when we start from a gauge-nonincluding initial function,
the gauge-origin dependence steadily decreases upon increasing the FC order and
disappears essentially in higher order. This comes from the correct structure of the
FC wave function in a magnetic field, that is, the correct complement functions are
generated by the Hamiltonian including the magnetic field. Actually, a recovery of
the “correct” symmetry was observed by increasing the FC order. Not only at a fixed
geometry, the potential energy curves were also investigated using different gauge
origins. All of these results indicate that the wave functions generated by the FC
method properly converge to the exact wave functions, not only in a general sense,
but also from the gauge-origin dependence point of view.
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Chapter 14
Description of Core-Ionized and Core-Excited
States by Density Functional Theory
and Time-Dependent Density Functional Theory

Yutaka Imamura and Hiromi Nakai

Abstract This chapter discusses descriptions of core-ionized and core-excited
states by density functional theory (DFT) and by time-dependent density functional
theory (TDDFT). The core orbitals are analyzed by evaluating core-excitation
energies computed by DFT and TDDFT; their orbital energies are found to contain
significantly larger self-interaction errors in comparison with those of valence or-
bitals. The analysis justifies the inclusion of Hartree-Fock exchange (HFx), capable
of reducing self-interactions, and motivates construction of hybrid functional with
appropriate HFx portions for core and valence orbitals. The determination of the
HFx portions based on a first-principle approach is also explored and numerically
assessed.

14.1 Introduction

Kohn-Sham density functional theory (KS-DFT) [1–4] has been established as
a computational tool for estimating physical properties of ground states such as
standard enthalpies of formation, because of the cost-effective performance. The
establishment of KS-DFT was achieved by development of exchange-correlation
(XC) functionals such as the local density approximation (LDA) [5, 6], generalized
gradient approximation (GGA) [7–9], meta-GGA [10], global hybrid [11–13], and
long-range corrected (LC) and short-range corrected hybrid [14–18] functionals.
Although long-standing KS-DFT deficiencies such as the lack of van der Waals
interaction in XC functionals were pointed out in 2000s, the recipes for overcoming
the deficiencies have been proposed [19–23] and largely removed those deficiencies.
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In addition to the descriptions of ground states, excited states have been also
computed by time-dependent density functional theory (TDDFT) [24–28]. Valence-
excitation energies are accurately estimated without exhibiting a tendency of
overestimation, which is typically confirmed for configuration interaction singles
(CIS) calculations [28]. TDDFT has been plagued by the underestimation of the
charge-transfer (CT) and Rydberg excitation energies owing to the lack of the long-
range Coulomb interaction [29, 30]. The recently proposed and widely accepted
LC functional [15] alleviates the obstacle and is a powerful tool for practical
applications.

Although DFT and TDDFT have been utilized for describing valence orbitals in
the ground and excited states, description of core orbitals still needs to be theoreti-
cally and numerically investigated because of the peculiar localized distributions of
core electrons. Core electrons provide important information regarding molecular
structure and dynamics through X-ray photoabsorption and electron energy loss
spectra. Numerous theoretical attempts to describe core orbitals [31–62] have been
proposed. Green function [31–33] and wave function [34–36] approaches including
recent studies by the symmetry adapted cluster configuration interaction (SAC-
CI) [34] and multiconfigurational self-consistent-field multireference perturbation
theory (MCSCF-MRPT) [35] have been reported. However, this chapter focuses on
DFT-based approaches. See a good review on this matter [37] in more details if you
are interested.

In DFT, transition potential [38–42] and �self-consistent field (�SCF) [42–44]
have been major methodologies for describing core orbitals. They offer relatively
accurate descriptions for core orbitals, but their applicabilities are limited by
symmetries because the desired state cannot be necessarily produced by specifying
occupation numbers. TDDFT with the van Leeuwen-Baerends 94 (LB94) functional
[45, 57, 58] was reported. However, more extensive studies on core orbitals by DFT
and TDDFT have been demanded, and a great number of other developments in the
framework of DFT and TDDFT have progressed [46–62].

This chapter describes our several attempts [46–56] to accurately describe
core orbitals in the DFT approach. Section 14.2 analyzes CO core orbitals for
core-excitation energies in terms of self-interaction. Section 14.3 explains the
core-valence Becke-three-Lee-Yang-Parr (CV-B3LYP) functional [50–52] includ-
ing Hartree-Fock exchange (HFx) portions designed to reproduce valence as well as
core-excitation energies. Section 14.4 reviews orbital-specific (OS) functionals [53–
56] that are considered as an extension of CV-B3LYP. Finally, general conclusions
are addressed.

14.2 Analysis of Core Orbitals

Description of core orbitals is investigated by estimating core-excitation energies
of carbon monoxide, computed by the self-interaction corrected (SIC)-�SCF and
SIC-TDDFT methods. First, the formulations of SIC-�SCF and SIC-TDDFT are
briefly introduced, and subsequently numerical analysis is demonstrated.
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14.2.1 Theoretical Aspects

14.2.1.1 SIC-�SCF

The excitation energy by the �SCF method is given as follows:

!�SCF .i� ! a� / D EES



‰a�
i�

� � EGS .‰0/ : (14.1)

The spatial orbital indices fi; j; : : :g, fa; b; : : :g, and fp; q; : : :g are used for the
occupied, unoccupied, and general orbitals, respectively. � and � denote spins.
EGS . 0/ is the ground-state energy, and EES




 a�i�
�

is the i� ! a� excited-state
energy, which is calculated self-consistently in the spin-unrestricted formalism with
the constraint that the occupation numbers of orbitals i� and a� are 0 and 1,
respectively. In the�SCF method, the difference of total energies plays an essential
role in determining excitation energies.

The Perdew-Zunger or one-electron self-interaction error in the�SCF method is
written as [63]

ESIE D
X

i;�

Exc Œ�i� ; 0�C J Œ�i� �; (14.2)

whereExc and J represent an XC functional and Coulomb interaction, respectively.
When the exact XC functional, that is, self-interaction-free (SIF) functional, is used,
the following relation automatically holds:

ESIE D 0: (14.3)

The SIC total energy is simply defined as

ESIC D E �ESIE: (14.4)

The SIC excitation energy by the �SCF method is estimated as

!SIC��SCF .i� ! a�/ D ESIC
ES




‰a�
i�

� � ESIC
GS .‰0/ ; (14.5)

where ESIC
GS . 0/ and ESIC

ES




 a�i�
�

are the SIC total energies of the ground and i� !
a� excited states, respectively. In the study all Perdew-Zunger SIEs are estimated in
a post-SCF manner.

14.2.1.2 SIC-TDDFT

The excitation energies ! for TDDFT are computed by solving the following non-
Hermitian eigenvalue equation [25–28]:

�

A B

B� A�
��

X

Y

�

D !TDDFT

�

1 0

0 �1
��

X

Y

�

: (14.6)
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The matrix elements in Eq. (14.6) are given by

Aai�;bj� D ıij ıabı�� ."a� � "i� /C .a� i� jj�b� /� cHFı�� .a�b� jj� i� /
C cDFT .a� i� jw�� jj�b� / (14.7)

and

Bai�;bj� D .a� i� jb�j� / � cHFı�� .a�j� jb� i� /C cDFT .a� i� jw�� jb�j� / ; (14.8)

where cHF and cDFT represent portions of HFx and DFT XC functional, respectively.
The wterm is given by

.p�q� jw�� jr�s� / D
Z

drdr0�
p� .r/ q� .r/

ı2Exc

ı�� .r/ ı�� .r0/
�
r�




r0� s�



r0� ;

(14.9)

where  represents a KS orbital. In this method, the difference of orbital energies is
the key for estimating excitation energies.

The Perdew-Zunger SIE for an occupied orbital energy can be defined in a way
similar to Ref. [63]:

"SIE
i� D J Œ�i� �C .i� jVxc Œ�i� � ji� / ; (14.10)

where Vxc represents the XC potential. If the exact XC functional is used, "SIE
i� D

0 for each occupied orbital. Here, the SIC occupied orbital energy is defined as
follows:

"SIC
i� D "i� � "SIE

i� : (14.11)

For unoccupied orbitals, the SIE should be defined in a different fashion; once an
electron excites from the occupied orbital i to the unoccupied orbital a, the SIE can
be defined as follows:

"SIE
a� .i ! a/ D cHFJia� CKia� C cDFT .i�a� jwxcji�a� / : (14.12)

In time-dependent Hartree-Fock (TDHF) and TDDFT calculations, the self-
interactions for unoccupied orbitals are automatically corrected. Here, in order to
remove the SIEs of occupied orbitals, the following modified A matrix is adopted
to estimate SIC core-excitation energies:

ASIC
ai�;bj� D ıij ıabı��




"a� � "SIC
i�

�C .a� i� jj�b� / � cHFı�� .a�b� jj� i� /
C cDFT .a� i� jw�� jj�b� / : (14.13)
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The combination of Eq. (14.8) with Eq. (14.13) leads to SIC core-excitation
energies. In this study, all Perdew-Zunger SIEs are estimated in a post-SCF manner.

14.2.2 Analysis on Self-Interaction of Core Electrons

In this chapter, the Perdew-Zunger SIEs of the CO molecule were calculated in the
KS-DFT scheme with Becke-Lee-Yang-Parr (BLYP) [7, 8], B3LYP [11, 12], and
Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) [64] functionals. Since the LYP
functional is SIF, the SIEs of BLYP and BHHLYP come from an approximate
exchange functional: Becke88 (B88) [7]. The correlation part of B3LYP consists of
LYP (nonlocal part) [8] and Vosko-Wilk-Nusair (VWN) (local part) [6], which is not
SIF. The main contribution of SIEs is still from the B88 exchange functional because
the magnitude of the correlation part of B3LYP is relatively small. The cc-pCVTZ
basis set [65, 66] combined with the Dunning-Hay basis functions [67] was adopted.
6d and 10f basis functions were used. Since SIEs cannot be invariant under unitary
transformations, degenerate orbitals of 2p  and 2p * are designed to be fixed on
the x- and y-axes where the z-axis is the CO-bonding direction. The coordinates of
CO molecule were optimized at the B3LYP/cc-pVTZ [65] level. Calculations were
carried out in the Gaussian 03 suite of programs [68].

14.2.2.1 Comparison Between �SCF and SIC-�SCF

The SIEs for total energies given in Eq. (14.3) are examined, which play the key role
in the�SCF method. Table 14.1 lists SIEs of total and respective orbitals for the CO
ground and excited states such as C1s ! *, C1s ! 3s, O1s ! *, and O1s ! 3s
states, respectively. The total SIEs are negative for the ground and excited states. For
the ground state, the SIEs for BLYP, B3LYP, and BHHLYP are �14.89, –11.30, and
�7.24 eV, respectively. For the excited states, the SIEs have slightly larger negative
values. The C and O 1s ! * SIEs tend to be slightly larger than those of C and O
1s ! 3s excitations. The total SIEs increase for not only the ground state but also
excited states according to the order of functional: BHHLYP, B3LYP, and BLYP,
which is consistent with the HFx portions. This behavior can be explained by the
exact cancellation between HFx and Coulomb interaction.

Next, the SIEs to core and valence orbitals are examined. The sign of SIEs
depends on orbital type, namely, they are positive for core orbitals and negative for
valence orbitals. Error cancellation occurs if core and valence orbitals are occupied.
However, if an electron excites from a core orbital to an unoccupied orbital, SIEs
may increase by reduction of error cancellation. As shown in Table 14.1, the total
SIEs of the excited states have larger negative values than that of the ground
state. For example, the total SIEs of BLYP is �14.89 eV for the ground state and
�17.80 eV for the C1s ! 2p * state.

Table 14.2 summarizes CO core-excitation energies calculated by the �SCF and
SIC-�SCF methods using HF and KS-DFT with BLYP, B3LYP, and BHHLYP.
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Table 14.1 SIEs of �SCF calculations for the CO molecule at DFT/cc-
pCVTZ with the Dunning-Hay basis functions in eV

Functional State Core (C) Core (O) Valencea Total

BLYP Ground state 0.76 0.48 �16:14 �14:89
C1s ! 2p * 0.50 0.48 �18:78 �17:80
C1s ! 3s 0.50 0.49 �17:79 �16:80
O1s ! 2p * 0.76 0.37 �20:51 �19:38
O1s ! 3s 0.76 0.37 �19:15 �18:03

B3LYP Ground state 1.30 0.77 �13:38 �11:30
C1s ! 2p * 0.77 0.77 �15:44 �13:90
C1s ! 3s 0.77 0.78 �14:69 �13:15
O1s ! 2p * 1.30 0.51 �16:92 �15:11
O1s ! 3s 1.31 0.51 �15:88 �14:06

BHHLYP Ground state 0.40 0.27 �7:91 �7:24
C1s ! 2p * 0.26 0.27 �9:23 �8:70
C1s ! 3s 0.26 0.27 �8:74 �8:22
O1s ! 2p * 0.40 0.19 �10:20 �9:60
O1s ! 3s 0.40 0.19 �9:48 �8:88

aFor Rydberg excitations, SIEs of valence and Rydberg orbitals are
evaluated

Table 14.2 CO core-excitation energies by �SCF using DFT/cc-pCVTZ with the Dunning-Hay
basis functions in eV

BLYP B3LYP BHHLYP

Transition �SCF SIC-�SCF �SCF SIC-�SCF �SCF SIC-�SCF HF Expt.

C1s ! 2p * 286.36 290:85 286:47 290:27 287:02 289:39 287:14 287.4a

(�1.04) .3:45/ .�0:93/ .2:87/ .�0:38/ .1:99/ .�0:26/
C1s ! 3s 292.26 295:39 292:62 295:38 293:46 295:10 293:90 292.37b

(�0.11) .3:02/ .0:25/ .3:01/ .1:09/ .2:73/ .1:53/

O1s ! 2p * 533.55 536:45 533:33 535:92 533:66 535:12 533:14 534.2a

(�0.65) .2:25/ .�0:87/ .1:72/ .�0:54/ .0:92/ .�1:06/
O1s ! 3s 538.34 540:25 538:29 540:14 538:77 539:74 538:94 538.8c

(�0.46) .1:45/ .�0:51/ .1:34/ .�0:03/ .0:94/ .0:14/

aRef. [40]
bRef. [69]
cRef. [70]

The deviations from experimental values are shown in parentheses. Core-excitation
energies of the �SCF and SIC-�SCF methods do not differ greatly in spite
of the large SIEs in Table 14.1. The reason is that SIE cancellation occurs
between SIEs of the ground and excited states. The�SCF and SIC-�SCF methods
provide considerably smaller deviations than TDHF because they are capable of
incorporating orbital relaxation [46], which is considered one of the main sources of
errors in TDHF calculations. For core ! Rydberg and core ! valence excitations,
the�SCF method with KS-DFT tends to slightly underestimate excitation energies,
while the SIC-�SCF method with KS-DFT overestimates. The deviations of the
�SCF method are smaller than those of the SIC-�SCF method, which is supposed
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to yield accurate excitation energies because it satisfies the physical condition: no
self-interaction. However, this is not the case. The B88 exchange functional was
constructed on the assumption that total energy of the B88 exchange has the SIE.
Thus, if the SIE is removed from the total energies, the balance may be lost in the
�SCF calculations.

As is widely known, KS-DFT succeeds in reproducing standard enthalpies of
formation of the small G2 set within 3–7 kcal/mol with commonly used functionals
[71]. Since the �SCF method estimates excitation energies from total energies of
two different states, the accuracy for the core-excitation energies is predictable.

14.2.2.2 Comparison Between TDDFT and SIC-TDDFT

The SIEs are examined for orbital energies, which play the key role in TDDFT.
Table 14.3 shows the SIEs of CO occupied orbital energies for BLYP, B3LYP,
and BHHLYP. The HF result is omitted because HF occupied orbitals are SIF. All
SIEs are positive for all functionals. In particular, the SIEs of BLYP are 47.55 and
35.06 eV for C and O 1s orbitals, respectively. As HFx portions increase, SIEs
decrease: BHHLYP and B3LYP give approximately 0.5 and 0.8 times the values of
the BLYP SIEs for O 1s and C 1s orbitals, respectively. Compared with those of
core orbitals, the SIEs of valence orbitals are significantly smaller: the SIEs of 2p 
and 2p¢ are 3.33 and 4.40 eV for BLYP. B3LYP does not give approximately 0.8
times the value of BLYP SIEs for 2p  and 2p¢ .

Table 14.4 shows SIEs for CO unoccupied orbital energies. These SIEs defined in
Eq. (14.12) are calculated by TDHF and TDDFT with BLYP, B3LYP, and BHHLYP.
TDDFT with BLYP gives small SIEs for all cases, while SIEs decrease as HFx
portion decreases. For example, the SIEs for C1s ! 2p * are 6.76, 5.37, 3.13, and

Table 14.3 SIEs of orbital energies for the CO molecule at
DFT/cc-pVTZ with the Dunning-Hay basis functions in eV

BLYP B3LYP BHHLYP

O1s 47.55 36.50 23.84
C1s 35.06 26.55 17.60
2s¢ 7.63 5.01 3.81
2s¢* 5.10 3.10 2.60
2p  3.33 1.68 1.67
2p¢ 4.40 2.65 2.31

Table 14.4 SIEs of unoccupied orbital energies for the CO molecule at
DFT/cc-pCVTZ with the Dunning-Hay basis functions in eV

Virtual orbital Transition BLYP B3LYP BHHLYP TDHF

2p * O1s ! 2p * �0.06 2.83 5.07 6.92
C1s ! 2p * �0.03 3.13 5.37 6.76

3s O1s ! 3s �0.02 0.93 2.14 9.46
C1s ! 3s �0.02 0.89 2.07 10.95
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Table 14.5 Core-excitation energies calculated by TDDFT and SIC-TDDFT with cc-pCVTZ with
the Dunning-Hay basis functions in eV

BLYP B3LYP BHHLYP

Transition TDDFT SIC-TDDFT TDDFT SIC-TDDFT TDDFT SIC-TDDFT TDHF Expt.

C1s ! 2p * 271.29 306.35 276.17 302.71 283.55 301.14 294.39 287.4a

(�16.11) (18.95) (�11.23) (15.31) (�3.85) (13.74) (6.99)
C1s ! 3s 272.76 307.81 279.40 305.94 289.40 307.00 304.68 534.2a

(�19.61) (15.44) (�12.97) (13.57) (�2.97) (14.63) (12.31)
O1s ! 2p * 512.29 559.84 519.82 556.32 531.65 555.49 550.10 292.37b

(�21.91) (25.64) (�14.38) (22.12) (�2.55) (21.29) (15.90)
O1s ! 3s 513.78 561.32 522.70 559.20 536.39 560.22 557.82 538.8c

(�25.02) (22.52) (�16.10) (20.40) (�2.41) (21.42) (19.02)
aRef. [40]
bRef. [69]
cRef. [70]

�0.03 eV for TDHF and TDDFT with the BHHLYP, B3LYP, and BLYP functionals,
respectively. Similarly, the SIEs for C1s ! 3s are 10.95, 2.07, 0.89, and �0.02 eV,
respectively. This trend is the opposite of occupied orbitals.

Table 14.5 lists CO core-excitation energies calculated by TDHF, TDDFT,
and SIC-TDDFT with BLYP, B3LYP, and BHHLYP. !SIC�TDDFT represents the
excitation energies obtained by diagonalizing the non-Hermitian matrix composed
of Eqs. (14.8) and (14.13). The deviations from experimental values are shown
in parentheses. TDDFT and SIC-TDDFT with BLYP, B3LYP, and BHHLYP for
core ! Rydberg and core ! valence show different behaviors: underestimation and
overestimation for TDDFT and SIC-TDDFT, respectively. These results indicate
that elimination of SIEs reverses the trend of the underestimation. !TDDFT is
strongly dependent on the XC functionals; for example, the TDDFT deviations for
BLYP, B3LYP, and BHHLYP are �16.11, –11.23, and �3.85 eV for C1s ! 2p *,
respectively. On the other hand,!SIC�TDDFT is less dependent on them; for example,
the SIC-TDDFT deviations for BLYP, B3LYP, and BHHLYP are 18.95, 15.31,
and 13.74 eV, respectively. The core excitations from the O 1s orbital yield larger
deviations than those from the C 1s orbital for SIC-TDDFT and TDHF, while hybrid
TDDFT with a 50 % exchange, BHHLYP, provides core-excitation energies with
a similar accuracy. These results indicate that SIC-TDDFT fails to yield accurate
core-excitation energies and rather increases deviations despite no self-interaction.

14.2.3 Discussion

KS-DFT using self-interaction-contained XC functionals does not retain a relation
between the total and orbital energies:

E D
X

i�

"i� � 1

2

X

i�;j�

< i�j� jji�j� >; (14.14)
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which is satisfied for HF because Koopmans’ theorem holds for HF but does not
hold for DFT with self-interaction-contained XC functionals. Thus, the total energy
and orbital energies are not directly correlated for self-interaction-contained XC
functionals, which brings us to the fact that the Perdew-Zunger SIEs in orbital
energies greatly differ from those in total energies as shown in the previous section.

Let us examine in greater detail how the SIEs of orbital energies and total
energies differ for the Slater-Dirac exchange [5], with which the B88 exchange
functional becomes equivalent for the homogeneous electron gas. A similar analysis
has been performed previously [63]. The Slater-Dirac exchange is given by

ESlater
x D �

X

�

Z

CX�
4=3
� dr; (14.15)

where CX D .3 =4/ 3
p

6 =� . The self-interaction of the exchange interaction in
occupied orbital energies is given by

"SI
i�




ESlater
x

� D
�

i� j ıE
Slater
x

ı�
Œ�i� �j i�

�

D
X

�

�4
3
CX�

4=3
i� : (14.16)

The self-interaction of the Coulomb interaction in orbital energies is given by

"SI
i� .ECoulomb/ D .i� i� ji� i�/: (14.17)

Suppose that the following relation is satisfied:

ESlater
x Œ�i� � D �

Z

CX�
4=3
i� dr � EHF

x Œ�i� � D 1

2
.i� i� ji� i�/ : (14.18)

The assumption is justified by the fact that the Slater-Dirac exchange functional
can reproduce approximately 90 % of the HFx [3]. The condition for being SIF is

"SI
i�




ESlater
x

� D "SI
i� .ECoulomb/ : (14.19)

For the Slater-Dirac exchange, the next relation is instead obtained using
Eq. (14.18):

"SI
i�




ESlater
x

� D 2

3
"SI
i� .ECoulomb/ : (14.20)

Therefore, the self-interaction of HFx is approximately underestimated by a
factor of 2/3. The underestimation of HFx leads to larger SIEs in orbital energies
than those in total energies.
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14.2.4 Brief Summary

We applied the SIC-�SCF and SIC-TDDFT methods to CO core excitations. The
SIC-�SCF and SIC-TDDFT methods are supposed to provide more accurate core-
excitation energies than those of the �SCF and TDDFT methods because of the
absence of self-interaction. However, the SIC-TDDFT severely overestimates core-
excitation energies, while the SIC-�SCF method slightly overestimates. These
behaviors originate in the fact that the error cancellation occurs for the �SCF
method but does not occur for TDDFT. The present analysis suggests that the
reduction of self-interaction is important for the TDDFT calculations. Based
on the analysis, we have developed a new XC functional, CV-B3LYP with the
appropriate inclusion of HFx, which reduces self-interaction [50–52].

14.3 Development of Core-Valence B3LYP for Second-Row
Elements

The theoretical analysis [47] on core orbitals given in the previous section and
numerical assessment [46] on widely used DFT functionals motivated us to develop
CV-B3LYP, which is designed to select appropriate HFx portions for core and
valence orbitals. First, the theory for CV-B3LYP is introduced, and its numerical
assessment is subsequently demonstrated.

14.3.1 Theory for Core-Valence B3LYP Functional

14.3.1.1 Energy Expression of Core-Valence B3LYP

The appropriate portion of HFx for core excitations is different from that for valence
excitations [46]: BHHLYP including 50 % portions of HFx is appropriate for the
descriptions of core excitations, while B3LYP with 20 % portions of HFx is well
known to show better performance for valence excitations as well as other valence
properties than BHHLYP. Therefore, the newly developed CV-B3LYP functional is
designed to use appropriate portions of HFx for core and valence regions separately.
In CV-B3LYP, the electronic energy is decomposed into core-core (cc), core-valence
(cv), and valence-valence (vv) interactions, and the portions of HFx in the cc, cv,
and vv interactions are determined, respectively. Thus, while the XC energy Exc of
B3LYP or BHHLYP is written by

Exc D a
X

ij


�Kij

�C bESlater
x C cEB88

x C dEVWN5
c C eELYP

c ; (14.21)
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Table 14.6 Coefficients of XC functionals in the BHHLYP, B3LYP, and CV-B3LYP func-
tionals

CV-B3LYP

TDHF BHHLYP B3LYP BLYP cc cv vv

a (HFx) 1 0.5 0.2 0 0.5 0.35 0.2
b (Slater-Dirac exchange) 0 0 0.08 0 0 0.04 0.08
c (B88 exchange) 0 0.5 0.72 1 0.5 0.61 0.72
d (VWN5 correlation) 0 0 0.19 0 0 0.095 0.81
e (LYP correlation) 0 1 0.81 1 1 0.905 0.19

Coefficients in CV-B3LYP are given for each index

that of CV-B3LYP is given as

Exc D acc

cX

kl

.�Kkl/Cacv

cX

k

vX

m

.�Kkm/Cacv

vX

m

cX

k

.�Kmk/Cavv

vX

mn

.�Kmn/

C bccE
Slater
x Œ�c�Cbcv




ESlater
x Œ���ESlater

x Œ�c��ESlater
x Œ�v�

�CbvvE
Slater
x Œ�v�

C cccE
B88
x Œ�c�C ccv




EB88
x Œ�� � EB88

x Œ�c� �EB88
x Œ�v�

�C cvvE
B88
x Œ�v�

C dccE
VWN
c Œ�c�Cdcv




EVWN
c Œ���EVWN

c Œ�c��EVWN
c Œ�v�

�C dvvE
VWN
c Œ�v�

C eccE
LYP
c Œ�c�C ecv




ELYP
c Œ�� � ELYP

c Œ�c� �ELYP
c Œ�v�

�C evvE
LYP
c Œ�v� :

(14.22)

where the a, b, c, d, and e are the coefficients of HFx, Slater-Dirac exchange, B88
exchange, VWN5 correlation, and LYP correlation functionals, respectively. The
subscripts i and j for occupied orbitals, a and b for virtual orbitals, and p, q, r, and
s for general orbitals are used; occupied orbitals are classified into core orbitals k
and l, and valence orbitals as m and n. The appropriate portions of HFx can be used
by determining acc, acv, and avv adequately. The practical values of the coefficients
used in this study are shown in Table 14.6. �, �c, and �v are the total, core, and
valence electron densities:

� D
occX

i

ji j2; �c D
cX

k

jkj2; �v D
vX

m

jmj2: (14.23)

For the exchange and correlation functionals, the contributions of �c and �v

correspond to the cc and vv interactions. Since cv elements of the density are zero,
the cv interaction is represented as the subtraction of Exc[�c] and Exc[�v] from
Exc[�].
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14.3.1.2 Kohn-Sham Equation for Core-Valence B3LYP

In CV-B3LYP, electronic energy is decomposed into cc, cv, and vv interactions:

E D 2

cX

k

Hk C 2

vX

m

Hm C
cX

k>l

2Jkl C
cX

k

vX

m

2Jkm C
vX

m

cX

k

2JmkC
vX

m>n

2Jmn

C acc

cX

kl

.�Kkl/Cacv

cX

k

vX

m

.�Kkm/Cacv

vX

m

cX

k

.�Kmk/Cavv

vX

mn

.�Kmn/

C b0
ccExc Œ�c�C b0

cv .Exc Œ�� � Exc Œ�c� �Exc Œ�v�/C b0
vvExc Œ�v� ;

(14.24)

where the exchange and correlation functionals Ex and Ec are collected as Exc with
the coefficient b0. The coefficients in the XC energies depend on the combinations
of the orbitals. We define the Coulomb operators Jc and Jv associated with the core
and valence orbitals, respectively, the total Coulomb operator Jtot, HFx operators Kc

and Kv, and the first derivatives of Exc[�], Exc[�c], and Exc[�v] by

Jc D
cX

k

Jk; Jv D
vX

m

Jm; Jtot D
occX

i

Ji D Jc C Jv;

Kc D
cX

k

Kk; Kv D
vX

m

Km;

Vxc Œ�� D ıExc Œ��

ı�
; Vxc Œ�c� D ıExc Œ�c�

ı�c
; Vxc Œ�v� D ıExc Œ�v�

ı�v
:

(14.25)

By applying the variational principle to Eq. (14.4), two Fock operators are
obtained:

Fc D hC 2Jtot � .accKc C acvKv/C 


b0
cc � b0

cv
�

Vxc Œ�c�C b0
cvVxc Œ�� ; (14.26)

Fv D hC 2Jtot � .acvKc C avvKv/C 


b0
vv � b0

cv
�

Vxc Œ�v�C b0
cvVxc Œ�� : (14.27)

To combine these two Fock operators, we use the coupling-operator technique of
Roothaan [72–74]. Since the invariance under the unitary transformation between
core and valence orbitals is not guaranteed, Euler equations have the form

Fck D k"kk C
vX

m

m
mk; (14.28)

Fvm D m"mm C
cX

k

k
km: (14.29)
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To satisfy the Hermiticity of " matrix, the following condition should be
imposed:

"km D hkjFc jmi D hmjFv jki D "mk: (14.30)

This condition leads to the coupling operators:
"

Fc �
vX

m

jmi hmj ‚c/

#

jki D
cX

l

jli hl jFc jki; (14.31)

"

Fv �
cX

k

jki hkj ‚v/

#

jmi D
vX

n

jni hnjFv jmi; (14.32)

where‚c and‚v are defined as

‚c D .1 � �/Fc C �Fv; (14.33)

‚v D 	Fc C .1 � 	/Fv: (14.34)

Here, � and 	 are arbitrary nonzero numbers. To ensure the Hermiticity of the
left-hand sides of Eqs. (14.31) and (14.32), we define Rc and Rv as

Rc D �
vX

m

fjmi hmj ‚c/C .‚c jmi hmj g; (14.35)

Rv D �
cX

k

fjki hkj ‚v/C .‚v jki hkj g; (14.36)

and obtain the following equations:

.Fc CRc/ jki D
cX

l

jli
lk D jki "0
k; (14.37)

.Fv CRv/ jmi D
vX

n

jni
nm D jmi "0
m: (14.38)

The above-mentioned technique corresponds to the Roothaan double-Fock oper-
ator method. In the present study, � and	 are set to 0.5 and �0.5, which simplify the
operators in the left-hand side of Eqs. (14.37) and (14.38) to 0.5(Fc � Fv) for core-
valence elements. In this case, the one-electron operator and Coulomb operator in
Fc and Fv are canceled out and only exchange terms remain. The virtual-virtual
elements of the Fock matrices are arbitrary when we use the double-Fock operator
method. The present study adopted Fv as the virtual-virtual Fock matrix so that the
virtual orbitals of CV-B3LYP are close to those of B3LYP.
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14.3.2 Assessment of the Core-Valence B3LYP Functional

The CV-B3LYP functional was implemented into the GAMESS program [75].
When solving the KS equations, we determined the coefficients in Eq. (14.22) as
listed in Table 14.6. The coefficients of cc and vv are set to those of BHHLYP
and B3LYP, respectively. The coefficients of cv interactions are set to the mean
values of those of BHHLYP and B3LYP. The standard enthalpies of formation for
the G2-1 set were calculated by the procedure mentioned in Ref. [76] with the use
of the cc-pVTZ basis sets of Dunning. In the subsequent TDDFT calculations, we
approximately used the matrix form of B3LYP with CV-B3LYP orbital energies and
orbital coefficients instead of implementing the TDDFT equations with CV-B3LYP,
which are rigorously formulated above. It means that acc, acv, avc, and avv are equal
to a of B3LYP, and b0

cc, b0
cv, b0

vc, and b0
vv are equal to b0 of B3LYP. The basis sets

used for the calculations of the excitation energies were the cc-pCVTZ basis set of
Dunning. All molecular structures are optimized at B3LYP/6-31G(2df,p) [77] level
for the calculation of standard enthalpies of formation and at B3LYP/cc-pVTZ level
for those of excitation energies.

14.3.2.1 Orbital Energies and Standard Enthalpies of Formation

DFT calculations for the ground state were performed with BHHLYP, CV-B3LYP,
and B3LYP. The calculated orbital energies of N2 molecule are summarized in
Table 14.7. The differences from experimental IPs with minus signs are shown
in parentheses. For CV-B3LYP, KS equations proposed above were solved. In
Table 14.7, two core- and four valence-occupied orbital energies are listed. The
calculated core-orbital energies of CV-B3LYP are closer to those of BHHLYP than
to those of B3LYP. The core-orbital energies of CV-B3LYP and BHHLYP are about
13 eV lower than those of B3LYP. In contrast, the valence-orbital energies of CV-
B3LYP are closer to those of B3LYP than to those of BHHLYP. The valence-orbital
energies of CV-B3LYP and B3LYP are 2–4 eV higher than those of BHHLYP. Thus,
it is confirmed that the orbital energies of CV-B3LYP behave according to the design
of the functional.

Table 14.7 Orbital energies of the N2 molecule using BHHLYP, CV-B3LYP, and
B3LYP functionals with cc-pCVTZ in eV

Orbital BHHLYP CV-B3LYP B3LYP Expt. -IP

1s¢ �405:70 (4.20) �405:05 (4.85) �392:31 (17.59) �409:9a

1s¢* �405:62 (4.28) �404:98 (4.92) �392:26 (17.64) .�409:9/
2s¢ �34:58 (�) �30:83 (�) �30:75 (�)
2s¢* �17:60 (1.15) �15:11 (3.64) �15:03 (3.72) �18:75b

2p * �14:57 (2.36) �12:75 (4.18) �12:78 (4.15) �16:93b

2p¢ �14:11 (1.47) �11:79 (3.79) �11:78 (3.80) �15:58b

aRef. [78]
bRef. [62]
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Table 14.8 Statistical date of differences from
experimental standard enthalpies of formation for
the G2-1 set using BHHLYP, CV-B3LYP, and
B3LYP functionals with cc-pVTZ in kcal/mol

BHHLYP CV-B3LYP B3LYP

MAEa 12.4 4.2 2.9
RMSb 15.8 5.5 4.1
MAX. (C) 51.3 22.5 19.2
MAX. (�) �7.5 �6.8 �7.8
aMean absolute error
bRoot mean square

All orbital energies are overestimated in comparison with experimental IPs
with minus signs. For core orbitals, the deviations for B3LYP are more than
15 eV. BHHLYP reduces the deviations but still provides IPs with more than 4 eV
deviations. For valence orbitals, the deviations are relatively smaller than those of
core orbitals; BHHLYP estimates IPs within 2.5 eV.

The results for standard enthalpies of formation for the G2-1 set of 55 small
molecules are shown in Table 14.8. The performance of CV-B3LYP is significantly
better than that of BHHLYP and slightly worse than that of B3LYP: The mean
absolute errors (MAEs) of CV-B3LYP, BHHLYP, and B3LYP are 4.2, 12.4, and
2.9 kcal/mol, respectively. The better performance of CV-B3LYP over BHHLYP is
due to the improvement of the description of valence orbitals. The valence orbitals
of CV-B3LYP are designed to be similar to those of B3LYP.

14.3.2.2 Excitation Energies

Table 14.9 shows the core- and valence-excitation energies of N2 molecule calcu-
lated with the cc-pCVTZ basis set. The errors of the calculated results from
the experimental values are shown in parentheses. The CT excitations are not
numerically assessed here since CV-B3LYP determines the appropriate HFx por-
tions for respective orbitals and does not have those optimized for well-separated
occupied and unoccupied orbitals involved in the CT excitations. The 1s ! 2p *

core-excitation energy of CV-B3LYP is close to that of BHHLYP: The errors of
CV-B3LYP and BHHLYP are 0.3 and �3.0 eV, respectively. B3LYP yields the
largest error, –12.5 eV. For the valence excitations, the accuracy of CV-B3LYP is
comparable to that of B3LYP. BHHLYP fails to reproduce the order of the 1…g,
1…u

�, and 1�u states because of the underestimation of the  ! * excitation
energies. CV-B3LYP represents the correct order of the three states as well as
B3LYP does. The behavior of the excitation energies of CV-B3LYP in Table 14.9
corresponds to that of the orbital energies in Table 14.7, which significantly affect
the calculated excitation energies.

Table 14.10 shows the 1s– * core-excitation energies of acetylene (C2H2),
ethylene (C2H4), formaldehyde (CH2O), CO, and N2 molecules. The deviations
from the experimental values are shown in parentheses. The core-excitation energies
of CV-B3LYP are close to those of BHHLYP rather than B3LYP for all molecules in
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Table 14.9 Excitation energies of the N2 molecule using BHHLYP, CV-
B3LYP, and B3LYP functionals with cc-pCVTZ (in eV)

BHHLYP CV-B3LYP B3LYP Expt.

1s ! 2p * 398.0 401.3 388.5 401.0a

(�3.0) (C0.3) (�12.5)
2p¢ ! 2p *(1…g) 9.63 9.47 9.42 9.31b

(C0.32) (C0.16) (C0.11)
2p ! 2p *(1†�

u ) 9.05 9.53 9.52 9.92b

(�0.87) (�0.39) (�0.40)
2p ! 2p *(1�u) 9.59 9.93 9.92 10.27b

(�0.68) (�0.34) (�0.35)
aRef. [79]
bRef. [15]
Differences from the experimental data are shown in parentheses

Table 14.10 1s– *

Core-excitation energies of
C2H2, C2H4, CH2O, CO, and
N2 molecules using
BHHLYP, CV-B3LYP, and
B3LYP functionals (in eV)

Molecule BHHLYP CV-B3LYP B3LYP Expt.

C2H2 283.6 286.1 275.3 285.8b

(�2.2) (C0.3) (�10.5)
C2H4 282.5 285.1 274.3 284.7b

(�2.2) (C0.4) (�10.4)
CH2O 283.0 286.0 275.2 286.0b

(�3.0) (C0.0) (�10.8)
CO 283.5 286.9 276.1 287.4b

(�3.9) (�0.5) (�11.3)
N2 397.9 401.3 388.5 401.0c

(�3.1) (C0.3) (�12.5)
CH2O 528.1 531.4 516.7 530.8b

(�2.7) (C0.6) (�14.1)
CO 531.6 534.5 519.8 534.2b

(�2.6) (C0.3) (�14.4)
MAEa 2.8 0.3 12.0
aMean absolute error
bRef. [39]
cRef. [79]
Differences from the experimental data are shown in
parentheses
Core excitations occur in bold atoms

Table 14.10. CV-B3LYP shows the best performance among the three functionals.
The MAE of CV-B3LYP is about half of that of BHHLYP and considerably smaller
than that of B3LYP: the MAEs of CV-B3LYP are less than 1 eV, while those of
BHHLYP and B3LYP are more than 2 and 11 eV, respectively.

The valence-excitation energies of N2, C2H2, C2H4, cis-2-butene (cis-C4H8), 1-
3-butadiene (C4H6), benzene (C6H6), 1,3,5-trans-hexatriene (C6H8), CH2O, and CO
molecules are listed in Table 14.11. For valence excitations, the accuracy of CV-
B3LYP is comparable to that of B3LYP: The MAEs of CV-B3LYP and B3LYP are
0.25 eV and that of BHHLYP is 0.36 eV. As is well known, the  ! * excitation
energy is red-shifted for longer  -conjugation systems. CV-B3LYP describes the
red shift correctly as well as the conventional BHHLYP and B3LYP functionals.
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Table 14.11  - *
valence-excitation energies
of N2, C2H2, C2H4, C4H8,
C4H6, C6H6, C6H8, CH2O,
and CO molecules using
BHHLYP, CV-B3LYP, and
B3LYP functionals in eV

Molecule BHHLYP CV-B3LYP B3LYP Expt.

N2 9.05 9.53 9.52 9.92b

(�0.87) (�0.39) (�0.40)
C2H2 6.62 6.86 6.86 7.10c

(�0.48) (�0.24) (�0.24)
C2H4 7.87 7.85 7.90 8.00b

(�0.13) (�0.15) (�0.10)
C4H8 7.18 7.04 7.04 7.55d

(�0.37) (�0.51) (�0.51)
C4H6 6.04 5.85 5.85 5.92e

(C0.12) (�0.07) (�0.07)
C6H6 5.69 5.47 5.46 4.90b

(C0.79) (C0.57) (C0.56)
C6H8 5.01 4.76 4.76 4.95e

(C0.06) (�0.19) (�0.19)
CH2O 4.17 4.06 4.02 3.94b

(C0.23) (C0.12) (C0.08)
CO 9.67 9.82 9.81 9.88b

(�0.21) (�0.06) (�0.07)
MAEa 0.36 0.25 0.25
aMean absolute error
bRef. [15]
cRef. [80]
dRef. [81]
eRef. [82]
Differences from the experimental data are shown in parentheses

14.3.3 Brief Summary

We assessed the conventional XC functionals and proposed the new hybrid func-
tional CV-B3LYP for the precise description of both core and valence excitations.
By the assessment of TD-BLYP, TD-BHHLYP, TD-B3LYP, and TDHF methods,
the portion of HFx is found to be important to describe core-excitation energies
accurately. Based on this assessment, the CV-B3LYP functional is designed to
possess the appropriate portions of HFx for core and valence regions separately.
The KS equation for CV-B3LYP is derived using the coupling-operator method
of Roothaan [72–74]. The TDDFT scheme for CV-B3LYP is also presented. DFT
and TDDFT calculations are performed with the use of CV-B3LYP, BHHLYP, and
B3LYP functionals. For the ground state, the orbital energies calculated with CV-
B3LYP are close to those of BHHLYP and B3LYP for core and valence orbitals,
respectively. CV-B3LYP reproduces standard enthalpies of formation for G2 set
with reasonable accuracy as well as B3LYP does. TDDFT calculations demonstrate
that the accuracy of CV-B3LYP is comparable to those of BHHLYP and B3LYP
for core- and valence-excited states, respectively. The numerical results confirm
that TDDFT calculations using CV-B3LYP are useful for describing both core- and
valence-excited states with high accuracy.
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14.4 Extension of Core-Valence B3LYP for Third-Row
Elements

The core orbitals in the third-row elements have been also examined by estimating
core-excitation energies [52]. The numerical assessment demonstrates that 70 and
50 % portions of HFx are appropriate for K-shell and L-shell electrons, which
requires to modify CV-B3LYP so as to deal with three different HFx portions,
20, 50, and 70 % for valence, L-shell, and K-shell electrons. The following is the
extension of CV-B3LYP.

14.4.1 Extension of Core-Valence B3LYP

In the previous CV-B3LYP [51, 52], the occupied orbitals are distinguished into
core (C) and occupied-valence (OV) orbitals. In the present modified CV-B3LYP,
the occupied orbitals are distinguished into three groups, namely, K-shell (C1),
L-shell (C2), and occupied-valence (OV) orbitals. Thus, the electronic energy is
decomposed into C1-C1, C1-C2, C1-OV, C2-C2, C2-OV, and OV-OV interactions:
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Table 14.12 Coefficients of XC functionals in the modified CV-B3LYP functional

C1C1 C1C2 C1OV C2C2 C2OV OVOV

a (HFx) 0.7 0.6 0.45 0.5 0.35 0.2
b (Slater-Dirac exchange) 0 0 0.04 0 0.04 0.08

(B88 exchange) 0.3 0.4 0.51 0.5 0.61 0.72
(VWN5 correlation) 0 0 0.095 0 0.095 0.19
(LYP correlation) 1 1 0.905 1 0.905 0.81

where H and J are one-electron and Coulomb integrals. a and b are the coefficients
of HFx and DFT XC functionals. The “C1,” “C2,” and “OV” on the † mean
that the summation runs over the K-shell, L-shell, and occupied-valence orbitals,
respectively; therefore, suffixes (k, l), (m, n), and (p, q) correspond to K-shell, L-
shell, and occupied-valence orbitals. The definitions of the electron densities are as
follows:
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ji j2: (14.40)

 is the Kohn-Sham orbital. The “¤C1”, “¤C2”, and “¤OV” on the † mean
that the summation runs over all occupied orbitals without the K-shell, L-shell, and
occupied-valence orbitals, respectively. The C1-C2 interaction is represented as the
subtraction ofExc Œ�C1� andExc Œ�C2� fromExc Œ�C1CC2�, and the same applies to C1-
OV and C2-OV interactions. In Eq. (14.39), the three- and higher-body interactions
in DFT XC energies are neglected. However, our preliminary calculations have
shown that the energy differences due to the truncation are small enough to be
negligible. The XC functional in CV-B3LYP consists of Slater exchange, B88
exchange, VWN5 correlation, and LYP correlation functionals. The coefficients aY

and bY (Y D C1C1, C1C2, C1OV, C2C2, C2OV, and OVOV) used in the present
calculations are listed in Table 14.12. The coefficients of C1C1, C2C2, and OVOV
are set to those of HF C B88 C LYP (70 %), BHHLYP, and B3LYP. The coefficients
of C1C2, C1OV, and C2OV are set to the mean values of fC1C1 and C2C2g, fC1C1
and OVOVg, and fC2C2 and OVOVg, respectively. The sum of the coefficients in
each group becomes 1.

Applying the variational principle to Eq. (14.39) leads to three kinds of Fock
operators:

FC1 D hC 2J � .aC1C1KC1 C aC1C2KC2 C aC1OVKOV/

C .bC1C1�bC1C2�bC1OV/ Vxc Œ�C1�CbC1C2Vxc Œ�C1CC2�CbC1OVVxc Œ�C1COV�;

(14.41)



294 Y. Imamura and H. Nakai

FC2 D hC 2J � .aC1C2KC1 C aC2C2KC2 C aC2OVKOV/

C .bC2C2�bC1C2�bC2OV/ Vxc Œ�C2�CbC1C2Vxc Œ�C1CC2�CbC2OVVxc Œ�C2COV�;

(14.42)

FOV D hC 2J � .aC1OVKC1 C aC2OVKC2 C aOVOVKOV/

C .bOVOV�bC1OV�bC2OV/ Vxc Œ�OV�CbC1OVVxc Œ�C1COV�CbC2OVVxc Œ�C2COV�:

(14.43)

h is one-electron operator. J and K in and after Eq. (14.41) are Coulomb and HFx
operators. HFx operators and the first derivatives of Exc are as follows:

KC1 D
C1X

k

Kk; KC2 D
C2X

m

Km; KOV D
OVX

p

Kp;

Vxc Œ�C1� D ıExc Œ�C1�

ı�C1
; Vxc Œ�C2� D ıExc Œ�C2�

ı�C2
; Vxc Œ�OV� D ıExc Œ�OV�

ı�OV
;

Vxc Œ�C1CC2� D ıExc Œ�C1CC2�

ı�C1CC2
; Vxc Œ�C1COV� D ıExc Œ�C1COV�

ı�C1COV
;

Vxc Œ�C2COV� D ıExc Œ�C2COV�

ı�C2COV
:

(14.44)

In order to guarantee the invariance under the unitary transformation, the
coupling-operator technique of Roothaan is adopted. Introducing the operators R,

RC1 D �
C2X

m

fjmi hmj ‚C1C2/C .‚C1C2 jmi hmj g

�
OVX

p

˚ˇ
ˇp

˛ ˝

p
ˇ
ˇ ‚C1OV/C 


‚C1OV

ˇ
ˇp

˛ ˝

p
ˇ
ˇ
�

; (14.45)

RC2 D �
C1X

k

fjki hkj ‚C2C1/C .‚C2C1 jki hkj g

�
OVX

p

˚ˇ
ˇp

˛ ˝

p
ˇ
ˇ ‚C2OV/C 


‚C2OV

ˇ
ˇp

˛ ˝

p
ˇ
ˇ
�

; (14.46)

ROV D �
C1X

k

fjki hkj ‚OVC1/C .‚OVC1 jki hkj g

�
C2X

m

fjmi hmj ‚OVC2/C .‚OVC2 jmi hmj g; (14.47)
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we obtain the following:

F 0
C1 D FC1 CRC1; (14.48)

F 0
C2 D FC2 CRC2; (14.49)

F 0
OV D FOV CROV; (14.50)

where‚s are

‚C1C2 D .1 � �/FC1 C �FC2; (14.51)

‚C2C1 D ��FC1 C .1C �/FC2; (14.52)

‚C1OV D .1 � 	/FC1 C 	FOV; (14.53)

‚OVC1 D �	FC1 C .1C 	/FOV; (14.54)

‚C2OV D .1 � �/ FC2 C �FOV; (14.55)

‚OVC2 D ��FC2 C .1C �/ FOV: (14.56)

�, 	, and � are arbitrary nonzero numbers and set to 0.1 in the present study.
Thus, Fock operator for occupied orbitals is rewritten as follows:

F D
C1X

k

F 0
C1 jki hkj C

C2X

m

F 0
C2 jmi hmj C

OVX

p

F 0
OV

ˇ
ˇp

˛ ˝

p
ˇ
ˇ: (14.57)

The virtual orbitals are treated in the similar way as the previous CVR-B3LYP
[51], in which Rydberg orbitals are distinguished by using second moments of the
orbitals. FOV and the Fock operators formed in HF method were adopted as the
Fock operator forms of unoccupied-valence and Rydberg orbitals, respectively. In
the TDDFT calculations, we adopted an approximation similar to that for previous
studies [50–52], in which we used the A and B matrix forms of B3LYP, while using
the orbital energies and coefficients of CVR-B3LYP.

14.4.2 Assessment of Modified Core-Valence B3LYP

The descriptions of K-shell, L-shell, and valence electrons by the modified CV-
B3LYP functional are assessed by calculating core- and valence-excitation energies
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Table 14.13 1s and 2p core-excitation energies of SiH4, PH3, H2S, HCl, and Cl2 molecules by
TDDFT with the modified CV-B3LYP functional with cc-pCVTZ plus Rydberg basis functions in
eV

1s excitation 2p excitation

Molecule Assignment CV-B3LYP Expt. Assignment CV-B3LYP Expt.

SiH4 Si1s ! ¢* 1846.6 1842.5b Si2p ! ¢* 103.7 102.8f,g

(C4.1) (C0.9)
PH3 P1s ! ¢*(e) 2148.9 2145.8c P2p ! ¢* 133.1 132.3f,g

(C3.1) (C0.8)
H2S S1s ! 3b2(¢*) 2474.7 2473.1d S2p ! ¢* 166.1 164.5h

(C1.6) (C1.6)
S1s ! 4pb2 2477.4 2476.3d S2p ! 4s 168.3 166.5h

(C1.1) (C1.8)
HCl Cl1s ! 3p¢* 2824.8 2823.9e Cl2p ! 3p¢* 202.0 201.0f

(C0.9) (C1.0)
Cl1s ! 4p  2827.9 2827.8e Cl2p ! 4p  205.0 204.6f

(C0.1) (C0.4)
Cl2 Cl1s ! 3p¢u* 2822.1 2821.3e Cl2p ! 3p¢u* 199.1 198.7g,i

(C0.8) (C0.4)
Cl1s ! 4p 2829.2 2828.5e Cl2p ! 4s 205.8 204.8g,i

(C0.7) (C1.0)
MAEa 1.5 1.0
aMean absolute error
bRef. [84]
cRef. [85]
dRef. [86]
eRef. [87]
fRef. [88]
gRef. [89]
hRef. [90]
iRef. [91]

and standard enthalpies of formations. In the CV-B3LYP calculations, the portions
of HFx for K-shell, L-shell, and occupied-valence orbitals were determined to
70, 50, and 20 % by using the coefficients given in Table 14.12. The scalar
relativistic effects were included by using the relativistic scheme by eliminating
small-components (RESC) method [83]. The basis sets and geometries of molecules
used in CV-B3LYP calculations are the same as those used in Sect. 14.3 [52].

Table 14.13 shows the 1s and 2p core-excitation energies of SiH4, PH3, H2S,
HCl, and Cl2 molecules calculated with the modified CV-B3LYP functional. The
MAEs of CV-B3LYP in Table 14.13 (1.5, 1.1 eV) for (1s, 2p) core-excitation
energies clarify that the modified CV-B3LYP provides well-balanced results for
third-row elements. Thus, it is demonstrated that the modified CV-B3LYP shows
high performance both for K-shell and L-shell core excitations.

In order to assess the accuracy of the description of occupied-valence electrons,
excitation energies from occupied-valence orbitals of SiH4, PH3, H2S, HCl, and
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Table 14.14 Valence- and Rydberg-excitation energies of SiH4, PH3, H2S, HCl, and Cl2

molecules by TDHF and TDDFT with BLYP, B3LYP, BHHLYP, and the modified CV-B3LYP
functionals with cc-pCVTZ plus Rydberg basis functions (in eV)

Molecule Assignment BLYP B3LYP BHHLYP TDHF CV-B3LYP Expt.

SiH4 t2 ! 4s 8.0 8.5 9.2 9.9 9.4 8.8b

(�0.8) (�0.3) (C0.4) (C1.1) (C0.6)
PH3 n ! 4p 6.8 7.2 8.0 8.4 8.8 7.8c

(�1.0) (�0.6) (C0.2) (C0.6) (C1.0)
H2S 2b1 ! ¢* 5.8 6.0 6.1 6.2 6.0 5.5c

(C0.4) (C0.5) (C0.6) (C0.8) (C0.6)
HCl 3p ! 4s 8.3 8.9 9.8 10.5 9.8 9.6d

(�1.3) (�0.7) (C0.2) (C0.9) (C0.2)
Cl2  g ! ¢u 3.2 3.3 3.6 4.0 3.3 3.8d

(�0.6) (�0.4) (�0.2) (C0.2) (�0.5)
MAEa 0.8 0.5 0.3 0.7 0.6
aMean absolute error
bRef. [92]
cRef. [93]
dRef. [94]

Cl2 molecules were calculated by TDHF and TDDFT with B3LYP, BHHLYP,
and the modified CV-B3LYP. Table 14.14 lists the calculated excited energies.
In Table 14.14, BHHLYP shows high performance, and the accuracy of BLYP,
B3LYP, and TDHF is slightly worse than BHHLYP: MAEs of BLYP, B3LYP,
BHHLYP, and TDHF are 0.8, 0.5, 0.3, and 0.7 eV, respectively. The excitation
energies of CV-B3LYP are close to and higher than those of B3LYP for occupied-
valence ! unoccupied-valence and occupied-valence! Rydberg excitations, re-
spectively. This is because the valence and Rydberg orbitals of CV-B3LYP are
designed to be similar to those of B3LYP and HF. The MAE of CV-B3LYP is
0.6 eV, which is comparable to that of B3LYP. Therefore, CV-B3LYP describes
valence-excitation energies with reasonable accuracy as like as conventional DFT
methods.

The standard enthalpies of formation of SiH4, PH3, H2S, HCl, and Cl2 molecules,
which are the valence-electron properties in the ground states, were calculated by
the procedure mentioned in Ref. [76]. The results of HF and DFT calculations with
the BLYP, B3LYP, BHHLYP, and CV-B3LYP functionals are shown in Table 14.15.
DFT gives more accurate results than HF does: The MAE of HF method is
52.0 kcal/mol, while all of the MAEs of DFT are less than 10 kcal/mol. The accuracy
of BLYP and B3LYP is significantly high among the DFT methods, whose MAEs
are 2.0 and 1.5 kcal/mol. The accuracy of CV-B3LYP with the MAE of 1.9 kcal/mol
is comparable to BLYP and B3LYP. Thus, we confirm that CV-B3LYP is capable of
describing the behaviors of not only K-shell and L-shell electrons but also valence
ones with reasonable accuracy, while BHHLYP is appropriate only for K-shell and
L-shell excitations, respectively.
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Table 14.15 Standard enthalpies of formation of SiH4, PH3, H2S, SO2, HCl,
and Cl2 molecules by HF and DFT with the BLYP, B3LYP, BHHLYP, HF, and
modified CV-B3LYP functionals with cc-pCVTZ plus Rydberg basis functions
in eV

BLYP B3LYP BHHLYP HF CV-B3LYP Expt.b

SiH4 13.3 7.9 7.9 75 5.9 8:2

(C5.1) (�0.3) (�0.3) (C66.8) (�2.3)
PH3 1.2 �0.4 3.4 71.7 �2.5 1:3

(�0.1) (�1.7) (C2.1) (C70.4) (�3.8)
H2S �2.8 �3.7 0.5 48.7 �5.4 �4:9

(C2.1) (C1.2) (C5.4) (C53.6) (�0.5)
HCl �19.9 �20.3 �17.5 7.7 �21.5 �22:1

(C2.2) (C1.8) (C4.6) (C29.8) (C0.6)
Cl2 �0.5 2.7 10.3 39.4 2.1 0:0

(�0.5) (C2.7) (C10.3) (C39.4) (C2.1)
MAEa 2.0 1.5 4.5 52 1.9
aMean absolute error
bRef. [76]

14.4.3 Brief Summary

The CV-B3LYP functional has been extended to core-excited-state calculations of
the molecules containing third-row elements. Since the assessment of TDDFT cal-
culations with conventional XC functionals demonstrates that 70 and 50 % portions
of HFx are appropriate for calculating K-shell and L-shell core-excitation energies
[52], the CV-B3LYP functional is modified to possess the appropriate portions of
HFx for K-shell, L-shell, and occupied-valence regions separately. TDDFT calcu-
lations on several molecules containing third-row elements show that the modified
CV-B3LYP functional reproduces the K-shell and L-shell core-excitation energies
with reasonable accuracy. For valence properties, the calculations of valence-
excitation energies and standard enthalpies of formation confirm that CV-B3LYP
describes valence electrons accurately as well as B3LYP does. The numerical
assessments have revealed the high accuracy of CV-B3LYP for the descriptions of
all of the K-shell, L-shell, and valence electrons.

14.5 Development of Orbital-Specific Functionals

As explained in the previous sections, we have developed an OS hybrid functional:
CV-B3LYP hybrid functional for second- and third-row elements [50–52]. However,
the HFx portions were determined by the numerical assessments. A more physically
motivated determination is demanded. To this end, we have used the linearity
condition for orbital energies (LCOE) in order to construct XC functionals [53–56].
The LCOE is that the second derivative of the total energy with respect to occupation
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numbers should be 0 [60, 94–98]. The LCOE has been investigated extensively:
Yang group [95–97] discussed the LCOE for the highest occupied molecular orbital
(HOMO). Vydrov et al. [98] and Song et al. [60] also examined the effect of the
short- and long-range parts of HFx on the linearity, respectively. Livshits and Baer
have used the LCOE for tuning a range-determining parameter [99]. Studies on the
orbital energies related to Koopmans’ theorem have been carried out by Salzner and
Baer [100] and Tsuneda et al. [101].

This section explains how to use the LCOE to global hybrid functionals and
assesses their performance regarding orbital energies. Numerical assessments on
ionization potentials (IPs) and concluding remarks are also given.

14.5.1 Theory of Orbital-Specific Functionals

14.5.1.1 Linearity Condition for Orbital Energies

Janak’s theorem [102] in KS-DFT states that the first derivative of the total energy
with respect to the occupation number fi of the ith KS orbital is equivalent to its
orbital energy:

@E

@fi
D "i : (14.58)

In particular, the following relation for HOMO is clarified by Almbladh and von
Barth [103]:

@E

@fHOMO
D "HOMO D �IP: (14.59)

Namely, the HOMO energy is proven to be equivalent to the first IP with the
opposite sign. Since the IP should be constant, the following LCOE is derived:

@E

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

D "i D const:; (14.60)

or

@2E

@f 2
i

ˇ
ˇ
ˇ
ˇ
06fi61

D @"i

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

D 0: (14.61)

Although Eq. (14.61) is exact for HOMO, it may not be necessarily satisfied for
the other orbitals. However, Eq. (14.61) can offer a better description since it can
remove SIEs [47, 50–52].



300 Y. Imamura and H. Nakai

14.5.1.2 Construction of Orbital-Specific Functionals

We describe two procedures of how to construct the OS global hybrid functionals
using Eq. (14.61): the determination of OS parameters and estimation of orbital
energies.

Assume that the XC functional has the following form:

Exc Œ˛� D .1 � ˛/EDFT
x C ˛EHF

x C EDFT
c ; (14.62)

where EDFT
x , EHF

x , and EDFT
c are the DFT exchange (DFTx), HFx, and DFT

correlation (DFTc) energies, respectively. ˛ represents a portion for HFx. The
corresponding orbital energy "xc Œ˛� is expressed as

"i Œ˛� D "T C "Ne C "J C .1 � ˛/ "DFT
x C ˛"HF

x C "DFT
c

D .1�˛/ ˚"TC"NeC"JC"DFT
x C"DFT

c

�C˛ ˚"TC"NeC"J C "HF
x C "DFT

c

�

;

(14.63)

where "T, "Ne, "J, "DFT
x , "HF

x , and "DFT
c are the kinetic, nuclear attraction, Coulomb,

DFTx, HFx, and DFTc contributions for the orbital energy, respectively. Here, we
introduce the assumption:

"i Œ˛� Š .1 � ˛/ "DFT
i C ˛"HFCDFTc

i : (14.64)

"DFT
i and "HFCDFTc

i represent the pure DFT and HF C DFTc orbital energies. As
our previous assessment revealed [50–52], the OS ˛ exhibits an orbital dependence;
therefore, ˛i for the ith KS orbital is determined as follows:

@"i Œ˛i �

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

Š .1 � ˛i / @"
DFT
i

@fi

ˇ
ˇ
ˇ
ˇ
06fi61

C ˛i
@"HFCDFTc
i

@fi

ˇ
ˇ
ˇ
ˇ
ˇ
06fi61

D 0: (14.65)

Then, the orbital energy is estimated with the determined ˛i by the following
relation:

"i Œ˛i � Š .1 � ˛i / "
DFT
i C ˛i"

HFCDFTc
i : (14.66)

Here, we choose the following DFT XC functionals: SVWN5, BLYP, Perdew-
Burke-Ernzerhof (PBE) [9], Tao-Perdew-Staroverov-Scuseria (TPSS) [10] XC
functionals.

The procedure of the estimation of the orbital energies is as follows: The
derivatives @"DFT

i =@fi and @"HFCDFTc
i =@fi are numerically estimated at fi D 1:0

with �fi D 0:0001. Using the derivatives, we determine ˛i by Eq. (14.65) and
estimate orbital energies by Eq. (14.66) using DFT and HF C DFTc orbital energies
at fi D 1:0. Namely, the OS global hybrid functionals are constructed for respective
orbitals. All calculations are carried out by the modified version of the GAMESS
program.
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14.5.2 Numerical Applications

14.5.2.1 Orbital Energy for Fractional Occupation Numbers

The behavior of the orbital energies of OCS molecule is examined with respect to
fractional occupation number (FON) electrons for the OS global hybrid functionals
of SVWN5, BLYP, PBE, and TPSS XC functionals. The cc-pCVTZ basis set was
adopted, and geometrical parameters were optimized at the B3LYP/cc-pVTZ level.
Figures 14.1 demonstrate orbital energies of HOMO, O1s, and S1s of OCS molecule
with respect to FON electrons. As shown in Fig. 14.1, HOMO energies decrease
for HFx C DFTc functional as the number of electrons increases. This behavior is
different from that of long-range corrected HFx C LYP [53]. Thus, the inclusion
of short-range HFx varies the slopes of the HOMO energies. Contrarily, as the
number of electrons increases, HOMO energies increase for the conventional DFT
XC functionals, which is ascribed to SIE. The dependences of DFTc functionals for
HFx C DFTc are slightly larger than those for the conventional XC functionals. The
selection of appropriate ˛HOMO by the LCOE reproduces approximately constant
curves for the OS global hybrid functional of the LDA, GGA, and meta-GGA
functionals whose ˛HOMO are estimated to be approximately 0.75.

Figures 14.1 illustrate the O1s and S1s orbital energies with respect to FON
electrons. A similar tendency is observed for the O1s and S1s orbitals: As the
number of electrons increases, orbital energies of HFx C DFTc functional decrease
and those of the conventional DFT XC functionals increase. In contrast to HOMO,
the dependences of DFTc functionals for HFx C DFTc are smaller than those for
the conventional XC functionals. The curves of the OS global hybrid functionals
with appropriate ˛i determined through the LCOE are approximately flat for O1s
and S1s. The OS parameters f˛O1s, ˛S1sg are approximately f0.57, 0.71g, which are
slightly larger than those of CV-B3LYP, determined by numerical assessment for
core excitations [50–52].

In order to assess the performance of the OS global hybrid functionals from a
different point of view, we also compare the orbital energies and IPs of valence and
core orbitals for OCS molecule in a sense of Koopmans’ theorem. IPs obtained
by the OS hybrid functionals are shown in Table 14.16. The deviations from
experimental IPs [53] and values of ˛i are shown in parentheses and square brackets,
respectively. For HOMO, the OS global hybrid functionals provide comparatively
similar IPs: 11.45, 10.99, 11.18, and 11.17 eV for SVWN5, BLYP, PBE, and TPSS
functionals, and the corresponding deviations are at most 0.25 eV. The OS hybrid
functionals also reproduce O1s and S1s IPs within the deviation of 2.5 eV for the
LDA, GGA, and meta-GGA functionals, though the accurate estimation of large IPs
is rather difficult.
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Fig. 14.1 Orbital energy
variations "i [eV] of (a)
HOMO, (b) O1s orbital, (c)
S1s orbital of OCS as a
function of the electron
number N

14.5.2.2 IP and HFx Portion

For comparative assessment, IPs were estimated for eight molecules containing not
only second- but also third-row elements: CO, H2O, NH3, HCHO, PH3, H2S, HCl,
and OCS. The following XC functionals such as SVWN5, BLYP, PBE, and TPSS
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Table 14.16 OCS IPs (eV) by OS global hybrid functionals of SVWN5, BLYP, PBE, and TPSS
functionals and ’i determined for the OS in eV

SVWN5 BLYP PBE TPSS Expt.a

S1s 2478.81 (�1.49) 2480.68 (0.38) 2479.76 (�0.54) 2481.01 (0.71) 2480.3
[0.7133] [0.7125] [0.7124] [0.7011]

O1s 541.1 (0.80) 542.29 (1.99) 541.94 (1.64) 542.64 (2.34) 540.3
[0.5796] [0.5777] [0.5792] [0.5623]

HOMO 11.45 (0.25) 10.99 (�0.21) 11.18 (�0.02) 11.17 (�0.03) 11.2
[0.7500] [0.7496] [0.7470] [0.7426]

aRef. [53]

Table 14.17 Mean absolute errors of IPs estimated by conventional and OS global
hybrid functionals of SVWN5, BLYP, PBE, and TPSS functionals in eV

MAD

Type Functional 1s (P, S, Cl) 1s (C, N, O), 2s (S) Valence Overall

SVWN5 SVWN5 85.22 29.18 5.22 27.54
OS SVWN5 0.60 1.41 0.48 0.85
[’i] [0.716] [0.624] [0.701] [0.674]

BLYP BLYP 74.88 25.58 5.42 24.56
B3LYP 50.77 21.25 3.60 16.50
OS BLYP 1.58 2.05 0.44 1.23
[’i] [0.715] [0.621] [0.698] [0.671]

PBE PBE 76.37 26.14 5.29 24.95
PBE0 46.45 19.02 3.27 14.95
OS PBE 0.88 1.70 0.44 0.98
[’i] [0.715] [0.622] [0.700] [0.673]

TPSS TPSS 67.93 23.07 5.05 22.29
TPSSh 54.79 23.73 4.18 18.19
OS TPSS 1.86 2.11 0.47 1.32
[’i] [0.704] [0.608] [0.693] [0.663]

are examined for the OS global hybrid functionals. For comparison, the results of the
OS functional of the LC hybrid functional, long-range corrected BLYP (LC-BLYP)
[16], and the conventional XC functionals including pure and hybrid functionals are
also tabulated. The geometries optimized at the B3LYP/cc-pVTZ level are adopted.
For molecules containing third-row elements, the scalar relativistic effect is included
by using the RESC method [82]. Table 14.17 lists MAEs from experimental IPs for
conventional and OS XC functionals of LC-BLYP, SVWN5, BLYP, PBE, and TPSS
using the cc-pCVTZ basis set. The mean values of ˛i are also shown in square
brackets. The groups of fP1s, S1s, Cl1sg and fC1s, N1s, O1s, S2sg are labeled as
C1 and C2 orbitals.

The conventional SVWN5 functional, which is a typical LDA functional,
provides large MAEs owing to severe underestimation by SIEs [47], for example,
85.22 eV for 1s IPs of the third-row elements. The MAEs decrease from a deeper
core to valence orbitals: 29.18 and 5.22 eV of C2 and valence orbitals, respectively.
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On the other hand, the LCOE drastically reduces the MAEs: the overall MAE is
0.85 eV reduced from 27.54 eV, and the largest MAE is at most 1.41 eV for C2. The
average determined ˛i values range 0.624–0.716.

The conventional BLYP and PBE functionals, which are typical GGA func-
tionals, provide smaller MAEs than those of SVWN5 for core and inner valence
orbitals. The tendency is similar to that of SVWN5: the larger IPs lead to larger
deviations. A slight difference in the performance for HOMO is confirmed in
comparison to SVWN5. The conventional hybrid functionals B3LYP and PBE-
1-parameter-PBE (PBE0) [13] provide smaller overall MAEs in comparison with
the corresponding pure functionals: 16.50 and 14.95 eV, respectively. For core
orbitals, the OS global hybrid functionals based on BLYP and PBE also provide
significantly small MAEs, which are slightly larger than those of SVWN5. The
˛i values determined by the GGA functionals are slightly smaller than those of
SVWN5 and are significantly larger than the corresponding HFx portions used in
B3LYP and PBE0. It is interesting that the MAEs exhibit relatively large changes
although the changes in ˛i are significantly less.

Let us discuss the meta-GGA functional, TPSS. The MAEs decrease from the
GGA and LDA functionals approximately by 10 and 17 eV for C1 orbitals and by
6 and 3 eV for C2 orbitals. The widely used hybrid version of TPSS (TPSSh) [71]
exhibits a better performance against TPSS but yields a larger MAE in comparison
with B3LYP and PBE0. By determining ˛i through the LCOE, MAEs are reduced,
especially for core orbitals: 1.86 from 67.93 eV and 2.11 from 23.07 eV for C1 and
C2 orbitals. The determined ˛i slightly but gradually decreases as ingredients such
as the density gradient and the kinetic density are more involved. The values of ˛i
for valence orbitals are larger than that of TPSSh.

The above assessment reveals that the LCOE improves FON dependence and
estimation of IPs significantly for all global hybrid functionals, which bases
SVWN5, BLYP, PBE, and TPSS XC functionals and an added HFx term. Finally, let
us compare the results of the OS functional based on LC-BLYP. For core orbitals,
the global hybrid-based OS functionals basically perform slightly better than the
OS functional of LC-BLYP does, although the obtained ˛i values are relatively
different. For valence orbitals, all OS functionals provide MAEs less than 0.5 eV.
The MAE of the conventional LC-BLYP is the smallest among all functionals,
which is consistent with the previous reports [100, 101]. The overall MAEs of the
OS functional of LC-BLYP are comparable to those of the LDA, GGA, and meta-
GGA functionals.

14.5.3 Brief Summary

We have constructed and assessed the OS global hybrid functionals satisfying the
LCOE for core and valence orbitals. As was reported for LC hybrid functionals [53],
the LCOE drastically reduces the FON dependence and enables accurate estimates
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of IPs for not only core but also valence orbitals for HFx C DFTxc such as LDA,
GGA, and meta-GGA. This numerical assessment leads to the conclusion that the
LCOE is generally effective for constructing XC functionals.

The valence’s OS HFx portions obtained for global hybrid functionals are
significantly larger than those for LC hybrid functionals [53], although the core’s
ones are similar to those of LC hybrid functionals. The effect of HFx has been
discussed theoretically and numerically from various points of view.

14.6 General Conclusions

The descriptions of core-ionized and core-excited states by DFT and TDDFT were
discussed in this chapter. The core orbitals are significantly difficult to describe by
conventional DFT methods because the core electron distribution, which is more
localized than that of valence electron, leads to significant SIE. The numerical
assessment on HFx contributions capable of reducing SIE motivated us to develop
the new hybrid functional, CV-B3LYP, which selects the appropriate HFx portions
for core and valence electrons for second-row elements. Although this chapter
focuses on core orbital, an extension of CV-B3LYP to Rydberg orbitals is also
demonstrated and succeeded in reproducing accurate core and valence excitations
as well as Rydberg excitations [51]. The determination of HFx portions using a
physical constraint, LCOE, was also explored and is promising for constructing XC
functionals.

Core orbitals seem to attract more attention in connection with free-electron
laser (FEL). The appearance of FEL, which has been developed in the world, may
open a new science field: FEL has enabled to produce laser pulses strong enough
to fully ionize molecules in short-wavelength regime [104]. The high intensity of
FEL also enables to determine molecular structures without crystallization [105–
107] and create multiply ionized and excited states involving core ionizations and
core excitations [36, 104, 108]. These FEL experiments, however, do not provide
the detailed information for specifying all processes including as the intermediate
ones in the multiple photoionization processes. Theoretical analysis is required for
analyzing chemical and physical phenomena caused by FEL. We believe that the
improvement of description for core orbitals definitely enhances progress of the
FEL science.
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Chapter 15
Intermolecular Potentials of the Carbon
Tetrachloride and Trifluoromethane Dimers
Calculated with Density Functional Theory

Arvin Huang-Te Li, Sheng D. Chao, and Yio-Wha Shau

Abstract We have calculated the interaction potentials of the carbon tetrachloride
and trifluoromethane dimers for 12 and 14 conformers, respectively, using the
density functional theory (DFT) with 80 density functionals chosen from the com-
binations of eight exchange and ten correlation functionals. While the performance
of an exchange functional is related to the large reduced density gradient of the
exchange enhancement factor, the correlation energy is determined by the low-
density behavior of a correlation enhancement factor. Our calculations demonstrate
that the correlation counterpart plays an equally important role as the exchange
functional in determining the van der Waals interactions of the carbon tetrachloride
and trifluoromethane dimers. These observations can be utilized to better understand
the seemingly unsystematic DFT interaction potentials for weakly bound systems.

15.1 Introduction

Van der Waals interactions, or noncovalent-bonded interactions, play an essential
role of intermolecular interaction potentials in condensed matter physics, materials
chemistry, and structural biology. These interactions are crucial for understanding
and predicting the thermodynamic properties of liquids and solids [1], the energy
transfers among molecular complexes [2], and the conformational tertiary structures
of nanostructures. Intermolecular bonds do not originate from sharing of electrons
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but rather arise from simultaneous electron correlation of the separated subsystems
[3]. Different from stiff covalent bonds, they are relatively soft and nonrigid. Early
studies of intermolecular interactions can be traced back to one century ago [4],
while measurements of these interactions are still challenging in the present time
[5]. The structural and thermodynamic properties of the dimers have long been
intensely studied by experimental means, such as X-ray and neutron diffraction.
The two experimental measurement methods can assist us in the theoretical aspects
of modeling.

Intermolecular potentials can also be calculated in terms of correlation-corrected
quantum chemistry methods [6–8] or density functional theory (DFT) [9, 10].
These quantum mechanics-based potentials are requested by ab initio molecular
dynamics simulations [11] and by classical molecular simulations using force field
constructions [12]. Among the components of an intermolecular interaction, the
dispersion forces or London forces are the most difficult to calculate. This is because
the dispersion forces are caused by nonlocal “dynamic” correlations [13]. This
nonlocality demands full exploration of the time-dependent perspective of quantum
mechanics. Often an electron correlation method and a large basis set are required
to obtain accurate London forces [14]. At present, most of the quantum chemistry
calculation programs are usually done using the Gaussian-type functions to calculate
the Coulomb repulsion integrals quickly. Because Gaussian-type functions are
local functions, a large basis set is indispensable to perform a correlation energy
calculation. Moreover, these functions do not have the correct asymptotic behavior
as the intermolecular separation becomes large. Therefore, the basis set limit of the
calculated potential must be estimated so as to be consistent with the conventional
perturbation theory.

Many previous studies only focused on the positions of equilibrium, but rarely
a complete discussion of the potential energy curve, so to build a complete force
field potential energy curve diagram is very important. In this chapter, we perform a
comprehensive up-to-date study on interaction potentials of the prototype carbon
tetrachloride and trifluoromethane dimers in DFT methods to gain more under-
standing of the system. With current computational powers, a detailed editing of
the potential database can be obtained for small size molecular clusters. It is thus so
important to obtain general features of the calculations that we can follow to explore
large-scale molecular simulations via similar procedures. We use the state-of-the-
art methodology to obtain accurate potential energies for the carbon tetrachloride
and trifluoromethane dimers in twelve and fourteen conformers, respectively. The
calculation of electron correlation energies depends on the level of the correlation
method, the size of the basis set, and the correction of the basis set superposition
error (BSSE). The BSSE was corrected by the counterpoise (CP) method of Boys
and Bernardi [15]. The purpose of this chapter is to carry out a systematic DFT study
of the equilibrium binding energies and bond lengths of the carbon tetrachloride and
trifluoromethane dimers using 80 functionals.
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15.2 Theory

In a previous study [16, 17], we found that for the carbon tetrachloride and
trifluoromethane dimers, a large part of the exchange-repulsion interactions can
be calculated by the HF method. The calculation of electron correlation energies
depends on the level of the correlation-corrected method, the size of the basis set,
and the correction of the basis set superposition error (BSSE). It has been found that
the MP2 results for the carbon tetrachloride and trifluoromethane dimers in 12 and
14 conformers are not too much different from those calculated by the much more
expensive CCSD(T) as long as a large basis set has been used. The MP2 binding
energy [17] is thus used as a reference value to calibrate the accuracy of current
DFT calculations. The basis set used here has been proven accurate in determining
the binding energy of the carbon tetrachloride and trifluoromethane dimers up to
0.3 kcal/mol accuracy [17]. The basis set superposition error was corrected by the
counterpoise (CP) method of Boys and Bernardi [15]. All the DFT calculations
were performed using the Gaussian 03 program package [18] on an Intel Quard-
core computer cluster with distributed memory. The equilibrium geometry of a
single carbon tetrachloride and trifluoromethane molecule was first optimized at
the MP2/6-311CCG(3d,3p) and MP2/aug-cc-pVQZ level of theory, respectively.
To obtain the most stable intermolecular geometry, the carbon tetrachloride and
trifluoromethane dimers were modeled by first fixing the C–C distance while
letting the two monomers rotate freely. By approaching the monomers from the
far side with several initial choices of mutual orientation, we found the minimum-
energy conformations. Subsequently, the C–C distance was sampled in 0.1 Å
steps for a large range of intermolecular separation (normally 4–10 and 3–9 Å).
During the scan, we allow the individual methane molecule to be fully relaxed.
This means that we do not fix the monomer geometry and the molecules are not
assumed to be rigid. The density functionals used in the present work include the
80 combinations chosen among nine exchange (B88 [19], MPW [20], PBE[21],
PW91[22], TPSS [23], Slater [24], HCTH [25], XAlpha [26]) and 10 correlation
(TPSS [23], PBE [21], PW91 [22], P86 [27], HCTH [25], VWN5 [28], PL [30],
VWN [29], LYP [31]) functionals. We also consider several hybrid functionals to
compare with the ab initio data. The chosen functionals are selective representations
of the most commonly used density functionals for van der Waals interactions in
current literature. Recent studies showed that the SVWN, PW91PBE, and PBEPBE
functionals could yield reasonable binding energy of the carbon tetrachloride and
trifluoromethane dimers interaction, but the relative performance of the exchange
and correlation functionals has not been systematically studied.

15.2.1 Results and Discussion

In Fig. 15.1, it showsthe twelve conformers of the carbon tetrachloride dimer. The
isolated CCl4 molecule was first optimized at the MP2/6-311CCG(3d,3p) theory
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Fig. 15.1 The 12 symmetric conformers of the carbon tetrachloride dimer considered in this
chapter. We designate each conformer by a representative capital letter from A to L
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Table 15.1 Comparison of the carbon tetrachloride dimer bond lengths (in Å) calculated with the
80 exchange-correlation functionals using the aug-cc-pVTZ basis set

CCl4 -Conformer J Correlation functional

aug-cc-pVTZ/Bond length (Å) VWN5 PL VWN TPSS PBE PW91 LYP P86 VP86 HCTH

Exchange functional HCTH 7.19 7.24 7.09 7.20 7.20 7.20 7.29 7.76 7.74 5.45
B 7.65 7.65 7.59 7.69 7.85 7.68 7.66 7.67 7.67 5.05
MPW 6.43 6.42 6.37 6.49 6.48 6.47 6.25 6.34 6.34 4.99
TPSS 6.19 6.19 6.14 6.02 6.02 6.01 5.59 5.41 5.41 4.94
PBE 5.68 5.68 5.66 5.48 5.46 5.44 5.20 5.01 5.01 4.91
PW91 5.68 5.68 5.65 5.52 5.50 5.48 5.24 5.03 5.04 4.91
S 4.49 4.49 4.47 4.15 4.11 4.12 4.24 4.00 4.00 NA
XA 4.42 4.42 4.39 4.00 4.00 4.00 4.17 4.00 4.00 4.37

and was found to be at the tetrahedral configuration Td symmetry with the C–Cl
bond length of 1.768 Å, which is consistent with the experimental data 1.769 Å
[32]. In Table 15.1, we show the conformation (conformer J) of carbon tetrachloride
dimer bond lengths using the 80 exchange-correlation functional, displayed as
the row and the column items, respectively. Roughly, the bond lengths descend
across the row and down the column. Compared with the MP2 result (4.58 Å),
we find the SVWN functional yields a value (4.47 Å). Table 15.2 presents the
calculated binding energies using the 80 exchange-correlation functionals. These
data are organized in a particular order, as shown in Table 15.2. In this order,
the (negative) DFT potentials descend across the row and down the column.
The results clearly demonstrate the relative performance of the exchange and the
correlation functionals in the DFT calculations. By fixing the Slater as the exchange
functional, for example, all correlation functionals yield bound potentials. On the
other hand, by fixing the VWN as the correlation functional, the varying exchange
functionals much underestimate or overestimate the binding energy except the Slater
exchange functional. One of the combinations, SVWN, yields a binding energy
(�3.367 kcal/mol) close to the MP2 result (�3.523 kcal/mol). In Fig. 15.2, it
shows the 14 conformers of the trifluoromethane dimer. In Table 15.3, we show
the conformation (conformer N) of trifluoromethane dimer bond lengths using the
80 exchange-correlation functional, displayed as the row and the column items,
respectively. Roughly, the bond lengths descend across the row and down the
column. Compared with the MP2 result (3.90 Å), we find the PW91LYP and
PW91VP86 functionals yield a value (3.90 Å) the same as the MP2 result. In
Fig. 15.3, we show the BSSE-corrected MP2 interaction potentials of the carbon
tetrachloride dimer and trifluoromethane dimer using several basis sets. In Fig. 15.3,
the tetrachloride dimer in J conformer of the basis set dependence of the DFT
potentials calculated with the SVWN5 functional. We have examined the basis set
effect on the DFT potentials in a similar manner as in the MP2 calculations (see
Fig. 15.3). We found that in general the DFT potentials converge at a smaller basis
set than the MP2 potentials. Therefore, only the aug-cc-pVTZ basis set is used to
obtain the DFT potentials which are compared to the MP2 potentials calculated at
the same basis set. Table 15.4 presents the calculated binding energies using the 80
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Fig. 15.3 The BSSE-corrected MP2 interaction potentials of the (a) carbon tetrachloride dimer
and (b) trifluoromethane dimer using several basis sets (c) The tetrachloride dimer in J conformer
of the basis set dependence of the DFT potentials calculated with the SVWN5 functional



318 A.H.-Te. Li et al.

T
ab

le
15

.4
C

om
pa

ri
so

n
of

th
e

tr
ifl

uo
ro

m
et

ha
ne

di
m

er
bi

nd
in

g
en

er
gi

es
(i

n
kc

al
/m

ol
)c

al
cu

la
te

d
w

it
h

th
e

80
ex

ch
an

ge
-c

or
re

la
ti

on
fu

nc
ti

on
al

s
us

in
g

th
e

6-
31

1C
CG

(3
df

,3
pd

)
ba

si
s

se
t

C
H

F 3
-c

on
fo

rm
er

N
C

or
re

la
ti

on
fu

nc
ti

on
al

6-
31

1C
CG

(3
df

,3
pd

)
en

er
gy

(k
ac

l/
m

ol
)

V
W

N
5

PL
V

W
N

T
PS

S
PB

E
PW

91
LY

P
P8

6
V

P8
6

H
C

T
H

E
xc

ha
ng

e
fu

nc
ti

on
al

H
C

T
H

�0
.1

9
�0

.1
9

�0
.2

1
�0

.1
5

�0
.1

6
�0

.1
6

�0
.1

3
�0

.1
3

�0
.4

3
�3

.1
0

B
�0

.2
6

�0
.2

6
�0

.2
8

�0
.2

3
�0

.2
3

�0
.2

3
�0

.2
1

�0
.2

1
�0

.2
8

�1
.5

4
M

PW
�0

.6
7

�0
.6

7
�0

.7
2

�0
.6

3
�0

.6
4

�0
.6

5
�0

.8
6

�0
.8

6
�1

.2
7

�4
.2

0
T

PS
S

�0
.8

3
�0

.8
3

�0
.9

0
�0

.8
2

�0
.8

3
�0

.8
5

�1
.0

8
�1

.0
8

�1
.5

4
�4

.4
8

PB
E

�0
.9

9
�0

.9
9

�1
.0

6
�1

.0
6

�1
.0

7
�1

.1
1

�1
.4

8
� 1

.4
7

�1
.8

9
�4

.9
4

PW
91

�1
.2

9
�1

.2
9

�1
.3

6
�1

.3
5

�1
.3

7
�1

.4
0

�1
.7

7
�1

.7
6

�2
.1

8
�5

.2
3

S
�2

.9
7

�2
.9

7
�3

.1
3

�3
.8

9
�3

.9
8

�4
.0

7
�5

.3
3

�5
.3

2
�5

.3
3

N
A

X
A

�3
.3

2
�3

.3
2

�3
.4

8
�4

.5
0

�4
.6

0
�4

.6
9

�5
.8

0
�5

.8
0

�6
.0

5
�8

.7
0



15 Intermolecular Potentials of the Carbon Tetrachloride . . . 319

exchange-correlation functionals. We find the PBEPBE and PBEVP86 functionals
of the binding energy are (�1.48 and �1.47 kcal/mol) close to the MP2 result
(�1.61 kcal/mol). Previous studies on van der Waals systems have shown that
the exchange functional plays an essential role in determining the binding energy,
while the correlation part of a density functional does not significantly affect the
DFT calculations. Our results are consistent with the former observation, while we
see appreciable effects due to the choice of the correlation functional. We provide
additional results in the Appendix.

15.3 Conclusions

To sum up this chapter, we have studied DFT potentials for van der Waals inter-
actions of carbon tetrachloride and trifluoromethane dimers. Weak interactions of
van der Waals systems have been widely studied and discussed in various contexts,
and the DFT results were often termed “unsystematic.” The DFT potentials display
a wide range of patterns of binding curves, underestimating or overestimating
the binding energy. After a series of systematic DFT calculations, we can clarify
the relative importance of the chosen exchange and correlation functionals. Space
limited, one may refer to the appendix as a guide to select the appropriate match of
such functionals.
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Chapter 16
Ab initio Study of the Potential Energy Surface
and Stability of the Li2C(X2†g

C) Alkali Dimer
in Interaction with a Xenon Atom

S. Saidi, C. Ghanmi, F. Hassen, and H. Berriche

Abstract The potential energy surfaces (PES) and the corresponding spectroscopic
constants describing the interaction between the Li2C(X2†g

C) alkali dimer in
its ground state and the xenon atom are evaluated very accurately including the
three-body interactions. We have used an accurate ab initio approach based on
nonempirical pseudopotential, parameterized l-dependent polarization potential,
and an analytic potential form for the LiCXe interaction. The potential energy
surfaces of the interaction Li2C(X2†g

C)-Xe have been computed for a fixed
distance of the Li2C(X2†g

C) and for an extensive range of the remaining two
Jacobi coordinates, R and � . The use of the pseudopotential technique has reduced
the number of active electrons of Li2C(X2†g

C)Xe complex to only one electron.
The core-core interaction for LiCXe is included using the (CCSD(T)) accurate
potential of Lozeille et al. (Phys Chem Chem Phys 4:3601, 2002). This numerical
potential is adjusted using the analytical form of Tang and Toennies. Moreover, the
interaction forces and the potential anisotropy are analyzed in terms of Legendre
polynomials analytical representation of the potential energy surface (PES). To our
best knowledge, there are no experimental nor theoretical study on the collision
between the Li2C(X2†g

C) ionic alkali dimer and the xenon atom. These results are
presented for the first time.
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16.1 Introduction

During the past decade, the characterization of the structures and the stability
of atomic and molecular clusters has been developed rapidly and become a
current challenge of both experimental and theoretical research directed to attaining
accurate descriptions of their nanoscopic properties. Special intense interest is
focused on the study of the clusters involving helium and other noble gas atoms
as components. These clusters constitute an important environment as a non
homogenous quantum system that is fairly different from similar examples provided
by a film on a solid surface or a macroscopic liquid with a free surface. In addition,
they represent an ideal testing ground for many computational approaches [1–5],
because the accurate knowledge of the relevant intermolecular forces between the
solvent atoms and the dopants present in the cluster is an important prerequisite
for the structural calculations, and, therefore, fairly simple components provide
ideal model systems for the analysis of the influence of intermolecular interactions
on the clusters properties [6–8]. In recent times, the structure and stability of the
small clusters is the subject of few experimental and theoretical works because
doped noble gas clusters present some additional interesting features, like the rapid
heat transport generated inside the complex to the surface. Experimentally, Fuchs
et al. [9] have examined the influence of the vibrational energy content of the
Li2 molecules in collision with the helium atoms when producing initial-state-
selected integral cross section. Various theoretical studies employed either ab initio
or semiempirical potentials have been realized in the field of the interaction between
neutral or ionic alkali molecules and a single noble gas atom, rare gas matrix, or
droplets. In this context, Douady et al. [10] have performed a theoretical study of
the Na2

C solvation in an argon matrix Arn. They have showed that the relatively
strong interaction between the charged molecule and the Ar atoms favors trapping
of the molecule inside the cluster rather than at the surface. Recently, an ab initio
computed interaction forces are employed by Marinetti et al. [11] to describe the
microsolvation of the Li2C, Na2

C, and K2
C molecular ion in the helium clusters

of small variable size. Bodo et al. [12–16] have investigated by Hartree-Fock
calculations the potential energy surfaces for the ground electronic states of the
alkali dimer Li2, Li2C, Na2

C, and K2
C interacting with neutral helium. In all these

systems, they found that the He atoms occupy the external sites along the molecular
axis.

In this chapter, we present an ab initio study of the potential energy surface
and stability of the Li2C(X2†g

C) alkali dimer interacting with the xenon atom
in different radial geometries and for six angles from 0ı to 90ı. In Sect. 16.2,
the ab initio calculation method is presented. Section 16.3 reports the results
of calculation and analysis of the interesting and unusual feature of the strong
interaction and anisotropy of the potential. Finally, we present our conclusions in
Sect. 16.4.
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16.2 Method of Calculation

The potential energy surface is computed in Jacobi coordinates by fixing the
internuclear distance of Li2C(X2†g

C) ionic molecule at its equilibrium distance
of 5.84 a.u. determined previously in our group by Bouzouita et al. [17]. We report
in Fig. 16.1 a descriptive model of the coordinates of the Li2C(X2†g

C)Xe system.
The distance R represents the separation between the xenon atom and the center of
mass of the Li2C(X2†g

C) ionic molecule, Ra and Rb are the separations between
the Xe and the two LiC cores, and � is the angle between R and the Li2C(X2†g

C)
internuclear axis.

As in our previous work [17–21], Li2C(X2†g
C)Xe is treated as a one-electron

system using the nonempirical pseudopotential proposed by Barthelat et al. [22] in
its semilocal form. The Gaussian-type orbital basis set values on lithium and xenon
are, respectively, (9s8p5d/8s6p3d) and (4s3p). The cutoff radii (in bohr) used for s,
p, and d orbitals are, respectively, 1.434, 0.982, and 0.6 for Li [23] and 3.500148,
4.0, and 1.401128 for Xe [24]. The core dipole polarizability of LiC and Xe atom
are, respectively, 0.1915 [23] and 27.29 a.u. [25].

Using the nonempirical pseudopotential proposed by Barthelat et al. [22], the
two LiC ions and the Xe atom are treated as a three cores interacting with the alkali
valence electron. Based on this approach, the total potential of the Li2C(X2†g

C)
system is a sum of three contributions: the valence electron-core interaction, core-
core interactions, and the three-body interactions. In this context, the total potential
is given by:

Vtot D V
e�Li2C2 Xe C

X

a;b

VLiCXe C V .Ra;Rb;Rab/

The three terms represent, respectively, the interaction between the valence
electron and the ionic system Li22CXe, the core-core interactions, and finally the
three-body interactions. The three terms are developed in the next subsections.

The VLiCXe contribution is taken from the accurate and recent coupled cluster
simple and double excitation (CCSD) calculations of Lozeille et al. [26]. For a
better representation of the LiCXe interaction in the region of interest for the

Li Li

Xe

γ
aγ

R
Ra

Rb

γ

Rab

bFig. 16.1 Coordinates of the
Li2

C(X2†g
C)Xe system

used in the calculation
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Table 16.1 Interpolation parameters (in a.u.) of LiCXe interaction

Aeff B D4 D6 D8 D10

127.166 1.68791 13.645 295.131 1,793.07 �16,776.6

Li2C(X2†g
C) system, the numerical potential is fitted using the analytical form of

Tang and Toennies [27]. Such potential contains the well-known long-range terms
of van der Waals interactions and the usual exponential repulsive term. It is written
as follows:

VLiCXe D Aeff exp .�bR/ � D4

R4
� D6

R6
� D8

R8
� D10

R10

The parameters Aeff, b, D4, D6, D8, and D10 are obtained by a square fitting using
the numerical potential of Lozeille et al. [26]. These parameters are presented in
Table 16.1. Figure 16.2 presents the Lozeille et al. [26] numerical potential (circles)
of LiCXe compared to the analytical one (solid line). The difference between our
analytical potential and the numerical one does not exceed 1.910�6 a.u., which
corresponds to less than 1 cm�1.

For the Ve�Li22CXe contribution, we have performed a one-electron ab initio
calculation where the two LiC cores and the electron-xenon effects have been
replaced by semilocal pseudopotentials [22].

The analytical formula for the three-body interactions is given by

V .Ra;Rb;Rab/ D �	a	b
R3ab

Œ2 cos �a cos �b � sin �a sin �b�

where the angles �a and �b are formed between each dipole distance from the point-
like charge (Ra, Rb) and the line joining them (Rab). Each dipole moment 	a can
then be evaluated via the well-known formula: 	a D ˛

ı

R2a where ’ being the Xe
polarizability.

16.3 Results and Discussions

16.3.1 Potential Energy Surfaces and Spectroscopic Constants

The potential energy surfaces for the Li2C(X2†g
C)Xe system have been computed

as a function of the Jacobi coordinate V(Re, R, � ) and for six different angles � and a
fixed distance for the Li2C(X2†g

C) ionic molecule corresponding to the equilibrium
distance. The distance R is the separation between the xenon atom and the center of
mass of the Li2C(X2†g

C) ionic molecule, and � is the angle between R and the Li2C
internuclear axis. These potential energy surfaces have been determined including
the three-body interactions. The potential energy surfaces of the Li2C(X2†g

C)-Xe
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Fig. 16.2 Lozeille et al. [26] numerical potential of LiCXe interaction compared to the analyti-
cal one

interactions corresponding to the six different angles are displayed on Figs. 16.3
and 16.4. Figure 16.3 presents the potential energy surfaces of the Li2C(X2†g

C)-Xe
interactions corresponding to the six different angles without the three-body effects.
First, we notice that all these curves tend to the same asymptotic limit. This limit,
which equals �0.24597 a.u., is the energy of the Li2C(X2†g

C) at its equilibrium
distance (Re D 5.84 a.u.). Second, we remark that all the potential energy surfaces
are attractive since they present minimums of lower energy relative to the asymptotic
limit. In addition, these potential energy surfaces show that the Li2C(X2†g

C)-Xe
interactions present an interesting and unusual feature of the strong interaction
and anisotropy. The comparison between the potential energy surfaces shows that
the attractive effects decrease their importance with respect to the attractive long-
range interaction forces as one goes from � D 0ı to 90ı. In addition, the geometry
exhibiting the deepest well is obtained for a collinear orientation around � D 0ı.
So, it is clear that the Xe atom would be linked at the extremity of the Li2C(X2†g

C)
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Fig. 16.3 Orientational features of the rigid rotor potential energy surfaces for six different angles
(”D 0ı, 11ı, 25.3ı, 39.7ı, 68.5ı, and 90.0ı) without the three-body effects

alkali dimer. In fact, the Li2C(X2†g
C) alkali dimer in its ground state can be

roughly considered as an electron cloud located in the middle of the two LiC cores.
The short-range repulsion between the electron and Xe atom combined with the
attraction between the cationic cores and Xe atom thus favors the positioning of
the rare gas atom at one extremity of the Li2C(X2†g

C) alkali dimer molecule. The
potential energy surfaces including the three-body effects of the Li2C(X2†g

C)-Xe
interactions are presented with the black dashed line in Fig. 16.4. We note that the
three-body interactions decrease the interaction energy. This decrease is significant
at distances close to the equilibrium distances.

The spectroscopic constants corresponding to the equilibrium distance (Re),
the well depth (De), and the harmonicity frequency (!e) of all potential energy
surfaces without and with the three-body interactions are collected in Table 16.2.
The analysis of these data shows that the equilibrium distance, the depth of the well,
and the harmonicity frequency depend on the angle ” showing the strong anisotropy
of the Li2C(X2†g

C)-Xe system. In fact, we remark that the well depth and the
harmonicity frequency decrease when � increases. The same remark is observed for
the equilibrium distance for the lowest four angles � , then it increases for � D 68.5ı
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Fig. 16.4 Effect of the three-body interaction on the potential energy surfaces (black dotted lines)

and � D 90.0ı. As it seems from Table 16.2, the three-body interactions lead to a
significant decrease in energy and to a small increase in equilibrium position. For
example, the potential energy surface, for � D 0ı, exhibit the deepest well depth.
This curve presents a well depth of 1,625 cm�1 located at the equilibrium distance
of 8.54 a.u. without the three-body effects and a well depth of 1,240 cm�1 located
at the equilibrium distance of 8.66 a.u. when the three-body effect is included.

16.3.2 Analysis of the Surface Anisotropy

To assess the main features for the orientational anisotropy in the RR (rigid rotor)
interactions, we used the familiar multipolar expansion:

V .R; �/ D
�maxX

�D1
V�.R/P� .cos �/
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Table 16.2 Spectroscopic
constants of the ground
electronic states of
Li2

C(X2†g
C) system

without and with the
three-body effects

Angle (ı) Re (a.u.) De (cm�1) !e (cm�1)

� D 0.0 8.54 1,625 254.00
(*) 8.66 1,242 231.55
� D 11.0 8.47 1,588 246.14
(*) 8.60 1,210 216.87
� D 25.3 8.25 1,431 219.66
(*) 8.34 1,076 204.11
� D 39.7 7.84 1,114 186.17
(*) 7.99 829 178.05
� D 68.5 8.15 335 64.31
(*) 8.46 220 62.79
� D 90.0 8.92 197 46.21
(*) 9.41 127 37.49

(*) Spectroscopic constants with the three-body
interactions effect

where R is the separation between the xenon atom and the center of mass of the
Li2C(X2†g

C)Xe ionic molecule and � is the angle between R and the Li2C(X2†g
C)

internuclear axis.
Figure 16.5 reports V�.R/ the multipolar functions from � D 0 to 5. These

multipolar functions show different orientational anisotropy in the repulsive region
and also differences in the long-range strength of the interaction. Only the multipolar
function for � D 1 exhibits a clear attractive well located at 8.97 a.u. The curves of
the multipolar functions for � D 3 and � D 4 are repulsive, while those of � D 0,
� D 2, and � D 5 are similar in shape and exhibit a small barrier. Furthermore,
these V�.R/ can be used in the standard close-coupling formulation of atom-rigid
rotor collisions, as they facilitate the determination of the required matrix elements
of the potential. Moreover, they will be used for exploring the structure of LiCXen

clusters.

16.4 Conclusion

In this work, we have evaluated the potential energy surfaces, including the three-
body interactions, describing the interaction between the Li2C(X2†g

C) alkali
ionic dimer in its ground state and the xenon atom. We have used a standard
quantum chemistry approach based on nonempirical pseudopotential, parameterized
l-dependent polarization potential, and an analytic potential form for the LiCXe
interaction. The potential energy surfaces for the interaction Li2C(X2†g

C)-Xe have
been computed for a fixed distance of the Li2

C(X2†g
C) and for an extensive

range of the remaining two Jacobi coordinates, R and ”. In this context, the
Li2C(X2†g

C)Xe is reduced to only one-electron system. The spectroscopic con-
stants of these potential energy curves for fixed angles and varying R have been
extracted. As it is expected, the potential energy surface of the Li2C(X2†g

C)-
Xe system presents an interesting and unusual feature associated to the strong
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Fig. 16.5 Multipolar functions from � D 0 to � D 5

interaction and anisotropy. This anisotropy is demonstrated by writing the potential
energy surface in terms of the Legendre polynomial multipolar expansion. It seems
that the deepest well is associated with � D 0ı. We assume that the Xe atom would
be attached at the extremity of the Li2C(X2†g

C) alkali dimer. Moreover, the three-
body interactions lead to a small decrease in energy. This decrease is remarkable
close to the equilibrium distances.

This simple model and also the produced analytical potential energy surface
(PES) will be used to explore the structure, the geometry, and the stability of Li2C-
Xen clusters.
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Chapter 17
Validation of Quantum Chemical Calculations
for Sulfonamide Geometrical Parameters

Akifumi Oda, Yu Takano, and Ohgi Takahashi

Abstract Sulfonamide is one of the most important chemical groups in drug design
because sulfonamide derivatives are stable in living cells and water soluble. In this
study, we assessed the validity of quantum chemical methods and basis sets for the
geometrical parameters of various sulfonamides compared to crystallographic
data. Introducing f-type polarization functions into basis sets improved the
geometry optimizations using Hartree-Fock, MP2, and B3LYP, indicating that
f-type polarization functions play an important role in the description of chemical
bonds in sulfonamide derivatives.

17.1 Introduction

Sulfonamide (Fig. 17.1) is one of the most important chemical groups in drug design
because sulfonamide derivatives are generally stable in living cells and water soluble
[1–5]. In addition, the sulfonamide group is a bioisostere of the carboxyl group
[6–8] and frequently used in structure-activity relationship studies during drug
design. In fact, some sulfonamide derivatives have been investigated as potential
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Fig. 17.1 Sulfonamide
structure

drug candidates or approved as drugs, including antibacterial agents [1], antiviral
drugs [2], diuretics [3], and antitumor substances [4, 5].

Many sulfonamide X-ray structures have been determined and stored in Cam-
bridge Structural Database (CSD) [9] and Protein Data Bank [10]. The sulfonamide
nitrogen atom has recently been reported to form both planar and pyramidal
conformations [11, 12], indicating that the three-dimensional (3D) sulfonamide
structures should be treated carefully.

Nowadays, computational chemistry plays a significant role in drug and material
design studies. Protein-ligand docking, quantitative structure-activity relationship
studies, and molecular dynamics simulations are often used in computer-aided drug
design (CADD) [13–15]. Because these methods are based on classical molecular
mechanics, a set of parameters is defined for each atom type. For example, distinct
parameters are provided for sulfur atoms in thiol, sulfide, sulfoxide, and sulfone
groups. The sulfur atom in sulfonamide is regarded as a “hexavalent sulfur” in
several molecular mechanics force fields. The “S.o2” and “s6” atom types are used
for hexavalent sulfur in Tripos [16] and general AMBER force fields (GAFF) [17],
respectively. The force field parameters are obtained from both the experimental
work and quantum chemical calculations and are available in the CHARMm, MM3,
and GAFF force fields for sulfonamide [18–20]. In CHARMm and MM3 force
fields, HF/6-31G* and MP2/6-31CG* methods were used to derive the parameters.
The GAFF parameters were determined at the MP4/6-311G(d,p)//MP2/6-31G*
level. However, the quantum chemical methods used to determine these force fields
have not been validated sufficiently. Theoretical studies have been carried out to
validate quantum chemical calculation methods and basis sets for sulfur-containing
molecules like C2S2H2 isomers, SO2, SO3, and FeS clusters [21–23]. Vijay et
al. examined the dependence of relative C2S2H2 isomer energies on theoretical
methods and basis sets and concluded that the inclusion of f-type polarization
functions on non-hydrogen atoms was essential [21]. Gregory and Jenks used the
B3LYP functional to study the relative energies of vicinal disulfoxides and other
sulfinyl radical dimers and concluded that the aug-cc-pVQZ basis set gave results
close to the Kohn-Sham complete basis set limit [24]. Denis investigated the basis
set requirements for SO2 and SO3 using density functional theory and compared
geometrical parameters and total atomization energies resulting from correlation-
consistent, polarized-consistent, and Pople-type basis sets [22]. Niu et al. studied
the dependence of the geometries and redox potentials of [Fe(SCH3)4]2�/1�/0 and
[Fe(SCH3)3]1�/0 on DFT functionals using effective core potential and full core
basis sets compared to experimental values [23]. They recommended that B3LYP
be used with at least a double-— basis set incorporating polarization functions like
6-31G** for geometry optimization of iron-sulfur systems and additional diffuse
functions for energy calculations. The molecular structures of some sulfonamide
derivatives have been calculated using quantum chemical methods [25, 26]. Elgueo
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et al. carried out HF calculations with STO-3G*, 4-31G, and 6-31G* basis sets
to study the rotational barrier and tautomerism of HSO2NH2 [25]. Heyd et al.
investigated N-methylmethanesulfonamide rotation and inversion barriers using
HF and MP2 methods with 6-31G* and larger basis sets [26]; however, the
sulfonamide used in their study was simple. The CSD contains a wide variety of
3D sulfonamide structures. Therefore, quantum chemical methods which accurately
calculate sulfonamide structures play an important role in computational studies of
sulfur-containing systems.

In this study, the validity of quantum chemical methods and basis sets has been
assessed for sulfonamide geometrical parameters. Comparison with experimental
data showed that including f-type polarization functions into basis sets improved
the geometry optimizations at the Hartree-Fock, MP2, and B3LYP levels. Semiem-
pirical methods did not reproduce the experimental sulfonamide bond lengths, bond
angles, and torsion angles.

17.2 Methods

To validate the computational methods used to determine the sulfonamide
geometrical parameters, six sulfonamide derivatives stored in the CSD were chosen
for the test set because they contain three types of sulfonamide nitrogen atoms,
non-, mono-, and disubstituted (Fig. 17.2). These sulfonamide derivatives were
3-ammoniobenzenesulfonamide (1) (ABZSLM), N-(2-benzyl-4-nitrophenyl)-N-
methylmethanesulfonamide (2) (ACICAQ), N-(ethylsulfonyl)ethanesulfonamide
(3) (DODNUF), N-(4-chlorophenyl)methanesulfonamide (4) (FIRGOD), trans-
octahydro-1-methyl-1H-2,1-benzothiazine 2,2-dioxide (5) (HITQOQ), and

S

+H3N
NH2

O

O
NO2

N
S

O

O

ABZSLM (1) ACICAQ (2)

N
H

SS
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O

O
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Fig. 17.2 Calculated
sulfonamide derivatives
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Table 17.1 Computational methods

Ref: crystal structure I: HF/3-21G A: B3LYP/3-21G
II: HF/4-31G B: B3LYP/4-31G

FF: GAFF III: HF/6-31G(d,p) C: B3LYP/6-31G(d,p)
IV: HF/6-31G(df,p) D: B3LYP/6-31G(df,p)

a: AM1 V: HF/6-311G(d,p) E: B3LYP/6-311G(d,p)
b: PM3 VI: HF/6-311G(df,p) F: B3LYP/6-311G(df,p)
c: PM5 VII: HF/cc-pVDZ G: B3LYP/cc-pVDZ

VIII: HF/cc-pVTZ H: B3LYP/cc-pVTZ
IX: HF/cc-pVQZ J: B3LYP/cc-pVQZ
i: MP2/6-31G(d,p)
ii: MP2/6-311G(df,p)

Underlined methods include f-type polarization functions in their basis set.
Each method is assigned a bold-type label

N-(methylsulfonyl)methanesulfonamide (6) (POMDAW). Quantum chemical
calculations were carried out using experimental structures as initial geometries.
The experimental and optimized structures were compared to validate the
computational methods.

Computational methods used in this study are listed in Table 17.1. We performed
semiempirical AM1, PM3, and PM5 molecular orbital (MO), ab initio HF and MP2
MO, and DFT (B3LYP) calculations. Nine basis sets (3-21G, 4-31G, 6-31G(d,p),
6-31G(df,p), 6-311G(d,p), 6-311G(df,p), cc-pVDZ, cc-pVTZ, and cc-pVQZ) were
used at the HF and B3LYP levels. In the MP2 calculations, 6-31G(d,p) and 6-
311G(df,p) basis sets were used. Classical molecular force field calculations using
GAFF were also performed for comparison.

Optimized bond lengths, bond angles, and torsion angles were compared with
the experimental structural data. The improper torsion angle around the sulfonamide
nitrogen atom was also compared with the experimental data to investigate whether
the nitrogen atom is pyramidal or planar. Averaged values were compared for
sulfonamides 3 and 6, which contained two sulfonamide moieties.

Semiempirical calculations were carried out using MOPAC2002 [27], and ab
initio HF, MP2, and B3LYP calculations were performed with Gaussian 03 program
package [28]. For the GAFF molecular mechanics calculations, the AMBER9
sander module [29] was used with AM1-BCC charges [30] estimated using the
antechamber module [31]. Dielectric constant and cutoff were set to 80 and 999 Å,
respectively. The “GNORM D 0.100 PRECISE MMOK GEO-OK” option was used
for the semiempirical calculations.

To elucidate roles of functionals in DFT calculations for sulfonamide derivatives,
the comparison between BLYP and HFB were carried out. For the calculations, nine
basis sets mentioned above were used.
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17.3 Results

The dependence of molecular geometries on theoretical methods and basis sets
was examined and compared to the experimental crystal data. Atom labels for
sulfonamide oxygen and substituents bound to the sulfonamide nitrogen are shown
in Fig. 17.3.

17.3.1 Bond Lengths

First, S–N bond lengths were compared with the experimental data in Fig. 17.4.
In addition, the root mean square deviation (RMSD) between experimental and
computational values for each method was described in Table 17.2. As shown in

1 2
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R2R2 O1
O2R1
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Fig. 17.3 Definition of atom names (yellow sulfur, blue nitrogen, red oxygen, gray carbon, white
hydrogen)



336 A. Oda et al.

FF b I III V VII IX ii B D F H
a c II IV VI VIII i A C E G J

-0.05

0

0.05

0.1

0.15

0.2

0.25

S-
N

/Å

1 2 3 4 5 6

Fig. 17.4 Differences between experimental and computational S–N bond lengths (Computational
methods are listed in Table 17.1)

Table 17.2 RMSDs for S–N bond lengths

FF a b c i ii
RMSD/Å 0.043 0.008 0.132 0.025 0.052 0.032

I II III IV V VI VII VIII IX
RMSD/Å 0.073 0.083 0.022 0.017 0.020 0.016 0.031 0.016 0.015

A B C D E F G H J
RMSD/Å 0.164 0.176 0.065 0.055 0.060 0.052 0.084 0.051 0.040

Fig. 17.4, 3-21G (I and A) and 4-31 G basis sets (II and B) gave much longer S–N
bond lengths than in experimental structures compared with methods using more
accurate basis sets. Methods A and B showed that the S–N bond of 1 was longer
than for sulfonamide 6, although the X-ray structures show that sulfonamides 1
and 6 have the shortest and longest S–N bonds, respectively. These methods have
therefore failed to qualitatively reproduce the experimental S–N bond length. They
also generated S–O bonds which were much longer than experimental data by more
than 0.1 Å. These results show that 3-21G and 4-31G basis sets are not appropriate
for the geometrical optimization of sulfonamide derivatives.

Regarding semiempirical methods, while AM1 (method a) and PM5 (method c)
values were relatively reasonable, PM3 bond lengths (method b) were consistently
more than 0.1 Å longer than experimental data, implying that PM3 is unsuitable for
the structural calculations of sulfonamides.

Bond lengths optimized using ab initio and DFT calculations decreased ac-
cording to the order B3LYP, MP2, and HF. The HF, MP2, and B3LYP methods
reproduced the experimental S–N bond lengths with larger basis sets (6-31G(d,p)
or larger ones). However, the basis sets that did not include f-type polarization
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Fig. 17.5 Differences between experimental and computational S–N–R1 bond angles (Computa-
tional methods are listed in Table 17.1)

functions produced slightly longer bond lengths. MP2 (i and ii) and B3LYP
combined with higher-level basis sets (C–J) gave values that were closer to the
experimental results. The 6-31G(d,p) basis set produced reasonable bond lengths
for the sulfonamide derivatives; however, the higher-level basis sets were more
accurate. In spite of slight differences between these methods, the highest level
basis sets, corresponding to cc-pVQZ for HF and B3LYP (methods IX and J) and 6-
311 G(df,p) for MP2 (method ii), provided bond lengths with a ca. 0.05 Å deviation
compared to the experimental data.

17.3.2 Bond Angles

The computed S–N–R1 bond angles are shown in Fig. 17.5. RMSD between exper-
imental and computational values was shown in Table 17.3. HF calculations using
3-21G and 4-31G basis sets gave similar S–N–R1 bond angles to those obtained
with higher-level basis sets. On the other hand, DFT calculations using these small
basis sets predicted bond angles which differed from other calculated values. These
results suggest that relying on the basis sets for the structural optimization of
sulfonamide derivatives is risky. Some bond angles calculated using semiempirical
AM1 and PM5 methods were significantly different from the experimental values.
In particular, for sulfonamide 1 in PM5 compared to experimental values, the S–
N–R1 angle differed by more than 15ı. PM3 results were better than those of
AM1 and PM5; however, angles calculated for sulfonamides 3 and 6 were different
from the experimental ones compared to higher-level calculations, suggesting that
semiempirical calculations are inadequate for sulfonamides.
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Table 17.3 RMSDs for S–N–R1 bond angles

FF a b c i ii
RMSD/degree 2.5 8.0 4.7 9.7 1.3 1.6

I II III IV V VI VII VIII IX
RMSD/degree 3.1 2.3 2.2 2.7 2.2 2.7 1.2 2.3 2.6

A B C D E F G H J
RMSD/degree 1.8 1.3 1.3 1.3 1.3 1.7 3.7 1.5 1.7

B3LYP calculations with the cc-pVDZ basis set (method G) gave S–N–R1
bond angles which differed from other methods because of the absence of f-
type polarization functions, implying that f-type polarization functions may be
important for predicting bond angles. In addition, most methods gave larger angles
for sulfonamide 2 than for 3 and 6, except for method ii which provided similar
values for sulfonamides 2, 3, and 6. Because MP2 bond angles were closer to the
experimental data than HF values, MP2 appears more suitable than HF regarding
bond angles.

Both GAFF calculated bond lengths and angles were similar to each other for
sulfonamides 1, 3, 5, and 6 (Figs. 17.4 and 17.5). Thus, GAFF is inappropriate
for comparing the geometrical parameters of sulfonamide derivatives. However,
because the estimated bond lengths and angles were not significantly different from
experimental values, GAFF may be useful for rough estimates of 3D sulfonamide
derivative structures.

17.3.3 Torsion Angles

The computational results of O1–S–N–R1 were illustrated in Fig. 17.6 and
Table 17.4. The calculated O1–S–N–R1 torsion angles of sulfonamide 5 were
around �60ı with all methods (Fig. 17.6), consistent with the experimental value.
This is because the sulfonamide moiety forms a ring structure in 5, reducing its
conformational flexibility. All methods, except GAFF, reproduced the experimental
torsion angle of 6, which has a relatively simple structure despite two sulfonamide
moieties. This suggests that quantum chemical calculations give reasonable torsion
angles around the S–N bond for the simple sulfonamide like 6. On the other hand,
similar to bond lengths and angles, torsion angles calculated using 3-21G and 4-31G
basis sets were remarkably different from experimental values for sulfonamides
2, 3, and 4. Semiempirical methods also gave torsion angles that differed from
experimental values for sulfonamides 2 and 4. These results indicate that more
accurate methods are preferable for large sulfonamide derivatives.

Only method G succeeded in predicting the experimental torsion angle of
1 (�54.2ı). Methods I, a, and c gave negative torsion angles, but their bond
lengths and angles were inconsistent with the experimental data. In addition, these
methods failed to reproduce the experimental torsion angles for other sulfonamides.
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Table 17.4 RMSDs for O1–S–N–R1 torsion angles

FF a b c i ii
RMSD/degree 89.2 24.8 31.3 24.6 25.1 26.1

I II III IV V VI VII VIII IX
RMSD/degree 35.4 33.7 24.4 24.2 24.5 24.3 25.1 23.4 23.0

A B C D E F G H J
RMSD/degree 47.0 44.5 26.5 26.3 26.3 26.3 10.3 25.3 24.8

Therefore, they may be inappropriate for the structural optimization of sulfonamide
derivatives. Highly accurate methods ii and J gave torsion angles of C6.9ı and
C1.4ı, respectively, which were significantly different from the experimental
value of �54.2ı. The experimental crystal structure of 1 exhibited a pyramidal
sulfonamide nitrogen (Fig. 17.7). Sulfonamide nitrogen conformations optimized
with methods G and J were also pyramidal. In contrast, optimizations using
method a resulted in a planar conformation for the sulfonamide nitrogen. Therefore,
although the torsion angle calculated with method a was better than with method J,
method a did not reproduce the experimental structure as accurately as method J.
Because method J gave a pyramidal sulfonamide nitrogen, the difference between
calculated and experimental torsion angles may be caused by rotation about the S–N
bond. As proposed previously, conformational differences might be attributed to the
surrounding environment of 1: experimental structures were determined in a crystal,
whereas computed geometries were optimized in the gas phase [12]. Gas phase
geometry optimizations using methods G and I reproduced experimental crystal
structures despite the lack of d-type polarization functions in the basis sets. Because
the sulfur d-orbitals have been reported to be important for torsion angles about the
sulfonamide S–N bond [25], methods G and I might be inappropriate for gas phase
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Fig. 17.7 Three-dimensional structure of sulfonamide nitrogen in 1

optimizations. These results indicate that torsion angles about the sulfonamide S–
N bond easily change according to molecular environment. Therefore, exclusively
considering crystal and/or optimized structures may be insufficient for the molecular
design of sulfonamide derivatives. In addition, despite similarities between the
optimized structures of small sulfonamides 3 and 6 and their crystal structures in this
study, conformational disagreements have also been reported between optimized ge-
ometries and experimental structures, even for very simple sulfonamide derivatives
[32]. Conformational analyses are thus desirable for all sulfonamide derivatives.

17.3.4 Improper Torsions

The improper R1–N–R2–S torsions show whether the sulfonamide nitrogen adopts
either a pyramidal or planar conformation. Because the sulfonamide nitrogen
can form both conformations, appropriate theoretical methods are required to
determine the conformation in sulfonamide derivatives. As shown in Fig. 17.8 and
Table 17.5, improper torsions obtained by semiempirical methods a and c were
significantly different from the experimental data. In particular, method a gave
a planar conformation for all sulfonamide nitrogens. Although GAFF produced
inappropriate torsion angles around S–N, the obtained values were more reasonable
than for methods a and c despite a classical mechanical treatment.

Similar to bond lengths, bond angles, and torsion angles, HF and B3LYP
calculations using 3-21G and 4-31G basis sets gave unreasonable improper torsions.
Including f-type polarization functions was found to play a more important role
for improper torsions than for other structural features and, in particular, to be
indispensable to B3LYP calculations of sulfonamide derivatives. B3LYP reproduced
experimental improper torsions more accurately than HF. However, the accuracy of
the B3LYP optimized structure heavily depends on the basis set. Improper torsions
calculated using high-level and expensive methods like ii agreed with experimental
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angles (Computational methods are listed in Table 17.1)

Table 17.5 RMSDs for R1–N–R2–S improper torsions

FF a b c i ii
RMSD/degree 6.7 29.9 7.6 24.9 10.5 3.9

I II III IV V VI VII VIII IX
RMSD/degree 14.2 16.8 9.9 12.1 9.3 10.9 7.7 9.3 9.8

A B C D E F G H J
RMSD/degree 13.7 12.7 10.5 7.9 6.9 8.0 17.5 7.2 7.6

values within a deviation of 9ı, suggesting that the method is appropriate for
sulfonamide optimizations. Method i provided much worse improper torsions
compared to ii, suggesting that the accuracy of MP2 calculations also depends on
basis sets and requires large basis sets. Computational methods should therefore
be appropriately selected according to their purpose and/or the limitations of the
computational resources.

17.4 Discussion

To elucidate the role of f-type polarization functions on describing chemical bonds,
natural bond orbital (NBO) analyses were carried out for the computational results
of method ii. For the NBOs of S O bonds in all six derivatives, the contributions
of f-type orbitals were largest of all 2-center bond NBOs. The second largest
contributions of f-type orbitals were observed in NBOs of S–N bond. Both for S O
and S–N, the contributions of f-type orbital of sulfur atoms were much larger than
those of oxygen or nitrogen atoms. In addition, gross orbital populations of f-type
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orbitals in sulfur atoms were largest of all f-type orbitals. Although the contributions
of sulfur f-type orbital to 2-center bond NBOs were only less than 0.1 % and
gross orbital populations of f-type orbital in sulfur were around 0.02, f-type orbital
of sulfur atoms may influence the geometrical properties of sulfonamide such as
improper torsions.

In Fig. 17.9, the optimized bond lengths of S–N in sulfonamide 1 by BLYP and
HFB were compared. As shown in the figure, bond lengths calculated by HFB
were larger than those by BLYP regardless of basis sets. Because the S–N bonds
optimized by HFB were larger than those by BLYP not only for 1 but also for all six
sulfonamide, the correlation functionals seem to play important roles in calculations
of bond lengths. In addition, because the deviations between computational and
experimental S–N–R1 bond angles using HFB also larger than those by BLYP,
correlation functionals should be used for geometrical optimizations of sulfonamide
by DFT.

17.5 Conclusion

In this study, appropriate methods were investigated for the structural optimization
of sulfonamide derivatives. The results showed that semiempirical methods were
unable to reproduce the experimental bond lengths, bond angles, and torsion
angles and that ab initio MO and DFT methods were indispensable to accurately
predict the molecular structures of sulfonamide derivatives. Combining ab initio
MO and DFT methods with low-level basis sets like 3-21G, 4-31G, and basis sets
without f-type polarizations did not reproduce the experimental data, suggesting that
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f-type polarizations were important. Because some GAFF geometrical parameters
were inappropriate compared to the experimental data, more refined force field
parameters are desirable for sulfonamides to perform protein-ligand docking, quan-
titative structure-activity relationship studies, and molecular dynamics simulations.
Quantum chemical methods investigated in this study are expected to be useful for
drug and material design involving sulfonamide derivatives.
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Chapter 18
Approximate Spin Projection for Geometry
Optimization of Biradical Systems: Case Studies
of Through-Space and Through-Bond Systems

N. Yasuda, Y. Kitagawa, H. Hatake, T. Saito, Y. Kataoka, T. Matsui,
T. Kawakami, S. Yamanaka, M. Okumura, and K. Yamaguchi

Abstract Molecular structures of Cr2(O2CCH3)4(OH2)2 and Fe2S2(SCH3)4 are
optimized by using spin-restricted (R), spin-unrestricted broken-symmetry (BS),
and approximate spin-projection (AP) methods with a B3LYP functional set, as
model systems of through-space and through-bond biradical systems respectively.
The effect of a spin contamination error (SCE) in the BS method and the static
correlation correction involved in the AP framework are examined, based on the
differences between these methods in the optimized geometry. The effective bond
order and magnetic coupling values are also calculated to explain the differences
between these methods. The AP method successfully corrects both the static
correlation and spin contamination errors, and the spin-projected bond orders can
clarify how the AP method works on them.

18.1 Introduction

A recent progress in quantum and computational chemistry has realized the first
principle calculation of electronic structures of large compounds such as macro-
molecules, proteins, and polynuclear metal complexes. It has also brought us a
quantitative prediction of molecular structures of such large molecules. For the
geometry optimization with the quantum chemical calculations, the first and the
second energy derivatives, i.e., gradient and Hessian, are usually utilized; therefore,
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Fig. 18.1 Calculated model
systems. (a) Through-space
biradical system:
Cr2(O2CCH3)4(OH2)2 (1).
Bridging oxygen atoms are
indicated as Ob. (b)
Through-bond biradical
system: Fe2S2(SCH3)4 (2).
Bridging and cysteine sulfur
atoms are indicated as Sb and
Sc, respectively

an accurate calculation of those energy derivatives is a key to the quantitative
estimation of the geometry [1]. On the other hand, those metal complexes are
often strong electron correlation systems called biradical or polyradical systems. A
treatment of the static (nondynamical) correlation is one of the important issues for
such compounds [2]. Multi-configuration (MC) calculations such as complete active
space (CAS) [3, 4] and multi-reference (MR) [5] methods have been a gold standard
for corrections of the static correlation for those systems. However, the polynuclear
metal complexes are usually too large for those MC methods to optimize the
geometry at this stage. On the other hand, a broken-symmetry (BS) method has
been widely used as an alternative way to correct the static correlation. Nowadays,
we first carry out the geometry optimization of a metal complex by the BS density
functional theory (DFT) method, followed by high accuracy calculations such as
CASPT2 or MRMP2. However, a spin contamination error (SCE) is involved in the
BS method, and it affects not only the total energies but also the energy derivatives.
For the problem, there have been proposed several projection methods to eliminate
the SCE [6–17].

Our group has proposed an approximate spin-projection (AP) scheme to elim-
inate the SCE from both the energy [14, 15] and energy derivatives[16, 17]. The
AP method for the energy derivatives realizes the geometry optimization without
the SCE at the lower computational costs. The AP geometry optimization (AP
optimization) results have clearly indicated that the spin contamination sometimes
causes a crucial error that misleads a conclusion [16, 17]. In this chapter, we start
from explanations of the AP method for energy, energy derivatives, and bond order.
After that, two applications of the AP optimization method are demonstrated in
terms of “through-space” and “through-bond” biradical systems. As the through-
space systems, we focus on a di-chromium (II) complex, i.e., Cr2(O2CCH3)4(OH2)2

(1) as illustrated in Fig. 18.1. Although the complex formally has a quadruple d-
d bond [18–20], the spins are almost localized on the Cr(II) ions because of the
strong static correlation effect [21, 22]. So, the complex 1 is considered to be
a through-space biradical system. On the other hand, we adopt a 2Fe-2S cluster
(2), which is found in active sites of ferredoxin, as the through-bond systems. In
an oxidized state, two irons are ferric high spin (s D 5/2) ions, and they couple
antimagnetically through bridging S2– ions [23–25]. Therefore, the system is
defined as a through-bond biradical system. In order to generalize a discussion,
we construct a simple model cluster that consists of Fe2S2(SCH3)4 as illustrated
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Fig. 18.2 Illustration of a
potential surface of H2

molecule. At the dissociation
limit, two electrons are
formally described as two
localized spins

in Fig. 18.1. The molecular structures of those model systems 1 and 2 are optimized
by spin-restricted (R), spin-unrestricted broken-symmetry (BS), and approximate
spin-projection (AP) methods with B3LYP functional set methods to elucidate the
effect of the SCE and the static correlation in the systems.

18.2 Theoretical Background of the AP Method

In this section, a theoretical background of the AP method for the biradical systems
is explained with the simplest two-spin model (e.g., a dissociated H2) as illustrated
in Fig. 18.2.

18.2.1 Application of the Heisenberg Hamiltonian
to the Biradical State

A dissociation of H2 is usually obtained from HOMO-LUMO mixing in the BS
method [26]. However, the orbital mixing leads a contamination of higher spin states
in a singlet wavefunction. For example, HOMO orbitals for up-spin ( 1) and down-
spin ( N 1) electrons of the dissociated H2 are expressed as follows:

 1 D cos 
1 C sin 
2 (18.1)

N 1 D cos 
1 � sin 
2 (18.2)

where 0 � 
 ��/4 and 1 and 2 express HOMO and LUMO orbitals of spin-
restricted calculations, respectively [25]. And the wavefunction of the BS singlet
(e.g., unrestricted Hartree-Fock (UHF)) becomes

ˇ
ˇ
ˇ‰

Singlet
BS

E

D cos2

ˇ
ˇ1 N1

˛C sin2

ˇ
ˇ2 N2

˛ � p
2 cos 
 sin 


ˇ
ˇ‰Triplet

˛

; (18.3)
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where 1 and N1 express up- and down-spin electrons in orbital 1, respectively. The

BS wavefunction that 
 is not zero causes spin densities and gives nonzero
D

bS
2
Esinglet

BS
value. We often regard such spin densities as an existence of localized spins.
An interaction between localized spins could be expressed by using Heisenberg
Hamiltonian [27, 28],

bH D �2
X

a; b

JabbS a � bS b; (18.4)

where bS a and bS b are spin operators for spin sites a and b, respectively, and Jab is an
effective exchange integrals. Using a total spin operator of the system bS D bS aCbS b,
Eq. (18.4) becomes

bH D �2
X

a; b

Jab

�

�bS 2 C bS 2
a C bS 2

b

	

(18.5)

Operating Eq. (18.5) to Eq. (18.3), the singlet state energy in Heisenberg
Hamiltonian (ESinglet

HH ) is expressed as

E
Singlet
HH D Jab

�

�
D

bS
2
ESinglet

C
D

bS 2
a

ESinglet C
D

bS 2
b

ESinglet
�

: (18.6)

Similarly, for triplet state,

E
Triplet
HH D Jab

�

�
D

bS
2
ETriplet

C
D

bS 2
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ETriplet C
D

bS 2
b

ETriplet
�

: (18.7)

The energy difference between singlet .ESinglet
HH / and triplet .ETriplet

HH / states (S-T
gap) within Heisenberg Hamiltonian should be equal to the S-T gap calculated by
the difference in total energies of ab initio Hamiltonian (ESinglet

BS and ETriplet). And
if we can assume that spin densities of the BS singlet state on spin site i (i D a or b)

are almost equal to ones of the triplet state, i.e.,
D

bS 2
i

ETriplet Š
D

bS 2
i

ESinglet
, then Jab is

derived as

Jab D E
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Singlet
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: (18.8)

If the method is exact and the spin contamination in both singlet and triplet states

is zero (i.e.,
D

bS
2
ESinglet

Exact
D 0 and

D

bS
2
ETriplet

Exact
D 2), the S-T gap between those states

can be expressed as
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E
Singlet
Exact � E

Triplet
Exact D 2Jab: (18.9)

However, the spin contamination in the triplet state is usually negligible (i.e.,
D

bS
2
EHS

Š 2) but is not small in the singlet state, so the S-T gap becomes

E
Singlet
BS � ETriplet D 2Jab � Jab

D

bS
2
ESinglet

BS
: (18.10)

A second term in Eq. (18.10) is the SCE in the S-T gap, and, consequently, a
second term in a denominator of Eq. (18.8) projects the spin contamination in the
BS singlet solution. In this way, Eq. (18.8) gives approximately spin-projected (AP)
Jab values. Equation (18.8) can be easily expanded into any spin dimers, namely,
the lowest spin state (LS) and the highest spin state (HS), e.g., singlet-quintet for
Sa D Sb D 2/2 pairs, singlet-sextet for Sa D Sb D 3/2 pairs, and so on, as follows:

Jab D ELS
BS �EHS

D

bS
2
EHS

�
D

bS
2
ELS

BS

: (18.11)

Equation (18.11) is so-called Yamaguchi’s approach to calculate Jab values with
the AP procedure, which is simply denoted by Jab here [9]. The calculated Jab value
can explain an interaction between two spins. If a sign of calculated Jab value is
positive, the interaction is ferromagnetic, while if it is negative, the interaction is
antiferromagnetic [9].

18.2.2 Approximate Spin Projection for BS Energy
and Energy Derivatives

Because Jab calculated by Eq. (18.8) is a value that the spin contamination error
is approximately eliminated, it should be equal to Jab value calculated by the
approximately spin-projected LS energy (ELS

AP) as

Jab D ELS
BS �EHS
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2
EHS

�
D

bS
2
ELS

BS

D ELS
AP � EHS

D

bS
2
EHS

�
D

bS
2
ELS

AP

: (18.12)

Here, we assume
D

bS
2
EHS

Š Smax .Smax C 1/; then one can obtain a spin-

projected energy of the singlet state without the SCE as follows [14, 15]:

ELS
AP D ˛ELS

BS � ˇEHS (18.13)
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where

˛ D
D

bS
2
EHS

�
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2
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BS

and ˇ D ˛ � 1 (18.14)

In order to carry out the geometry optimization using the AP method, an energy
gradient of ELS

AP is necessary.ELS
AP can be expanded by using Taylor expansion,

ELS
AP




RLS
AP

� D ELS
AP .R/C XTG LS

AP .R/C 1

2
XTF LS

AP .R/X ; (18.15)

where G LS
AP .R/ and F LS

AP .R/ are gradient and Hessian of ELS
AP .R/, respectively

[16, 17]. RLS
AP and R are a stationary point of E LS

AP .R/ and a present position,
respectively, and X is a position vector, X D RLS

AP � R. The stationary point RLS
AP

is a position where G LS
AP .R/ D 0; therefore, one can obtain RLS

AP if G LS
AP .R/ can be

calculated. By differentiatingELS
AP .R/ in Eq. (18.13), we obtain
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where G LS
BS and GHS are the energy gradients calculated by the BS and the HS

states, respectively. As mentioned above, the spin contamination in the HS state is

negligible, so that
D

bS
2
EHS

is usually constant. Then, @˛ .R/ =@R is written as
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A function @
D

bS
2
ELS

BS
=@R is usually obtained from a numerical fitting [16, 17]. By

using Eqs. (18.16) and (18.17), the AP optimization can be carried out. In addition,
one can also calculate the spin-projected Hessian (AP hessian;F LS

AP .R/ in Eq. 18.15)
as follows:
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(18.18)



18 Approximate Spin Projection for Geometry Optimization of Biradical . . . 351

where F LS
BS and F HS are the Hessians calculated by the BS and the HS states,

respectively, and
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By using Eqs. (18.18) and (18.19), the spin-projected vibrational frequencies are
also calculated.

18.2.3 Approximate Spin Projection for the BS Wavefunction
and its Analysis

In addition to the BS energy and its derivatives, the BS wavefunction has also vital
information [29]. Here, let us go back to Eq. (18.3). From the equation, an overlap
between alpha and beta orbitals (T) becomes

T D ˝

 1
ˇ
ˇ N 1

˛ D cos2
 � sin2
 D cos 2
: (18.20)

And because occupation number (n) of natural orbital (NO) for the corresponding
BS HOMO is expressed as n D 2cos2
 , we get the relation [29],

T D cos 2
 D n � 1: (18.21)

On the other hand, we can define projected wavefunction (PUHF) by eliminating
triplet species from BS singlet wavefunction from Eq. (18.3) as follows:
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(18.22)

If we focus on the second term, which is related to double (two-electron)
excitation, its weight (WD) can be obtained from Eqs. (18.21) and (18.22) as follows:

WD D
(r

2

1C T 2
1 � T
2

) 2

D 1

2

�

1 � 2T

1C T 2

�

: (18.23)
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This is the weight of double excitation calculated by the BS wavefunction. By
applying Eq. (18.21) to Eq. (18.23), the WD is expressed by using the occupation
number

y D 2WD D n2 � 4nC 4

n2 � 2nC 2
: (18.24)

This y value is called an instability value of a chemical bond (or diradical
character) [29]. In case of the spin-restricted or spin-adapted (SA) calculations, the y
value should be zero. However, if a couple of electrons tend to localize on each atom,
in other words the chemical bond becomes unstable with the strong static correlation
effect, the y value becomes larger and finally becomes 1.0. So, the y value can be
applied for the analyses of di- or polyradical species, and it is often useful to discuss
the stability (or instability) of chemical bonds. The idea of effective bond order (b),
which defined by the difference in occupation numbers of occupied NO (n) and
unoccupied NO (n*) as

b D n � n�

2
; (18.25)

is similar to that of the instability value. Different from the y value, the b value
becomes smaller when the chemical bond becomes unstable. If we define the
effective bond order with the spin-projection b(AP) [29], it is related to the y value

b .AP/ D 1 � y (18.26)

Those indices make it possible to discuss the instability in chemical bonds from
the BS wavefunctions without the SCE. In addition, one can utilize the indices
to estimate the contribution of double excitation for very large systems in which
CAS and MR methods cannot be applied. In this chapter, magnetic orbitals that
correspond to the CAS space for the static correlation correction are examined by
the use of b(AP).

18.2.4 Computational Details

The AP optimization is carried out by using our own program that is based on

Eq. (18.16). For the derivative of
D

bS
2
ELS

BS
in Eq. (18.17), we have introduced a

numerical sampling method [16]. The
D

bS
2
ELS

BS
values at three points (Ri and Ri ˙ ı,

ıD 0.05 Å for distances, 0.5ı for angles and dihedral angles) are fitted to a second-
degree polynomial for each degree of freedom i to obtain approximate functions

of
D

bS
2
ELS

BS
for the calculation of @

D

bS
2
ELS

BS
=@R values at any points. In order to
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guarantee the accuracy of the approximate functions of @
D

bS
2
ELS

BS
=@R , the geometry

optimization is restarted from the obtained stationary point if it is far from the

initial geometry. The total energies,
D

bS
2
E

values, and energy gradients of BS and

HS states that are necessary for the projection are calculated by using Gaussian
09 [30]. For the basis set of the complex 1, Tatewaki-Huzinaga MIDI plus p-type
orbitals (533(21)/53(21)/(41)) [31] and 6-31G* are used for Cr ions and other atoms,
respectively. For the Fe2S2 cluster 2, we use 6-31CG* for sulfur atoms and 6-31G*
for other atoms, respectively.

18.3 Applications of the AP Optimization Method
to Biradical Systems

18.3.1 Application of AP Optimization to a Through-Space
Biradical System

As mentioned above, we first apply the AP method to the Cr2(O2CCH3)4(OH2)2

(1) complex that contains a quadruple bond (¢ ,  //,  ?, and • orbitals) [19]. For
the comparative study, the geometry of Cr(II) ions in the complex 1 are optimized
by B3LYP functional set with R, BS, and AP methods for the singlet (S D 0) state.
The geometry of the highest spin (HS, S D 4) state is also optimized by a spin-
unrestricted method to consider the SCE in the BS state. In order to focus on the
effects of the static correlation and the SCE on the Cr–Cr bond and to exclude an
error from a lack of a periodic condition, the geometry of the ligands including
the axial waters is fixed. The optimized structural parameters are summarized in
Table 18.1. From the result, we find the significant difference in the optimized
Cr–Cr distance (RCr–Cr) among those methods, while the change in the distance

Table 18.1 Optimized structural parameters of
Cr2(O2CCH3)4(OH2)2 (1) by X-B3LYPa (X D R,
BS, HS, and AP) and calculated J valuesb between Cr(II)
ions at the optimized and X-ray geometries

Geometry RCr–Cr/Å RCr–Ob/Å Calc. J value/cm–1

R 1.761 2.030 �3,252
BS 2.407 2.019 �624
(HS) (2.642) (2.027) (�349)
AP 2.331 2.017 �751
X-rayc 2.362 2.018 �734
aBasis set used here is midi plus p-type orbital for Cr ions
and 6-31G* for other atoms
bEquation (18.11) is used
cR-factor is 3.4 % [18]
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Fig. 18.3 Natural orbitals of
bonding and antibonding ¢ ,
 //,  ?, and • orbitals in
complex 1. An open circle
expresses a partial occupation
number by the static
correlation in a spin orbital

between Cr(II) and oxygen atoms of the bridging ligands (RCr–Ob) are small. At
first, the R-B3LYP method underestimates RCr–Cr. The reason of the underestimation
is easily expected as a lack of the static correlation correction in the closed-shell
spin-restricted method because the static correlation correction that incorporates
antibonding ¢*,  //*,  ?*, and •* orbitals should elongate the Cr–Cr distance. On
the other hand, the optimized RCr–Cr distance of the HS state is very long because a
bond order between Cr(II) ions equals zero in the HS state. Although the optimized
Cr–Cr bond of the BS-B3LYP method is also elongated in comparison with the R-
B3LYP ones, this stems from both the static correlation correction and the SCE that
are involved in the BS method.

On the other hand, the result of the AP method shortens the RCr–Cr from the BS
results. The difference in RCr–Cr between the BS and the AP methods (�RBS–AP)
that expresses the SCE is 0.076 Å. The difference between the AP and the R
methods in the RCr–Cr (�RAP–R) that approximately shows the elongations by the
static correlation correction is 0.570 Å. The comparison of �RBS–AP and �RAP–R,
i.e., the SCE and the static correlation, respectively, indicates that the dominant
contribution in the change between the R method and the BS method is the static
correlation correction; however, the ratio�RAP–R/�RBS–AP D 0.13 indicates that the
SCE is not negligible.

Next, let us examine the nature of the metal-metal bond between Cr(II) ions. For
the purpose, natural orbitals and their occupation numbers are obtained from the BS
wavefunctions at the each optimized geometry. As depicted in Fig. 18.3, there are
eight magnetic orbitals, i.e., bonding and antibonding ¢ ,  //,  ?, and • orbitals, that
concern about the direct bond between Cr(II) ions. If d-orbitals of two Cr(II) ions
have sufficient overlap to form the stable covalent bond, the occupation numbers of
each occupied orbital will be almost 2.0 (i.e., b(AP) is close to 1.0). As summarized
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Table 18.2 Occupation numbers and b(AP) values of •,  , and ¢ orbitals at the optimized
geometries by R, BS, and AP methods, together with the experimental structures for the
complex 1, the difference in b(AP) between BS and AP structures (�bAP–BS)

Occupation number b(AP)

Orbital R BS AP X-ray R BS AP X-ray �bAP–BS

• 1.341 1.144 1.152 1.148 0.611 0.282 0.297 0.289 0.016
 a 1.837 1.218 1.260 1.242 0.984 0.417 0.488 0.457 0.071
¢ 1.899 1.603 1.644 1.625 0.994 0.884 0.910 0.899 0.026
aAveraged values of  ? and  //

in Table 18.2, however, those bonds show smaller values. The occupation numbers
of all of occupied ¢ ,  , and • orbitals are closed to 1.0, indicating that electronic
structure of the complex 1 is described by a biradical singlet spin structure.

Because two Cr(II) ions are expressed as localized spins, the magnetic interaction
between Cr(II) ions is estimated by the effective exchange coupling parameter
(J) in Eq. (18.11). The results are also summarized in Table 18.1. The J value
calculated with the AP geometry is quite close to that of the X-ray geometry,
while a value of the BS geometry is smaller about 130 cm�1 than the value of
the AP geometry. This difference is straightforwardly reflecting the Cr(II)–Cr(II)
distance. In other words, the results suggest that the SCE in the optimized geometry
might mislead the magnetic property estimated after the geometry optimization.
In order to elucidate the relation between the optimized geometry and orbital
overlap, differences in b(AP) values between BS and AP geometries (�bAP–BS) are
calculated as summarized in Table 18.2. In comparison with • and ¢ orbitals, b(AP)
value of   orbitals is significantly changed. The result suggests that the difference
in J values between BS and AP geometries mainly originates in the change in
overlap of the   orbitals. On the other hand, we find a stable BS solution even
at the optimized R-B3LYP geometry, suggesting the strong static correlation effect
even at short RCr–Cr. However, the J value calculated from the energy gap between
BS and HS states at the R geometry is too much overestimated.

18.3.2 Application of AP Optimization to a Through-Bond
Biradical System

Next, we apply the AP optimization method to the [Fe(III)2S2(SCH3)4]2� cluster
(2) illustrated in Fig. 18.1. As mentioned above, this cluster is modeled on the
oxidized state of 2Fe–2S ferredoxin that two irons are ferric high spin (s D 5/2)
ions and are antimagnetically coupling through bridging S2– ions. Because of
their interesting functionality for the electron transportation, there have been so
many reports about syntheses of inorganic [Fe2S2] complexes [32, 33]. However,
a reproduction of the functionality of the wild-type cluster has still been difficult
at this stage. On the other hand, theoretical calculations can elucidate detailed
electronic structures of a series of the Fe–S clusters in biosystems [23–25, 34].
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Table 18.3 Optimized structural parametersa of Fe2S2(SCH3)4 cluster (2) by X-
B3LYPa (X D R, BS, HS, and AP) and calculated J valuesd at optimized geometries

Geometry RFe1–Fe2 RFe1–Sb RFe2–Sb RFe1–Sc RFe2–Sc RSb–Sb Jd

R 2.842 2.188 2.178 2.275 2.263 3.311 �216
BS 2.725 2.248 2.246 2.298 2.308 3.570 �205
HS 2.825 2.296 2.297 2.268 2.279 3.615 �162
AP 2.704 2.237 2.236 2.305 2.314 3.560 �215
X-ray c 2.744 2.257 2.209 2.308 2.284 3.519 �211

Sb and Sc are abbreviations for the bridging and cysteine sulfur ions, respectively
aIn Å
bSame to X-ray parameter
cResolution is 1.3 Å
dIn cm–1

In this sense, theoretical calculations will be a powerful tool for the elucidation
of the mechanism of their redox and electron-transfer properties. As a first step
of those studies, initial geometry is taken from an experimental result of the X-
ray crystallography analysis of the biosystem: oxidized Anabaena PCC7119 Fd I
(PDB ID: 1QT9) [35]. For the model, the geometry of the Fe2S2 core (two Fe3C
and two S2– ions) is optimized by B3LYP functional set with R, BS, and AP
methods for the singlet (S D 0) state. The geometry of the highest spin (HS, S D 5)
state is also optimized by a spin-unrestricted method to consider the SCE in the
BS state. Optimized distances of Fe–Fe (RFe1–Fe2), averaged Fe1-bridging sulfur
(RFe1–Sb), averaged Fe2-bridging sulfur (RFe2–Sb), averaged Fe1-sulfur of cysteine
(RFe1–Sc), averaged Fe2-sulfur of cysteine (RFe2–Sc), and bridging sulfur-bridging
sulfur (RSb–Sb) values are summarized in Table 18.3. At first, we find that the BS
structure is close to the X-ray result. However, the AP result slightly reduces the
RFe1–Fe2, RFe1–Sb, and RFe2–Sc values, and a size of a Fe2S2 rhombus becomes small.
On the other hand, those distances of the HS state are larger than ones of the BS
state. Those results indicate that the SCE in the optimized BS structure enlarges
the Fe2S2 cluster about 0.02 Å in RFe1–Fe2. Interestingly, the R-B3LYP method
significantly elongates the RFe1–Fe2 and reduces the RSb–Sb values in comparison
with the AP results. Therefore, results of the geometry optimization indicate that
corrections for both the static correlation and the SCE increase the distance between
Fe ions rather than between bridging sulfur ions.

The optimized geometry by the AP method shortens the Fe–Fe bond in compar-
ison with the X-ray geometry, and the BS result looks accurate than the AP result.
This is just due to the SCE. The slight difference between AP and X-ray geometry
seems to originate in the DFT functional set. In other words, the results indicate that
we have to be careful about the SCE to discuss the reliability of the functional sets,
especially for the biradical systems [36].

Next, the natural orbital analysis is carried out to analyze the obtained electronic
structure at each optimized structure. NOs are depicted in Fig. 18.4 together with the
b(AP) values at BS and AP geometry. As shown in the figure, occupied magnetic
orbitals are antibonding orbitals between Fe–Fe except for orbital 89. Therefore,
the R calculations that all occupation numbers of occupied orbitals are equal to 2.0
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Fig. 18.4 Natural orbitals of
magnetic orbitals. b(AP)
values that are listed for the
occupied orbitals (orbital
numbers 89–93) in the figure
are calculated from the BS
wavefunctions at the each
optimized geometry

should enhance the antibonding interaction between Fe ions because the antibonding
orbitals 90–93 are fully occupied. This seems the origin of that the R calculation
drastically elongates the Fe–Fe distance while the static correlation correction
shortens it. On the other hand, the correction for the SCE enlarges the b(AP) value
of orbital 89, suggesting that the SCE also decreases the Fe–Fe direct interaction.
In this way, the bond orders clearly explain the mechanism why corrections for the
static correlation and the SCE shorten the Fe–Fe distance, separately.

Finally, J values are calculated with those optimized geometries. Calculated J
values are summarized in Table 18.3. The J value at the AP geometry reproduces the
value at the X-ray geometry, showing the correspondence between those geometries.
On the other hand, the J values at R and AP geometries are quite similar to each
other, although the Fe–Fe distance is much elongated in the R structure. The reason
is explained by the increase of the super-exchange interaction through Fe–Sb–Fe
because the Fe–Sb distance becomes shorter by about 0.05 Å in comparison with
the AP structure. This result strongly suggests that the functionality of the Fe2S2

cluster should be considered comprehensively with geometry, electronic structure,
and electronic properties.

18.4 Summary

In this chapter, the AP method that eliminates the SCE from the BS method is briefly
reviewed. Especially, we demonstrate that the AP method works effectively for
the geometry optimization for both “through-space” and “through-bond” biradical
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systems, as well as analyses of the wavefunctions and the calculation of the magnetic
coupling constant. Because the AP-DFT or AP-hybrid DFT methods correct both
the static and the dynamical correlations, it can be an alternative method to the
CASPT2, MRMP2, and MRCC methods. For example, our group has reported that
the potential curves of the AP-hybrid DFT reproduces ones of MkMRCC method
at very low costs of computation [37]. This result suggests that the AP method has
a potential to analyze the chemical reactions of larger systems such as active sites
of metalloproteins because it is a low-cost method and is also easily combined with
QM/MM [38, 39] and/or ONIOM [40, 41] methods [42]. One can also utilize the
AP method to estimate the effect of static correlation by comparing the AP and the
R results. From those points of view, the AP method is valuable for computational
studies on biradical systems such as large polynuclear metal complexes and so on.
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Chapter 19
DFT Calculations of the Heterojunction Effect
for Precious Metal Cluster Catalysts

M. Okumura, K. Sakata, K. Tada, S. Yamada, K. Okazaki, Y. Kitagawa,
T. Kawakami, and S. Yamanaka

Abstract Recently, catalytic reactions mediated by quasi-heterogeneous catalysts,
also known as polymer-stabilized nanosize metal cluster catalysts, have attracted
considerable attention. It is well known that the heterojunction between metal
clusters and metal oxide supports is an important factor for the activities of
heterogeneous catalysts, such as metal oxide-supported Au catalysts. However,
as quasi-heterogeneous catalysts lack metal oxide supports, here, we investigated
the effects of introducing heteroatoms into monometal clusters and the interaction
between stabilizing polymers and metal clusters using the density functional theory.
Based on the calculation results, we concluded that charge transfer interactions
between heteroatoms in these model metal cluster systems play an important role
for the activities of quasi-heterogeneous catalysts.

19.1 Introduction

Metal particles have received considerable recent attention as catalysts. Metal
catalysts adopt several different types of configurations, including nanoclusters,
metal particle-supported catalysts, and enzymatic metal clusters [1–8]. A common
characteristic of these catalysts is the existence of nanoscale active sites. Moreover,
it is well known that the boundary between the materials composing these catalysts
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serves as the active site for the catalytic reactions and often displays extremely
high catalytic activities [6, 9]. This phenomenon is referred to as the heterojunc-
tion effect for catalysis. For example, several oxidation catalytic reactions over
highly dispersed Au-supported catalysts, such as Au/TiO2 and Au/Al2O3, change
depending on the type of metal support. This finding suggests that the catalytic
activities of Au catalysts are dramatically altered by the heterojunction between the
Au nanoparticles and metal oxide surfaces. Recently, the unique catalytic activities
of quasi-heterogeneous catalysts have been reported. Toshima et al. [10] examined
the synthesis and catalytic activities of mono- and bimetal cluster catalysts and
found that these nanosize precious metal clusters exhibit hydrogenation catalytic
activity. In particular, core/shell bimetal cluster catalysts displayed the highest
catalytic activities among the examined catalysts [10]. Tsukuda and coworkers
[11, 12] reported that Au nanoclusters stabilized by poly(N-vinyl-2-pyrrolidone)
[PVP; (C6H9ON)n], abbreviated as Au-PVP, selectively oxidize p-hydroxybenzyl
alcohol into the corresponding aldehyde in water without degradation. In addition,
Mizugaki et al. [13] found that the size-selective synthesis of subnanometer Pd
clusters can be achieved using poly(propylene imine; PPI) dendrimers as tunable
host materials. These subnanosized Pd clusters, which consist of a specific number
of Pd atoms (Pd4, Pd8, and Pd16), are obtained by the preorganization of Pd ions
within the PPI dendrimers, followed by their subsequent reduction. Interestingly,
dendrimer-stabilized Pd subnanoclusters exhibit high catalytic activities for several
hydrogenation reactions. Taken together, these observations indicate that precious
metal clusters are capable of exhibiting high catalytic activity without metal oxide
support. Therefore, interactions (heterojunction) between precious metal clusters
and polymers or the introduction of heteroatoms into mono precious metal clusters
appear to be important factors for the activities of these catalysts.

Density functional theory (DFT) has been applied to the investigation of the
heterojunction effect resulting from the introduction of heteroatoms into mono
precious metal clusters and the interaction between precious metal clusters and
stabilizing polymers in cluster model systems. In the present theoretical study, we
attempted to explain the heterojunction effect for these model systems as a first step
for understanding the heterojunction effect for catalytic reactions involving precious
metal cluster catalysts.

19.2 Computational Procedures

19.2.1 Calculation Methods

Unrestricted B3LYP [14] calculations were carried out for small model clusters by
using Gaussian 03 program. For these models, LANL2DZ basis set was used for
Pt, Au, and Ag atoms, and 6-31 G* basis set was adapted for O, C, N, and H
atoms in polymer model molecules, such as PVP. Moreover, 6-31CG* basis set
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was used for O atom in O2 molecule in small model systems. These calculations
were carried out by Gaussian 03 [15]. For large model systems, unrestricted PW91
[16] calculations were also carried out for model clusters by using Dmol3 program
[17–19]. For these calculations, DNP basis set was used for the atoms in the model
systems investigated.

The Mulliken charges of each atom were calculated by the Mulliken population
analysis.

19.2.2 Model Settings

In order to investigate the characteristic of large precious metal cluster systems
by using small model clusters, the shell structures, such as cubo-octahedral or
icosahedral clusters, are adopted as the Mn (M D Au, Pd, Pt, n D 13, 55) cluster
model systems.

The whole polymer-stabilized precious metal clusters are too large to investigate
by using first principle calculations. Therefore, the monomers of the polymers and
similar small molecules are used instead of the real polymers and dendrimers. All
the geometries of model systems were fully optimized with C1 symmetry.

19.3 Results

19.3.1 Characteristics of Bimetal Clusters

In the case of Pd and Pt mono – and bimetallic – cluster catalysts, the hydrogenation
catalytic activities of Pd/Pt bimetallic clusters are higher than those of Pt and Pd
monometallic nanoparticles. Particularly, core–shell Pd/Pt bimetallic clusters may
exhibit extremely high catalytic activity for cyclooctadiene partial hydrogenation
[10]. These results suggest that the characteristics of bimetallic core–shell clusters
can change dramatically depending on the structure of the bimetal clusters. To
interpret these experimental results, DFT calculations for N–M12 (N, M D Pd or
Pt) model systems were examined as a first step for understanding the reactions
catalyzed by core–shell cluster catalysts.

Four different N–M12 clusters, the similar structure shown in Fig. 19.1, were
investigated. The Mulliken charges of Pt13 listed in Table 19.1 show that the surface
(shell) atoms are negatively charged, while those of the Pd13 core are weakly
charged positively. The reason of this charge polarization is due to the low coor-
dination number of the surface atoms in the clusters as the similar negative charge
densities are presented on the atoms in the step and edge sites of the metal surfaces.
Therefore, it can be presumed that charge polarization is a typical characteristic of
metal clusters. Moreover, the averaged surface charge density was decreased when
the core atom of the Pd13 cluster was replaced with Pt. In contrast, negative charge
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Fig. 19.1 Structure of an
N–M12 cluster (N,M D Pd,
Pt)

Table 19.1 Mulliken atomic
charges of N–M12 clusters
(N, M D Pd, Pt)

Site Pd13 Pt�Pd12 Pt13 Pd�Pt12

Core 0.419 0.039 2.825 3.433
Shell atom avg. �0.035 �0.003 �0.235 �0.286

densities on the cluster surface increased when the core atom of Pt13 clusters was
replaced with Pd. The variation of the charge densities is due to the charge transfer
interaction induced by the difference of the electron negativities of Pd and Pt atoms.

M55�xNx clusters (M D Pd, N D Au and x D 0,6,12,42) were also subjected to
DMT calculations (Fig. 19.2). Based on the calculations, it was found that the charge
transfer from Pd to Au in the Au-containing Pd cluster models is due to the negative
charges of surface Au atoms. The average charge densities of Au atoms in Pd49Au6,
Pd49Au6, and Pd12Au42 clusters are �0.203, �0.211, and �0.037, respectively.
These results indicate that the negative charge densities on Au atoms are larger than
those on Pd atoms in Pd55 clusters.

Consequently, it could be concluded that the negative charge densities induced
by the surface atoms with low coordination numbers and the heterojunction among
the neighboring different atoms in the clusters are the typical characteristics of the
single and alloy metal clusters.

19.3.2 Interaction Between Pdn (n D 1,2,3,13) and TMA

In the catalysts reported by Mizugaki et al. [13], PPI dendrimers were used for the
stabilization of Pd subnanoclusters. A third-generation dendrimer of PPI is depicted
in Fig. 19.3. To reduce the computational costs, trimethylamine (TMA) (Fig. 19.3)
was used for the PPI model molecule, as an amine group in PPI represents a
promising interaction site with Pd clusters.
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Fig. 19.2 Structures of M55–xNx clusters (M D Pd, N D Au and x D 0,6,12,42) and Mulliken
charges of the surface-exposed atoms for (a) Pd55, (b) Pd49Au6, (c) Pd43Au12, and (d) Pd13Au42

The optimized structure of Pd-TMA is displayed in Fig. 19.3. In this model,
the adsorption energy of TMA is 18.44 kcal/mol, and the Mulliken charge of the
Pd atom is �0.19. The interaction between Pd2 and TMA was also investigated.
From the calculation results, the adsorption energy of the optimized structure of
Pd2-TMA (Fig. 19.3) was determined to be 16.96 kcal/mol, and the gross Mulliken
charge on Pd2 was �0.27. The adsorption energy and gross Mulliken charge for
Pd3-TMA (Fig. 19.3) were also determined and found to be 21.90 kcal/mol and
0.26, respectively. As these results indicate that the TMA model molecule adsorbs
onto Pdn clusters and that charge transfer (CT) from TMA to Pd clusters occurs, it
was concluded that TMA acted an electron donor to the Pd clusters.

Finally, the geometries of Pd13-TMA, Pd13-TMA2, and Pd13-TMA4 models were
optimized. The obtained structures and characteristics of these three models are
summarized in Fig. 19.3 and Table 19.2. The calculated adsorption energies of
TMA onto Pd13 in Pd13-TMA, Pd13-TMA2, and Pd13-TMA4 were 19.99, 18.85, and
16.99 kcal/mol, respectively, while the gross Mulliken charges of Pd13 were �0.335,
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Fig. 19.3 (a) Structure of a third-generation PPI dendrimer and calculated structures of model
clusters for (b) TMA, (c) Pd-TMA, (d) Pd2-TMA, (e) Pd3-TMA, (f) Pd13-TMA, (g) Pd13-TMA2,
and (h) Pd13-TMA4

�0.670, and �1.27, respectively. Notably, the absolute values of the absorption
energies and gross Mulliken charges for the Pd13 model systems are similar and
larger, respectively, than those of the Pd-TMA model. The latter finding is likely
due to differences in the electron reservoir capacities of Pd atoms and Pd13 clusters.
Additionally, the intermolecular distance between N atom of TMA and Pd atom
in the cluster are increased with a decrease of the adsorption energy. From these
results, it appears that the number of absorbed TMA molecules is affected by the
negative charge density of exposed surface Pd atoms in Pd13 model systems.
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Table 19.2 Adsorption energies (Ead) of TMA onto model metal clusters, gross
Mulliken charges on metal clusters, and intermolecular distances between metal
cluster and N atom in TMA

Model Ead, kcal/mola Gross charge on metal clustersb R(metal-N)c, Å

Pd-TMA 18.4 �0.19 2.19
Pd2-TMA 17.0 �0.26 2.31
Pd3-TMA 21.9 �0.26 2.21
Pd13-TMA 20.0 �0.34 2.25
Pd13-TMA2 18.9 �0.67 2.26d

Pd13-TMA4 17.0 �1.27 2.27d

Au-TMA 12.9 �0.29 2.43
Au2-TMA 27.6 �0.30 2.25
Au3-TMA 26.7 �0.32 2.21
Au13-TMA 23.0 �0.38 2.30
Au13-TMA2 20.4 �0.71 2.34d

Au13-TMA4 18.5 �1.36 2.34d

aCalculated by (E(model)-[E(metal cluster) C E(TMA)*m)]/m, m: number of TMA
bMulliken charges (in a.u.) determined from Mulliken population analysis
cIntermolecular distance between N atoms in TMA and Pd atoms in the cluster
dAverage value of the intermolecular distance

19.3.3 Interaction Between Aun (n D 1,2,3,13) and TMA

The interactions between small Au clusters and TMA were next investigated.
The schematic diagrams of these model molecules are depicted in Fig. 19.4, and
the obtained results are summarized in Table 19.2. The calculated adsorption
energies of Au-TMA, Au2-TMA, and Au3-TMA were 12.9, 27.6, and 26.7 kcal/mol,
respectively, while the estimated Mulliken charges on Au, Au2, and Au3 were
�0.29, �0.30, and �0.32, respectively.

Taken together, these results indicate that the TMA model molecule adsorbs onto
Au clusters and that CT from TMA to Au clusters takes place. Therefore, it is likely
that TMA also acts as an electron donor to Au clusters.

The characteristics of Au13-TMA, Au13-TMA2, and Au13-TMA4 model clusters,
whose predicted structures are displayed in Fig. 19.4, respectively, were also
evaluated (Table 19.2). The analyses revealed that the adsorption energies of TMA
onto Au13 in Au13-TMA, Au13-TMA2, and Au13-TMA4 models were 23.04, 20.43,
and 18.48 kcal/mol, respectively. The absolute absorption energy values of these
three models are similar to those of small Au cluster-TMA model systems. The
gross Mulliken charges of Au13 in the Au13-TMA, Au13-TMA2, and Au13-TMA4

model systems were �0.38, �0.71, and �1.36, respectively, which, similar to the
Pd13 model systems, are larger than that of the Au-TMA model. In the case of Au13-
TMA4, the Mulliken charges of the core atom and the average Mulliken charges of
the surface atoms are 4.50 and �0.49, respectively. Therefore, the negative charges
on both the core and the surface atoms are increased by the adsorption of TMA onto
Au13 as the Mulliken charges of the core atom, and the average Mulliken charges
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Fig. 19.4 Calculated structures for model clusters of (a) Au-TMA, (b) Au2-TMA, (c) Au3-TMA,
(d) Au13-TMA, (e) Au13-TMA2, and (f) Au13-TMA4

of the surface atoms are 5.48 and �0.46 in Au13. Based on these results, it was
found that the number of absorbed TMA molecules is also affected by the negative
charge density of exposed surface Au atoms in Au13 model systems. Additionally,
the degree of electron donation from PPI amine groups to Au clusters was markedly
enhanced with increasing number of amine groups adsorbed onto the surface of Au
clusters.

19.3.4 Interaction Between Au(n D 1,13) and PVP

In model systems, the hydrophilic polymer PVP is frequently used as a stabilizing
reagent for Au clusters. Here, to reduce computational costs, the PVP molecule
shown in Fig. 19.5 was used as a model molecule to investigate the interactions
between Au atoms and PVP. The optimized structure of Au-PVP is displayed in
Fig. 19.5. The adsorption energy of this model was estimated to be 3.93 kcal/mol,
and the Mulliken charge on the Au atom was �0.214.

These results indicate that the PVP model molecule is attached onto the Au atom
and that CT from PVP to Au occurs. The calculated ionization potential (IP) values
for Au and Au-PVP of 9.42 and 7.14 eV, respectively, also suggest that the absolute
IP value for Au-PVP is significantly reduced by the CT interaction between PVP
and Au.

The geometries of the Au13-PVP and Au13-PVP4 models were also opti-
mized, and their derived structures are displayed in Fig. 19.5. The calculated
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Fig. 19.5 (a) Chemical
formula of PVP and
calculated structures for
model clusters of (b) PVP, (c)
Au13-PVP, and (d)
Au13-PVP4

Fig. 19.6 Electrostatic
potentials maps ranging
from –6.632*10–2 (red) to
6.632*10–2 (blue) (in Hartree
units) for (a) Au-PVP, (b)
Au13-PVP, and (c)
Au13-PVP4

adsorptionenergies of PVP onto Au13 in Au13-PVP and Au13-PVP4 were 14.9 and
10.2 kcal/mol, respectively, while the gross Mulliken charges of Au13 in the two
model systems were �0.305 and �1.10, respectively. The absolute values of the
absorption energies and gross Mulliken charges for the Au13 model systems are both
larger than those of the Au-PVP model, a finding that is likely due to differences in
the electron reservoir capacity of Au and Au13. The IP of Au13, Au13-PVP, and Au13-
PVP4 were 6.89, 6.16, and 4.59 eV, respectively, showing that the absolute IP value
for Au13 is also markedly reduced by the CT interaction between PVP and Au13 in
the Au13-PVP and Au13-PVP4 model systems. In addition, the IP for bare Au13 clus-
ters is also smaller than that of Au. Schematic diagrams of the electrostatic potentials
for Au13, Au13-PVP, and Au13-PVP4, which are displayed in Fig. 19.6, c, respec-
tively, clearly show that the number of absorbed PVP molecules greatly affects the
negative charge density of exposed surface Au atoms in Au13 model systems.

Moreover, Au13-PVPn (n D 1,2,4) and Au55-PVPn (n D 1,2,4) model clusters
were examined using PW91/DNP, and the obtained results are summarized in
Figs. 19.5 and 19.7 and Table 19.3. The calculations for Au13-PVPn models
by PW91 exhibited the same tendency with those by B3LYP. Specifically, the
adsorption energies of PVP onto Au13 in Au13-PVP, Au13-PVP2, and Au13-PVP4

were 17.1, 16.1, and 14.6 kcal/mol, respectively, and the gross Mulliken charges of
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Fig. 19.7 Calculated structures for model clusters of (a) Au55-PVP, (b) Au55-PVP2, and (c) Au55-
PVP4

Table 19.3 Adsorption energies (Ead) of PVP onto metal clusters for several model
systems, gross Mulliken charges on metal clusters, and intermolecular distances
between metal cluster and O atom in PVP

Model Ead, kcal/mola Gross charge on metal clustersb R(metal-N)c, Å

UB3LYPe

Au13-PVP 14.9 �0.35 2.29
Au13-PVP2 12.2 �0.40 2.34
Au13-PVP4 10.2 �1.10 2.35
PW91f

Au13-PVP 17.1 �0.24 2.28
Au13-PVP2 16.1 �0.42 2.32
Au13-PVP4 14.6 �0.74 2.33
Au55-PVP 22.0 �0.21 2.35
Au55-PVP2 18.0 �0.39 2.38d

Au55-PVP4 15.0 �0.70 2.38d

aCalculated by (E(model)-[E(metal cluster) C E(PVP)*m)]/m, m: number of PVP
bMulliken charges (in a.u.) determined from Mulliken population analysis
cIntermolecular distance between the O atom in PVP and Au atom in the cluster
dAverage value of the intermolecular distances
eCalculations were conducted using Gaussian 03
fCalculations were performed using Dmol

Au13 in the three model systems were �0.24, �0.42, and �0.74, respectively. The
gross charge densities on Au13 in these models increased with increasing number
of absorbed PVP molecules. This trend is similar to that based on calculations
using UB3LYP. However, the selection of the functionals, such as hybrid DFT, long-
range corrections and the inclusion of the dispersion force, must be needed for the
quantitative discussions of these characteristics.
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The adsorption energies of PVP onto Au55 in Au55-PVP, Au55-PVP2, and Au55-
PVP4 clusters were estimated to be 22.0, 18.0, and 15.0 kcal/mol, respectively, while
the gross Mulliken charges of Au55 in the three model systems were �0.23, �0.39,
and �0.70, respectively. Additionally, the intermolecular distances between O atom
of PVP and Au atom in Au55 cluster are longer than those in Au13. From these
results, the PVP molecules adsorbed on Au55 also appeared to serve as an electron
donor for Au55 clusters, as supported by the increasing gross charge densities on
Au55 with increased number of absorbed PVP molecules. Consequently, it was
concluded that PVP acts as an electron donor to nanosize Au clusters, and that
adsorbed PVP generates anionic Au clusters.

19.3.5 O2 Adsorption onto Au13-PVP and Au55-PVP Model
Systems

From the results of the above calculations in Sect. 19.3.4, we found that Au clusters
become negatively charged following the adsorption of PVP model molecules.
As our previous works [20, 21] have shown that anionic O2 is generated on the
icosahedral Au13 while that is not generated on the cubo-octahedral Au13. Moreover,
anionic O2 is also generated by the interaction between the anionic Au atom and
O2. Therefore, the generation of anionic cubo-octahedral Au13 should promote
generation of anionic O2.

To estimate the potential of O2 activation for Au13-PVPm model systems,
Au13-PVP-O2 and Au13-PVP4-O2 model systems were examined. The optimized
structures of Au13-PVP-O2 and Au13-PVP4-O2 models are presented in Fig. 19.8.
The adsorption energies and gross Mulliken charges for O2 in the Au13-PVP and
Au13-PVP4 systems were estimated to be 0.74 and 3.45 kcal/mol and 0.031 and
�0.164, respectively. These results indicate that although O2 molecules can be
weakly adsorbed onto the surfaces of both systems, anionic O2 molecules are
only produced on the surface of Au13-PVP4. This difference can be ascribed
to differences in the energy levels of the highest occupied Kohn-Sham orbitals
(HOKSO) for Au13-PVP and Au13-PVP4. Qualitatively, the HOKSO energy levels
of the model systems examined here are gradually destabilized with increasing
number of PVP adsorbed onto Au13 clusters, with that of Au13-PVP4 exceeding the
lowest unoccupied Kohn-Sham orbital (LUKSO) of O2. Therefore, CT from Au13

to O2 can be expected only in the Au13-PVP4-O2 model.
We also investigated Au55-PVP4-O2 model systems in order to examine the

generation of active O2 molecules by larger Au clusters. The O2 adsorption sites
in these models are vertex, edge, and center Au atoms in (111) surface in Au55

clusters. The results of the analysis for the three types of clusters are summarized
in Fig. 19.8, e. The adsorption energies of O2 in the three examined Au55-PVP4-
O2 systems are 7.10, 5.32, and 4.57 kcal/mol, respectively, and the gross Mulliken
charges of O2 are �0.192, �0.152, and �0.118, respectively. These results indicate
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Fig. 19.8 Optimized structures for model clusters of (a) Au13-PVP-O2, (b) Au13-PVP4-O2, (c)
vertex site-adsorbed Au55-PVP4-O2, (d) bridge site-adsorbed Au55-PVP4-O2, and (e) center site-
adsorbed Au55-PVP4-O2

that O2 molecules are able to adsorb onto the surfaces of these cluster systems,
where anionic O2 molecules can be also generated. Therefore, it was demonstrated
that PVP-stabilized nanosize Au clusters generate anionic O2 molecules on their
surface. Consequently, it could be concluded that PVP acts as both an electron donor
and stabilized for Au clusters.

19.4 Conclusions

In the present study, quasi-heterogeneous catalyst model systems were examined
using DFT calculations. Our results suggest that modification of the surface charge
density of metal clusters by the introduction of heteroatoms into monometal
clusters plays an important role for the catalytic activities of quasi-heterogeneous
catalysts. This response is thought to be due to the charge polarization induced
by the charge transfer between the two different precious metals present in the
heterojunction sites of model clusters. Moreover, the adsorption of stabilizing
polymers, such as PVP, also serves an important role for modifying the catalytic
activities of quasi-heterogeneous catalysts. These changes likely result from the
charge transfer interactions between the polymer and stabilized precious metal
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clusters. Taken together, our findings indicate that the heterojunction in quasi-
heterogeneous catalysts is important for modifying the electronic state of the cluster
surface and generating their catalytic activities.
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Chapter 20
Luminescence Wavelengths and Energy Level
Structure of Dinuclear Copper Complexes
and Related Metal Complexes

T. Ishii, M. Kenmotsu, K. Tsuge, G. Sakane, Y. Sasaki, M. Yamashita,
and B.K. Breedlove

Abstract Electronic structures and the energy level diagrams of dinuclear copper
halide complexes exhibiting luminescence ranging from blue to red have been
calculated by means of a discrete variational (DV)-X’ molecular orbital method.
We confirmed that the wavelength of the experimental luminescence could be
reproduced by comparing the electronic states of the ground state in relation to the
luminescence caused by electron transfer between the excited and the ground states.
The observed luminescence wavelength is related to the excitation energy from the
occupied copper 3d to the unoccupied ligand molecular orbitals. This relationship
can also be reproduced in the cases of other related metal complexes.

20.1 Introduction

Metal complexes are very attractive compounds because their physical properties,
such as electronic and magnetic properties and optical phenomena, can be explained
straightforwardly in relation to the ligand field splitting of the d or f orbitals of the
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Fig. 20.1 Molecular structure of bromine-bridged copper(I) dinuclear complex [Cu2(�-
Br)2(PPh3)2L] (L D pyz) exhibiting luminescence

central metal atom [1–3]. Many coordination chemists are currently studying how
to control the ligand field splitting by chemically modifying the ligands and the
coordination environment of the central metal ion [4]. Unfortunately, no rules for
systematically changing the ligand field splitting have been reported up to now.
Systematic control of the wavelength at which a complex has a luminescence light
has been extensively studied.

In the case of the ligand dependence on the emission spectrum, Araki and
Tsuge et al. have reported [5] that the luminescence wavelength from red to blue
light can be controlled systematically by changing the ligand (L) in halogen-
bridged copper(I) dinuclear complexes, [Cu2(�-X)2(PPh3)2L] (X D Br or I) (L D N-
heteroaromatic ligands) (Figs. 20.1 and 20.2).

The interatomic distances in the bromine-bridged copper(I) dinuclear complexes
change slightly in relation to the L used. There is no relation between the Cu–Br,
Cu–P, Cu–N, and nearest Cu� � � Cu bond distances and the experimental lumi-
nescence wavelength. In other words, the experimental luminescence wavelength
cannot be discussed on the basis of the molecular structure. Therefore, the electronic
structures are the only way to explain the experimental luminescence wavelength of
these metal complexes. Tsuge et al. have reported [5] that the observed lumines-
cence wavelength can be explained by the difference in the reduction potential. Of
course, changing of the reduction potential is one of the most important ways to
change the electronic structure. However, it is only possible for metal complexes
whose reduction potentials are already known. Therefore, we investigated the rela-
tionship between the observed luminescence wavelength and the electronic structure
of the halogen-bridged dinuclear copper complexes in order to be able to predict the
luminescence wavelength of not only known but also unknown complexes.
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Fig. 20.2 Observed luminescence wavelength (nm) bromine-bridged copper(I) dinuclear complex
[Cu2(�-Br)2(PPh3)2L] in relation to L (dmap, 3-bzpy, bpy, 1,5-nap, 1,6-nap, quina, 4-bzpy, and
pyz)

In general, luminescence occurs when an excited electron decays in energy to the
lower state by releasing a photon. Thus, the absorption of light and luminescence
have almost the same energy, although they are opposite processes. Therefore, if
we accurately know the energies of the ground and excited states of the metal
complexes, we can predict the experimental wavelength of the absorption and/or
the luminescence correctly.

In order to discuss the luminescence mechanism, an accurate electronic structure
of the excited states is needed. However, it can be difficult to calculate such
an electronic structure. Although luminescence involves an electron decaying in
energy from excited to ground states, the ground state structure cannot be used to
describe the excited states of metal complexes. Many coordination chemists have
been trying to determine the crystal structure of metal complexes in the excited
state [6]. Although only a few percent of the surface structure of a single crystal
becomes excited when the single crystal is irradiated with an ultraviolet lamp or
CW laser during data acquisition, structural data of the complex in an excited state
can be separated from the ground state crystal structural data. In this study, we
calculated the electronic structures of the excited and ground states in order to
compare the energy levels before and after irradiating with an ultraviolet lamp and to
determine their relationship to the observed luminescence wavelength. In addition,
we compared the electronic structures and the crystal structures of the ground and
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excited states in order to discuss the luminescence mechanism. On basis of our
calculations, we found that the experimental luminescence wavelength was not due
to differences in the crystal structures but due to the difference in the electronic
structures of the metal complexes. In other words, the energy of the luminescence is
proportional to the ligand field splitting width of the 3d metal orbitals when a ligand
coordinates to a metal ion, which is similar to the case of absorption [4].

20.2 Calculations

In order to determine the electronic structure of the halogen-bridged dinuclear
copper complexes, we carried out electronic structure calculations by using a
discrete variational (DV)-X’ molecular orbital method, which has been described
elsewhere [4, 7–9]. The crystal structures of the metal complexes of halogen-bridged
dinuclear copper complexes were taken from the Cambridge Structure Database
[10], and the CIF data is included in the Electronic Supporting Information (ESI)
[5]. The chemical formulae used for the molecular orbital calculations of the metal
complexes were L-Cu(PPh3)(�-Br)2Cu(PPh3)-L (L D dmap, 3-bzpy, bpy, 1,5-nap,
1,6-nap, quina, 4-bzpy, and pyz) (L-M-L) (model 1). The total charge of the cluster
model 1 is remained as a neutral.

Preliminary crystal structural data of the excited state obtained by using X-ray
diffraction while irradiating with CW laser were collected at low temperatures (104,
153, and 253 K) by Ozawa and Toriumi et al. [6]. They have tried to observe
direct geometrical distortion of the complex by photoexcited state crystallographic
technique. Single crystal X-ray diffraction experiment was performed by using the
low-temperature vacuum X-ray camera at SPring-8 BL02B1 beamline. Full inten-
sity data of both under light irradiated by CW laser and nonirradiated conditions
were collected by multiple-exposure IP method. In the excited state, the nearest
Cu� � � Cu distance was almost the same, whereas the nearest Br� � � Br distance was
about 10 % shortened after irradiating with CW laser, by photo-difference Fourier
technique. Therefore, we developed a molecular structure model of the excited state
and calculated the electronic structure in order to compare the electronic structures
between the ground and excited states.

Nonrelativistic DV-X˛ calculations were performed by using a Slater exchange
parameter (˛) of not the Kohn–Sham formalism 2/3 but the experimental 0.7 for
all atoms and up to a million DV sampling points, which gave a precision of better
than 0.001 eV for the valence electron energy eigenvalues. We employed the basic
functions of the copper ions up to 4p orbital and those of the halogen and atoms of
the ligand molecules up to the 2p, 3p, 4p, or 5p orbitals, depending on the kind of
atom, in order to optimize the electronic structure. The numerical basis sets have
been employed according to the literature [4, 7–9]. The calculations were carried
out self-consistently until the difference in orbital populations between the initial
and final states of the iteration was less than 0.0001 electrons.

In order to compare the relationship between the electronic structure and the
observed wave number of the luminescent light, we also calculate the additional
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Table 20.1 Cluster models of luminescent metal complexes

Model Type Composition formula Emission peak (nm)

Model 1 Dinuclear [fCu2(�-Br)2(PPh3)2g(pyz)2]1 707
Model 2a Dinuclear [Cu(I)dppb]2 502
Model 3b Dinuclear [Cu2(ttab)(CH3CN)2][BF4]2 410
Model 4c Dinuclear [Cu(L1)Cl]2 544
Model 5 Dinuclear [Cu2(�-I)2(�-1,8-nap)(PPh3 )2] 670
Model 6d Dinuclear [Cu2(HL)2(�-Cl)2] 450
Model 7e Dinuclear [PN]Cu(PPh3)2 504
Model 8f Mononuclear [Cu(POP)(dmp)]tfpb 517
Model 9g Mononuclear ZnL(EtOH) 555
Model 10h Organic BT1 470
adppb D 1,2-bis(diphenylphosphino)benzene
bttab D 1,2,4,5-tetra(7-azaindolyl)benzene
cL1 D 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methylthio)propyl)-4-methoxy-3,5-
dimethylpyridine
dHL D salicylaldehyde 2-pyridyl hydrazone
ePN D bis(2-(diisopropylphosphino)phenyl)amide
fPOP D bis[2-(diphenylphosphino)phenyl]ether; dmp D 2,9-dimethyl-1,10-phenanthroline;
tfpb Dtetrakis(bis-3,5-trifluoromethylphenylborate)
gL D N,N0-phenylene-bis-(3,5-di-tert-butylsalicylideneimine)
hBT D 3-boryl-2,20-bithiophenen

nine metal complexes, such as [Cu(I)dppb]2 (dppb D 1,2-bis(diphenylphosphino)
benzene) (model 2) [11], [Cu2(ttab)(CH3CN)2][BF4]2 (ttab D 1,2,4,5-tetra
(7-azaindolyl)benzene) (model 3) [12], [Cu(L1)Cl]2 (L1 D 2-(1-(3,5-diisopropyl-
1H-pyrazol-1-yl)-3-(methylthio)propyl)-4-methoxy-3,5-dimethylpyridine) (model
4) [13], [Cu2(�-I)2(�-1,8-nap)(PPh3)2] (model 5) [14], [Cu2(HL)2(�-Cl)2]
(HL D salicylaldehyde 2-pyridyl hydrazone) (model 6) [15], [PN]Cu(PPh3)2

(PN D bis(2-(diisopropylphosphino)phenyl)amide) (model 7) [16], [Cu(POP)(dmp)]
tfpb (POP D bis[2-(diphenylphosphino)phenyl]ether) (model 8) [17], ZnL(EtOH)
(L D N,N0-phenylene-bis-(3,5-di-tert-butylsalicylideneimine)) (model 9) [18],
and BT1 (BT D 3-boryl-2,20-bithiophenen) (model 10) [19], as summarized in
Table 20.1. The total charges of these cluster models 2–10 also remained as
a neutral.

20.3 Results and Discussion

20.3.1 Energy Level Structure

In the case of organic compounds, absorption involves a  – * transition and/or the
energy difference between the HOMO and the LUMO energy levels. On the other
hand, in the case of metal complexes, there is a relationship between the observed
wavelength of the absorption and the energy difference among the d orbitals
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separated due to ligand field splitting. However, the molar extinction coefficient
(") of the d–d orbital transition is in the range from 100 to 102 (M–1 cm–1

(1 M D 1 mol dm–3)) and is much smaller than those of the inter-valence transition
(102–103), charge transfer transition (103–104), and the ligand-based transition
(103–105). Since the " corresponds to the intensity of the absorption band, in this
study, it is of no concern because we were interested in the luminescence wavelength
(photon energy). So, among analogous metal complexes, the wavelength should
change in relation to a combination of a d-d transition, metal to ligand charge
transfer (MLCT), halide to ligand charge transfer (XLCT), ligand to ligand charge
transfer (LLCT), ligand to metal charge transfer (LMCT), and so on.

On the basis of the energy level diagrams of the cluster model 1, there is
no relationship between the observed luminescence wavelength and the energy
difference between the HOMO and the LUMO levels. In addition, there is no
relationship involving the energy dispersion among the occupied and the unoccupied
energy levels. The molecular orbitals of the metal complexes are a complex mixture
of ¢ , , and * orbitals from the copper 3d, bromine 4p, and phosphorus 3p orbitals.
Therefore, it is very difficult to discuss the luminescence mechanism directly in
relation to specific molecular orbitals. In the next section, we discuss the atomic
orbitals rather than the molecular orbitals, which are linear combinations of atomic
orbitals (LCAOs).

20.3.2 Partial Density of States (p-DOS)

Each LCAO can be separated into the atomic orbitals by means of the Mulliken’s
population analysis [20]. From this analysis, a partial density of states (p-DOS),
which is a percentage of each atomic orbital of the density of states, can be obtained.
The p-DOSs of the cluster model 1 with several bidentate ligand molecules are
shown in Figs. 20.3 and 20.4. Near the Fermi energy in the occupied orbital region,
the molecular orbitals were mainly a mixture of copper 3d and bromine 4p orbitals.
On the other hand, in the unoccupied region, they are mainly a combination of ligand
¢ ,  , and  * orbitals. On the basis of the p-DOSs, the luminescence occurs via a
transition from an excited state comprised mainly of the ligand orbitals to a ground
state comprised of copper 3d and bromine 4p orbitals, after an MLCT-type transition
caused by irradiation with an ultraviolet lamp.

Now, we should discuss the validity of the cluster size in the molecular orbital
calculations. The original metal complex has a one-dimensional chain structure,
in which a bidentate ligand molecule bridges Cu2(�-Br)2 units. Therefore, the
cluster size of model 1 could be too small for discussing the electronic structures.
So, we used an additional model with a larger cluster size having the chemical
formula L-Cu(PPh3)(�-Br)2Cu(PPh3)-L-Cu(PPh3)(�-Br)2Cu(PPh3)-L (model L-
M-L-M-L). The p-DOSs of models 1 and L-M-L-M-L are similar, indicating that
the size of the model 1 is large enough to discuss the electronic structure of the
metal complex.
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Fig. 20.3 Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(�-
Br)2Cu(PPh3)-L (L-M-L) (model 1) (L D pyz, 4-bzpy, quina, and 1,6-nap). Solid vertical line
denotes the energy level of the HOMO

Fig. 20.4 Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(�-
Br)2Cu(PPh3)-L (L-M-L) (model 1) (L D 1,5-nap, bpy, 3-bzpy, and dmap). Solid vertical line
denotes the energy level of the HOMO
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Another reason why the two p-DOSs are almost the same is due to the simple
nature of the metal complex. In other words, the physical properties of metal
complexes can be explained straightforwardly by means of the ligand field splitting
of the d or f orbitals of the central metal atom, as mentioned in Sect. 20.1. The
one-dimensional chain structure can be used for discussing electrical conductivity
and single-chain magnets (SCMs) [21], whereas the electronic structure of the
dinuclear unit can only be used for discussing optical properties, such as absorption
and emission. Therefore, we can discuss the electronic structures of the metal
complexes if we can create model of the metal complex with a central metal ion
and a minimum number of ligands of an appropriate size. Luminescence from
analogous dinuclear copper complexes with one-dimensional chain as well as non-
chain discrete structures has been observed. Therefore, model L-M-L-M-L, which
has a larger size, is not required. Details of the calculations with bpy, quina, 1,6-nap,
1,5-nap, and pyz have also been confirmed.

From the result of the calculation, the character of the ligand field splitting of
the copper 3d orbitals could be obtained. The ligand field splitting is caused by the
bridging bromine, terminal triphenylphosphine, and the bidentate ligand molecule
L. The mechanism for luminescence involves an MLCT transition between the
copper 3d and the ligand molecular orbitals. Therefore, the observed luminescence
wavelength is closely related to the energy splitting widths of the copper 3d and the
ligand molecular orbitals. In the case of the copper 3d orbitals, the 4p orbitals of
the bridging bromine atoms bind tightly to the copper 3d orbitals on the basis of
p-DOS. We can compare the energy splitting widths more clearly by means of the
sum of the copper 3d and bromine 4p orbitals. Similar calculations involving other
ligand molecules have also been confirmed.

Ozawa et al. have performed crystal structural analyses on these dinuclear copper
complexes in the excited state while irradiating the crystal with CW laser [6]. In
their experiment, the interatomic distance between the two copper atoms is almost
the same, whereas that between the two bromine atoms is shortened in the excited
state. The structural change is reported to be about 10 %. In the excited state, the
electron in the copper 3d orbital slightly moved outside from the Cu2Br2 unit plane
due to MLCT. Thus, the intermolecular distance between the two bromine atoms
is shortened due to the expansion of the two copper atomic orbitals. Luminescence
can be explained by the electron in the ligand molecular orbital dropping into the
copper 3d and bromine 4p orbitals.

We calculated the electronic structures using extremely deformed cluster models
in order to compare the effect from the structure changing between the ground and
the excited states. From the result of the calculation of the p-DOSs of the deformed
cluster models with pyz as a ligand, we did not find much difference in the electronic
structures with 0, 2, 5, and 10 % deformation. Similar results were confirmed when
L D 1,5-nap, bpy, and 3-bzpy.

Taking into account that Ozawa et al. observed about 10 % structural difference
between the ground and excited states, the molecular orbital calculations using
cluster models based on the ground state CIF data can be used to discuss the
electronic structure of the excited state in order to determine the luminescence
mechanism.
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Fig. 20.5 Partial density of states (p-DOS) near the Fermi energy level of pyz-Cu(PPh3)(�-
Br)2Cu(PPh3)-pyz (top) and pip-Cu(PPh3)(�-I)2Cu(PPh3)-pip (bottom). Solid vertical line denotes
the energy level of the HOMO

Luminescence has been observed not only from the bromine-bridged dinuclear
copper complex but also from the iodine-bridged ones [5]. In the case of the iodine-
bridged analogues, the metal complexes with bpy, pym, and pyz show luminescence,
whereas the one with piperidine (pip) does not. The luminescence mechanism is
due to an electron dropping after MLCT excitation. Therefore, luminescence should
not occur if there is no p-DOS of the ligand orbital near the Fermi energy level
in the unoccupied region. Among the analogous dinuclear copper complexes, only
in the case of the iodine-bridged complex with pip, luminescence is not observed.
However, when L has a conjugated   system, luminescence is observed from both
the iodine- and bromine-bridged complexes. Therefore, since luminescence appears
to be closely related to the conjugated  character of L, we calculated the electronic
structure of the complex with pip in order to compare the luminescence mechanisms,
and p-DOSs of the iodine-bridged complexes with pym, pyz, and pip are shown in
Fig. 20.5. On the basis of the p-DOSs, the copper 3d and the iodine 5p orbitals
are dispersed around the Fermi energy level in the occupied region. In addition,
similar electronic dispersions of the ligand orbitals were obtained near the Fermi
energy level in the unoccupied region in the cases of pym and pyz. Therefore, both
the iodine- and the bromine-bridged complexes should exhibit luminescence via the
same mechanism involving MLCT.
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On the other hand, in the case of pip, there is no electron dispersion of p-DOS
just above the Fermi energy level in the unoccupied region. In general, an organic
compound needs to be able to undergo a  – * electronic transition in order for
luminescence to occur. However, the iodine-bridged metal complex is not a simple
organic material, meaning that the lack of a simple  – * transition does not explain
the lack of luminescence. In the case of pip, each carbon or nitrogen atom is sp3

hybridized. So, there are no  - or  *-conjugated orbitals in this ligand. The overlap
of a metal dz2 orbital with an sp3 hybridized orbital and orbital is much better than
that with an sp2 one. Therefore, the energy splitting of an sp3 hybridized orbital
between the bonding and the antibonding orbitals should be much more larger than
those of the pym and pyz, which have sp2 hybridized orbitals. As a result, in the
case of pip, the energy difference between the copper 3d orbital and the ligand sp3

molecular orbital is too large for luminescence in the visible region. In Sect. 20.3.3,
we discuss the relationship between the experimental luminescence wavelength of
the bromine-bridged dinuclear metal complex and L.

20.3.3 Relationship Between the Experimental Luminescence
Wavelength and the Energy Splitting Width

The luminescence mechanism of dinuclear copper complexes involves an electron
in an excited state due to MLCT returning to the ground state. Strictly speaking,
the exact energy splitting width of the copper 3d and the halogen 4p (bromine) or
5p (iodine) orbitals in the ground state and the energy splitting width of the ligand
molecular orbital in the excited state must be calculated with high accuracy in order
to discuss the luminescence wavelength quantitatively.

Now, we consider the reason for the energy splitting. Needless to say, the copper
3d orbitals split in energy when a ligand coordinates to a copper ion. In a metal
complex, the metal d orbitals and the ligand ¢ ,  , and  * orbitals mix to form the
bonding and antibonding orbitals. Therefore, the energy level splitting of the ligand
molecular orbitals is not independent from the energy level splitting of the metal d
orbitals. So, in this section, we compare the electronic structure and the observed
luminescence wavelength by means of the energy level splitting of the copper 3d
and the halogen 4p or 5p orbitals.

Although we can obtain accurate crystal structural data in the ground state, it
is impossible to obtain accurate crystal structural data in the excited state. So, it is
impossible to calculate the luminescence wavelength accurately by means of any
molecular orbital calculations. However, in order to discuss the same structure,
similar chemical structures or analogous metal complexes such as a model 1, it
is more effective to compare qualitative energy level diagrams. In this study, we
compared the experimental luminescence wavelength on the basis of the electronic
structures because the dinuclear copper complexes have similar structures with
similar bidentate ligands. Now, we discuss the energy splitting width of the copper
3d orbitals.



20 Luminescence Wavelengths and Energy Level Structure of Dinuclear . . . 387

The shape of the p-DOS of the copper 3d orbitals is due to the distorted
tetrahedral crystal field splitting between eg and t2g groups of the CuC ion by the
two bromine ions, triphenylphosphine, and the ligand molecule L. The shape of each
p-DOS is almost the same, making it possible to compare the energy level splittings
to each other.

20.3.4 Relationship Between the Experimental Wavelength
and the Energy Level Difference of the Metal 3d
and Ligand Molecular Orbitals

We have discussed that there is a relationship between the experimental lumi-
nescence wavelength of the ligand field splitting width of the copper 3d orbitals
caused by the surrounding ligands. As mentioned in Sect. 20.3.3, the splitting
width and luminescence wavelength are linearly correlated. It should be noted
that a d-d electronic transition is not involved because the CuC ion has a d10

system. Since luminescence from the dinuclear copper complexes occurs when an
electron returns to the ground state after being excited via MLCT, a discussion
involving only the energy splitting of the copper 3d orbitals is insufficient. In
addition, because luminescence is observed from both the one-dimensional chain
and discrete complexes, other methods of analysis are needed in order to understand
the luminescence mechanism even if it is sufficient for the complexes with dmap
and 4-bzpy. Therefore, we now introduce a new way for discussing the energy level
splitting between the copper 3d and ligand molecular orbitals, as shown in Fig. 20.6.

In Fig. 20.6, near the Fermi energy level in the occupied region, there is an
electron dispersion created by the copper 3d and the bridging bromine 4p orbitals.
On the other hand, in the unoccupied region, the electron dispersion mainly involves
the ligand molecular  -conjugated orbitals. Therefore, after irradiating with an
ultraviolet lamp, an electron in the copper 3d and the bromine 4p orbitals is excited
into the unoccupied ligand molecular orbitals via MLCT. After a certain lifetime,
the excited electron returns to the original ground state emitting a photon. So, we
determined the excitation energy, which is the difference between the numerical
averages of the occupied copper 3d and unoccupied ligand molecular orbitals. The
additional calculations in order to obtain the p-DOSs have been investigated among
models 2–10, as shown in Figs. 20.7 (model 2), 8 (model 3), 9 (model 4), 10 (model
8), and 11 (model 9). Especially in the case of model 4, the electron transfer between
not only the metal to ligand (MLCT) type but also the halogen to ligand (XLCT)
one have also been obtained. In addition in the case of model 9, the electron transfer
between the ligand to ligand (ILCT) type can be obtained (Figs 20.8, 20.9, 20.10,
20.11)

The excitation energy is the energy difference between the copper 3d and ligand
molecular orbitals in the p-DOS diagrams, and its relationship to the photon energy
of the observed luminescence wavelength is plotted in Fig. 20.12. From this plot,
the tendency of the relationship between the calculated excitation energy and the
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Fig. 20.6 Strategy for discussing the experimental luminescence wavelength of the dinuclear
copper metal complex using the energy difference between the metal’s 3d orbitals in the occupied
region and the ligand molecular orbitals in the unoccupied region of the partial density of states
(p-DOS) near the Fermi energy level of L-Cu(PPh3)(�-Br)2Cu(PPh3)-L (model 1) (L D pyz). Solid
vertical line denotes the HOMO energy level

Fig. 20.7 Partial density of states (p-DOS) near the Fermi energy level of dppb-Cu(�-I)2 Cu-dppb
(dppb D 1,2-bis(diphenylphosphino)benzene) (model 2). Solid vertical line denotes the energy
level of the HOMO

Fig. 20.8 Partial density of states (p-DOS) near the Fermi energy level of [CH3CN-Cu(ttab)Cu-
CH3CN][BF4]2 (ttab D 1,2,4,5-tetra(7-azaindolyl)benzene) (model 3). Solid vertical line denotes
the energy level of the HOMO
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Fig. 20.9 Partial density of states (p-DOS) near the Fermi energy level of Cl-Cu(L1)Cu-Cl
(L1 D 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methylthio)propyl)-4-methoxy-3,5-
dimethylpyridine) (model 4). Solid vertical line denotes the energy level of the HOMO.
Dashed lines denote the positions of the occupied and unoccupied energy levels for metal to ligand
and halogen to ligand charge transfers

Fig. 20.10 Partial density of states (p-DOS) near the Fermi energy level of [Cu(POP)(dmp)]tfpb
(POP D bis[2-(diphenylphosphino)phenyl]ether, dmp D 2,9-dimethyl-1,10-phenanthroline,
tfpb D tetrakis(bis-3,5-trifluoromethylphenylborate)) (model 8). Solid vertical line denotes the
energy level of the HOMO. Dashed lines denote the positions of the occupied and unoccupied
energy levels for metal to ligand charge transfer

Fig. 20.11 Partial density of states (p-DOS) near the Fermi energy level of ZnL(EtOH) (L D N,N0-
phenylene-bis-(3,5-di-tert-butylsalicylideneimine)) (model 9). Solid vertical line denotes the
energy level of the HOMO. Dashed lines denote the positions of the occupied and unoccupied
energy levels for inter-ligand charge transfer



390 T. Ishii et al.

Fig. 20.12 Plot of the energy level difference between Cu 3d and the ligand orbital versus the
experimental photon energy of emission among models 1–10

experimental photon energy of the luminescence wavelength can be described
with a linear function (linear regression result; y D 0.94 x C 0.80, R D 0.80438).
The coordination strength can change not only the energy splitting width of the
copper 3d orbitals but also that of the ligand molecular orbitals. Therefore, in
the case of a luminescence mechanism involving MLCT, the observed wavelength
can be explained by the relationship between the excitation energy determined by
using molecular orbital calculations and the experimental photon energy of the
wavelength. In this figure, each point is located in the area (y> x) above the diagonal
of the plot, meaning that the energy of the luminescence should be lower than that
of the excitation.

In a preliminary result, the excited crystal structural data had already obtained
by an X-ray diffraction measurement while irradiating with CW laser [6]. Using the
data in the excited state, the comparison between before and after irradiation the
ultraviolet lamp in model 1, the energy difference between the occupied copper 3d
and the unoccupied ligand molecule in the excited state is larger than that in the
ground state, as shown in Fig. 20.13. There is the same tendency of the shifting
of the plot before and after irradiation of the ultraviolet lamp. Therefore, only the
calculation by using the ground state molecular structure is much sufficient for
predicting the experimental wavelength of the luminescent light.

20.4 Conclusions

In this study, we investigated the differences in the electronic structures among
the dinuclear copper(I) complexes ([Cu2(�-X)2 L] (X D Br and I) (L D N-
heteroaromatic ligands)) in order to determine the luminescence mechanism and
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Fig. 20.13 Plot of the energy level difference between Cu 3d and the ligand orbital versus the
experimental photon energy of emission before (open circle) and after (solid circle) irradiating of
the ultraviolet lamp of L-Cu(PPh3)(�-Br)2Cu(PPh3)-L (model 1)

the ligand dependence. The luminescence wavelength was linearly correlated to the
energy difference between the metal’s 3d orbitals below the HOMO level and the
ligand’s  -conjugated molecular orbitals above the LUMO level. This result is
consistent for a system in which luminescence occurs when an electron returns to
the ground state after being excited via MLCT. Our analysis can be applied not only
to the dinuclear copper(I) complexes ([Cu2(�-X)2L]) mentioned in this chapter but
also to any other metal complexes showing luminescence. In other words, we can
predict the luminescence wavelength of unknown metal complexes in relation to
the electronic structures of known complexes.
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Chapter 21
Valence XPS, IR, and Solution 13C NMR
Spectral Analysis of Representative Polymers
by Quantum Chemical Calculations

Kazunaka Endo, Tomonori Ida, Shingo Simada, and Joseph Vincent Ortiz

Abstract Valence XPS, IR, and solution 13C NMR spectra of representative
polymers (PE, PS, PMMA, PVC) have been analyzed using the model oligomers
from B3LYP/6-31+G(d, p) basis calculations in GAUSSIAN 09. We simulated
valence XPS of the polymers by the negative of orbital energies of the ground
electronic state at the geometry optimization of the model oligomers. Simulated
IR spectra, and solution 13C NMR chemical shifts of polymers were obtained from
the other SCF calculations of B3LYP/6-31+G(d, p) basis using atomic coordinates
of the model molecules at the geometry optimization, in order to gain the vibrational
frequencies and nuclear magnetic shielding tensors, respectively. We have clarified
the electronic states of some polymers from the good accordance of simulated
VXPS, IR spectra, and solution 13C NMR shifts of polymer models molecules with
the experimental ones of the polymers.

21.1 Introduction

Many organic polymers are used as active materials with useful applications in de-
manding fields of electronics, catalysis, biotechnology, and space. As a fundamental
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investigation, it is important to obtain information on the electronic states of the
polymers. The X-ray photoelectron spectroscopy (XPS), infrared (IR), and nuclear
magnetic resonance (NMR) spectroscopy are powerful tools for providing direct
information about the density of electronic states. These experimental electron
spectra of polymers are directly linked to the theoretical results of the electronic
states as obtained by MO calculations using model oligomers, since polymers
consist of the repetition units.

In this decade, the hardware capacity of the computer rapidly progressed with
remarkable development of the software performance of the quantum chemical
calculation, and we are, then, able to perform the precise calculation about the elec-
tronic state of the substances. In the present work, we, thus, intend to predict valence
XPS (VXPS), IR, and 13C NMR spectra of representative polymers (polyethylene
(PE), polystyrene (PS), polymethyl methacrylate (PMMA), and polyvinyl chloride
(PVC)) from the latest quantum chemical calculation using the polymer model
molecules. Definitely, such spectral simulations of the polymers are performed by
B3LYP/6-31+G(d,p) basis calculations in GAUSSIAN 09 [1], and we compare the
simulated spectra with the experimental results in order to discuss the electronic
states of the polymers.

21.2 Computational Details

The initial geometric structures of H–(CH2–CH2)10–H, H–fCH2–CH(C6H5)g3–H,
H–fCH2–C(CH3)COOCH3g3–H, and H–(CH2CHCl)8–H for PE, PS, PMMA, and
PVC polymer model molecules, respectively, were optimized at the AM1 method
of Winmopac software [2]. For the second geometry optimization, we selected
the hybrid density functional theory, which was Becke’s three-parameter hybrid
functional[3] with Lee, Yang, and Parr’s correlation functional [4] (B3LYP), using
6-31+G(d,p) bases in GAUSSIAN 09 software, since the method enables us to
obtain a considerable precise energy level with a reasonable computational time,
as compared with other highly precise energy numerations [5]. Then, we performed
the second geometry optimization of the models at the B3LYP/6-31+G(d,p) level.
In order to reflect the polymer structural property, we omitted the contribution terms
to valence XPS, IR, and 13C chemical shielding tensors of both end groups for the
four polymer models.

21.2.1 Valence XPS Simulation

We simulated valence XPS of four polymers by using eigenvector coefficients and
the negative of orbital energies for the ground electronic state at the geometry-
optimization of the model oligomers at the B3LYP/6-31+G(d,p) level in GAUS-
SIAN 09.
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1. Solid-State Effect
In order to account and somewhat quantify solid-state effects in the polymers
under investigation, we considered the difference WD, (The quantity denotes
the sum of the work function of the sample (W ) and other energy effects (D
as delta), such as the polarization energy, as described in previous chapters [6])
between experimental or theoretical electron binding energy (Ic , or Ik) of model
molecules, and the experimental binding energy of the polymers. In order to
compare the calculated binding energy for free single molecules in the cluster
model and the experimental binding energy of solid polymers, one has to shift
each computed value (Ic or Ik) by a quantity WD as I 0

c .D Ic � WD/ for
I 0
k .D Ik � WD/g, to convert to I 0

c (or I 0
k) on a common binding energy axis

(relative to the Fermi level).
2. Vertical Ionization Potentials

Vertical ionization potentials were obtained from the negative of the orbital
energy for the ground electronic state at the geometry optimization of the model
oligomers at the B3LYP/6-31+G(d,p) level, as considered with the Koopmans
theorem-like method.

3. Intensity of XPS
The intensity of valence XPS was estimated from the relative photoionization
cross section for Al K˛ radiation using the Gelius intensity model [7]. For
the relative atomic photoionization cross-section, we used the theoretical values
from Yeh [8]. In the intensity calculations, we used the LCAO coefficients of
eigenvectors for the ground state of the model molecules derived by using a
minimal basis set.

To simulate the valence XPS, we started with a superposition of peaks centered
on each VIP. As described previously [6], each peak is represented by a Gaussian-
line-shaped curve. In the case of the line width (WH.k/), we used WH.k/= 0.10
Ik (proportional to the ionization energy) for valence XPS.

21.2.2 IR Spectral Simulation

Simulated IR spectra of the polymers were obtained from the other SCF calculations
of B3LYP/6-31+G(d,p) basis using coordination of the model molecules for four
polymers at the second geometry optimization. In order to take into account the
calculation of vibrational frequencies, one uses the scaling factor for the calculated
frequencies. We used the scaling factor as 0.9614 in the calculations of vibrational
frequencies at B3LYP/6-31+G(d,p) level, as Scott and Radom [9] showed.
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21.2.3 13C NMR Spectral Simulation

Simulated 13C NMR shifts of polymers were also obtained from the other SCF cal-
culations of B3LYP/6-31+G(d,p) basis using coordination of the model molecules
at the second geometry optimization, in order to gain the nuclear magnetic shielding
tensors.

For the 13C NMR chemical shieldings of four polymers, the chemical shielding
tensors were calculated in the coupled perturbed Hartree-Fock (CPHF) method with
the gauge-invariant atomic orbital (GIAO) [10]. The calculated chemical shift for
13C is defined by

�� D �quest � �ref ; (21.1)

where �quest and �ref are the chemical shielding tensors in question and the reference,
respectively. The calculated chemical shift is given relative to the reference,
tetramethylsilane (TMS). For TMS, we also used the 6-31+G(d,p) basis in the
B3LYP method and calculated the shielding constants in the CPHF method with
the GIAO.

All calculations were performed by ab initio hybrid calculations in GAUSSIAN
09 program on a Panasonic CF-N9 note personal computer.

We cited the experimental VXPS spectra [11], IR spectra [12], and solution 13C
high-resolution chemical shifts [13] of four polymers, respectively.

21.3 Results and Discussion

We already performed the detailed analysis for valence XPS of more than 60
polymers by DFT calculations using the model molecules [14]. In this section,
we aim to simulate valence XPS, IR, and 13C solution NMR spectra of PE, PS,
PMMA, and PVC polymers using the model oligomers by B3LYP/6-31+G(d, p)
basis calculations and to secondly clarify the electronic states of valence XPS, IR
spectra, and 13C solution NMR chemical shifts for the polymers.

21.3.1 Valence XPS of Four Polymers

In Fig. 21.1a–d, valence photoelectron spectra reflect the differences in the chemical
structures between four polymers (PE, PS, PMMA, PVC). For the valence band XPS
spectra in Fig. 21.1a–d, the calculated spectra correspond well to the experimental
ones. It can be predicted from the present MO results that valence XPS spectra of
the polymers reflect the electronic state at the ground state of each polymer due to
the good accordance of simulated spectra with the experimental results.
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Fig. 21.1 Valence XPS of four polymers (upper: experimental, lower: simulated) (a) PE, (b) PS,
(c) PMMA, and (d) PVC

In a comparison of experimental spectra with simulated results for PE and PS in
Fig. 21.1a, b, the simulated spectra of both polymers in the range of 10–23 eV show
good agreement with the experimental ones, while simulation spectra between 5
and 10 eV are considerably less intensity than experimental ones. The reason of
the less intensity is due to the small value of the photoionization cross-section
of C2p electron (0.0323 in relative to 1.00 of the C2s electron), although it is
partially owing to the populations of C2p atomic orbital in PE and PS model
molecules. For the electronic state of PS, we showed the parameters (calculated
VIPs, main AO photoionization cross section, orbital nature, and functional groups)
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Table 21.1 Observed peak, VIP, main AO photoionization cross-section, orbital nature, and
functional group for valence XPS of PS

Observed peak (eV) VIP (eV) Main AO Orbital natureb Functional group

20.0 (23.0–19.0)a 23.53–21.62 C2s s� (C2s-C2s)-B –C6H5, –C (main chain)
17.0 (19.0–15.5)a 20.94–19.12 C2s s� (C2s-C2s)-B –C6H5, –C (main chain)
13.5 (15.5–12.0)a 17.71–15.18 C2s s, p� (C2s-C2s,p)-B –C(main chain), –C6H5

10.0 (12.0–5.0)a 14.09–8.50 C2p p� (C2p-C2p)-B –C(main chain), –C6H5

4.0 (5.0–3.0)a 6.56–7.00 C2p p�(C2p-C2p)-B –C6H5 (–C=C)
aShows the peak range
bB and NB mean bonding and nonbonding, respectively

Table 21.2 Observed peak, VIP, main AO photoionization cross section, orbital nature, and
functional group for valence XPS of PVC

Functional
Observed peak (eV) VIP (eV) Main AO Orbital natureb group

20.5 (23.0–20.0)a 24.68–23.12 Cl3s(0.7), C2s(0.3) s� (Cl3s-C2s)-B C–Cl
18.0 (20.0–17.0)a 21.52–19.68 Cl3s(0.8), C2s(0.2) s, p� (Cl3s-C2s,p)-B C–Cl
14.5 (16.0–12.0)a 18.60–16.23 C2s(0.6), Cl3s, Cl3p s, p� (C2s-C2s,p, Cl3s)-B C–C, C–Cl
10.0 (12.0–9.0)a 14.34–11.72 Cl3p(0.7), Cl3s, C2p p� (C2p-C2p, Cl3p)-B C–C, C–Cl
6.5 (9.0–4.5)a 11.36–10.00 Cl3p(0.9), C2p p�(Cl3p, C2p-C2p)-B C–Cl, C–C

8:71� 8:76 Cl3p p�(Cl3p lone-pairs)-NB –Cl
aShows the peak range
bB and NB mean bonding and nonbonding, respectively

of the corresponding peaks in Table 21.1. However, the parameters for PE were
omitted, since such data were already subject to previous work [14]. For PMMA
in Fig. 21.1c, calculated valence photoelectron spectrum of the polymer model
molecule is in better accordance than the result in the previous work [14] with
the experimental ones. In the figure, the valence electron spectra intensity in the
ranges of 20–30 and 3–15 eV is due to the main contribution of O2s and O2p pho-
toionization cross-section, respectively. On the other hand, the peaks in the range of
15–20 eV result from C2s photoionization cross-section, although we omit the table
for the detailed parameters of the corresponding peaks of the valence spectra [14].

For PVC in Fig. 21.1d, the intense peak at around 6 eV is due to 3p lone-pair
orbitals of pendant Cl of the polymer. Broader spectrum between 15 and 22 eV
is determined by Cl 3s main contribution [6]. In the case of the electronic state
of PVC, we showed the parameters (calculated VIPs, main AO photoionization
cross-section, orbital nature, and functional groups) of the corresponding peaks in
Table 21.2.

21.3.2 IR Spectra of Four Polymers

We used the scaling factor as 0.9614 in the calculations of vibrational frequencies
for the four polymer model molecules at B3LYP/6-31+G(d,p) level. In Table 21.3,



21 Valence XPS, IR, and Solution 13C NMR Spectral Analysis... 399

Table 21.3 Calculated IR frequencies of polymer models with experimental ones of polymers

Stretching vibrations Bending vibrations

Functional Calculated Experimental Functional Calculated Experimental
group values (cm�1) range (cm�1) group values (cm�1) range (cm�1)

–CH, –CH2 PE (2,904, 2,952, 2,975) 2,850–3,000 –CH2 PE (1,445, 1,461) 1,450–1,500
PE (706) 720–725

–CH, –CH2 PS (2,915, 2,918, 2,945, –CH2 PS (1,432, 1,472) 1,420–1,470
2,965, 2,981, 2,991) 2,850–3,000 –CH PS (705, 730, 743) 750–800

=C–H PS (3,061, 3,068, 3,080) 3,020–3,100 =C–H PS (1,006, 1,012) 1,050–1,100
–C–C PS (1,588) 1,580–1,600

–CH, –CH2 PMMA (2,925, 2,933, –CH2 PMMA (1,350, 1,353,
–CH3 2,938, 2,944, 2,947, 1,386, 1,439, 1,445,

2,990) 2,850–3,050 1,454, 1,469) 1,350–1,470
–C=O PMMA (1,699, 1,724) 1,700–1,750 –CH2 PMMA (710) 720–770
–C–O PMMA (998, 1,025,

1,082, 1,105, 1,117,
1,186, 1,217) 970–1,300

–CH, –CH2 PVC (2,915, 2,918, –CH2 PVC (1,316, 1,340,
2,962, 2,990) 2,850–3,000 1,420, 1,432, 1,435) 1,350–1,470

–CC PVC (800, 818, 946,
952, 1,055, 1,100,
1,169, 1,184, 1,207,
1,240–1,265) 800–1,000

–CCl PVC (638) 600–750
–CC, –CCl PVC (594, 617) 600–750
–CC PVC (579, 587) 600–750

we showed the calculated C-H stretching frequencies (2,900–3,000cm�1) of four
model molecules with the experimental values. By considering the stretching and
bending vibrations of PE model as the referred vibrations, we are able to see such
vibrations of representative functional groups of polymer models (= C–H of PS,
(–C=O, –C–O) of PMMA and –C–Cl of PVC, respectively). In Fig. 21.2a–d, IR
spectra also reflect the differences in the chemical structures between four polymers
(PE, PS, PMMA, PVC). For IR spectra in Fig. 21.2a–d, the simulated spectra
correspond well to the experimental ones.

21.3.3 Correlation Between the Calculated and Experimental
Solution 13C Chemical Shifts

Figure 21.3a–d shows the correlation between the present theoretical 13C chemical
shifts of PE, PS, PMMA, and PVC polymer model molecules and the experimental
solution 13C chemical shifts of the polymers in organic solvents from data packages
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Fig. 21.2 IR spectra of four polymers (upper: simulated, lower: experimental) (a) PE, (b) PS, (c),
PMMA and (d) PVC

of NIMS 13. In the figure, we may conclude that the calculated values are in good
correlation with the experimental results.

In Tables 21.4–21.6, we showed the calculated 13C chemical shifts of functional
groups for the polymer models with the experimental ones for polymers in solution.
The calculated results are also in good accordance with experimental values in
absolute average deviations of ˙4.42 ppm.

In the tables, calculated shielding constants of all carbons for the polymer models
can be reflected the experimental chemical shifts in the four polymers. For carbons
of PE, PS, PMMA, and PVC polymers, the experimental shifts of the saturated
–CH–, –CH2, and –CH3 groups are seen to be determined by the paramagnetic
shielding constants, since the diamagnetic shielding constants are almost similar
values within 230–300 ppm Tables 21.4–21.6.
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Fig. 21.3 Comparison between experimental solution and calculated values for the 13C chemical
shifts of four polymers ((a) PE, (b) PS, (c) PMMA, and (d) PVC)

Table 21.4 13C magnetic shielding constant (ppm) of PE and PVC

Functional Experimental Calculated Chemical shielding constants

group values values Total Diamagnetic Paramagnetic

–CH2 (PE) 29.81 36.34, 36.37, 156.28, 156.25, 253.89, 253.39, �97:61, �97:14,
36.45, 36.41, 156.17, 156.21, 251.07, 258.41, �94:90, �102:20,
36.32, 36.27 156.30, 156.35 250.27, 251.84 �93:98, �95:49

–CH (PVC) 57.11, 56.13, 64.00, 66.35, 127.26, 128.62, 255.39, 237.91, �126:77, �111:63,
55.24, 55.10 63.35 126.27 235.70 �108:44

–CH2 (PVC) 47.92, 27.27, 51.78, 51.79, 140.84, 140.83, 241.02, 283.08, �100:18, �142:24,
47.14, 46.38, 51.49 141.13 259.78 �118:65
45.60

–13C (TMS) 0.00 0.00 192.62 252.95 �60:34
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Table 21.5 13C magnetic shielding constant (ppm) of PS

Functional Experimental Calculated Chemical shielding constants

group values values Total Diamagnetic Paramagnetic

–C(1)= 145.51 142.64, 143.95 49.98, 48.67 344.14, 330.75 �294:16, �282:07
–C(2)H= 131.02 122.79, 125.25, 69.83, 67.37, 191.17, 309.60, �121:34, �242:23,

123.88, 128.83, 68.74, 63.79, 293.43, 239.78, �224:69, �175:98,
121.74, 125.11, 70.88, 67.51, 226.54, 300.29, �155:67, �232:79,
124.67, 126.26 67.95, 66.36 283.38, 245.62 �215:43, �179:26

–C(3)H= 125.75 122.48, 122.06 70.32, 70.56 219.97, 245.61 �149:65, �175:05
–C(4)H2– 44.77 44.17, 48.99 148.45, 143.63 252.35, 270.79 �103:90, �127:17
–C(5)H– 41.38 45.38, 42.72 147.24, 149.90 330.05, 289.76 �182:81, �139:86
–13C (TMS) 0.00 0.00 192.62 252.95 �60:34

Table 21.6 13C magnetic shielding constant (ppm) of PMMA

Functional Experimental Calculated Chemical shielding constants

group valuesa values Total Diamagnetic Paramagnetic

–OC=O 177.70, 177.60 172.66, 172.10 19.96, 20.52 242.84, 241.06 �222:89, �220:54
177.11, 177.02,
176.93

–CH2 54.73, 54.57 55.30, 50.54 137.32, 142.08 245.79, 255.25 �108:47, �113:17
54.30

O–CH3 51.69 58.25, 57.67 134.37, 134.95 233.85, 242.77 �99:48, �107:82
–C(4)– 45.24, 44.95 53.95, 48.04 138.67, 144.58 298.92, 277.53 �160:25, �132:95
–C(5)H3 19.09, 17.17, 27.83, 18.61 164.79, 174.01 228.95, 237.21 �64:16, �63:21

17.08, 17.03

–13C (TMS) 0.00 0.00 192.62 252.95 �60:34
aSyndiotactic

CHCH2
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Fig. 21.4 Monomer units of
(a) PS (and (b) PMMA. For
(a) PS, the number
corresponds to carbon-13
NMR shielding in Table 21.5.
For (b) PMMA, the number
corresponds to carbon-13
NMR shielding in Table 21.6

21.4 Conclusion

We have analyzed valence XPS, IR spectra, and 13C NMR shifts of four
polymers (PE, PS, PMMA, PVC) by quantum chemical calculations (B3LYP/6-
31+G(d,p) basis calculations in GAUSSIAN 09) using the model oligomers
(H–(CH2–CH2)10–H, H–fCH2–CH(C6H5)g3–H, H–fCH2–C(CH3)COOCH3g3–H,
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and H–(CH2CHCl)8–H for PE, PS, PMMA, and PVC polymer, respectively). It
enabled us to show that simulated valence XPS, IR spectra, and 13C NMR shifts of
polymers from calculations of the B3LYP/6-31+G(d,p) level are in good accordance
with the experimental results of the polymers. We could clarify the electronic states
of the polymers from the good accordance of simulated valence XPS shifts, IR
spectra, and 13C NMR shifts of polymer models with the experimental data for the
polymers.

From these results, we should be able to identify new polymers in the future from
the valence XPS shifts, IR spectra, and 13C NMR shifts using quantum chemical
calculations.
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Chapter 22
Quantum Decoherence at the Femtosecond Level
in Liquids and Solids Observed by Neutron
Compton Scattering

Erik B. Karlsson

Abstract About 10 years ago, it was found that neutron scattering on hydrogen
showed anomalously low cross sections in many materials when it was observed
under Compton scattering conditions (i.e. with neutron energies larger than 10 eV,
where the duration of the scattering process falls in the � sc D 10�16 to 10�15 s
range). The anomalies decreased with the neutron energy, which means that the
cross sections approached normal values for long scattering times.

This phenomenon is interpreted here as due to an entanglement between the
protons (because of their indistinguishability) during the scattering process, by
which certain terms in the cross section are cancelled through the large zero-point
motion of the protons. The anomalies disappear gradually as the proton states
decohere in contact with the local environment. Fitted decoherence times range
from 4•10�15 s for proton pairs in liquid hydrogen to 5•10�16 s in metal hydrides.
For the proton pairs in water, the data are compared with a theoretical estimate for
decoherence based on the influence of fluctuations in hydrogen bonding to nearby
molecules.

The fast decoherence of locally prepared entangled states in condensed media
studied here is compared with decoherence (in the 10�6 to 10�3 s range) in
objects studied in quantum optics in high vacuum, with the disappearance of the
superposition state in NH3 or ND3 molecules in dilute gases, and with the lifetime
of superconducting qubits in solids (10�7 s) at low temperature.

In recent experiments, there are also indications for an energy shift in connection
with the breaking of the n-p entanglement in neutron Compton scattering. Com-
ments on this possibility will be given at the end of this chapter.
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22.1 Introduction

The concept of “quantum decoherence” is often at the forefront of discussions
on quantum communication and quantum information since it presents a serious
obstacle to the extended use of many of the suggested future techniques. At
the same time, this concept is a basic ingredient in our understanding of the
quantum measurement problem and for the transition from a quantum to a classical
description of the physical world.

Decoherence phenomena are most easily observed for small quantum systems
that are well isolated from “the rest of the world” so that the latter (called the “en-
vironment”) interacts only weakly with the system under consideration. Examples
of such weakly coupled open systems are found in experiments on particles isolated
in cavities under extreme vacua, where simple systems (pairs of entangled atoms)
have been shown to stay internally coherent for milliseconds, but it has also been
observed that the decoherence rate increases strongly with the size of the system,
such as in the experiments by Brune et al. [1] on photons enclosed in a cavity.

Decoherence means that the phase memory of a quantum superposition is lost.
This process is characterized (assuming an exponential decay) by a decay rate
�dec D 1/� coh, where � coh is the mean lifetime of the local superposition state.
A meaningful study of decoherence can be made only if the chosen system
can be reasonably well separated from the environment. However, even when
such a starting condition is fulfilled, interaction with the environment is most
often so strong that decoherence sets in within times that are not accessible for
measurements. This chapter will start with a brief review of some previous data
on a few well-defined systems exposed to different environments. The highest
decoherence rates that could be measured in these reports were about 1010 s�1 (i.e.
� coh � 10�10 s). The experimental technique to be presented in this work allows
measurements in the femtosecond range or below (� coh � 10�16 to 10�15 s) for the
specific systems studied.

The present results are obtained in a theoretical analysis of experiments with
neutron scattering on protons or deuterons in the so-called Compton scattering
regime. During the scattering process, the neutron-proton or neutron-deuterium sys-
tems would be naturally entangled over a characteristic time � sc if the system were
isolated (� sc can be varied by choosing the scattering conditions and is of the order
of femtoseconds). But, since the systems are exposed to environmental interaction,
their entanglement is broken after a time � coh <� sc. The ensuing loss of internal
coherence among the scattering particles is visible in the scattering cross sections.

Theoretical predictions of decoherence rates, based on known interactions
between system and environment, are still only at a primitive level due to the
complexity of most experimental situations. A simple example will be discussed
in this chapter in relation to one of the experiments. The Compton scattering
of neutrons also seems to allow measurements that have another connection to
recent discussions on quantum information theory, namely, the energy needed to
destroy information stored in quantum entanglement. At the end of this chapter, this
possibility will be mentioned briefly.
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22.2 Some Earlier Experiments on Decoherence Rates

Only photons, which interact very weakly with their environments, can form
more or less decoherence-free entangled states over longer periods. All material
particles are exposed to strong interactions in contact with their environment.
For entangled two-atom systems, quantum optics offers a possibility for direct
observation of decoherence on the microsecond timescale through the disappearance
of interference patterns in photon fields. In the first experiments by the Haroche
group [1], coherence was maintained up to 10�5 s, but later cavity improvement [2]
extended this time up to the 100 ms range. It was also found in [1] that the coherence
time decreased as the number n of interacting photons in the cavity was increased,
approximately as � coh/n.

In experiments by Hornberger et al. [3], interference patterns were observed
for fairly extended objects (C60 molecules and even heavier ones) passing double-
slit arrangements. This means that the objects were in a superposition state over
the fairly long transport times through the apparatus (of the order of 10�7 s);
their internal phase relations were kept up to the microsecond range. To study the
decoherence explicitly, the objects were first exposed to an increasing gas pressure
(where a reduced interference signal was still found to be present at 5 	 10�7 mbar)
and then to microwave fields of increasing intensity, where decoherence was found
to be almost complete at an effective temperature of 2,800 K. No quantitative
comparison with theories for the decoherence rates in these different environments
could be done, but the different decohering mechanisms were discussed.

The ammonia molecule NH3 is another well-known example of a quantum
superposition state. Spectroscopy shows that the N atom is delocalized (being
on “both sides” of the H3 plane) if the NH3 gas is sufficiently dilute. But the
characteristic inversion signal (at 24 GHz) disappears when the gas pressure is
increased to about 0.5 atm, meaning that under those conditions £coh is reduced
to about 10�10 s. The corresponding signal (at 1.6 GHz) for the deuterated version
DH3 disappears already at 0.04 atm, indicating £coh � 10�9 s at this lower pressure.
However, heavier chiral molecules, like AsH3, do not show this kind of quantum
mechanical behaviour, indicating too strong decoherence rates.

Whereas coherence can persist up to the nanosecond range for atomic and
molecular systems exposed to dilute gaseous environments, the situation is radically
different in liquids and solids. Interactions with neighbouring atoms, with phonons
in crystalline materials and with conduction electrons in metals, shift the coherence
times down by several orders of magnitude, and local quantum superpositions are
usually not observable. Intermediate cases are the electronic states used as qubits in
the form of superconducting islands introduced by Y. Nakamura et al. [4]. The latest
reports [5] show coherence times up to 10�6 s for these objects, which would allow
time for operations of a quantum computer. The decoherence mechanisms in such
circuits have been discussed theoretically by Burkhard et al. [6].

Protons introduced as impurities in crystalline solids can tunnel between two
different interstitial sites at low temperature. The tunnelling state is a quantum
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superposition where the particle is delocalized over the two sites. For a proton,
coherence is lost between each tunnelling step leading to a “quantum diffusion”, but
the same process has been studied for positive muons which have a mass about one
tenth of the proton and therefore tunnel much more easily. If the solid is metallic,
the particle interacts with both the phonon and the conduction electron baths, but
it was shown [7] that below 1 K, the phonon bath is frozen and the interaction is
mainly with the electrons. The coherence time in the normal state of the metal was
then estimated to be of the order of 10�11 s, but if the metal was superconducting,
this time was drastically extended (up to 10�7 s) because the electron energy gap
reduced the system-environment interaction strongly. This transition was reflected
in a much larger delocalization of the muons in the superconducting state.

For experiments on protons in condensed matter at normal temperatures, all
decohering mechanisms are supposed to be fully active and possible local quantum
superpositions states are expected to be extremely short-lived. The time diagram
in Fig. 22.1 illustrates the existence ranges for the above-mentioned open quantum
systems and indicates also the intervals where coherence or decoherence will be
observable with the specific method to be described in the next section.

22.3 Neutron Scattering in the Compton Regime

The majority of all neutron scattering experiments are performed with thermal
neutrons (with energy about 0.03 eV) where the scattering process takes about
10�13 s. On this timescale, it is likely that any possible entanglement of the
participating particles has already disappeared through decoherence in the solid or
liquid environment. No specific quantum correlation effects are therefore expected
to show up.
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Fig. 22.2 The kinematics of neutron Compton scattering

When the neutron energy is raised to the 1–100 eV range, there are two important
differences: (a) the energy transferred in the collision is sufficient to expel a scatter-
ing particle from its position in a molecule or crystalline lattice through a Compton
process and (b) the scattering time is considerably shorter, about 10�15 s or less.

Figure 22.2 shows the kinematic relations for a neutron (mass m) scattering on
a nucleus with mass M. The recoil energy and the ratio v1/v0 of incoming and
outgoing neutron velocities are simply related to the neutron scattering angle ™.
In the experiments, there is a “white” spectrum of incoming neutrons, but only
events which have the specific outgoing energy 4.91 ˙ 0.14 are selected by a narrow
energy filter and registered. When the detector is set at a particular angle 
 , the initial
neutron energy (and velocity v0) must fulfil the kinematic condition appropriate for
each mass Mi of the nuclei in the investigated material.

The detected events are therefore sorted according to the initial velocities of the
incoming neutrons through a time-of-flight (TOF) technique. Scattering on each of
the isotopes present in the material appears as a Compton peak in the time spectrum.
The peak intensities are determined by the product of the isotope content and the
neutron cross sections: p(Mi)� i. An example is given in Fig. 22.3, with data from the
mixed metal hydride NbHxDy [8]. In this, and other examples on Compton scattering
on hydrogen isotopes, the relative intensities turned out to be lower than the ones
expected (thin lines in Fig. 22.3) from the H/Nb and D/Nb ratios and the standard
thermal cross section ratios �H/�Nb and �D/�Nb. This, so-called hydrogen anomaly,
was first observed in 1997 by Chatzidimitriou-Dreismann et al. [9] in the H/D ratios
in D2O/H2O mixtures.

Although it was expected from the beginning that the roots of the hydrogen
anomaly was a quantum effect that appeared under specific scattering conditions, it
took several long series of experiments to disclose its detailed nature. One important
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clue was the observation in 1999 by Karlsson et al. [8] that the anomaly increased
with the scattering angle, an observation which later was repeated for several other
metal hydrides. Since increasing scattering angle means shorter scattering time (see
below), this showed that the anomaly was most pronounced at short times and
gradually disappeared when observed at longer observation times; it resembled a
decoherence phenomenon.

Two basic properties of neutron-proton and neutron-deuteron scattering in the
Compton regime are necessary for the formulation of a model that could explain
the hydrogen anomalies and their time dependence. The first is the strong zero-point
motion of the hydrogen isotopes and the second the coherence length of the neutrons
under the chosen scattering conditions.

Protons are bound in potentials where the ground state has a zero-point vi-
brational energy of typically 100 meV and a momentum spread �p of 3–4 Å�1

(1 Å�1 D 1.056 10�24 kg m/s is the conventional unit for momentum used in
scattering experiments). This has two direct consequences:

1. �p gives rise to the widths of the Compton peaks in Fig. 22.3.
2. �p determines the duration � sc of the scattering process through the following

relation

�SC D M

q�p
(22.1)
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where�p D p
<p2> and q D mv0�mv1 is the transferred momentum in the particle

collision. Formally, this relation is derived [10, 11] by considering the time-Fourier
transform of the q-dependent scattering function, which is found to decay with the
characteristic time � sc as a result of phase mixing in the neutron waves due to the
inherent momentum spread �p. � sc is the average time over which the neutron and
the interacting nuclei stay entangled in the scattering process if no other external
processes are involved. The uncertainty �p will also affect the interference terms
which appear [12] when the neutron has the possibility to interact with more than
one nucleus of the same kind in the Compton process as will be shown below.

Figure 22.4 illustrates the variation of � sc with the chosen scattering angle 

for neutron scattering on protons and deuterons (with typical values of �p for two
different materials) when the outgoing neutrons are selected by the standard energy
filter with resonance energy E1 D 4.91 ˙ 0.14. Detecting the neutrons at different
scattering angles provides an opportunity for time-differential studies of quantum
effects in the femto- and subfemtosecond range.

In the standard texts [13] on neutron Compton scattering, it is assumed that
each event only involves the interaction with one nucleus in the material. This is
motivated by the argument that the transferred momenta are so large that 1/q< d,
where d is a typical interatomic distance in the material. However, with the relative
sharp energy selection provided by the resonance filter, this is no longer true.
What determines the interaction range for the neutron is its coherence length lcoh

which depends on the energy width �E1 in the following way (�1 D 0.13 Å is the
wavelength of the selected neutrons):

lcoh D �2

��
D �1

�
2E1

�E1

�

: (22.2)

With the standard resonance filter, this means that a coherence length of about
4–5 Å should be expected, but since it is also reduced by uncertainties �
 in the
definition of the scattering angle, more typical values for the spectrometer used have
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been lcoh � 2 Å. Under these conditions, the probability is high that pairs (and to
some extent larger aggregates of protons or deuterons interact with the neutron) fall
within the coherence volume. In such a process, the neutron is entangled with pairs
(or triplets, etc.) of nuclei during scattering (Fig. 22.5) and interference phenomena
will appear.

The above-mentioned conditions are described in detail in ref. [12] which also
contains a calculation of the cross section for pairs of protons or deuterons under
Compton scattering conditions. The following basic points are included:

1. The outgoing recoiling particle j (proton or deuteron) recoiling from site ’ is
represented by a plane wave, exp(i p’.R’j), with momentum p’ D p C q, where p
is its initial momentum in its bound state in the material.

2. In scattering on a pair of identical particles in H2, D2, H2O, D2O and close pairs
of protons or deuterons in molecules or metal hydrides, the quantum exchange
effect must be taken into account by antisymmetrization of the initial state ‰i,

‰i D
�
1p
2

�
˚

1 .R˛/ 2



Rˇ
�C .�1/J 1




Rˇ
�

2 .R˛/
�

�J
M .˛; ˇ/ ; (22.3)

with particles ’ and “ at either position 1 or 2 and the coupled spin state �J
M(’,“).

The final state ‰f (with angular momentum J0) is a superposition of wave-
functions ¥1(R’) exp(i p’.R“2) where particle ’ remains in its position and “
is expelled, and its counterpart ¥2(R’)exp(i p’.R“1), etc. with positions 1 and 2
interchanged. Properly antisymmetrized, there are two allowed forms:

‰f;Compt.1/

D
�

1

2
p
2

�
8

<

:

exp .ip’ � R’1/ 2



R“1

�C .�1/J0

exp .ip’ � R’2/ 1



R“

�

C1 .R’/ exp



ip’ � R“2

�C .�1/J0

2 .R’/ exp



ip’ � R“1

�

9

=

;

	 �J0

M0 .’; “/ (22.4a)

‰f;Compt.2/
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3. When introducing the neutron scattering operator, On D b’exp
(iq.R’) C b“exp(iq.R“), the spatial parts of the matrix elements<‰f j On j
‰i> turn out to have the two forms [12]

< ‰f;ComptjO˛j‰i>spat D
�
1

4

�n

1C .�1/JCJ0

exp.ip � d/
o

K.p/ (22.5a)

< ‰f;ComptjO˛j‰i>spat D
�
1

4

�n

1 � .�1/JCJ0

exp.ip � d/
o

K.p/ (22.5b)

where interference factors multiply the standard single particle expression
K(p) D R

dR’exp(�i R.p)¥(R’), is the so-called Compton integral. These
factors depend only on the scalar product p�d. The spin parts, represented by the
bi operators, are not affected. The expected cross section (per nucleon involved)
can now be written in terms of the standard single particle cross section ¢ sp,n as

�eff;n D
�
1

4

�

fŒ1C < exp.ip � d/ >�2 C Œ1� < exp.ip � d/ >�2g�sp;n (22.5)

where< exp(ip.d)>D R

n(p) exp(ip.d)dp are averages over the momentum
distribution n(p).

4. For p.d�1 the quantity exp(ip.d) would be equal to unity and one would
recover the standard cross section. The average< exp(ip.d)> depends on the
initial momentum p of the proton and its orientation relative to H–H vector d.
For p perpendicular to d, exp(ip.d)? D 1, but for p jj d, the< exp(ip.d)>jj terms
are strongly reduced if there is a large zero-point contribution to the momentum
distribution n(p). The oscillations in exp(ip.d) are effectively averaged out by the
large intrinsic zero-point momentum spread in of the hydrogen isotopes, which
typically amounts to �p D 4 Å�1 for protons (see Fig. 22.6).

For the two-atomic molecules H2 and D2, whose vibrations are only along
d, the average <exp(ip.d)>�0, which means that the value expected from this
model is ¢eff D (1/2)¢ sp. With equal parallel and perpendicular components of p
along d, as valid in isotropic systems (metal hydrides, etc.) and approximately
for the H–O vibrations in water and the CH2 groups of organic compounds, an
average of <exp(ip.d)>� 1/2 is expected, which gives ¢eff D (5/8)¢ sp. These are
the theoretical expressions if each neutron interacts only with two particles. As
shown in Ref. [12], this case represents the maximum loss in cross section; with
increasing number of particles within the coherence volume, the cross section is
expected to approach ¢eff � ¢ sp and the anomaly disappears because interference
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effects are decreasing in magnitude. The following examples show that the observed
hydrogen anomalies can be reasonably well explained by this theory. On the other
hand, a small coherence volume (as exemplified by the experimental situation in ref.
[14]) contains only one particle, and no anomaly is expected.

22.4 Effects of Decoherence

The interference terms (and therefore also the hydrogen anomalies discussed above)
appear only as long as coherence is maintained in the neutron-proton interaction.
Here, it should be noted that � sc is an average scattering time in a set of events.
The probability for each individual event (which happens within the “nuclear” time
10�20 s) goes as P(t) D P(t D 0)e�t/£sc with � sc determined by Eq. (22.1). However,
with an external decoherence rate 1/� coh, the probability for a preserved coherence
changes to
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Fig. 22.7 Preservation of coherence without environment interaction (full line) and with interac-
tion corresponding to � coh D 2 fs (dashed line)

P.t/ D P.0/e�t .1=�scC1=�coh/ D P.0/e�t=ƒ (22.6)

The time integral of P(t) isP.0/
1R

0

e�t=ƒdt D P.0/ƒ D P.0/�coh�sc=.�cohC�sc/,

which should be compared to its value P(0) � sc in the absence of decoherence (cf.
Fig. 22.7). Introducing the ratio fdec D � coh/(� coh C � sc), the effective cross section
for a H2 molecule is expected to be reduced by decoherence as

�eff D.1 � 0:50 P2Hfdec/�

D
�

1� 0:50 P2H

�
1

1C �sc=�coh

�

� D
�

1� 0:50 P2H

�
1

1CK.H2/=q�coh

�

�

D
�

1� 0:50 P2H

�
1

1CK.H2/=48:6 tan 
 	 �coh

�

� (22.7)

where P2H is the probability for two protons to be contained in the coherence
volume.

In the second step of Eq. (22.7), the relation (22.1) has been used to convert
the � sc-dependence to a q-dependence, and in the third step the dependence on
scattering angle 
 (which for H scattering has the simple form q D 48.6 tan 
 in
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Å�1 units) is explicitly introduced. The quantity K (H2) D 57.6 fs is the coefficient
in the relation � sc D K (H2)/q.

At this point, it should be observed [12] that the relation between transferred mo-
mentum q and scattering angle 
 goes as qM � p

[(1�cos q)/M] for large masses M;
this means that � sc

0s are long compared to � coh and the factors fdec D � coh/(� coh C � sc)
tend to zero for which no anomalies are expected. This is the major reason why the
H/M and D/M intensity ratios in metal hydrides can be used for determining the H-
or D-intensity losses.

As a first example, a fit to the data obtained by Chatzidimitriou-Dreismann et
al. [15] for scattering on H2 is presented. Absolute values for the cross section
anomaly were not available (only H/D ratios from comparison with D2), but the
observed slope in the 
-dependence could be fitted assuming a decoherence rate of
0.25 	 1015 s�1, i.e. � coh D 4 fs.

This is shown in Fig. 22.8, which in addition contains two points from electron
Compton scattering on hydrogen molecules. Those were obtained by Cooper et al.
[16] and have been introduced at 37ı (which corresponds to their q-values) on the

-scale. Their positions support the theory given above (which should be applicable
also to electron Compton scattering), a 31 % anomaly for H2 and no anomaly for
HD molecules (no quantum exchange effect).

A second example comes from scattering on polyethylene (experimental data
from Cowley and Mayers [17]). Analysis of their data showed a 
-dependence that
corresponds to a coherence time of � coh D 1.5 fs as shown in Fig. 22.9.

Still faster decoherence (� coh � 1 fs) was observed for the entangled deuteron
state in the metal hydride YD3. The experimental data for YD3 were obtained by
Karlsson et al. [18] (Fig. 22.10).

No theoretical attempt was tried to explain the magnitude of these three
decoherence rates, but order-of-magnitude estimates can be obtained from the Joos-
Zeh relation [19]

.�coh/
�1 � .ko/

2njx � x0j2 (22.8)

where a system with spatial extension jx�x’j is assumed to be perturbed by n
quanta/s with wave number ko. For a system of 1 Å size, the decoherence time can be
estimated to be of the order of � coh D 10�16 to 10�15 s with reasonable assumptions
about random processes in the condensed matter environment and their impact on
the local system. As expected, decoherence was found to be slower in the liquid H2

environment than in the solids (polyethylene and metal hydride).
A more detailed analysis was tried by Karlsson [20] for the neutron Compton

scattering data on water. It can be shown [21] that the regular stretching and bending
vibrations of the H atoms do not destroy the coherence in the H pairs during scatter-
ing, but the random interactions in the fluctuating H bonds to nearby molecules
(see Fig. 22.11) are probably the major source of decoherence. A quantitative
expression for the loss of coherence can be obtained by studying the phase relations
in the final state (Eqs. 22.4a, 22.4b) of the entangled proton wavefunction. If the H
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Fig. 22.8 Fitting of � coh to the scattering angle dependence (Eq. 22.6) of the H anomaly [15] in
neutron scattering on H2. Data from electron scattering [16] for H2 and HD are included (Reprinted
from Ref. [12]. Copyright (2012) by John Wiley & Sons, Inc.)

atoms vibrate without external perturbation in the stretching mode with frequencies
!s D 6.9 	 1014 s�1 as sketched in Fig. 22.11a, the wavefunction will be modulated
by a common phase factor exp(i!st), but when the two protons are influenced
by hydrogen bonds to nearby molecules, their frequencies will be modified to
!s C!¢1(t) and !s C!¢2(t), respectively (Fig. 22.11b).

The additional phase factor (!¢1�!¢2)t changes randomly and has a frequency

distribution that can be represented by a Gaussian function exp
h

.!0 � !/
2
=4�2!

i

of width �! , which is almost of the same order of magnitude as the vibrational
frequency itself. This width is known from vibrational spectroscopy [22] be about
0.5 	 1014 s�1, corresponding to 0.03 eV. The phase factor exp(i!st) in

�
1

�!
p
�

 Z

d!0
s exp

"

.!0
s � !s/

2

4�2!

#

exp.i!st/ D exp

��2!t2

�

exp.i!st/; (22.9)

decays as exp.��2!t2�, which predicts a coherence time of � coh � 2 	 10�14 s, or
20 fs. Compton scattering experiments (Abdul-Redah et al. [23], Fig. 22.3) show a
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Fig. 22.9 Predictions for the H-scattering anomaly from Eq. (22.7) with loss coefficient 3/8,
compared with polyethylene data from Ref. [17] for different scattering angles (Reprinted from
Ref. [12]. Copyright (2012) by John Wiley & Sons, Inc.)

scattering angular dependence (Fig. 22.12) in the H/D ratio. Since it has also been
observed [24] that scattering on D2O has a very small dependence in this angular
range, these data can be mainly ascribed to effects of the H anomaly. The slope for
the 300 K data corresponds to a coherence time of 2.3 ˙ 3.2 fs. This is shorter than
predicted by the simplified model but still of the right order of magnitude. More
advanced theories for decoherence in particular systems can be found in ref. [25]
but have not been applied to the present data.

Here it should be noted that no H-scattering anomalies have been reported in
thermal neutron scattering on water. This is expected from the present analysis since
the corresponding scattering time � sc(thermal) � 10�13 s, for which � coh/� sc � 1.
The only situations where pairs of protons remain in quantum superposition
(exchange-coupled) states in thermal scattering have been found in H2 at low
temperatures, in the H2 dimers of KHCO3 and, to some degree, in CH4 [26],
indicating weak decoherence. The slow decoherence in the KHCO3 dimers has been
discussed by Fillaux [27] as a result of symmetry restrictions.
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Fig. 22.10 D-scattering anomaly in YD3 [18] (Reprinted from Ref. [12]. Copyright (2012) by
John Wiley & Sons, Inc.)

Fig. 22.11 (a) Stretching and bending H vibrations in water; (b) influence of hydrogen bonds
(Reprinted figure with permission from Karlsson EB (2003) Phys Rev Lett 90:095301. Copyright
(2003) by the American Physical Society)
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Fig. 22.12 Angular dependence according to Eq. (22.7) with parameters fitted to the observed H
anomalies in water [23]

22.5 The Energy Cost of Destroying Entanglement

As pointed out already in this chapter, the basic reason for the specific phenomena
discussed above is the neutron-proton or neutron-deuteron entanglement, which
itself is a natural consequence of the interaction of the particles during scattering.
Neutron Compton scattering has a time window short enough for these entanglement
effects to be observed.

In a recent paper, Chatzidimitriou-Dreismann et al. [28] report that they
have strong indications for another consequence of the breaking of the neutron-
proton entanglement in neutron Compton scattering: the energy associated with
the entangled state is lower than that of the uncorrelated particles. Such an
effect was recently predicted by Schulman and Gaveau [29], who calculated
the energy difference �E between an entangled system AB described by a
density operator ¡AB(t) D U(t)¡AB(0)U�(t) and that of the non-entangled product
¡(0) D ¡A(0)

N
¡B(0) and found�E to be negative for sufficiently short times. This

was found to be valid for a large class of interaction potentials in U(t). Thus, there
is an energy cost in disentangling the particles, associated with the decoherence
process, an energy that according to Schulman and Gaveau must be taken from the
kinetic energy of the particles.

In the context of neutron Compton scattering, this means that an extra energy
input would be necessary, in addition to the energy needed to fulfil the balance for
the in- and outgoing particles. In the time-of-flight spectrum for H2 at high scattering
angles (60ı), Chatzidimitriou-Dreismann et al. [28] reported a shift of the Compton
peak position corresponding to an extra energy input of 590 meV, needed to achieve
energy balance in the reaction. This shift was not observed at a lower scattering
angle (30ı) for H2, nor in scattering in D2 at any forward angle observed. It was
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Fig. 22.13 Positions of
Compton peaks in H2

scattering at low and high
angles. (Reprinted from Ref.
[28]. Copyright (2011) by
American Institute of
Physics)

interpreted as the energy difference between the initial state and the entangled state
of the n-p system.

This chapter has dealt with various aspects of processes on the femtosecond
scale. With information from Fig. 22.3, it is tempting to speculate why this shift
was observed only at high scattering angles for H2 and not at all in D2. A probable
reason is that it is only in the high-angle experiment on H2 that the scattering
time is short enough (<0.5 fs) to fulfil the short-time condition of Schulman and
Gaveau. The timeline in Fig. 22.14 illustrates schematically the energies involved:
the entanglement that sets in when the particles start to interact and the transitions
associated with the inelastic interactions with the surrounding baths. The shift can
be observed only if the scattering happens before entanglement has disappeared
through decoherence. The diagram can also be used to predict that the same type of
shift would also appear if D2 experiments were made at still higher scattering angles
(>100ı).



424 E.B. Karlsson

Fig. 22.14 Schematic illustration of energy conditions in Compton scattering on H2 and D2 as
function of time

There is an interesting connection between the energy needed to destroy entan-
glement, as indicated by this experiment, and the entropy production when quantum
information is erased [30]. Further experiments with femtosecond time resolution
will probably help to clarify this connection and its possible influence on future
quantum computer and communication systems.

22.6 Summary

This chapter has discussed decoherence on different timescales. It was shown that
by employing the specific properties of neutron Compton scattering, it is possible
to study decoherence on the subfemtosecond scale. The neutron and the hydrogen
nuclei are entangled during the interaction, and the gradual loss of their phase
coherence can be derived from the variation of cross section with scattering angle. In
an open quantum system, the rate of decoherence depends on the local environment
and is therefore different for the different materials containing the protons or
deuterons under study. A few examples were discussed quantitatively.

Note Added in Proof Very recent data on D2-scattering [31] at angles exceeding 100 degrees
(shorter times) also indicate energy shifts in agreement with the prediction made in Fig. 22.14.
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Chapter 23
Variational Path Integral Molecular Dynamics
Study of Small Para-Hydrogen Clusters

Shinichi Miura

Abstract In the present study, energetics of small para-hydrogen clusters has been
investigated by the variational path integral molecular dynamics method, which
generates numerically the exact ground state of many-body systems. Cluster sizes
used range fromN D 4 toN D 20. While in a classical approximation the chemical
potential of the hydrogen molecule has three minima in the size dependence, the
quantum kinetic energy is found to wash out the minima except at N D 13. The
chemical potential is decomposed into two contributions: one is from the quantum
kinetic energy and the other from the potential energy. These two contributions
tend to cancel out and generate a shallow minimum in the size dependence at
N D 13. On the basis of the inherent structure analysis, the size dependence of the
contribution from the potential energy is well described by the underlying potential
energy landscape sampled by the quantum kinetic energy.

23.1 Introduction

Quantum Monte Carlo (QMC) methods provide computational tools for accurately
calculating ground state properties of many body systems [1–4]. The Variational
Monte Carlo (VMC) method [5], for example, is used to calculate expectation values
of physical quantities using a trial wavefunction of the target system. The more
sophisticated diffusion Monte Carlo (DMC) method [6, 7] is a projector approach
in which a stochastic imaginary time evolution is used to improve a starting trial
wavefunction. The QMC methods including the VMC and DMC methods have
successfully been applied to various quantum systems ranging from quantum liquids
like helium to electronic structure of atoms and molecules [1, 4].
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In the present study, among various QMC methods, we adopt the variational path
integral method [1, 8] that is closely related to the diffusion Monte Carlo method.
The variational path integral method [1], which is also called path integral ground
state [8], is a method to numerically generate exact ground state of many body
systems. We have constructed the molecular dynamics algorithm [9–12] to carry
out the variational path integral calculations on the basis of path integral molecular
dynamics method developed for finite temperature quantum systems [13, 14]. We
call it the variational path integral molecular dynamics (VPIMD) method. The
VPIMD has successfully been applied to liquid and solid helium-4 [9, 10, 12, 15]
and molecular vibrations on adiabatic potential energy surfaces [11]. In order to test
the reliability of the VPIMD method to describe molecular systems characterized
by large anharmonicity of intermolecular interactions, in the present study, the
energetics of small molecular hydrogen clusters, (H2)N , at the absolute zero
temperature is explored in the size regime ranging from N D 4 to N D 20.

23.2 Method

In this section, we briefly describe the variational path integral molecular dynamics
method. We start to consider a system consisting of N identical particles whose
coordinates are collectively represented to be R. The Hamiltonian of the system
is written by OH D OT C OV where OT and OV are the kinetic and potential energy
operators, respectively. The system is assumed to be well described by a trial
wavefunction ˆT .R/.D hRjˆT i/. The exact ground state of the system, j‰0i, can
be obtained using the trial wavefunction jˆT i by the following relation: [1, 4]

j‰0i D lim
ˇ!1 e� ˇ

2
OH jˆT i; (23.1)

where ˇ is an imaginary time [1]. When the ˇ is long enough, the exact ground state
is automatically extracted unless the trial wavefunction is orthogonal to the exact
one. Here, we refer to a scalar product of the above exact wavefunction as a pseudo
partition function Z0 [16], which plays a central role to construct the variational
path integral:

Z0 D h‰0j‰0i D hˆT je�ˇ OH jˆT i (23.2)

D
Z Z

dRdR0hˆT jRihRje�ˇ OH jR0ihR0jˆT i;

where we have used the closure relation for the coordinate basis:
R

dRjRihRj D 1.

A matrix element hRje�ˇ OH jR0i in Eq. (23.2) is found to formally be the same as a
density matrix at the inverse temperature ˇ, �.R;R0Iˇ/. The density matrix can be
represented using a functional integral method known as the path integral [17]:
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�.R;R0Iˇ/ D
Z R.ˇ/DR0

R.0/DR
DR.�/e�SŒR.�/�: (23.3)

Here, SŒR.�/� is an imaginary time or Euclidean action:

S ŒR .�/� D
Z ˇ

0

d�

�
1

2
m PR2 .�/C V .R .�//

�

(23.4)

where m is the physical mass of the particle. Here and hereafter, we adopt the units
of „ D 1. Equation (23.3) means that the density matrix is represented by the sum
over all possible paths R.�/ with the end-point conditions: R.0/ D R;R.ˇ/ D R0.
Then, the pseudo partition function is written by

Z0 D
Z Z

dRdR0
Z R.ˇ/DR0

R.0/DR
DR.�/ˆT .R/e�SŒR.�/�ˆT .R0/: (23.5)

In order to obtain an expression suitable for numerical calculations, we express
the density matrix using the discretized path integral as [1]

�.R;R0Iˇ/ D hRjŒe��� OH�M jR0i (23.6)

D
Z

� � �
Z

f
M�1Y

sD1
dR.s/g

M�1Y

sD0
hR.s/je��� OH jR.sC1/i

/
Z

� � �
Z

f
M�1Y

sD1
dR.s/ge�S.fR.s/gI��/;

where �� D ˇ=M and S.fR.s/gI��/ is a discretized imaginary time action.
Explicit expression of the action is dependent on an approximation for a short-
time propagator hRje��� OH jR0i. A standard approximation is based on the following
formula:

e��� OH D e���
2

OV e��� OT e���
2

OV C O.��3/: (23.7)

This is called the primitive approximation [1]. More accurate approximation can
also be utilized: [18]

e�2�� OH D e���
3

OVe e��� OT e� 4��
3

OVme��� OT e���
3

OVe C O.��5/ (23.8)

where

OVe D OV C ��2˛

6
OC ; OVm D OV C ��2.1� ˛/

12
OC: (23.9)



430 S. Miura

Here, ˛ is an arbitrary constant in the range of [0, 1], and OC is the following
commutator:

OC D Œ OV ; Œ OT ; OV �� D
NX

iD1

1

m

 

@ OV
@ri

!2

: (23.10)

Then, the pseudo partition function is written by

Z0 /
Z

� � �
Z

f
MY

sD0
dR.s/gˆT .R.0//e�S.fR.s/gI��/ˆT .R.M//: (23.11)

As in the standard path integral method for finite temperature systems [19], the
above pseudo partition function can be regarded as a configurational integral
of classical polymers. However, in the variational path integral, the classical
isomorphic systems consist of open-chain polymers. Furthermore, distributions of
end-point coordinates at s D 0 and M are affected by the trial wavefunction
ˆT .R

.0// and ˆT .R.M//, respectively.
Here, we consider a molecular dynamics method to sample configurations of the

above isomorphic polymers. First, we define the following classical Hamiltonian:

HVPIMD D
MX

sD0

NX

iD1

.p.s/i /
2

2m0 C S.fR.s/g/
ˇ

� lnˆT .R.0//

ˇ
� lnˆT .R.M//

ˇ
; (23.12)

where p.s/i denotes a fictitious momentum of an i -th particle at an s-th time
slice and m0 is a fictitious mass of the particle. Using the above Hamiltonian,
we can derive equations of motion based on the classical Hamilton equation.
Then, to generate the distribution compatible with Eq. (23.11), we attach a single
Nosé-Hoover chain thermostat [20] to each degree of freedom. The resulting
equations of motion are basic equations for the variational path integral molecular
dynamics (VPIMD) method. In the present study, we use staging coordinates [14]
to describe the polymer configurations for enhancing sampling efficiency. The
standard definition [13, 21] on the staging variables and associated staging masses
m.s/ are adopted. The related method applied to the density matrix in the coordinate
space can be found elsewhere [22].

23.3 Computational Details

In the present study, clusters of hydrogen molecules have been investigated: Number
of molecules N ranges from 4 to 20. Since the rotational ground state of the H2

molecule is spherically symmetric, the molecule is safely modeled to be a spherical
particle. Note that the H2 molecule whose rotational quantum number is even is
called para-hydrogen. To describe the ground state of the para-hydrogen cluster, the
following trial wavefunction is employed [23]:
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ˆT .R/ D
NY

i<j

e
� 1
2 .

b
rij
/5� rij

p ; (23.13)

where b and p are variational parameters. In the present study, b D 3:70 Å
is adopted for all the clusters studied [23]. On the other hand, it has been
commented [23] that the optimized parameter p varies almost linearly, from
2.24 Å for N D 3 up to 23.6 Å for N D 50. In the present study, linearly
interpolated p is used for all the clusters studied. The intermolecular interaction
is written to be a sum of an isotropic pair interaction developed by Silvera
and Goldman [24]. This potential function has extensively been used to study
properties of condensed molecular hydrogens and is found to reproduce well
various experimental quantities [25]. To obtain the discretized expression of the
density matrix, we adopt a fourth-order approximation Eq. (23.8) with ˛ D 0. It
has been demonstrated [12] that the choice of ˛ D 0 is advantageous over other
choices for total energy calculations. Total imaginary time ˇ D 1:0 K�1 and
M D 252. The fictitious masses for the staging variables m.s/0 are set to be equal
to the corresponding staging masses except end-point coordinates (at s D 0 and
M ) where m.0/0 D m.M/0 D �m with � D 1=63. The VPIMD calculation has been
performed 2,000,000 steps with a time increment�t D 8 fs for each cluster.

23.4 Results

We first show the chemical potential of the hydrogen molecule in the clusters. In
a classical approximation, the chemical potential at T D 0 can be written by 	 D
Vmin.N /�Vmin.N�1/where Vmin.N / is the minimum energy of the cluster with the
size N . In the present study for each cluster, the global minimum structure for the
Silvela-Goldman potential function was obtained by the standard steepest descent
minimization method where the initial structure of the cluster was given by the
global minimum of the corresponding Lennard-Jones cluster, which was taken form
the Cambridge Cluster Database [26]. Figure 23.1 shows the size dependence of
the classical chemical potential. Three minima at N D 7; 13, and 19 are found
in the size dependence in the range presented; these are magic number clusters in
the classical approximation. We next show the chemical potential of the hydrogen
molecule by the VPIMD calculations. The chemical potential is calculated by 	 D
E0.N /�E0.N � 1/ whereE0.N / is the ground state energy of the cluster with the
size N . Total energyE0 is calculated by the following relation:

E0 D h‰0j OH j‰0i
h‰0j‰0i D hˆT je� ˇ

2
OH OHe� ˇ

2
OH jˆT i

hˆT je�ˇ OH jˆT i (23.14)

D hˆT j OHe�ˇ OH jˆT i
hˆT je�ˇ OH jˆT i ;
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since the density operator is commutable with the Hamiltonian operator. To obtain
an estimator for the energy calculation, the Hamiltonian is operated to the trial
wavefunctionˆT .R/, which is expressed using the local energyEL [4] evaluated at
the end points R.0/ and R.M/,

EL.R/ D ˆ�1
T .R/

OHˆT .R/: (23.15)

This is called the mixed estimator [4]. The calculated results of the chemical poten-
tial are presented in Fig. 23.2. The chemical potential decreases with increasing the
sizeN . AtN D 13, a minimum in the size dependence is found, indicatingN D 13

is magic number. Minima found at N D 7 and 19 in the classical approximation
are diminished in the quantum calculations. Here, we decompose the chemical
potential into contributions from the kinetic and potential energies,�h OT i and�h OV i,
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respectively. The calculated results are presented in Fig. 23.3. A deep minimum at
N D 13 is found in the size dependence of �h OV i. However, the potential energy
decrement is compensated by the kinetic energy increment indicated by a sharp
peak at N D 13. Then, the combination of these two contributions make a shallow
minimum at N D 13 in the size dependence of the chemical potential.

Here, we consider how we can approximately describe the size dependence of
the potential energy in Fig. 23.3. As discussed above, molecular coordinates at
the imaginary time � D ˇ=2 are distributed according to the exact ground state
wavefunction, j‰0.R/j2. Each structure at � D ˇ=2 along the VPIMD trajectory is
mapped onto a nearest local minimum structure in the configuration space. This can
be realized by the steepest descent minimization technique:

dr i

ds
D �@V

@ri
(23.16)

where ri is the center-of-mass coordinate of an i -th para-H2 molecule at � D ˇ=2

and s is a virtual time. Starting from a configuration of the cluster at � D ˇ=2

in the VPIMD trajectory, the above equation locates a minimum energy structure
nearest in the configuration space. Obtained minimum energy structures are called
inherent structures [27]. The distribution of the inherent structures characterizes
how the quantum kinetic energy samples the potential energy landscape of the
clusters; the clusters are found to fluctuate around higher energy local minima as
well as the global minimum of the potential energy. Here, the potential energy of
the cluster is approximately calculated by averaging the potential energy of the
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obtained inherent structures. Size dependence of the approximate potential energy
difference is presented in Fig. 23.4. Size dependence of �h OV i is found to be well
described by the underlying potential energy landscape sampled by the quantum
kinetic energy. This explains the reason why minima at N D 7 and 19 in the
classical chemical potential are diminished in the quantum chemical potential.
Quantum kinetic energy is found to be large enough to sample structures around
higher energy local potential energy minima in the configuration space, and then
the resulting size dependence of �h OV i has no minima at N D 7 and 19. The
large quantum kinetic energy is expected to give large effects on atomic structural
correlations in clusters, for example, the density profile of the cluster becomes broad
compared with the classical counterpart. Examples on the structural correlations in
the case of N D 13 can be found in Ref. [15].

23.5 Concluding Remarks

In the present study, energetics of the para-hydrogen clusters at the ground state
has been studied by the variational path integral molecular dynamics method. Size
dependence of the chemical potential of the hydrogen molecule is found to have a
minimum at N D 13 in the range studied, indicating N D 13 is a magic number.
The quantum kinetic energy is found to be important to describe the structural
fluctuations of the clusters; the system wanders around the higher energy local
minimum structures as well as the global minimum energy structure.

Here, we comment on the important feature of the variational path integral
method compared with other quantum Monte Carlo methods like diffusion Monte
Carlo (DMC) and Green’s function Monte Carlo (GFMC) methods. Although,
using either DMC or GFMC, the ground state energy can be calculated accurately,
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expectation values of operators which do not commute with Hamiltonian, for exam-
ple, the potential energy and the local density profile, are harder to calculate [8].
Among various methods to calculate the expectation values, the extrapolation
method [28] is most widely used. The accuracy of the extrapolation method is
closely related to the trial wavefunctions used for importance sampling, although
elaborate unbiased estimators have been developed [29]. On the other hand, using
the variational path integral method, a variety of ground state properties can be
calculated without extrapolation, and unbiased estimates of the expectation values
can directly be achieved. We also comment on a merit of the molecular dynamics
method for the variational path integral calculations. In the VPIMD method, force
calculations at each time slice can almost be performed independently. Actually,
intermolecular interaction at a time slice can be calculated without reference to other
time slices. When the method is implemented in parallel computations, the VPIMD
method can fully enjoy the independency on the force calculations.

Future applications by the VPIMD method include vibrational fluctuations of
molecular clusters such as hydrogen bonded clusters. Molecular clusters character-
ized by weak intermolecular interactions are expected to have large anharmonicity
of the potential energy surfaces. As demonstrated in the present study, the VPIMD
method properly handles the anharmonicity including the case of multiple minima.
Another important point is on the description of the adiabatic potential energy
surfaces of molecular clusters. An improvement can be achieved by combining
the VPIMD method with electronic structure calculations as in the case of the
finite temperature path integral molecular dynamics [30–32]. These issues will be
addressed in the near future.
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Chapter 24
Origin of Antiferromagnetism in Molecular
and Periodic Systems in the Original
Kohn–Sham Local Density Approximation

Kimichika Fukushima

Abstract This study presents a solution to an issue which became prominent
due to the discovery of copper (Cu) oxides in 1986, namely, whether LDA (local
density approximation) can describe antiferromagnetism. From an early stage,
many LDA band structure calculations failed to reproduce the insulating antifer-
romagnetic state. The Hubbard model predicts antiferromagnetism in a system
under appropriate conditions. The author’s LDA calculations were performed
for elongated hydrogen molecules comprising multiple atoms using the discrete
variational (DV) molecular orbital method. The LDA employed is the original
Kohn–Sham formalism, since the magnetic properties by GGA (generalized gradi-
ent approximation) are closer to the original Kohn–Sham results than those obtained
by VWN (Vosko–Wilk–Nusair) approximation. The DV method, with a basis set
of numerically calculated atomic orbitals, derived the antiferromagnetic state for
hydrogen molecules at long interatomic separations but, when used for Cu oxide
molecules, was seemingly unable to describe antiferromagnetism, where a well
potential with a usual depth of about �1 Eh within an ionic radius was added solely
to the potential for generating basis atomic orbitals of O2�. However, the author
finally achieved the antiferromagnetism description via a reduced well potential
depth following long parameter surveys. The calculation was generalized to a
periodic system CaCuO2 using a method employing Bloch-type linear combinations
of atomic orbitals with all electrons. Furthermore, we determined a spherically
averaged well potential depth having originated from the Coulomb potential by
the nucleus and electron clouds around O2� in a solid. The system revealed
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antiferromagnetic ordering due to a shallow well depth, and since the well for the
anionic basis set is induced by the Coulomb potential in general, this method is
applied to molecular orbital calculations.

24.1 Introduction

The establishment of quantum wave mechanics has progressed to describe the
magnetic properties of solids since the 1930s. Theoretical studies [1–7] and
experimental observations [8] of insulating antiferromagnetism raised the issue of
whether the local density approximation (LDA) [9–16] in the Hartree–Fock scheme
is capable of predicting the antiferromagnetic state. This problem addressed here
was strongly disclosed by the discovery of copper (Cu) oxides [17] exhibiting
antiferromagnetism like La2CuO4 and materials subsequently discovered, which
are parent materials of high-critical temperature (Tc) superconductors. Figure 24.1
displays the crystal structure and spin configuration of infinite-layered CaCuO2

[18, 19]. Many LDA band structure predictions indicated that the oxide was
metallic and nonmagnetic, unlike the experimental observation which showed
it was insulating and antiferromagnetic with magnetic moment at Cu atomic
sites [20].

From another perspective, the Hubbard model [21–24] approach, which con-
structs the electronic Hamiltonian in terms of transfer integrals and on-site Coulomb
repulsions, revealed the interpretation that a system with one electron per atom
shows an antiferromagnetic feature due to the transfer integral less than the on-
site Coulomb repulsion. We performed spin state calculations [25, 26] for elongated
hydrogen molecules comprising multiple atoms via the DV (discrete variational)
[27] molecular orbital method [28–30] in the Hartree–Fock–Slater scheme [31–34].
The elongated multiatomic hydrogen molecules reveal an antiferromagnetic state
due to Coulomb repulsion.

In real Cu oxides, the Cu–O separation is fixed to the experimental value with
no freedom of elongation, and it was seemingly hopeless to attribute the antifer-
romagnetism to the Cu–O overlap integral. Accordingly, the Hartree–Fock–Slater

Ca

CuO

Ca

CuO

Fig. 24.1 Crystal structure
and spin configuration of
infinite-layered CaCuO2
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challenge at the time was unable to account for the antiferromagnetic state of the
Cu oxides and faced a conundrum. However, the DV method can introduce well
potential into the atomic potential solely for numerically calculating the basis atomic
functions [35] of anions. The well depth within an ionic radius was arbitrary for
anions like O2� with two excess attached electrons in a solid but unstable when
isolated in a vacuum. The author then attempted parameter surveys on the well depth
affecting magnetic features. Evaluations of the magnetic characteristics following
long surveys revealed the unexpected finding that strong antiferromagnetic moments
at Cu atomic sites emerge for the shallower well depth in comparison with the usual
value of about �1 Eh [25]. This magnetic coupling is attributable to the reduced
overlap between Cu 3d and O 2p atomic orbitals. The Cu 3d orbital consequently
trends toward the localization stemming from the suppression of the Cu 3d � Cu 3d
orbitals overlapping with sufficient Cu–Cu interatomic separation.

The well potential depth was arbitrary at the time; hence, the author constructed
a calculation method to offer additional well depth spherically averaged within an
ionic radius by summing up the Coulomb potential generated by nuclei and electron
clouds in a solid. At the same time, the molecular orbital theory was extended
to cover the method for a periodic system [36]. Here, the analysis employed the
original Kohn–Sham LDA since magnetic properties calculated by the generalized
gradient approximation (GGA) [37–41] resemble those evaluated by the original
Kohn–Sham LDA more than VWN (Vosko–Wilk–Nusair) results [42]. It was shown
that the calculated well depth for the infinite-layered CaCuO2 was shallower,
enabling prediction of the insulating antiferromagnetism.

The purpose of this chapter is to overview the origin of antiferromagnetism in
molecules and solids. We will illustrate the dependence of magnetic strength on
interatomic separations of multiatomic hydrogen molecules. Moreover, as for Cu
oxides, the original Kohn–Sham LDA can now derive the antiferromagnetic state
ascribed from the (solid) Coulomb potential-induced well potential for generating
an anionic basis set. The well added solely to the potential for the anion basis set
is utilized in the DV molecular orbital method, and the focus will be on the well
depth for model clusters (comprising a finite number of atoms in solids) and for
molecules.

The contents of this chapter consist of the following items: (1) previous failure
of LDA band structure prediction for antiferromagnetism (AF) in Cu oxides, (2)
another view of AF from the Hubbard model, (3) an AF description for elongated
multiatomic hydrogen molecules using the molecular orbital (MO) method in the
original Kohn–Sham LDA, (4) an AF description of Cu oxides by MO using a
shallower well potential added to the atomic potential solely for generating basis
atomic orbitals of O2� than the usual well, (5) extension of the above calculation
method to a periodic system, and (6) application to cluster models and molecules
including anions. In Sect. 24.2, the focus is on the above items (1)–(3) followed
by Sect. 24.3 that will cover items (4)–(6). Finally, the last section summarizes the
conclusions drawn from the analyses of the preceding sections.
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24.2 Local Density Approximation and Antiferromagnetism
of Elongated Multiple Hydrogen Molecules

In the LDA framework, the total electronic energy includes the exchange-correlation
energy density functional of the form [43]

"xcŒ�; &� D "P
xcŒ��C ."F

xcŒ�� � "P
xcŒ��/f .&/; (24.1)

with the use of

& .r/ D �" .r/� �# .r/
� .r/

; (24.2)

f .&/ D .1C &/3=4 C .1 � &/3=4 � 2

2



21=3 � 1
� ; (24.3)

where �.r/ D �".r/ C �#.r/ stands for the electronic charge density of spin
� D";# at a position r. The original Kohn–Sham scheme offers the relations

"P
xc Œ�� D �3

4

h�

3

i�1=3
�1=3; (24.4)

"F
xcŒ�� D 21=3"P

xcŒ�� (24.5)

and yields the corresponding exchange-correlation potential [43]. In Hartree–Fock–
Slater formalism, the exchange-correlation term is written as

"P
xcŒ�� D �9

8
˛
h�

3

i�1=3
�1=3; (24.6)

where ˛ is usually set to 0.7. The present analysis employs the original Kohn–Sham
LDA.

The electronic wavefunction  i� .r/ is represented in a linear combination of
atomic orbitals �j� .r/ as

 i� .r/ D
X

j

Cij��j� .r/: (24.7)

The discrete variational (DV) method numerically calculates the basis atomic
orbitals using the following wave equation for the radial atomic orbital function
Rj�.r/ in spherical coordinates

ŒTA� .r/C vA� .r/� Rj� .r/ D "j�Rj� .r/; (24.8)
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where TA� .r/ and vA� .r/ are kinetic and potential terms, respectively, with a
combination of eigenenergy "j� . The basis atomic orbitals centered on an isolated
anion are sometimes ambiguous due to the instability in a vacuum, whereupon an
additional well potential with an arbitrary depth (to be determined by the improved
approach in the next section) is required for the electronic Hamiltonian for the
ion. The matrix elements of the Hamiltonian and orbital overlap are integrated
by summing integrands over random spatial points incorporated with integral
weights.

A number of LDA band structure calculations by other groups were performed
in order to predict the electronic spin state for parent materials of Cu oxide
superconductors. The oxides were found to be metallic and nonmagnetic, unlike
the experimental evidence of insulating and antiferromagnetics.

From another perspective, a model predicting antiferromagnetism is the Hubbard
model in which the Hamiltonian is denoted as

H D
X

ij�

tij a
�
i�aj� C

X

i

Ua�
i"ai"a

�
i#ai#; (24.9)

where ai� and a�
i� represent annihilation and creation operators on the atomic

site labeled by i, the variable tij is the transfer integral, and U is the on-
site Coulomb repulsion. The Hubbard model, for a system with one electron
per site, provides the system as an antiferromagnetic insulator for the smaller
transfer integral in comparison with the on-site Coulomb repulsion. In contrast, the
system is a nonmagnetic metal for transfer integral exceeding the on-site Coulomb
repulsion.

For simplicity, we investigate whether LDA describes the antiferromagnetic
state by choosing hydrogen (H) molecules comprising multiple atoms at elongated
interatomic separations. Figure 24.2 plots a magnetized molecule of H27 composed
of atoms located at the sites of a simple cubic lattice with H–H distance of 0.224 nm.
The initial spin configuration in self-consistent iterations is also depicted in the
figure. The basis set of atomic orbitals used are the H 1s numerical functions. The
DV molecular orbital calculation fortunately derived the antiferromagnetic state
with a magnetic moment of 0.82 	B as determined from Mulliken populations
[44]. The calculated value of HOMO (highest occupied molecular orbital)–LUMO
(lowest unoccupied molecular orbital) energy gap was 3.8 eV. The above magne-
tization of the H molecule arose from the small overlap integral, which implies a
reduced transfer integral stemming from sufficient H–H distances. This mechanism
is further examined by extending the interatomic separation. The calculated values
of the magnetic moment and HOMO–LUMO gap are increased up to 0.95	B and
5.4 eV, respectively, with increasing interatomic separation up to 0.28 nm in line
with theoretical expectations.



442 K. Fukushima

Fig. 24.2 Cubic atomic coordinates and associated spin configuration in a calculated elongated
H27 molecule

24.3 Description of Antiferromagnetism and Other
Phenomena Using the Shallow Well Potential for Basis
Atomic Orbitals on Anions in the Original Kohn–Sham
Local Density Approximation

Concerning the antiferromagnetism of Cu oxides, we performed DV molecular
orbital calculations for the [Cu2O7]10� molecule (which is not a solid). Figure 24.3
displays the atomic coordinates and initial spin configuration in self-consistent
iterations. The Cu atoms are located at .˙a=2; 0/, and the oxygen (O) atoms are
positioned at .˙a; 0/, .0; 0/ and .˙a=2;˙a=2/ with a being set to 0.386 nm.
A basis set of atomic orbitals consists of 1s-3d centered on Cu atoms and 1s-2p
on O atoms, respectively. The Cu oxides possessed an initial outer shell electron
configuration of .Cu3d/9.O2p/6 in combination with an unoccupied atomic orbital
3dx2�y2" or 3dx2�y2#. The depth of the well potential, which was added solely to the
potential of the isolated O2� ion for generating basis atomic orbitals, was a usually
used value of about �1 Eh (deeper than the improved depth below) within an ionic
radius of 0.124 nm [45, 46]. Unlike the improved approach mentioned below, the
molecular orbital calculation via the usual well led to a metallic and nonmagnetic
state with vanishing magnetic moments on Cu atomic sites.

Based on the consequences of the previous section, the present author supposed
that the strong localization of basis atomic orbitals for Cu by the trial addition
of an artificial narrow and deep well solely to the atomic potential of an isolated
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CuCu O CuCu O

Fig. 24.3 In-plane arrangement of atomic positions and the initial spin configuration in self-
consistent iterations for the [Cu2O7]10� molecule

Cu atom might result in an insulating antiferromagnetic state for the Cu oxide
molecule. This manipulation, however, failed, and no antiferromagnetic state was
observed, even if the antiferromagnetic spin configurations were assigned at the
beginning of self-consistent iterations. The author recognized that the derivation
of the antiferromagnetism in LDA may be a conundrum. Fortunately, thanks to
the continuation of the further parameter survey on the well depth affecting the
magnetic features of [Cu2O7]10�, an unbelievably strong antiferromagnetic state
emerged from the addition of the extreme shallow well potential for O2� basis
atomic functions. The antiferromagnetism comes from the reduced overlap integral
between Cu 3d and O 2p atomic orbitals. This leads to the localization of Cu 3d
electrons, since the Cu atoms are sufficiently separated.

The scope of the method was then extended to a periodic system via the following
Bloch wavefunction, constructed in terms of atomic orbitals

 ki� .r/ D
X

Rj

Ckij � exp.ik � R/�j� .r � R/; (24.10)

where k is the momentum and R is a cell translation vector. The matrix element
representing the Hamiltonian,

Hkij� /
X

R0R

Z

dr exp.�ik � R0/��
i� .r � R0/H�.r/ exp.ik � R/�j� .r � R/;

(24.11)

is simplified with the benefit of periodicity [47, 48] to

Hkij� /
X

R0

�

exp.�ik � R0/
Z

dr��
i� .r � R0/H� .r/�j� .r/



: (24.12)

The periodic Coulomb potential in a solid is evaluated via the Evjen method [49–
51]. We calculate a spherically averaged well potential added solely to the potential
generating basis atomic orbitals of the O2� anion, as illustrated in Fig. 24.4. The
well potential for basis atomic orbitals within the region less than an ionic radius
centered at the anion is the spherically averaged Coulomb potential originating
from the nuclei and electron clouds in a solid, excluding the contribution from
the central anion as described below in detail. The ionic radius, 0.124 nm, for
O2� [45] written in the author’s previous paper [36] is the Shanonn’s compiled
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Fig. 24.4 Well potential additional to the potential of an anion produced by the Coulomb
potential from nuclei and electron clouds surrounding the anion excluding the central anion’s
self-contribution CaCuO2. The well depth is relative to the maximum averaged over the sub-sub-
domain described in the text. In the molecular case, the reference potential is zero at the region
apart infinitely from the molecule

value in literature [46], considering Pauling’s theory [52] with experimental deta by
Goldshmidt [53]. Furthermore, the result using the Wigner–Seitz radius (half of the
O–O distance along z (c) axis for the present Cu oxide) differs little from the results
for the Shannon’s ionic radius as was indicated in [36]. As the author’s previous
description [36], the spherically symmetric domain around the considering O2�
nucleus was divided into sub-domains. The region within ionic radius possessed
seven sub-domains, and the radial width (increment) of six sub-domains starting
from the coordinate origin was 0.0193 nm with that of the seventh domain being
0.0082 nm. The Coulomb potential generated from ions excluding the considering
central ion at the coordinate origin was spherically averaged over each sub-domain.
One of the sub-domains with a radius larger than ionic radius was further divided
into sub-sub-domains, since the averaged potential due to the surrounding extended
charges takes the maximum Vm there. The central radius of the sub-sub-domain
with Vm was about 0.337 nm, and the radial domain width was about 0.00241 nm.
The well potential depth has been indicated with bold solid lines in Fig. 24.4.
(The well depth in the region with a radius larger than ionic radius is zero.) The
well depth in domains with the radius less than ionic radius is the potential due to
extended charges of surrounding ions relative to the maximum Coulomb potential
Vm averaged over the sub-sub-domain with a radius lager than ionic radius. The level
of the well potential varies slightly as the radius increases because the region within
ionic radius possesses divided domains. The well potential in the outer sub-domain
within ionic radius reveals the relatively slight deeper value, since the well potential
due to ions excluded the contribution from the anion centered at the coordinate
origin.

We performed spin-polarized calculations to elucidate the antiferromagnetic
ordering occurring in an infinite-layered CaCuO2. The crystal contains CuO2 planes
composed of CuO4 squares and Ca block layers, as depicted in Fig. 24.1. Cu
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Mg,CaO

Fig. 24.5 NaCl-type crystal
structure of MgO and CaO

OMg,Ca

Fig. 24.6 Model clusters
with neutral total charge for
MgO and CaO materials

atoms are, e.g., in position .�a=2;�a=2;�c=2/ with O atoms coordinated at
.�a=2; 0;�c=2/ and .0;�a=2;�c=2/, where c is the distance between CuO2 layers
set to 0.319 nm. The positions of Ca atoms include the central origin as well
as equivalent positions translated symmetrically from the same. Numerical basis
atomic orbitals consisted of 1s-3d at Cu sites, 1s-2p at O sites, and 1s-3p at Ca sites,
respectively. The calculated average well potential depth was about �0.34 Eh. Due
to this shallow well depth, the system exhibited an insulating antiferromagnetic state
with a band gap of 0.2 eV as well as the magnetic moment of 0.77 	B on the Cu
atomic sites; meanwhile, the corresponding experimental value is 0.51 	B [54].

The afore-mentioned calculation procedure for well potentials generally enables
the unambiguous calculation of electronic states for cluster models and molecules
including anions. We achieved molecular calculations to evaluate the anionic
well potential depth in cluster models composed of multiple atoms for solids.
The materials focused on were MgO and CaO with NaCl-type crystal structures.
Figure 24.5 shows the coordinates of atoms in materials, while Fig. 24.6 displays
their model clusters. The total charge of model clusters is neutral, and wavefunctions
were expanded in terms of atomic orbitals on the atoms of the clusters satisfying the
total charge neutrality. The periodic Coulomb potential in solids was summed up
via the Evjen method, while the spherically averaged well potential was added only
for the anion basis atomic orbitals. The well potential is relative to the maximum
averaged over spherical shells around the anion. The lattice constants were 0.42112
and 0.48105 nm for MgO and CaO, respectively, and the oxygen ionic radius was
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0.126 nm. The calculated well potential depths given by the present method were
�0.47 and �0.47 Eh for MgO and CaO, respectively.

Finally, anionic well potential calculations were performed in molecule cases.
The molecule selected for illustration was diatomic CO, and the well potential
reference for a molecule must be zero at the region, infinitely apart from the
molecule in contrast to the solid case. The molecule CO has interatomic separation
of 0.11282 nm and an O2� radius of 0.122 nm, respectively. Basis numerical atomic
orbitals were 1s-2p on both C and O atoms. The calculated well potential depth was
�0.36 Eh which was shallower than the value of about �1 Eh usually used.

24.4 Conclusions

The conclusions obtained are as follows. This chapter has firstly achieved the
antiferromagnetism description for elongated multiatomic hydrogen molecules via
the molecular orbital method in the original Kohn–Sham LDA. Antiferromagnetism
intensified with increasing interatomic separation. We subsequently presented the
spin state calculation method for an infinite system including anions in the original
Kohn–Sham formalism. A well potential is added solely to the potential for the
preparation of anion basis atomic orbitals. The spherically averaged well potential
within an ionic potential is formulated in terms of the Coulomb potential produced
from nuclei and electron clouds around the anion. The well depth is relative to the
maximum of the averaged additional potential in spherical shells around the anion.
This method yielded antiferromagnetism in the infinite-layered CaCuO2 which is
attributable to the relatively shallower well depth compared with the value of about
�1 Eh usually chosen. Since the well potential for anionic basis functions is induced
by the Coulomb potential with the advantage of generality, this methodology can
be further applied to cluster models built for solids and molecules as presently
illustrated.
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Chapter 25
Calculation of Magnetic Properties
and Spectroscopic Parameters of Manganese
Clusters with Density Functional Theory

K. Kanda, S. Yamanaka, T. Saito, Y. Kitagawa, T. Kawakami, M. Okumura,
and K. Yamaguchi

Abstract Recently, the fundamental structures of the oxygen-evolving complex
(OEC) in photosystem II were revealed with the X-ray diffraction experiment. Next
problems are elucidation of the protonation mode and oxidation states of OEC that
are key points for the oxidation reaction in the OEC. Comparison between electron
paramagnetic resonance experimental results and ab initio computational results for
the hyperfine coupling constants (HFCs) is helpful to determine them. Although the
calculated HFC values strongly depend on the approximated exchange–correlation
(XC) term of the ab initio density functional theory (DFT) method, there is little
investigation on XC dependence of calculated HFC values. Thus, in this study,
we have examined the accuracy of contemporary functionals, which are known
to be efficient to describe magnetic interactions and molecular interactions, with
implementing a benchmark test of HFCs. For this purpose, we constructed a test
set consisting of nine dinuclear Mn complexes and Mn(II) ion ligated with six
H2O molecules. The computational results are discussed in relation to nature of
XC functionals.
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25.1 Introduction

Manganese complexes have been of great interest in the field of bioinorganic chem-
istry, because various types of complexes play important roles in metalloenzymes
such as Mn superoxide dismutase [1, 2], Mn catalase [3–6], and photosystem II [7–
18]. One of the important points of manganese complexes is that the Mn ion can take
various oxidation states, Mn(II) (d5), Mn(III) (d4), Mn(IV) (d3), and Mn(V) (d2), of
which the ability leads to the redox and catalytic activities of Mn complexes. In the
cases that the reaction centers contain many Mn ions, the location of the high-valent
oxidized Mn ion is closely related to the chemical reaction site. For instance, the
oxygen-evolving complex (OEC) in photosystem II contains four Mn ions, of which
oxidation states change during the five distinct oxidation steps called Kok cycle
[8]. Electron paramagnetic resonance (EPR) and electron nuclear double resonance
(ENDOR) measurements are effective tools to investigate the oxidation states of
Mn ions and protonation states of bridged oxygen anions in OEC, and indeed many
spectroscopic measurements have been carried out for each catalytic reaction step
[9–14]. Comparing calculated spectroscopic parameters based on various oxidation
models with the experimental results, one could determine the local oxidation
states, which would be useful to reveal the reaction mechanism. For this purpose,
a reliable computational method to estimate ESR parameters of transition metal
clusters is necessary. Several theoretical studies have been implemented to obtain
HFC values of mixed-valent iron–sulfur and manganese–oxo clusters [17–22].
Since the HFC values strongly correlate with the spin densities on transition metal
ions, these parameters must be very difficult to be reproduced with usual density
functional theory (DFT) methods because the electronic structures of Mn ions in Mn
complexes are critically different from the nearly homogeneous electron gas systems
that are basically assumed to design the exchange–correlation (XC) functionals
of DFT [23]. The hybrid DFT, in which the exact Hartree–Fock exchange is
included as a portion of the XC functional, was promising to describe the HFC
values. For instance, Neese et al. tested several hybrid XC functionals for DFT
calculations of HFC values of Mn(III)Mn(IV) complexes [21]. Their results showed
that the computational values are different from experimental values by factors,
approximately 1.2–1.5, even if the hybrid functionals such as B3LYP and TPSSh
functionals are employed. Therefore, they have always multiplied the computational
HFC values by these factors in order to reproduce the experimental values [17, 21].
Kaupp and collaborators have also taken similar treatments for isotropic HFC values
[18, 22]. From their results, there seems to be the significant functional dependence
on calculated values of HFC parameters with using DFT. However, to this time, little
study of functional dependence has been carried out. In this study, we implemented a
benchmark test of Mn complexes with Mn(III)Mn(IV) and Mn(II)Mn(III) oxidation
states in order to check the validity of XC functionals for redox processes. We
examined recently proposed range-separated types of hybrid functionals because
the more flexible variation of hybrid scheme is expected to improve the calculational
results for HFC values of Mn complexes.
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25.2 Theoretical Background

The spin Hamiltonian for the manganese clusters consisting of n spins f OSi g of Mn
ions is given by [24, 25]

OH D
Xn

i
ˇeB0 � gi � OSi �

Xn

i
gnˇnB0 � OIi C

Xn

i

OSi � ai �OIi C
Xn

i
OIi � Pi �OIi

C
Xn

i

OSi � Di � OSi � 2
Xn

i<j
Jij OSi � OSj ; (25.1)

where gi is the g tensor of the atom i, Ai is the hyperfine tensor, Pi is the nuclear
quadruple zero-field splitting tensor, Di is the zero-field splitting tensor, and Jij is
the magnetic exchange coupling constant. The first and second terms are Zeeman
terms for electron spins and nuclear spins, respectively. The third, fourth, fifth,
and sixth terms are hyperfine interaction, nuclear quadruple zero-field splitting,
electronic zero-field splitting (ZFS) terms, and magnetic interactions among spins
of Mn ions, respectively. Using total spin operator, OST, Eq. (25.1) can be written as

OH D
Xn

i
ˇeB0 � g0

i � OST �
Xn

i
gnˇnB0 � OIi C

Xn

i

OST � Ai � OIi C
Xn

i
OIi � Pi �OIi :

(25.2)

Here, the ZFS and magnetic interaction terms in Eq. (25.1) are omitted because
it becomes a constant for any specific total spin. Here, the g tensor and hyperfine
tensor, ai , in Eq. (25.1) are converted into the effective g tensor, g0

i , and effective
hyperfine tensor, Ai , respectively. The Ai is given with multiplying ai with
projection factor �i as follows:

Ai D �iai : (25.3)

In the case of exchange-coupled dimeric complexes, the projection factors for
the isotropic hyperfine coupling (HFC) terms are given as follows [26, 27]:

�1 D ST .ST C 1/C S1 .S1 C 1/ � S2 .S2 C 1/

2ST .ST C 1/
; (25.4)

�2 D ST .ST C 1/ � S1 .S1 C 1/C S2 .S2 C 1/

2ST .ST C 1/
: (25.5)

For instance, if we consider Mn(II)Mn(III) complexes, the factors are given
by �1 .Mn.II// D 7=3 and �2 .Mn.III// D �4=3. These values indicate that the
procedure given in Eq. (25.3) is essential for estimating the correct HFC terms.
Because exchange coupling terms are much larger than zero-field splitting terms,
the isotropic Heisenberg model is assumed to derive the projection factors.

The hyperfine tensor can be divided into isotropic and anisotropic (dipolar)
components:
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Ai D Aiso
i I C Adip

i : (25.6)

In the first-order approximation, the isotropic term of the hyperfine tensor Aiso
i is

given by

Aiso
i D 4�

3
ˇeˇngngehSZi�1X

	;�
PS	�

˝

'	
ˇ
ˇ ı .RN / j'�i ; (25.7)

where hSZi is the expectation value of the Z component of the total spin, PS	� is
an element of the spin density matrix in atomic orbital basis set, and RN refers to
the position of Nth nucleus. The isotropic hyper-coupling constant (HFC), Aiso

i , is
derived from Fermi contact term and is proportional to spin density at the position
of nuclei. Therefore, spin polarization of s orbital induced by s–d interactions on the
manganese ion gives rise to the isotropic HFCs because only s orbitals have nonzero
amplitude of wave function at the position of the nuclei. We omitted the spin–orbit
corrections to the HFC terms that are described by Kaupp and his coworkers [18,
22] because the contributions of them are small enough to be neglected in the case
of Mn complexes [18, 22].

A noteworthy point is that Eq. (25.7) is the equation for the exact solutions that
are also eigenfunctions of spin operator, OS2. Following the precursor’s procedure
[21, 22], we will evaluate the isotropic HFC values from broken-symmetry (BS)
DFT solutions with using the equation

Aiso
i D ˙hSZi

Si
A

BS; iso
i : (25.8)

Here, Si is the magnitude of the spin at the ith site, and ABS;iso
i is the effective

isotropic HFC value calculated from the BS DFT solution.

25.3 Computational Details

We first constructed a test set consisting of nine dinuclear Mn complexes and
one mononuclear complex. For the nine dinuclear Mn complexes, we chose the
complexes for which both X-ray structures and HFC values have been reported
[28–37]. The X-ray structures were obtained from the Cambridge Crystallographic
Data Centre (CCDC), and we fixed the positions of heavy atoms in the following
calculations in order to focus our attention on the performance of exchange–
correlation functionals on magnetism of the Mn complexes. The positions of
hydrogen atoms were determined with carrying out partially geometry optimizations
for high-spin states of complexes. For this purpose, we used UB3LYP/LACVP*
basis set, which was reported to be effective for optimization of geometries
of Mn complexes [16]. Figure 25.1 shows the structures and CIF indices of
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Fig. 25.1 Molecular structures, CIF indices, and oxidation states of Mn ions, of manganese
complexes we examined

these nine complexes: (1) [Mn2(bcmp)(�-OAc)2]2C(GACCOC10), bcmp D 2,6-
bis(1,4,7-triazacyclonon-1-ylmethyl)-4-methylphenol [28]; (2) [Mn2(�-OH)(m-
piv)2 (me3tacn)2]2C (TIPFED), piv D (CH3)3CCO2, me3tacn D 1,4,7-trimethyl-
1,4,7-triazacyclononane [29, 30]; (3) [Mn2(bpmp)(�-OAc)2]2C(FOSCAR10),
bpmp D 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol [28]; (4)
[Mn2(�-O)2(�-OAc)(tacn)2]2C (FERZUX), tacn D 1,4,7-triazacyclononane [31,
32]; (5) [Mn2(�-O)2(tren)2]3C (GAMFEF), tren D tris-(2-aminoethyl)amine[33,
34]; (6) [Mn2(�-O)2 (bisimMe2en)2]3C (ZUKHES), bisimMe2en D N,N0-dimethyl-
N,N0-bis(imidazol-4-ylmethyl)ethane-1,2-diamine [35]; (7) [Mn2(�-O)2(�-
OAc)(dtne)]2C (QABHAC), dtne D 1,2-bis(1,4,7-triazacyclonon-1-yl)ethane [32];
(8) [Mn2(�-O)2(bispiMe2en)2]3C (ATEWOL), bispiMe2en D N,N0-dimethyl-N,N0-
bis(2-pyridylmethyl)ethane-1,2-diamine [36]; and (9) [Mn2(�-O)(bpsed)2]3C
(DAJPUZ), bpsed- D N,N-bis(2-pyridylmethyl)-N0-salicylidene-ethane-1,2-diamine
[37]. In addition, we examined (10) [Mn(H2O)6]2C, of which the geometry and the
oxidation state of Mn ion are also shown in Fig. 25.1 as a typical mononuclear
complex. The geometry of [Mn(H2O)6]2C is determined with the fully optimization
procedure with UB3LYP/LACVP* basis set [16].

For these complexes, we examined the following exchange–correlation (XC)
functionals: (i) GGA functional, BLYP [38, 39]; (ii) four global hybrid functionals,
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TPSSh[40], B3LYP[41], PBE1PBE[42], and BHandHLYP[41]; (iii) two long-range
corrected functionals, LC-wPBE [43, 44] and CAM-B3LYP [45]; (iv) three short-
range corrected functionals, HSE1PBE, HSE2PBE, and HSEh2PBE[46–48]; and
(v) Hartree–Fock functional. As for the basis sets for Mn complexes, we recently
constructed a “different basis sets for different regions” type of basis sets, “chem,”
which is designed to reproduce magnetic interactions calculated with a triple-zeta
plus diffuse and polarization functions’ quality [49]. In this study, we replace the
Wachter plus diffuse and polarization functions of the “chem” basis by CP(PPP)
basis set [50] for Mn atoms in order to describe the spin densities on Mn nuclei
more precisely. For other atoms, we employed the basis sets that are same to those
in the chem basis set as follows: 6-31CCG** for �-oxo ligands, 6-31G** for O and
N ligand atoms, and 6-31G for other atoms. We employed this “augmented chem”
basis set for the following calculations. All calculations were performed with using
Gaussian 09 Rev. B [51].

25.4 Results and Discussion

In order to show the characteristics of the electronic structures of the dinuclear
complexes, we first listed spin densities of the low-spin states calculated with
using UB3LYP functional in Table 25.1. As shown in this table, all of the mixed
valence dimmers are of the trapped valence states. The magnitudes of spin densities
on Mn ions indicate that the solutions are almost fully spin-polarized solutions.

This can be confirmed with referring
D OS2

E

values. Small spins are induced on the

bridged oxygens for Mn(III)Mn(IV) complexes, but the spin structures of these
complexes are approximately the typical mantic complexes consisting of the two
spin sources with bridged anions [25, 52]. With all other functionals, similar results
were obtained. This fact allows us to employ the spin Hamiltonian defined with

Table 25.1 Mulliken atomic spin densities and
DOS2
E

values of B3LYP

solutions for Mn complexes

CIF index Mn(II) Mn(III) �-O(H) �-O <S2>

1 GACCOC10 4.78 �3.95 – – 4.80
2 TIPFED 4.75 �3.94 0.02 – 4.77
3 FOSCAR10 4.79 �3.90 – – 4.78

Mn(III) Mn(IV)
4 FERZUX 3.75 �2.71 �0.14 �0.12 3.63
5 GAMFEF 3.86 �2.76 �0.16 �0.16 3.71
6 ZUKHES 3.87 �2.71 �0.16 �0.16 3.72
7 QABHAC 3.79 �2.71 �0.14 �0.14 3.67
8 ATEWOL 3.84 �2.75 �0.15 �0.15 3.70
9 DAJPUZ 3.78 �2.56 �0.28 – 3.67
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Table 25.2 Absolute values of the isotropic and dipolar HFCs and in hyperfine tensor calculate
with 11 XC functionals, together with the experimental values

Mn(III) Mn(IV)

aiso Aiso Ax
dip Ay

dip Az
dip aiso Aiso Ax

dip Ay
dip Az

dip

Scaled TPSSh (*1) 207 414 55 50 105 211 211 3 5 8

Scaled B3LYP (*2) 199 397 54 52 106 216 216 6 2 7

HF 229 458 38 97 135 138 276 12 36 48

PBE1PBE 150 299 57 61 118 73 147 3 4 7

HSEh1PBE 126 251 57 62 118 61 122 3 4 7

HSE1PBE 126 251 57 62 118 61 122 3 4 7

HSE2PBE 125 251 57 62 118 61 122 3 4 7

CAM-B3LYP 127 253 60 63 123 62 123 2 4 6

LC-wPBE 110 220 58 61 119 50 101 2 3 5

BHandHLYP 148 295 63 65 128 72 144 1 3 4

B3LYP 124 247 56 63 119 61 122 4 6 9

TPSSh 138 277 48 62 111 63 127 4 9 13

BLYP 99 197 27 64 91 48 96 7 27 35

Exp. 196 391 15 79 94 209 209 12 4 16

(*1) From Ref. [21]
(*2) From Ref. [59]

Eq. 25.1 as a starting point to discuss the electronic structures of these manganese
complexes.

In order to show the typical results of isotropic and dipolar terms of HFCs,
we listed calculated HFC values of QABHAC with various exchange–correlation
(XC) functionals, together with experimental values, for QABHAC in Table 25.2.
As shown in this table, the calculated HFC values strongly depend on the XC
functionals we employed. The absolute values of isotropic HFCs with Hartree–
Fock (HF) method are larger than those of experimental ones. This is due to the
fact that the HF method overestimates the spin-polarization effects of molecular
magnetism in general [52]. In contrast, with all hybrid XC functionals we employed
here, the absolute values of isotropic terms are smaller than those of experimental
results, while the absolute values of DFT and hybrid DFT results are larger
than experimental ones for some of the anisotropic terms. This contrast between
isotropic and anisotropic terms with using hybrid DFT results is consistent with the
conclusion confirmed by precursors [21, 22]. The scaled B3LYP and scaled TPSSh
results, which they proposed in order to reproduce the experimental results [21, 22],
are also shown in the table, which are actually similar to experimental results.

Table 25.3 lists the computational results, together with experimental results
for all complexes. Here we also showed the isotropic HFC (Aiso) values of
[Mn(H2O)6]2C, but we omitted anisotropic values because the anisotropic values
are not observed with the EPR experiment for solutions [53]. For these complexes,
the dependence of all Aisovalues on XC functionals is similar: all DFT and hybrid
DFT underestimateAiso values, while HF overestimates theAiso value. As for global
hybrid DFT such as B3LYP and TPSSh, the results we obtained are similar to those
showed in previous studies [21, 22]. Even if we employed any range-separated
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hybrid DFT that we examined, this type of failure cannot be improved. Judging
from the results of [Mn(H2O)6]2C, the cause of the failure on Aisovalues is different
from that of magnetic interactions [54–57]. An important point is that BHandHLYP
and LC-wPBE also underestimate Aiso values. The 50 % of the exchange term of
BHandHLYP is the HF exchange: for this reason BH and HLYP is used for magnetic
systems in which the exact exchange plays important role to determine interactions
between magnetic sources. The LC-wPBE functional is known to yield smallest
“many-electron self-interaction errors (MESIE)” among widely used XC function-
als [54], which means that the LC-wPBE correctly predicts the degree of localization
and delocalization of electrons [54–56]. This is an important point for description of
geometries and magnetic interactions of open-shell complexes. In fact, we showed
that LC-wPBE yields calculational results similar to experimental ones for both
optimized structures and magnetic interactions for manganese complexes [57]. The
results shown in Table 25.3 imply that the correct predictions of isotropic HFC
values are more difficult than the correct predictions of magnetic interactions. One
way to improve the calculational results is, of course, the empirically scaled methods
that are employed by precursors [21, 22]. However, we would like to emphasize
here that the Hartree–Fock results overestimate the isotropic HFC values, which is
contrast to the fact that all hybrid DFT underestimate them. This implies another
way to improve isotropic HFC values: it is possible to obtain accurate HFC values
without scaling procedure if we design a new hybrid functional and adjust properly
the parameters. We are now designing and parametrizing a hybrid functional for
calculations of HFC values [58].
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Chapter 26
Density Functional Study of Manganese
Complexes: Protonation Effects
on Geometry and Magnetism

S. Yamanaka, K. Kanda, T. Saito, Y. Kitagawa, T. Kawakami, M. Ehara,
M. Okumura, H. Nakamura, and K. Yamaguchi

Abstract Protonation processes are ubiquitous in various biochemical reactions
such as the water-oxidizing reaction in photosystem II and detoxications of active
oxygen species in Mn catalase and Mn superoxide dismutase. In order to investigate
them, experiments to probe protons often need supplementary computational results
to support the experimental spectra, for which reliable DFT methods are required
for description of protonation processes. In this study, we investigated manganese
complexes, [Mn(IV)2O2Hn(salpn)2]nC (n D 0,1,2), of which geometries and mag-
netism show systematic changes due to protonations to bridged oxygen anions. We
examined the performance of B3LYP, B3LYP-D, BP86, BP86-D, and LC-¨PBE on
these changes. With all methods, the observed changes during protonation processes
can be reproduced, and the quantitatively best procedure is found to be LC-
¨PBE/LACVP* for geometry optimization calculations and LC-¨PBE/chem for
calculations of magnetic interactions. This conclusion is expected to be a numerical
foundation for theoretical investigation of reaction centers in manganese-containing
proteins.
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26.1 Introduction

How to determine protonation modes in reaction centers of enzymes is a very
important issue in biochemistry [1–8]. The protonation is obviously related to the
catalytic activities of active side chains of amino residues: the protonation and
deprotonation to side chains of charged acids such as Glu, Asp, Arg, Lys, and His
yield Brønsted-Lowry acids and bases, catalyzing various chemical reactions. Also
in metalloenzymes and these model systems, protonations are often critical parts of
the reaction mechanisms. For instance, in (1) the water-oxidizing center (WOC) in
photosystem II [9–14], (2) the Mn dimeric center in catalase [15–21], and (3) the
Mn center in Mn superoxide dismutases (MnSODs)[22, 23], the following reactions
proceed, respectively:

2H2O ! O2 C 4HC C 4e�; (26.1)

2H2O2 ! O2 C 2H2O; (26.2)

2O�
2 C 2HC ! O2 C H2O2: (26.3)

The protonation states of substrates are changed during the chemical reactions, in
many cases of which those changes are thought to be supported by the catalytic Mn
complexes. In particular, �-oxo bridge parts of dinuclear or polynuclear manganese
complexes are expected to play a role of donor and acceptor for protons in the
intermediate stages of the chemical reactions. Unfortunately, protonation modes
are often beyond the scope of experimental results. In particular, information for
positions of protons is missed in almost all X-ray diffraction (XRD) images of
proteins. However, there are some clues to determine the modes. It is known
that the protonations to bridged oxygen anions obstruct superexchange paths,
suppressing antiferromagnetic interactions of �-oxo bridged dinuclear transition
metal complexes [6, 7]. As a result, magnetism of transition metal complexes
becomes a very sensitive probe for protonations to oxygen anions that bridge
transition metal ions. For this reason, ab initio Kohn-Sham density functional theory,
combining with data obtained from electron spin resonance (ESR) experiments,
could become a powerful tool to investigate them [24, 25]. In fact, very recently,
Neese and his coworkers examined various protonation modes for the S2 state
of WOC in photosystem II and suggested plausible protonation modes on the
basis of comparison between the calculational results and ESR experimental results
[8]. Their approach is very promising to determine protonation modes in reaction
centers of metalloenzymes that contain transition metal ions as spin sources.
However, one problem remains to completely establish this type of approaches:
for magnetic systems, ab initio Kohn-Sham density functional theory (KS-DFT)
results strongly depend on the exchange-correlation (XC) functional, and we still do
not have an “almighty” XC functional [26–28]. Many researchers have employed
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B3LYP functional as a de facto standard XC functional, but it sometimes fails
for describing magnetic interactions [27, 29]. In fact, several researches have
been proposed “beyond B3LYP” functionals for magnetic interactions of transition
metal complexes such as the reparametrization of B3LYP (B3LYP*) for iron-sulfur
complexes [29] and an alternative of B3LYP for dinuclear complexes consisting of
two spins with S D 1/2 (Cu and V) [30]. Very recently, we have also implemented
a comprehensive benchmark test for manganese complexes with various structural
motifs and various oxidation states [28]. In this previous study, we construct a test
set consisting of such manganese complexes, for which both the molecular structure
from XRD experiments and the magnetic interaction from magnetic susceptibility
measurements have been reported. Unfortunately, this test set does not include the
complexes for testing the effects of protonations.

In this study, we implemented a benchmark test of KS-DFT methods for
protonations of manganese complexes. For this purpose, we took up an example
showing importance of protonations, which was presented by Pecoraro and his
coworkers a few decades ago [19, 20]: they reported that the protonation to a Mn
catalase model complex, Mn(IV)2(�-O)2(salpn)2 (salpn D N, N0 bis(saliylidene) 1,3
diminopropane) (1), inhibited the activity for the catalase reaction, but recovered its
full reactivity with using sodium hydroperoxide as the substrate [19], which leads
to deprotonation of [Mn(IV)2(�-O)(�-OH)(salpn)2]C (2) to reproduce Mn(IV)2(�-
O)2(salpn)2 as a preliminary step. The fact that protonations occur on the bridged
oxygens was confirmed with using an isotope IR shift between �-16OH and
�-18OH[19]. Further, they prepared the doubly protonated complex, [Mn(IV)2(�-
OH)2(salpn)2]C (3) with triflic acid and observed the three distinct results of 1, 2,
and 3 in UV–vis spectra and the Mn–Mn distances obtained with Extended X-ray
Absorption Fine Structure (EXAFS) experiment [20]. Successive protonations of
oxo-bridges elongate the Mn–Mn distance from 2.73 Å for 1 to 2.83 Å for 2 and
to 2.93 Å for 3. They also analyzed magnetic interactions (Js) between Mn ions for
1–3 and reported that the J value decreases from �92 cm�1 or 1 to �48 cm�1 for
2 and to �6 cm�1 for 3. As far as we know, this is an only example that shows
the effects of up to doubly protonations on molecular geometries and magnetism
of dinuclear Mn complexes. The problem is that there is no XRD structure for this
system. Therefore, in our test, we start from optimizations of geometries for 1–3
with KS-DFT methods. As for optimized geometries of manganese complexes, two
functionals, B3LYP [31] and BP86 [32, 33], are known to be effective [34]. Thus,
we employed these two functionals together with the empirical dispersion correction
versions of them [35] and a long-range corrected hybrid functional, LC-¨PBE [36,
37], which outperforms other popular functionals for manganese complexes [28].
Then we further examined whether the computed adiabatic magnetic interactions
of 1–3 at the optimized geometries reproduce the magneto-protonation correlations
of 1–3. These computational results are discussed in relation to the fundamental
aspects of exchange-correlation functionals and the applicability of KS-DFT to
investigate the protonation modes that are lacked in the XRD and EXAFS structures.
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26.2 Estimation of Magnetic Interactions

In experiments, the magnetic interaction between manganese ions is usually ob-
tained by fitting the temperature dependence of magnetic susceptibilities with
employing Heisenberg model Hamiltonian:

OH D �2J OSA � OSB: (26.4)

Here OSA and OSB are spin operators for A and B sites, respectively. J is the effective
exchange integral, which is positive for ferromagnetic and negative for antiferro-
magnetic interactions, respectively. A starting point of theoretical estimation of J
value is a mapping from KS-DFT calculational results to those of the Heisenberg
model:

E
Spin State
KS�DFT D 2J

D OSA � OSB

ESpin State
: (26.5)

Assuming that
D OSi
EHS D

D OSi
ELS D Si (i D A, B), we obtain the estimation scheme

proposed by Yamaguchi et al. [38–40]:

J D EHS
KS�DFT �ELS

KS�DFT
D OS2
ELS

KS�DFT
�
D OS2
EHS

KS�DFT

: (26.6)

This is a simple and convenient expression to estimate J value. Note that this
scheme involves a spin-projection procedure, although the energies and the square
of spins obtained with KS-DFT calculations are symmetry-broken ones.

26.3 Fundamental Pictures for the Effects of Protonation
on Mn-(�-O)-Mn Units

Before discussing the computational results, we shall describe why protonations
change the magnetic interactions for Mn(IV)2(�-O)2�n(�-O)n(salpn)2 (n D 0–2)
systems. For this purpose, we shall first describe the superexchange mechanism for
a simple system consisting of two spin sites and an anion that intermediate between
two spin sites. The spin orbital at the spin site overlaps with the orbital at the anion
site that is doubly occupied. In Fig. 26.1a, we show spin configurations that are
involved in the superexchange mechanism in terms of the valence bond theory.
An essential point is that the fluctuations among these configurations, which are
indicated by two-way arrows, stabilize this antiferromagnetic state. Here, we omit-
ted the spin-flipped configurations for simplicity. Also for the ferromagnetic case,
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Fig. 26.1 Schematic illustrations for resonating valence bond configurations for the simplest unit
that exhibits the superexchange mechanism, which represented as three circles connected with
lines. The left and right circles indicate magnetic orbitals (d orbitals of Mn ions for the Mn
complexes case). The center circle is the orbital at the anion. (a) The antiferromagnetic state.
(b) The ferromagnetic state. (c) The antiferromagnetic state for a protonated case

fluctuations among three configurations can be considered as shown in Fig. 26.1b.
However, in the left and right configurations in this figure, the triplet alignment for
adjoining sites implies the out-phase (antibonding type of) superposition, which
is represented as the dotted line, destabilizing the corresponding configurations
and furthermore the ferromagnetic state as well. In our context, the points are as
follows. First, the overlap between the spin orbital and the orbital at the anionic site
(mediated orbital) is important. Second, the fluctuations among spin configurations
as shown in Fig. 26.1a are essential for stabilizing the antiferromagnetic state. In
other words, the itinerancy of electrons that originally belong to the anionic state is
the important factor for the superexchange mechanism.

And now, two effects of protonations are clear. The first effect is elongation
of the distance between the spin site and the anionic site, reducing the overlap
between the spin orbital and the mediate orbital, which is illustrated as thin two-
way arrows in Fig. 26.1c. For the systems, [Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC
(n D 0,1,2), the distance between the bridged oxygen and Mn(IV) was not reported,
but the distance between two Mn(IV) ions increases as the protonation proceeds
from n D 0 to n D 2 [20]. The second effect is that the proton pulls the electrons
on the anionic site, decreasing the itinerant electrons. This obviously suppresses the
superexchange interactions. The mechanism described in this section is consistent
with the experimental results of [Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC(n D 0,1,2)
[19, 20]. In addition, this is why the magnetism of polynuclear Mn complexes with
bridged oxygens in metalloenzymes is a probe for protonations of bridged oxygens.
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26.4 The Structure of [Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC
(n D 0–2)

As described in the introduction, we take up Mn(IV)2(�-O)2(salpn)2 (1) and its two
protonated complexes, [Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC (n D 1,2) (2,3) [20],
as a test case. Unfortunately, the XRD experiment for these complexes have not
been implemented so far, but there is the XRD structure of a complex with same
structural formula, [Mn(IV)2(�-O)2(salpn)2], which could be an alternative for 1
[21]. A noteworthy point is that the counter ion for 1 is trifluoromethanesulfonate
anion, CF3SO3

�, while that for the complex in Ref. [21] is perchlorate, ClO4
�. One

might argue that this difference of counter anions must result in some difference
on the crystal packing mode between them. This must be true, but, judging from
other computational results of manganese complexes, environmental effects do not
affect on, at least, the optimized geometries of the core parts (Mn2O2 and atoms
or ions that ligate to Mn ions) [34]. Further, the magnetic interaction of 1 was
reported to be �92 cm�1, which is similar to the value of the complex in Ref.
[21], �88 cm�1. Judging from this fact, it is plausible that the structure around
the Mn2O2 core of 1 is similar to that of the Mn(IV)2(�-O)2(salpn)2 in Ref. [21].
Then we started from the structure of CIF file of Mn(IV)2(�-O)2(salpn)2 [21], which
is indexed as SOZMUP. For protonated complexes 2 and 3, we added protons to
�-O oxygens to yield two �-OH bridges and fully optimized geometries. The XC
functionals we examined are B3LYP, B3LYP C D, BP86, BP86 C D, and LC-¨PBE.
The basis sets employed are LACVP*, which was reported to be an appropriated
basis set for B3LYP in order to optimize geometries of manganese complexes [34],
and “chem,” which was a “different basis set for different regions of manganese
complexes” with triple-zeta valence C diffuse and polarization functions quality
[27]. For the complex, 2, we checked two possibilities of the protonated �-O ion
before we examine XC functionals and basis sets. For this purpose, we implemented
geometry optimization of low-spin states for two protonation modes with using
B3LYP/LACVP* and selected the low-lying mode. Then we optimized molecular
geometries of 1–3. All calculations including computations of magnetic interactions
presented in the next section were done with using Gaussian 09 package [41]. The
UltraFine grid is used for numerical integration in DFT calculations. For both SCF
and optimization calculations, we choose the tight convergence criteria. In addition,
normal frequency analyses were implemented in order to ensure that the geometries
obtained are minima, not saddle points.

In Fig. 26.2a–c, we show the optimized structures of 1–3 with using LC-¨PBE
and LACVP* for the XC functional and basis set, respectively: the reason for this
selection is that this combination LC-¨PBE/LACVP* yields reasonable results
as described below. We also show the geometry of the complex, SOZMUP, in
Fig. 26.2d. We can see from these figures that the optimized structures of 1–3 are
basically similar to that of SOZMUP, which implies that the fundamental skeleton
of this type of complex might not change due to the protonations. This holds true
for optimized geometries with using other combination of a functional and a basis
set we tried: of course, the details are changed as we will discuss in the following.
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Fig. 26.2 Optimized geometries for [Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC (n D 0–2): (a)n D 0,
(b) n D 1, (c)n D 2. We also show the geometry of the complex, of which the CIF index is
SOZMUP in (d)

Table 26.1 Computational results of the Mn–Mn distances for 1–3, together
with experimental results

RMn–Mn(1) RMn–Mn(2) RMn–Mn(3)

B3LYP/LACVP* 2.714 (�0.016) 2.868 (C0.038) 3.060 (C0.130)
B3LYP C D/LACVP* 2.681 (�0.049) 2.826 (�0.004) 2.992 (C0.062)
BP86/LACVP* 2.721 (�0.009) 2.881 (C0.051) 3.074 (C0.144)
BP86 C D/LACVP* 2.680 (�0.050) 2.826 (�0.004) 2.974 (C0.044)
LC-¨PBE/LACVP* 2.654 (�0.076) 2.796 (�0.034) 2.970 (C0.040)
B3LYP/chem 2.714 (�0.016) 2.899 (C0069) 3.101 (C0.171)
B3LYP C D/chem 2.704 (�0.026) 2.875 (C0.045) 3.045 (C0.115)
BP86/chem 2.750 (C0.020) 2.916 (C0.086) 3.090 (C0.160)
BP86 C D/chem 2.705 (�0.025) 2.863 (C0.033) 3.039 (C0.109)
LC-¨PBE/chem 2.679 (�0.051) 2.837 (C0.007) 3.024 (C0.094)
Exp 2.73 2.83 2.93

The values in parentheses are deviations from experimental ones. The unit is Å

Table 26.1 listed calculated distances between Mn ions together with EXAFS
data for 1–3. The deviations from experimental results are also shown in paren-
theses. Other EXAFS data for Mn-N and Mn-O were presented as “mixtures of
Mn–O/N bonds” in the original paper [20], instead of the distinct distances for
four Mn–N and six Mn–O. Thus, we also listed the averages of Mn–O/N bonds
of calculated results, together with experimental values in the last row and the
deviations from the experimental in the parentheses, in Table 26.2. We can see from
Table 26.1 that the Mn–Mn distances increase with the successive protonations,
being consistent with experimental results. For RMn–Mn of 1, B3LYP and BP86
results yield excellent results within absolute deviations of only 0.025 Å. The
addition of the dispersion correction (B3LYP-D and BP86-D) shorten the calculated
distances, by which the results become worse for 1. Interestingly, the RMn–Mn values
of LC-¨PBE are shorter than those obtained with using BP86-D. Overall, the
deviations due to the differences on basis sets are approximately 0.025 Å except
0.000 Å of the B3LYP case. As for 2, while both B3LYP and BP86 functionals
overestimate the Mn–Mn distances, B3LYP-D, BP86-D, and LC-¨PBE results
become better. In particular, the results of B3LYP-D/LACVP*, BP86-D/LACVP*,
and LC-¨PBE/chem agree with that of experiment within errors less than 0.01 Å. A
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Table 26.2 Computational results of the averages over all Mn-ligand distances for
1–3, together with experimental results

RMn-O/RMn-N (1) RMn-O/RMn-N (2) RMn-O/RMn-N (3)

B3LYP/LACVP* 1.932 (C0.042) 1.924 (C0.024) 1.922 (C0.002)
B3LYP C D/LACVP* 1.922 (C0032) 1.917 (C0.017) 1.915 (�0.005)
BP86/LACVP* 1.937 (C0.047) 1.926 (C0.026) 1.921 (C0.001)
BP86 C D/LACVP* 1.923 (C0.033) 1.918 (C0.018) 1.915 (�0.005)
LC-¨PBE/LACVP* 1.893 (C0.003) 1.888 (�0.012) 1.888 (�0.032)
B3LYP/chem 1.943 (C0.053) 1.938 (C0.038) 1.937 (C0.017)
B3LYP C D/chem 1.937 (C0.047) 1.930 (C0.030) 1.930 (C0.010)
BP86/chem 1.947 (C0.057) 1.939 (C0.039) 1.935 (C0.015)
BP86 C D/chem 1.940 (C0.050) 1.931 (C0.031) 1.928 (C0.008)
LC-¨PBE/chem 1.909 (C0.019) 1.906 (C0.006) 1.906 (�0.014)
Exp 1.89 1.90 1.92

The values in parentheses are deviations from experimental ones. The unit is Å

noteworthy point is that the effects of the basis sets are larger than those for 1: the
deviations are 0.031 Å (B3LYP) � 0.049 Å (B3LYP-D). All the calculated results of
3 overestimate the Mn–Mn distance. For instance, the distances of B3LYP/LACVP*
and B3LYP C D/LACVP* are larger than experimental one by 0.1 Å. One might
argue that this is not only due to the quality of XC functional but also to lack
of counter anions, leading to simple swell of the complex, which is caused by
simple classical repulsions between plus charges. However, as shown in Table 26.2,
such large elongations cannot be observed in the average Mn-ligands distances.
In fact, the deviations of calculated average distances from the EXAFS value for
3 are 0.001(BP86/LACVP*) 0.032 (LC-¨PBE/LACVP*) Å. In addition, as the
considerably bulky counter anion, CF3SO3

�, is not likely to access the bridged
hydroxide ions of 3 that are also embedded in bulky ligands environments, the
considerable part of errors could attribute to the XC term we choose. From this
point of view, the BP86 C D/LACVP* and B3LYP C D/LACVP* well reproduce
changes of the Mn–Mn distances wholly, implying that the dispersion correction is
necessary for BP86 and B3LYP functionals. It should be noteworthy that the LC-
¨PBE/LACVP* method, in which the explicit dispersion correction is not included,
gives better results (the minimum error, 0.04 Å) than these dispersion corrected
methods.

26.5 Magnetic Interactions of
[Mn(IV)2(�-O)2�n(�-OH)n(salpn)2]nC (n D 0–2)

Fixing the optimized geometries listed in Tables 26.1 and 26.2, we computed J
values with using Eq. (26.6). Here we should note that all electronic structure
calculations are done with using the basis, chem [27], even for the case that the
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Table 26.3 Computational results of the effective exchange interactions, J values, for 1–3,
together with experimental results

J(1) J(2) J(3)

B3LYP/LACVP*//B3LYP/chem �92.1 (�0.1) �51.1 (�3.1) �9.2 (�3.2)
B3LYP C D/LACVP*//B3LYP/chem �81.0 (�11.0) �44.1 (�3.9) �3.9 (�2.1)
BP86/LACVP*//BP86/chem �208.6 (�116.6) �203.0 (�155.0) �9.5 (�3.5)
BP86 C D/LACVP*//BP86/chem �185.0 (�93.0) �115.1 (�67.1) �19.9 (�13.9)
LC-¨PBE/LACVP*//LC-¨PBE/chem �93.8 (�1.8) �46.5 (C1.5) �3.7 (C2.3)
B3LYP/chem �82.3 (C9.7) �46.3 (C1.7) �7.5 (�1.5)
B3LYP C D/chem �72.6 (C19.4) �40.8 (C7.2) �3.6 (C2.4)
BP86/chem �212.1 (�120.1) �135.8 (�87.8) �10.9 (�4.9)
BP86 C D/chem �187.5 (�95.5) �121.7 (�73.7) �11.8 (�5.8)
LC-¨PBE/chem �84.5 (C7.5) �24.4 (C23.6) �3.5 (C2.5)
Exp �92.0 �48.0 �6.0

The deviations from the experimental values are presented in parentheses. For notation, A//B, see
the text. The unit is cm�1

geometry is obtained with using LACVP*. This is because we previously found
that, comparing the results with those of triple-zeta plus diffuse and polarization
(TZ C d C p) functions, the basis set errors of LACVP* on J values are not
negligible for 16 manganese complexes [27]. The calculated results are shown
in Table 26.3. Here we mean by A//B in the first columns that the geometry is
optimized with using the A method and the magnetic interaction is computed with
using the B method. Otherwise, both optimization and the calculation of J are
implemented with using the specified one method. In order to present the characters
of the KS-DFT solutions, we also show the calculated expectation values of the
square of the spin angular momentum for low-spin (LS) states in Table 26.4. We
can see from this table that the solutions of LS states are fully spin-polarized

(
DOS2
ELS

KS�DFT
Š 3:0) for all spin orbitals mainly contributed from open-shell d

orbitals in two Mn(IV) ions. However, we should note again that the J values
estimated with employing Eq. (26.6) are the spin-projected ones [38, 39]. The
computational results of the spin-projected J values are qualitatively correct for
the point that the antiferromagnetic (AFM) interaction monotonically decreases for
the successive protonations to the complex. The BP86 functional overestimated
the AFM interactions for geometries optimized with using BP86 or BP86-D for
all 1–3, which is the well-known type of errors in pure DFT functionals. On the
other hand, B3LYP/chem seems to attain the best agreements with experimental J
values. However, we should recall that the optimized Mn–Mn distance (3.101 Å)
we used here is much longer than the experimental one (2.93 Å) for 3. Then the
value, �7.5 cm�1 might be a result of the overestimation for J value. The LC-
¨PBE/LACVP*//LC-¨PBE/chem results are comparable with the B3LYP/chem
results. The point that the J value of 3 (�3.5 cm�1) is slightly smaller than
the experimental one (�6.0 cm�1) is rather reasonable from the viewpoint of
magneto-structure-protonation correlations because the optimized Mn–Mn distance
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Table 26.4 Computational expectation values of the square of the spin angular momentum
for low-spin states

DOS2
ELS

KS�DFT
(1)

DOS2
ELS

KS�DFT
(2)

DOS2
ELS

KS�DFT
(3)

B3LYP/LACVP*//B3LYP/chem 3.0273 3.0563 3.1088
B3LYP C D/LACVP*//B3LYP/chem 3.0233 3.0522 3.1051
BP86/LACVP*//BP86/chem 2.7756 2.8778 3.1134
BP86 C D/LACVP*//BP86/chem 2.7903 2.8874 3.0293
LC-¨PBE/LACVP*//LC-¨PBE/chem 3.0262 3.0405 3.0811
B3LYP/chem 3.0323 3.0591 3.1102
B3LYP C D/chem 3.0292 3.0548 3.1103
BP86/chem 2.7524 2.8588 3.0394
BP86 C D/chem 2.7717 2.8715 3.0355
LC-¨PBE/chem 3.0179 3.0359 3.0741

Fig. 26.3 The plot of
calculated and experimental
results of the Mn–Mn
distances and J values for
[Mn(IV)2(�-O)2�n(�-
OH)n(salpn)2]nC

(n D 0–2)

with LC-¨PBE/LACVP* method overestimates the experimental result by 0.04 Å.
Figure 26.3 plots all computational and experimental results of J and RMn–Mn values.
We omitted here BP86 and BP86-D results because the calculated J values are
too large to show in this figure. This figure clearly shows that the B3LYP results
shift to larger RMn–Mn values for 3 and that LC-¨PBE/LACVP*//LC-¨PBE/chem
reproduces values similar to the experimental ones for all, 1–3.

Here, we should comment on the inconsistency of the basis sets employed for
geometries and magnetic interactionism and LC-¨PBE/LACVP*//LC-¨PBE/chem.
A most remarkable error in optimization calculations of LC-¨PBE/chem is for the
double-protonated state, in which the error is approximately 0.1 Å as described
above. This must be caused by the different levels of the basis sets for the Mn atoms:
triple-zeta C diffuse C polarization (TZ C d C p) quality function in the “chem”
basis set and LANL-DZ in the LACVP* basis set. Obviously, the interatomic (Mn–
Mn) distances of chem are larger than the corresponding values of LACVP* not
only for LC-¨PBE but also for all other XC functionals as shown in Fig. 26.3.
A noteworthy point is that the “chem” basis set is a typical “different basis
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sets for different regions” basis set [27]. We designed this basis set in order to
reproduce the magnetic interactions (not geometries) of manganese complexes
with using TZ C d C p functions for all regions, although the basis sets for large
ligand regions are pruned down to double-zeta qualities in “chem.” Judging from
the calculated magnetic interactions with fixed geometries [27], the “chem” basis
set is as accurate as TZ C d C p since the magnetism of manganese complexes
is a kind of “local” property. However, for geometry optimizations, a more well-
balanced basis set, LACVP*, seem to be required. This inconsistency concerning
basis sets in our recommendation is a result of saving computational costs for
manganese complexes. On the other hand, strictly speaking, the explicit reason why
the LC-¨PBE functional works for the magnetic interactions of Mn complexes is
not so simple because the magnetic interactions of Mn complexes are results of
competing many potential exchange (ferromagnetic) mechanisms and many kinetic
or superexchange (antiferromagnetic) mechanism, where electrons fluctuate among
orbitals at Mn sites and oxygen sites. Still, one viewpoint might be important:
Vydrov et al. reported that the LC-¨PBE functional yields minimum many-electron
self-interaction errors (MESIE) among popular functionals [42]. In the theory of
magnetism [43], overlaps among spin orbitals determine whether kinetic (super-
)exchange mechanism and potential mechanism is predominant for the magnetism
of the systems. The small MESIE indicates that neither the over-delocalization nor
the over-localization errors are large, probably leading to the correct description of
magnetism even when many mechanisms compete each other. The result presented
in this study is consistent with the fact that the LC-¨PBE functional offers the best
performance for estimating J values among popular 16 XC functionals for a test set
consisting of 16 Mn complexes [27, 28].

26.6 Conclusions

We examined performance of several standard XC functionals on the structural
and magnetic effects of successive protonations for the complexes, [Mn(IV)2(�-
O)2�n(�-OH)n(salpn)2]nC (n D 0–2). The complexes are the examples where the
X-ray diffraction structures are unknown, for which the XC functional needs to yield
well-balanced descriptions for optimized geometries and magnetic interactions. All
XC functionals yield the qualitatively correct results, i.e., the elongations of the
Mn–Mn and Mn-ligands distances, and decreasing of magnetic interactions upon
protonations, and yet the quantitative values are considerably different from each
other. We found that the best approach is the computation of the magnetic interaction
with using LC-¨PBE/chem with fixing the geometry optimized with using the LC-
¨PBE/LACVP*. Although the antiferromagnetic interaction was slightly small and
the Mn–Mn distance was slightly large for the doubly protonated complex, the
balance of these errors is reasonable and the magnitudes of errors are acceptable.
Outperforming of LC-¨PBE over other functionals on magnetism of Mn complexes
is consistent with the minimum many-electron self-interaction errors. On the basis
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of our results, together with the recent assessment concerning many-electron self-
interaction errors of XC functionals [43], we recommend the LC-¨PBE for the study
of magnetic interactions of Mn complexes. Ab initio approach with using LC-¨PBE
functional is then expected to be an efficient approach, combining with the EPR
and EXAFS data, in order to assess various protonation models at the intermediate
states in important biochemical reactions such as the water-oxidizing reaction in
photosystem II [9] and the detoxication of reactive oxygen species in Mn catalase
[15, 16] and Mn superoxide dismutase [22, 23].
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Chapter 27
Depth Profile Assignments of nm and �m
Orders by Quantum Chemical Calculations
for Chitosan Films Modified by KrC Beam
Bombardment

K. Endo, H. Shinomiya, T. Ida, S. Shimada, K. Takahashi,
Y. Suzuki, and H. Yajima

Abstract Valence X-ray photoelectron and Raman spectra of a chitosan film
modified by KrC ion beam bombardment were analyzed from quantum chemical
calculations. Experimental Raman spectra of the carbonized film with KrC ion
bombardment were found to be due to four component contributions of chitosan
(Chito), diamond-like carbon (DLC), graphite (GP), and amorphous carbon (AC).
By considering the four components contribution, we performed depth profile
assignments in nm and �m ranges of the chitosan film in valence X-ray photoelec-
tron spectroscopy and Raman shift experiments from calculations of the statistical
average of orbital potential (SAOP) method of Amsterdam density functional (ADF)
program, and B3LYP/6-31G(d, p) level in GAUSSIAN 09 software, respectively,
using the model molecules. Carbonizations of the film by KrC irradiation were
obtained as Chito: DLC: AC: GP = 2:1:0.5:0.375 in the �m range from Raman
shift analysis, while they were determined as Chito: DLC: AC: GP = 2:1:1:2 in the
nm range from valence X-ray photoelectron spectral analysis.
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27.1 Introduction

Chitosan is especially known to be a most powerful adsorbent of natural origin, and
it is widely used for the prevention of water pollution by highly toxic chlorinated
aromatic compounds and metal ions [1]. Chitosan is inexpensive, environmentally
benign, harmless to humans, and a hugely obtainable biomass which makes it
very promising and attracting for use in many applications. It was also found
to have many biomedical applications, including tissue engineering, owing to its
biocompatibility, low toxicity, and degradation in the body by enzymes such as
chitosanase and lysozyme, which has opened up avenues for modulating drug
release in vivo in the treatment of various diseases. These chitosan-based delivery
systems range from microparticles to nanoparticles to gels and films. Then, we
think that ion beam irradiations are a useful method for modification of surface
properties, such as wear resistance, corrosion resistance, and biocompatibility for
the biopolymers. Some of us proposed composite film of chitosan/carbon nanotubes
complex as a material of blood biocompatibility due to the ion beam irradiation [2].

On the other hand, we already described the study of C-13 NMR and X-ray
photoelectron spectral analysis for chitosan to clarify the electronic structure in the
formation of properties of biological molecule from the DFT calculations [3] and to
understand the changes in adsorption behavior of chemically modified biopolymer
chitosan (crosslinked biopolymer) [4].

In the present study, we aim to analyze Raman and valence X-ray photoelectron
spectra of chitosan film with KrC ion beam irradiation. We performed quantum
chemical calculations to simulate the experimental Raman and valence X-ray
photoelectron spectra (XPS) of the KrC ion-irradiated film at B3LYP/6-31G(d, p)
level by GAUSSIAN 09 software [5] and with the statistical average of orbital
potential (SAOP) method [6] of Amsterdam density functional (ADF) program [7],
respectively.

27.2 Computational Method

The initial geometry of model molecules (chitosan (Chito) monomer (H–
(C6H11NO4)–O–H) or dimer (H–(C6H11NO4)2–O–H), adamantane derivative
(C10H12(CH3)4) for diamond-like carbons (DLC), adamantane (C10H16) for
amorphous carbons (AC), and pyrene (C16H10) for graphite (GP)) was optimized
at AM1 method in MOPAC software [8]. For the second geometry optimization
to simulate the Raman spectra, we selected the hybrid density functional theory,
which was Becke’s three-parameter hybrid functional [9] with Lee, Yang, and Parr’s
correlation functional [10] (B3LYP), using 6-31G(d, p) bases in GAUSSIAN 09
software, since the method enables us to obtain a highly precise energy level with
a reasonable computational time, as compared with other highly precise energy
numerations [11]. After the geometry optimization, in order to take into account
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the anharmonicity effects in the calculation of vibrational frequencies, one uses the
scaling factor for the calculated frequencies. As Scott and Radom [12] showed the
scaling factor as 0.9614 in the calculations of vibrational frequencies at B3LYP/6-
31G(d, p) level for some small molecules under the room temperature, we also
estimated the scaling factor as 0.9614.

To simulate Raman spectra of the carbonized chitosan film, we started with a
superposition of peaks centered on each Raman shift for the four model components
of Chito, DLC, AC, and GP. Each peak was represented by a Gaussian-shaped curve.
In the case of the line width (WH.k/), we usedWH.k/ D 50 cm�1 for Raman shift,
in order to simulate the Raman spectrum of carbonized chitosan film.

In the case of valence XPS simulation, the second geometry optimization was
performed with ADF program. We simulated valence XPS of four substances
(Chito, DLC, AC, and GP) by using the SAOP method to obtain reliable vertical
ionization potentials (VIP)s in the ADF program. The V SAOP

xc potential is a statisti-
cally weighted interpolation scheme connecting the GLLB V GLLB

xc potential [13,14]
to the modified LB V LB

xc potential [15, 16]. The V GLLB
xc potential is an excellent

model of the exchange-correlationVxc in the core and inner-valence region, capable
of reproducing the atomic shell structure. The LB potential excels in the outer-
valence region and can reproduce the correct long-range Coulomb asymptote of
Vxc. Statistical averaging makes the resulting V SAOP

xc potential well balanced in all
regions. Then, the negative of the orbital energy from a DFT calculation with V SAOP

xc
approximates the VIPs of outer-valence electrons surprisingly well, in a Koopmans-
like manner [17].

The intensity of valence XPS was estimated from the relative photoionization
cross section for Mg K˛ radiation using the Gelius intensity model [18]. For the
relative atomic photoionization cross section, we used the theoretical values from
Yeh [19].

To simulate the valence XPS, we started with a superposition of peaks centered
on each VIP. As described previously, each peak is represented by a Gaussian-
shaped curve. In the case of the line width (WH.k/), we used WH.k/ D 0:10Ik
(proportional to the ionization energy) for valence XPS.

In order to account and somewhat quantify solid-state effects in Chito, DLC, AC,
and GP under investigations, we defined a quantity WD in our earlier works [20].
The quantityWD denotes the sum of the work function of the sample (W ) and other
energy effects (D as delta), such as the polarization energy and so on. TheWD can
be estimated from the difference between experimental ionization potential (IP) or
theoretical VIP (Ik) of model molecules and the experimental IP (I 0

k) of the solid
Chito, DLC, AC, and GP. In order to compare the calculated VIP for the model
molecules and the experimental IP of the solid substances, one has to shift each
computed value (Ik) by a quantity WD as I 0

k(D Ik � WD), to convert to I 0
k on a

common binding energy axis (relative to the Fermi level).
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27.3 Experimental

We used commercially available chitosan (Wako Chemical Co., Inc.). Kr-ion
bombardment was carried out at energy of 150 keV with fluences of 1.0 	 1013 �
1.0 	 1015 ions cm�2 in the base pressure of less than 4.0 	 10�4 Pa at room
temperature using a RIKEN 200 kV low current implanter. The beam current density
used was about 0.2 �A cm�2 to prevent the specimen from heating.

Experimental photoelectron spectra of the samples were obtained on a JEOL
JPS-9010 MC spectrometer using Mg K˛ (1253.6 eV) radiation. The applied power
was operated at 15 kV and 20 mA. The base pressure of the analysis chamber was
less than 8.0 	 10�7 Pa. Energy scale calibration was achieved using the Au 4f7=2
(83.8 eV) transition. Dispersion compensation yielded an instrumental resolution
of 0.5 eV from full width at half maximum for the Ag3d line of silver. Multiscan
averaging on a multichannel analyzer was used for the valence band region, although
a very low photoelectron emission cross section was observed in this range.

Raman shift measurements were performed on the samples in the wavenumber
range from 800 to 2,000 cm�1 using a Raman spectrometer (LabRAM, Jobin-Yvon,
France) equipped with a He–Ne ion laser (632.8 nm).

27.4 Results and Discussion

We already studied the electronic state of chitosan from C-13 NMR and X-ray
photoelectron spectral analysis from the DFT calculations [3]. In this study, we
focus on analysis of Raman and valence X-ray photoelectron spectra for carbonized
chitosan film with KrC ion irradiation to clarify the constitutional structure for the
depth profile assignments in nm and �m ranges, respectively.

27.4.1 Raman Shift Spectral Analysis

Figure 27.1 showed the Raman shift of chitosan films with Kr-ion 150-keV energy
bombardments at fluences of 1.0 	 1013 � 1.0 	 1015 ions cm�2 in the base pressure
of less than 4.0 	 10�4 Pa at room temperature. In the figure, the peak intensities
of pure chitosan film appeared in the Raman shift range of 850 � 1,700 cm�1
at the 150-keV energy irradiation at fluences of 1.0 	 1013 � 1.0 	 1014 ions
cm�2, while the strong double broader peaks at around 1,300 and 1,600 cm�1
are due to carbonized change (as seen in surface color changes of (b), and (c)
of chitosan films on the right in Fig. 27.1) with the 150-keV energy irradiation at
fluences of 3.0 	 1014 � 1.0 	 1015 ions cm�2. Then, we showed the experimental
Raman spectrum of carbonized film with the KrC-ion bombardment at fluences
of 1.0 	 1015 ions cm�2 in Fig. 27.2. In the figure, strong double broader peaks
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Fig. 27.1 Raman shift of
chitosan film modified by
KrC ion beam bombardments
in the wavenumber range of
800 � 2,000 cm�1 with
surface color changes of (a),
(b), and (c) (on the right) of
chitosan films modified by
KrC ion beam bombardments
at (0.1 � 1.0 � 1014,
3 � 5.0 � 1014,
0.7 � 1.0 � 1015) ions cm�2,
respectively

Fig. 27.2 Experimental
Raman spectra of carbonized
chitosan film irradiated by
KrC ion beam at 1.0 � 1015

ions cm�2 (Resolved spectra
found out by four model
components of chitosan
(Chito), diamond-like C
(DLC), amorphous (AC), and
graphite (GP))

at around 1,300 and 1,600 cm�1 are considered to result mainly from DLC and
GP contribution, respectively, although the strong peak at around 1,300 cm�1 was
already analyzed as disordered carbons involved nm-cluster diamond crystals [21].
We, thus, performed lineshape analysis for the Raman spectrum of the carbonized
film and determined that the spectrum is owing to four component contributions of
Chito, DLC, GP, and AC. This Raman spectral analysis corresponds to the depth
profile assignment in the �m range, so that we might simulate the Raman spectrum
for the carbonized film from calculations at the B3LYP/6-31G(d, p) level in
GAUSSIAN software using the model molecules of the four components (chitosan
monomer (H–(C6H11NO4)–O–H) for Chito, adamantane derivative (C10H12(CH3)4)
for DLC, adamantane (C10H16) for AC, pyrene (C16H10) for GP).

In order to analyze the experimental Raman spectrum of the carbonized film,
we simulated four kinds of line spectra for Chito, DLC, AC, and GP models,
respectively, on the left in Fig. 27.3, while four kinds of broader simulated spectra
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Fig. 27.3 Simulated Raman spectra of chitosan (C6H13NO5), D-like C (C10H12(CH3)4),
amorphous C (C10H16), and graphite (C16H10) models for carbonized film

enveloped with the Gaussian-line-shaped functions were given on the right in the
figure. Each Raman spectral intensity in Fig. 27.3 was obtained from Raman activity
using the B3LYP/6-31G(d, p) method of four model molecules. Then, it enabled us
to obtain relative ratios of 2:1:0.5:0.375 for Chito:DLC:AC:GP of carbonization film
from simulation Raman spectrum. In Fig. 27.4, we showed the simulated Raman
spectrum of carbonized film in the upper part with the experimental result in the
lower part. In the figure, the theoretical peak at around 1,600 cm�1 due to graphite
contribution corresponds well to the experimental one.

27.4.2 Valence Bond X-ray Photoelectron Spectrum Analysis

It is well-known that the XPS measurements are useful to examine the depth profile
of materials in the nm range. In Fig. 27.5, we showed experimental valence X-ray
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Fig. 27.4 Simulated Raman spectrum of carbonized film on the upper part (a) with the experi-
mental result on the lower part (b)

photoelectron spectra of chitosan films with non- and KrC ion irradiation (1.0 	 1015

ions cm�2) in the upper (a) and lower (b) parts, respectively. The spectrum of
the film with KrC ion irradiation is seen to be lower broadening peak (at around
25 eV) due to oxygen than the spectrum with non-irradiation, so that carbonization
of the KrC ion-irradiated film can be predicted to have advanced by using the
result of Raman spectral analysis for the irradiation film. Then, for the observed
valence photoelectron spectrum of the carbonized film with the irradiation, we also
determined that the spectrum is caused by four component contributions of chitosan
(Chito), diamond-like carbon (DLC), amorphous carbon (AC), and graphite (GP).

In Fig. 27.6, we showed the simulated valence X-ray photoelectron spectra of
Chito (chitosan 2-mer, C12H24N2O9), DLC (C10H12(CH3)4), AC (C10H16), and GP
(C16H10) models in the upper part of (a) � (d), respectively, as the four constitutional
contributions for the carbonized film from calculations of the SAOP method in ADF
software. The upper simulated spectra of Chito, ALC, and GP models in (a), (b),
and (d) of the figure are in considerably good agreement with the experimental ones
in lower part of (a), (b), and (d), respectively. By considering the four component
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contributions, we obtained relative ratios of 1:0.5:0.5:1 for Chito:DLC:AC:GP
of carbonization film in the nm range, as showed in simulated spectrum with
experimental one in Fig. 27.7.

We were, thus, able to analyze the carbonization of the chitosan film with KrC
ion bombardments as constitutional ratios of the depth profile from valence X-
ray photoelectron and Raman spectral analysis in the nm and �m ranges. Each
constitutional ratio in the �m range is (Chito: DLC: AC: GP = 2:1: 0.5:0.375), while
the ratios in the nm range are (Chito: DLC: AC: GP = 2:1:1:2). Thus, the graphite
constitution of the carbonized film is small ratio of 0.375 in three kinds of carbon
allotropes in the �m range. On the other hand, the graphite ratio is around two times
of other carbon allotropes in the nm range.
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Fig. 27.6 Simulated and observed valence X-ray photoelectron spectra of chitosan (C12H24N2O9),
DLC (C10H12(CH3)4), AC (C10H16), and GP (C16H10) models for the carbonized film

27.5 Conclusions

We analyzed the experimental Raman and valence X-ray photoelectron spectra
(XPS) of the KrC-ion irradiated chitosan film at B3LYP/6-31G(d, p) level by
GAUSSIAN 09 software and with the statistical average of orbital potential (SAOP)
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method of Amsterdam density functional (ADF) program, respectively. Experimen-
tal Raman spectra of the carbonized film with KrC ion bombardment were found
out to be due to four component contributions of chitosan (Chito), diamond-like
carbon (DLC), graphite (GP), and amorphous carbon (AC). By considering the four
constitutional contributions, we performed depth profile assignment in �m range
for the carbonized chitosan film in Raman shift experiments from calculations of
B3LYP/6-31G(d, p) level in GAUSSIAN 09 using the model molecules, while in
the nm range for the carbonized film in valence X-ray photoelectron spectra from
calculations of the SAOP method in ADF software. Carbonizations of the film by
KrC irradiation were obtained as Chito: DLC: AC: GP = 2: 1: 0.5: 0.375 in the
�m range from Raman spectral analysis. On the other hand, carbonized film was
determined as Chito: DLC: AC: GP = 2: 1: 1: 2 in the nm range from valence X-ray
photoelectron spectral analysis.
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Chapter 28
Color Tuning in Human Cone Visual Pigments:
The Role of the Protein Environment

Jun-ya Hasegawa, Kazuhiro J. Fujimoto, and Hiroshi Nakatsuji

Abstract The origin of color tuning in human cone visual pigments was investi-
gated. Hybrid quantum mechanics (QM)=molecular mechanics (MM) calculations
were performed using symmetry-adapted cluster-configuration interaction (SAC-
CI) for the QM region and AMBER force field for the MM region. In particular,
we focused on the QM effects of environmental protein and performed QM(SAC-
CI:CIS)=MM(AMBER) calculations with a large QM region. The results of these
calculations showed that the environmental QM effects on the relative excitation
energy are not significant and confirmed the importance of the electrostatic (ES)
interactions noted in our previous study (Fujimoto et al., Bull Chem Soc Jpn,
82:1140, 2009). The biological origin of color tuning was also investigated, and
the important amino acid sequences were elucidated. The results provide useful
information for understanding the relationship between molecular evolution and the
changes in the absorption spectra of vertebrate visual pigments.
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28.1 Introduction

Human vision recognizes a wide variety of colors because our retina has three kinds
of cone visual pigments, human blue (HB), human green (HG), and human red
(HR) cone pigments [1]. Human retinas also contain a rod pigment, rhodopsin (Rh),
for dim-light vision [2]. The absorption wavelengths of the HB, HG, HR, and Rh
pigments are 414 nm (2.99 eV) [3, 4], 532 nm (2.33 eV) [3, 4], 563 nm (2.20 eV)
[3, 4], and 500 nm (2.49 eV) [5], respectively. The cone pigments and rod pigment,
rhodopsin, are composed of a cofactor, retinal protonated Schiff base (PSB), and
apoprotein, opsin (Fig. 28.1). The retinal PSB (Fig. 28.1) is responsible for photon
absorption. Although the absorption energies of the pigments are spread over a wide
region, the PSB is commonly included in both cone and rod pigments. This indicates
that the protein environment controls the absorption energy of the retinal PSB. After
the genes of these pigments were cloned [6], pioneering mutagenesis studies [7–12]
were conducted to clarify the amino acids important to the color tuning mechanism.
These origins would be better understood both physically and chemically in terms
of the molecular interactions between the retinal PSB and amino acids.

Many theoretical studies regarding the color tuning of retinal proteins were
reported for rhodopsin, bacteriorhodopsin, and sensory rhodopsin II (see the
references cited in review [13]). However, only a small number of reports discussed
human cone visual pigments. The color tuning mechanism was investigated based
on CI-single (CIS) calculations [14]. However, only a qualitative agreement was
obtained for the relative excitation energies of the pigments [14]. In our previous
studies [15–17], we performed symmetry-adapted cluster-configuration interaction
(SAC-CI [18–20] SD-R [21]) calculations using a QM=MM [22] framework. The
QM(SAC-CI)=MM(AMBER99 [23]) calculations quantitatively agreed with the
experimental absorption energies for both the cone and rod pigments as well as
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their mutants [16, 17]. One reason for this agreement is that the SAC-CI method
is a coupled-cluster-based correlation method for calculating excited states, which
provides reliable results for applications from small molecules to photobiological
systems [13, 24]. In our previous studies, a decomposition analysis was performed
to determine the physical origin of the color tuning. The results clearly showed that
the electrostatic (ES) interactions of the protein environment dominated the red-
green-blue color tuning mechanism [16, 17]. Structural distortion of the retinal PSB
skeleton causes a high-energy shift in the absorption energy of HB. The quantum
mechanical effect of the counterion, glutamate, yields a negligible change in the
relative absorption energy difference.

For the next step, we need to improve the molecular description of the inter-
actions between the protein environment and retinal PSB. Our previous QM=MM
calculations included the ES interactions between the electron density in the QM
region and the electrostatic potential (ESP) from the atoms in the MM region.
However, because the ESP was expressed as atomic charges in the MM force
field [16, 17], the response of the protein environment to the electronic transition
of the retinal PSB was not taken into account. Any charge-transfer (CT) effects
between the retinal PSB and the environment were also neglected. We found in our
previous study on the spectral shift of a retinal deprotonated Schiff base (DPSB)
in a MeOH solution and protein environment that these missing contributions were
not negligible and affected (0.11–0.16 eV) the total opsin shift (0.42–0.48 eV) [25].
In contrast, the QM effect was only negligible for fluorescent proteins [26]. These
results indicate that the environmental QM effect depends on the protein matrix and
should be examined for the cone and rod pigments.

Several approaches for calculating excited states in protein environments were
proposed to improve the ordinary QM=MM description. The effect of polarization
was included as a classical force field [27], and the excitation energy calculated
for bacteriorhodopsin (bR) was 0.34 eV less than that from a fixed-charge non-
polarizable QM=MM method [27]. Later, a triple-layer QM1=QM2=MM approach
was proposed, and DFT(PBE0) calculations were performed for the QM2 layer,
which consisted of the amino acids 4 Å from the retinal PSB [28]. The calculated
excitation energy of bR was only 0.08 eV smaller than that obtained using the
ordinary QM=MM method [28]. In another study, an empirical polarization model
combined with the QM=MM calculation produced a red shift of 0.14–0.17 eV [29].
However, these pioneering studies neglected the CT effects between the retinal and
the protein environments.

In this study, we adopted the ONIOM scheme [30, 31] to account for the QM
effects of the protein environment. Configuration interaction singles (CIS) was
used to calculate large QM systems involving the retinal PSB and amino acids
surrounding the PSB. Using CIS calculations, some of the important missing effects,
such as the CT and charge polarization, were taken into account. In addition, the
ESP of the protein environment was quantum mechanically described and would
be more reliable than that calculated from the MM force field. We note, however,
that the dispersion interactions and electron correlation effects of the environment



492 J. Hasegawa et al.

cannot be included in the CIS calculations and are still neglected. The CIS results
were used to describe the low-level layer, which was used to correct the SAC-CI
results for the higher-level layers.

This chapter is organized as follows. In Sect. 28.2, we describe computational
details with a focus on defining the computational models. In Sect. 28.3, we
first review our previous conclusions on the role of the ES interactions with the
protein environment and then explain the CIS=MM calculations for the large QM
models used to discuss the role the environmental QM effect plays in color tuning.
After confirming our previous conclusion, the biological origin of color tuning was
investigated via a decomposition analysis of the ES interactions. Finally, Sect. 28.4
summarizes the present study.

28.2 Computational Details

In the present study, we adopted a QM=MM method [22] which is a hybrid of
the QM and MM methods. The QM calculation was performed for a region where
electronic structure calculations were necessary. The MM calculation covers the rest
of the proteins.

We used several QM regions of different sizes. The first, a retinal (RET) model,
only involved the retinal PSB (see Fig. 28.1). The second, an active site (AS) model,
was composed of the retinal PSB, counterion (Glu110 in HB, Glu113 in Rh, and
Glu129 in HG and HR), and a water molecule interacting to the glutamate (see
Fig. 28.1). The third is an xÅ model (x D 3, 4, 5, 6, etc.), which includes the retinal
PSB and amino acids with at least one atom within xÅ of the retinal PSB. In the
RET and AS models, there is a QM-MM border at the C“–C” bond in the lysine of
the retinal PSB (See Fig. 28.1). The C“ atom was substituted by a hydrogen atom,
HLA, placed on the C“–C” line. The C”–HLA bond length was fixed at 1.09 Å. The
charge of the C“ atom was zeroed for lysine in the MM part. Because of the QM-MM
border, the total atomic charge of the lysine in the MM region was not an integer. The
MM charges were rescaled to obtain a charge of zero for lysine using a previously
proposed scheme [32]. The AS model possesses another QM-MM border at the C’–
C“ bond in the counterion, so the C’ atom was replaced with the HLA atom, which
was placed on the C’–C“ line. The C“–HLA bond length was fixed to 1.09 Å. The
charge of the C’ atom was zeroed for the Glu in the MM part. The charges of the C,
O, N, H, and H’ atoms were rescaled using a previously proposed scheme [32]. A
large number of QM-MM borders were present in the xÅ models. If two sequential
amino acids were selected for the QM region, the peptide bond connecting the two
amino acids was included in the QM region. If a neighboring amino acid was not
selected for the QM region, the –CO– or –NH– unit was replaced with a linking
atom. If only one Cys in a Cys–Cys bond was involved in the QM region, both Cys
were included in the QM region. The atomic coordinates of the retinal proteins were
obtained from a previous study [16, 17].



28 Color Tuning in Human Cone Visual Pigments: The Role of the Protein . . . 493

The QM effect of the protein environment was evaluated by comparing the
QM(CIS)=MM(AMBER99) results obtained using the AS and xÅ models. We
also performed QM(SAC-CI)=MM(AMBER99) calculations using the AS mod-
els [16, 17]. The higher-level SAC-CI results for the retinal PSB plus coun-
terion were corrected by the CIS results for the protein environment using an
ONIOM scheme [30, 31]. Hereafter, we call this computational scheme QM(SAC-
CI:CIS)=MM(AMBER). In the CIS calculations, the 6–31G* basis set was used for
the C and N atoms in the retinal PSB, and the 6–31G basis set was used for all other
atoms. A frozen core approximation was adopted, and the Gaussian 09 package was
used for the CIS and SAC-CI calculations [33].

28.3 Results and Discussion

28.3.1 Structural Distortion, Electrostatic Interactions,
and Counterion QM Effects

We previously studied the color tuning mechanism using the results of the
QM(SAC-CI)=MM(AMBER99) calculations [16, 17]. Based on the AS model
for the QM region, the calculated excitation energy for HR, HG, HB, and Rh were
2.94, 2.32, 2.08, and 2.45 eV, respectively, which were in good agreement with the
experimental values of 2.99, 2.33, 2.20, and 2.49, respectively (see Table 28.1). The
difference in the calculated excitation energy relative to Rh based of these results
was analyzed [16, 17].

The structural distortion effects were evaluated by comparing with the SAC-CI
results without the protein environmental effects (SAC-CI/none QM region D RET)
(see Table 28.1). While the results for HG and HR were very close to that for Rh, the
excitation energy of HB was 0.25 eV higher than that of Rh. This difference arises
from the C6–C7 dihedral angle (see Fig. 28.1) [34–36]. In our optimized structure,
the C6–C7 angle of HB was 56ı, whereas that of HG, HR, and Rh ranged from �46
to �38ı [16, 17].

The electrostatic (ES) effect of the opsin environment was evaluated by adding
ESP using AMBER99 force field [23] (the SAC-CI=MM QM region D RET result).
The calculated excitation energy increased significantly after adding ESP, and the
degree of increase depended on the visual pigments. The difference in excitation
energy relative to Rh was 0.57 eV for HB, �0.07 eV for HG, and �0.35 eV for HR.
These values were in good agreement with the experimental results, 0.50 eV for HB,
�0.16 eV for HG, and �0.29 eV for HR.

The counterion QM effect was included in the SAC-CI=MM QM region for
the AS model. The changes in excitation energy for HB, HG, HR, and Rh were
0.31, 0.37, 0.33, and 0.39, respectively, which were similar values among the visual
pigments.
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Table 28.1 Excitation energy of the cone visual pigments calculated via QM(SAC-
CI)=MM(AMBER99) and QM(SAC-CI:CIS)=MM(AMBER) calculations

Exptl. Calc. Decomposition analysis

Pigments Eex/eV Eex/eV �Ed
ex.eV/ Relative �Ee

ex .eV/

(1) SAC-CI/none, QM region D RET ! Chromophore structural effect
Rh 1.36a –
HB 1.61a C0.25
HG 1.36a 0.00
HR 1.33a �0.03
(2) SAC-CI=MM, QM region D RET ! Environmental ESP effect
Rh 2.06a C0.70 –
HB 2.63a C1.02 C0.32
HG 1.99a C0.63 �0.07
HR 1.71a C0.38 �0.32
(3) SAC-CI=MM, QM region D AS ! Counterion QM effect
Rh 2.49b 2.45a C0.39 –
HB 2.99b 2.94a C0.31 �0.08
HG 2.33b 2.32a C0.33 �0.06
HR 2.20c 2.08a C0.37 �0.02
(4) (3) C Environmental QM effectf ! Environmental QM effect
Rh 2.49b 2.28 �0.17 –
HB 2.99b 2.78 �0.16 C0.01
HG 2.33b 2.18 �0.14 C0.03
HR 2.20c 1.92 �0.16 C0.01
aExcitation energy calculated in our previous studies [16, 17, 36]
bRefs. [3, 4]
cRef. [5]
dChanges in the excitation energy after the interactions were included
eThe relative �Eex values. The �Eex values for Rh were used as the reference
fBoth the solvation effects and the “SAC-CI=MM QM D AS model” results were included using
the ONIOM scheme. The “CIS=MM QM D 6 Å model” and “CIS=MM QM D AS model” results
were used to evaluate the protein environmental QM effect. See the text for more details

These results clearly showed that the dominant factor in the red-green-
blue spectral change is the ES effect from the protein environment. A recent
QM(CASPT2)=MM(AMBER) study also showed the importance of the ES effect
[37]. A similar conclusion was obtained by CIS calculations, although the degree of
the spectral shift was only qualitatively reproduced [14].

To understand the ES interactions between the PSB and protein environment in
more detail, the ESP at the retinal backbone atoms was calculated. The calculated
ESP was strongly negative on the Schiff base side (N— side) primarily because
of a glutamate that served as the counterion to the PSB. The contributions of
the other amino acids were also important, as described later in this manuscript.
The amount of the ESP decrease grows in the order of HR, HG, Rh, and HB,
which correlates with the observed spectral shifts. In addition, Figs. 28.2 illustrate
the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular
orbital (HOMO), respectively, which were the predominant contributions to the
electronic transition of the PSB upon light absorption. Because the LUMO and



28 Color Tuning in Human Cone Visual Pigments: The Role of the Protein . . . 495

-0.20

-0.16

-0.12

-0.08

-0.04

0.00
C

5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15 N

E
S

P
 (

au
)

HB

HG

HR

Rh

ESP along the π  skeleton

Atom indices 

LUMO 

HOMO 

a b

c

Fig. 28.2 (a) Protein ESP at the atoms in the retinal skeleton. (b) LUMO and (c) HOMO of the
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HOMO were primarily distributed on the Schiff base side (N— side) and on the
“-ionone ring side (C5 side), respectively, the HOMO-LUMO transition had an
intramolecular charge-transfer (ICT) character. The HOMO-LUMO gap increased
to 8.27, 7.69, 7.45, and 7.70 eV for HB, HG, HR, and Rh, respectively, because of
the polarized ESP distribution, which increased the excitation energy.

28.3.2 Extending the Excited-State Wave Function
to the Protein Environment

Figure 28.3 and Table 28.2 show the CIS=MM excitation energies for HB, HG,
HR, and Rh calculated with different QM regions. The size of the QM region was
extended stepwise from the RET model first to the AS model and finally to the xÅ
model. These results are used to analyze the environmental QM effects on the color
tuning mechanism.

The “CIS/none QM region D RET” result represented the effect of structural dis-
tortion on the color tuning mechanism. Similarly to the “SAC-CI/none QM D RET”
result in Table 28.1, the calculated excitation energy of HB shown in Fig. 28.3
was higher than the other three pigments. As described previously, this difference
originates from the C6–C7 angle of the retinal PSB in HB, which was significantly
larger for HB. The “CIS=MM QM region D RET” results showed the electrostatic
effect of the protein environment. The calculated excitation energies for HB, Rh,
HG, and HR increased by 0.45, 0.31, 0.28, and 0.16 eV, respectively, which clearly
indicates that the ESP changed the relative excitation energy. We also note that
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Table 28.2 The CIS=MM excitation energy obtained using several computational models. The
number in parenthesis denotes the Nrminvalue of the model. AMBER99 force field was used for the
MM region

xÅ model, CIS=MM

RET AS x

Pigment CIS/none CIS=MM CIS=MM 3 5 6

HB 3.51 3.96 4.01 3.95 (4.3) 3.88 (5.0) 3.85 (5.9)
HG 3.28 3.56 3.61 3.52 (4.2) 3.46 (5.2) 3.47 (5.8)
HR 3.23 3.39 3.47 3.39 (4.1) 3.34 (5.0) 3.30 (5.9)
Rh 3.24 3.55 3.60 3.48 (4.5) 3.46 (4.8) 3.43 (5.7)

the relative differences in the excitation energies were qualitatively described at
this level of computational setup. When both the counterion and a water molecule
were included in the QM region (AS model), the calculated excitation energy of the
pigments increased by 0.05–0.08 eV, but the amount of the shift was similar for all
of the pigments. These results qualitatively reproduced the SAC-CI once described
previously.

Next, we compare the “CIS=MM xÅ models” result with those of the “CIS=MM
AS model” and discuss the QM effects on the relative excitation energies. Because
the calculated excitation energies depend on the size of the QM region [25], we
enlarged the xÅ models up to 6 Å and investigated the convergence behavior of the
excitation energies. We introduced an effective radius, Nrmin, to measure the size of
the protein environment included in the QM region.

Nrmin D 1

NA

X

A

rA�PSB
min ; rA�PSB

min D min
B2PSB

.rA�B/ (28.1)
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The indices A and B run for the atoms in the QM region and denote atoms in
the protein environment and the retinal PSB, respectively. NA denotes the number
of atoms in the protein environment in the xÅ model. For each A, the minimum
distance to the retinal PSB, rA � PSB

min , was determined. The Nrmin value was defined as
the average of the rA � PSB

min values over all the A atoms in the QM environment.
Figure 28.3 and Table 28.2 show the Nrmin dependence of the excitation energies

for the visual pigments. Starting with the AS results, the calculated excitation energy
decreases monotonically with increasing Nrmin. At approximately Nrmin D 6 Å, the
amount of the decrease becomes smaller, which indicates that convergence is near.
Comparing the 6 Å result to the ones for AS, the excitation energy decreased
by 0.16 eV, 0.14, 0.14, and 0.17 for HB, HG, HR, and Rh, respectively. These
results indicate that the environmental QM effects on the visual pigments were
similar to one another and, therefore, not significant to the relative excitation energy
differences and color tuning. We note, however, that the amount of the decrease
of the absolute excitation energy, 0.14–0.17 eV, was not necessarily negligible. To
summarize this subsection, we conclude that the ESP contributions dominated the
color tuning mechanism for human cone visual pigments.

28.3.3 Biological Origin of the Color Tuning

Based on the present results, the environmental QM effect was not the origin of the
color tuning. In addition, our previous study showed that the absorption energies of
the mutations were reproducible using the QM=MM QM D AS model [17]. These
results corroborated our conclusion that the origin of the color tuning is from the
ES interactions with the protein environment [16, 17]. We can now analyze the role
amino acids play in the color tuning mechanism in terms of the ES interactions. We
evaluated the ES contributions to the excitation energy from amino acid I as follows:

ESX.I / D
X

A2I

Z

�

�X
ex.r/ � �X

g .r/
	

�QA .rA/

jr � rAj dr .X D HB;HG;HR/ ; (28.2)

where �X
ex.r/ and �X

g .r/ are the electron densities of the retinal PSB in the
excited and ground states, respectively, and calculated using the QM(SAC-CI)=MM
QM D RET model.

Next, we determined the important amino acid sequences for color tuning. A
lysine that binds the retinal PSB in the HB, HG, and HR pigments, Lys293 in HB
and Lys312 in HG and HR, was selected as the reference sequence. The relative
sequence number (RSN) of the retinal-lysine was defined as zero. The amino acids
with identical RSN values, I’, were evaluated for X D HB and HG as follows:

�ESX



I 0� D ESX



I 0� � ESHR



I 0� (28.3)
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for X D HB and HG. This �ESX .I 0/ represents excitation energy relative to HR
introduced by electrostatic potential of an amino acid I’ in the cone pigment X.
Taking the absolute value,

ˇ
ˇ�ESX.I /

ˇ
ˇ , provides a criterion that indicates which

amino acid sequences are important for the color tuning.
In Table 28.3, we show several amino acid sequences that contribute more than

0.040 eV to the
ˇ
ˇ�ESX.I /

ˇ
ˇ value. These amino acids were classified into four

groups. The first is the counterion (RSN D �183), Glu110 for HB and Glu129 for
HG and HR, which contributed greatly to each cone pigment, 0.79 eV–0.71 eV,
because of the negative charge on the glutamate. The �ESX .I 0/ value for HB
was positive (0.059 eV), which indicates that the ESP of glutamate increased
the excitation energy of HB relative to HR. However, the �ESX .I 0/ value for
HG was negative (�0.021 eV), which indicates the opposite contribution of the
actual spectral shift. Therefore, color tuning between HG and HR likely has other
important contributors.

The second group is the amino acid sequences spatially closest to the retinal PSB.
With regard to RSN D �110, the Ser residues, Ser183 for HB and Ser202 for HG
and HR, are equivalent in sequence but differ in contribution to�ESX .I 0/ as shown
in Table 28.3. While Ser183 in HB has only a minor contribution, Ser202 in HG and
HR contribute �0.090 and �0.134 eV, respectively. The OH dipole of Ser183 in
HB has a low contribution because it is perpendicular to the retinal PSB [17]. In
contrast, the dipole of Ser202 in HG and HR is parallel to the PSB [17]. The Cyx
residue (RSN D �109) is a pair of cysteine residues connected via an S–S bond,
and the contribution from the Cyx residue depends on the orientation of the C D O
dipole in the peptide bond. Because the orientation of HR differs from those of HB
and HG, the residue blue shifts HB and HG and red shifts HR. The amino acids for
RSN D �35 and �27 have an interesting feature. Only HR has a dipolar residue of
these sequences; therefore, a red shift only occurs in HR.

As these examples indicate, the charge-polarized amino acids closest to
the PSB played a very important role in the color tuning mechanism. These
results qualitatively agree with an experimental mutation study [9] in which
Ala180, Phe277, and Ala285 in HG were replaced with those from HR. This
Ala180Ser/Phe277Tyr/Ala285Thr triple mutant recovered approximately 80 % of
the total red shift from the HG-HR difference observed in the experiment [9]. In our
theoretical simulations, the triple mutation reproduced the observed experimental
red shift [17].

The third group is a Cl� ion-binding site that only exists in HG and HR. The
total contribution of the binding site results in a red shift for both HG and HR. Once
this binding site was destroyed via a His197Ala/Lys200Ala mutation, the absorption
energy of HG and HR increased significantly [11]. The result of our double-mutant
calculation also reproduced the experimental results [17].

The final group is the amino acids on the protein surface. Charged amino acids
tend to stay on the outside of the protein and have a counterion in the solution.
In addition, these amino acids form an ion pair on the protein surface. As a
consequence, the ES contribution from the pair is negated. For example, the amino
acid at RSN D �275 and �262 in HB is valine (charge neutral), while that in HG
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Table 28.3 The electrostatic contribution to the excitation energy, ESX .I 0/, of various amino acids. Units are in eV

RSNg HB HG HR HB-HR HG-HR

(1) Counterion of retinal PSB

�183 GLU110 0.789 GLU129 0.709 GLU129 0.730 0.059 �0.021

(2) Proxymal to retinal PSB

�110 SER183 �0.008 SER202 �0.090 SER202 �0.134 0.126 0.044

�109 CYX184 0.060 CYX203 0.027 CYX203 �0.040 0.100 0.067

�35 PHE258 0.004 PHE277 0.006 TYR177 �0.039 0.043 0.044

�31 TYR262 �0.029 TYR281 �0.040 TRP281 �0.068 0.040 0.028

�28 TYR265 0.044 TYR284 0.044 TYR284 �0.005 0.049 0.049

�27 ALA266 0.013 ALA285 0.017 THR285 �0.036 0.050 0.053

�4 SER289 0.064 ALA308 0.064 ALA308 0.005 0.060 0.059

(3) Cl� binding site

�115 GLH178 0.005 HIS197 �0.047 HIS197 �0.078 0.083 0.031

�112 GLN181 0.004 LYS200 �0.106 LYS200 �0.136 0.140 0.030

– None CL- 0.076 CL- 0.105 �0.105 �0.029

(4) Protein surfacea

�275 VAL18 �0.001 ARG37b �0.040 ARG37b �0.057 0.056 0.017

(�0.005) (�0.000) (0.004) (�0.005)

�262 VAL31 0.004 ARG50c �0.066 ARG50c �0.077 0.081 0.011

(�0.005) (�0.005) (0.009) (0.000)

�189 ARG104d �0.047 HIE123 0.006 HIE123 0.011 �0.058 �0.005

(0.000) (�0.011)

�95 GLU198e �0.064 GLN217 �0.009 GLN217 �0.009 �0.055 0.000

(�0.015) (�0.006)

�12 ASP281f 0.059 HIE300 0.002 HIE300 0.007 0.051 �0.005

(0.002) (�0.005)

�10 ARG283f �0.056 LEU302 0.010 LEU302 0.014 �0.069 �0.004

(0.002) (�0.012)

The amino acids with a contribution greater than 0.040 eV are listed
aData in parentheses are the averaged value of the amino acid pairs on the protein surface
bThe counterion is GLU41
cThe counterion is a chloride ion close to the surface
dThe counterion is ASP22 on the surface
eARG196 is the counterion
fASP281-ARG283 is the counterion pair
gSequence number relative to retinal PSB-lysine

and HR is a positively charged arginine, which causes a red shift specific to HG and
HR. However, Arg37 in HG and HR forms an ion pair with Glu41. If we average
the �ESX .I 0/ values for Arg37 and Glu41, the ES contribution becomes �0.005
and 0.000 eV for HG and HR, respectively. This same cancellation is applicable to
the other charged amino acids shown in Table 28.3.

Before closing this section, we should mention how the present results help us to
understand the molecular evolution of the human cone visual pigments. In a previous
bioinformatics analysis [38], a dendrogram of vertebrate visual pigments was
generated based on the homology of the amino acid sequences, and the relevance to
the photoabsorption energy was elucidated. A portion of the vertebrate pigments was
first divided into both a long-wave (LW) and short-wave branch [38]. Our analysis
supports that this separation originated from the Cl� ion-binding sites introduced in
the LW branch. The dendrogram showed a branch that separates HR from HG [38].
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Based on these analytical results, the introductions of dipolar amino acids, Tyr177 at
RSN D �35 and Thr285 at RSN D �27, yield a red shift specific to HR. The present
analysis also suggests that the same amino acid contributes differently to the spectral
shift because of the higher-order protein structure effects. In this case, a mutation
affects the hydrogen-bonding networks and changes the direction of the OH dipole.
An example of this mutation is serine at RSN D �110 [17].

28.4 Conclusions

The excitation energies of human cone visual pigments are spread over a wide
energy region even though the chromophore, retinal PSB, is common to all
of the pigments. In this study, we analyzed the origin of the variation in the
photoabsorption energy, or color tuning, using SAC-CI=MM calculations. The role
of the QM effects on the protein environments was of particular interest and had
not been previously studied. We combined large-scale CIS=MM calculations with
SAC-CI=MM calculations using an ONIOM scheme. The size of the QM model was
enlarged to include amino acids up to 6 Å away from the PSB (up to 977 atoms and
5,248 basis functions). This computation takes the effects of CT and polarization on
the electronic transition into account. The quality of the ESP calculations must be
better than was designed for the MM calculations. The results indicated that the QM
environmental effects are similar for the different visual pigments, and they are not a
source of color tuning, confirming that the color tuning of the cone visual pigments
originates in their ES interactions with the protein environment.

We also performed a decomposition analysis of the ES interactions between
the PSB and protein environment. From the result, we found that the primary
contributions to the relative differences in excitation energy arise from the Cl�
binding site and the dipolar amino acids closest to the PSB. Although the charged
amino acids on the protein surface had large ES interactions with the PSB, these
residues form an ion pair with a counterion, and as a result, their net contribution
was not significant.

The color change in the cone pigments is the result of the evolution of vertebrate
animals. We attempted to compare the present results with a bioinformatics
dendrogram based on the one-dimensional information of the amino acid sequences.
Our results are based on the three-dimensional structure and molecular interactions
and, therefore, useful for understanding which of the many natural mutation points
caused the actual spectral shift.
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Chapter 29
Free Energy of Cell-Penetrating Peptide through
Lipid Bilayer Membrane: Coarse-Grained
Model Simulation

S. Kawamoto, M. Takasu, T. Miyakawa, R. Morikawa, T. Oda, H. Saito,
S. Futaki, H. Nagao, and W. Shinoda

Abstract Cell-penetrating peptides can permeate through the plasma membrane.
The permeation ability is useful for delivery of bioactive molecules. Experiments
suggest that the binding between the guanidino group in the peptide and lipid
headgroups is of crucial importance in the peptide permeation through lipid
membranes. We investigate the free energy profile for the permeation of the peptide
through the lipid bilayer membrane with changing the binding strength by a series of
coarse-grained molecular dynamics simulation. We found that the energy barrier for
the permeation has the minimum at the medium strength of the binding (�2"). Our
result suggests that the appropriate attractive interaction between peptide and lipid
headgroups enhances the permeation of the peptide across the lipid membranes.
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29.1 Introduction

Arginine-rich cell-penetrating peptides (CPPs), such as HIV-1 TAT peptide
(RRRKQKKRER) [1] and octaarginine (RRRRRRRR) [2], can permeate through
the plasma membrane and enter the living cells with high efficiency and low toxicity
[3]. The permeation ability is useful for drug delivery and gene transfection [4].
Possible pathways of the permeation include not only endocytosis but also the direct
permeation through plasma membrane [2, 5]. The mechanism of the permeation
of the peptide through the plasma membrane is not clear yet. The guanidino group
in arginine is supposed to play an important role in the permeation of the peptide
through a lipid bilayer membrane [3, 6] because guanidino group in arginine can
make two hydrogen bonds to the phosphate in lipid headgroup of the plasma
membrane. However, it is not clear how the binding helps the permeation. We
investigate the effect of the binding on the peptide permeation by free energy
calculations on the basis of molecular dynamics simulations.

The calculation of free energy profile of the penetrating molecules along the
bilayer normal is of primary importance in understanding the permeability. Free
energy profile of a water molecule has been successfully investigated by all-atom
molecular dynamics (MD) simulations [7–13], though the evaluation of free energy
profile of a large molecule such as peptide is a nontrivial task with atomic details.
Especially, since CPPs induce large deformation of the lipid bilayer membrane, such
as bending and inverted micelle formation [14–17], a longtime MD simulation of a
larger membrane will be required for the free energy calculation. Thus, all-atom MD
simulation seems too expensive to obtain well-converged free energy estimation.

Coarse-grained (CG) model can decrease the simulation time drastically by ap-
proximating the details of atomistic level. Although several different CG models are
available for the lipid systems [18–21], we rather use a simple lipid model consisted
of three particles, which is thought to be reasonably accurate to discuss the general
feature of free energy profile for the peptide permeation. Using the simple model,
we obtain an efficient computation to evaluate the free energy profile with a reduced
statistical error. In this study, we especially investigate the free energy profile in
relation to the binding strength of the arginine to the lipid headgroup particles.

29.2 Method

29.2.1 Coarse-Grained Model

The CG lipid molecule is represented by three particles: one hydrophilic head
particle and two hydrophobic particles [17]. The three particles make a chain linked
by harmonic spring bonds: Ubond.rij / D .Kbond=2/.rij � �/2. rij is the distance
between ith and jth particles, and Kbond of 200"=�2 is the spring constant. " and
�are the energy and length units used in the CG model. Angle bending potential is
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Table 29.1 Lennard-Jones
potential parameters

Particles "ij/" �ij =�

Water Water 1.0 1.0
Water Peptide 1.0 1.0
Water Lipid head 1.0 1.0
Water Lipid tail 0.3 1.2
Peptide Peptide 1.0 1.0
Peptide Lipid head "p/" 1.0
Peptide Lipid tail 0.3 1.2
Lipid head Lipid head 1.0 1.05
Lipid head Lipid tail 0.3 1.2
Lipid tail Lipid tail 0.5 1.05

applied for three connecting neighboring particles:Uangle.
/ D .Kangle=2/.
 � 
0/
2,

where Kangle of 1:0" is the spring constant, 
 is the angle of connected bonds, 
0

is the constant of � , and a peptide is represented by a chain of four particles. Since
CPPs are known to have random coil structure [22], the angle bending and torsion
potentials are not employed for the peptide. Water is treated as a single site. All
particles are assumed to have the same mass of M, which is the mass unit in the CG
model. We use the Lennard-Jones (LJ) potential with the cutoff length of 2:5� for
all particles:

ULJ .rij / D 4"ij

 �
�ij

rij

�12

�
�
�ij

rij

�6
!

(29.1)

The parameters for potential depth "ij and size of particle are adjusted to satisfy
the following four required properties of lipid and water system: (1) the system
should show spontaneous formation of lipid bilayer membrane from a random
configuration, (2) the bilayer should be in a fluid phase, (3) the model has to
produce a reasonable density profile along the bilayer normal, and (4) the model
has to reproduce the experimental bending modulus of lipid membrane [16, 17].
The parameters "ij and �ij are listed in Table 29.1. The LJ parameters of "ij D 1:0

and �ij D 1:0 are uniformly used for hydrophilic particles except for the lipid
headgroups, while the LJ parameters of "ij D 0:3 and �ij D 1:2 are used for
the interaction between hydrophilic and hydrophobic particles. The LJ parameters
of "ij D 1:0 and �ij D 1:05 are used for headgroups. The slightly large value
of �ij D 1:05 for the lipid headgroups is needed to stabilize the lipid membrane
against the bending. The interaction parameter "p is "ij between the arginine and
lipid headgroup, which is changed in the range of 1:0" to 3:0" in a series of MD
simulations. The simulation system is composed of a single peptide, 512 lipids,
and 5,000 water particles. The NPT ensemble was used to simulate the system
in the periodic boundary condition. The pressure was controlled to 1.0 bar (0.015
"/�2) by the Parrinello-Rahman method [23] with semi-isotropic cell fluctuation,
where box sizes in x and y directions were kept the same. The normal to the lipid
membrane was taken along the z direction. The box dimension along x, y, and z
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directions was about 21� , 21� , and 19� . The temperature was controlled at 0:6"
by the Langevin thermostat [24]. The units of CG model are obtained from three
quantities. (1) The energy unit " of 0.99 kcal/mol is obtained from temperature of
0:6" as room temperature of 300 K. (2) The length unit � of 0.90 nm is obtained
from a comparison of the thickness of lipid bilayer membrane of 4:1� for CG model
and 3.71 nm for dioleoylphosphatidylcholine (DOPC) membrane [25]. (3) The mass
unit M of 1.4 	 10�24 kg is obtained by a comparison of water density 0.86 M/�2

for CG model water and 1.0 g/cm3 for water, which means that a single CG water
site represents 42 water molecules.

29.2.2 Thermodynamic Integration

We calculate free energy profile �G(z) using thermodynamic integration. We
choose the reaction coordinate as the position z of the center of mass of the peptide
along the membrane normal:

�G.z/ D G.z/ �G.zw/ D
Z z

zw

�
@Uz

@z

�

z

dz (29.2)

Uz D 1

2
Kp.zp � z/2 (29.3)

h� � � iz is an ensemble average with the fixed point of z. zw is the position in the
water region far from the membrane, so that �G(z) is the free energy difference
measured from the water region. The ensemble average is taken at each point of z
over the time interval of 5 	 104� to 105� . � D p

M=" D 15 ps is the time unit of
CG scale. zp is the position of the peptide.Kp is the spring constant.

The reaction coordinate has to be determined with respect to the membrane
position along the membrane normal. However, once the membrane largely deforms
or bends, the center of mass of the whole membrane is not useful to determine
the effective membrane position for the peptide. To prevent the uncertainty of the
membrane position due to the deformation, we use the effective membrane position,
zlip, using the local membrane patch near the peptide, which was defined with a
weight function as follows:

zlip D
P

i ziw.xi � xpep; yi � ypep/
P

i w.xi � xpep; yi � ypep/
(29.4)

The summation is taken over the lipid positions, so xi ; yi and zi are the
coordinates of ith particle of lipid molecules, and xpep and ypep are the coordinates
of the center of mass of the peptide. The weight function, w.x; y/, is defined as

w.x; y/ D exp

 

� .x
2 C y2/

R2xy

!

(29.5)
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Rxy is the width of the weight function. We set Rxy D 4� , which is comparable
to the thickness of the membrane. The defined membrane position should be kept
at the same position through the simulation time. Thus, we introduce an external
potential Ulip to keep the membrane position to the initial position zlip0:

Ulip D 1

2
Kl.zlip � zlip0/

2 (29.6)

The spring constantKl was set to 20"=�2.

29.3 Results

29.3.1 Permeation of Water

Figure 29.1a shows the density profile of each segment along the normal to the
membrane. The distribution of the lipid headgroups has two peaks at z D ˙2¢ . We
show free energy profile �G(z) for the permeation of a water particle in Fig. 29.1b.
�G(z) has a positive value in the membrane region of �2� < z< 2� and maximum
value of 6 kcal/mol (6") at the center of the membrane z D 0. Similar results have
been found in atomistic simulations [7–13]; the free energy barrier for the water
permeation was found to be 6–20 kcal/mol around the center of the membrane.
However, taking into account the fact that the CG water particle represents to
42 water molecules, the present CG model underestimates the free energy barrier
significantly.

29.3.2 Permeation of Peptide

Figure 29.1c shows �G(z) for the permeation of the peptide with various potential
depths "p between peptide and lipid headgroups. For jzj> 5� , the peptide is in the
water region, and�G(z) is almost flat. The distance of 5� from the membrane center
corresponds to the sum of peptide radius 2� and half of the membrane thickness 3� .

When "p D 1.0, a high free energy barrier in the membrane region is formed.
Thus, the peptide would mostly stay in the water region. For 1.5 � "p � 2.5, �G(z)
has a local maximum around z D 0 and has two minima around z D ˙2� , as shown
in Fig. 29.1c. z D ˙2� are the positions of the lipid headgroups, as shown in
Fig. 29.1a. It means that the peptide stays on the surface of bilayer membrane, as
shown in Fig. 29.2a. In the experiments of DOPC/DPPC membrane and arginine-
rich CPPs [22], CPPs stay on the surface of the lipid membrane. Thus, the
parameter value of 1.5 � "p � 2.5 is supposed to provide a reasonable effective
interaction to simulate the realistic arginine-rich CPPs. For 1.5 � "p � 2.5, �G(z)
has a (local) maximum around the center of the membrane z D 0. At this position,
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Fig. 29.1 (a) Particle density of lipid headgroup, lipid tail, and water molecules as a function of z.
(b) Free energy profile �G(z) of water permeation. (c) �G(z) of peptide permeation with various
values of "p. Horizontal axis z is the position of the peptide from the center of the bilayer membrane
along the normal to the membrane

Fig. 29.2 Snapshots of MD simulations. (a) The peptide stays on the surface of the lipid
membrane. "p D 2:0 and zp � �2¢ . (b) Transmembrane position of the peptide with "p D 2:0

and zp � 0. (c) Inverted micelle formation by the peptide with "p D 3:0 and zp � 0. Gray circles
are lipid headgroups, black sticks are lipid tails, and black circles are peptides. Water molecules
are not shown
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dependence of ��G

for 1.5�"p�2.5, the peptide shows transmembrane structure, as shown in Fig. 29.2b.
There is a toroidal pore around the peptide. At "p D 3.0 and z D 0, �G(z) has the
minimum, as shown in Fig. 29.1c, and the peptide induces an inverted micelle, as
shown in Fig. 29.2c. The peptide can have a larger number of the neighboring lipid
headgroups by forming the inverted micelle structure. Due to the inverted micelle
formation, the binding energy between the peptide and lipid headgroups is gained at
the cost of the membrane bending energy. When the binding is strong ("p is large),
the formation of inverted micelle is advantageous with respect to the free energy.

We use the constraint potential described in Eqs. 29.2 and 29.3 for the calculation
of �G(z) by thermodynamic integration. An MD simulation without a constraint
potential has shown that the equilibrated position of the peptide agrees with the
minimum of�G(z).

29.3.3 Free Energy Barrier

We discuss here the free energy barrier for the permeation of the peptide through
the lipid bilayer. We introduce here two values ��G1 and ��G2. The former is
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�G(z) at the minimum, while the latter is the difference of �G(z) at z D 0 and at
the minimum (see Fig. 29.3a). ��G1 and ��G2 are plotted as a function of "p in
Fig. 29.3b. With increasing "p, ��G1 increases while ��G2 decreases. ��G1

is mainly determined by the binding strength between the peptide and the lipid
headgroups. The peptide with large "p binds strongly to the lipid headgroups, and
��G1 for the peptide going out of the membrane becomes large. On the other
hand, ��G2 is mainly explained by the exclusion of the hydrophilic peptide from
hydrophobic region composed of lipid tails. The peptide with a large "p can induce
the morphology change of the bilayer structure, which reduces��G2.
��G is defined as the difference between the maximum and minimum of�G(z),

which is equal to the larger of ��G1 and ��G2 (see Fig. 29.3a). ��G hits the
minimum at the medium value of "p D 2:0, as shown in Fig. 29.3c. The smaller
��G is, the easier the peptide permeates through the membrane. Our result suggests
that the moderate interaction between the peptide and lipid headgroups encourages
the permeation of the peptide through the lipid bilayer.

The binding energy of a single arginine residue on POPC membrane is exper-
imentally estimated as 0.8 kcal/mol [26]. The peptide in the present CG model
represents a poly-arginine chain of 21 residues. We estimate that the binding energy
of 21 arginines is 0.8 	 21 D 16.8 kcal/mol, �17". From Fig. 29.3b, the binding
energy ��G1 � 17" is obtained when "p is about 2.3. This value of "p � 2:3

calculated from the experimental binding energy is close to our estimation of
"p � 2:0 at the minimum��G.

It was experimentally suggested that the guanidino group, which makes two
hydrogen bonds to phosphate in lipid headgroups, was needed for the peptide
permeation [3]. In our CG model, we have found that the moderate attractive
potential decreases the energy barrier of permeation. Our results reveal that there
is an appropriate binding strength of peptide to the lipid headgroups to encourage
the CPPs permeation through lipid membranes.

29.4 Conclusion

We have investigated the molecular mechanism of permeation of the CPPs through
the lipid bilayer membrane using coarse-grained molecular dynamics simulations.
Especially we examined the effect of the affinity of the peptide to the lipid
headgroups on the permeation of the CPPs by changing the potential depth "p in the
range of 1–3". We calculated the free energy profile of the peptide across the lipid
bilayer with various values of"p using thermodynamic integration. With increasing
"p, the position of free energy minimum is shifted from the water region to the
surface of the membrane and eventually to the center of the membrane accompanied
by a formation of an inverted micelle. When "p is small (�1"), the peptide is
expelled from the membrane due to the high free energy barrier in the membrane
region. When "p is large (�3"), the free energy barrier for the peptide to go out
of the membrane is large. Thus, the free energy barrier hits the minimum at the
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medium value (�2") of "p. The result reveals that the moderate attractive interaction
between the peptide and the lipid headgroups encourages the permeation of the
peptide most. Our CG simulations imply the importance of the attractive interaction
between peptide and lipid headgroups to explain an enhanced permeation of the
hydrophilic CPPs across the lipid membrane.
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Chapter 30
Density Functional Study of the Origin
of the Strongly Delocalized Electronic Structure
of the CuA Site in Cytochrome c Oxidase

Yu Takano, Orio Okuyama, Yasuteru Shigeta, and Haruki Nakamura

Abstract The CuA site is the electron entrance of cytochrome c oxidase (CcO),
the terminal redox-driven proton pump in mitochondria and aerobic bacteria. The
ground state of the oxidized CuA site is related to the singly occupied molecular
orbital, since the CuA site is doublet in the oxidized state. Spectroscopic studies have
suggested the strongly delocalized character of the ¢u* oxidized ground state of the
CuA site facilitates a rapid electron transfer to heme a in CcO. We address the origin
of the strongly delocalized character of the CuA site, using the density functional
theory. Our computation shows that the fully delocalized mixed-valence Cu1.5C–
Cu1.5C species is due to the direct interaction between the two copper ions of the
CuA site and the stabilization of the Cu–Cu interaction by the ligand coordination. In
addition, the CuA site holds the equivalent shapes of the ¢u* redox active molecular
orbital and spin density distribution, despite the structural deformation of the Cu2S2

core. It indicates that the CuA site has a character of “flexible electron mediator,” as
well as heme a. This character is common to transition metal cofactors involving in
electron transfer in biology.

30.1 Introduction

The CuA site functions as an electron transfer intermediate in cytochrome c
oxidase (CcO), the terminal electron acceptor in aerobic respiration [1–6]. The
geometrical and electronic properties of the CuA site in CcO have been studied by
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Fig. 30.1 The X-ray crystallographic structure of cytochrome c oxidase (CcO) (a) and the CuA

site (b) (PDB ID: 1V54)

X-ray crystallography, electron paramagnetic resonance (EPR), X-ray absorption
(XAS), resonance Raman (rR), extended X-ray absorption fine structure (EXAFS),
magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR)
spectroscopies, as well as by density functional theory (DFT), suggesting that the
CuA site adopts a characteristic molecular structure [7–21].

The X-ray crystallographic structures of CcO revealed that the CuA site contains
two copper ions bridged by two cysteinyl thiolate groups, and that each copper
ion is coordinated equatorially with a histidine residue and axially with either a
methionine residue or a carbonyl group of the polypeptide backbone (Fig. 30.1b)
[7]. The Cu–Cu distance is remarkably short enough to allow the formation of a
direct bond between the two copper ions. An EXAFS and parallel MCD studies
supported the occurrence of direct Cu–Cu bonding in the CuA site [8, 9]. The
reduced CuA site has a Cu1C–Cu1C core, which is oxidized by one electron. EPR
studies demonstrated that the CuA site is a completely delocalized mixed-valence
Cu1.5C–Cu1.5C species [10–14]. Many synthetic modeling studies also elucidated
the important structural features for electronic and functional properties of the
CuA site [15–17]. Tolman and collaborators synthesized a model complex [15,
16]. The complex shows a mixed-valence oxidized state, as well as the CuA site,
but has a longer Cu–Cu distance of 2.9 Å, which implies no direct Cu–Cu bond
interaction [15]. XAS and absorption spectra of the synthetic model suggested
stronger superexchange interactions via the bridging thiolate groups but a weaker
Cu–Cu electronic coupling [16]. On the other hand, a combination of rR and XAS
of the CuA site showed that both the direct Cu–Cu interaction and the superexchange
interactions via the Cu–S bonds contribute to the electronic coupling between
the two copper ions [10]. DFT calculations also revealed that the mixed-valence
synthetic model has a singly occupied  u redox active molecular orbital (RAMO),
while that the oxidized CuA site shows a completely delocalized ¢u* ground state,
in which an unpaired electron occupies the ¢u* RAMO, as illustrated in Fig. 30.2
[10, 16, 18–21]. The completely delocalized ¢u* RAMO produces the stronger
electronic coupling between two copper ions, which provides a strongly stabilized
and delocalized electronic structure. This electronic structure greatly contributes to
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Fig. 30.2 Schematic pictures of the ¢u* and  u redox active molecular orbitals (RAMOs) (a) and
the ¢u* and  u states (b)

maintain the CuA site delocalized in the low-symmetry protein environment. Olsson
and Ryde also conducted DFT calculations on the CuA site, concluding that the
delocalization of the unpaired electron causes the lowering of the reorganization
energy in the mixed-valence oxidized state [19]. The complete delocalization of an
unpaired electron and the small reorganization energy result in the rapid electron
transfer rates.

Our ultimate goal is to elucidate the origin of the characteristic electronic
structure of the transition metal centers in proteins and its regulation by a protein
environment. As shown in our recent studies [22–29], we have found that the protein
environment enhances the intrinsic abilities of the cofactor. Thus, our computation
suggests that a study of the intrinsic electronic structure of the cofactor is essential
to understand the function of metalloproteins. For example, the redox reaction of
heme a itself causes the charge transfer from the Fe ion to the heme propionate, and
the surrounding protein environment enlarges the charge transfer in CcO [22, 23].
We also reported the protein activation of the electronic asymmetry of a special pair
cation radical in the photosynthetic reaction center [24] and the increased reactivities
of hemerythrin and hemocyanin, by the surrounding protein residues [25–27].

In the previous studies [20, 21], the electronic structures of various models of
the CuA site have been examined by using the DFT methods to elucidate what are
required and sufficient to form the characteristic ¢u* ground state of the CuA site.
We first explored the electronic structure of the Cu2S2 core model, which consists
of two copper ions and two deprotonated Cys residues [20]. Our computation of
the oxidized Cu2S2 core model revealed that the  u state is more stable than the
¢u* state, even in the short Cu–Cu distance. An addition of the coordinating ligands
to Cu2S2 core model leads to the ¢u* ground state, due to electrostatic and orbital
interactions between the core and the ligands, and implies that not only the direct
Cu–Cu interaction but also the electrostatic and the orbital interactions by ligand
coordination are responsible for the stabilization of the ¢u* state rather than the  u

state in the CuA site. We next examined the effects of each coordinating ligand
on the electronic structures of the CuA site through DFT calculations [21]. His
ligation provides both strong orbital and electrostatic interactions to the Cu2S2

core, dominating both stabilization of the ¢u* ground state and regulation of the
ionization potential of the CuA site. The coordination of the peptide carbonyl
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group electrostatically affects the ionization potential. Weak orbital and electrostatic
interactions by the Met coordination are influential to the stabilization of the ¢u*
ground state.

In the present study, we address the origin of the strong delocalized character
of the oxidized ¢u* ground state in the CuA site, using the DFT method (the M06
exchange–correlation functional). In particular, we have examined the RAMOs, spin
density distribution, and Mulliken atomic spin and charge densities of the models of
the CuA site in the ¢u* and  u states. Our computation demonstrates that the direct
Cu–Cu bond and the ligand coordination lead to the strong and robust delocalization
over the Cu2S2 core in the CuA site even with the structural deformation of the Cu2S2

core. It indicates that the CuA site has a character of “flexible electron mediator.”
This character is also found in heme a [23], implying that the robustness to the
structural distortion is required to transition metal cofactors involved in biological
electron transfer.

30.2 Computational Procedure

30.2.1 Model Construction

The models for the oxidized CuA site were constructed with the three-dimensional
atomic structure of fully oxidized bovine heart CcO at the 1.8 Å resolution (PDB
ID: 1V54), while the reduced CuA site was modeled with fully reduced bovine heart
CcO at the 1.9 Å resolution (PDB ID: 1V55). Bovine heart CcO is dimerized, and
each monomer consists of 13 subunits. Subunit II, which is represented by chain
B and O in PDB data of bovine heart CcO, contains the CuA site. Since the Cu–
Cu distances of chain B and O are quite different from each other, the 1V54B,
1V54O, 1V55B, and 1V55O models were built for the CuA site in the chain B and
O of the oxidized and reduced CcO, respectively, as illustrated in Fig. 30.3a. The
geometrical parameters of two copper ions, the bridging Cys residues, Cys196 and
Cys200, and the coordinating amino acids, His161, Glu198, His204, and Met207,
were employed for the construction of the models. In the models, each C’ atom of
His161, Cys196, Cys200, His204, and Met207 was replaced with an H atom, and
Glu198 was replaced with N-methyl acetamide. We classified the models into the
core, His161, Glu198, His204, and Met207 parts, according to the Cu2S2 core and
the coordinating ligands, as illustrated in Fig. 30.3b. The positions of the hydrogen
atoms were optimized, while the heavy atoms were fixed to the positions in the
corresponding X-ray structure.

30.2.2 Quantum Chemical Calculations

All quantum chemical calculations were performed on the models with the Gaussian
09 program packages [30]. In the previous study [20], we assessed the validity of
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Fig. 30.3 Models of the CuA site, the 1V54B, 1V54O, 1V55B, and 1V55O models (a), and the
classification of the models into the core, His161, Glu198, His204, and Met207 parts, according to
the Cu2S2 core and the coordinating ligands (b)

exchange–correlation functionals of DFT (BHandHLYP [31], B3LYP [32], BLYP
[33, 34], PW91 [35], PBE0 [36], and M06 [37]) in comparison to the coupled cluster
(CC) methods [38] and demonstrated that the M06 exchange–correlation functional
[39] can be regarded as a reliable method to examine the electronic structure of
the Cu2S2 core. The M06 exchange–correlation functional was employed for the
investigation of the electronic structures of the CuA site. We used the Wachters C f
basis sets for copper ions [40] and the Pople’s 6-311CCG(df,pd) basis sets for
other atoms [41, 42]. The environmental effect inside the protein was computed
with PCM using UAKS cavity [43, 44] with a dielectric constant of 4.0 [45, 46].
The accuracy of PCM heavily depends on the use of proper boundary conditions on
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the surface of the cavity containing solutes. In the present study, the UAKS cavities
were used in the PCM calculations since it provides reliable solvation energies for
many molecules and ions [44].

30.3 Results and Discussion

30.3.1 Redox Active Molecular Orbitals (RAMOs) of the CuA

Site

We first examined the shapes and symmetries of the RAMOs of the oxidized
models (the 1V54B and 1V54O models) in the ¢u* and  u oxidized states. The
RAMOs are represented by “-LUMOs and are equivalent to the singly occupied
molecular orbitals (SOMOs). Figure 30.4 illustrates the RAMOs of the 1V54B and
1V54O models in the ¢u* and  u oxidized states. The ¢u* RAMOs consist of an
antibonding orbital between a d¢* orbital (dx2–y2–dx2–y2) of the Cu–Cu part and a
p  orbital (px C px) of the S–S part of the Cu2S2 core in the CuA site, as illustrated
in Fig. 30.2a. On the other hand, the  u RAMOs are composed of an antibonding
orbital interaction between a d  orbital (dxy C dxy) of the Cu–Cu part and a p¢*
orbital (py–py) of the S–S part of the Cu2S2 core in the CuA site (Fig. 30.2a).

As shown in Fig. 30.4, the ¢u* RAMOs are delocalized on the coordinating
ligands, the N• atoms of His161 and His204 and the S” atom of Met207, and
exhibit antibonding orbital interactions between the Cu2S2 core and the coordinating
ligands. These antibonding orbital interactions indicate the increase in the ¢u*
RAMO energy. In contrast to the ¢u* RAMOs, the  u RAMOs of all of the models

Fig. 30.4 ¢u* and  u redox active molecular orbitals (RAMOs) of the 1V54B and 1V54O models
of the CuA site in the gas phase. All isovalue surfaces are set at 0.03 (e/Å3)1/2. Molecular structures
are shown in thin lines
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Fig. 30.5 Schematic pictures
of the orbital interactions of
the ¢u* (a) and  u (b) orbitals
of the Cu2S2 core with the
His161 and His204 parts

are almost localized on only the Cu2S2 core, showing that the ligand coordination
hardly affects the orbital energy of the  u RAMOs. This difference in the orbital
interactions between the Cu2S2 core and the coordinating ligands contributes to the
higher orbital energy of the ¢u* RAMO, as compared with that of the  u RAMO,
resulting in the ¢u* ground state of the CuA site, as illustrated in Fig. 30.5. In
addition, this stronger delocalized character of the ¢u* RAMO of the CuA site, as
compared to the  u RAMO, facilitates the overlapping of the molecular orbitals of
the adjacent amino acids to accomplish the long electron transfer to heme a in CcO.

Although the geometrical parameters, in particular the Cu–Cu and S–S distances,
are quite different between the 1V54B and 1V54O models (Fig. 30.3a), the shapes
and symmetries of the ¢u* and  u RAMOs are equivalent to each other. This orbital
similarity results in the similarity in the electronic structures between two models.
It indicates that the CuA site can transfer electrons despite the distortion of the
diamond core, implying that the CuA site can be regarded as a “flexible electron
mediator.” This flexibility is useful for the incorporation of the CuA site to protein
for electron transfer inside the protein. In the previous study [23], we exhibited
that heme a in CcO can also keep the delocalized electronic structure in spite of
the deformation of the porphyrin ring. These results indicate that metal cofactors,
which are involved in the electron transfer in proteins, have such robustness of the
delocalized state.

30.3.2 Spin Density Distribution of the Oxidized CuA Site

We next investigated the spin density distribution and Mulliken atomic spin densities
of the 1V54B and 1V54O models in the ¢u* and  u oxidized states, which show the
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Fig. 30.6 Spin density
distribution of the 1V54B and
1V54O models of the CuA

site in the ¢u* and  u

oxidized states in the gas
phase. All isovalue surfaces
are set at 0.001 e/Å3. Blue
and green surfaces represent
positive and negative spin
densities, respectively.
Molecular structures are
shown in thin lines

character of the mixed-valence Cu1.5C–Cu1.5C state. Since the oxidized state of the
CuA site has an unpaired electron, the spin density distribution demonstrates that
the positive spin density is fully delocalized over the Cu2S2 diamond core formed
by the two copper ions and Cys196 and Cys200, and that the negative spin density
polarized by the positive spin density is found on the chemical bonds such as the
Cu–S and Cu–Cu bonds, as shown in Fig. 30.6.

The shapes of the spin density distribution are similar to those of RAMOs in
both the ¢u* and  u oxidized states, respectively, indicating that the SOMO is
dominant to the mixed-valence Cu1.5C–Cu1.5C character of the CuA site. While
an unpaired electron is localized on one iron ion in the Fe3C–Fe2C mixed-valence
active site of uteroferrin [29], due to the unsymmetrical coordination (class I mixed-
valence state), it is fully delocalized over the Cu2S2 core of the models of the
CuA site in both the ¢u* and  u states. This means that the oxidized CuA site is a
completely delocalized (class III) mixed-valence Cu1.5C–Cu1.5C species even in the
low-symmetry environment [42], because the direct bonding character of the copper
ions is caused by the strong orbital interaction, leading to the strong delocalization
over the Cu2S2 core in the CuA site.

As well as the RAMOs, the spin density distribution is delocalized on the
directly coordinating N• and S” atoms of the His and Met residues in the ¢u* state,
respectively, while it is almost localized over only the Cu2S2 diamond core in the  u

oxidized state. As listed in Table 30.1, the Mulliken atomic spin densities are found
on the His161, His204, and Met207 parts in the ¢u* oxidized CuA models, whereas
most of the Mulliken atomic spin densities are found on only the core part in the  u

oxidized ones. The RAMOs and spin density distribution supports the advantage of
the ¢u* state in the electron transfer compared with the  u state.

The spin density distribution and the Mulliken atomic spin densities of the
1V54B model are almost same as those of the 1V54O model, indicating the robust
electronic structure of the CuA site and the synthetic model complexes; see Fig. 30.6
and Table 30.1.
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Table 30.1 Mulliken atomic spin densities of the oxidized models (the
1V54B and 1V54 models) of the CuA site in the protein solutiona at the
M06 level of theory

1V54B 1V54O

Part ¢u* oxidized  u oxidized ¢u* oxidized  u oxidized

Coreb C0.890 C1.006 C0.891 C0.972
His161b C0.047 �0.006 C0.039 C0.003
Glu198b C0.003 C0.001 C0.002 C0.007
His204b C0.033 �0.006 C0.040 C0.008
Met207b C0.028 C0.005 C0.028 C0.009
aThe protein solution was modeled by the PCM–UAKS method with the
dielectric constant of 4.0
bThe core, His161, Glu198, His204, and Met207 parts are shown in
Fig. 30.3b. The Mulliken atomic spin densities in each part were
summed up

Table 30.2 Mulliken atomic charge densities of the oxidized models (the 1V54B and 1V54O
models) and the reduced models (the 1V55B and 1V54O models) of the CuA site in the protein
solutiona at the M06 level of theory

1V54B 1V55B 1V54O 1V55O

Part ¢u* oxidized  u oxidized Reduced ¢u* oxidized  u oxidized Reduced

Coreb �0.312 �0.222 �0.672 C0.040 C0.105 �0.409
His161b C0.541 C0.504 C0.416 C0.407 C0.374 C0.262
Glu198b C0.088 C0.090 �0.056 C0.071 C0.071 �0.075
His204b C0.620 C0.598 C0.352 C0.444 C0.442 C0.307
Met207b C0.063 C0.030 �0.071 C0.038 C0.007 �0.085
aThe protein solution was modeled by the PCM–UAKS method with the dielectric constant of 4.0
bThe core, His161, Glu198, His204, and Met207 parts are shown in Fig. 30.3b. The Mulliken
atomic charge densities in each part were summed up

30.3.3 Mulliken Atomic Charge Density of the CuA Site

Mulliken atomic charge densities are related to the distribution of all electrons of
the CuA site. The computed Mulliken atomic charge densities are summarized in
Table 30.2 and show that negative atomic charges move from the coordinating
His198, His204, and Glu198 parts to the core part because the coordinating parts
are electron-rich due to the unsaturated bonds of the imidazole ring of the His198
and His204 parts and the peptide group of the Glu198 part. Owing to the longest
coordination distance, as shown in Fig. 30.3a, the Met207 part shows the smallest
charge transfer to the core part in all the coordinating parts in the oxidized state
and the back charge transfer in the reduced state. As compared to the Glu198
part, the stronger charge transfer of the His parts is responsible for the equatorially
coordinating lone pair of the His161 and His204 parts to the core part (Fig. 30.5)
and the weak axial coordination of the Glu198 part with the longer coordination
distance of 2.4 Å, as shown in Fig. 30.3a.
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Since the formal charges of the core part in the models of the CuA site are 1.0
and 0.0 in the oxidized and reduced states, respectively, the charge transfer of the
models of the oxidized CuA site is much stronger than that of the reduced Cu A site.
In the oxidized state, the charge transfer in the ¢u* state is stronger than that in the
 u state because the ¢u* orbital can interact with the lone pair of the His161 and
His204 parts, while the  u orbital fails to interact with them; see Fig. 30.5.

As compared with the 1V54O model, the 1V54B model provides the stronger
ligand-to-core charge transfer, due to the change in the large amount of the negative
charges of the His161 and His204 parts, as shown in Table 30.2. This result indicates
that the stronger orbital interaction of the 1V54B model between the core and
coordinating parts than the 1V54O model, resulting from the approach of the
orbital energy of the RAMOs to that of the lone pair of the His part because the
0.14 Å longer Cu–Cu bond of the 1V54B model provides a weaker d–d antibonding
interaction between the copper ions of the core part.

30.4 Concluding Remarks

By means of the M06 method with the PCM, we have explored the RAMOs, spin
density distribution, and Mulliken atomic spin and charge densities of the models
of the CuA site in the ¢u* and  u states in order to elucidate the origin of the strong
delocalized character of the oxidized ¢u* ground state in the CuA site. We found that
the fully delocalized mixed-valence Cu1.5C–Cu1.5C state of the CuA site is because
the ¢- and  -type direct orbital interactions are formed between the two copper
ions and because the ligand coordination stabilizes the Cu–Cu direct interaction,
as shown in Fig. 30.5a. The structural variation in the Cu2S2 core of the CuA site
hardly influences the shape of the RAMO and spin density distribution, because
broader 3d orbitals than 2p orbitals enable the direct orbital overlap between the
two copper ions even in the Cu–Cu elongation by 0.14 Å [47]. It indicates that
the charge densities can be strongly delocalized over the Cu2S2 core in the redox
reaction, even when the Cu2S2 core is distorted. Since the charge delocalization is
related to the electron transfer of the CuA site, the CuA site can transfer electrons
despite the distortion of the Cu2S2 core. It implies that the CuA site can be regarded
as a “flexible electron mediator.” This flexibility is useful for the incorporation of the
CuA site to protein for electron transfer inside the protein. The character of “flexible
electron mediator” is found in not only heme a [23] but also the CuA site and is
common to transition metal cofactors in biological electron transfer.
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Chapter 31
The Potentials of the Atoms around Mg2C
in the H-ras GTP and GDP Complexes

T. Miyakawa, R. Morikawa, M. Takasu, K. Sugimori, K. Kawaguchi,
H. Saito, and H. Nagao

Abstract We have studied the quantum state around the Mg2C ion in the H-ras
GTP and H-ras GDP complexes in order to understand the hydrolysis of GTP to
GDP in the H-ras complex, which plays a key role in overcoming human cancer.
We calculated the force fields and atomic charges around the Mg2C ion in the H-ras
GTP and H-ras GDP complexes at the B3LYP level, using a basis functional set
6-31G**. The calculations were performed in the subsystem consisting of the bases
or the molecules containing the oxygen having a coordinate bond to the Mg2C ion.
They showed that the oxygen atoms in both GTP and GDP bind tightly to the Mg2C
ion, although the oxygen atoms in H2O bind loosely. We have also performed MD
simulations of the H-ras GTP and H-ras GDP complexes in solution, using these
potential parameters. We showed that the structure differences between H-ras GTP
and H-ras GDP are found mainly in loop 2 and loop 4.
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31.1 Introduction

H-ras proteins, the products of the ras onco- and protooncogenes, are guanine
nucleotide binding proteins, which act as molecular switch. In the active state, H-
ras proteins are bound to guanosine triphosphate (GTP), and in order to switch to
the inactive state, the � -phosphate of the nucleotide has to be hydrolyzed. In the
oncogenic mutation, this reaction is suppressed. Understanding this reaction is very
important to overcome human cancer, because H-ras proteins frequently mutate to
be activated in a variety of human cancer cells [1].

The structures of active H-ras GTP complex [2] and inactive H-ras GDP complex
[3] have been investigated by x-ray crystallographical analyses. These analyses
revealed that there are structural changes in so-called switch I and II regions, which
are around the nucleotide binding site, between the two complexes. Figure 31.1
shows the switch regions in the H-ras GTP complex (a) and in the H-ras GDP
complex (b). Switch I consists of 30–38 residues, which form loop 2 and a part
of ˇ2 strand. Switch II consists of 60–72 residues, which form loop 4 and ˛2 helix
(the names of loops, loop 2 and loop 4, are shown later in Fig. 31.7.) It is known that
the structural changes described above arise from the differences of the coordination
bonds of Thr35 and Gly60 between in the H-ras GTP complex and in the H-ras GDP
complex [4–10]. It is also known that Thr35 and Gly60 are conserved in Ras family,
and the mutation of these amino acids makes the hydrolysis of GTP slower [4–10].

In order to understand this hydrolysis, we have to know the structures of the H-ras
GTP complex and the H-ras GDP complex with the solvent. We can sample these
structures by molecular dynamics simulations. Parameter sets which are widely used
for typical biological molecules are given in AMBER force field [11]. When we
perform the molecular dynamics simulation of the protein containing metal atoms
or ions, we need the parameter set of the potential describing the displacement of
the atoms around the metal particle. However, the parameter set of the H-ras GTP
complex and the H-ras GDP complex containing Mg2C are not included in AMBER.

In the following, we mention the works of five papers on the calculations of the
parameters of the H-ras GTP complex and the H-ras GDP complex. (1) Foley et
al. performed MD simulations of the H-ras GTP complex [12]. In order to perform
MD simulations, they calculated the force field and the atomic charges using 3-21G*

Fig. 31.1 The structure of
the switch regions in the
H-ras GTP complex (a) and
in the H-ras GDP complex
(b). The figures are drawn
using the PDBID:121P (a)
and PDBID:1Q21 (b). In (a),
we substituted GTP in place
of GCP in PDBID:121P
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basis set. They rescaled the atomic charges to the 6-31G** basis set. However, the
parameter was not included, and the treatment of the coordination bond between an
oxygen and Mg2C was not discussed in their papers. They used GAUSSIAN88 [13]
for ab initio quantum mechanics calculations. Ab initio molecular orbital method
they used is not mentioned in the papers. (2) Worth et al. calculated the atomic
charges in the H-ras GTP complex and in the H-ras GDP complex [14]. They
used the 3-21G* basis set, and, only for the phosphorus, they added the sp-orbital
wave function from 6-31G* basis set. They used GAUSSIAN88 [13] for ab initio
quantum mechanics calculations. Ab initio molecular orbital method they used is
not mentioned in the papers. It is not clear whether the basis set is consistent with
the present AMBER force fields and the atomic charges. They did not treat directly
the coordination bond between an oxygen and Mg2C. (3) Mello et al. performed
the MD simulations of the H-ras GTP complex [15]. They used the parameter set
for the proteins in the water of GROMOS. In that paper, they did not write directly
the force field and the atomic charges around Mg2C. (4) Futatsugi et al. performed
the MD simulations of the H-ras GTP complex [16]. They calculated the force field
and the atomic charges around Mg2C using 6-31G** basis set at the Hartree-Fock
level. However, their parameters were not written in their paper. The treatment of the
coordination bond between an oxygen and Mg2C was not discussed in their papers.
(5) Kobayashi et al. performed the MD simulations of the H-ras GTP complex and
the H-ras GDP complex [17]. They used the parameters for guanine nucleotides
determined by Meagher et al. [18], in which the parameters of the GTP-protein
complex and of the GDP-protein complex were not calculated directly. The force
fields and the charges around Mg2C were not discussed in their papers.

In this chapter, we created the force field and charges for GTP and Mg2C in
the H-ras GTP complex and for GDP and Mg2C in the H-ras GDP complex using
Gaussian09 [19]. Calculations were performed in the B3LYP level, using a basis set,
6-31G**. Namely, we calculated the force field and atomic charges around Mg2C
explicitly with a large basis. We define the Mg subsystem as a system which consists
of both Mg2C and such molecules and amino acid residue that contain oxygen
having a coordination bond to Mg2C. We calculated quantum chemically the energy
of the Mg subsystem with various positions of the oxygen binding coordinately to
Mg2C, so that we obtain the parameter set of the potential of this system with respect
to the displacement of the oxygen binding coordinately to Mg2C. At the same time,
we calculated the molecular orbitals and the atomic charges in the Mg subsystem,
so that we can use these in the molecular dynamics simulations.

Using calculated potential parameters, we performed the simulations of the H-ras
GTP complex and the H-ras GDP complex. In order to check the validity of these
potential parameters, we compare the results of these simulations with the results
of Kobayashi et al. [17]. They used the H-ras GNP (phosphoaminophosphonic acid
guanylate ester) complex structure (PDBID:5P21) as their initial structure of their
calculation of H-ras GTP complex. In their paper, they call H-ras GTP complex
as GTP2-bound state. They performed MD simulations of GTP2-bound state and
GDP-bound state for 50 ns. We compare our results with their results.
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31.2 Methods

31.2.1 H-ras GTP Complex

31.2.1.1 Definition of the Mg Subsystem of the H-ras GTP Complex
and Optimization of the Position of H Atoms

First, we use the H-ras GCP complex structure (PDBID:121P) in the Protein
Database (PDB) as our initial structure of our calculation, where GCP (phospho-
methylphosphonic acid guanylate ester) is the compound in which the oxygen atom
of � -phosphate in the GTP is replaced by the carbon atom. This replacement is
performed in order to reduce the rate of hydrolysis of � -phosphate in the H-ras GCP
complex. For this purpose, besides the H-ras GCP complex, the guanosine 50-(ˇ; � -
imido) triphosphate (GppNHp) H-ras complex and the 50-3-O-(thio)triphosphate
(GTP�S) H-ras complex are used. In this chapter, we used the structure of the H-ras
GCP complex as in the paper of Futatsugi et al. [16]. Next, in our model structure,
we replaced the carbon atom in the GCP by the oxygen in order to calculate the
potential of the H-ras GTP complex. We added the hydrogen atoms binding to
the appropriate atoms in the complex, because the PDB file does not contain the
position of the hydrogen atoms. From the definition of the Mg subsystem described
in the introduction, the Mg subsystem of the H-ras GTP complex consists of Mg2C,
GTP, H2O172, H2O173, SER17, and THR35. We focus on Mg2C, because Mg2C is
thought to play a key role in GTP hydrolysis in H-ras GTP complex.

In Fig. 31.2, the structure of the Mg subsystem of the H-ras GTP complex is
shown. We optimized the position of the hydrogen atoms so that the position gives
the minimum energy of the Mg subsystem. In this process, we use the Merz-
Kollman charges[20] as the atomic charges in order to treat the polarization of atoms
in the Mg subsystem efficiently.

Fig. 31.2 The structure of
the Mg subsystem of the
H-ras GTP complex
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31.2.1.2 The BOND Terms and the ANGLE Terms of the Potential

We obtain the lengths and the angles which give the energy minimum. We also
obtain the quadratic coefficients of the energy with respect to the length and the
angles. The AMBER force field is basically determined by the following potential:
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where b is the bond length and Kb is the quadratic coefficient of the bond length
b. 
 is the bond angle, and K
 is the quadratic coefficient of the bond angle 
 . 
and ı are the dihedral angles, and Vn is the coefficient. rij is the length between
i -th and j -th nonbonded atoms, Aij and Bij are coefficients of the attractive and
the repulsive parts of Lennard-Jones interaction between i -th and j -th nonbonded
atoms, and qi is the atomic charge of the i -th atom.

We call the first term as the BOND term and the second term as the ANGLE
term. We obtain the lengths b0s, and the angles 
0s, the coefficients Kbs and K
s
from the calculations below.

The BOND Terms of the Potential

We select a single oxygen atom which binds coordinately to Mg2C. In order to
change the length of the Mg2C-oxygen bond, we move the position of the selected
oxygen atom in the direction of the Mg2C-oxygen bond. We calculated the energy
of the Mg subsystem of H-ras GTP complex. We obtain the optimized length
which gives the minimum energy of the Mg subsystem, and obtain the quadratic
coefficients of the Mg subsystem energy with respect to the Mg2C-oxygen bond
length.

The ANGLE Terms of the Potential

We select two oxygen atoms which bind coordinately to Mg2C. One of the two
selected atoms is moved on the plane which contains Mg2C and two selected oxygen
atoms, in order to change the angle O–Mg2C–O. We calculated the energy of the
Mg subsystem of H-ras GTP complex. At the same time, other angles change, so
we use some relations together in order to derive the optimized angle which gives
the minimum energy of the Mg subsystem, and we derive the quadratic coefficients
of the Mg subsystem energy with respect to the angle O–Mg2C–O.
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Fig. 31.3 The structure of
the Mg subsystem of the
H-ras GDP complex

Comments on Other Potentials

In general, we should obtain the optimized torsion angles and the quadratic
coefficients of energy with respect to dihedral angles. In this chapter, we assume
that we can neglect the dihedral term of the potential energy in the Mg subsystem.

We mention the following for nonbonding terms. We assume that, even in the
H-ras complexes, we can use the values of L–J parameters of the Mg2C in water.
For Coulomb terms, we use atom-centered charges calculated in the subsystem.

31.2.2 H-ras GDP Complex

For the H-ras GDP complex, we did the same procedure as for the H-ras GTP
complex except for the following part.

We use the H-ras GDP complex structure (PDBID:1Q21) in the Protein Database
(PDB) as our initial structure of our calculation, where no substitute compound is
used because GDP is stable in the H-ras GDP complex.

From the definition of the Mg subsystem described in the introduction, the Mg
subsystem of the H-ras GDP complex consists of Mg2C, GDP, H2O201, H2O202,
H2O203, H2O204, and SER17. In Fig. 31.3, the structure of the Mg subsystem of
the H-ras GDP complex is shown.

31.2.3 MD Simulations

We performed MD simulations for the H-ras GTP complex and for the H-ras
GDP complex. The initial structures were obtained from the x-ray structures
(PDBID:121P) for the H-ras GTP complex and (PDBID:1Q21) for the H-ras GDP
complex.
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All MD simulations were performed with the AMBER11 program [21]. Amber
ff03 [11] with our modified potential parameters described above around Mg ion
was used for the proteins and ions, and TIP3P [22] was used for water molecules. We
modified the parameters for guanine nucleotides originally determined by Meagher
et al. [18]. We used our modified parameters described above. The number of water
molecules was 22,265 for H-ras GTP complex and 21,740 for H-ras GDP complex.
Ten NaC counterions were added for charge neutralization in the case of the H-ras
GTP complex, and six NaC were added in the case of H-ras GDP complex. The
particle mesh Ewald method with cubic interpolation was applied to the long-range
electrostatic interactions. The cutoff length of the short-range Coulomb and the van
der Waals interactions was 12 Å. Bonds involving hydrogen atoms were constrained
with the SHAKE algorithm. The water position was optimized, while the atoms
of the complex of protein and guanine nucleotide were restrained by harmonic
potential. The temperature of the water was heated up from 100 to 300 K with a
Langevin thermostat. Then, the restraints of the atoms of the complex of protein and
guanine nucleotide were weakened gradually under the NPT conditions at 300 K.
After the initial equilibration period, an additional simulation was carried out under
the NPT conditions at 300 K with a Langevin thermostat for about 1 ns. We used
the pressure coupling algorithms of weak-coupling variety, provided in AMBER,
analogous to temperature coupling [23]. Pressure relaxation time was 1 ps.

31.3 Results

In this section, we show the results of quantum calculation of Mg subsystem in
Sect. 31.3.1 and the results of MD simulations of the H-ras GTP complex in water
and the H-ras GDP complex in water in Sect. 31.3.2.

31.3.1 Differences in the Mg Subsystem Between the H-ras
GTP Complex and the H-ras GDP Complex

In this subsection, we show the results of quantum calculations on the Mg subsystem.
The total charge is shown in Sect. 31.3.1.1, the atomic charges are shown in
Sect. 31.3.1.2, the parameters in the BOND term and in the ANGLE term are shown
in Sect. 31.3.1.3, and molecular orbitals are shown in Sect. 3.1.4.

31.3.1.1 The Total Charge of the Mg Subsystem

When we calculate the energy of the Mg subsystem of H-ras GTP complex quantum
chemically, we put the charge of the Mg subsystem as �2, because the charge of



532 T. Miyakawa et al.

Fig. 31.4 The chemical
structure of GTP (a) and GDP
(b)

Mg2C is C2, the charge of GTP is �4, the charge of H2O is 0, and the charge of
amino acid residue is also 0. In Fig. 31.4a, the chemical structure of GTP is shown.

On the other hand, when we calculate the energy of the Mg subsystem of H-ras
GDP complex quantum chemically, we put the charge of the Mg subsystem as �1,
because the charge of Mg2C is C2, the charge of GDP is �3, the charge of H2O is 0,
and the charge of amino acid residue is also 0. In Fig. 31.4b, the chemical structure
of GDP is shown.

31.3.1.2 The Atomic Charges of the Mg Subsystem

In Table 31.1, our results of the atomic charges of the Mg subsystem in the H-ras
GTP complex and the H-ras GDP complex are shown.

From Table 31.1(a), the differences between the H-ras GTP complex and the
H-ras GDP complex are large for O3B. In H-ras GTP complex, this atom belongs
to inner phosphate group and does not bind to Mg2C coordinately. In H-ras GDP
complex, this atom belongs to the outer phosphate group and binds to Mg2C
coordinately.

From Table 31.1(b), the atomic charge of Mg2C in the H-ras GTP complex is not
C2 but C1.037, and the atomic charge of Mg2C in the H-ras GDP complex is not
C2 but C1.297, by the influence of the coordinate bonds by six oxygen atoms.

From Table 31.1(c) and (d), we can find that OW of H2O172 in H-ras GTP
complex and OW of H2O1 in H-ras GDP have larger negative charges than that
of TIP3P model (�0.834), although OWs of other H2O molecules have almost the
same negative charge as TIP3P model. Those are caused by the anisotropy of the
electric fields around Mg2C in direction, since distances of OWs in H2Os to Mg2C
are almost the same.
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Table 31.1 The atomic charges of the Mg subsystem of the H-ras GTP
complex and the H-ras GDP complex. The atomic charges of GTP and
GDP (a), the Mg and SER17 (b), H2O and THR35 in H-ras GTP (c), and
H2O in H-ras GDP (d) are shown

GTP and GDP

Atom GTP GDP Atom GTP GDP

O3G �0:746 H3’ 0:115 0:063

O2G �0:698 C2’ �0:004 �0:061
O1G �0:689 O2’ �0:604 �0:620
PG 0:942 HO’2 0:385 0:427

O3B �0:465 �1:108 H2’1 0:153 0:112

O2B �0:755 �0:737 C1’ 0:443 0:417

O1B �0:650 �0:724 H1’ �0:021 0:079

PB 0:929 1:053 N9 �0:204 �0:176
O3A �0:353 �0:362 C8 0:252 0:251

O2A �0:684 �0:592 H8 0:140 0:110

O1A �0:614 �0:724 N7 �0:529 �0:527
PA 0:921 0:849 C5 0:105 0:069

O5’ �0:433 �0:176 C6 0:481 0:558

C5’ 0:015 �0:264 O6 �0:540 �0:559
H5’1 0:131 0:165 N1 �0:482 �0:675
H5’2 0:083 0:131 H1 0:322 0:385

C4’ �0:017 0:320 C2 0:570 0:773

H4’ 0:071 0:062 N2 �0:757 �0:851
O4’ �0:376 �0:482 H21 0:327 0:364

C3’ 0:252 0:152 H22 0:352 0:377

O3’ �0:653 �0:626 N3 �0:577 �0:664
H3T 0:404 0:415 C4 0:291 0:228

Mg and SER17

Atom H-ras GTP H-ras GDP

Mg 1:037 1:297

SER17:N �0:812 �0:556
SER17:H 0:562 0:347

SER17:CA �0:425 �0:318
SER17:HA 0:170 0:180

SER17:CB 0:306 0:192

SER17:HB2 �0:030 0:078

SER17:HB3 0:032 0:055

SER17:OG �0:478 �0:658
SER17:HG 0:370 0:437

SER17:C 0:687 0:656

SER17:O �0:612 �0:576
(continued)
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Table 31.1 (continued)

H2O and THR35 in H-ras GTP

Atom Charge Atom Charge

H2O172:HW1 0:398 THR35:CB 0:201

H2O172:HW2 0:526 THR35:HB 0:098

H2O172:OW �0:881 THR35:CG2 �0:355
H2O173:HW1 0:444 THR35:HG21 0:089

H2O173:HW2 0:411 THR35:HG22 0:131

H2O173:OW �0:795 THR35:HG23 0:076

THR35:N �0:742 THR35:OG1 �0:581
THR35:H 0:371 THR35:HG1 0:302

THR35:CA 0:589 THR35:C 0:272

THR35:HA �0:052 THR35:O �0:442
H2O in H-ras GDP

Atom Atomic charge

H2O201:HW1 0:439

H2O201:HW2 0:545

H2O201:OW �0:926
H2O202:HW1 0:398

H2O202:HW2 0:407

H2O202:OW �0:796
H2O203:HW1 0:406

H2O203:HW2 0:414

H2O203:OW �0:815
H2O204:HW1 0:398

H2O204:HW2 0:408

H2O204:OW �0:737

The differences between our calculated value and the value calculated by Worth
et al. [14] in H-ras GTP complex are large for PA, O1G, and PB. To represent
the electronic orbitals with large angular momentum, the following two points are
important: (1) the number of the basis set and (2) the number of polarized functions
of the basis set. In our systems, the electronic orbitals in P atoms are orbitals
with large angular momentum. For two atoms of P (PA and PB), those two points
mentioned above cause a large difference between our calculated value and the value
calculated by Worth et al. [14].

The differences between our calculated value and the value calculated by Worth
et al. [14] in the H-ras GDP complex are large at PB, O3A, and PA. Those
differences are also caused by the reasons mentioned in the case of the H-ras GTP
complex.

31.3.1.3 The Parameters in the BOND Term and in the ANGLE Term

In Table 31.2, our results of the bond lengths which give the minimum energy of the
Mg subsystem and the quadratic coefficientsKb of the energy of the Mg subsystem
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Table 31.2 The bond lengths b0 and the quadratic coefficients
Kb in Eq. 31.1 around Mg2C ion in the H-ras GTP complex (a)
and in the H-ras GDP complex (b)

H-ras GTP complex

Bond b0 (Å) Kb.kcal mol�1Å
�2
/

Mg-GTPO2G 1.902 317:28

Mg-GTPO2B 2.077 268:46

Mg-SER17OG 2.276 197:20

Mg-THR35OG1 2.167 152:75

Mg-H2O173 2.106 67:51

Mg-H2O172 2.193 48:21

H-ras GDP complex

Bond name b0 (Å) Kb.kcal mol�1Å
�2
/

Mg-GDPO3B 2.067 210:72

Mg-SER17OG 2.343 173:34

Mg-H2O201 2.116 70:99

Mg-H2O203 2.136 68:98

Mg-H2O202 2.125 60:33

Mg-H2O204 2.165 44:70

in the H-ras GTP (a) and in the H-ras GDP (b) with respect to the bond length are
shown. From the values of the quadratic coefficientsKb in the H-ras GTP complex,
it is shown that the oxygen atoms in the GTP bind tightly (317.28 and 268.46 kcal
mol�1 Å�2) to the Mg2C although the O-Mg-O bond in the H2O binds loosely
(67.51 and 48.21 kcal mol�1 Å�2). From the values of the quadratic coefficients
Kb in the H-ras GDP complex, as in the case of the Mg subsystem of H-ras GTP
complex, it is shown that the oxygen atoms in the GDP or in the SER17 bind tightly
to the Mg2C, although the ones in the H2O bind loosely.

Comparing the values in Table 31.2(a) and the values in Table 31.2(b), we find
the following three points. (1)Kb value of Mg-GTPO2B in the H-ras GTP complex
andKb value of Mg-GTPO3B in the H-ras GDP complex are almost the same. This
means that the strength of binding of GTPO2B to Mg2C in the H-ras GTP complex
is almost the same as the strength of bind of GTPO3B to Mg2C in the H-ras GDP
complex. (2) Kb value of Mg-SER17OG in the H-ras GTP complex and Kb value
of Mg-SER17OG in the H-ras GDP complex are almost the same. This means that
the strength of binding of SER17OG to Mg2C in the H-ras GTP complex is almost
the same as the strength of bind of SER17OG to Mg2C in the H-ras GDP complex.
(3) Kb values of Mg-H2Os in the H-ras GTP complex and Kb values of Mg-H2Os
in the H-ras GDP complex are almost the same. This means that the strength of
bindings of H2Os to Mg2C in the H-ras GTP complex is almost the same as the
strength of bindings of H2Os to Mg2C in the H-ras GDP complex. These three
results imply that the corresponding structure of the H-ras GTP complex is as stable
as the corresponding structure of the H-ras GDP complex.
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Table 31.3 The bond angles and the angle parameters around Mg2C ion
in the H-ras GTP complex (a) and in the H-ras GDP complex (b)
H-ras GTP complex

Bond angle name 
0 (ı) K
 (kcal/mol)

1) THR35OG1-Mg-GTPO2B 171:17 799:22

2) GTPO2G-Mg-GTPO2B 98:70 611:15

3) SER17OG-Mg-GTPO2B 88:36 596:97

4) GTPO2G-Mg-THR35OG1 89:97 340:10

5) THR35OG1-Mg-SER17OG 82:71 325:85

6) GTPO2G-Mg-SER17OG 169:87 142:89

7) THR35OG1-Mg-H2O172 90:30 128:12

8) H2O172-Mg-GTPO2B 88:86 128:12

9) H2O172-Mg-SER17OG 86:95 60:10

10) GTPO2G-Mg-H2O172 100:52 60:10

11) H2O173-Mg-H2O172 170:89 54:05

12) H2O173-Mg-THR35OG1 96:32 49:76

13) H2O173-Mg-GTPO2B 83:71 49:76

14) H2O173-Mg-SER17OG 92:22 10:59

15) GTPO2G-Mg-H2O173 80:90 10:58

H-ras GDP complex

Bond angle name 
0 (ı) K
 (kcal/mol)

16) GDPO3B-Mg-SER17OG 92:26 689:84

17) H2O201-Mg-SER17OG 91:58 624:89

18) H2O202-Mg-SER17OG 80:33 624:89

19) GDPO3B-Mg-H2O203 89:90 321:52

20) H2O203-Mg-SER17OG 174:05 168:22

21) GDPO3B-Mg-H2O201 86:06 143:10

22) GDPO3B-Mg-H2O202 97:60 143:10

23) GDPO3B-Mg-H2O204 171:49 54:62

24) H2O201-Mg-H2O203 91:03 52:27

25) H2O202-Mg-H2O203 96:52 52:27

26) H2O201-Mg-H2O204 89:79 17:53

27) H2O202-Mg-H2O204 87:79 17:53

28) H2O201-Mg-H2O202 171:98 0:00

29) H2O203-Mg-H2O204 82:76 0:00

30) SER17OG-Mg-H2O204 96:86 0:00

In Table 31.3, our results of the bond angles which give the minimum energy of
the Mg subsystem and the quadratic coefficients of the energy of the Mg subsystem
with respect to the bond angle are shown. Here, the results of the H-ras GTP
complex are shown in Table 31.3(a), and the results of the H-ras GDP complex
are shown in Table 31.3(b).

From the value of the quadratic coefficientsK
 in Table 31.3(a), it is shown that
the angle O-Mg-O, in the plane which contains the GTP oxygens and the amino acid
oxygens, items (1)–(6) in Table 31.3(a), is stiff, although the ones which contains
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the H2O oxygens, items (7)–(15) in Table 31.3(a), are flexible. From the value of
the quadratic coefficients in Table 31.3(b), it is shown that the angle O-Mg-O, which
contain the GDP oxygen or the amino acid oxygen, items (16)–(23) in Table 31.3(b),
is stiff, although the one which contains only the H2O oxygens, items (24)–(29) in
Table 31.3(b), is flexible. The angle of the case of (30) SER17OG-Mg-H2O204 is
an exception.

Comparing the values in Table 31.3(a) and the values in Table 31.3(b), K


values of H2O172-Mg-SER17OG, and H2O173-Mg-SER17OG and in the H-ras
GTP complex have smaller value than K
 values of H2O201-Mg-SER17OG,
H2O202-Mg-SER17OG, and H2O203-Mg-SER17OG in the H-ras GDP complex.
This means that the angles H2O172-Mg-SER17OG and H2O173-Mg-SER17OG in
the H-ras GTP complex are more flexible than the angles H2O201-Mg-SER17OG,
H2O202-Mg-SER17OG and H2O203-Mg-SER17OG in the H-ras GDP complex.
This implies that the positions of H2Os binding to SER17OG in the H-ras GDP
complex is more stable as than the positions of H2Os binding to SER17OG in the
H-ras GTP complex.

31.3.2 Molecular Orbitals in the Mg Subsystem

In Fig. 31.5a, b, molecular orbitals in the Mg subsystem of the H-ras GTP complex
are shown. HOMO is shown in (a), and LUMO is shown in (b). From Fig. 31.5a,
b, it is seen that HOMO spreads widely at O1, O2, and O3 of � -phosphate of GTP,
although LUMO shrinks at O1 and O3 of � -phosphate of GTP. In the H-ras GTP
complex, because the electronic density of HOMO is high at O1, O2, and O3 of
� -phosphate of GTP, it is suggested that electrophiles attack the area of O1, O2, and
O3 of � -phosphate of GTP.

In Fig. 31.5c, d, molecular orbitals in the Mg subsystem of the H-ras GDP
complex are shown. HOMO is shown in (c), and LUMO is shown in (d). From
Fig. 31.5c, d, it is seen that HOMO is dominant around O1, O2, and O3 of ˇ-
phosphate of GDP, although LUMO is dominant in the area between H2O202,
H2O203, and H2O204. In the H-ras GDP complex, because the electronic density
of HOMO is high at O1, O2 and O3 of ˇ phosphate of GDP, it is suggested that
electrophiles attack the area of O1, O2, and O3 of ˇ-phosphate of GDP. And in the
H-ras GDP complex, because the electronic density of LUMO is high in the area
between H2O202, H2O203, and H2O204, it is suggested that nucleophiles attack
the area between H2O202, H2O203, and H2O204.

By comparing Fig. 31.5a–d, we can suggest that HOMO is dominant around the
oxygens, which belong to the most outside phosphate, which is the � -phosphate in
the case of the H-ras GTP complex and is the ˇ-phosphate in the case of the H-ras
GDP complex. This suggests that the most outside phosphate of GTP or GDP has
nucleophilic property.
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Fig. 31.5 Molecular orbitals in the Mg subsystem of the H-ras GTP complex and H-ras GDP
complex. HOMO of the H-ras GTP complex is shown in (a), and LUMO is shown in (b). The
positions of atoms are the same in (a) and (b). HOMO of the H-ras GDP complex is shown in (c),
and LUMO is shown in (d). The positions of atoms are the same in (c) and (d)

31.3.3 Differences in Conformation Between the H-ras
GTP Complex and the H-ras GDP Complex

We have performed MD simulations of H-ras GTP and H-ras GDP complexes using
the potentials obtained above. Our results of the structures of switches I and II in the
H-ras GTP complex are shown in Fig. 31.6a. In Kobayashi et al. [17] they obtained
the following about the H-ras GTP complex:

• The hydrogen bond between GLY60 and the � -phosphate makes loop 4 into
helical form.

• The first turn of the ˛2 helix is distorted caused by the helical form of loop 4.

We checked the hydrogen bond between GLY60 and the � -phosphate. We can
find in Figs. 31.6a and 31.7 that the first turn of the ˛2 helix is distorted caused by
the helical form of loop 4.

Figure 31.6b shows the structures of switches I and II in the H-ras GDP
complex. In Kobayashi et al. [17], they obtained the following about the H-ras GDP
complex.

• There is a turn in loop 2 in the H-ras GDP complex.
• The first turn of the ˛2 helix is stable.
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Fig. 31.6 The structure of
switches I (A) and II (B) in
the H-ras GTP complex (a)
and in the H-ras GDP
complex (b)

In our results, these differences are found in the loop 2, loop 4, and ˛2 helix
(Fig. 31.7).

In Kobayashi et al. [17], they obtained the different conformations for loop 2
and loop 4 with different dihedral angles of backbone residues. Figure 31.8 shows
averaged value of the dihedral angles , involving the backbone atoms C0–N–C˛–
C0, and  , involving the backbone atoms N–C˛–C0–N, of H-ras GTP complex and
those of H-ras GDP complex in the switch I and II regions. In Fig. 31.8, we can
find the differences between the dihedral angles of H-ras GTP complex and those of
H-ras GDP complex in the switch I and II regions.

We compare the results of Kobayashi et al. [17] and our results of dihedral angles.
The main differences between the results of Kobayashi et al. and our results are the
following two points. (1) The conformation differences between H-ras GTP and H-
ras GDP are observed in slightly different regions in both loop 2 and loop 4. (2) In
those regions, each residue has a different form. In Table 31.4, we summarize those
differences by specifying the residue number which corresponds to each case.
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Fig. 31.7 The structure of the H-ras GTP complex and H-ras GDP complex
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Fig. 31.8 Averaged value of backbone  and  dihedral angles of residues in switch I(A) and
switch II (B). Solid line denotes the values of the H-ras GTP complex; dotted line denotes the
values of the H-ras GDP complex

In the paper by Kobayashi et al., the differences of conformation in loop 2
between H-ras GTP and H-ras GDP were presented as the differences of the dihedral
angles of backbone for PRO34-ILE36 residues. In the H-ras GTP complex, residues
PRO34 and THR35 had the extended form ( � 180), and ILE36 had a wound form
(�120<  < 0). In the H-ras GDP complex, residues PRO34 and THR35 had the
wound form, and ILE36 had an extended form.
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Table 31.4 Differences in dihedral angles between the results
of Kobayashi et al. and our results. The numbers 34 and 35, for
example, show residue number. The term “differences in loop
2” denotes the residue regions in which there are differences
between H-ras GTP and H-ras GDP in loop 2. The term “GTP
extended” denotes the residue which has an extended form in the
H-ras GTP complex. In the case of “wound,” the residues have
wound forms. In the case of “intermediate,” the residues have
“intermediate” forms. In the case of “not determined,” the form
of the residue is not determined

Kobayashi Our results

Differences in loop 2 34–36 29–36

GTP extended 34, 35 29, 34
GTP wound 36 31, 35
GTP intermediate 30, 32
GTP not determined 33, 36
GDP extended 36 32, 33, 36
GDP wound 34, 35 29
GDP intermediate 31
GDP not determined 30, 34, 35

Differences in loop 4 59–65 59,61–63,66–68

GTP extended 59, 61 63
GTP wound 60, 62–65 62, 66–68
GTP intermediate
GTP not determined 59, 61
GDP extended 63–65 59, 61, 62, 66, 67
GDP wound
GDP intermediate 63, 68
GDP not determined 59–62

In our results, the differences of conformation in loop 2 between H-ras GTP and
H-ras GDP are presented as the differences of the dihedral angles of backbone of
VAL29-ILE36 residues. In the H-ras GTP complex, residues VAL29 and PRO34
have the extended form, GLU31 and THR35 have the wound form, and ASP30
and TYR32 have the intermediate form (�150 <  < �120; 0 <  < 90). The
dihedral angles of ASP33 and ILE36 are not determined: in a moment they have an
extended form, and in another moment they have a wound form. In the H-ras GDP
complex, residues TYR32, ASP33, and ILE36 have the extended form; the VAL29
residue has an wound form; the GLU31 residue has an intermediate form; and the
dihedral angles of residues ASP30, PRO34, and THR35 are not determined. The
dihedral angle of THR35 residue is not determined because the coordination bond
between Mg2C and THR35 is missing in H-ras GDP complex.

In the paper of Kobayashi et al. [17], in the loop 4 region, the conformation dif-
ferences between H-ras GTP and H-ras GDP lead to the differences of the dihedral
angles of the backbone ALA59-SER65 residues. In the H-ras GTP complex, in loop
4, the residues other than ALA59 and GLU61 had wound forms. In the H-ras GDP
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complex, ALA59-GLU62 had extended forms as well as wound forms, although the
GLU63-SER65 had stable extended forms.

In our results, in the loop 4 region, the conformation differences between H-ras
GTP and H-ras GDP lead to the differences of the dihedral angles of the backbone
residues ALA59, GLN61-GLU63, and ALA66-ARG68. In the H-ras GTP complex,
the GLU63 residue has an extended form, residues GLU62 and ALA66-ARG68
have the wound form, and the dihedral angles of residues ALA59 and GLN61 are
not determined. In the H-ras GDP complex, residues ALA59, GLN61, GLU62,
ALA66, and MET67 have the extended form and residues GLU63 and ARG68 have
the intermediate form.

The reasons of the differences between the results of Kobayashi et al. [17] and
our results arise from using the different initial structures and using the different
parameters in force field. They used PDBID:5P21 for the H-ras GTP complex and
PDBID:4Q21 for the H-ras GDP complex, although we use PDBID:121P for the H-
ras GTP and PDBID:1Q21 for the H-ras GDP. They used the parameters for guanine
nucleotides determined by Meagher et al. [18], in which the parameters of the GTP-
protein complex and of the GDP-protein complex were not calculated directly. The
force fields and the charges around Mg2C were not discussed in their papers. We
calculated the atomic charges of guanine nucleotides determined in the H-ras GTP
complex and in the H-ras GDP complex. And we calculated the bond parameters
Kb and the angle parameters K
 in the H-ras GTP complex and in the H-ras GDP
complex.

31.4 Conclusions

Our calculation shows that the oxygen atoms in the GTP or GDP bind tightly to
the Mg2C although the ones in the H2O bind loosely. The value of charges of some
phosphates of GTP or GDP are improved by using a basis functional set 6-31G**.
Our calculations of the molecular orbitals suggest that the � -phosphate of GTP has
a nucleophilic property.

We performed MD simulations of H-ras GTP complex and H-ras GDP complex
using the parameter set obtained in this chapter. The structure differences between
the H-ras GTP complex and H-ras GDP were found in the loop 2 and loop 4 mainly.
We checked the validity of these potential parameters by comparing results of these
simulations with results of Kobayashi et al. [17].

In future work, we will perform MD simulations for longer time and calculate the
free energy difference between the H-ras GTP and H-ras GDP complex states. We
will check if the dihedral term is small enough in the Mg subsystem. Furthermore,
using the same methods as in this chapter, we would like to investigate the properties
of the complexes of the H-ras mutants or M-ras mutants and GppNHp or GTP�S,
which are considered as having the structures of intermediate states of the GTP
hydrolysis in the H-ras GTP complex [24]; we can perform MD simulations of
intermediate states of the GTP hydrolysis in the H-ras GTP complex.
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Chapter 32
Molecular Dynamics Study of Glutathione
S-Transferase: Structure and Binding Character
of Glutathione

Y. Omae, H. Saito, H. Takagi, M. Nishimura, M. Iwayama, K. Kawaguchi,
and H. Nagao

Abstract Molecular dynamics simulations of the glutathione S-transferase (GST)
dimer in the absence or the presence of glutathione were carried out in order
to investigate the binding effects of glutathione on the dynamical structure and
thermal stability of the GST dimer in water. Enhanced local fluctuations in the GST
dimer backbone were observed in the absence of glutathione. The hydrogen bonds
formed between glutathione and the GST dimer were changed in the absence of
glutathione, and these hydrogen bonds mediate the binding between the subunits
of the GST dimer. The free energy analysis showed that the hydrogen bonds
between glutathione and the GST dimer largely contribute to the binding energy
of glutathione and the thermal stability of the glutathione-GST dimer.

32.1 Introduction

Glutathione S-transferase (GST) is a dimeric enzyme, which participates in the
detoxication metabolism in vivo [1]. The cytosolic GST is classified in eight classes
(˛, ı, �, 	, � , �, !, and 
) [2–6]. Among these classes, the 
 class GST exists in
the human tissue (e.g., in the liver), and a glutathione binds to each subunit of the
GST dimer [4]. In the detoxication metabolism, the glutathione selectively binds to
a toxic substance and ejects it from the cell [7]. The binding of glutathione to the
GST dimer is first step of the catalytic reaction in the detoxication process [8]. The
probability of the expression of detoxication function is thought to depend on the
affinity of glutathione with the GST. Also, since the detoxication of the glutathione-
GST complex functions in dimer, the stability of the glutathione-GST dimer should
be a key factor for the stable catalytic reaction. Therefore, the study of glutathione-
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GST dimer complex is important not only for the understanding of the mechanism
of detoxication metabolism but also for the development of new antibiotics.

Several experimental and computational studies of the 
 class GST have
investigated the dynamical structure of the glutathione-GST complex so far [1–10].
Rossjohn et al. showed the crystal structure of a mammalian 
 class GST by X-
ray diffraction and found that glutathione binds to the GST by several hydrogen
bonds [1]. The kinetics and binding properties of the GST have also been studied by
Caccuri et al. They reported that the replacement of Arg107 residue by Ala changes
the pKa value of the bound glutathione and the binding mechanism of GST [9, 10].
In their computational study, Stella et al. have first carried out a molecular dynamics
(MD) simulation of the GST monomer in the absence of glutathione [11, 12]. In their
simulation, the largest structural fluctuation was found the binding site of the GST,
implying that the absence of glutathione could affect the structural stability of the
GST. However, since they have not carried out MD simulation in the presence of the
glutathione, the binding effect of glutathione on the structure and dynamics of the
GST is still not clear. Also, because the binding/unbinding of glutathione with the
GST dimer should occur in the process of detoxication metabolism, the investigation
of the dynamical structure of the glutathione-GST dimer and the binding energy
between glutathione and the GST dimer should be essential for the understanding
of the catalytic mechanism of glutathione-GST.

In order to study how the glutathione affects the dynamical structure of the GST
dimer and the binding character between glutathione and GST, we have carried out a
series of MD simulations of the glutathione-GST dimer in the presence and absence
of glutathione. The investigation of model glutathione-GST dimer complex, which
is in the absence of glutathione in one subunit, should present why detoxication
of the glutathione-GST functions only in dimer. We have analyzed the structural
fluctuation and dynamics of the GST dimer and investigated the hydrogen bonds
formed between glutathione and the GST dimer. The binding energy of glutathione
and the thermal stability of the glutathione-GST dimer were evaluated by means of
free energy calculation.

32.2 Model and Method

32.2.1 Structure of the Glutathione-GST Complex

The human glutathione-GST T2-2, which belongs to the 
 class GST, was adopted
for the MD simulations of the glutathione-GST dimer. The initial geometry of
glutathione-GST was obtained from the PDB (1LJR) [1]. 1LJR is the crystal
structure of the glutathione-GST dimer determined by X-ray diffraction and consists
of 245 residues. Figure 32.1a, b shows the chemical structure of glutathione and
the GST dimer, respectively. The glutathione is a tripeptide, which consists of
glutamine, cysteine, and glycine, and binds to each subunit of the GST dimer by



32 Molecular Dynamics Study of Glutathione S-Transferase 547

H1

HG2

H12

H4

H11

H3

011

012

02

SG
032

031

N1

N2

H2

N3

0

a b

Fig. 32.1 (a) The chemical structure of glutathione, (b) the structure of glutathione-GST dimer.
The glutathiones were drawn as van der Walls sphere

several hydrogen bonds. In order to investigate the binding effects of glutathione
on the GST dimer systematically, we prepared initial structures of the glutathione-
GST dimer in the presence of two glutathiones (model 1), in the absence of one
glutathione (model 2), and in complete absence of glutathione (model 3) for MD
simulations. Models 2 and 3 were prepared by removing of the glutathiones bonded
to a subunit of the GST dimer (residue number 246-489), and both glutathiones form
the glutathione-GST dimer, respectively.

32.2.2 Molecular Dynamics Simulation

MD simulations were carried out for 60 ns at constant temperature (T D 300 K)
and pressure (P D 1 atm) for each model. The glutathione-GST dimer was placed
in the center of a box that extended 12 Å away from any solute atom. The box was
then filled with water molecules to set the water density of the system at 1 g/cm3.
Five Na ions were added to neutralize the system. The MD simulations were run
under the periodic boundary condition, and the concentration of the solute should
be corresponding to 1.3 	 10�2 mol/kg. The Berendsen thermostat and barostat
[13] were used to control the system temperature and pressure, with relaxation
times of 0.2 ps, respectively. The AMBER03 force field [14] and the TIP4P water
model [15] were adopted for the proteins and water, respectively. We have taken all
histidine residues as HIE-type residue (proton bonds to the " nitrogen of side chain
of the histidine) following the default setting of the Leap program in AmberTool.
Kyte discussed about the protonation of histidine in his book and suggested that
the most of histidine should belong to the HIE type of histidine in vivo [16]. We
used the Antechamber program in AmberTool to assign the force field parameters
for the intramolecular interactions. The RESP charge, which was determined by
the Merz-Kollman method [17], was adopted for each atom of glutathione after
geometry optimization of the hydrogen atoms of glutathione with B3LYP/6-31 G**
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calculation. These calculations were done with Gaussian 03 program. The cutoff
length for the van der Waals (vdW) interactions was 8 Å. The particle mesh Ewald
(PME) method [18, 19] was used for the calculation of the Coulomb electrostatic
interactions. The time step for integration (�t) was 2 fs. These MD calculations
were carried out with Amber 10 program package.

32.3 Analysis

In order to investigate the binding effect of glutathione on the structural stability of
the GST dimer, we calculated the root mean square displacement (RMSD) from the
X-ray structure and the root mean square fluctuation (RMSF) of the C’ carbon of
the GST backbone in the equilibrium state. The hydrogen bonds formed between
glutathione and the GST dimer in the equilibrium state were analyzed to elucidate
the binding character of glutathione in each glutathione-GST model. We monitored
the donor/acceptor atoms of the hydrogen bonds around the binding site of the GST
dimer and estimated the average length and occupancy rate of each hydrogen bond.
The snapshot coordinates of each glutathione-GST dimer model were extracted
from the trajectory every 1 ps for 40–60 ns where the systems are sufficiently
equilibrated, and these data were used for the calculations of RMSF and for the
hydrogen bond analysis.

The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method
[20, 21] was employed to estimate the binding free energy of glutathione and
the binding effect of glutathione on the thermal stability of the glutathione-GST
dimer. We took 100 snapshots every 200 ps from the MD trajectories of each
glutathione-GST model in the equilibrium state (40–60 ns) for the MM-PBSA
calculations. MD simulations of a glutathione monomer and glutathione dimer in
water solvent were also carried out, and these trajectories were used for the MM-
PBSA calculations, too.

32.3.1 Binding Free Energy

To estimate the thermal stability of the model complexes in water, we estimated
the total free energy Gtotal which is defined as the sum of conformational energy
Econf, the solvation energy Esol, and the entropy energy –TS of each model (i.e.,
Gtotal D Econf C Esol– TS). These energy terms were evaluated by using the MM-
PBSA script of Amber 10. The conformational energy Econf is defined as the sum
of the potential energies in the solute inside. The solvation energy is calculated by
the Poisson-Boltzmann method [20, 21]. The entropy term of free energy, �TS,
was evaluated in the quasiharmonic approximation [22]. The binding free energy
of the glutathione should be estimated by the difference of the total free energies
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of the glutathione-GST complex and those of glutathione and the GST dimer using
the following equation:

�GBind D �Econf C�Esolv � T�S; (32.1)

where,

�Econf D E
glutathione � GST
conf �

�

E
glutathione
conf CEGST

conf

	

;

�Esol D E
glutathione � GST
sol �

�

E
glutathione
sol CEGST

sol

	

;

T�S D T Sglutathioe � GST � .T Sglutathioe C T SGST/: (32.2)

The superscripts of each variable correspond to the name of a solute, monomer, or
complex. Each energy term of the monomer and complex proteins are obtained from
the independent MD simulations of glutathione, the GST dimer, and the glutathione-
GST dimer in water.

32.4 Results and Discussion

32.4.1 RMSD and RMSF

In order to assess the equilibrium structural stability of the systems, we calculated
the RMSD of the backbone atoms (C’ atom) of each model. The observed RMSD
as a function of the MD time steps of the models is presented in Fig. 32.2a. We
observed that all models were sufficiently equilibrated after 40 ns. The RMSD of
the models with deficiency or in the absence of glutathione (models 2 and 3) was
found to exhibit larger displacement from the initial structure than that of the model
in the presence of glutathiones (model 1), indicating that glutathione participates in
the structural stability of the GST dimer. In order to see the effect of the absence
of glutathione on the local backbone structure in the GST dimer, we estimated the
RMSF of C’ atoms of the backbone of each model in the equilibrium state.

The averaged RMSF is shown in Fig. 32.2b. We found that models 2 and 3 feature
larger fluctuation in comparison with the model in the presence of glutathione
(model 1). Especially in model 2, we observed the significant large fluctuations
around the binding site (256-352 residue number) of the GST subunit in the absence
of glutathione. We thus conclude that glutathione stabilizes both the whole and the
local structure of GST. The larger RMSF around the binding site in the subunit
of the GST dimer where glutathione is present in model 2 could be due to the
difference of hydrogen-bonding formation of glutathione. This will be discussed
in the next section. The enhanced asymmetry fluctuation of model 3 could be due to
the insufficient sampling for the RMSF calculations.
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Fig. 32.2 (a) The root mean square displacement from the X-ray structure, (b) the root mean
square fluctuation as a function of residue number

32.4.2 Hydrogen Bond Formation

We monitored the hydrogen bonding around the binding site of GST in models
1 and 2 and calculated the average distance and occupancy rate corresponding to
the hydrogen bond pairs between glutathione and the GST dimer. We defined the
hydrogen bond as the distance between the accepter hydrogen, and donor atoms are
in 4.0 Å. This is because the hydrogen bonds observed in the experiment were in
this range [1]. The observed hydrogen bond pairs in models 1 and 2 are listed in
Table 32.1. We found that the hydrogen bond pairs in model 1 were consistent with
those reported in the experimental observation [1]. Robust hydrogen bond pairs with
high binding energy were registered between the O12 oxygen of glutathione and the
HG hydrogen of SER14.

In model 2, we found that the hydrogen-bonding formation was significantly
changed by removing the glutathione from one subunit of the GST dimer. We
also encountered new hydrogen bond pairs: glutathione binds to the OD2 oxygen
atom of ASP349 in another part of the GST subunit in model 2. These hydrogen
bonds showed larger occupancy time in comparison with other hydrogen bond pairs.
These findings imply that the absence of glutathione could induce a change of the
hydrogen bonding with the surrounding residues and that glutathione mediates the
binding between the GST subunits. This rearrangement of hydrogen bond formation
in model 2 could be due to the larger RMSF values around the binding site in
the subunit of GST dimer. Also, the changes of hydration-bonding formations of
glutathione in model 2 possibly influence the selective binding of glutathione to a
toxic substance.



32 Molecular Dynamics Study of Glutathione S-Transferase 551

Table 32.1 The hydrogen bond pairs between glutathione and GST dimer in models 1 and 2

Glutathione GST Occupation rate (%) Distance (Å)

Model 1 O11 HG SER14 99:8 2.71
O12 HG SER14 99:8 1.90
O12 H SER14 85:1 3.41
H3 NH2 ARG107 77:3 3.67
H1 O LEU54 77:1 3.43
H11 O LEU54 64:3 3.61
H12 O LEU54 54:0 3.93

O11 H SER312 100:0 2.59
O12 H SER312 99:9 2.63
O12 HG SER312 99:5 2.11
H12 OE2 GLU311 84:8 3.16
O11 HG SER312 83:6 3.52
H11 OE2 GLU311 83:0 3.25

Model 2 H2 OD2 ASP349 99:0 2.37
O12 H SER68 98:8 2.38
H3 OD2 ASP349 95:9 2.48
O11 H SER68 93:2 3.31
H4 OD2 ASP349 92:2 2.84
O12 HG SER67 65:2 3.69
O11 HG SER68 63:0 3.56
O12 HG SER68 48:4 3.49

The listed atom names correspond to those in PDB file (1LJR) [1]

32.4.3 Thermal Stability and Binding Free Energy

Table 32.2 lists the averaged conformational energy Econf, solvation energy Esol,
entropy energy –TS, and total free energy Gtotal of each model obtained by the MM-
PBSA calculations. The corresponding energies of the glutathione monomer and
dimer are also listed in this table. The standard deviations of energies are presented
in the parentheses. The total free energy Gtotal of model 1 is comparable to that
of model 2 and those were smaller than that of model 3. These results indicate
that the binding of glutathione increases the thermal stability of the GST dimer in
water. We found that the values of the conformational energy Econf and solvation
energy Esol decreased upon binding of glutathione. The decrease of Econf should be
attributable to the formation of hydrogen bonds between glutathione and the GST
dimer, and this change of Econf contributes largely to the total free energy Gtotal of the
glutathione-GST dimer in models 1 and 2. The value of solvation energy decreases
as a number of the glutathione. This should be due to the increase of the interaction
sites in the presence of glutathione; the glutathione shows a better affinity with
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Table 32.2 The averaged energies and their standard deviations of glutathione and glutathione-
GST model complex estimated by MM-PBSA analysis

Conformational
energy (Econf)

Entropy
energy (�TS)

Solvation
energy (Esol)

Total free
energy (Gtotal)

Model 1 �4,030 (143) 5,518 (9) �8,619 (138) �7,132 (199)
Model 2 �4,012 (135) 5,479 (14) �8,529 (58) �7,063 (147)
Model 3 �3,775 (122) 5,460 (9) �8,456 (57) �6,740 (134)
Glutathione dimer 44 (8) 107 (11) �30 (6) 121 (14)
Glutathione monomer 22 (5) 52 (1) �14 (3) 60 (5)

The energies are in kcal/mol. The standard deviation is shown in the parentheses

water solvent in the PBSA model. Although the binding of glutathione increases
the entropy energy –TS, the total free energy Gtotal decreases due to competition
with the other components (Econf and Esol).

The binding free energies of one and two glutathiones with the GST dimer were
evaluated by Eq. (32.1). The binding free energy of glutathione with the glutathione-
GST complex, which has one glutathione in the subunit of the GST dimer, was
assessed by the difference of these binding free energies. The calculated results are
listed in Table 32.2. The estimated binding free energy of one glutathione with the
GST dimer was �382 kcal/mol, showing larger affinity energy than half of that of
two-glutathione binding. The change of hydrogen bond formation in model 2 should
participate in the difference of the binding free energy of glutathione.

32.5 Summary

We have carried out molecular dynamics simulations of the GST dimer in the
absence and presence of glutathione to investigate the effect of the binding of
glutathione on the dynamical structure and thermal stability of the GST dimer.
The observed RMSD of each model showed that the GST dimer in the presence of
glutathione was more stable in water. Enhanced fluctuations of the backbone were
observed around the binding site of the GST dimer in the absence of glutathione,
indicating that the absence of glutathione should destabilize the backbone structure
around the binding site of the GST dimer. We observed that the hydrogen-bonding
pattern changed upon removing of the glutathione, and the newly found hydrogen
bonds should mediate the binding between the subunits in the GST dimer. The free
energy analysis revealed that the hydrogen bonds should contribute to the binding
free energy of glutathione and the GST dimer and to the thermal stability of the
glutathione-GST dimer in water.
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Chapter 33
Designing the Binding Surface of Proteins
to Construct Nano-fibers

Y. Komatsu, H. Yamada, S. Kawamoto, M. Fukuda, T. Miyakawa,
R. Morikawa, M. Takasu, S. Akanuma, and A. Yamagishi

Abstract In the field of nanotechnology, a variety of applications have been antic-
ipated. We have been trying to design nano-fibers using proteins while maintaining
their native structures. We try to use Lac repressor two-helix protein (LARFH),
sulerythrin, and 3-isopropylmalate dehydrogenase (IPMDH) as adaptors for con-
structing nano-fibers. By making use of the ’-helices outside of respective proteins,
we are trying to form binding site between proteins: two ’-helices of one protein
are designed to form four-helix bundle with two ’-helices of another protein. In
addition, by introducing mutations in amino acids at the binding sites, hydrophobic
and electrostatic interactions can be modified. The fiber may be produced upon
mixing the two kinds of proteins. By umbrella sampling simulation, we have found
that in the combination of LARFH-/-LARFH, hydrophobic interaction is enhanced
in wild type, and electrostatic interaction is enhanced in variant. We also found high
stability of IPMDH-/-IPMDH.

33.1 Introduction

With nanotechnology techniques, a variety of products can be made to be smaller
and more effective. As nano-sized materials used in nanotechnology, proteins can
be applied to many fields such as biotechnology, medicine, pharmacy, and advanced
materials. Control of self-assembly based on protein-protein interaction enables us
to perform a bottom-up design of fiber. Amyloid fiber [1] is one of the examples of
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Fig. 33.1 The image of
nano-fiber. Arbitrary proteins
construct nano-fiber while
keeping native structure

fibers that are formed spontaneously. However, amyloids are fibers of proteins with
nonnative structures, which cause serious illness such as Alzheimer’s disease [2].

We have made efforts to produce protein nano-fiber using arbitrary proteins fibers
kept in native structures. Thereby, we expect to construct functional fibers because
the binding units retain the native structures. By inducing mutations in a pair of
adaptor proteins, hydrophobic and electrostatic interactions can be modified. By
mixing the resulting two proteins, fiber will be formed spontaneously (Fig. 33.1).
We expect that the protein-protein interaction will be formed through the interaction
between two ’-helices of one protein and two ’-helices of another protein, thus
resulting in a four-helix bundle structure [3].

As materials of nano-fiber, we adopt three kinds of protein: Lac repressor four
helices (LARFH), sulerythrin, and 3-isopropylmalate dehydrogenase (IPMDH).
These three proteins are chosen because they have two (anti)parallel ’-helices on
their surface.

LARFH is an artificial protein designed previously (Akanuma and Yamagishi)
by mimicking C-terminal four-helix bundle domain of Escherichia coli [4]. LARFH
forms a monomeric four-helix bundle structure and shows high thermal stability.

Sulerythrin is a protein isolated from a hyperthermophilic archaeon, Sulfolobus
tokodaii [5]. Sulerythrin is a homodimeric protein, and each subunit contains four
’-helices. Sulerythrin is a thermally stable protein.

IPMDH is an enzyme on the leucine biosynthetic pathway [6]. Gene encoding the
enzymes from various microorganisms has been sequenced. The tertiary structure
has been determined for the enzyme from an extreme thermophile, Thermus
thermophilus [7]. It is known that a flexible loop undergoes conformational change
upon ligand binding [8]. The enzyme usually exists as a dimer.

Using these three types of proteins, we have attempted to construct nano-fibers.
In this research, we analyzed the three proteins which are candidates for

constructing nano-fibers and investigated optimum conditions for high stability
using molecular dynamics (MD) simulation.

33.2 Methods

33.2.1 MD Simulations

MD simulations were carried out using GROMACS [9] version 4.5.1. We used all-
atom models with AMBER99SB-LSDN force field [10]. We calculated the system



33 Designing the Binding Surface of Proteins to Construct Nano-fibers 557

Table 33.1 The condition of
MD simulation Time step for integration 2 fs

Periodic boundary conditions xyz directions
Temperature coupling Velocity rescaling
Time constant for temperature coupling 0.1 ps
Pressure coupling Parrinello-Rahman
Time constant for pressure coupling 2.0 ps
Cutoff length of forces 1.0 nm

Fig. 33.2 (a) The basic
structure of LARFH. Four
’-helices align parallel to
each other to form a
hydrophobic core. (b) The
basic structure of sulerythrin.
This structure is obtained
after 5 ns of simulation. (c)
The basic structure of
IPMDH. This structure is
obtained after 5 ns of
simulation

in NPT ensemble with constant temperature and pressure of 300 K and 1 bar.
As force field of water, we adopted TIP3P model [11]. Other conditions of MD
simulation are shown in Table 33.1.

33.2.2 Models

The conformation of LARFH was created by mimicking the Lac repressor C-
terminal ’-helices. After energy minimization and solvent relaxation, we performed
simulation in water for 10 ns. Then, the coordinates of the protein were determined
(Fig. 33.2a). Sulerythrin (PDBID: 1J3O) contains two pairs of Fe2C and Zn2C that
we disregard and remove in this simulation (Fig. 33.2b). The coordinates of IPMDH
(PDBID: 1OSJ) are derived from T. thermophiles (Fig. 33.2c).

To enhance stability of nano-fiber, mutation of charged amino acids was induced.
We introduce mutation of either lysine having positive charge or glutamic acid
having negative charge to our model of amino acids (Fig. 33.3a, b and c).
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Fig. 33.3 (a) The rough sketch of LARFH. One cylinder denotes one ’-helix. (b, c) Upper view
from the direction of arrow in (a). Mutations are induced toward the outside of hydrophobic cores.
One circle denotes one ’-helix. One stick denotes one loop. The symbol “C” in (b) (or “�” in (c))
indicates side chain with positive (or negative) charge. These figures show the way to mutate in
LARFH, and the same way to induce mutation is used in other proteins. (d) The configuration of
’-helices in sulerythrin. The names of these helices are used in Table 33.2. The same classification
is used in other proteins

We have prepared proteins mutated on their surface of ’-helices corresponding
to their bonding surfaces outward from hydrophobic cores. We define LARFH E,
LARFH K, sulerythrin E, sulerythrin K, IPMDH E, and IPMDH K in Table 33.2.
We name these mutated proteins as variant, while we name proteins without
mutation as wild type. For the combination of mutational proteins, we used LARFH,
sulerythrin, and IPMDH as basic units. The four combinations of proteins we
used are LARFH-/-LARFH, LARFH-/-sulerythrin, sulerythrin-/-sulerythrin, and
IPMDH-/-IPMDH (Table 33.3).

33.2.3 Rg and RMSD

Two proteins were aligned nearby and placed in solutions. We used two types of
solutions, water and KCl solution (500 mM). We calculated radius of gyration
(Rg) of two proteins and RMSD (root-mean-square deviation from one backbone
to another backbone) and compared these in different conditions. Rg is given by
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Table 33.2 Mutation of proteins

Number of
residues Helix 1 Helix 2 Helix 3 Helix 4

LARFH E 98 A04E A29E A54E A79E
Q11E Q36E Q61E Q86E
R18E R43E R68E R93E

LARFH K A04K A29K A54K A79K
Q11K Q36K Q61K Q86K
R18K R43K R68K R93K
chain A chain A chain B chain B

Sulerythrin E 282 (E84E) (E115E) (E115E) (E84E)
Q96E R122E R122E Q96E
(E107E) (E129E) (E129E) (E107E)

Sulerythrin K E84K E115K E115K E84K
Q96K R122K R122K Q96K
E107K E129K E129K E107K
chain A chain A chain B chain B

IPMDH E 690 P13E G332EA G332EA P13E
L20E 335E 335E L20E
D27E A338E A338E D27E

IPMDH K A04K G332K G332K A04K
Q11K A335K A335K Q11K
R18K A338K A338K R18K

For each protein, number of residues is shown. Helix 1 and 2 are on one side
of proteins, and helix 3 and 4 are on the other side of proteins (Fig. 33.3d)

Table 33.3 Four combinations of proteins

Notation Protein 1 Protein 2

LARFH-/-LARFH [0] Wild type Wild type
[EK] LARFH E LARFH K

LARFH-/-Sulerythrin [0] Wild type Wild type
[EK] LARFH E sulerythrin K

Sulerythrin-/-Sulerythrin [0] Wild type Wild type
[EK] Sulerythrin E Sulerythrin K

IPMDH-/-IPMDH [0] Wild type Wild type
[EK] IPMDH E IPMDH K

Two kinds of proteins are aligned nearby in simulations. For exam-
ple, [EK] in LARFH-/-LARFH means combination of LARFH E and
LARFH K. The symbol [0] means combination of wild-type proteins

Rg D
s
P

i mikr i � rCOMk2
P

i mi

(33.1)

where i is taken over all the atoms of two proteins, mi is the mass of atom i, rCOM is
the center of mass of the system of two proteins, and ri is the coordinate of atom i.
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Table 33.4 The conditions
of pulling and umbrella
simulation

Time step for integration 2 fs

Periodic boundary conditions xyz directions
Temperature coupling Nose-Hoover
Time constant for temperature coupling 0.2 ps
Pressure coupling Parrinello-Rahman
Time constant for pressure coupling 2.0 ps
Cutoff length of forces 1.4 nm
Pulling force 2,000 kJ/(mol nm2)

We assume that proteins are bonding strongly if the values of Rg are small. The
definition of RMSD is

RMSD.t/ D
s
P

i mikr i .t/ � r i .0/k2
P

i mi

(33.2)

where i is taken over all the atoms of two proteins, mi is the mass of atom i, and r i .t/

is the coordinate of atom i at time t. From the values of RMSD, we can determine
the displacement from initial configurations of proteins. We take t D 0 as right after
solvent relaxation.

33.2.4 Umbrella Sampling

Umbrella-sampling simulations enable us to obtain PMF (potential of mean force),
from which binding energy �Gbind is derived [12] and the strength of protein-
protein interactions is determined. To calculate PMF, various conditions along
reaction coordinates need to be sampled. Adding artificial potential energy to origi-
nal potential energy makes the edge of potential energy lower. Our simulations were
started with two proteins aligned nearby. Next, we pulled apart two proteins and
obtained 15–25 configurations during one simulation. We used those configurations
for initial conditions of umbrella sampling. After simulations using umbrella sam-
pling, PMF was calculated by the weighted histogram analysis methods (WHAM)
[13] provided in GROMACS. The conditions of pulling simulation and umbrella
simulation are shown in Table 33.4.

33.2.5 Analysis of Hydrophobic and Electrostatic Interactions

We compare Rg and �Gbind in pure water and KCl solution to investigate how to
contribute hydrophobic or electrostatic interaction (Fig. 33.4). It is known that salts
screen off electrostatic interaction and enhance hydrophobic interaction [14, 15].
Two proteins are close in pure water and KCl solution shown in Fig. 33.4a and b.
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Fig. 33.4 Schematic diagram of interactions between two proteins. The two proteins in water are
in (a), (c), and (e), and two proteins in KCl solution are in (b), (d), and (f). The stick labeled as “H”
shows hydrophobic interaction. The stick labeled as “E” shows electrostatic interaction. (a) Two
proteins in water. (b) Two proteins in KCl solution. (c) Two proteins in a short distance in water.
(d) Two proteins in a long distance in KCl solution. (e) Two proteins in a long distance in water.
(f) Two proteins in a short distance in KCl solution

In Fig. 33.4c, two proteins in a short distance in water are shown. Since these
proteins are close to each other, Rg is small and �Gbind should be low, and the
binding is strong. In Fig. 33.4d, two proteins in a long distance in KCl solution are
shown. Since these proteins are far from each other, Rg is large and�Gbind should be
high. As shown in Fig. 33.4c and d, two proteins in a certain combination are in close
distance in water and in far distance in KCl in a combination of proteins, so that
electrostatic interactions should be strong in water. It means that if distance between
proteins increases by electrostatic screening of KCl, the electrostatic interaction
is suggested to be attractive one and hydrophobic interaction is non-attractive in
water.

In Fig. 33.4e, two proteins in a long distance in water are shown. Since these
proteins are far from each other, Rg is large and �Gbind should be high, and the
binding is weak. In Fig. 33.4f, two proteins in a short distance in KCl solution are
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shown. Since these proteins are close to each other, Rg is small and�Gbindshould be
low. As shown in Fig. 33.4e and f, two proteins in a certain combination are in far
distance in water and in close distance in KCl, so that hydrophobic interactions
should be weak in water. It means that if distance between proteins decreases
by electrostatic screening of KCl, the electrostatic interaction is suggested to be
repulsive one and hydrophobic interaction is attractive one in water.

33.3 Results and Discussion

33.3.1 LARFH-/-LARFH

33.3.1.1 Rg and RMSD

First, as shown in Fig. 33.5, in LARFH-/-LARFH [0] (using the notation explained
in Table 33.2), we examined which interactions are dominant in stabilization as fiber
with different values of initial distance between centers of mass of two proteins. We
also show in Fig. 33.4 some of the explanations for our results. We define di as the
initial distance between centers of mass of two proteins. We start our simulations
with different values of di . In Fig. 33.5, we show Rg of the system of two proteins
and RMSD of LARFH-/-LARFH. The values of Rg and RMSD become larger on
the whole as di increases. In pure water, the values of Rg are small from 2.4 to
3.6 nm of di , while in KCl solutions, the values of Rg are small from 2.4 to 3.2 nm.
The values of RMSD are smaller in KCl than in water for most values of di as
shown in Fig. 33.5b. We used analysis of hydrophobic and electrostatic interactions
explained in Sect. 33.2.5. When di D 3.7 nm, although the value of Rg in water is
small, the value of Rg in KCl is large. This means that when electrostatic interaction
is screened off, the value of Rg becomes larger when di D 3.7 nm (Fig. 33.4c and d).
Therefore, around 3.7 nm of di , electrostatic interaction can be dominant. Moreover,
because the range of error bar in KCl solution is smaller than that in water except for
di D 3.7 nm, the system in KCl is becoming more stable than the system in water
at 9–10 ns.

33.3.1.2 Umbrella Sampling

After our pulling simulation, explained in Sect. 33.2.4, umbrella-sampling simula-
tions were carried out for 5 ns. In each condition, 15–25 independent simulations
were performed. PMF curve and histogram are shown in Fig. 33.6a and in
Fig. 33.6b, respectively. Calculated values of �Gbind, obtained from PMF, are
shown in Fig. 33.6c. In the four cases, the system of [EK] in water is the most
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Fig. 33.5 Rg and RMSD for LARFH-/-LARFH. Calculations with different values of di were
carried out. Each simulation was performed for 10 ns, and the results in last 1 ns are shown. (a)
Radius of gyration of two proteins. (b) RMSD fitting backbone to backbone
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Fig. 33.6 The results in umbrella-sampling simulations for LARFH-/-LARFH. (a) PMF in [0] in
water. � is the coordinate of protein in the direction of pulling.�Gbind is analyzed from this figure.
The way to calculate �Gbind in other conditions is the same as in this condition. (b) Umbrella
histogram for wild/wild in water. Histogram shows reasonable overlap between windows when
sampling. Each peak is obtained by different simulations. (c) The values of �Gbind in LARFH.
�Gbind was calculated from the values of PMF, shown in (b). The notations of [0] and [EK] are
shown in Table 33.2

stable and the system of [EK] in KCl is the least stable. In the cases of [EK],�Gbind

is lower in water than in KCl. This means that two proteins of [EK] are more likely
to bind in water than in KCl, which is due to the electrostatic attraction between
two proteins, as described in Fig. 33.4c and d. On the other hand, in the case of [0],
�Gbind is lower in KCl than in water. This means that two proteins are more likely
to bind in KCl than in water, which is due to the hydrophobic interaction between
two proteins, since �Gbind is lower when screening off electrostatic interaction and
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Fig. 33.7 Results for LARFH-/-sulerythrin. (a) Rg in water. (b) Rg in KCl. (c) RMSD in water. (d)
RMSD in KCl

enhancing hydrophobic interaction, as described in Fig. 33.4e and f. In conclusion,
hydrophobic interaction is enhanced in [0] and electrostatic interaction is enhanced
in [EK], respectively.

33.3.2 LARFH-/-Sulerythrin

33.3.2.1 Rg and RMSD

In Fig. 33.7, we show our results of Rg and RMSD in pure water and KCl solution
for LARFH-/-sulerythrin. In water, the values of Rg and RMSD in [EK] are smaller
than those in [0], as shown in Fig. 33.7a and c. Thus, [EK] may be more stable than
[0] in pure water. In KCl solutions, on the other hand, the values of Rg and RMSD
are almost the same in both [0] and [EK], as shown in Fig. 33.7b and d. It means that
there is no apparent difference of their stability between [0] and [EK]. Moreover, in
[0], the values of Rgand RMSD in pure water are larger than in KCl solution, as
shown in the comparison of the solid lines of Fig. 33.7a and b and also c and d.
This means that hydrophobic interaction can contribute to stability of fiber rather
than electrostatic interaction, as described in Fig. 33.4c and d. On the other hand,
in [EK], both hydrophobic and electrostatic interactions can contribute to stability
since the values of Rg and RMSD are almost the same.
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Fig. 33.8 Results are for sulerythrin-/-sulerythrin. (a) Rg in water. (b) Rg in KCl. (c) RMSD in
water. (d) RMSD in KCl

33.3.3 Sulerythrin-/-Sulerythrin

33.3.3.1 Rg and RMSD

In Fig. 33.8, we show our results of Rg and RMSD in water and KCl solution
for sulerythrin-/-sulerythrin. In Fig. 33.8c and d, in both [0] and [EK], the values
of RMSD in KCl solution are smaller than those in pure water. This suggests
that proteins in KCl are hard to move from the initial configuration, while the
configuration in water is shifting from initial condition. The value of Rg in [0] is
comparatively smaller than the other conditions.

33.3.4 IPMDH-/-IPMDH

33.3.4.1 Rg and RMSD

In Fig. 33.9, we show our results of Rg and RMSD in water and KCl solution for
IPMDH-/-IPMDH. In Fig. 33.9a and b, in both water and KCl, the values of Rg

of [EK] are considerably smaller than those of [0]. It means that this mutation can
enhance the stability as fiber. Moreover, in [0], the values of Rg and RMSD at 5 ns
in pure water are smaller than the values in KCl solution. Therefore, in wild type of
IPMDH, electrostatic interaction should contribute to stability, compared with hy-
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Fig. 33.9 Results are for IPMDH-/-IPMDH. (a) Rg in water. (b) Rg in KCl. (c) RMSD in water.
(d) RMSD in KCl

drophobic interaction, as shown in Fig. 33.4c and d. In [EK], there is no remarkable
difference of the values of Rg between water and KCl, as shown in Fig. 33.9a and
b. In [EK], the configuration in water, compared with that in KCl, is shifting from
initial condition, while two proteins are keeping close together because the values
of RMSD in water is larger than those in KCl, as shown in Fig. 33.9c and d.

33.4 Conclusions

For LARFH, we investigated which interactions are dominant with different initial
conditions. Then, we compared the stabilities of wild type and variant by �Gbind.
In IPMDH, we found the mutant showing high stability. Next, we found that in
LARFH-/-LARFH, electrostatic interaction can be dominant at around 3.7 nm of
initial distance, from the values of Rg of [EK] and RMSD from different di . From
the values of �Gbind, the system in [EK] in water is the most stable, and the system
in [EK] in KCl is the least stable. Moreover, hydrophobic interaction is enhanced in
[0], and electrostatic interaction is enhanced in [EK].

In LARFH-/-sulerythrin, the wild types of proteins in pure water can be
considerably unstable. In the case of sulerythrin-/-sulerythrin, in both [0] and [EK],
proteins in KCl stay almost around the initial configuration, while the configuration
in water is shifting from initial condition. Moreover, the combination of mutant
showing high stability was found in IPMDH-/-IPMDH.
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Although sulerythrin contains two pairs of metal ions, we omitted these ions in
our simulations. The influence of these ions is an important topic, and one should
calculate the electronic state around metal ions by molecular orbital methods. Then,
force field calculation or QM/MM around metal ions should be performed. In order
to obtain results for large systems with long time scale, coarse-grained model should
be useful.

With these computational methods, we can predict the binding sites of the
proteins and the structures of the proteins which are not observed in experiments. By
calculating Rg or �Gbind, strength of fiber can be compared. Moreover, measuring
the contribution of hydrophobic and electrostatic interactions becomes a kind of
index to design where and how to induce mutations of hydrophobic or charged
amino acids to proteins.
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