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  Abstract   The incidence of brain metastasis is increasing. In fact, the incidence of 
brain metastasis outnumbers that of primary brain tumors by a factor of ten and is 
by far the most common neurologic complication of cancer. The reasons underlying 
the increasing incidence of brain metastasis are unclear, but may be associated with 
increased patient survival, improved imaging techniques, and greater awareness of 
the disease. With the increasing incidence, however, it is apparent that our under-
standing of the biology and epidemiology of brain metastasis is limited. Although 
most solid primary tumors can develop metastatic disease in the brain, approxi-
mately 80% of all brain metastases arise from adenocarcinomas of lung (50–60%) 
and breast (15–20%) and from malignant melanoma (5–10%). Brain metastases can 
develop from renal or colon  cancers and other solid tumors but do so less frequently 
than metastases from the lung or breast. Within the brain, metastatic cancer cells can 
seed and grow in the brain parenchyma and the leptomeninges. Risk factors associ-
ated with the development of brain metastasis may vary according to origin of the 
primary cancer, which also often dictates the clinical experience and prognosis for 
a patient with a brain metastasis. Recently, a Graded Prognostic Assessment tool 
was developed to aid in treatment decisions and brain metastasis speci fi c clinical 
trial strategies. Historically, patients with brain metastases have been excluded from 
clinical trials that enrolled metastatic cancer patients. Regardless of the origin of the 
primary cancer, prognosis is poor for patients who develop brain metastases, with 
median overall survival ranging from 4.8 to 13.8 months across all primary tumor 
histologies.      

    D.   Palmieri ,  Ph.D.    (*)
       National Cancer Institute, National Institutes of Health ,   Bethesda ,  MD ,  USA    
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    Chapter 1   
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    1   Introduction 

 Metastasis, the spread of cancer from the site of primary tumor growth to a distant 
organ or organs, is the major underlying cause of morbidity and mortality for cancer 
patients. Brain or central nervous system (CNS) metastases, the most common 
 neurologic complication of cancer, are devastating because of their impact on quality 
of life and are associated with a dismal prognosis. Several factors combine to make 
the CNS a unique metastatic site. These include the microenvironment in which the 
metastases occur, the presence of the blood–brain barrier or the remaining functions 
of the blood-tumor barrier, and the neuro-cognitive consequences of metastases in 
the brain and their treatments. 

 The metastatic process is complex and inef fi cient. For cancer cells to metasta-
size, they must  fi rst invade the local tissue environment and break through any exist-
ing tissue basement membrane. Next, they must intravasate into blood or lymphatic 
vessels and survive in circulation until they can adhere to a vessel wall at a distant 
site and exit the circulation. Upon extravasation, the cancer cells must establish 
 residence in the foreign environment and eventually begin to proliferate to colonize 
the new organ. Metastatic colonization is the  fi nal, critical step in the process to 
establish active metastatic disease. In addition to these general requirements, cancer 
cells may acquire the ability to preferentially colonize certain organs such as the 
brain (see Chap.   2    ). Although each organ provides a unique microenvironment, the 
brain is distinct from any other site in the body (see Chap.   3    ) because it is immuno-
logically privileged and protected by the blood–brain barrier. For cancer cells to 
colonize this unique microenvironment, they must break through the blood–brain 
barrier (see Chap.   4    ). 

 The normal mammalian brain consists of a dense matrix of neurons and glial 
cells—a broad term that includes microglia, astrocytes, oligodendrocytes, and 
ependymal cells. Together these cellular components form discrete regions within the 
brain that are associated with speci fi c neurological and cognitive functions. The adult 
mammalian brain consists of two major regions: the parenchyma and the  leptomeninges. 
The parenchyma consists of  fi ve regions—the telencephalon or cerebral cortex, 
responsible for spatial memory; the diencephalon, which consists of the thalamus and 
hypothalamus and is responsible for regulating the neuro-endocrine system; the 
mesencephalon or midbrain, responsible for transmitting sensory information to the 
cerebral cortex and motor commands to the re fl ex center; the cerebellum, responsible 
for the precision in actions; the pons, responsible for relaying information between 
areas of the brain; and the medulla oblongata, which is located in the lower region 
of the brain stem and is responsible for involuntary body functions including blood 
pressure and respiration. The leptomeninges are a system of three connective tissue 
membranes (dura, arachnoid, and pia, from outside to inside) that surround and 
protect the entire brain. 

 The brain is the most highly vascularized organ in the body. The dense capillary 
network of the brain ensures that almost every neuron is perfused by it’s own blood 
vessel. However, these capillaries are unlike capillaries that exist in the rest of the body. 

http://dx.doi.org/10.1007/978-94-007-5291-7_2
http://dx.doi.org/10.1007/978-94-007-5291-7_3
http://dx.doi.org/10.1007/978-94-007-5291-7_4
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The blood–brain barrier begins with the endothelial cells that form the capillaries 
connected to one another by tight junctions that limit passive diffusion into the 
brain. The endothelial cells express numerous transporter proteins that act to shuttle 
compounds into the brain by facilitated diffusion and also function as active ef fl ux 
pumps to send compounds away from the brain and back into the circulation. The 
vasculature is then surrounded by a basement membrane and covered by pericytes 
and the feet of astrocytes. All of these components combine to form the blood–brain 
barrier. 

 The brain microenvironment, the protective leptomeninges, and the blood–brain 
barrier, all contribute to making the brain a sanctuary site that is immunologically 
privileged and pharmacologically protected from toxic substances, including con-
ventional chemotherapies and some newer molecularly targeted therapies. Once a 
cancer cell has penetrated into the brain, metastases can develop in both the brain 
parenchyma and the leptomeninges. The majority of parenchymal metastases are 
thought to originate from solid tumors that spread via the blood. Brain metastases 
occur more frequently in the cerebral cortex (80%) than in the cerebellum (15%) or 
brainstem (5%), which is in accordance with blood  fl ow and tissue volume for each 
region  [  1  ] . Some cancers are associated with multiple brain metastases (i.e., lung 
cancer, melanoma), whereas other cancers are typically associated with a single 
brain metastasis (i.e., breast or GI cancer)  [  1,   2  ] . At least three supportive microen-
vironments have been described for experimental parenchymal metastases: the 
perivascular niche, the neuro-in fl ammatory parenchyma and the cerebrospinal  fl uid 
or leptomeningeal niche  [  3  ] . Leptomeningeal metastases (also known as neoplastic 
meningitis, see Chap.   10    ) can develop on the pia or the arachnoid membranes, but 
can also develop in the subarachnoid space (the cerebrospinal  fl uid  fi lled space 
between the arachnoid and pia membranes)  [  4  ] . Leptomeningeal metastases may 
also occur via direct extension from the parenchyma, from the venous plexus, and 
by extension along nerves or perineural lymphatics  [  5  ] . Leptomeningeal metastases 
often occur simultaneously with parenchymal brain metastases in more than 50% of 
patients with melanoma or lung cancer, and are the most common form of brain 
metastases to develop from hematologic cancers  [  5, 6–  7  ] .  

    2   Incidence 

 Although the exact incidence and prevalence of brain metastasis is not known, it 
is estimated that between 170,000–200,000 new cases of brain metastases are 
diagnosed annually in the United States. Most data available on the epidemiology 
of brain metastasis are derived from population and autopsy studies; no current data 
from national registries, such as the Surveillance Epidemiology and End Results 
(SEER) registry, are available. Although likely to signi fi cantly underestimate the 
true incidence, data derived from several population-based studies conducted 
between 1935 and 2001 reported that the incidence rates of brain metastasis range 
from 8.3 to 14.3 per 100,000 population, and from 8.5 to 9.6% among cancer 

http://dx.doi.org/10.1007/978-94-007-5291-7_10
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patients  [  8  ] . Autopsy studies typically reported higher rates of brain metastases than 
population-based studies. The difference in reported rates between population-
based and autopsy-based studies may re fl ect a difference between symptomatic and 
asymptomatic disease. Moreover, historically, patients particularly with lung cancer 
were not screened for and imaging methodology was not effective at detecting brain 
metastases. 

 Whereas some of the most commonly detected cancers such as those from the 
lung, breast and skin (melanoma) readily metastasize to the brain and account for 
67–80% of all brain metastases, other cancers such as those from the kidney and 
colon can metastasize to the brain but do so with low frequency. Although the actual 
percentages may differ among studies, the range or trend of brain metastases from 
different primary cancers are often consistent across studies that look at multiple 
cancers, with brain metastases always detected among more lung cancer patients 
than among breast cancer and melanoma patients; brain metastases from renal 
(range 2–6%) or gastrointestinal cancers (range 6–9%) occur in less than 9% of patients 
 [  8  ] . Hematologic malignancies can metastasize to the CNS, most commonly to 
the leptomeninges  [  7  ] . Pediatric primary tumors rarely metastasize to the brain. 
The biological and epidemiological reasons underlying why some cancers but not 
others metastasize to the brain are unclear. 

    2.1   Lung Cancer 

 Lung cancer is the most deadly form of cancer, accounting for more deaths per year 
than those from breast, colon, and prostate cancer combined. The incidence of brain 
metastasis is highest in patients diagnosed with primary lung cancers. At the time of 
their primary lung cancer diagnosis, approximately 10–25% of patients have brain 
metastasis  [  9  ] . An additional 40–50% of patients with lung cancer will develop 
brain metastases during the course of their disease  [  9  ] . 

 Small cell (SCLC) and non-small cell (NSCLC) are the major histologic types of 
carcinoma of the lung. SCLC accounts for approximately 15–20% of all lung can-
cers and is classi fi ed as either oat cell carcinoma or combined small cell carcinoma. 
SCLC is typically far more aggressive than NSCLC, originating in the bronchi and 
rapidly metastasizing to the brain, liver, and bone. The brain is the most common site 
of metastasis for patients with SCLC, and this likely contributes to the dismal 5-year 
survival rate of approximately 6%  [  9  ] . Unlike NSCLC, SCLC seldom occurs in 
never smokers, and is the predominant form of lung cancer associated with cigarette 
smoking. Eighteen to twenty- fi ve percent of SCLC patients already have CNS 
involvement at the time of primary diagnosis  [  10  ] , and many of these patients also 
present with metastases at other extracranial sites  [  9  ] . SCLC patients who relapse 
after an initial treatment response in the lung have a 50–67% risk of developing 
brain metastases  [  11  ] . 
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 The majority of lung cancers are NSCLC, which present as adeno-, squamous 
cell, or large cell carcinomas. The 5-year survival rate for patients diagnosed with 
NSCLC is less than 15%  [  12  ] , re fl ecting that many patients have advanced or 
locally advanced disease at the time of diagnosis. Adenocarcinomas often occur 
in the outer or peripheral areas of the lung, whereas squamous cell carcinomas 
often occur in the more central areas of the lung next to the bronchi. Large cell 
carcinomas can occur anywhere in the lung and typically grow faster than other 
forms of NSCLC. In NSCLC, 40% of patients develop brain metastases  [  13  ] . Brain 
metastatic disease is more common in patients with adenocarcinomas and large 
cell carcinomas than in patients with squamous cell carcinoma  [  14–  16  ] . Newer 
molecular therapeutics taking advantage of epidermal growth factor receptor 
overexpression and mutation have been used in NSCLC with low but signi fi cant 
response rates. In these treated patients, a high incidence of brain parenchyma and 
leptomeningeal metastases were observed  [  17  ] . This increase in brain metastases 
suggests that the brain is a sanctuary site, colonized to evade systemic therapy. 
The increased incidence of brain metastases may then be associated with increased 
survival subsequent to use with newer molecular therapeutics. From data derived 
from prophylactic imaging scans, non-symptomatic brain metastases are being 
detected in NSCLC patients, and are hypothesized to be an important facet of 
overall survival  [  18  ] . 

 Most lung cancer patients develop parenchymal brain metastases early in their 
disease and develop multiple metastatic lesions, many of which are often associated 
with edema. The presence of brain metastases is associated with decreased survival 
 [  19  ] . Indeed, overall patient survival ranges from 4 to 8 months after diagnosis of a 
brain metastasis. Favorable prognostic factors that affect survival include Karnofsky 
performance status, patient age (>65), control of primary tumor, and absence of 
extracranial metastatic disease  [  20  ] . The Graded Prognostic Assessment (GPA) 
metric demonstrates that few lung cancer patients survive more than 3 years post-
diagnosis of a brain metastasis (Table  1.1 ).  

 Few studies have addressed the issue of risk factors for the development of brain 
metastases in lung cancer patients. In a retrospective study of 264 patients with 
NSCLC, a positive correlation was found between size of the primary tumor, the 
cell type (adenocarcinoma and undifferentiated vs. squamous), intrathoracic lymph 
node status, and the development of brain metastases  [  16  ] . Grinberg-Rashi et al. 
reported that the overexpression of twelve candidate genes was associated with 
brain or general metastasis in 142 NSCLC patients and could be used to identify 
a predictive pattern for those at high risk of developing brain metastases  [  21  ] . 
Multivariate Cox regression analysis showed the expression values of three genes 
(CDH2, KIFC1 and FALZ) in primary tumors had prognostic value, and the authors 
suggested that a gene expression signature predictive of brain metastasis may identify 
patients at high risk who may bene fi t from prophylactic therapy  [  21  ] . Prophylactic 
therapies directed to the CNS have been used in the treatment of childhood leukemias 
for many years to prevent brain metastases  [  22  ] .  
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      Table 1.1    Survival times post brain metastasis diagnosis by graded prognostic assessment (GPA) 
score a    

 Percentage of patients who reach median survival (months) 
in each GPA category: 

 Primary 
tumor 
diagnosis 

 Overall 
median 
survival 
(months)  0–1.0  1.5–2.0  2.5–3.0  3.5–4.0 

 NSCLC b   7.0  14 (3.0)  38 (5.5)  40 (9.4)  9 (4.8) 
 SCLC  4.9  23 (2.8)  42 (4.9)  30 (7.7)  5 (7.0) 
 Breast  13.8  6 (3.4)  26 (7.7)  35 (15.0)  33 (25.3) 
 Melanoma  6.4  17 (3.4)  31 (4.7)  28 (8.8)  23 (3.2) 
 Renal  9.6  15 (3.3)  27 (7.3)  36 (11.3)  22 (4.8) 
 GI cancer  5.4  36 (3.1)  31 (4.4)  24 (6.9)  9 (13.5) 

   a Adapted from Sperduto, P. et al., Journal of Clinical Oncology  [  40  ]  
  b  NSCLC  Non-small cell lung cancer,  SCLC  small cell lung cancer,  GI  gastrointestinal  

    2.2   Breast Cancer 

 Patients with breast cancer tend to have recurrent disease to the CNS after the 
development of systemic metastatic disease and multiple rounds of chemotherapy. 
Breast cancer brain metastasis can develop in the brain parenchyma and the 
leptomeninges, often as solitary lesions (but rarely associated with edema), which 
distinguishes them from those that develop in patients with lung cancer. Breast 
cancer is the most common solid tumor to metastasize to the leptomeninges  [  5  ] . 

 The incidence of brain metastasis among women with breast cancer is histori-
cally reported as 15–20%  [  23  ] . However, this rate may underreport the percentage 
of women with breast cancer brain metastasis as an autopsy study of 1,044 patients 
who died of breast cancer found histologic evidence of brain metastasis in 29% of 
the cases  [  24  ] . More recent reports have estimated the incidence as high as 30% for 
advanced breast cancer overall and higher for speci fi c subtypes of breast cancer 
 [  25–  28  ] . 

 Breast cancer is a heterogenous disease of subtypes that originates most often 
from the ductal epithelial cells. Histologically the disease is divided into three main 
subtypes: estrogen receptor positive (which can be subdivided into Luminal A and 
Luminal B based on molecular markers), HER2-positive (based on the ampli fi cation 
or overexpression of the HER2 gene), and triple-negative (estrogen receptor negative, 
progesterone receptor negative and HER2 normal). The latter two subtypes have 
been reported to have brain metastasis incidence rates that exceed 35% of patients 
with advanced disease  [  26–  29  ] . 

 Several risk factors for the development of brain metastases have been reported 
for breast cancer patients. In a cohort of 9,524 breast cancer patients diagnosed with 
early stage disease between 1978–1999, the 10-year incidence of brain metastasis 
was 5.2% and associated with lymph node positivity, estrogen receptor-negative 
tumors, young patient age, and HER2 positivity  [  30  ] . Other studies have con fi rmed 
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these  fi ndings  [  31,   32  ] . In a population of patients with metastatic breast cancer, 
the incidence of brain metastasis was 21% over 10 years, with similar risk factors  [  33  ] . 
Leptomeningeal metastases were more frequently diagnosed in breast cancer 
patients with triple-negative or HER2-positive tumors  [  34  ] . 

 For patients diagnosed with the HER2-positive subtype of breast cancer, brain 
metastases are increasing as a  fi rst site of metastatic progression and threaten to 
limit the gains made by systemic therapy  [  29  ] . A recent prospective, observational 
study followed 1,023 patients newly diagnosed with metastatic HER2-positive 
breast cancer for a period of 3–6 years  [  26  ] . This large study evaluated the incidence 
and outcomes of the patients that developed brain metastases. In this cohort, 37% of 
patients developed brain metastases and these women were found to be younger in 
age, have hormone receptor negative primary tumors and have higher metastatic 
disease burden ( ³ 2 metastatic sites) than their counterparts who did not develop 
brain metastases  [  26  ] . Additionally, of the 37% of patients who developed brain 
metastases, 20% had brain as a site of metastatic disease at the time of their initial 
metastatic diagnosis and 4% had brain metastasis as the only site of metastatic 
relapse. In this study, the median overall survival was 26.3 months for patients with 
any CNS involvement compared to 44.6 months for patients with no CNS involve-
ment. The patients who fared the worst were those who had brain metastases at the 
time of diagnosis of metastatic disease—these patients had a median overall sur-
vival of 20.3 months. 

 Less is known about the incidence of brain metastasis and outcome of patients 
with triple–negative breast cancer. An analysis of 116 patients with metastatic triple-
negative breast cancer revealed a median survival time from a diagnosis of meta-
static disease until brain recurrence of 13.3 months  [  27  ] . Overall, 46% of patients 
were diagnosed with brain metastases before death. The median survival after 
diagnosis of a brain metastasis was 4.9 months  [  27  ] . In a study of more than 15,000 
women with breast cancer in the National Comprehensive Cancer Network, those 
with triple–negative breast cancer were more likely to develop brain metastases 
than women with the HER2-positive subtype  [  35  ] . In contrast to patients with the 
HER2-positive subtype, patients with triple-negative breast cancer and brain 
metastases rarely had stable systemic disease  [  27  ] . Of the hereditary breast cancers, 
many are triple-negative. In a small study, 67% of patients with con fi rmed BRCA1 
mutations developed brain metastases  [  36  ] . 

 Although brain metastasis is relatively rare in patients with estrogen receptor-
positive tumors, limited outcome data are available. In a multi-institutional retro-
spective analysis of 400 breast cancer patients with brain metastasis, patients with 
Luminal A estrogen receptor positive tumors survived a median of 9.7 months after 
diagnosis, which was substantially shorter than the 20.7 months for patients with 
Luminal B estrogen receptor positive tumors and the 13.8 months for the entire 
cohort  [  37  ] . 

 Where investigated, it is agreed that occult or nonsymptomatic brain metastases 
are prevalent in many patients with advanced breast cancer. Results from an autopsy 
study found that, of those patients with histologically con fi rmed brain metastases, 
only 31% were diagnosed with symptoms associated with brain metastasis before 
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death  [  24  ] . When imaging was used as an enrollment criterion for clinical trial 
participation on patients without symptoms of brain metastatic disease, 15% of 
patients had occult brain metastases  [  25  ] . The clinical relevance of these occult 
lesions is unknown. 

 Several predictors of outcome after diagnosis of a brain metastasis are in 
development speci fi cally for breast cancer. Nomograms take patient age, Karnofsky 
performance score, systemic metastases, number and size of CNS lesions, molecular 
characteristics and breast cancer stage into account to predict survival  [  38,   39  ] . A breast 
cancer speci fi c GPA has also reported prognostic outcomes  [  40  ]   [  37  ] .  

    2.3   Melanoma 

 Although melanoma is the third most common primary tumor to form brain 
metastases, it has the highest propensity to metastasize to the brain  [  41  ] . The incidence 
is estimated between 10 and 40% in clinical studies, but autopsy studies report the 
prevalence to be substantially higher at 55–75% of melanoma patients  [  23,   42–  44  ] . 
Melanomas of the head and neck are more likely to metastasize to the brain than 
melanomas from other sites  [  45  ] . Risk factors for developing brain metastasis 
from melanoma include: gender (more frequent in males), stage IV disease, primary 
melanoma of mucosa or the head and neck, thick or ulcerated neoplasm, and acral 
lentiginous or nodal lesions  [  46  ] . 

 The prognosis for melanoma patients with brain metastases is poor, with a 
median survival time of less than 1 year after diagnosis of the brain metastasis  [  47  ] . 
Approximately 20–55% of melanoma patients die as a result of brain metastases 
 [  48  ] . Predictors of poor survival in patients diagnosed with brain metastases include 
a high number of brain metastases, the development of brain metastases after sys-
temic metastases, elevated lactate dehydrogenase levels, and the presence of bone 
metastases (reviewed in  [  49  ] ). A small percentage of patients with brain metastases 
who survive more than 3 years are characterized by a locally treated single brain 
metastasis without other systemic disease  [  49  ] . The GPA assessment of 481 patients 
with melanoma metastatic to the brain showed a median survival of 6.7 months, 
although there was substantial heterogeneity in survival times ranging <1 to 4 years 
(Table  1.1 )  [  40  ] .  

    2.4   Trends 

 The incidence of brain metastasis appears to be increasing. Recent studies investigating 
metastatic lung and breast cancer patients reported alarming rates of brain metastasis 
 [  17,   23,   26,   35  ] . The causes of an increased incidence of brain metastasis are 
unknown but several theories have been posited that take into consideration the under-
lying biology and new therapeutic and imaging modalities. On one hand, as patients 
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live longer because of the use of new molecular therapies, the additional time may be 
suf fi cient to allow brain metastases to develop. This has been seen in patients treated 
with trastuzumab for metastatic HER2-positive breast cancer  [  50,   51  ] . The brain 
may represent a preferential site of metastasis because many of the new molecular 
therapies (and virtually all of the traditional chemotherapeutics) do not cross the 
blood–brain barrier or what is left of the blood–brain barrier once a tumor forms, the 
blood-tumor barrier. If this is true, then the possibility exists that cancer cells have to 
initiate expression and/or repression of a speci fi c series of genes, markers, and events 
to target or direct them to the brain, i.e., execute a brain-speci fi c signature. The brain-
speci fi c events could be triggered by selection pressures applied by the molecular 
therapies directly, mediated by a speci fi c cell population either within the cancer or 
the microenvironment, or by some as-yet unknown pathway. It is anticipated that the 
incidence of brain metastasis may increase as more speci fi c molecular therapies are 
designed for additional cancers. On the other hand, the incidence of brain metastasis 
may not be rising per se, but re fl ect that the increased detection may be facilitated by 
an increased use of re fi ned imaging and greater attention and awareness to neurologic 
symptoms.   

    3   Diagnosis and Prognosis 

 Regardless of the primary cancer, a diagnosis of brain metastasis is most commonly 
made on the basis of patient symptoms. Some patients may present with a brain metas-
tasis with no known primary cancer diagnosis. Symptoms include, but are not limited 
to: headaches, focal weakness and paralysis, alterations in cognition (cognitive 
decline), mental status and behavior, and seizure. In addition, these symptoms may be 
exacerbated by some of the prescribed treatments. Diagnoses are con fi rmed by neu-
roimaging, and usually with magnetic resonance imaging which can reliably detect 
lesions in the range of 3–5 mm. 

 Some cancers have a predilection for developing multiple brain metastases 
(i.e., lung cancer) that are detected simultaneously, whereas other cancers are more 
likely to develop a single brain metastasis (i.e., breast cancer). The number and 
location of brain metastases diagnosed is critical for prognosis and treatment 
schemes. Much of what we know about the location of metastatic disease in the 
brain comes from a 1978 landmark autopsy study by Posner and Chernik who 
reported data from 3,219 cancer patient autopsies conducted from 1970–1976  [  7  ] . 
Although a third of cases had metastatic disease in multiple locations within the 
brain, the majority of brain metastases were present in only a single location. The 
location of brain metastases varied, with 39% of all brain metastases located in 
the parenchyma, 18% in the pachymeninges, and 12% present only in the leptom-
eninges  [  7  ] . This and subsequent studies highlight the importance of distinguishing 
between a solitary brain metastasis and a single brain metastasis because this too 
will impact prognosis and treatment regimens. A  solitary  brain metastasis is de fi ned 
by the detection of only one brain lesion in the presence of controlled primary disease 
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and no other systemic metastatic disease, i.e., a solitary brain metastasis denotes 
control of extracranial disease. By contrast, a  single  brain metastasis is de fi ned by 
the detection of only one brain lesion with either (or both) active primary disease or 
systemic metastatic disease. Multiple brain metastases may also be diagnosed ini-
tially or may develop later. A diagnosis of a brain metastasis is a risk factor for 
further brain metastases. 

 The prognosis after a brain metastasis diagnosis is grim. Mortality is the conse-
quence of both the brain metastasis and systemic disease, and varies widely among 
types of cancer and among patients with the same cancer classi fi cation. The most 
widely validated indicator of prognosis for brain metastasis is the above mentioned 
Graded Prognostic Assessment (GPA)  [  40  ] . This prognostic index is diagnosis 
speci fi c and based on more current data than the landmark Recursive Partitioning 
Analysis tool originally developed by the Radiation Therapy Oncology Group 
 [  52,   53  ] . The variables used in the GPA calculation differ among cancer types but 
all include patient performance status (Karnofsky performance score), which is the 
one major determinant that is prognostic for each patient. Other variables include 
age, presence on extracranial metastases, number of brain metastases, and the sub-
type of primary cancer. A GPA of 4.0 is associated with the best prognosis while a 
GPA of 0.0 indicates the worst prognosis, this is re fl ected in the increasing median 
survival times by GPA category shown on Table  1.1  for various primary tumor types. 
Overall median survival varied from 4.9 months in SCLC to 13.8 months in breast 
cancer (Table  1.1 ). The percentage of patients with the highest GPAs (3.5–4), 
were highest for those with breast cancer (33%), melanoma (23%), and renal cell 
carcinoma (22%)  [  40  ] . Other cancer type speci fi c prognostic algorithms are under 
development.  

    4   An Overview of Treatment 

 Current treatments for brain metastases include surgical resection when one or 
a few lesions are located in an accessible region (see Chap.   7    ), limited systemic 
chemotherapy (see Chap.   8    ), and radiotherapy (see Chap.   9    ). The number of surgeries 
for brain metastases increased from less than 4,000 in 1988 to 7,000 in 2000 
according to a retrospective cohort study from the Nationwide Inpatient Sample 
 [  54  ] . Radiotherapy can be either whole brain radiation or stereotactic radiosurgery. 
Whole brain radiation therapy delivers a relatively small dose of radiation (up to 3 
gray [Gy]) to the entire brain in multiple doses (fractions) to treat multiple lesions 
and prevent occult tumor cells from colonizing. A role for whole brain radiation 
therapy for the prevention of brain metastasis has been validated in lung cancer 
 [  55,   56  ] . Stereotactic radiosurgery delivers a higher dose of radiation (> 4 Gy) to a 
focused area. Additionally, palliative care such as steroids and anticonvulsants are 
prescribed. In the era of molecularly targeted therapy, the development of blood–
brain barrier permeable, small molecule inhibitors that will target brain metastases 
and improve survival is an intense research focus (see Chap.   6    ).  

http://dx.doi.org/10.1007/978-94-007-5291-7_7
http://dx.doi.org/10.1007/978-94-007-5291-7_8
http://dx.doi.org/10.1007/978-94-007-5291-7_9
http://dx.doi.org/10.1007/978-94-007-5291-7_6
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    5   Conclusions 

 Brain metastasis may be increasing in incidence and confer signi fi cant morbidity 
and mortality. The clinical course of brain metastasis is heterogeneous even within 
similar cancer histologies, but increasingly may be contributing to patient deaths. 
Although most incidence data have been collected retrospectively, insuf fi cient data 
exist at this time to identify a nonsymptomatic population of patients that should 
receive additional screening for brain metastases. Whether prophylactic CNS-
directed therapies would reduce the incidence of brain metastasis is unknown, but 
determining who would best bene fi t from such treatment would require identifying 
predictors. Predictors that identify patients at high risk for developing brain metas-
tases are severely lacking for patients with breast cancer or melanoma. A recently 
identi fi ed three-gene signature predictive of brain metastases for patients with lung 
cancer offers hope, but needs substantial further validation. Preclinical data from 
models of brain metastasis have suggested that some agents that can cross the 
blood–brain barrier are effective at preventing the outgrowth of metastatic tumor 
cells in the brain, but not treating established bulky disease. Thus, undertaking clini-
cal trials that combine both predictors of brain metastasis that identify patients at 
high risk with blood brain barrier-crossing preventive agents may move us closer to 
the much needed goal of eradicating brain metastases.      
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  Abstract   An understanding of the molecular biology of brain metastasis development 
is critical to the development of new preventatives and therapeutics. Our current 
understanding is largely based on functional validation studies of candidate genes in 
animal models. These candidates were either identi fi ed by genomic pro fi ling of 
clinical specimens or brain-tropic cell lines, or were suspected factors in key steps 
of the brain metastatic process. This chapter provides a summary of current  in vivo  
brain metastasis models, explores the key steps of brain metastasis development 
and discusses the experimental evidence that links various genes functionally to 
brain metastatic progression. Animal models have been developed for lung and 
breast carcinoma, and melanoma metastasis to the brain. Most commonly these 
models involve hematogenous metastasis from carotid artery or left cardiac ventricle 
injection, but implantation and spontaneous animal models have also been reported. 
The steps involved in brain metastatic spread include extravasation from the brain 
vasculature, tumor cell dormancy, and outgrowth in the brain microenvironment. 
The brain parenchyma is altered by a potent neuroin fl ammatory response, involving 
activated microglia and astrocytes that accompanies brain metastasis development 
both clinically and in animal models. Alterations in the expression levels of indi-
vidual genes have demonstrated functional roles in brain metastasis development in 
animal models. This includes genes driving metastatic spread in general, for which 
functions in brain metastatic spread have been demonstrated, as well as those who 
appear to have brain metastasis speci fi c roles. Genes involved in cell signaling, 
angiogenesis, microenvironment modulation, cell adhesion and invasion as well 
as multiple transcription factors are discussed.      
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    1    Animal Models of Brain Metastasis 

 The use of animal models has been crucial to elucidate the cellular and molecular 
biology of brain metastasis development and validate expression trends from human 
craniotomy samples. The cancer cell lines used in brain metastasis assays are either 
derived from an experimental or spontaneous model of metastasis. Some brain met-
astatic (also called ‘BR’) lines, such as the 231-BR breast cancer cells or A549-BR 
lung cancer cells, were derived by repeated  in vivo  selection. In order to derive 
brain-tropic tumor cell lines, cells are injected into the left ventricle of the heart or 
into the carotid artery, to bypass the capillary beds of the lung, in which the cells 
would otherwise arrest. This is done by hand or under stereotactic guidance. The 
brains are harvested at necropsy, sterilely minced and tumor cells grown out in 
culture. This process is repeated until one or more endpoints are reached – the cell 
line produces brain metastases in all animals injected, it produces few systemic 
metastases, and/or it produces greater numbers of brain metastases. Other cell lines, 
such as the TXM-18 melanoma cell line and the MDA-MB-361 breast cancer cell 
line, will give rise to brain metastases in the majority of mice following intracardiac 
or intracarotid injection, without further  in vivo  selection. 

 The most commonly used brain metastasis models, utilizing both autonomously 
brain-tropic or  in vivo  selected brain-tropic cells are (1) implantation models, in 
which tumor cells are inoculated directly into the brain parenchyma, (2) hematoge-
nous models, in which tumor cells are injected into the animals’ arterial circulation, 
and (3) spontaneous models, in which cells are shed from primary tumors (reviewed 
by  [  1  ] ). Implantation models, in which a bolus of tumor cells or tumor fragments is 
inoculated directly into the brain, are one of the simplest models. Because only a 
single lesion develops in a known location, it is the model of choice for close follow-
up through a cranial window or for manipulation with radiation therapy. Implantation 
models do not require the use of brain-tropic cell lines. In a brain metastasis model 
from melanoma, a specialized inoculation technique using a subarachnoid catheter, 
which is passed through the magna cisterna along the spinal cord to the cerebrospinal 
 fl uid, allows for the study of leptomeningeal melanoma. The implanted catheter can 
subsequently be used for therapeutic drug delivery (reviewed by  [  2  ] ). Implantation 
models invariably bypass important steps of the brain metastatic cascade, such as cell 
dissemination, blood-brain barrier (BBB) crossing and outgrowth from a solitary cell 
in the brain microenvironment and, increasingly, are not accepted as valid readouts 
of metastasis. 

 In hematogenous brain metastasis models, tumor cells are injected into the left 
ventricle of the heart or into the carotid artery. The time to histologically detectable 
metastatic formation varies depending on the model. Some models, such as the 
4T1-BR require only 2 weeks, whereas others such as the MDA-MB-361 take 
7–8 months  [  3,   4  ] . The majority of models, however, require approximately 
4–8 weeks. These varying lengths of time may facilitate different types of experiments. 
Shorter time courses would be optimal for drug studies to minimize the amount 
needed, while neurocognitive endpoints may require 6–12 months. The morphology 
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of the brain lesions also varies. Some models produce round, circumscribed lesions 
typical of that seen on human scans, while other models produce clusters of very 
in fi ltrative tumor cells that, given time, may coalesce to form a more typical rounded 
shape. Endpoints of these assays vary and include live animal and  ex vivo  imaging 
to con fi rm the presence of metastases, histological counts of lesions in brain sections, 
and mouse survival. For histological counting, we routinely obtain a saggital section 
every 300  m m through one hemisphere of the brain an H&E stained. Using an ocular 
micrometer, all lesions greater than 300  m m in a single dimension are enumerated 
as “large” metastases – these are comparable to MRI-detectable several millimeter 
lesions in a human brain – and smaller lesion as micrometastases. The reason for 
this dichotomization is that the fate of micrometastatic tumor cells is unknown, as 
they could lie dormant or continue to grow. Genes such as HER2, when overex-
pressed also showed different effects on micro- versus large metastases  [  5  ] . Imaging 
endpoints, while easy and quantitative, may be the least relevant in brain metasta-
ses, as they fail to discriminate large and micrometastatic lesions and only work to 
a limited depth in the brain. Caution must also be taken when analyzing survival 
data. Because many brain metastatic cell lines may also give rise to systemic metas-
tases, this endpoint does not currently allow for sole determination of survival due 
to brain metastases. Consequently, survival data are often used in conjunction with 
histologic con fi rmation of brain metastases. 

 While hematogenous models recapitulate the cancer cells’ BBB crossing, inva-
sion, and outgrowth in the brain microenvironment, they bypass precolonization 
steps such as dissemination, intravasation, and homing. Also, the tumor cells in 
hematogenous models are injected all at once, as opposed to being continuously 
shed from a primary tumor. This process only occurs in spontaneous metastasis 
models, which recapitulate the complete brain metastatic cascade. 

 Spontaneous models, in which brain metastases develop subsequent to growth and 
removal of primary tumors from an orthotopic or subcutaneous site, are the most 
complicated to run as a controlled experiment but provide a high level of evidence 
for con fi rming hypotheses. Spontaneous metastasis models are an exquisite balance 
of allowing primary tumor growth to proceed so that many tumor cells are shed, and 
then having brain lesions form before systemic lesions force the sacri fi ce of the mice. 
In contrast to hematogenous models, only a fraction of animals in spontaneous models 
develop brain metastases, ranging from 20% in models of low-dose metronomic che-
motherapy  [  6  ]  to 80% in G3.5 melanoma models  [  7  ] . The percentage of positive ani-
mals, rather than a full histological count is often the experimental endpoint. 

 Few analyses have asked how relevant experimental brain metastasis models are 
to human disease. Experimental brain metastases of the triple negative breast can-
cer cell line 231-BR exhibited similar patterns of proliferation, apoptosis and 
neuroin fl ammatory responses to a cohort of resected human brain metastases of breast 
cancer  [  8  ] . Figure  2.1  presents this comparison between the 231-BR mouse model and 
human samples. Most interesting is the prominent neuroin fl ammatory response sur-
rounding the experimental lesions, consisting of activated microglia and astrocytes. 
Similar “ fi ngers” of neuroin fl ammatory cells are observed in the human craniotomy 
specimens, suggesting that they also formed from coalescence of smaller lesions, 
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entrapping surrounding in fl ammation. A brain-tropic subline of A549 lung cancer 
cells derived from grafting parental cells onto the lung was resistant to conventional 
therapies including oxaliplatin and taxol, in keeping with clinical experience  [  9  ] . In 
essence, each model system represents the characteristics of a single patient, high-
lighting the importance of establishing a molecular pathway in multiple models to 
ascertain its generality.   

    2   Steps in Brain Metastasis 

 Tumor cells enter the circulatory system from primary tumors and also from meta-
static sites, and can arrest and extravasate into the brain. Brain metastases arise from 
speci fi c primary tumor sites, which are mainly cancers of the lung or breast, or from 
melanoma. Other tumor types that can spread to the brain are kidney and bladder 

  Fig. 2.1    The Brain metastatic 231-BR mouse model is similar to human brain metastases in prolif-
eration, apoptosis and the neuroin fl ammatory response (Figure adapted from Fitzgerald DP et al. 
 [  8  ] ). Cytokeratin-positive tumor cells are stained  green  in all panels, and nuclei are counterstained 
with DAPI in  blue  in panels (a), (d), (f) and (h). ( a ) Cluster of 231-BR cell metastases proliferating 
(Ki67; pink) in the mouse cerebral cortex. ( b ) A surgical sample from a brain metastasis of ductal 
carcinoma showing many Ki67-positive tumor cells (Ki67; pink). ( c ) The lack of staining for Cleaved 
Caspase-3 ( red ) demonstrates that apoptotic cells in the xenograft model are rare. ( d ) Few apoptotic 
cells are visible among the proliferating carcinoma cells from a surgical specimen of brain metastasis 
of ductal carcinoma. Necrotic areas, at the top and bottom left of (d) nonspeci fi c show reactivity to 
the anti- Cleaved Capsase-3 antibody. ( e ) Numerous reactive astrocytes, visualized by staining for 
GFAP-positive cells ( red ), are visible around the cluster of metastases ( green ). ( f ) Large islands of 
GFAP-positive astrocytes trapped between clusters of cytokeratin-positive carcinoma cells are 
observed in the surgical specimen of human brain metastasis. ( g ) Reactive microglia (CD11b and 
CD45;  red ) surround the metastases in the mouse cerebral cortex. ( h ) In the human brain metastases 
tissues, CD68-positive microglia/macrophages co-localize to the islands of astrocytes       
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cancers, certain sarcomas, testicular and germ cell tumors and less frequently can-
cer of the colon, ovaries and prostate. Based on clinical observations, different 
latency for brain metastasis progression had been observed depending on primary 
tumor sites. For example, lung cancer patients develop brain metastases rapidly, 
simultaneously with or within the  fi rst 2 years after primary tumor diagnosis; brain 
metastases in breast cancer patients appear as a late event in the course of the dis-
ease, after the development of systemic metastases and multiple rounds of chemo-
therapy  [  10  ] . Two hypotheses have been generated to explain the late formation of 
brain metastases: (1) the brain microenvironment expresses factors that might delay 
the outgrowth of the metastases (parallel progression model), and (2) brain metasta-
ses derive from other metastases (linear progression model) (reviewed by  [  11  ] ). 

 Intravital microscopy has demonstrated that tumor cells, after extravasation, 
crawl on the outside of blood vessels, the perivascular niche. Figure  2.2  presents 
immunostaining to characterize the blood vasculature and the brain microenviron-
ment interaction with metastatic cells. The metastatic lesions (cluster of blue nuclei 
stained with DAPI) grow along blood vessels (CD31 in red), which appear more 
dilated compared to the blood vessels in areas of normal brain. For breast and lung 
cancer and melanoma cell lines, tumors elongate on the blood vessel surface, using 
integrins for attachment. Tumor cells move along these “highways” and proliferate 
along the way. Human brain metastatic specimens from various primary sites also 
showed this vascular association  [  12  ] .  

 Eventually a proliferating mass of tumor cells will encounter the brain paren-
chyma and continue to colonize in this niche. The brain microenvironment is covered 
in detail in Chap.   3    . During metastasis development, the brain parenchymal microen-
vironment is altered by neuroin fl ammation. Microglia (Fig.  2.2g , red) are mac-
rophage-like resident cells of the brain that normally sit behind the BBB to monitor 
synaptic functional status and respond to injury or infection  [  13,   14  ] . Activated 
microglia express higher level of CD11b and CD45 compared to resting microglia 
 [  8,   15  ] . Microglia in close proximity to the metastases can display amoeboid mor-
phology or a dendritic/stellate appearance. When tumor cells embedded in matrix 
were cultured next to a brain slice  ex vivo , microglia accumulated at the point of 
contact, associated with the tumor cells and facilitated their invasion into the slice 
 [  16  ] . Astrocytes form a physical and metabolic support system for neurons while 
releasing communicative transmitters. When activated in neuroin fl ammation, astro-
cytes upregulate expression of glial  fi brillary acid protein (GFAP) intermediate 
 fi laments (Fig.  2.2h  green), nestin and proteases, and shield neurons from oxidative 
and other damage  [  8,   17,   18  ] .  In vitro  co-culture experiments indicate that brain 
metastatic 231-BR cells colonized preferentially in response to astrocyte conditioned 
medium as compared to lung  fi broblast conditioned medium  [  8  ] , suggesting the 
active participation of the neuroin fl ammatory response in brain metastatic coloniza-
tion. The brain microenvironment also contains damaged axons, edema and vascular 
changes. Activation of microglia and astrocytes is seen around and within the lesions. 
Some brain metastases acquire a necrotic core while others do not. This is in keeping 
with the varying roles of angiogenesis, new blood vessel formation, versus co-option 
of the dense vasculature already present. 

http://dx.doi.org/10.1007/978-94-007-5291-7_3
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  Fig. 2.2    Characterization of the microenvironment in mouse models of brain metastasis. ( a  and  b ) 
Immunohistochemistry using CD31 antibody, a marker of endothelial cells, to stain blood vessels 
(brown staining). In ( a ) ,  metastatic lesions (large  gray-blue  nuclei) are growing along dilated blood 
vessels (CD31;  brown ). ( b ) Normal brain parenchyma with no metastases. ( c  to  h ) 
Immuno fl uorescence staining using different markers to characterize the blood vasculature. 
Clusters of cell nuclei stained with DAPI ( blue ) are metastatic lesions; the individual smaller  blue 
dots  are neurons and glial cells. ( c ) Metastatic lesions growing along blood vessels (CD31;  red ). ( d  
and  e ) Every blood vessel (CD31;  red ) is surrounded by a collagen type IV + basement membrane 
( green ), seen as yellow.  e . Larger magni fi cation. ( f ) NG2+ pericytes ( green ) cover blood vessels 
(CD31;  red ). Metastases grow along pericyte-covered blood vessels ( yellow  ). Basement mem-
brane and pericytes are components of the blood–brain barrier. ( g ) CD11b and CD45 double-
stained activated microglia/macrophages ( red ) localize in direct contact with metastases. ( h ) 
Hypertrophic active GFAP + astrocytes ( green ) localized abundantly near metastases. ( i  and  j ) 
Hematoxilin and Eosin staining: metastatic lesions are in  purple . ( i ) Intraparenchymal metastases. 
( j ) Leptomeningeal metastases       
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 The leptomeninges – linings of the brain and cerebrospinal system – comprise a 
third niche for colonization. Figure  2.2i, j  show representative pictures of intra-
parenchymal and leptomeningeal metastases, respectively. In humans, spread to the 
leptomeninges can be accomplished by several routes including hematogenous, 
direct extension from the brain, or from the venous plexus, nerves, perineural/
perivascular lymphatics, or choroid plexus. The cerebrospinal  fl uid (CSF) compart-
ment serves as a microenvironment for leptomeningeal metastases and may be 
altered by immune cell in fi ltration, elevated protein concentrations and reduced glu-
cose concentrations  [  19  ] . When co-cultured with leptomeningeal tissues, metastatic 
melanoma and lung cancer cells invaded into and degraded the leptomeninges, in 
contrast to glioma (primary brain tumor) cells that sat atop the tissue  [  20  ] . This 
observation suggests that glioma and brain metastases, while sharing the same 
“soil”, may be distinct in important facets of their colonization. 

 In addition to the continuously colonizing tumor cells, dormant tumor cells have 
been described in the brain. Using DC-MRI of EGFP labeled 231-BR cells loaded 
with micron sized iron oxide particles, “signal voids,” the size of single tumor cells 
were serially imaged in the mouse brain through an experimental metastasis assay. 
Proliferation of the tumor cells would dilute out the particles to undetectable levels 
and progressive colonization produced a  fl uorescent EGFP lesion. For every overt 
brain metastasis formed, three dormant cells remained  [  21  ] , providing a signi fi cant 
pool of tumor cells to potentially awaken and lead to further relapses (reviewed by 
 [  22  ] ). The existence of a pool of dormant tumor cells in the brain provides the ratio-
nale for whole brain radiation therapy and explains, at least in part, the observation 
that patients with a brain metastasis are at high risk for subsequent development of 
additional lesions. 

 Whether all metastatic tumor cells are capable of spawning a brain metastasis is 
debatable. To successfully form metastases, tumor cells from the primary tumor 
undergo a very inef fi cient cascade of events (extravasation, survival, proliferation). 
Indeed, preclinical studies and clinical observation suggest that only a small propor-
tion of cells escaping the primary tumor will generate metastases. It has been 
hypothesized that this small population of tumor cells constitutes “cancer stem 
cells” or tumor-initiating cells  [  23  ] . These potential cancer stem cells might be able 
to maintain their tumor-initiating and metastasis-initiating capacity at a secondary 
site and therefore create a “metastatic niche”. Another “unknown” is the degree to 
which the brain microenvironment is modi fi ed by systemic factors, known as the 
premetastatic niche in brain metastasis  [  24,   25  ].   

    3   Molecular Pathways Mediating Brain Metastasis 

 Characterization of a limited number of matched sets of primary tumors and brain 
metastases from the same patient has revealed distinctions. Genomic analyses show 
increased rates of genomic alterations. Among the EGFR ( E pidermal  G rowth  F actor 
 R eceptor) superfamily, EGFR was overexpressed in breast and lung cancer brain 
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metastases; in the lung cancer brain metastases multiple aspects of the EGFR pathway 
were up-regulated, including EGFR, phospho-EGFR, and the ligand amphiregulin 
 [  26  ] . HER2 was comparably expressed between primary breast tumors and brain 
metastases, but HER3 was overexpressed in the latter, as well as in lung brain metas-
tases  [  26,   27  ] . Estrogen receptor varied in 26% of matched breast cancer sets  [  28  ] . 
Two DNA repair enzymes, O6-methyleguanine-DNA methyltransferase and ERCC1, 
were overexpressed in lung brain metastases  [  29,   30  ] . The DNA methylation patterns 
of genes such as HIN-1 and RAR-beta were increased in brain metastases  [  31  ] . Among 
unlinked cohorts of brain metastases, low expression of metastasis suppressor genes 
 [  32  ] , apoptotic genes  [  33  ]  and the Notch target HES1  [  34  ]  was reported. Conversely, 
high expression of Hexokinase 2  [  35  ]  and phospho-Stat3  [  36  ]  were observed in brain 
lesions. The microarray data  fi les of these referenced human cohort specimens are 
publically accessible through the Gene Expression Omnibus (GEO) at the National 
Center for Biotechnology Information (NCBI) and, given the scarcity of human sam-
ples, can serve as a valuable resource for hypothesis generation purposes. 

 More commonly, brain-tropic and parental tumor cell lines were pro fi led to 
reveal candidate brain metastasis pathways that were then validated in gene knock-
down or overexpression studies. Many of the genes identi fi ed to date have been 
studied in other metastatic sites. This chapter will focus on those pathways that have 
been validated functionally in brain metastasis model systems. A summary of these 
genes along with a brief description of the functional evidence linking them to brain 
metastasis development is presented in Table  2.1 .  

    3.1   HER2 

 The HER2 ( H uman  E pidermal Growth Factor  R eceptor) tyrosine kinase receptor is 
an oncogene, belonging to the EGFR superfamily. Its overexpression and/or gene 
ampli fi cation occurs in about 25% of primary breast carcinomas and it is a validated 
marker for breast cancer prognostic and therapeutic guidance  [  37,   38  ] . HER2 
homodimerizes or heterodimerizes with other superfamily members. Up to 38% of 
advanced HER2+ breast cancer patients will develop brain metastases  [  39,   40  ] . 
HER2 gene ampli fi cation and/or overexpression in breast cancer has been associ-
ated with increased cell proliferation, cell motility, tumor invasiveness, metastases 
development, angiogenesis, and reduced apoptosis  [  41  ] . Trastuzumab is a recombi-
nant monoclonal humanized murine antibody targeting the extracellular domain of 
HER2. It has activity in combination with chemotherapy in the adjuvant and meta-
static settings for breast cancer. Lapatinib is a small molecule, competitive tyrosine 
kinase inhibitor that binds reversibly to the cytoplasmic ATP binding site in the 
kinase domains of EGFR and HER2  [  42  ] . It is approved for metastatic breast cancer 
patients following trastuzumab therapy, in combination with capecitabine, the prod-
rug of 5- fl uorouracil that blocks DNA synthesis. 

 The incidence of brain metastases in HER2+ metastatic breast cancer patients, 
currently 38%, is high and may be rising. The reasons for the increase in brain 
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metastasis incidence in HER2+ metastatic breast cancer patients are likely 
 complex and include (1) protection from drug entry by the BBB, (2) improved 
treatment of systemic disease by trastuzumab, prolonging survival and unmask-
ing a new population of patients with brain metastases, and (3) HER2 overex-
pression itself induces a more aggressive brain metastatic phenotype. 

 The brain is protected by the BBB, described in Chap.   4    . The limited disruption 
of the BBB by a developing brain metastasis may be particularly acute for the entry 
of large therapeutics such as trastuzumab. In patients, trastuzumab levels in CSF has 
been shown to be 300-fold lower than those in plasma  [  43–  45  ] , creating a “sanctu-
ary site” from chemotherapy in the brain. Preclinical studies, using experimental 
models of brain metastases from breast cancer demonstrated that lapatinib, had only 
limited access to the brain. As compared to paclitaxel (widely used mitotic inhibitor 
blocking cell division by stabilizing microtubules) the uptake of lapatinib in experi-
mental brain metastases was greater, with 17% of the lesions demonstrating drug 
uptake comparable to systemic lesions and 70% with 5-fold improved uptake over 
normal brain  [  46  ] . Thus, even a “brain-permeable” therapeutic may be only par-
tially available to brain metastatic tumor cells. 

 The functional role of HER2 overexpression in brain metastasis development 
was investigated in a preclinical model. Brain metastatic 231-BR breast cancer 
cells were transfected to overexpress HER2. In hematogenous brain metastasis 
assays, both vector and HER2 transfectants produced the same number of micro-
metastases, however the HER2 expressing clones induced a 2.5- to 3-fold increase 
in the number of large metastases  [  5  ]  demonstrating that HER2 overexpression 
promotes the outgrowth of tumor cells in the brain. The functional role of HER2 
overexpression was con fi rmed using lapatinib in preclinical experiments. When 
given early after tumor cell injection, lapatinib prevented the formation of 
231-BR-HER2 large brain metastases by 53%, while it prevented by only 17% the 
formation of 231-BR (without HER2 overexpression) large brain metastases. 
Lapatinib induced a signi fi cant decrease in staining for phospho-HER2 (i.e. 
decrease in HER2 activation), indicating that the drug hit its target  [  47  ] . However, 
phospho-Akt, a marker of cell survival, remained expressed in 36% of the meta-
static lesions after lapatinib treatment  in vivo , suggesting that additional brain-
permeable drugs will be needed for complete prevention (Gril et al., unpublished 
observation).  

    3.2   VEGF 

 The brain is a very well vascularized organ (see Chap.   3     for a detailed discussion of 
the brain microenvironment). In general brain metastases have fewer vessels that 
are more dilated, with prominent peritumoral edema compared to normal brain 
parenchyma. The contribution of the existing, remodeled or new vasculature to a 
developing brain metastasis is therefore complex. 

http://dx.doi.org/10.1007/978-94-007-5291-7_4
http://dx.doi.org/10.1007/978-94-007-5291-7_3
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 Multiple active processes affect brain metastasis vasculature. Angiogenesis, the 
creation of new vessels, is fueled by Vascular Endothelial Growth Factor (VEGF) as 
well as other angiogenic factors. Vascular co-option is the use of the existing vascu-
lature; it facilitates tumor growth in the brain, and allows proliferation of tumor 
cells along the periphery of existing blood vessels  [  1,   48,   49  ] . The existing vascula-
ture can also be remodeled. Mechanisms of vascular branching and outgrowth, that 
are not speci fi c to brain metastasis but can occur, include vascular intussusception, 
vasculogenic mimicry  [  49  ] , and vasculogenesis  [  1  ] . 

 Angiogenesis is controlled by intracellular and extracellular signals within the 
brain parenchyma. Cellular signals upregulating angiogenesis are typically released 
from hypoxic in fl ammatory or neoplastic cells. Primary angiogenic signals include, 
but are not limited to VEGF-A, VEGF-C, ANG2, FGFs,  a  

v
  b  

3
 , and various chemok-

ines  [  50  ] . Evidence of the clinical signi fi cance of VEGF overexpression for brain 
metastasis development came from an analysis of CSF from 37 patients with lep-
tomeningeal metastases  [  51  ] . There was a 14-fold increase in the median VEGF 
value from the CSF of patients with leptomeningeal metastases, compared to the 
CSF of patients with other neurological diseases  [  51  ] . 

 Investigations of VEGF in mouse models of brain metastatic melanoma have 
further elucidated the role of this gene in brain metastatic progression. In a hematog-
enous model of brain metastatic melanoma the effects of VEGF overexpression 
were compared to the low endogenous levels of the Mel57 cell line. The VEGF 
overexpressing brain metastases were signi fi cantly larger, had higher proliferation 
indices and exhibited a more solid morphology compared to the control lesions, 
which grew in a more in fi ltrative pattern  [  52  ] . 

 Two types of therapeutics are approved for anti-angiogenic therapy. Bevacizumab 
is a monoclonal antibody against VEGF, while a number of small molecules inhibit 
the VEGF receptors (VEGFRs). In a 2010 study by Kienast et al . , VEGF-A was 
inhibited by bevacizumab, resulting in reduced angiogenesis in lung carcinoma 
metastases to the brain. Despite VEGF-A inhibition, the lung carcinoma cells were 
eventually able to proliferate due to co-option of the existing brain vasculature and 
development of capillaries. In contrast, brain metastatic growth of MDA-MB-435 
cells, which do not express the target protein VEGF-A, was unaffected by bevaci-
zumab treatment  [  53  ] . In a hematogenous mouse model of brain metastatic 231-BR 
cells, administration of the VEGFR tyrosine kinase inhibitor vatalanib (PTK787/Z 
222584) resulted in marginally increased survival and a 2.6-fold reduction in brain 
metastasis burden compared to vehicle controls  [  54  ] . This was associated with 
reduced angiogenesis within brain lesions, as well as decreased proliferation and 
increased apoptotic indices  [  54  ] . 

 The variable contribution of angiogenesis to brain metastasis formation may 
impact imaging. In a mouse model of melanoma brain metastasis, Mel57 brain 
metastatic lesions with upregulated VEGF-A contained dilated and permeable 
co-opted vessels at the tumor periphery. This cell line often produced lesions that 
were identi fi able with T1 and T2 weighted images (see Chap.   5     for a detailed 
discussion of imaging modalities), likely due to peritumoral and intra-tumoral 

http://dx.doi.org/10.1007/978-94-007-5291-7_5
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edema. Additionally, these lesions were associated with large amounts of 
 hemorrhage, which may have occurred as a result of vascular permeability. In 
mice with parental Mel57 brain metastasis, the lesions were not visible on MRI. 
The absence of the tumor on MRI may occur because the tumor contains pre-
existing brain capillaries and the BBB is intact. In patients who receive antian-
giogenic therapy it is possible that their brain metastasis may appear invisible 
with MRI due to vessel co-option and not necessarily due to cessation of tumor 
volume  [  55  ] .  

    3.3    a  
v
  b  

3
  Integrin 

 Integrins are transmembrane cellular receptors that bind to the extracellular matrix 
and facilitate cell-cell adhesion. Many different types of integrins exist which bind 
to a variety of extracellular matrix proteins. Integrins contribute to the growth, sur-
vival, and proliferation of the cell  [  56  ] . For example, the  b 1 integrin is involved in 
initiation, proliferation, and metastasis of tumor cells.  b 1 integrin mediates binding 
of tumor cells to the vascular basement membrane, and can facilitate cell prolifera-
tion and brain micrometastases. The interaction of  b 1 integrin and brain vasculature 
has been con fi rmed in mouse models of lymphomas and carcinomas, following 
intraparenchymal injection  [  12  ] . 

 The  a  
v
  b  

3
  integrin supports metastatic growth of neoplastic cells and vasculature 

development in the brain microenvironment in gliomas, metastatic breast cancer 
and melanomas  [  57  ] . Upregulation of  a  

v
  b  

3
  results in adhesion of endothelial cells to 

the extracellular matrix (ECM)  [  50,   57  ] . Tumor cells containing activated  a  
v
  b  

3
  have 

increased VEGF mRNA translation following the release of the eIF4E transcription 
factor. In the brain,  a  

v
  b  

3
  integrin activation precludes tumor cell growth arrest and 

apoptosis associated with hypoxia  [  57  ] . 
 Experimental evaluation and validation of  a  

V
  b  

3
  con fi rms the importance of this 

gene in vascular development in metastatic brain lesions  [  57  ] . To elucidate the diag-
nostic signi fi cance of  a  

V
  b  

3
  in brain metastasis, MDA-MB-435 cells were injected 

intracerebrally into the striatum of CB17/SCID mice. One subset of these cells con-
tained activated integrin (D723R) while another subset contained shRNA mediated 
 a  

V
  b  

3
  gene knockdown. The growth of  b  

3
 D723R cells was markedly increased in 

comparison to  b  
3
  knockdown cells. Integrin activation markedly increased the 

growth of the implanted tumors, resulting in greater blood vessel density, new ves-
sel formation, and metastatic growth of tumor cells in the brain. Additionally, 
 b  

3
 D723R tumors lacked large regions of hypoxia that contributed to tumor cell pro-

liferation. In normoxic tumor conditions,  b  
3
 D723R cells expressed higher levels of 

VEGF than  b  
3
  knockdown cells. Given the heterogeneity of phenotypic outcomes 

with VEGF in brain metastasis, the role of this integrin in additional model systems 
is awaited. Development of  a  

v
  b  

3
  as a therapeutic target may serve as a vehicle to 

control angiogenesis in these metastatic lesions  [  57  ] .  
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    3.4   Transcription Factors 

 Transcription factors are proteins that control the expression of speci fi c target genes 
by facilitating RNA polymerase binding at the target gene promoters. To date, three 
categories of transcription factors have been characterized: (1) steroid receptors 
which are present at the cell membrane and translocate to the nucleus following 
ligand binding, (2) resident nuclear proteins which are present in the nucleus and 
are activated following signaling, and (3) latent transcription factors. Latent tran-
scription factors are located in the cytoplasm prior to activation by a signaling cas-
cade. Following activation, they translocate to the nucleus to mediate transcription 
 [  58  ] . Interestingly, the transcription factors that have been found to associate with 
brain metastases are resident nuclear proteins or latent transcription factors whereas 
the steroid receptors (such as the estrogen receptor) are the only ones that have been 
successfully targeted pharmacologically  [  59  ] . 

 Notch, a transmembrane receptor that undergoes proteolytic cleavage to generate 
an intracellular fragment with transcriptional activity, has been hypothesized to be 
involved in the maintenance of cancer stem cells during tumor growth and develop-
ment, thereby promoting tumor growth and an aggressive phenotype. Supporting 
this hypothesis, analysis of Notch1 expression in 295 breast cancer patients from 
the Netherlands Cancer Institute found elevated expression of Notch1 was associ-
ated with a 23% decrease in overall survival  [  60  ] . The four known human Notch 
proteins (Notch 1 – Notch 4) are transmembrane receptors activated by binding to 
one of  fi ve ligands (Jagged 1, Jagged 2, Delta-like 1, Delta-like 3, and Delta-like 4) 
(Fig.  2.3 ). Upon ligand-Notch binding, Notch undergoes a series of proteolytic 
cleavages,  fi rst by one of the ADAM proteins and then twice by  g -secretase. These 
cleavages generate an intracellular protein fragment known as the Notch intracel-
lular domain (NICD), which can translocate to the nucleus and induce transcription 
 [  61,   62  ] . Two Notch-target genes commonly used to assess Notch transcriptional 
activation are Hey1 and Hes1.  

 When comparing brain metastatic 435-BR cells to the parental MDA-MB-435 
(435-P) cell line via microarray, Nam et al. found that Jagged2 and the  g -secretase 
catalytic domain presenilin1 were increased in expression, suggesting a role of the 
Notch pathway in the development of brain metastases. The Notch regulated genes 
Hey1 and Hes1 were also found to be upregulated in the 435-BR cells while the 
NICD was upregulated in both the 435-BR and 231-BR cell lines relative to their 
parental counterparts, indicating an increase in Notch1 activity in brain-tropic breast 
cancer cell lines  [  60,   63  ] . 

 Experimental data indicates that Notch signaling is involved in cell migration, 
invasion, and proliferation. All three of these metastatic phenotypes are reduced 
 in vitro , when Notch is targeted by either shRNA or the  g -secretase inhibitor 
N-[N-(3,5-Di fl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in 
brain metastatic 231-BR or 435-BR cells  [  60,   63  ] . While it is clear that Notch1 is 
increased in these experimental brain metastasis models, the molecular mechanisms 
by which the protein affects migration, invasion and proliferation, remains to be 
determined. 
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 Following the evidence from their  in vitro  studies, McGowan et al .  determined 
whether Notch affects the development of brain metastases  in vivo.  Using the 231-
BR brain metastasis assay, DAPT treatment, starting day 14 post-injection, resulted 
in a 25% reduction in the number of both large metastases and micrometastases. 
Furthermore, shRNA-mediated Notch1 knockdown caused a greater than 75% 
decrease in large metastases and micrometastases compared to the scrambled shRNA 
control  [  60  ] . 

 Because Notch1 inhibition was ef fi cacious both when started at the time of injection 
(via shRNA) and when acting on established lesions (via DAPT treatment) the tran-
scription factor likely has roles in both the initial colonization and the outgrowth of 
brain metastases as well as the growth and maintenance of brain metastases (Fig.  2.3 ). 

  Fig. 2.3    The involvement of Notch signaling in the development of brain metastases. Following 
binding to a delta-like (DLL) or jagged receptor on an opposing cell, Notch under goes a series of 
proteolytic cleavages to generate the Notch intracellular domain (NICD). NICD then translocates 
to the nucleus where it can regulate transcription. Implicating the importance of Notch 1 signaling 
in the development of brain metastases, knockdown of expression with shRNA constructs or inhi-
bition of signaling with the compound DAPT both signi fi cantly reduced the development of brain 
metastases in murine models       
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 Both principles lend to the use of  g -secretase inhibitors in patients with brain 
metastases although caution is still advised in extrapolating the results from a non-
clinical candidate molecule such as DAPT to clinical inhibitors. We found that the 
Roche Ro4929097  g -secretase inhibitor did not prevent brain metastasis formation 
in the 231-BR model ( [  64  ] , Evans et al . , unpublished observation), suggesting that 
DAPT may have off target effects. Additionally, not all brain metastases may 
respond to inhibition of  g -secretase. In contrast to the breast cancer model, brain 
metastases from colorectoral cancers may have decreased Notch signaling relative 
to the primary tumors as determined by decreased Hes1 expression  [  65  ] . 

 A second transcriptional pathway active in brain metastasis formation is Wnt/ 
b -catenin. Activation of Wnt signaling and  b -catenin occurs in many cancer subtypes 
and may be a common event in brain metastases. During activation of the canonical 
Wnt signaling cascade,  b -catenin translocates from the cytoplasm to the nucleus 
where it can bind to T-cell Factors (TCFs)/lymphoid enhancer binding factors (LEFs), 
inducing transcription  [  66  ] . To date, 4 TCF genes have been identi fi ed in humans – 
TCF1, TCF3, LEF1, and TCF4. TCF3 acts solely as an inhibitor of the Wnt/ 
b -catenin pathway whereas LEF1 is solely an activator. TCF1 and TCF4 have been 
shown to serve as both activators and repressors of Wnt/ b -catenin responsive genes. 
(Reviewed in  [  67  ] ). 

 To determine whether Wnt/TCF signaling was involved in the development of brain 
metastases from lung cancer, Nguyen et al. analyzed TCF activity using a luciferase 
reporter assay  [  68  ] . Both the brain-tropic H2030-BrM3 cells and PC9-BrM3 cells 
exhibited greater activity than their parental counterparts. When TCF4 activity was 
inhibited in the brain tropic cells by transfection of a “dominant negative” (function 
inactivating) TCF4 construct, there was an increase in metastasis-free survival to all 
metastatic sites, including the brain. Knockdown of the Wnt3A targets LEF1 and 
HOXB9 via shRNA in the H2030-BrM3 and PC9-BrM3 cells also increased metasta-
sis-free survival suggesting they are potential downstream targets of TCF4  [  68  ] . 

 A second role for the Wnt/ b -catenin pathway may involve the microenviron-
ment. The in fi ltration of activated microglia into a breast cancer metastasis has been 
documented in both animal models and human metastases  [  8  ] . Placing a tumor plug 
of MCF-7 breast cancer cells next to a brain slice, microglia were found to migrate 
to and in fi ltrate the tumor cells. Interestingly, when slice co-cultures were performed 
in the presence of the Wnt inhibitor DKK-2, there was a signi fi cant decreased in 
MCF-7 cell invasion into the brain slice. Although not conclusive, these results sug-
gest that Wnt may play a role in invasion. 

 In addition to the canonical pathway, there is also evidence that  b -catenin indepen-
dent Wnt signaling pathways may be involved in brain metastasis development. 
Alternative Wnt signaling pathways include a Wnt/Ca2+ cascade and the receptor 
tyrosine kinase-like orphan receptors (ROR) 1 and 2. When Klemm et al .  examined 
 b -catenin expression in breast cancer brain metastases, they found it was not nuclear in 
the majority of samples. Analysis of human brain metastases relative to MCF-7 breast 
carcinoma cells found Wnt5a and Wnt5b, were upregulated 1.4-fold, and 2.9-fold, 
respectively. ROR-1 and ROR-2 were upregulated 3.3-fold and 20.2 fold relative to 
MCF-7 suggesting the involvement of  b -catenin independent Wnt signaling  [  69  ] . 
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 In conclusion, the exact effects of  b -catenin dependent and independent Wnt 
signaling on the development of brain metastases have yet to be determined but 
may in fl uence tumor cell invasion through activation of microglia in the neuronal 
microenvironment. 

 A third transcriptional pathway involved in brain metastasis is the Signal transducer 
and activator of transcription 3, more commonly known as STAT3. Genes regulated by 
STAT3 are involved in a variety of functions including cell proliferation, survival, 
angiogenesis, metastasis and immune response  [  70  ] . Canonical cascade activation 
occurs when intracellular JAK kinases activate STATs by phosphorylation. Activated 
STATs are able to translocate to the nucleus where they can regulate transcription  [  71  ] . 
Increased expression and activation is often associated with an upregulation of known 
activators, such as EGFR, Src, IL6 receptors, and G-coupled protein receptors, or with 
the downregulation of known inhibitors, such as SOCS (Suppressor of cytokine 
 signaling), PIAS (Protein inhibitors of activated STATs) and SHPs (Scr-homology 2 
 (SH2)-containing protein tyrosine phosphatases)  [  72,   72  ]  (Fig.  2.4 ).  

  Fig. 2.4    The involvement of STAT3 in the development of brain metastases. Following ligand 
binding with its receptor tyrosine kinase (RTK), the complex recruits and activates JAK. JAK then 
phosphorylates STAT3. Upon activation of STAT3 by JAK, the protein translocates to the nucleus 
where it can regulate transcription of various proteins. STAT3 expression has been found to 
increase the development of brain metastases, whereas inhibition of STAT3 using either physiolog-
ical (SOCS-1) or pharmacological (WP1193) means has the opposite effect. STAT3 activation has 
also been associated with an increase in BCL-2 expression (indirectly) and a decrease in caveolin 
expression (directly through binding to the promoter), and decreases apoptosis and increases 
invasion of cancer cells, respectively       
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 Clinical data indicates that STAT3 may be involved in the development or mainte-
nance of brain metastases. Analysis of phospho-STAT3 demonstrated increasing STAT3 
activation with breast cancer aggressiveness, from 22% strongly positive in noninvasive 
ductal carcinomas in situ to 32% in in fi ltrating ductal carcinomas and 68% in brain 
metastases  [  73  ] . Analysis of primary melanoma and brain metastases from patients also 
found a 57% increase in strong phospho-STAT3 staining in the brain metastases  [  36  ] . 

 The experimental brain metastasis data, like the human data, showed compelling 
evidence for the involvement of STAT3 in brain metastases. Comparing a brain-tropic 
A375 melanoma cell line to the parental line (A375-BR vs. A375-P), the authors 
found that mice injected with A375-BR did not survive past day 60 and 100% of mice 
developed brain metastases; in comparison, mice injected with the parental cells were 
still alive at day 90, without developing brain metastases. Following overexpression of 
STAT3 in the A375-P cell line, incidence of brain metastases rose from 0 to 60–100%. 
Conversely, when a dominant-negative STAT3 was overexpressed in the A375-BR 
cell line, the incidence of brain metastases decreased from 100 to 20% or less. The 
authors also analyzed another brain metastatic melanoma cell line TXM-18, in which 
expression of the dominant-negative STAT3 decreased the incidence of brain metasta-
ses from 100 to 40% or less  [  36  ] . Additionally, inhibiting activation of STAT3 by 
overexpressing its inhibitor SOCS-1 reduced the incidence of brain metastases by 
50–78.8% in A375-BR cells and completely inhibited formation in the 231-BR cell 
line  [  74  ] . Due to potential artifacts in incidence data from failed injections, an analysis 
of brain metastasis numbers is awaited. 

  In vitro  evidence suggests that STAT3 may control brain metastasis by inhibiting 
the gene expression of caveolin-l, thereby promoting cell invasion. Caveolin-1 was 
shown to be inversely correlated with STAT3 activation in a variety of breast cancer 
cell lines and normal mammary epithelial cells and STAT3 binding at the caveolin 
promoter prevents transcription of this potent inhibitor of cell invasion  [  73  ] . STAT3 
may also promote tumor cell survival following chemotherapy through upregulation 
of Bcl-2  [  75  ] , which in turn inhibits proteins known to induce apoptosis (reviewed 
in  [  76  ] ). Con fi rmation of these potential mechanisms  in vivo  is awaited. 

 Multiple mechanisms have been employed to inhibit STAT3 (Fig.  2.4 ). The current 
strategies include inhibiting the upstream receptor tyrosine kinase receptors, thereby 
inhibiting STAT3 activation, nuclear translocation, and DNA binding. To date, how-
ever, each strategy has had its share of dif fi culties and downfalls  [  70  ] . WP1193 was 
identi fi ed as a third generation, BBB permeable STAT3 inhibitor, which has shown 
synergistic effects with interferon alpha treatment in a B16 melanoma cell brain 
metastases model, but was without signi fi cant activity as a single agent  [  77  ] .  

    3.5   COX-2 and ST6GALNAC5 

 Cyclooxygenase-2 (COX-2) is an inducible isozyme, responsible for prostaglandin 
production during in fl ammation. COX-2 has well documented roles in promoting 
tumor progression and metastasis (reviewed by  [  78  ] ). Of particular interest is the 
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fact that prostaglandin production during in fl ammation has been reported to increase 
BBB permeability  [  79  ] . ST6GALNAC5 is a relatively unstudied sialyltransferase, a 
group of enzymes which transfer sialic acid to oligosaccharides. In this way, 
ST6GALNAC5 appears to modify proteins and lipids on the cell surface, which in 
turn can alter both cell-cell and cell-ECM interactions  [  80  ] . 

 Overexpression of COX-2 was identi fi ed as part of a 17-gene signature predictive of 
brain relapse in a cohort of 368 annotated breast tumors, in which COX-2 overexpres-
sion was a signi fi cant independent predictor  [  81  ] . ST6GALNAC5 was found to be 
highly upregulated in cell lines selected for brain metastatic growth, such as brain 
metastatic 231-BR cells and patient-derived CN34 cells. In these brain-tropic deriva-
tives, ST6GALNAC5 was overexpressed 30-fold and >100-fold respectively, compared 
to the parental cell lines. The gene was also highly overexpressed in two additional 
pleural-derived samples, 95-fold and 72-fold, after just one round of  in vivo  selection 
in mice for brain tropism. This rapid and striking upregulation of ST6GALNAC5 is 
intriguing, and suggests that overexpression of this relatively unknown gene may be 
bene fi cial to cancer cell survival for outgrowth in the brain microenvironment. Based 
on preliminary evidence, ST6GALNAC5 may also be highly overexpressed in at least 
a subset of clinical breast cancer brain metastases (and possibly some lung metastases), 
while it is virtually absent in bone and liver metastases  [  81  ] . 

 ShRNA-mediated COX-2 knockdown in brain metastatic 231-BR and patient-
derived CN34 cells signi fi cantly increased brain metastasis-free survival (p = 0.02 
and p < 0.00001, respectively) compared to control shRNAs. Similarly, knockdown 
of ST6GALNAC5 in CN34 cells also increased brain metastasis free survival 
(p = 0.0001)  [  81  ] . Brain metastasis free survival was further increased by adding 
cetuximab, an EGFR inhibitor, to the ST6GALNAC5 knockdown group (p = 0.02 
compared to ST6GALNAC5 knockdown alone), suggesting potentially additive 
effects of ST6GALNAC5 and EGFR functions in brain metastasis development. 

 These  fi ndings suggest potential rationale in targeting COX-2 and ST6GALNAC5 
for prevention or treatment of brain metastasis. However, despite the intriguing dis-
covery that COX-2 overexpression might mediate brain metastasis development, 
and the availability of COX-2-speci fi c inhibitors, no preclinical or clinical data on 
brain metastases exists today. Also, there are currently no strategies for targeting 
ST6GALNAC5.  

    3.6   PEDF 

 Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein and a non-
inhibitory member of the SERPIN, serine protease inhibitor gene family. PEDF 
had been shown to possess a wide range of functions such as tumor suppressive, 
neuroprotective, anti angiogenic, anti oxidative, and anti in fl ammatory properties 
 [  82–  84  ] . More recently, PEDF had been shown to play a protective role against 
brain metastases of breast cancer, acting simultaneously as a pro apoptotic factor for 
cancer cells and a neuroprotector in the brain microenvironment. 
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 PEDF’s association with brain metastases of breast cancer was shown using a gene 
expression analysis comparing resected breast cancer specimens. PEDF mRNA 
levels were downregulated by approximately 14-fold in resected human brain 
metastases of breast cancer compared to unlinked primary breast tumors  [  35  ] . To 
evaluate the hypothesis that PEDF could have speci fi c implications in brain metas-
tasis protection, different breast cancer cell lines (231-BR and 4 T1-BR) and mouse 
models were studied  [  85  ] . Overall, signi fi cant decreases in the number of large 
metastases and in the number of proliferating cancer cells was observed in the mice 
injected with PEDF-expressing clones compared to vector controls. 

 Perhaps the most unique aspect of PEDF is its simultaneous neuroprotective 
activity, which is hypothesized to be mediated by different cellular receptors. 
Investigation of neuronal damage using silver staining and  fl uorojade-B staining 
showed that the intracranial injection of cancer cells induced a 15-fold increase in 
neuronal damage surrounding the brain lesion, compared to a saline control injec-
tion. A 3.5-fold diminution in neuronal damage was observed in the brains of mice 
injected with the cancer cells expressing PEDF compared to the mice injected with 
the vector transfected cancer cells. 

 These results indicated that PEDF can simultaneously act to promote neuronal 
survival while activating cell death in cancer cells in the brain. The tumor-suppressive 
properties were not speci fi c to the brain microenvironment as it can affect cancer 
cells in other organs. However, the neuroprotective effect of PEDF is an important 
advantage for the management of brain metastases, because patients with brain 
metastases undergo signi fi cant cognitive declines associated with brain metastatic 
disease itself or treatments. Therefore, further investigating the use of PEDF as a 
potential factor for the treatment of brain metastases seems pertinent. 

 PEDF is already under investigation to treat neurodegenerative diseases  [  86  ] . 
However, the development of PEDF as an agent for the treatment of brain metastases 
require further investigations into different aspects of PEDF: the speci fi city of its 
different functional domains, the cell-type-speci fi c activities, its receptor expression 
pattern and mechanism of action, as well as a better understanding of brain perme-
ability to deliver PEDF into the brain microenvironment.  

    3.7   Heparanase 

 Heparanase is a proteolytic enzyme, which cleaves the side chains of heparan  sulfate 
(HS), a component of the extracellular matrix. Since HS plays important roles in 
cell–cell and cell–ECM interactions, cleavage of HS by heparanase alters the 
 structural integrity of the ECM and releases a multitude of growth factors, chemok-
ines, cytokines and enzymes that are tethered to the ECM and cell surface by HS 
chains. Heparanase is overexpressed in essentially all major types of human cancer: 
carcinomas, sarcomas and hematological malignancies, and is generally associated 
with reduced survival, increased tumor metastasis and higher microvessel density 
(reviewed by  [  87  ] ). In melanoma, speci fi cally, heparanase expression correlates with 
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disease progression: with low levels in normal skin and tumor radial growth phase, 
increased levels in vertical growth phase (9-fold) and the highest levels in metastatic 
melanoma (10-fold), especially brain metastasis (12-fold)  [  88  ] . 

 Heparanase aids invasion of tumor cells into the brain architecture by degrading 
extracellular matrix components and basement membranes during colonization. 
When the effects of heparanase on invasion of B16B15b murine melanoma cells 
were investigated in a brain slice model, recombinant heparanase treatment increased 
invasion in a dose-dependent manner, while pre-treatment with the speci fi c inhibi-
tor, suramin, blocked invasion  [  89  ] . These data suggest that heparanase degrades 
ECM and basement membranes, thereby compromising the structural integrity of 
the brain architecture, ultimately leading to invasion and metastatic spread. 

 Targeted inhibition of heparanase by microRNA-1258 (mir-1258) suppressed 
brain metastasis development in a hematogenous xenograft model of brain metasta-
sis from breast cancer  [  90  ] . Mir-1258 binds to a conserved binding site in the 3 ¢  
UTR of heparanase and represses the enzyme’s expression. Lentiviral expression of 
mir-1258 in brain-tropic 231-BR breast cancer cells resulted in 4-fold fewer brain 
metastases in a hematogenous mouse xenograft model. It should be noted that mir-
1258 is not a speci fi c inhibitor of heparanase, as it is known to regulate the expres-
sion of other key proteins important to metastasis development, such as COX-2, 
MMP-9 and EGFR. 

 In addition to heparanase’s role in invasion, the enzyme has known functions that 
could potentially affect brain metastasis development at multiple steps, including 
shedding from primary tumors by increasing microvessel density (reviewed by 
 [  91  ] ), evasion of immune response by removal of HS-bound cell surface proteogly-
cans  [  92  ] , upregulation of Akt survival signaling  [  93,   94  ]  and by stimulating angio-
genesis  [  95,   96  ] . 

 Because of its multifaceted role in the metastatic cascade, heparanase is currently 
being pursued both as a marker  [  97  ]  and molecular target of metastatic spread. 
A number of targeted approaches against heparanase are under investigation, includ-
ing small molecules, sugar inhibitors, and heparins  [  98  ]  as well as natural product 
inhibitors and neutralizing antibodies.  

    3.8   TGF b  

 Originally described as an inhibitor of malignant transformation, Transforming 
Growth Factor  b  (TGF b ) is now understood to serve as both a tumor suppressor and 
an oncogene depending upon the context of activation  [  99  ] . Three isoforms of TGF b  
have been identi fi ed in human cells and these are known as TGF b 1, 2, and 3. To 
induce signaling, TGF b  binds to a heterodimeric complex of two serine/threonine 
receptors known as TGFR b I and TGFR b II. To date, 7 TGFR b I and 5 TGFR b II 
receptors have been identi fi ed in the human genome  [  100  ] . A third receptor, either 
endoglin or betaglycan, has also been identi fi ed and appears to assist in ligand bind-
ing. Betaglycan promotes TGF b 2 binding to the receptor whereas Endoglin binds 
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TGF b 1 and 2  [  100  ] . Two Endoglin isoforms have been identi fi ed – Endoglin Long 
(L-End) which can bind TGF b  and Endoglin Short (S-End) which cannot bind 
TGF b   [  100  ] . Following ligand binding, the receptors induce phosphorylation of 
Smad2 and Smad3, which can then heterodimerize with Smad4 and translocate to 
the nucleus thereby regulating gene expression  [  101,   102  ] . TGF b  signaling has also 
been shown to act independently of the Smad proteins and signal through common 
signaling mediators such as PI3K/AKT, Ras/ERK, and Src  [  101,   102  ] . Although 
much remains to be elucidated, research indicates that TGF b  may promote brain 
metastatic growth. 

 Using two brain metastatic melanoma cell lines, B16-BL6 and K-1735, Zhang 
et al .  demonstrated that TGF b 2 promotes the development of parenchymal brain 
metastases. The K-1735 cells produced metastases only in the brain parenchyma 
following injection in the intracarotid artery whereas the B16-BL6 cells produced 
only leptomeningeal and ventricle metastases. When secreted TGF b 2 was measured, 
over 50 pg/ml was detected in the K-1735 cells whereas the protein was undetectable 
in the B16-BL6. Following intracarotid injection of B16-BL6 cells overexpressing 
TGF b 2, mice began to develop parenchymal metastases. Decreasing TGF b 2 expres-
sion by approximately 5-fold in the K-1735 cells resulted in a signi fi cant reduction 
in brain metastasis development and an increase in overall survival. Interestingly, 
decreasing TGF b 2 did not induce leptomeningeal or ventricle metastases in the 
K-1735 cell line  [  103  ] . Taken together, these results suggest TGF b 2 may be impor-
tant in the development of parenchymal metastases. 

 Further implicating the TGF b -mediated signaling pathway in the development of 
brain metastases, Oxmann et al. found an approximately 100-fold increase in Endoglin 
RNA expression in the brain metastatic 231-BR cells relative to the parental 231-P 
cells. Con fi rming these results, protein levels were undetectable in the 231-P cells 
whereas the brain metastatic 231-BR cells expressed substantial amounts of Endoglin 
protein. When both the L-End and S-End were exogenously overexpressed in parental 
231-P cells, only overexpression of the TGF b -binding L-End resulted in increased 
TGF b 1-dependent invasion phenotypes  in vitro.  Consistent with a role of Endoglin in 
tumor cell invasion, when cancer cell spheroids were incubated on brain slices, the 
L-End overexpressing 231-P cells remained attached to the neuronal tissue and invaded 
into the slices whereas the control 231-P cells dissociated from the slice  [  104  ] . 

 Currently, a number of large and small molecule inhibitors to target TGF b  are in 
clinical development  [  106  ] . However, to date, no targeted TGF b  therapies have 
been shown to be BBB permeable or tested preclinically in brain metastases.   

    4   Conclusions 

 Brain metastases appear as a devastating  fi nal event in the progression of cancer. 
Not only do they affect physical functions of patients but they also induce severe 
cognitive impairments. Brain metastases are expected to increase in incidence as 
chemotherapies improve and lead to better systemic disease control. This chapter 
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largely summarized studies on brain metastases from breast cancer, lung cancer and 
melanoma, as those primary tumors are the major contributors of brain metastasis 
cases. However, it is noteworthy to mention that the rise in brain metastasis inci-
dence is now also observed in various cancer types such as renal cell carcinoma, 
prostate and gastrointestinal cancer  [  106–  108  ] , as systemic treatments prolong 
patient life span. 

 Basic and translational research, supported in some cases by clinical observa-
tions, reveal important underpinnings of the brain metastatic process. However, 
despite those advances, a better understanding of the mechanism underlying brain 
metastatic progression and its interaction with the brain microenvironment is needed 
to develop ef fi cient therapies. The brain offers a unique microenvironment in which 
the BBB appears as a major obstacle for drug delivery. Therefore, deciphering the 
mechanism of BBB permeability is one of the priorities of the  fi eld. Meanwhile, 
preventive approaches for the development or the progression of brain metastases 
seem the more immediate possibility for clinical application. Close collaboration 
between researchers and medical oncologists will be needed to address these 
challenges brought on by this growing and incurable disease.      
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  Abstract   The incidence of brain metastasis is increasing, however, little is known 
about the molecular mechanisms responsible for metastasis of peripheral tumor 
cells and their colonization of the brain. After tumor cells metastasize to the brain, they 
encounter a completely different microenvironment from that in the periphery. The 
interactions between tumor cells and glial cells, mainly astrocytes and microglia, 
including soluble factors released from these cells, are still under investigation. 
However this knowledge will contribute to understanding the mechanisms of cell-cell 
interactions in the brain and identify possible therapeutic targets on resident brain 
cells that could effect brain metastasis formation and treatment. In addition to the 
complex interactions between metastatic tumor cells and the brain’s resident cells, 
factors from endothelial cells and endogenous plasma factors also affect the blood-
brain barrier and may change tumor cell characteristics. Therefore the totality of the 
brain microenvironment must be considered. The cell types and soluble factors that 
contribute to the brain microenvironment surrounding metastatic tumor cells are 
discussed herein.      

    1   Introduction 

 In the metastatic process, the microenvironment of the metastatic site plays an 
important role in tumor cells invasion and proliferation in the target tissues  [  1  ] . Such 
a microenvironment contains many resident cell types in addition to tumor cells as 
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well as migratory hematopoietic cells. In the brain or central nervous system (CNS) 
the microenvironment is composed of neurons and glial cells (microglia, astrocytes, 
and oligodendrocytes). Endothelial cells and pericytes that compose the blood-brain 
barrier (BBB) are also present. 

 In the CNS, activated glial cells contribute to the innate immune response 
and produce a large variety of different in fl ammatory mediators as a chronic 
in fl ammatory reaction  [  2  ] . A similar mechanism could function in mediating tumor 
cell survival, proliferation and colonization, and invasion and motility in the 
microenvironment of brain metastases  [  3,   4  ] . The involvement of brain-resident 
and in fi ltrating cells in the pathology of primary and metastatic brain tumors is 
poorly understood. Therefore, a better understanding of the tumor microenviron-
ment in the brain and interactions between each cell type is necessary. Accordingly, 
some of the known interactions between metastatic tumor cells in the brain and 
different stromal cells were already described  [  5  ] . These understandings and addi-
tional information would be expected to contribute to the development of improved 
therapies for brain metastasis that are urgently needed due to poor treatment options 
for these malignancies. 

 Experimental models of brain metastasis will aid in our study of the brain as a 
microenvironment to support metastatic growth (see Chap.   2     for a discussion of 
experimental models of brain metastasis). In brain metastasis mouse models using 
human lung cancer cell lines, tumor cells metastasized to whole regions of the brain. 
At 3 weeks after the inoculation of tumor cells into the cardiac ventricle, metastatic 
foci were found in midbrain-lateral cortex (Noda, unpublished observation). At 4–6 
weeks, metastatic foci of various sizes were found throughout the brain. It is important 
to understand the interactions between invaded tumor cells and resident brain cells 
to understand how tumor cells grow and rapidly colonize the brain. Similar results 
were seen with breast cancer brain metastasis models  [  4,   6  ] . Further, this under-
standing could help prevent the growth of metastatic tumors in the brain. In this chapter, 
cell types in the brain are de fi ned, pathology of invaded tumor cells and surrounding 
cells are described and the interactions between tumor cells and individual resident 
brain cells are discussed.  

    2   Cell Types in the Brain 

    2.1   Neurons 

 Neurons are the fundamental cells in the brain and all other cells are mainly devoted 
to the support of neurons. This traditional concept is, however, only partially correct 
under certain physiological condition, especially from a synaptic point of view  [  7  ] . 
Under many pathological conditions, including brain metastases, neurons are dam-
aged and destined to die, leading to neuronal loss. The fate of damaged neurons is 
controlled by interactions between the metastatic tumor cells and neuron-supporting 
cells, mainly glial cells.  

http://dx.doi.org/10.1007/978-94-007-5291-7_2
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    2.2   Microglia 

 In the brain, microglial cells are considered as the pathologic response element 
 [  8–  10  ] . They are sometimes referred to as the macrophage of the brain, however, 
when the brain is damaged, blood monocyte-derived macrophages are also present 
 [  11,   12  ] . Microglial cells are dispersed throughout the entire CNS, exhibiting a 
rami fi ed morphology under normal conditions, and their physiological role is grad-
ually becoming unveiled  [  13  ] . Recently it was shown that microglial processes are 
highly dynamic in the intact brain, suggesting that microglial cells scan the brain 
parenchyma with their processes and potentially shield it from injury  [  14,   15  ] . 
Under pathologic conditions such as a lesion (traumatic brain injury), stroke, neuro-
degenerative disorder or tumor cell invasion, activated microglia migrate rapidly to 
the affected site of the CNS. At the same time, microglial activation is accompanied 
by the release of immunocompetent molecules such as cytokines or chemokines, 
and other molecules such as growth factors  [  16  ] . 

 In brain metastasis mouse models, bigger metastatic foci attracted increased 
numbers of microglia (Fig.  3.1a ). Though the incidence of brain metastasis was dif-
ferent in each mouse, the highest incidence was generally observed in the cerebral 
cortex and the hippocampus  [  17  ] . In the cerebral cortex, less activated microglia 
were often observed around large metastatic foci (Fig.  3.1b ), the reason for this is 
being still interrogated.   

    2.3   Astrocytes 

 Among the glial cells, astrocytes are the characteristically star-shaped cells in the 
brain and are the most abundant glial cell population. Astrocytes play an important 
role in maintaining homeostasis of the brain  [  18  ] , including biochemical support of 

  Fig. 3.1    In a mouse xenograft model of brain metastasis, microglia accumulate around lung cancer cells 
in the brain parenchyma. ( a ) Typical example of microgliosis ( green ) around the tumor ( red ), and 
microglia accumulate in relation to the size of the metastatic foci.  Red ; cytokeratin.  Green ; Iba1. ( b ) 
Typical example showing that more microglia accumulated around metastatic foci in the hippocampus 
than in the cerebral cortex. Staining antibodies the same as in (a) (Reproduced from Noda et al. 2009)       
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endothelial cells that form the BBB, provision of nutrients to the nervous tissue, 
maintenance of extracellular ion balance, and they also play a role in the repair and 
scarring process of the brain and spinal cord following traumatic injuries. Recently, 
the function of astrocytes has been reconsidered, and they are now thought to play 
a number of active roles in the brain as well, including the secretion or absorption 
of neural transmitters and maintenance of the BBB  [  13  ] . Astrocytes, therefore, may 
be considered one of the most in fl uential cell types in the brain, and they interact 
with metastatic tumor cells. In brain metastasis mouse models using lung cancer 
cells, glial  fi brillary acidic protein (GFAP)-positive astrocytes, so-called “activated 
astrocytes”, accumulated according to the size of the metastatic tumor  [  19  ] . 
Similarly, accumulation of astrocytes around brain metastases was also observed in 
surgical specimens from breast cancer patient craniotomies  [  4  ]  and autopsy cases 
from a number of primary tumor types  [  20  ] . These observations suggest that astro-
cytes may be essential to metastatic tumor cells in the microenvironment of brain 
metastases.  

    2.4   Oligodendrocytes 

 The main function of oligodendrocytes in the brain is the insulation of axons 
(the long projection of nerve cells)  [  21  ] . The same function is performed by Schwann 
cells in the peripheral nervous system. This functional importance is obvious in 
myelination. Although the role of oligodendrocytes in pathology is unclear, it is 
suggested that they may participate at an early stage in amyotrophic lateral sclerosis 
 [  22  ] . The role of oligodendrocytes in brain metastasis is unknown.  

    2.5   Pericytes 

 Pericytes are speci fi cally located surrounding the endothelial cell layer of the 
 capillary network in the brain. Pericytes play an integral role in the maintenance of 
the BBB as well as several other homeostatic and hemostatic functions of the brain 
 [  23  ] . These cells regulate capillary blood  fl ow and BBB permeability, and are 
responsible for clearance and phagocytosis of cellular debris. Pericytes are also a 
key component of the neurovascular unit, which includes astrocytes and neurons 
as well as endothelial cells  [  24  ] . Recent studies suggest that pericytes in the CNS 
are bone marrow derived, although a respective precursor still remains enigmatic 
 [  25  ] . It has also been revealed recently that a lack of pericytes in the CNS can 
cause a breakdown of the BBB and lead to other degenerative changes in the 
brain  [  23,   26,   27  ] . As well as leakage of neurotoxins due to pericyte dysfunction 
and BBB breakdown, a role for pericytes in limiting tumor cell metastasis was 
demonstrated  [  28  ] .   
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    3   Cancer Stem Cells 

 Neoplastic clones are maintained exclusively by a rare fraction of cells with 
stem-like properties, known as cancer stem cells. It is believed that tumors grow 
from a type of “cancer stem cell” that gives rise to other cancerous cells and the 
identi fi cation of brain tumor initiating cells provided insight into human brain tumor 
pathogenesis, giving strong support for the cancer stem cell hypothesis as the basis 
for many solid tumors  [  29  ] . The role of cancer stem cells in the organ tropism of 
breast cancer metastasis as well as brain tumors was recently reported  [  30  ] . 
Additionally, Calabrese et al., reported the existence of a perivascular niche for 
brain tumor stem cells  [  31  ]  and it is tempting to speculate that this niche in the 
microenvironment may also exist for metastatic tumor cells in the brain. Therefore, 
a better understanding of the interactions between cancer stem cells in invading 
tumor cell populations in the brain and other organs is essential for the development 
of novel therapeutic targets for metastatic disease. However, an in depth discussion 
of this is beyond the scope of this chapter.  

    4   Interactions Between Cell Types 

    4.1   Metastatic Tumor Cell-Neuron Interactions 

 The neuronal network in the brain has a highly compact framework devoid of 
large amounts of extracellular space thus the presence of a growing metastatic 
lesion is thought to cause neuronal damage and death as it displaces this network. 
Direct interactions between metastatic cells and neurons have not been fully elu-
cidated, and whether the damage to neurons is the result of direct cell-to-cell 
contact or the result of toxic soluble factors secreted by tumor cells is not known. 
In a model on lung cancer brain metastases, a correlation was observed between 
the size of the metastatic lesion that was present and a vacant area of brain sur-
rounding the lesion, suggesting neuronal loss in the brain (Noda, unpublished 
data). Using an intracranial implantation model with breast cancer cells, neuronal 
death was quanti fi ed by the identi fi cation of Fluorojade-B positive neurons  [  32  ] . 
The injection of the breast cancer cells induced a 15-fold increase in neuronal 
damage compare to a saline control injection  [  32  ] . Similarly,  in vitro  co-culture of 
primary neurons with lung tumor cells or addition of conditioned medium of lung 
tumor cells showed that tumor cells released factors that were toxic for neurons. 
The addition of the lung tumor cells inhibited the survival of primary cultured 
neurons depending on the number of tumor cells (Fig.  3.2 ). When the number of 
lung tumor cells was  fi ve times of that of neurons (T5 in Fig.  3.2a ), the number of 
neuronal cells decreased to almost 50%. Importantly, tumor cell-induced neuronal 
damage may be responsible for cognitive symptoms experienced by some brain 
metastasis patients.   
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    4.2   Metastatic Tumor Cell-Microglia Interactions 

 The importance of microglia in the brain necessitates that these cells would 
interact with invading metastatic tumor cells. In 3 experimental models of brain 
metastasis, activated microglia were seen surrounding single or small clusters of 
tumor cells just 7 days after the tumor cells were injected into the circulation  [  33  ] . 
Exactly what the microglia is doing at the metastatic site is still under investigation. 
In  in vitro  co-culture experiments with lung cancer cells and microglia or just 
by the addition of microglial conditioned medium to the lung cancer cells, tumor 
cell proliferation was signi fi cantly inhibited by unknown microglial factors  [  17  ] . 

  Fig. 3.2    The in fl uence of microglia on the interactions between tumor cells and neurons. ( a ) Lung 
tumor cells inhibited neuronal survival in a dose-dependent manner  in vitro . C; no tumor cells. T1; 
equal amounts of tumor cells and neurons. T5; Fivefold the number of tumor cells compared to 
neurons. T10; Tenfold the number of tumor cells compared to neurons. ( b ) Primary cultured neu-
rons from mouse cerebral cortex ( top left ) were co-culture with tumor cells without microglia 
( bottom left ) or with microglia ( top right ) and microglia and tumor cells ( bottom right ). Neurons 
are seen as MAP2 -positive red staining cells. ( c ) Number of neurons present in each culture from 
(b). Neurons were counted in 4–7 images per condition. *p < 0.05, **p < 0.01.  N  neurons,  T  tumor 
cells,  M  microglia (Modi fi ed from Noda et al. 2009)       
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Importantly, no signi fi cant TUNEL staining was observed in the tumor cells 
exposed to microglial conditioned medium, while BrdU-positive cells decreased 
over time, this suggested that inhibition of tumor cell proliferation by microglial 
factors may due to cell-cycle arrest but not apoptosis  [  17  ] . In contrast, when breast 
cancer cells were grown in soft agar in the presence of microglia, colony formation 
was increased almost  fi vefold compared to breast cancer cells in soft agar alone 
 [  4  ] . These differing effects could be primary tumor cell type speci fi c or result from 
experimental differences, such as purity of the microglial cultures, and should be 
further investigated. 

 Since microglia inhibited the proliferation of lung tumor cells, it could be hypoth-
esized that microglia may rescue damaged neurons and promote their survival. The 
addition of microglia to neurons in the absence of tumor cells did not show any 
signi fi cant effect on the neurons (Fig.  3.2b , Neuron/microglia; N/M in Fig.  3.2c ), 
assessed by counting MAP2 (microtubule-associated protein 2, a neuronal cell 
marker)-positive cells. However, when microglia were added to the co-culture of 
neurons with lung tumor cells (Fig.  3.2b , Neuron/tumor/microglia; N/T/M in 
Fig.  3.2c ), the number of MAP2 positive cells present in the culture was signi fi cantly 
increased compared to the neurons cultured with the tumor cells in the absence of 
microglia (Fig.  3.2c, N /T/M vs N/T). 

 On the contrary, microglia exposed to tumor cell-conditioned medium appeared 
to have a stimulated morphology and increased proliferation (Fig.  3.3 ). This is not 
unexpected as the metastatic lesion is an insult in the brain and should trigger a host 
cell response. In line with this, as noted above, when neurons were cultured with 
tumor cells and microglia, the microglia appeared to support neuronal cell viability 
(Fig.  3.2 ). This suggests that microglia, at least  in vitro , serve in their immune cell 
function rescuing neurons from harm. These results indicate that there are not only 
cell-cell interactions but also complex multi-cell interactions at play in the presence 
of a metastatic lesion in the brain.   

  Fig. 3.3    Cultured mouse microglia with or without tumor-conditioned medium. Microglial cell 
were seeded on 35 mm dish at 8×10 5  cells/dish and were cultured for 2 days after addition of 
medium (control) or tumor cell-conditioned medium       
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    4.3   Metastatic Tumor Cell-Astrocyte Interactions 

 Since astrocytes, in conjunction with microglia, play a critical role in neuronal cell 
survival, it has been postulated that they can also support tumor cell survival in the 
brain. Activated astrocytes produce a number of in fl ammatory cytokines. IL-1, one 
such in fl ammatory cytokine, has been shown to stimulate the growth of tumor cells 
in hepatic and/or lung metastases of melanoma cells  in vivo   [  34–  36  ] .  In vitro,  astro-
cytes through secretion of IL-6, TGF- b  and/or IGF stimulated the growth of a breast 
cancer cell line, which was derived from a brain metastasis  [  37  ] . In brain metastasis 
of melanoma, it was reported that astrocytes produce neurotrophin-regulated hepa-
ranase which was shown to increase tumor cell invasion  [  38,   39  ] . 

 Using lung tumor cells, astrocytes were activated by tumor cell-oriented factors; 
MIF, IL-8 and PAI-1. These activated astrocytes then produced IL-6, TNF- a  and 
IL-1 b , which in turn promoted tumor cell proliferation. The addition of mouse 
recombinant IL-6, TNF- a  and IL-1 b  to human lung cancer cells mimicked the 
effects of activated astrocytes  [  19  ] . Semi-quantitative immunocytochemistry showed 
that expression of receptors for IL-6 and its subunits gp130 on human lung cancer 
cells were up-regulated with time, while receptors for TNF- a  and IL-1 b  were 
down-regulated after co-culture with astrocytes. These results suggest that astro-
cyte-derived in fl ammatory cytokines and their receptors, especially IL-6 receptors, 
may have an important role on the development of metastatic lesions in the brain 
and therefore might be therapeutic targets in brain metastases of lung cancer and 
other cancers. 

 Aside from those mentioned above astrocytes have been also been shown to pro-
duce IL-3, TNF- a , TGF- b , IGF-1 and PDGF  [  40–  43  ] . Among them, it was suggested 
that IL-6, TGF- b  and IGF-1 may contribute to the development of brain metastasis by 
breast cancer cells  [  37  ] . 

 In the human brain, an immunohistochemical study was conducted on the peri-
tumoral gliosis which is produced around hematogenous metastases. Eighty- fi ve 
percent of the cases with metastases showed expression of endothelin-like immuno-
reactivity in the peritumoral astrocytes. Activation of microglial cells was another 
frequent and widespread glial cell alteration around the metastases  [  20  ] . Recently, it 
was also reported that co-culture of human breast cancer cells or lung cancer cells 
with murine astrocytes (but not murine  fi broblasts) led to the up-regulation of sur-
vival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells  [  44  ] . 

 Astrocytes not only interact with and affect tumor cells at the site of metastatic 
growth, they also interact with microglia and neurons at the site. Activated astrocytes 
express glial cell line-derived neurotrophic factor (GDNF) followed by releasing of 
TNF- a  and IL-1 b  by astrocytes then promotes the survival and growth of dopamin-
ergic neurons  [  45  ] . Cultured astrocytes activated by lung tumor cells also express 
GDNF (Noda et al . , unpublished data). Though which factors released from activated 
astrocytes are responsible is unknown, these factors attenuated microglial-tumor 
cell interactions and tumor cell proliferation showed less inhibition with microglia-
astrocyte co-culture medium than that with microglia-conditioned medium alone 



513 The Brain Microenvironment

(Noda et al., unpublished data). There results suggest that there are complicated 
cell-cell interaction between tumor cells and glial cells that remain to be fully 
understood.   

    5   Soluble Factors in the Brain Microenvironment 

 In addition to cell-cell interactions and the soluble factors mentioned above, numer-
ous other soluble factors have been shown to play a role in in fl uencing metastatic 
tumor growth in the brain microenvironment. Bradykinin, a plasma protein, has 
been shown to be involved in tumor metastasis by increasing BBB permeability 
mediated by adenosine 5’-triphosphate-sensitive potassium channel  [  46  ]  and TNF- a  
 [  47  ] , or blood-tumor barrier permeability  [  48  ] . It was suggested that bradykinin, 
acting via bradykinin-2 receptors (B2R), acts as an important signal for directing 
the invasion of glioma cells toward blood vessels  [  49  ] . These results suggest that not 
only brain tumor cells but also invaded peripheral tumor cells may show increased 
chemotaxis in the brain. Therefore, clinically approved B2R antagonists could be 
used as anti-invasive drugs in the future. 

 Recently, the cytokine pigment epithelium-derived factor (PEDF) was shown to 
affect both metastatic tumor cells in the brain and neurons  [  32  ] . PEDF is a secreted 
factor that was down regulated in a cohort of human breast cancer brain metastasis 
specimens compared to unlinked primary tumors  [  50  ] . When breast cancer cells were 
forced to overexpress PEDF and implanted into the brains of nude mice, PEDF express-
ing tumor cells showed increased apoptosis compared to control cells. Additionally, 
when the amount of neuronal damage surrounding the implanted cells was quanti fi ed 
by  fl uorojade B staining, there was a 3.5-fold decrease in damaged neurons surround-
ing the PEDF expressing cells compared to the control cells  [  32  ] . These data suggest 
that restoring the expression of PEDF in metastatic tumor cells might limit their spread. 
Additionally, PEDF peptides, if delivered to the brain, might help alleviate neuronal 
damage and thus cognitive symptoms in brain metastasis patients.  

    6   Summary 

 Figure  3.4  illustrates the cell-cell interactions and their effects discussed herein. 
Much of what was discussed has only been elucidated in the last decade and we still 
have much to learn about the brain microenvironment during metastatic tumor cell 
colonization and growth. Interestingly, competitive cross-species hybridization of 
microarray experiments showed that the brain microenvironment induces complete 
reprogramming of metastasized cancer cells residing there, resulting in a gain of 
neuronal cell characteristics and mimicking neurogenesis during development  [  51  ] . 
This suggests that identifying target molecules on tumor cells that could restrict 
these characteristic changes would be a useful strategy to prevent brain metastasis 
in the future.       
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Abstract      The vasculature within the normal brain is structurally unique compared 
to blood vessels found throughout the rest of the body. This unique structure highly 
regulates which molecules and or drugs can enter into brain tissue. However, when 
a brain metastasis is formed, the vasculature becomes compromised, and as a result 
is much more permissive in allowing molecules and or drugs to move from the 
blood into the brain metastasis. Quantifying these changes allow signi fi cant insight 
into the ability of chemotherapeutics to penetrate into a brain metastasis. Herein, we 
discuss the vascular structural changes that are present within a brain metastasis, 
clinical and preclinical differences between observed permeability in a primary tumor 
and a metastasis, and lastly the most common methods to determine permeability 
changes within a central lesion.   

      1   Blood–Brain Barrier 

 The blood–brain barrier (BBB) is a unique vascular interface which restricts the 
blood to brain paracellular diffusion of numerous drugs  [  1,   2  ] . A hallmark structural 
feature of the BBB is the near complete sealing of the luminal vascular endothelial 
cells by tight junction protein complexes (Fig.  4.1 ). These complexes are made up 
of multiple integral membrane proteins; including claudins 3, 5, and 12, zona 
occludins-1,-2, and -3  [  3  ] , occludin, and intercellular junctional adhesion molecules 
 [  4  ] . The sealing of the luminal endothelial cells of the BBB is so effective that 
transendothelial electrical resistance is orders of magnitude higher than peripheral 
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capillaries  [  5  ] . Further, unlike peripheral capillaries, brain capillaries are distin-
guished by their lack of fenestrations  [  1,   2  ]  and low pinocytic activity. The net effect 
is that in order for a drug to gain access to the central nervous system (CNS) it must 
dissolve or diffuse through the endothelial cell membrane or utilize a transport pro-
tein mechanism  [  2,   6  ] . In addition to the endothelial cells, astrocytic foot processes, 
pericytes, and neuronal input further restricts paracellular diffusion of polar and or 
large molecules between the blood and brain  [  7–  9  ] .  

 To complement the physical barriers of the BBB, there are numerous ef fl ux 
transporters and enzymatic proteins that are highly expressed in the BBB vascu-
lar endothelia, which also constrain the entry of molecules into brain parenchyma 
 [  10–  12  ] . Numerous chemotherapeutics, including paclitaxel and doxorubicin, 
are subject to active ef fl ux transport mechanisms including p-glycoprotein, breast 
cancer resistance protein and the family of multi-drug resistance proteins  [  13, 
  14  ] . Similarly, the BBB is rich in numerous enzymes (e.g., phosphatases), which 
cause biotransformation or inactivation of several molecules including peptides 
and neuropeptides  [  15–  17  ]  as they attempt to cross the BBB into the brain 
parenchyma. 

 While there are signi fi cant restrictions at the BBB that limit brain access for 
drugs, there are pathways that can facilitate brain penetration. The BBB richly 
expresses a number of in fl ux transporters (receptor mediated, facilitated and active 
carrier mediated systems) that selectively move needed nutrients into the brain from 
the vasculature. For example, essential small molecule nutrients such as glucose 
( GLUT1 ) and amino acids ( LAT , cationic amino acid transporter, lactate transporter) 
utilize carrier mediated transporters to enter into brain parenchyma. These com-
pounds would normally have signi fi cantly restricted brain entry because of their 

  Fig. 4.1    Cartoon illustrating the blood–brain barrier versus the blood-tumor barrier. A major 
structural difference between the two vessels is the decreased expression of tight junction proteins, 
which leads to an incomplete sealing of the metastatic vasculature, and an increased permeability 
of the lesion       
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polarity  [  18  ] . Large endogenous molecules use receptor mediated endocytosis 
mechanisms to enter brain. For example, insulin is transported by the insulin recep-
tor  [  19  ] , iron utilizes the transferrin receptor  [  20  ] , both of which are highly expressed 
in the capillary endothelium.  

    2   Blood-Tumor Barrier 

    2.1   Functional Changes 

 While the BBB serves as a structural and functional barrier to limit passive diffusion 
of hydrophilic and charged compounds into brain  [  21  ] , the presence of an intracra-
nial metastasis alters the vascular integrity both within and around the lesion. These 
blood vessels (blood-tumor barrier; BTB) compared to the normal BBB, generally 
have increased permeability, reduced blood  fl ow  [  22–  24  ]  and an increased or 
decreased expression of in fl ux or ef fl ux transporters. 

 The changes in BTB vascular permeability are usually not homogenous through-
out the lesion. It is generally accepted that if there is necrosis within the metastatic 
lesion it has highly permeable blood vessels  [  25  ] . In contrast, the blood vessels that 
are immediately adjacent to the lesion have permeability values that are similar to 
the normal BBB, or at most, permeability values that are somewhere between the 
normal BBB and the main body of the lesion  [  26–  32  ] . Determining vascular perme-
ability on the edge of the metastasis is critical, since this is the one of the main 
in fi ltrating and proliferating areas of the lesion. 

 Vascular permeability is also not homogenous between metastatic lesions in the 
same brain. Recently, we have demonstrated that permeability of brain metastases 
of breast cancer in two experimental model systems are highly heterogeneous, rang-
ing nearly 30-fold between various lesions. A representative image of lesion perme-
ability compared to normal brain is shown in Fig.  4.2 . While nearly all lesions have 
some degree of increased permeability, permeability changes are typically less than 
10-fold above normal brain (~80% of lesions). Similarly, permeability values within 
a single lesion are highly variable ranging from minimal changes to 30-fold. 
However, it is not clear that the areas of increased permeability are attributable to 
necrotic portions of the lesion. It is of interest to note, that for the ~2,000 preclinical 
metastatic lesions for which we have evaluated previously, there is not a clear 
correlation of increased permeability with increased lesion size  [  33,   34  ] .   

    2.2   Structural Changes 

 The BTB is structurally different from the BBB, which may contribute to increased 
vascular permeability. A hallmark structural feature of the BBB is the sealing of the 
vascular endothelial cells with tight junction proteins. A primary protein in the tight 
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junction complex is ZO-1, which acts as a scaffolding protein to anchor another 
tight junction protein, occludin, to the endothelial membrane  [  21,   35  ] . On the other 
hand, the vasculature within a primary brain tumor typically has reduced expression 
of tight junction proteins  [  36  ]  which results in increased vascular permeability  [  37, 
  38  ] . While, there are numerous reasons for the decreased expression of tight junc-
tion proteins in the BTB, one primary hypothesis is that when cancer cells displace 
neurons and astrocytes, tight junction protein expression is reduced, or at a mini-
mum incorrectly positioned within the cell  [  3  ] . However, there is little data on 
whether tight junction protein expression speci fi cally within the vasculature of brain 
metastasis is decreased. In Fig.  4.3  we show evidence that the expression of ZO-1 is 
signi fi cantly decreased within metastatic lesions compared to the normal brain 
 vasculature. Decreases in ZO-1 correlated to an increase in vascular permeability 
within preclinical models (data not shown).  

 A secondary issue that contributes to the increased permeability of the metastatic 
vasculature is the growth of new blood vessels within the lesion and the turnover 
of vascular endothelial cells. Within normal brain, the vascular endothelium is 
essentially a quiescent tissue where less than 0.01% of the cells are cycling at any 
one time  [  39  ] . Further, normal vascular endothelia strongly resist apoptosis, despite 
signi fi cant neuropathology  [  40–  42  ] . Though, endothelium can replicate and repair 

  Fig. 4.2    ( a ) A representative image of a coronal brain slice from a mouse that has developed brain 
metastases of breast cancer. The metastatic lesions developed approximately 5 weeks after the 
intracardiac injection of 175,000 MDA-MB-231BR cells (brain seeking variant of the MDA-MB-231 
cell line). ( b ) An representative autoradiography image showing brain and lesion accumulation 
(fold over normal brain) of  14 C-AIB (a small passive permeability marker). Note the variable per-
meability between lesions. ( c ) Quantitative analysis of the accumulation of  14 C-AIB in metastatic 
lesions (n = 285) versus metastasis size (mm 2 ) shows there is no strong correlation (r 2  = 0.11). 
Diameter of the lesion is shown in  vertical lines        
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damaged blood vessels in the presence of vascular endothelial growth factor 
(VEGF; constitutively expressed in glial cells)  [  43  ] . In the presence of a develop-
ing metastasis there are areas within the lesion that become hypoxic as they grow 
beyond their blood supply. It is suggested  [  44  ]  that the lesion will increase VEGF 
secretion to initiate new blood vessel formation (or elongate existing vessels) so 

  Fig. 4.3    Immuno fl uorescent analysis showing decreased ZO-1 expression in two metastatic 
models of breast cancer. ZO-1 ( red ), CD31 ( green ), and DAPI ( blue ). Vessels within normal brain 
(non-tumor region) are shown illustrating intense staining of ZO-1 ( a ). Representative images 
of non-permeable ( b  and  e ) and permeable ( c  and  f ) lesions of MDA-MB-231-BR-Her2 and 
4T1-BR5 lesions, respectively. ZO-1 expression was decreased in all metastases compared to 
normal brain vasculature ( d ). Statistical signi fi cance was determined using ANOVA followed by 
Dunnett’s post-test,  p  < 0.05. Scale bar = 25 µm          
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that the lesion will obtain adequate oxygen and nutrient supplies (Fig.  4.4 ). 
The increased VEGF secretion results in the turnover of endothelial cells, the 
growth of new blood vessels  [  45  ]  and ultimately an increase in permeability. But 
because VEGF secretion is so concentrated and immediate, the newly created 
vascular bed is often a tortuous vessel network that is largely ineffective with 
reduced blood  fl ow.  

 Consistent with this we have observed that nestin, an intermediate  fi lament pro-
tein that is expressed during cellular development has little expression in the mature 
brain vasculature  [  46  ] , but is highly expressed in the newly formed vasculature in a 
preclinical model of brain metastases of breast cancer (Fig.  4.5 ). This is consistent 
with the up-regulated expression of nestin observed in newly formed vessels and 
proliferating endothelia in gliomas  [  47,   48  ] .    

    3   Permeability Changes in Brain Metastases 
Compared to a Primary Tumor 

 A large body of literature exists for permeability studies of primary tumors within the 
brain, including: glioblastoma multiforme, astrocytomas, oligodendrogliomas, and 
meningiomas. Within these primary tumors there appear to be an approximate 200-
fold difference between the permeability values across the various tumor types. For 
example, astrocytomas and oligodendrogliomas generally have low permeability and 
meningiomas and glioblastoma multiforme generally have much higher  values  [  49  ] . 

  Fig. 4.4    Representative 
image showing the presence 
of VEGF ( red ) around the 
metastasis vasculature 
( green , CD31) in the 
preclinical brain metastases 
of breast cancer model 
(MDA-MB-231-BR-HER2) 
( blue  is a nuclear stain; 
DAPI). Scale bar = 25  m m       

 



  Fig. 4.5    Representative images are shown of non-permeable and permeable lesions in MDA-
MB-231-BR-Her2 ( a  and  b ) and 4T1-BR5 lesions ( c  and  d ), respectively. Nestin expression ( red ) 
was co-localized with CD31 ( green ) within DAPI labeled lesions ( blue ). A 25% increase in nestin 
expression was seen in MDA-MB-231-BR-Her2 permeable lesions compared with non-permeable 
( e ). No difference was seen in the 4T1-BR5 model. Plotting nestin expression versus fold increase 
in  14 C-AIB permeability revealed a correlation in the MDA-MB-231-BR-Her2 model (r2= 0.33,  p  < 
0.05) ( f  ) and no correlation in the 4T1-BR5 model (r2= 0.011,  p > 0.05) (  g ). Statistical analysis was 
determined using student’s t-test,  p < 0.05. Scale bar = 50 µm       
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 There are far fewer studies that directly evaluate the permeability of brain metas-
tases compared to a primary tumor. To address this, we have begun to compare 
permeability values between studies of primary tumors and metastatic lesions. We 
admit these data are dif fi cult to interpret and evaluate, because of the subtle and 
sometimes not so subtle differences in how the data was obtained. Given that caveat, 
we have recently evaluated two CT perfusion studies one of which appraised the 
permeability of a number of primary tumors (e.g., astrocytomas, glioblastoma mul-
tiforme, etc.…) and the other which calculated permeability of metastases from a 
number of different origins (lung, breast and melanoma). For the most part, the 
independent studies were identical in data acquisition and experimental parameters, 
with the exception of slight differences in milliamps and CT rotation speed. We 
observed that the permeability values (rPS 

max
 ) for metastases are generally 1/10th of 

the values that were observed in glioblastomas and anaplastic astrocytomas. 
However, the metastases values were very similar for those that were calculated for 
diffuse astrocytomas  [  49,   50  ] . A limitation should be noted, because the permeabil-
ity values for all of the brain metastases were lumped into a single value, which 
makes dissecting out data for metastases of different origins dif fi cult. Similarly, an 
MRI study which directly compared permeability values between glioblastoma 
multiforme and metastases, demonstrated that permeability of metastases are on 
average 65% of the values observed in the primary tumor. However, a limitation of 
this study was that there were seven different types of brain metastases evaluated 
(e.g., breast, lung, melanoma, etc.…), which may signi fi cantly conceal variability 
between the metastasis from different tissue types. Other groups have shown that a 
large fraction of brain metastases of breast cancer do not enhance with MRI  [  34  ] . 

 While metastases generally exhibit reduced permeability compared to primary 
brain tumors, there can be considerable variation in permeability between metastatic 
lesions within the same brain. In an experimental brain metastases of breast cancer 
model, it was observed that only 20% of the lesions had signi fi cant increases in per-
meability (>10 fold over normal brain) and the remainder of the lesions (~75–80%) 
had only slight increases in permeability (~1.5 to 3-fold increases over normal brain) 
 [  33  ] . A perfusion CT study suggested that the variability may be related to changes in 
vascular endothelial proliferation (angiogenesis), where newly forming vessels in 
response to VEGF secretion, exhibit increased permeability compared to lesions that 
have less angiogenesis  [  51,   52  ] . Permeability variances can also be signi fi cant if one 
of the lesions has developed, or at a minimum progressed into the leptomeningial area. 
Lesions in this area will generally have signi fi cantly higher permeability values than 
lesions found solely in brain parenchymal tissue. The increased permeability may be 
in fl uenced by the lesion being in contact with non-BBB vessels  [  53  ] . 

 Lastly, there has been some controversy as to whether the size of the metastatic 
lesion correlates with an increased permeability. Some work has observed that 
larger, more compact metastases are generally more permeable than smaller and 
diffuse metastases  [  54,   55  ] . Similarly, a preclinical metastasis rat model using phase 
contrast MRI also correlated metastasis permeability to lesion size  [  52  ] . In contrast, 
our work using autoradiography  [  33  ]  and others work using MRI  [  34  ]  have shown 
in preclinical models, that permeability does not have a strong correlation (r 2  <0.2) 
to lesion size. 
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 It is our opinion that there is a strong need for future work to directly compare 
the permeability changes in metastatic lesions of multiple origins (i.e., breast, mela-
noma, etc.) to the various primary tumors of the CNS. This work is needed to bridge 
the large database of permeability values for primary tumors to the much smaller 
database of brain metastases. This information will provide signi fi cant insight into 
clinical imaging studies as well as drug accumulation and effect.  

    4   Effect of Increased Permeability on Drug 
Accumulation and Effect in Brain Metastases 

 Unfortunately, there is only a small database which quantitatively describes correla-
tions of vascular permeability to the extent of drug delivery and drug effect in brain 
metastases. It is generally assumed, and has been shown in some primary tumor 
models  [  11,   23,   45,   56  ] , that increased BTB permeability results in increased drug 
distribution in the lesion, and subsequently increased chemotherapeutic effect. 
However, this view does not always account for other parameters, such as the mag-
nitude of permeability changes, drug active ef fl ux transport, protein binding, tissue 
binding and blood  fl ow, all of which can signi fi cantly impact drug distribution into 
the lesion  [  23  ] . We  [  33  ]  and others have shown standard chemotherapeutic agents 
(including paclitaxel and doxorubicin  [  57–  60  ] ) are limited from accumula ting in brain 
metastases because the BBB remains partly intact within these lesions  [  11,   23,   61  ] . 

 There are few reports that demonstrate whether restricted chemotherapeutic drug 
accumulation results in limited drug effect. To address this, we used two preclinical 
models of brain metastases of breast cancer  [  14,   33,   62  ]  to simultaneously evaluate 
brain metastases in terms of permeability, drug uptake and drug effect. Among the 
~1,600 lesions that we evaluated we observed that there was signi fi cant heterogene-
ity in terms of vascular permeability, where a good fraction (~80%) of the lesions 
exhibited a moderate (1.5–3.2 fold) increase in permeability over normal brain, and 
only a small subset (~20%) of lesions exhibited higher degrees of permeability 
(5–30 fold increased). Similarly, brain metastasis uptake of paclitaxel varied widely 
between metastases, but most lesions (80%) showed limited drug uptake of <10-fold 
above normal brain. When lesions exhibiting different levels of paclitaxel concen-
trations were assayed for drug induced cytotoxicity (cleaved caspase 3 staining), 
only a small subset (10%) of lesions with >50-fold drug uptake compared to normal 
brain showed staining for apoptosis  [  33  ] . This suggests the vasculature in brain 
metastases, while compromised, is intact enough to limit chemotherapeutic drug 
concentrations to amounts that are insuf fi cient to induce cytotoxicity.  

    5   Methods to Study BBB/BTB Permeability 

 Historically, dyes have been integral in studying disruption of the BBB in various 
pathophysiology. For example, the accumulation of trypan blue in brain parenchyma 
after an intravenous administration, demonstrated that the BBB was disrupted by 
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ultrasonic damage in 1956  [  63  ] , which worsened in the presence of angiography 
imaging agents  [  64  ] . Dye accumulation within brain has also been seen in circula-
tory arrest with prolonged resuscitation  [  65  ] , signi fi cant acute arterial hypertension 
 [  66  ] , seizures  [  67,   68  ] , and radiation  [  69  ] . 

 It was recognized very early that vital dye studies were only qualitative. To over-
come this, radiotracers such as  203 Hg were concurrently administered with dyes. This 
method provided an initial visualization of dye extravasation followed by quantitative 
measurement of BBB disruption  [  64,   69,   70  ] . It should be noted that these initial 
studies simultaneously injected two different tracers to demonstrate size selective 
openings at the BBB  [  64  ] . However, spatial resolution of dye distribution was lost. 

 Quanti fi cation of BBB disruption using autoradiography quickly became the 
gold standard  [  26  ]  and has evolved into well-designed double or triple labeled stud-
ies where size dependent BBB permeability changes can be simultaneously mea-
sured  [  71,   72  ] . Though autoradiography does have limitations (two or three tracers 
require weeks to months of  fi lm development followed by the subtraction of multi-
ple signals to obtain data  [  72  ] ) it still can accurately quantify BBB disruption in 
brain or inctracranial tumor tissue at an ~25–50  m m pixel resolution  [  73  ] . 

    5.1   Kinetic Analysis of Permeability and/or Drug Uptake 
into Brain or Brain Metastases 

 The gold standard in calculating BBB or BTB disruption in brain, and or lesions in 
the brain, is to use a mathematical model consisting of a multiple-time uptake 
approach  [  74,   75  ] . To accomplish this, the tracer’s apparent terminal volume of 
distribution in brain and tumor [V 

d(app)
 ] at the time of sacri fi ce is calculated using the 

following relationship assuming negligible post-mortem tracer diffusion (brain 
removal and freezing in isopentane should occur in less than 60 s):
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concentration in blood in experimental animals and calculating the integral 
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 Where  C  
 bl 
  is concentration of tracer in blood,  n  is the number of blood concen-

trations sampled in each experiment, and  t  is time. 
 Lastly, multiple-time uptake analysis allows the tracer to serve simultaneously 

as the permeability and vascular marker and therefore Eq. 4.4 is divided by the 
terminal blood concentration as previously described  [  26  ] :
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 Where V 
 i 
  is the total vascular space or initial equilibrating space of the tracer in the 

brain vasculature (or bound to vascular endothelium) at the time of sacri fi ce. 
 However, given the heterogeneity in which is observed in metastatic lesions  [  33, 

  34,   62,   76  ] , a single-time uptake may be used to measure K 
in
  in individual animals, 

using the following equation  [  77,   78  ] :
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 Where C 
br
  is the amount of the compound in brain or tumor per unit mass of the 

tissue at the time t, and C 
bl
  is the blood concentration of the compound.   

    6   Summary 

 The BBB serves a protective role in regulating the brain accumulation of numerous 
molecules, including many (if not most all) standard chemotherapeutics. One mecha-
nism that limits drug accumulation at the BBB is the sealing of luminal endothelial cells 
together by tight junction proteins. However, tight junction protein expression is 
decreased in the vasculature of a metastatic lesion, which contributes to increased vas-
cular permeability. While the vascular permeability of a metastasis is signi fi cantly higher 
than normal brain, it is on the lower end of permeability values for most primary tumors 
of the central nervous system. Unfortunately, the increased passive permeability of the 
vasculature of a metastasis is on average, well below what is needed to allow ef fi cacious 
concentrations of chemotherapeutics to accumulate into the metastatic lesion.      
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  Abstract   Studies of the metastatic process and potential cancer therapies have 
been advanced by the use of imaging technology that enables the noninvasive 
assessment of tumor development over time. Several imaging modalities have been 
used to examine brain metastases in preclinical cancer models. Magnetic resonance 
imaging (MRI) is the clinical gold standard for anatomical evaluation of brain 
metastases. New advances in MRI and MR spectroscopy (MRS) have now enabled 
physiological characteristics of tumors to be investigated including tumor permea-
bility, vascularity, cellularity and metabolism as well as cerebral blood  fl ow and 
blood volume. MRI can also be used to detect single iron-labeled cancer cells 
after their initial arrest in mouse brain and subsequent tumor development. Nuclear 
imaging techniques including positron emission tomography (PET) and single 
photon emission computed tomography (SPECT) are popular tools for classifying 
tumors and monitoring their treatment. Brain tumors can be assessed for bio-
chemical alterations such as glucose use, DNA synthesis, amino acid transport and 
oxygenation state. Optical imaging techniques based on the use of  fl uorescent or 
bioluminescent reporters have been found advantageous for monitoring metastatic 
tumor burden in experimental animals. Fluorescent entities have  further been used 
in intravital microscopy to track and monitor the relationship between tumor cells 
and brain vasculature, including cancer cell arrest, early extravasation, perpetuation 
of a perivascular position and either angiogenesis or vessel co-option. Finally, 
imaging studies of brain metastases are often improved by using multiple imaging 
techniques concurrently, thereby exploiting the best features of separate modalities 
to acquire multilayered information and provide further insights into the evolution 
of metastases.      
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    1   Introduction 

 Clinically, brain metastases are associated with poor prognosis and occur late in the 
progression of multiple common malignancies including lung cancer, breast cancer 
and melanoma  [  1  ] . Preclinical models of metastatic disease that epitomize the 
 formation of tumors found in patients are important tools in the effort to  fi nd new 
detection, targeted treatment and prevention strategies. Studies of the metastatic 
process and potential therapies have been advanced by the use of imaging modalities 
that enable the noninvasive assessment of tumor development over time  [  2–  5  ] . 
Imaging technology is ever advancing but techniques exist today that allow for 
the detection of individual cancer cells in the brain tissues and for the monitoring 
of brain metastases as they develop and change over time. A number of imaging 
modalities have been used to examine brain metastases in preclinical cancer 
models. These include optical techniques such as bioluminescence imaging  [  6  ]  and 
 fl uorescence-based  in vivo  microscopy  [  5  ] , nuclear imaging techniques such as 
positron emission tomography (PET)  [  2  ]  and single photon emission computed 
tomography (SPECT)  [  7,   8  ]  as well as magnetic resonance imaging (MRI)  [  4,   9–  11  ] . 
Each of these modalities has advantages and limitations for  in vivo  imaging of 
experimental brain metastases. The choice of which imaging technology to use 
relies mainly on the stage of metastasis being studied, the spatial resolution and 
sensitivity required, the depth of the imaging target and the prospective for clinical 
translation. Imaging studies of brain metastases are often improved by utilizing 
multiple imaging techniques, thereby obtaining both anatomical and functional or 
metabolic information. This multimodality approach is already improving deci-
sion-making in clinical oncology  [  12  ] .  

    2   Magnetic Resonance Imaging 

 For the clinical evaluation of brain metastases, MRI is currently the gold standard 
due to its ability to provide excellent anatomical detail, sensitivity for the determi-
nation of tumor size and location, as well as indications of edema, hemorrhage, 
necrosis and increased cranial pressure  [  13  ] . Current micro-MRI technology can 
achieve three-dimensional spatial resolutions on the order of tens of microns. MRI 
uses no ionizing radiation and is considered safe and noninvasive; subjects can be 
imaged repeatedly with no harm. 

 MRI relies on the properties of hydrogen atoms (protons) to generate an image. 
In MRI, protons within a subject are exposed to a strong magnetic  fi eld that causes 
them to align. A radiofrequency (RF) transmitter is temporarily turned on to energize 
the aligned protons. Once the RF is turned off the protons relax to their equilibrium 
state, emitting energy that produces a signal that can be detected and translated 
into an image by advanced computer processing. Protons in different tissues and 
biological states will relax at different rates and image contrast can be generated 
by exploiting these differences. Common image contrasts are known as T1-, T2- 
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and T2*- weighted  images. Metastases may appear as either hypo- or hyper-intense 
regions relative to normal brain parenchyma  [  14  ] . 

 Most brain MRI employs contrast agents to improve the signal differences 
between normal and diseased tissues. The most commonly used contrast agents are 
gadolinium (Gd) chelates. Typically T1-weighted images are acquired before and 
after the intravenous (iv) administration of Gd agents. Normally, Gd cannot cross an 
intact blood brain barrier (BBB). In the case where the BBB is damaged the pres-
ence of the Gd agent causes signal enhancement. Tumor-associated neovasculariza-
tion is generally leaky and therefore brain metastases, for example, often appear 
bright in images acquired after iv Gd. 

 Several groups have used Gd enhanced MRI to evaluate the permeability of brain 
metastases in experimental rodent models  [  10,   15–  18  ] . Percy and colleagues used 
contrast enhanced MRI to track the development of brain metastases due to breast 
cancer in nude mice  [  18  ] . They reported substantial heterogeneity in the permeability 
of these brain metastases. Many of the metastases became permeable with time, 
suggesting that over time they cause changes to the tumor vasculature that compro-
mises the integrity of the BBB. At the last imaging timepoint there were approximately 
four times as many Gd permeable metastases as non-permeable. Gd-permeable 
metastases were signi fi cantly larger than non-permeable tumors, however, size alone 
was not suf fi cient to predict permeability (Fig.  5.1 ). The impermeability of the BBB 
hinders the delivery of chemotherapeutic agents to the brain, limiting the success 
of pharmacological approaches to treat brain metastases. The ability to use MRI to 
noninvasively assess the permeability status of brain metastases will be important 
for understanding the process of brain metastasis formation and for evaluating the 
development of BBB-permeable chemotherapeutic drugs.  

 Conventional contrast-enhanced MRI displays a single snapshot of tumor enhance-
ment after contrast administration, although the anatomical information derived from 
such images is valuable, it lacks functional information. Dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI), which relies on fast T1-weighted MRI 
sequences obtained before, during and after the rapid iv administration of a Gd based 
contrast agent is an imaging method to assess vascular permeability. 

 DCE-MRI has been used experimentally to investigate the vascularity of develop-
ing brain metastases  [  10,   16,   17  ] . Budde et al .  used DCE-MRI to examine the vascular 
permeability in a rat model of metastatic breast cancer  [  6  ] . They showed that brain 
metastases had limited permeability of the BBB as assessed with DCE, whereas 
meningeal and bone metastases had high vascular permeability. Microscopically, 
brain metastases were highly in fi ltrative and grew through vessel co-option. By com-
parison tumors in the bone and meninges were solid masses with distinct tumor 
margins (Fig.  5.2 ). These results demonstrate that the microenvironment in fl uences 
the growth patterns of metastases, and that these differences can be detected and 
measured by MRI. DCE-MRI could also be used to measure changes in vascular 
permeability that are induced by successful anti-angiogenic therapy.  

 Gd-enhanced MRI can also be used to measure regional cerebral blood  fl ow and 
blood volume  [  19–  21  ] . This is known as perfusion MRI and involves the iv admin-
istration of Gd and measurement of the T2*-weighted signal as it perfuses through 
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the brain tissue over a short period of time. Changes in blood  fl ow over time after 
a single injection can be measured to generate a perfusion map that re fl ects local 
microvasculature  [  21  ] . High-grade gliomas and brain metastases can be differenti-
ated by the peritumoral blood volume values. The higher relative cerebral blood 
volume measured for primary gliomas re fl ects the presence of in fi ltrating cells in 
the peritumoral edema of gliomas and the absence of these cells in the edema of 
metastatic lesions  [  19,   20  ] . 

 Another class of MRI contrast agents that have been used to image experimental 
brain metastases is superparamagnetic iron oxide (SPIO) nanoparticles  [  15,   22  ] . 

  Fig. 5.1    Volume measurements of enhancing and nonenhancing metastases. ( a ). At both mid and 
late time points, the average volume of enhancing metastases was signi fi cantly larger than nonen-
hancing metastases (P < 0.05). However, there was a wide range of volumes for both enhancing and 
nonenhancing metastases ( b ). There also appeared to be a minimum volume threshold of enhanc-
ing metastases, although being larger than this did not guarantee enhancement. ( c ) 3D volume 
rendering of a mouse brain in the coronal plane, from the same mouse at each time point. 
Gadolinium-enhancing metastases are rendered in red and nonenhancing metastases are shown in 
green. Neither volume nor position in the brain appear to have an in fl uence on whether a metastasis 
enhanced or not (Modi fi ed from Percy et al .  2011)       
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SPIO generates negative contrast by altering the local magnetic  fi eld homogeneity 
 [  23  ] . SPIO particles are available in a range of sizes (approx. 5 nm to 1  m m in diam-
eter). The smallest SPIO (ultrasmall or USPIO) agents are referred to as blood pool 
agents and imaging performed before and after the iv administration of USPIO 
allows for characterization of tumor vasculature and assessment of vascular volume 
 [  9  ] . Metastases that do not enhance after Gd administration have been shown to be 
visualized with iv USPIO  [  9,   15,   22  ] . 

 Gambarota et al. compared the visualization of three different orthotopic mouse 
models for human brain tumors (angiogenic melanoma metastases and E34 and 
U87 human glioma xenografts) after both Gd (BBB permeability) and USPIO 
(blood volume) administration  [  9  ] . The delineation of tumors was best assessed 
on post-USPIO images. The melanoma brain metastases were characterized by 

  Fig. 5.2    Metastatic site determines the growth pattern and differential apparent diffusion 
coef fi cient ( ADC ) and dynamic contrast-enhancement characteristics of 231BR metastases. ( a ) 
231BR metastases developing in the brain parenchyma had extensive edema detected as increases 
in T2-weighted signal intensity and ADC, but the BBB was largely impermeable to Gadolinium-
Diethylenetriamine Penta-Acetic Acid (Gd-DTPA) in most of the brain metastases. Brain metasta-
ses displayed extensive increases in the extracellular space surrounding the co-opted metastatic 
foci. ( b ) In comparison, metastases situated in the ventricles or sulci ( b ) developed as solid masses 
and were isointense with the surrounding brain on T2-weighted and ADC maps, but these tumors 
were highly permeable to Gd-DTPA as shown on the IAUGC90 maps. ( c  and  d ) Likewise, meta-
static sites in the meninges (c) and bone ( d ) promoted the growth of solid tumors with highly 
 permeable vasculature. Scale bars indicate 200 mm (Modi fi ed from Budde MD et al .  2012)       
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a blood volume and vessel leakage higher than both glioma xenografts. The U87 
glioblastoma xenografts displayed higher permeability and blood volume in the 
rim than in the core. The E34 glioma xenografts were characterized by a relatively 
high blood volume and a moderate disruption of the BBB. Histological  fi ndings 
showed that regions where the blood volume was high contained dilated blood 
vessels. Since vascular permeability and angiogenesis are not strictly related, the 
use of these two complementary contrast-enhanced MRI techniques may be very 
useful for detecting irregular vasculature and for monitoring antiangiogenic 
therapies. 

 SPIO nanoparticles have also been used to pre-label cancer cells prior to their 
injection in experimental models of brain metastases. This approach is known as 
cellular MRI or MRI cell tracking. A variety of cell types can be easily loaded with 
iron nanoparticles by simple co-incubation  [  24  ] . Areas containing iron labeled cells 
appear as regions of low signal intensity, creating negative contrast. The large mag-
netic susceptibility of these particles affects an area much larger than the actual 
particle size. This effect is known as a ‘blooming artifact’, and leads to an exaggera-
tion of the region occupied by iron oxide  [  23  ] . Heyn and colleagues were the  fi rst to 
use cellular MRI to study breast cancer brain metastasis  [  4  ] . They demonstrated that 
MRI could be used to detect single iron-labeled cancer cells after their initial arrest 
in the mouse brain and to monitor the development of brain metastases over time in 
the whole brain. In addition, they identi fi ed a reservoir of nonproliferative (possibly 
dormant) cancer cells by virtue of their long-term retention of iron particles 
(Fig.  5.3 ).  

 Other advanced MRI techniques can be applied to accentuate features of growing 
tumors without the addition of exogenous contrast agents. Diffusion weighted 
imaging (DWI) is a functional MRI technique that measures the mobility of water 
molecules in a tissue of interest  [  25  ] . Changes in the ratio of extracellular and 
intracellular water volumes affect the overall mobility of water within a tissue. 
DWI can detect these changes and use the resulting information to generate appar-
ent diffusion coef fi cient (ADC) maps, which re fl ect physiological features not 
evident in conventional MRI. The initial application of this technique for brain 
tumors was for the detection of early tumor treatment response in primary brain 
tumor pre-clinical models  [  25,   26  ] . Here ADC served as a marker for tumor cellularity 
and an indicator of apoptosis and necrosis following cytotoxic therapy. In these 
studies a tumor response to chemotherapy was evident days to weeks before a 
change in volume  [  25  ] . 

 ADC mapping has been applied differently to brain metastasis. Co-opted growth 
of brain metastases causes extensive edema of the invaded brain tissue resulting in 
enlarged extracellular spaces  [  10  ] . As a consequence of the additional water content, 
ADC measurements are elevated in metastases compared to the surrounding normal 
parenchyma. Due to this complication, DWI is not useful in the assessment of thera-
peutic tumor response for edema-prone brain metastases. However, high ADC 
values have been used to differentiate edema from metastases in animal models 
of brain metastases and this technique still holds value in the evaluation of the 
physiological features of metastatic tumors prior to treatment  [  10,   17  ] .  
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    3   Magnetic Resonance Spectroscopy 

 Magnetic resonance spectroscopy (MRS) is another nuclear magnetic resonance 
technique that allows the noninvasive evaluation of brain biochemistry  [  21  ] . This 
method examines the proton spectra in one or several imaging voxels, within a 
speci fi ed area of healthy or diseased tissue. Individual metabolites correspond to 
different peaks in the spectra and alterations in the levels of these compounds can be 
used to detect and monitor metabolic changes during metastasis development and 
response to therapy  [  21  ] . In addition, different malignancies often display different 
alterations in spectra, which makes MRS a potential tool for differentiating between 
various types of brain tumors. 

 Many compounds can be detected by proton MRS but several are more often 
used in research and clinical practice. Creatine (resonates at 3.02 ppm) is a measure 
of energy metabolism and is relatively constant in the brain so it is commonly used 
as a reference compound  [  21  ] . Choline (at 3.2 ppm) re fl ects the degree of membrane 
turnover and is often increased in disorders that cause accelerated cell membrane 
turnover and hypercellularity. N-acetylaspartate (NAA, at 2.02 ppm) is an indicator 
of neuronal viability and is reduced in conditions that destroy or replace neurons. 
Lactic acid (at 1.33 ppm) measures anaerobic metabolism and is elevated in tumors 

  Fig. 5.3    MRI of a mouse 
brain containing 231BR 
breast cancer cells. ( a ) One 
day after the intracardiac 
injection of 100,000 cells 
numerous discrete regions of 
signal void which represent 
iron-labeled breast cancer 
cells are visible. ( b ) 3D 
volume rendering of MRI of 
the same mouse brain at 
28 days post injection shows 
metastases that have 
developed ( green ) and 
persistent signal voids ( red ), 
which represent non-
proliferative cancer cells       
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with growth that exceeds their blood supply and must rely on anaerobic glycolysis 
to meet energy requirements. Elevated mobile lipid (at 0.8 and 1.5 ppm) is a marker 
of necrosis and an indicator of both high-grade primary brain tumors and metasta-
ses. In general, ratios of these metabolites are measured and comparisons are made 
of diseased versus normal tissue. 

 Simões and colleagues used MRI and MRS to develop and characterize a mouse 
model of breast cancer brain metastases  [  17  ] . The  fi rst indication of metastatic 
growth was a decreased level of NAA. As metastases increased in size the spectral 
pattern changed to re fl ect an increase in choline containing compounds, a decrease 
in creatine, an increase in mobile lipids and elevated lactate. Comparing the mobile 
lipid resonance at both short and long echo times enabled investigators to deter-
mine that lipids were mostly located in small intracellular lipid droplets rather than 
large extracellular lipid droplets generally found in necrotic regions. This  fi nding 
indicated that metastasis progression in this model occurred without major necro-
sis  [  17  ] . 

 Clinically, the spectral pattern that nonspeci fi cally indicates brain cancer is low 
NAA and high choline levels with elevated lactate if the tumor is hypoxic, or ele-
vated lipid if the tumor is advanced  [  21  ] . Brain metastases typically exhibit high 
lipid and lactate resonance without any other visible brain metabolites  [  27,   28  ] . 
However, if the examined voxel is contaminated with even a small volume of brain 
tissue, the tumor may be misclassi fi ed because of small peaks of choline, creatine 
and NAA  [  29  ] . The intratumoral spectral pattern for different types of primary brain 
tumors and metastases often exhibit signi fi cant overlap  [  30  ] , making the clinical 
differentiation of tumor types dif fi cult.  

    4   Positron Emission Tomography 

 Positron emission tomography (PET) is a nuclear imaging technique that can also 
be used to monitor changes in tissue metabolism. PET can detect trace amounts of 
positron-emitting radionucleotides with high sensitivity and excellent depth pene-
tration  [  2  ] . Natural biological molecules can be labeled with positron-producing 
isotopes without alteration of their normal function. Labeled tracers can then be 
introduced into animal or human subjects and PET used to follow their distribution 
and concentration in the body. Frequently used isotopes include  14 O (oxygen),  13 N 
(nitrogen),  11 C (carbon),  64 Cu (copper) and  18 F ( fl uorine). PET can identify cancers 
based on altered tissue metabolism and can serve as a tool for monitoring the effects 
of pharmacological or radiation therapy before structural alterations occur. In vivo 
biochemical assessment of tumors, speci fi cally glycolysis, DNA synthesis, amino 
acid transport and oxygenation state, is becoming an increasingly popular tool for 
classifying tumors and monitoring their treatment  [  2,   31  ] . Although many PET 
applications have already moved into the clinical realm, feasibility studies in animal 
models have served a key role in radiolabeled tracer development  [  32  ] . These 
studies have demonstrated variable tumor uptake dependent on such parameters 
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as  cancer type, organ of origin, host species and radioligand chemical structure. 
With continuing advances in molecular biology, small animal studies will continue 
to be useful in the development of newly identi fi ed cancer targets and tracers. 

 To develop suitable tracers for imaging cancers, metabolic processes must be 
identi fi ed that differ from the natural state of surrounding tissues or organs  [  31  ] . 
Many malignant tumors have accelerated glycolysis compared to surrounding tis-
sues  [  32  ] . 2-[ 18 F] fl uoro-2-deoxy-D-glucose (FDG) is a glucose analog that can be 
used to measure regional glucose utilization and was the  fi rst PET agent used to 
investigate the malignancy of cerebral tumors  [  33,   34  ] . FDG PET has become a key 
imaging modality in oncology for diagnosing, staging and predicting prognosis in 
systemic tumors, however its use in the evaluation of brain metastasis has been 
limited  [  35  ] . Normal brain tissue has a high rate of physiologic glucose metabolism 
and shows high FDG accumulation  [  36,   37  ] . Consequently, FDG PET images show 
hypermetabolism in the brain cortex, making it dif fi cult to differentiate a lesion 
from the normal tissue. In addition, while most systemic metastatic tumors are 
hypermetabolic, not all brain metastases show FDG accumulation  [  36,   37  ] . For 
example decreased uptake of FDG has been noted in brain metastases from both 
non-small cell and small cell lung carcinomas  [  36,   38,   39  ] . 

 Another important characteristic of cancerous tissue is the increased rate of pro-
liferation and consequent DNA replication. Thymidine transport and thymidine 
kinase (TK-1) activity is upregulated by malignant cells because thymidine is needed 
for DNA synthesis  [  40  ] . 3 ¢ -deoxy-3 ¢ -[18F] fl uorothymidine (FLT) is a thymidine 
 analog and proliferation tracer for PET. Like thymidine, it follows the salvage path-
way of DNA synthesis and undergoes phosphorylation by TK-1  [  41  ] . Studies of 
brain malignancies have indicated FLT uptake correlates with Ki-67 expression, 
a proliferation index commonly used  ex vivo   [  13  ] . In general FLT tumor uptake is 
lower in comparison to FDG, however, FLT has low uptake in normal brain because 
of a lack of signi fi cant neuronal cell division  [  42  ] . This discrepancy provides 
 better contrast between brain tumor and surrounding normal tissue compared to FDG 
 [  2,   37  ] . 

 Amino acid tracers such as  11 C-methionine and 3,4-dihydroxyl-6-[ 18 F]- fl uoro-L-
phenylalanine (FDOPA) have been used to investigate altered amino acid transport 
associated with malignant transformation  [  13  ] . Amino acid transport is increased in 
tumor cells regardless of the phase of the cell cycle. These tracers have been very 
attractive for brain tumor imaging as they show selective uptake in tumor cells and 
low uptake in normal brain, thereby creating high tumor-to-normal brain contrast 
 [  35  ] . In fact studies comparing FLT with  11 C-methionine PET showed  11 C-methionine 
had greater sensitivity especially for low-grade tumors  [  43,   44  ] . In animal models, 
upregulation of the amino acid transporter in the supporting vasculature of brain 
tumors was shown to be responsible for facilitating amino acid transport into the 
tumor cell  [  45  ] . 

 Hypoxia in tumors is a consequence of diminished oxygen diffusion though the 
tissue due to high proliferation and functionally disrupted angiogenesis  [  13  ] . 
 18 F-Fluoromisonidazole is a nitroimidazole derivative that has been developed as a 
PET tracer to image hypoxia  [  46  ] . Metabolites of the agent are trapped exclusively 
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in hypoxic cells. Hypoxia is a key factor as it has been associated with tumor 
 progression and resistance to radiotherapy  [  47  ] . 

 A large area of growth in the  fi eld of PET imaging is the development of anti-
body-based tracers that target speci fi c tumor antigens such as upregulated cell 
 surface receptors. This class of PET tracer is largely comprised of radiolabeled 
humanized versions of engineered antibody fragments such as minibodies and 
 diabodies  [  2,   48,   49  ] . Clinical trials have begun with this type of tracers but small 
animal studies will continue to be useful in the development of newly identi fi ed 
cancer targets and tracers. Due to the larger size of these probes and the necessity to 
cross the BBB, brain imaging with tumor antigen-speci fi c tracers remains limited.  

    5   Single Photon Emission Computed Tomography 

 Single photon emission computed tomography (SPECT) is another nuclear imaging 
technique that can be applied to study metastasis. For this technique gamma-emitting 
isotope-labeled tracer is injected and a gamma camera is rotated around the subject 
to generate tomographic images  [  50  ] . Commonly used isotopes include  99m Tc 
(technetium),  111 In (indium),  123 I (iodine), and  201 Tl (thallium). These isotopes are not 
naturally occurring and their incorporation into radiolabelled tracers must be done 
in a manner that minimally perturbs the biochemical behavior of the molecule  [  2  ] . 
Alternatively, positron-emitting isotopes used for PET can be substituted for naturally 
occurring atoms. PET is tenfold more sensitive than SPECT and it is for these reasons 
that PET is more commonly used for imaging molecular events. 

 SPECT tumor screening agents have been used to visualize tumors  [  7,   8,   51  ] . One 
agent that has been used for detecting brain tumors is  201 Tl, a potassium analogue that 
re fl ects regional blood  fl ow, destruction of the blood brain barrier and Na + −K + ATPase 
activity  [  51  ] . An intact BBB has been suggested as partially responsible for the mini-
mal  201 Tl uptake in normal brain  [  52  ] . The agent is more rapidly incorporated into 
tumor cells and its retention in cells has been observed as altered in different cancer 
types. A preliminary study performed by Kojima and  colleagues used superdelayed 
 201 Tl SPECT imaging to differentiate between malignant gliomas and cerebral metas-
tases  [  51  ] . They hypothesized that slow washout in gliomas may be due to reduced 
Na + −K + ATPase activity compared to metastatic brain tumors.  

    6   Whole-Body Optical Imaging 

 Optical imaging techniques are based on the detection of light emitted from either 
 fl uorescent (i.e. green  fl uorescent protein, GFP) or bioluminescent (i.e. luciferase) 
reporters  [  3,   6  ] . There are several advantages in the use of optical imaging for exper-
imental animal studies. These methods are minimally or non-invasive, inexpensive, 
have high sensitivity and allow for high throughput imaging. The main disadvantage 
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of these techniques is the limitation of penetration depth due to the absorption and 
scattering of light through tissue  [  53  ] . 

 Fluorescent imaging (FI) is based on the bright inherent  fl uorescence of 
 fl uorophores such as GFP and red  fl uorescent protein (RFP). These  fl uorophores 
can be imaged using  fl uorescence dissecting microscopy that  fi rst provides a  fi ltered 
excitation light source to excite the  fl uorophore (for example ~490 nm for GFP) and 
then collects the resulting  fl uorescence emission from the  fl uorophore through a 
long-pass  fi lter (520 nm for GFP)  [  54  ] . Fluorophores can be stably expressed in 
cells or even whole animals to enable the use of  in vivo  whole-body  fl uorescent 
imaging for the detection of a variety of biological conditions including primary 
tumor growth and metastases  [  3  ] . In the mouse, external imaging can be done 
through relatively transparent body walls including the skull. 

 Bioluminescence imaging (BLI) is based on light produced by an enzyme- 
substrate reaction. When luciferin in cleaved by the reporter enzyme, luciferase, 
bioluminescence photons are released and can be detected using a charge-coupled 
imaging device  [  6  ] . Like FI, the reporter must be stably transfected into cells prior 
to their injection in a disease model. To localize the luciferase reporter, animals 
must be anaesthetized, injected with the luciferin substrate and imaged in a light-
free environment  [  3  ] . 

 Both FI and BLI have been used for real-time measurement of primary and meta-
static tumor growth in rodent models  [  3,   53,   55–  57  ] . Chung et al .  engineered breast 
cancer cells (231BR-HER2) to express Gaussia luciferase and investigated its use as 
a biomarker for monitoring metastasis and treatment responses using BLI  [  57  ] . 
They detected numerous brain metastases as well as systemic metastases in the 
spine and lungs. In addition, they monitored the total metastatic burden during the 
course of treatment with lapatinib, a dual tyrosine kinase inhibitor of epidermal 
growth factor receptor (EGFR) and human epidermal growth factor receptor 2 
(HER2), and observed that treated mice had many fewer metastases and survived 
much longer than control animals (Fig.  5.4 ).  

 Optical imaging has become a popular method for monitoring tumor burden in 
animals over time largely due to the inherent advantages of the techniques discussed 
above but also due to the quantitative nature of each method. The relative amount of 
 fl uorescent or bioluminescent light detected can be correlated to the progression or 
regression of a tumor over time or in response to therapy  [  3  ] . Limited research has 
been conducted speci fi cally investigating mechanisms of brain metastasis using 
whole-body optical imaging. These techniques are more often used in concert with 
other imaging modalities to provide a convenient means to monitor intracranial 
tumors in vivo  [  16,   58  ] . 

 Optical imaging is also used to examine whole mouse brains immediately after 
necropsy. In a study examining the effect of HER-2 overexpression on breast 
cancer metastasis in the brain, Palmieri and colleagues used  ex vivo  GFP imaging 
to identify mice with brain metastases  [  59  ] . They were able to clearly image foci of 
GFP-expressing brain-metastatic breast cancer cells using a spectral imaging system, 
however, quanti fi cation of these images was not possible because of low resolution, 
auto fl uorescence and overlap of the  fl uorescent signal from nearby metastases. 
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 Similarly, Rozniecki and colleagues used a luciferase-tagged mouse breast 
cancer cell line to investigate the effect of stress on brain metastasis  [  60  ] . Tumor-
bearing mice were injected with luciferin immediately prior to sacri fi ce and 
brains were imaged ex vivo to reveal an increased number of brain metastases in 
mice exposed to restraint stress. Investigators speculated that the observed 
increase in metastasis might have been due to stress-induced increases in BBB 
permeability  [  61  ] .  

    7   Intravital Microscopy 

 The use of  fl uorescent and bioluminescent proteins in live animals has provided new 
insights into the real-time growth and metastatic behavior of cancer  [  3  ] . Using 
 fl uorescent proteins to color-code cancer cells as well as elements of the tumor 
microenvironment either through genetic manipulation or the administration of 
 fl uorescently-tagged exogenous dyes has allowed the assessment of tumor/stromal 
interactions using intravital microscopy  [  62  ] . Essentially all aspects of the cancer 
process can be visualized including tumor growth, tumor cell motility, invasion and 
colonization as well as interactions between the tumor and its microenvironment. 
Individual, dormant cells as well as micro- and macrometastases can be clearly 
visualized and quanti fi ed  [  5,   63  ] . 

  Fig. 5.4    Representative 
Bioluminescent images (BLI) 
( dorsal and ventral view ) of 
lapatinib treated and 
untreated mice 28 days after 
intracardiac 231BR-HER2-G 
cell injection. Blood Gaussia 
luciferase (Gluc) and BLI 
were assessed weekly (n = 16 
per group), when blood Gluc 
value reached at 1 RLU/s, 
mice were treated with 
lapatinib. Mice were 
sacri fi ced 28 days after 
treatment for sample 
collection. Imaging was done 
individually (Modi fi ed from 
Chung E et al .  2009)       
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 Work investigating metastasis in the brain has been performed using intravital mul-
tiphoton laser scanning microscopy (MPLSM)  [  5,   63  ] . For single-cell resolution chronic 
transparent windows are surgically inserting into the mouse skull thereby enabling lon-
gitudinal real-time tracking of tumor growth and metastasis in the intact animal. A key 
component of brain metastasis that has been imaged successfully in this fashion is the 
relationship between tumor cells and the vasculature of the brain  [  5,   63  ] . 

 Carbonell and colleagues used MPLSM to serially image GFP expressing human 
breast cancer and melanoma cells following their intraparenchymal injection 
into mouse brain  [  63  ] . They found that during early stages of colony formation the 
majority of micrometastases were in direct contact with the vascular basement 
membrane of existing brain vessels. Based on their observations, they concluded 
that the vascular association of tumor cells in brain colonies was not due to the 
physical association of the tumor cell with the vessel after extravasation, but rather 
a preferential interaction with the vessel. 

 Kienast and colleagues used intravital MPLSM to track individual metastasizing 
lung cancer and melanoma cells in relation to blood vessels deep in the mouse brain 
 [  5  ] . They imaged mice minutes after the intra-arterial cell injection and continued to 
follow them over months. Using RFP-expressing cancer cells and  fl uorescein iso-
thiocyanate (FITC)-dextran to label blood vessels they were able to identify four 
essential steps of successful macrometastasis formation in the brain: initial arrest at 
blood vessel branches, early extravasation, perpetuation of a perivascular position 
and either angiogenesis (lung cancer) or vessel co-option (melanoma) (Fig.  5.5 ). 
These  fi ndings provided new insights into the evolution of metastases and helped 
with understanding of certain clinical observations.   

  Fig. 5.5     In vivo  multiphoton laser scanning microscopy images of PC14-PE6 lung carcinoma 
cell macrometastasis formation in the brain of a GFP-expressing transgenic mouse. Five foci of 
extravasated lung carcinoma cells in close proximity to each other on day 3 merge into one growing 
macrometastasis overtime (depth: 50–450  m m) (Modi fi ed from Kienast et al .  2010)       
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    8   Multimodality Imaging 

 It has become quite common to see multiple imaging modalities used in a 
complementary fashion to acquire multilayered information. The goal of multimo-
dality imaging is to combine the best features of separate modalities. For instance, 
high-resolution anatomical images acquired with MRI or computed tomography 
(CT) are often combined with functional or metabolic imaging such as with PET 
or SPECT. 

 A promising advancement in multimodality imaging has been the development 
of hybrid multimodal scanners. Currently PET/CT, SPECT/CT and PET/MR scan-
ners have been developed that can provide complementary anatomical, physiologi-
cal and functional information  [  2  ] . The development of these systems has incurred 
some challenges. PET/CT exposes patients to higher than recommended doses of 
radiation (as high as 25 millisieverts (mSv))  [  64  ] , while PET/MR requires compli-
cated attenuation correction and MR compatible hardware  [  65,   66  ] . Despite the 
challenges, the potential bene fi ts are great. In clinical centers where these systems 
are already in use, the ability to obtain data from multiple modalities is already 
improving clinical decision-making  [  2,   12  ] . 

 Image co-registration is another multimodality strategy employed when inte-
grated systems are not available. Here imaging sessions are performed indepen-
dently and images are later fused. Registration methods are most accurate for the 
brain and fused images have been shown as more useful than each modality alone. 
For example, co-registration of FDG-PET images with MR images greatly improves 
image interpretation as anatomical information helps delineate the metabolic altera-
tions in an area of interest  [  13  ] . 

 Applying multiple modalities without co-registration still offers the bene fi t of 
added information and opens the possibility of using modalities that are not easily 
co-registered. For mouse models the most common approach is to combine an opti-
cal imaging technique with either MRI or micro-CT  [  16,   58,   63,   67  ] ; although there 
are few examples of the use of multimodality imaging to study experimental brain 
metastases. Song and colleagues used MRI and BLI to non-invasively track the 
temporal and spatial distribution of breast cancer metastases in a rat model  [  58  ] . 
Brain images were acquired with MRI and the whole rat body was imaged with 
BLI. This approach revealed metastases in the brain, spinal cord, bone and internal 
organs. Each imaging modality had an important role; brain metastases detected by 
MRI were not always present on BLI and it is impractical to image the whole rat 
body with MRI. The combined use of MRI and BLI provided the tools necessary to 
monitor both brain and systemic metastases in the same animals, which had not 
been done before. 

 Current micro-CT systems can achieved ultra-high spatial resolutions and produce 
excellent quality images of bony structures in mice. Low radiation doses will allow for 
multiple imaging sessions to be performed. Lim and colleagues used micro-CT and 
BLI to monitor the distribution and development of systemic breast cancer metastases 
and speci fi cally bone metastases with associated osteolytic lesions  [  67  ] . The optical 
and CT data sets were co-registered in 3-dimensions. Optical methods should also be 
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very useful for complementing MRI cell tracking studies since the use of iron-labeled 
cell detection by MRI is limited by the slow clearance of signal when cells die, whereas 
optical methods offer the ability to monitor and quantify cell viability.  

    9   Summary 

 Traditionally, methods used to identify and examine brain metastases are labor-
intensive, time-consuming, invasive, and provide little information on the dynamics 
of cancer cells in vivo. The use of sophisticated experimental models of brain metas-
tasis along with advanced imaging technologies will increase our understanding of 
the development, progression and treatment of brain metastases. With the ability to 
reliably track the metastasis and proliferation of small numbers of cancer cells, and 
speci fi c subsets of cancer cells, will come new knowledge of the behavior of these 
cells in a relatively undisturbed environment.      
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  Abstract   In the era of therapies successfully targeting distinct molecular pathways 
in cancer, the incidence and relevance of brain metastases are rising. Generally, the 
old therapeutic nihilism with respect to brain metastasis has given way to a more 
pragmatic approach, aiming to optimally combine (radio)surgery, whole brain radio-
therapy, and sometimes systemic chemotherapy. However, local approaches inevita-
bly fail to address the multifocal nature of the disease, whole brain radiotherapy 
shows relevant neurotoxicity, and systemic chemotherapy faces the obstacle of the 
blood-brain/tumor-barrier. Therefore, judicious addition of targeted agents to the 
therapeutic armamentarium for brain metastases holds the promise to make a real 
difference for patients suffering from this devastating disease. Unfortunately, because 
of their unfavorable prognosis, patients with brain metastases have traditionally been 
excluded from studies with targeted therapies. This is changing now for several 
reasons, making it likely that we will obtain relevant clinical data in the next few 
years. The following chapter gives an overview of new therapies targeting molecular 
pathways both in the tumor stroma and in cancer cells, covering its theoretical and 
reported activity against brain metastases. A special emphasis will be placed on 
prophylaxis, i.e. prevention of macrometastasis formation.      

    1   Introduction 

 Brain metastasis (BM) therapy faces the challenge to ef fi ciently target the cancer 
cell, or its supportive relationship with the brain parenchyma, without damaging 
the delicate organ it is colonizing. Therapeutic agents targeting distinct molecular 
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pathways of cancer cells hold the promise to do just that  [  1  ] . Furthermore, the fact 
that the majority of BM patients suffer from multiple metastases that occur unpre-
dictably at different sites during the course of the disease makes a systemic therapy 
treating macro- and also micrometastases most adequate. Optimally, a systemic 
therapy might even prevent brain colonization altogether, or at least arrest single 
cells or micrometastases in a dormant state. Even though we are far away from 
 having such a weapon with proven clinical ef fi cacy at hand, there is some reason to 
be cautiously optimistic. 

 First, one of the greatest challenges of systemic brain tumor therapy can be over-
come: the blood-brain/blood-tumor barrier. For example, antiangiogenic agents 
 targeting the VEGF pathway have to reach only the endothelial cell, but do not have 
to cross the entire blood-tumor barrier, consisting of additional layers of thickened 
basement membrane, irregular pericyte coverage, and occasionally astrocyte foot 
processes in the brain  [  2–  4  ] . In contrast, this is mandatory for all chemotherapeutics 
or targeted drugs that have to reach the cancer cell to exert their action. Furthermore, 
drug penetration to the cancer cell is also hindered by the aberrant and highly 
heterogeneous blood  fl ow in brain tumor vessels lacking the normal hierarchical 
structure of normal brain vasculature. Finally, increased interstitial  fl uid pressure 
hinders extravasation into the tumor  [  5  ] . All in all, it is a futile challenge for most 
drugs available today to overcome these barriers between the blood stream and 
the brain tumor cell, at least in meaningful concentrations. Like antiangiogenic 
agents, immunomodulators targeting cells responsible for anti-tumor immunity 
(e.g., Ipilimumab) do not need to reach the cancer cell to exert their action. 

 Second, targeted small molecule and even antibody inhibitors can be designed to 
ef fi ciently cross the blood-brain barrier (BBB), or linked to an agent that is actively 
transported over it  [  6  ] . Until recently, pharmaceutical companies did not show great 
interest in developing such agents. However, the rising incidence of brain diseases 
like Alzheimer’s or Parkinson’s changed this, and today pharmaceutical companies 
start drug development programs to select and/or design agents with maximum 
BBB penetration capabilities, including antitumor agents. 

 Third, it is proven that macrometastatic outgrowth in the brain can be effectively 
 prevented  – by prophylactic whole brain irradiation which targets the whole organ. 
Applied during a short time frame (2–3 weeks) early in the beginning of the disease, 
prophylactic whole brain irradiation decreases the incidence of (macro)metastasis 
formation by more than 50%, an effect that continues over the next 24 months  [  7  ] . 
This matches well with common preclinical and clinical experience that prevention 
of a disease is much easier than treating it when it is fully developed. Since targeted 
agents can be applied over long periods of time, are active in the whole body, and 
do not show the neurotoxicity of whole brain radiotherapy (WBRT), they seem to 
be perfect future candidates for brain metastasis prevention. 

 In the last 10 years, targeted cancer therapy  [  8  ]  has grown explosively and is now 
established for many tumor entities. However, like established cytotoxic therapies, 
its role in in fl uencing the occurrence of metastases has rarely been systemically 
addressed  [  9,   10  ] . Furthermore, virtually no targets for molecular therapies have 
been identi fi ed in small cell lung cancer (SCLC) yet, which makes the tumor entity 



896 Possibilities of Targeted Therapies for Brain Metastasis

with the highest incidence of BM formation still largely terra incognita. In general, 
clinical trials are not (yet) designed to prospectively investigate the rate of metasta-
sis formation. Taken that the vast majority of cancer patients die of metastasis and 
not the primary tumor, this appears to be one of the most important issues for future 
cancer research. This chapter provides an overview of those targeted therapies that 
seem most suited for use in BM therapy, both of established macrometastases and 
of early metastatic events. Furthermore, the clinical data available today is pro-
vided, with the limitation that a controlled, prospective, randomized clinical trial 
testing the effect of targeted therapies on BM has not been completed yet. However, 
there are several clinical studies on the way that aim to explore the ef fi cacy of 
targeted agents in BM therapy. At this time, patient data from small case series, 
retrospective analyses, or even anecdotal reports may teach us what pathways and 
agents might be the best candidates for future trials. In the following paragraphs, 
those pharmacologically targetable molecular pathways will be presented that are 
most promising with respect to BM therapy, because of existing clinical data or for 
conceptual reasons.  

    2   Antiangiogenic Therapy 

 Most antiangiogenic agents target the VEGF pathway. It is important to keep in 
mind that – in general – tyrosin kinase inhibitors show only moderate selectivity for 
one receptor (or even class of receptors)  [  11  ] , which extends their activity to 
PDGFRs and others. During vessel formation, PDGF-BB is required for the recruit-
ment and differentiation of pericytes, and preclinical data suggest that concomitant 
inhibition of VEGF and PDGF signaling can improve anti-tumor activity compared 
with VEGF alone  [  12  ] . It needs to be clari fi ed if normalization of brain tumor vas-
culature during VEGF pathway inhibition  [  2  ]  is preferable for every patient, or if 
agents that disturb the vasculature by disrupting pericyte support (such as PDGF 
receptor inhibitors) may sometimes have greater bene fi t. However, severe reduction 
or lack of pericyte coverage may also facilitate metastasis by disrupting the integrity 
of the vasculature  [  13  ] . In contrast, bevacizumab, the antiangiogenic agent most 
widely used today, inhibits only VEGF-A. Accordingly, there is rising evidence that 
different antiangiogenic agents can exert very different actions in vivo, which makes 
it problematic to generalize one  fi nding with one inhibitor to all antiangiogenic 
agents. Furthermore, other pathways like the angiopoietin system are now coming 
into the focus of drug development. From a conceptual point of view, antiangio-
genic agents that mainly prevent ligand binding/receptor activation at the endo-
theralial cell do not have to cross the BBB/blood-tumor-barrier, which could prove 
to be their most important advantage for brain tumor therapy. Therefore, the argu-
ment that large antibodies like bevacizumab do not cross the intact BBB and may 
therefore not be useful in brain tumors does not apply. 

 In primary brain tumors, antiangiogenic therapy with the humanized monoclonal 
anti-VEGF-A antibody bevacizumab has shown clinical activity  [  14  ] , received an 



90 F. Winkler

accelerated FDA approval due to its excellent response rates and very good progres-
sion free survival data at 6 months, and is now widely used for patients suffering 
from malignant gliomas. Two large double-blind, placebo-controlled phase III stud-
ies are currently investigating bevacizumab as  fi rst-line therapy for glioblastoma in 
addition to radio/chemotherapy (  www.clinicaltrials.gov    ). Both have completed 
accrual   , recruited more than 700 patients each, and  fi rst results are expected for 2013. 
This high level of clinical study activity is limited to primary brain tumors though. 
With respect to BM, there is mainly preclinical evidence from multiple animal mod-
els that antiangiogenic agents can be effective: elevated VEGF expression has been 
linked to the development of BM in a murine model  [  15  ] . Kim et al. showed that 
treatment with the VEGF-receptor tyrosine kinase inhibitor PTK787/Z 222584 
reduced angiogenesis and restricted the growth of brain metastases in a murine breast 
cancer model  [  16  ] . In another mouse model, inhibition of VEGF signaling using 
bevacizumab was able to ef fi ciently inhibit angiogenesis and metastasis formation of 
lung cancer, but not melanoma cells  [  17  ] . In established brain metastatic disease, 
high-dose bevacizumab therapy could induce vascular normalization, and blood ves-
sel and tumor cell regression [von Baumgarten L, Kienast Y, Winkler F; unpublished 
data], similar to what we have found in glioblastoma  [  18  ] . However, from what is 
known today, the growth pattern of different tumor (sub)types in the brain is highly 
different, with lung carcinoma being the most angiogenesis-dependent, and mela-
noma being the most angiogenesis-independent (due to the ability to grow co-optive 
along pre-existing brain microvessels ). Breast cancer seems to be located in the 
middle of this continuum, but considerable variability within tumor entities is likely. 
It is plausible that this has great impact on the ef fi cacy of antiangiogenic therapies 
 [  17  ] . Conclusively, antiangiogenic therapy has not shown ef fi cacy in melanoma 
patients yet. All in all, these preclinical results argue for a serious clinical evaluation 
of antiangiogenic agents in BM therapy and prophylaxis. As with other tumor sites, 
a clinical parameter (laboratory, imaging, or histological) that predicts response to 
antiangiogenic therapy would be extremely helpful – but is lacking. Until then, the 
preclinical results strengthen the point that brain metastases from different tumor 
entities should be investigated separately in clinical studies. 

 There is limited data about the clinical activity of antiangiogenic agents in BM 
patients yet. This is mainly due to exclusion of patients with BM from clinical trials 
with antiangiogenic agents since a single patient with brain metastatic hepatocellu-
lar carcinoma (a disease with high incidence of intracranial bleedings  [  19  ] ) devel-
oped a cerebral hemorrhage 2 weeks after a single dose of bevacizumab in a phase 
I trial  [  20  ] . Since then, large meta-analyses, retrospective case studies and a pro-
spective phase II trial have shown that bevacizumab therapy does not increase the 
incidence of clinically relevant intracranial bleedings in patients with central ner-
vous system (CNS) metastases  [  21–  23  ] . This seems to be also true for tyrosine 
kinase inhibitors  [  24  ] . Consequently, the contraindication for BM has been removed 
from the bevacizumab label in Europe and most likely will be removed also in the 
US in due time. Several phase I and II trials evaluating bevacizumab alone or in 
combination with cytotoxic compounds in BM patients have been initiated and are 
ongoing (Table  6.1 ). Other drugs with antiangiogenic properties that are investigated 

http://www.clinicaltrials.gov
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   Table 6.1    Overview of targeted agents that are currently being investigated in ongoing clinical 
studies (  http://clinicaltrials.gov    )   

 Type of treatment  Investigational agent  Tumor type per trial  Trial phases 

 Anti-angiogenic 
agents 

 Bevacizumab  All, NSCLC, breast 
cancer, melanoma 

 I, II 

 Cilengitide  Lung cancer  I 
 Sorafenib  All, kidney cancer  I, II 
 Sunitinib  All, NSCLC, kidney 

cancer, melanoma, 
breast cancer 

 I, II 

 Thalidomide  All, melanoma  I, II, III 
 BRAF inhibitors  GSK2118436  Melanoma  II 

 Vemurafenib  Melanoma  II 
 EGFR inhibitors  Afatinib  All  II 

 Erlotinib  NSCLC  I, II, III 
 Ge fi tinib  NSCLC, lungadenoc

arcinoma 
 II 

 Lapatinib  Breastcancer, lungcancer  I, II 
 Trastuzumab  Breastcancer  II 
 Nimotuzumab  NSCLC  II 

 Gamma-secretase/
notch inhibitor 

 RO4929097  Breastcancer  I/II 

 HDAC inhibitors  Panobinostat  All  I 
 Vorinostat  All, NSCLC  I 

 Immunomodulatory 
agents 

 Ipilimumab  Melanoma  II 
 Interferon alfa-2a  Breastcancer  II 

 mTor inhibitors  Everolimus  Breastcancer, NSCLC  I, II 
 PARP inhibitors  ABT-888  All  I 

 Iniparib  Breastcancer  II 
 Protein kinase 

C beta inhibitor 
 Enzastaurin  SCLC  II 

 Radiation sensitizers  Cytochlorandtetrahy
drouridine 

 All  I 

 Efaproxiral  All, breastcancer  III 

  From  [  1  ]   

in clinical trials enrolling BM patients include sunitinib, sorafenib, and cilengitide. 
Older trials evaluated non-speci fi c antiangiogenic agents such as thalidomide, in 
combination with WBRT, without demonstration of improved ef fi cacy, but high 
numbers of dropouts due to severe side effects  [  25  ] . Hopefully, the newer studies 
with more speci fi c antiangiogenic agents will provide us with data on the ef fi cacy 
of antiangiogenic drugs in established brain metastases.  

 The experience with antiangiogenic agents in primary brain tumors highlights 
several issues that may require special attention also in brain metastases  [  26  ] . 
VEGF-targeting drugs like bevacizumab have a BBB-stabilizing effect which 
leads to a reduction of brain edema and radiological contrast media uptake. This 
effect, which has also been shown in brain metastases  [  27  ] , may lead to 

http://clinicaltrials.gov
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 overestimation of tumor shrinkage and requires stringent application of adequate 
response criteria and clinical trial  endpoints  [  28  ] . Interestingly, treatment of mice 
with glioblastoma with cediranib prolonged  survival despite persistent brain 
tumor growth in mice by reducing brain edema  [  29  ] . It remains to be clari fi ed 
whether a potential tumor growth-inhibitory or an anti-edematous effect is 
responsible for the clinical bene fi t in humans. 

 Prophylactic administration of VEGF antagonists seems also feasible and is an 
attractive approach that can be tested in patients at high risk for developing BM  [  17, 
  30  ] . In a novel preclinical animal model we used in vivo multiphoton microscopy 
for real-time imaging, and tested the prophylactic effect of VEGF-A blockade on 
the outgrowth of individual metastasizing lung cancer cells in the mouse brain  [  17  ]  
(Fig.  6.1 ). One experimental group received the anti-VEGF-A antibody bevaci-
zumab just after tumor cell inoculation into the internal carotid artery. Bevacizumab 
completely prevented early angiogenic events in micrometastases, and thereby 
induced prolonged dormancy of micrometastatic tumors (maximum ten cells). We 
did not observe any effects on any other essential steps of the metastatic cascade 
(initial arrest at vascular branch points; early extravasation; perivascular position 
with close physical contact to a brain microvessel). Bevacizumab had no effect on 
the metastatic colonization of melanoma cells in the brain, which showed a non-
angiogenic growth pattern under normal conditions. Further preclinical studies are 
required to determine how discontinued versus prolonged inhibition of VEGF, and 
combination with other treatment modalities, in fl uences the establishment and 
growth of micrometastatic disease. An interesting retrospective analysis from the 
clinic has shown that patients with renal cell carcinoma who received sorafenib had 
lower incidence of brain metastases than those patients who did not receive sorafenib 
(3% vs. 12%). This effect stayed statistically signi fi cant over 2 years  [  31  ] . Even 
though both groups consisted of considerably low numbers of patients, the prophy-
lactic properties of antiangiogenic agents is an area of important future clinical 
research.  

 It is also important to mention several caveats regarding antiangiogenic therapy 
for brain tumors. In 2009, anti-VEGF monotherapy became controversial with 
respect to tumor metastasis: accelerated tumor invasiveness and metastasis was 
observed in mice after pharmacological blockade of the VEGF pathway  [  13,   32  ] . 
However, this did not translate into impaired animal survival (partly to the con-
trary), and – as stated above – is not in accordance with current signals from the 
clinic. Furthermore, in glioblastoma, bevacizumab treatment has been suggested to 
increase the rate of intracerebral distant and diffuse tumor progression by increasing 
the tendency of glioma cells to invade the brain parenchyma along pre-existing 
vasculature  [  33,   34  ] . However, this view has been challenged lately in better 
controlled clinical studies which failed to demonstrate a different pattern of relapse 
in bevacizumab-treated glioblastomas  [  35  ] . Increased vascular co-option has 
been shown for bevacizumab-challenged brain metastatic lung cancer  [  17  ]  and 
melanoma cells  [  36  ]  in the experimental setting. Like in glioblastoma, we have to 
closely monitor potential pro-invasive effects of antiangiogenic therapies in controlled 
clinical trials of BM. Finally, the vasculature of brain metastases differs signi fi cantly 
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from that of the primary tumor  [  37  ] . This strengthens the point that results from 
clinical trials investigating the systemic effects of antiangiogenic therapy cannot be 
transferred to the CNS setting one-to-one.  

    3   HER2 in Breast Cancer 

 HER2 ampli fi cation or overexpression is found in around 20% of primary breast 
tumors and is associated with poor prognosis and with the development of BM 
 [  38–  41  ] . The incidence of BM in patients with HER2 ampli fi ed breast cancer is 
25–40%. The reasons for the increased incidence of BM are unclear and are likely 
multifactorial: First, there is ample data that HER 2 overexpression increases the 
outgrowth of metastatic tumor cells in the brain by a direct biological effect  [  42–
  44  ] . The exact mechanism of how HER2 modulates BM formation is not known 
yet; it might involve HER2-induced activation of the angiogenic VEGF pathway 
 [  45–  47  ] . Compared to HER2 ampli fi ed primary breast tumors, HER2 mRNA levels 
were increased  fi vefold in breast cancer BM  [  48  ] , which supports an important role 
of HER2 for breast cancer metastasis growth in the brain microenvironment. In sup-
port of this, MDA-MB-231 human breast carcinoma cells transfected with HER2 
produced threefold larger brain metastases than control transfected cells  [  43  ] . 

lung carcinoma cell

+bevacizumabno therapy

4. Angiogenic growth

2. Active extravasation

3.Strict perivascular position

1. Arrest by size restriction

4. Dormancy of
micrometastases

brain microvessel

  Fig. 6.1    Prophylaxis of brain 
metastasis formation, as 
demonstrated in a novel 
preclinical animal model 
 [  17  ] . Continuous 
antiangiogenic therapy with 
the anti-VEGF-A antibody 
bevacizumab has the potential 
to interrupt the metastatic 
cascade by forcing 
micrometastases into a state 
of chronic dormancy. This is 
due to interruption of an early 
angiogenic switch that is 
crucial for successful 
macrometastasis growth of 
angiogenesis-dependent 
cancer cells       
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    3.1   Trastuzumab 

 Another cause of the increased incidence of BM in HER2 overexpressing breast 
cancer could be that trastuzumab, a recombinant humanized monoclonal antibody 
against HER2 that is signi fi cantly improving the survival of women with HER2 
ampli fi ed systemic breast cancer, is not active against breast cancer cells in the 
brain. Trastuzumab does not penetrate the BBB, which makes the brain a “sanctuary 
site” for metastatic cells  [  10  ] . Poor cerebrospinal  fl uid (CSF) penetration of trastu-
zumab was found even after WBRT and in the presence of leptomeningial carcino-
matosis  [  49  ] . In line with this, several studies showed that more than two thirds of 
trastuzumab-treated patients present with BM at a time of systemic disease control 
 [  38,   50  ] . The systemic disease control with trastuzumab seems to endure even after 
diagnosis of BM  [  51  ] . The CNS delivery problems of systemic trastuzumab therapy 
have lead to attempts to bypass the BBB: trastuzumab has been injected directly 
into the CSF of patients that suffer from leptomeningeal carcinomatosis, with casu-
istic evidence of impressive and prolonged clinical activity  [  52,   53  ] . Since the HER2 
status is largely (87%) consistent between matched primary tumors and cerebral 
metastases  [  44  ] , it appears promising to investigate smaller HER2 inhibitors that 
have the chance to cross the BBB in suf fi cient concentrations for HER2-positive 
breast cancer patients with BM.  

    3.2   Lapatinib 

 Lapatinib is an orally available inhibitor that binds reversibly to the cytoplasmatic 
ATP-binding site of the HER2 and EGFR tyrosine kinases and is primarily used for 
treatment of trastuzumab-resistant advanced breast cancer. Its brain penetration might 
be compromised by drug ef fl ux transporter activity in the BBB  [  54  ] . In fact, a recent 
preclinical study has found highly heterogenous lapatinib concentrations in brain 
metastases that depended on local BBB permeability; generally, only 10–20% of the 
drug concentration in peripheral metastases was reached  [  55  ] . Accordingly, two phase 
II trials investigating lapatinib in breast cancer patients with BM have been completed 
and have shown no certain  [  56  ]  or only modest  [  57  ]  single agent activity. In a recent 
study, lapatinib plus capecitabine achieved a good objective response rate of 38%, but 
no signs of response were found for lapatinib plus topotecan, again questioning the 
role of lapatinib  [  58  ] . Trials investigating lapatinib in combination with other anti-
neoplastic agents are ongoing. The Radiation Therapy Oncology Group (RTOG) is in 
the process of initiating a clinical trial for women with HER2-positive breast cancer 
and BM; the two treatment arms will test WBRT with or without lapatinib, in the 
context of a randomized phase II trial. These trials should provide a better idea whether 
lapatinib has relevant CNS activity or not.  

 It is noteworthy that there might be a decreased incidence of CNS relapses in 
patients treated with lapatinib in Phase III trials  [  59,   60  ] , even though this was not 
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the primary study objective , and the low patient numbers resulted in borderline 
signi fi cance. In a mouse model, Gril et al. tested the ef fi cacy of early onset lapa-
tinib treatment in breast cancer cells with HER2 overexpression, and showed an 
inhibition of the formation of large brain metastases by approximately 50%  [  61  ] . 
Taken together, lapatinib might not have a great therapeutic effect if large metasta-
ses have formed, but might very well be of preventive (“prophylactic”) bene fi t with 
respect to brain metastasis formation. Remarkably, a large ongoing phase III study 
can illuminate the prophylactic potential of lapatinib in brain metastasis formation. 
Patients with recurrent systemic HER2 positive breast carcinoma are randomized 
to receive lapatinib plus capecitabine vs. trastuzumab plus capecitabine, and the 
primary outcome measure is the incidence of CNS metastases as the site of  fi rst 
relapse (  www.clinicaltrials.gov    ; NCT00820222). This is one of the very few phase 
III clinical trial addressing the role of targeted therapies in BM, in this case the 
prevention of it.  

    3.3   Other HER2 Targeting Agents 

 Afatinib is an orally available next generation tyrosine kinase inhibitor that irre-
versibly inhibits HER2 and EGFR tyrosine kinases. In higher doses of 40 mg/
day, clinical responses of brain metastases have been observed  [  62  ] . A phase II 
randomized multicenter trial is now enrolling patients with HER2 positive breast 
carcinoma with recurrent or progressive brain metastases after trastuzumab 
or lapatinib treatment into three treatment arms: afatinib 40 mg/day; afatinib 
plus vinorelbine; investigator’s choice of treatment (  www.clinicaltrials.gov    ; 
NCT01441596).   

    4   EGFR in Non-small Cell Lung Cancer 

 Ten percent (US) to 25% (Asia) of non-small cell lung cancer (NSCLC) cases 
(mainly adenocarcinomas) carry EGFR activating mutations; these numbers might 
be higher in BM  [  63,   64  ] . A recent study has shown that EGFR mutations are found 
in 44% of BM from NSCLC, and are associated with a doubled median survival of 
patients. This was due to better intracranial and also extracranial disease control; 
78% received EGFR inhibitor therapy after diagnosis of BM  [  63  ] . The oral EGFR 
tyrosine kinase inhibitors ge fi tinib and erlotinib are approved and routinely used for 
the treatment of NSCLC: ge fi tinib for NSCLC with mutations of EGFR and erlo-
tinib for locally advanced or metastatic NSCLC that has failed at least one prior 
chemotherapy regimen. A number of case reports, small retrospective and prospec-
tive case series and non-randomized phase II trials indicate that EGFR inhibitors 
may be active in NSCLC BM (Table  6.2 ), particularly in cases with activating EGFR 
mutations  [  65–  76  ] . Erlotinib seems to produce higher CSF concentrations than 

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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ge fi tinib and therefore may be preferable  [  77  ] . Unfortunately, de fi nite results from 
randomized and adequately powered trials are not available  [  78  ] . Case reports sug-
gest that dose escalation strategies should be considered, especially for patient who 
develop BM under standard dose EGFR inhibitor therapy  [  64  ] . This has also been 
shown for leptomeningeal carcinomatosis  [  79  ] . Interestingly, a recent retrospective 
study demonstrated a potential prophylactic role of EGFR tyrosine kinase inhibitors 
in patients with advanced NSCLC and somatic EGFR mutations. The cumulative 
risk of CNS progression at 1 and 2 years was 5% and 21% in patients receiving 
erlotinib or ge fi tinib vs. 24% and 31% in the chemotherapy group, indicating a 
potential prophylactic role of EGFR inhibitors  [  80  ] .  

    5   BRAF in Melanoma and Beyond 

 Activating mutations of the serine threonine kinase v-RAF murine sarcoma viral 
oncogene homolog B1 (BRAF) are found in a wide range of human cancers and are 
frequently found in melanoma (60% of cases). More than 95% of BRAF mutations 
are of the V600E type, which leads to the substitution of valine by glutamic acid in 
the activating segment of the kinase domain of BRAF. This aberration leads to con-
stitutive kinase activity of BRAF, thereby enhancing the proliferative and metastatic 
tumor potential through downstream activation of the mitogen-activated protein 
kinase (MAPK) signal transduction pathway. BRAF mutations seem to be associ-
ated with an increased risk for BM formation in patients  [  81  ] , which makes this 
mutation overrepresented in BM and the BRAF pathway an interesting therapeutic 
target. Furthermore, it matches well with preclinical experience that the small 
proportion of melanoma cell lines that forms parenchymal BM in animals have 
mutated BRAF. 

 Several speci fi c inhibitors of BRAF V600E mutated protein are under preclinical 
and clinical development and have shown favorable clinical activity in metastatic 
melanoma. Vemurafenib (PLX4032) produced compelling response rates of up to 
70% and improved overall and progression-free survival times in BRAF V600E 
mutated metastatic melanoma patients  [  82  ] . Unfortunately, patients with active brain 
metastases have been excluded from current vemurafenib trials. However, there are 
favorable preliminary ef fi cacy data on GSK2118436, another inhibitor of mutant 
BRAF, in patients with brain metastatic melanoma. In a phase I/II study enrolling 
patients with metastatic melanoma, GSK2118436 lead to shrinkage and even some 
complete responses of previously untreated asymptomatic brain metastases in a 
 subpopulation of ten patients  [  83  ] . Based on these preliminary observations, a large 
non-randomized phase II study exploring the effect of GSK2118436 on the 
 radiological response rate in patients with BRAF V600 mutated melanoma brain 
metastases was launched and almost completed (NCT0166967). Also, a phase II trial 
evaluating ef fi cacy and safety of vemurafenib in patients with brain metastatic 
 melanoma has been initiated (NCT01378975). Such systemic approaches are very 
promising, as expression of the therapeutic target (BRAF V600E-mutant protein) has 
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been shown to be homogenous throughout the tumor tissue and to be consistent 
between different tumor manifestations in individual patients  [  84  ] . However, although 
most patients with BRAF V600E mutated melanomas initially show response to 
BRAF inhibitors, a signi fi cant number of patients develop secondary resistance and 
experience disease relapse. Treatment resistance may be explained by mechanisms 
like platelet derived growth factor (PDGFR)-beta upregulation or acquisition of 
N-RAS mutations or MET mutations  [  85,   86  ] .  

    6   Cytotoxic T Lymphocyte Antigen 4 Immunomodulators 
in Melanoma 

 Ipilimumab, a human IgG1 monoclonal antibody to cytotoxic T-lymphocyte Antigen 
4 (CTLA-4), activates T-cells by blocking the inhibitory action of CTLA-4. CTLA-4 
ligation down-regulates T-cell responses and its clinical effects. Overall survival of 
patients with advanced malignant melanoma was prolonged in two randomized, 
double-blind multi-national phase 3 trials of ipilimumab as monotherapy  [  87  ]  and in 
combination with dacarbazine chemotherapy  [  88  ] . Furthermore, anecdotal data and 
subgroup analyses imply that ipilimumab can show clinical activity against mela-
noma BM  [  89–  90  ] . These studies demonstrated the activity of ipilimumab as a 
monotherapy with responses measured as tumor reduction (objective tumor response). 
Partial responses were noted in about 25% of patients not on corticosteroids and 5% 
of those on corticosteroids. Importantly, the current data implies an acceptable safety 
pro fi le, including patients who previously received CNS radiation. This point has to 
be followed closely, since previous effective immunotherapies against targets in the 
CNS showed meningitis and encephalitis including serious brain swelling  [  91  ] .  

    7   WNT Pathway 

 The WNT pathway has been strongly implicated in cancer including cancer stem 
cell maintenance  [  92  ] , with 80% of colorectal cancers harboring WNT pathway 
mutations. Nguyen et al. identi fi ed activation of the canonical WNT/TCF pathway 
as a major factor for metastatic spread to the brain and the bones in NSCLC  [  93  ] . 
Remarkably, WNT signaling was also strongly associated with BM in breast carci-
noma patients  [  94  ] . In a preclinical study, it was found that microglia promotes 
brain tissue colonization by breast cancer cells in a WNT-dependent manner  [  95  ] . 
Since the WNT pathway is critical for tissue regeneration and for the ability of stem 
cells in the bone marrow and gut to self-renew, there is concern that WNT pathway 
inhibitors could have serious side effects. Accordingly, gastrointestinal and wound 
healing defects were seen in animals, although these were reversible after drug 
removal  [  96  ] . Therefore, several researchers and pharmacological companies are 
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moving steadily forward with WNT pathway inhibitors. At this time, a handful of 
WNT inhibitors are already being investigated in Phase I clinical trials, although 
none of them in the context of BM. Taken the strong evidence for WNT pathway 
involvement in BM formation, this is one of the most promising future targets for 
clinical trials.  

    8   Predictive Markers 

 There is currently no validated predictive marker that tells a clinician which BM 
will respond to a speci fi c targeted therapy. However, it is plausible to assume that 
the laws of general oncology can be transferred to the brain metastatic setting. 
Furthermore, there seems to be a high consistency (generally around 90%) for 
molecular alterations in the primary tumor and the BM. This makes it reasonable to 
take the genetic or gene expression information from the primary tumor as 
strati fi cation for BM therapy, when (a) the molecular marker is validated to be pre-
dictive for the extracranial disease, and (b) the molecular marker has been demon-
strated to be consistent between primary tumor and BM. At the moment, those 
requirements are ful fi lled for HER2 status in breast carcinoma and BRAF status 
in melanoma. However, it is preferable to note that the tissue from the brain meta-
static lesion itself is lacking. One very promising potential predictive marker in 
brain metastasis is BRAF V600E in brain metastatic melanoma. Correct identi fi cation 
of candidate patients for BRAF inhibitors requires reliable identi fi cation of BRAF 
V600E mutated tumors. So far, DNA-based methods have been primarily used and 
a real-time PCR test kit has been approved by the FDA for diagnostic purposes. 
However, the feasibility of DNA-based methods in the routine diagnostic setting is 
limited. The mutation-speci fi c monoclonal antibody VE1, which allows immunohis-
tochemical detection of BRAF V600E protein in formalin- fi xed, paraf fi n-embedded 
tissue samples including brain metastases, has recently been generated (Fig.  6.2 ) 
 [  84,   97  ] . Immunohistochemistry using VE1 seems to be an attractive tool for the 
diagnostic setting and facilitates mutation screening in large tumor series, even in 
entities with low mutation frequencies. Finally, one ongoing area of research is the 
identi fi cation of predictive markers for antiangiogenic therapy. Despite intensive 
research in this area, no biomarker could be validated yet; candidates for brain 
tumors include changes in distinct MRI sequences, circulating endothelial cells, and 
plasma levels of cytokines, receptors, and components of the vascular basement 
membrane  [  98  ] . The most straightforward approach, measurement of VEGF-A and/
or its receptors, did not prove successful yet. However, new retrospective analyses 
from large phase III trials now point towards a potential predictive role for plasma-
VEGF-A in extracranial tumors; this needs to be evaluated in a prospective setting. 
In general, it is likely that the advent of effective targeted therapeutics will further 
increase the necessity of molecular analysis from BM, which might increase the 
future role of surgical procedures (resection, or biopsy).   
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    9   Outlook 

 The advent of targeted therapies will hopefully facilitate the shift from the current 
practice of treating BM according to a rather crude algorithm, in many cases not 
even considering the histological tumor type, to rational treatment based on indi-
vidual tumor characteristics. Established BM may be amenable to targeted inhibi-
tion of signaling pathways, at least in a proportion of cases. Patients with BM have 
long been systematically excluded from clinical trials, although there is a growing 
recognition in the international community that there is no rationale to continue to 
do so  [  99  ] . Hopefully, this will result in the realization of more high-quality trials 
for BM. Such studies need to take into account the large diversity of cancer entities 
producing brain metastases and should implement molecular strati fi cation factors 
whenever possible. Basic and translational investigations are needed to identify 
novel molecular targets and also to understand secondary resistance mechanisms 
that are expected to limit lasting effects of many targeted drugs. The use of Response 
Evaluation Criteria in Solid Tumors or RECIST criteria to measure tumor response 
of molecular targeted agents might underestimate their effectiveness, as prolonged 
tumor stabilization should also be considered as a common mode of action. 
Furthermore, clinical trials should routinely include neurocognitive status and qual-
ity-of-life metrics, as both parameters are important to inform decisions regarding 
the individualized, therapeutic strategies in patients with BM. 

 A particularly interesting approach is the development of prophylactic systemic 
therapy to decrease the incidence of BM in high-risk patients. We see advantages, 
in recent years, to identify these patient subgroups by molecular and/or histological 
subtype. There are several approaches one can think of: After prevention of intrava-
sation in the primary tumor, the next approach would be to interfere with tumor cell 
migration through the BBB with drugs targeting selectins, integrins or other adhesion 

  Fig. 6.2    BRAF V600E 
mutated protein visualized by 
immunohistochemistry in a 
melanoma brain metastasis 
(VE1 immuno-staining, 
original magni fi cation × 200). 
There is homogenous 
expression of the aberrant 
protein in all tumor cells. 
Note the perivascular growth 
pattern of the tumor cells 
(vascular co-option). (From  [  1  ] )       
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molecules. Another possibility could be to inhibit growth of micrometastases by 
blocking ECM-degrading substances (e.g. heparanase, MMP) or early angiogene-
sis, as successfully exempli fi ed with bevacizumab in experimental NSCLC  [  17  ]  
(Fig.  6.1 ). The latter seems most promising, since tumor metastasis is regarded as 
an early event today, which would make it likely that disseminated tumor cells or 
even micrometastases are already residing in the brain at the time of diagnosis of 
cancer. For clinical metastasis prevention studies, optimized trial designs are man-
datory. Only those patients with a high risk of future BM formation should be 
included: when one to three brain metastases received successful local treatment, 
and/or when the tumor type has a known high propensity to metastasize to the brain, 
including SCLC, NSCLC, and breast carcinoma of the basal-like, triple-negative, 
and/or HER2 overexpressing subtype. Further molecular strati fi cation approaches 
(e.g., WNT pathway, chemokine receptor status, BRAF) are on the horizon. The 
primary end point should be time to progression measured by development of new 
brain metastases, and secondary end points should include new BM formation 
thereafter, next to brain metastasis-related morbidity and mortality. Finally, drugs 
that are normally developed and tested in vivo with respect to their growth inhibi-
tory effect on established tumors are not necessarily effective in terms of metastasis 
prevention, or might even promote metastasis formation. Therefore, a careful pre-
clinical evaluation of candidate agents is needed before moving to clinical trials of 
metastasis prevention. In this regard, prophylactic WBRT could at best be displaced 
by systemic treatment options that are less neurotoxic and have additional effects on 
systemic metastasis prevention. It is reasonable to assume that this might be a tar-
geted therapy, maybe in a low-dose regimen.      
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  Abstract   Brain metastases (BM) are by far the most common intracranial adult 
tumor, diagnosed in approximately 150,000–170,000 cancer patients annually in 
the United States. Due to recent advances in the management of systemic cancers 
patient survival has increased, with a consequent increase in the incidence of BM. It 
is estimated that 20–40% of all patients with systemic malignancies harbor cerebral 
metastases during their life. With the increased incidence due to prolonged patient 
survival, more patients are being considered for surgical resection. Although surgical 
management of BM has been performed since the turn of the twentieth century, 
early results were discouraging and viewed with much doubt. Therefore, treatments 
for BM were limited to corticosteroids and whole brain radiotherapy until the last 
few decades. With recent advances in neurosurgical technique, neuroanesthesia and 
improved localization techniques, more lesions are surgically accessible and there 
has been a corresponding decrease in surgical morbidity and mortality. Surgical 
resection of brain metastases continues to evolve but has already demonstrated 
 quality of life bene fi ts as well as increased survival. Currently, surgical resection is 
considered a key component to the management of BM.      
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 The goal of this chapter is to review: (1) the current variables used to determine 
which patients with brain metastases (BM) are candidates for surgical treatment, 
speci fi cally patient selection and histological criteria for both single and multiple 
brain lesions; (2) the surgical methods and approaches currently used to resect BM; 
(3) surgical adjuncts useful in planning and performing resection; (4) whole brain 
radiotherapy as a postoperative adjunct; (5) postoperative management and compli-
cations and, (6) the survival data for patients after surgical resection of BM. 

    1   History 

 Surgical excision of BM has traditionally been viewed as a signi fi cant cause of 
neurological morbidity and mortality, since the  fi rst case reported by Bucholz in 
1898  [  1  ] . In 1926, Grant postulated that surgical excision of cerebral metastases was 
not justi fi ed secondary to extensive operative morbidity and mortality  [  2  ] . It was not 
until 1933 when Oldberg concluded that surgical resection of cerebral metastases 
could increase patient survival, although this was not a widely accepted belief  [  3  ] . 
In 1954, Chao et al.  fi rst reported the results of whole brain radiotherapy (WBRT), 
which quickly became the favored approach due to its non-operative nature and 
general improvements in overall patient survival  [  4  ] . Concomitantly, Kofman et al. 
found that while corticosteroids did not signi fi cantly extend survival, they did reduce 
peritumoral edema, with transient but overt improvement in the signs and symptoms 
of mass effect due to BM.  [  5  ] . Due to the work of Chao and Kofman, WBRT and 
corticosteroids became the mainstays of treatment for the next several decades. 
While a number of retrospective studies in the 1980s alluded to increased survival 
for surgically-resected single BM, these studies were viewed with skepticism sec-
ondary to questionable selection bias  [  6–  10  ] . It was not until the 1990s that two 
prospective, randomized controlled trials showed the ef fi cacy of surgical resection 
 [  11,   12  ] . The trials established that resection of a single cerebral metastasis fol-
lowed by postoperative WBRT was superior to WBRT alone, demonstrating a sur-
vival bene fi t and validating the role of surgical resection in the management of BM. 
In 1990, Patchell et al. randomly assigned 48 patients with single brain metastases 
to either surgical removal of the brain tumor followed by radiotherapy (surgical 
group) or needle biopsy and radiotherapy (radiation group)  [  11  ] . Twenty- fi ve 
patients were assigned to the surgical group and 23 to the radiation group. Recurrence 
at the site of the original metastasis was less frequent in the surgical group than in 
the radiation group (5 of 25 [20%] vs. 12 of 23 [52%]; p < 0.02). Overall survival 
was longer in the surgical group (median, 40 weeks vs. 15 weeks in the radiation 
group; p < 0.01), and the patients treated with surgery remained functionally inde-
pendent longer (median, 38 weeks vs. 8 weeks in the radiation group; p < 0.005). In 
1993, Vecht et al. con fi rmed Patchell’s work in a similar, prospective, randomized 
trial  [  12  ] . Sixty-three patients with systemic cancer and a radiological diagnosis of a 
single brain metastasis were enrolled to either surgery plus radiotherapy or to radio-
therapy alone. Thirty-two patients were assigned to the surgical group and 31 
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patients to the radiation group. The surgical group survived 10 months compared to 
6 months for the patients receiving radiation (p = 0.04) and had improved function-
ally independent survival (FIS) (p = 0.06). Furthermore, this study determined that 
patients with progressive extracranial disease had poorer outcomes than those with 
stable disease. Those with progressive systemic disease were found to have a median 
overall survival of 5 months and a FIS of 2.5 months irrespective of treatment for 
the cranial disease. However, patients with stable extracranial disease had a median 
survival of 12 months vs. 7 months (surgery vs. radiotherapy, respectively) and a 
median FIS of 9 months vs. 4 months. Improvement in functional status occurred 
more rapidly and for longer durations of time after neurosurgical excision and radio-
therapy than after radiotherapy alone. Both studies demonstrated conclusively that 
patients with cancer and a single brain metastasis treated with surgical resection 
plus radiotherapy live longer, have fewer recurrences of cerebral metastases (local 
and distant) and have a better quality of life than similar patients treated with radio-
therapy alone. 

 A subsequent study by Patchell et al. in 1998 evaluated the use of WBRT and 
surgery versus surgery alone  [  13  ] . Ninety- fi ve patients were randomized to treat-
ment with postoperative WBRT (radiotherapy group) or no further treatment (obser-
vation group) for BM. Forty-nine patients were assigned to the radiotherapy group 
and 46 patients to the observation group. Although there was no difference in sur-
vival observed between the two treatment arms, patients treated with surgery plus 
WBRT had fewer recurrences at the original site of metastases (5 of 49 [10%] vs. 21 
of 46 [46%]; p < .0.001) and at other sites in the brain (7 of 49 [14%] vs. 17 of 46 
[37%]; p < 0.01) and fewer neurological deaths than surgery alone (6 of 43 deaths 
[14%] vs. 17 of 39 [44%]; p = 0.003). This study supported WBRT with surgery vs. 
surgery alone, although the role of WBRT or more localized adjuvant irradiation 
remains controversial.  

    2   Role of Surgery 

 Currently, surgery should be considered the most de fi nitive treatment for cerebral 
metastases, with several advantages over other treatment modalities. Surgery is the 
only modality that provides a histological diagnosis. This can be important in some 
patients, since 5–11% of patients with known systemic cancers and a single cere-
bral lesion have lesions that are not metastatic cancer, such as primary tumors or 
brain abscess  [  11,   14  ] . Furthermore, surgery is necessary in patients with cerebral 
metastases where there is no identi fi able primary tumor on staging evaluation. 
Histological diagnosis allows oncologists to infer potential sensitivities to chemo-
therapy and radiotherapy, which may in fl uence treatment strategies for metastatic 
tumors from different primary cancers. For example, small cell lung cancer is far 
more responsive to WBRT than melanoma, renal cell carcinoma, and sarcomas; the 
sensitivities of breast, GI, and non-small lung cancers lie between these two 
extremes  [  15–  18  ] . For other tumors, such as germ cell tumors and choriocarcinoma, 
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chemotherapy is viewed as the primary treatment modality  [  19  ] . Histologic 
 tissue diagnosis provides tissue samples for receptor studies, such as estrogen, 
progesterone or thyroid hormone and HER2, and other tissue markers that assist in 
further development of more tumor directed treatment modalities. Furthermore, 
surgical resection is the modality that most rapidly alleviates the symptoms of 
increased intracranial pressure by eliminating local compression and direct irrita-
tion, which are also causes of peritumoral edema and potential seizure. Relieving 
the source of edema attenuates the need for prolonged high dose steroids, which 
can result in hyperglycemia, hypertension and impaired wound healing. More 
extreme cases of chronic high dose corticosteroid administration can result in 
Cushing’s syndrome, steroid myopathy and peripheral neuropathies. Large tumors 
resulting in mass affect and midline shift require urgent excision. Furthermore, 
surgery provides additional bene fi t in tumors >4 cm, for which stereotactic radio-
surgery (SRS) is not indicated  [  20  ] . 

 The underlying goal of surgical excision is complete cure. This possibility 
exists if all tumor cells can be removed. Unfortunately, the reality is that surgery 
often leaves behind microscopic deposits of tumor cells. This combined with the 
burden of extracranial disease keeps the prognosis for brain metastases poor for 
many patients. Surgical resection of single cerebral metastases followed by WBRT 
carries median survivals from 6 to 16.4 months with local recurrence rates of 
7–15%  [  21  ] . Three retrospective analyses of 3,131 patients, with varying meta-
static brain tumors, were evaluated to compare supportive care to surgery alone 
and to radiation therapy alone  [  22  ] . Two studies included patients with suspected 
melanoma totaling 2,946 patients and a third study consisting of 1,292 patients 
with primary tumors from lung, breast and melanoma  [  23–  25  ] . Regardless of 
tumor type, patients treated with supportive care alone had median survival of 
1-2 months, while patients treated with radiation therapy alone had median sur-
vivals of 3-4 months. Surgery alone resulted in median survivals of 6-9 months, 
with median survival time increased to 9 months with surgery plus radiotherapy. 
However, in non-eloquent areas of the brain, it may be feasible to remove the 
entire metastatic lesion and a small margin of surrounding edematous brain, which 
may obviate the need for post-operative WBRT or other therapy. This strategy 
may be particularly useful for BM that are less sensitive to radiation, such as renal 
cell cancer, melanoma or sarcoma  [  26  ] . 

 As previously stated, modern advances in microsurgery, a better understanding 
of surgical approaches, functional neuronavigation, intraoperative ultrasound, cor-
tical mapping and awake craniotomies have allowed previously inaccessible lesions 
to be resected with lower morbidity and mortality. Currently, neurological morbid-
ity is less than 10%  [  8,   27,   28  ] , non-neurological morbidity less than 8%  [  27,   28  ]  
and mortality less than 3%  [  29–  31  ] . While there are no current  fi rm surgical crite-
ria for inaccessible or unresectable lesions, most agree that with the limited sur-
vival of patients with systemic cancers and the availability of numerous non-invasive 
treatment modalities, surgical resection should not cause neurological de fi cits that 
may require rehabilitation or prolonged hospital stays. This tends to prohibit sur-
gery for lesions within the brainstem, although successful resection of lesions 
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within this area has been reported  [  32  ] . Other lesions historically deemed inacces-
sible are those located in the basal ganglia, thalamus and internal capsule, although 
with the advent of neuronavigation and intraoperative ultrasound more of these 
lesions are being resected  [  28,   33  ] . Some centers employ intra-operative CT or MR 
imaging, although the utility and cost-effectiveness of these suites in surgery for 
BM remains to be demonstrated  [  34  ] . Furthermore, lesions located within motor, 
visual and speech cortices pose an increased risk. However, with improved local-
ization techniques, cortical mapping and awake craniotomies these lesions can be 
resected with great success  [  21,   35,   36  ] . Ultimately, the amount of postoperative 
morbidity a patient is willing to accept is of utmost importance when assessing 
resectability  [  33  ] .  

    3   Patient Selection for Surgical Treatment of Brain Metastases 

 When considering patients for possible surgical resection of cerebral metastases it 
is important to realize that not all patients will bene fi t from surgical resection. 
Multiple variables must be taken into account when developing a treatment 
plan, such as: (1) the status of the primary cancer; (2) the patient’s functional status; 
(3) histology and grade of metastasis; and, (4) radiographic features such as number, 
size and location of BM. 

    3.1   Patient and Clinical Characteristics 

 Patient selection is largely directed by the overall health of the patient. As with other 
neurosurgical procedures, patients should be evaluated with a complete history and 
thorough physical examination. Although status of systemic disease needs to be 
taken into consideration when assessing patients overall general health, the patient’s 
medical comorbidities also play an important role when assessing surgical risk. 
Conditions that affect general anesthesia risk need to be evaluated carefully and 
surgical risks need to be strati fi ed to determine whether surgical resection is appro-
priate. Patients with life-threatening medical comorbidities, such as cardiac or 
respiratory conditions, may be better treated with less invasive modalities such as 
stereotactic radiosurgery. Traditionally, patient selection for surgical bene fi t focuses 
on factors such as age, preoperative neurological status based on the Karnofsky 
Performance Score (KPS), stable or absent extracranial disease and the interval 
between diagnosis of primary tumor and cerebral metastases. The KPS ranks 
patients on their ability to carry out activities of daily living, with scores 70 or 
greater having the best outcomes after surgical resection  [  37  ] . Of all the factors 
discussed above the KPS has repeatedly shown to be the strongest predictor of 
survival  [  24,   38,   39  ] . Conversely, studies have shown that older age is a strong 
predictor of worse prognosis for BM  [  10,   40  ] . 
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 More recently, the Radiation Therapy Oncology Group (RTOG) in the United 
States proposed three prognostic groups, referred to as the recursive partitioning 
analysis (RPA), for patients with cerebral metastases  [  41  ] . The data was based on 
RPA for trials of radiotherapy for cerebral metastases. The patients were ranked 
into one of three prognostic groups based on age, KPS and status and extent of 
extracranial disease. The best prognostic group, RPA Class 1 included patients 
less than 65 years of age, KPS score of 70 or greater, absence of extracranial 
metastases, and good control of primary tumor. In this group median survival was 
7.1 months. Class 2 patients had a KPS of 70 or greater but were de fi cient in meet-
ing one of the other criteria. For example, patients older than 65 and/or with 
uncontrolled systemic disease fall into Class 2. Median survival in this group was 
4.2 months. Patients in RPA Class 3 were those with KPS < 70, having the poorest 
prognosis and median survival of 2.3 months. Class 1 patients are considered as 
having the best chances for favorable outcome with surgical resection of cerebral 
metastases, while surgical resection of Class 2 patients requires careful consider-
ation of patient survival and operative risk. Class 3 patients are typically not con-
sidered for surgical resection. The RPA classi fi cation system has been con fi rmed 
by multiple other studies and should be taken into account, along with KPS, when 
evaluating patients for resection of BM  [  42–  44  ] . Other classi fi cation schemes 
exist, such as the Graded Prognostic Assessment (GPA) system and others. The 
GPA considers 4 factors: patient age, KPS, presence of extracranial metastases, 
and number of intracranial lesions  [  45  ] . Each of the aforementioned variables is 
assigned a score of 0, 0.5, or 1, and the  fi nal GPA score is the sum of these values. 
The  fi nal GPA scores can be separated into four classes: 0-1, 1.5-2.5, 3, and 3.5-4, 
with greater scores having the better prognosis in terms of median survival. The 
GPA is as prognostic as the RPA index, as it is a compilation of the most current 
data from 5 randomized RTOG studies, however it is less subjective and more 
quantitative. Additionally, the GPA score takes into account the number of intrac-
ranial metastases, whereas the RPA classi fi cation does not include this measure. 
How well the GPA or the RPA apply to a strictly surgical population or allow 
direct comparisons between surgical and non-surgically treated populations 
remains to be demonstrated. 

 While the KPS and previously discussed classi fi cations provide a general frame-
work for patient selection, additional parameters provide important predictors of 
surgical outcome. Patients with a longer disease-free interval between  fi rst diagno-
sis of primary tumor and diagnosis of BM have a longer median survival. Different 
primary tumors metastasize to the brain at different rates: for example, patients with 
lung cancer have the shortest time interval from initial diagnosis to diagnosis of 
BM, with a median interval of 6–9 months  [  7,   33,   46  ] . On the other hand, patients 
with melanoma and breast cancer more often present in a delayed fashion, with a 
median interval of 2–3 years after primary diagnosis  [  33,   47  ] . Multiple studies have 
found that longer disease-free intervals correlate to prolonged survival times  [  11, 
  13,   39,   48  ] . Pieper et al. examined disease-free interval in breast cancer patients and 
found that a longer disease-free interval correlated to longer survival after  craniotomy 
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 [  39  ] . Similarly, Galicich and coworkers demonstrated that the diagnosis of cerebral 
metastases within 1 year of diagnosis of a primary tumor lead to decreased survival 
time after craniotomy  [  48  ] . It is postulated that a shorter interval between diagnosis 
of a primary tumor and a brain metastasis may be a result of a more aggressive phe-
notype of the cancer in question. Thus, patients with shorter disease-free intervals 
between the diagnosis of their primary tumor and their brain metastasis may have 
poorer prognosis. This should be considered when selecting candidates for surgical 
resection. 

 As with any surgical procedure, the patient’s clinical status must be carefully 
integrated to determine who may bene fi t from surgical resection. The degree of 
control of the systemic disease, de fi ned as activity and extent of primary cancer 
and extra-cerebral metastases, has been shown to be the most important variable 
in determining overall survival in patients undergoing surgical resection of brain 
metastases  [  49–  52  ] . All patients should undergo a thorough metastatic work up 
consisting of CT scans of the chest, abdomen and pelvis to assist with disease 
staging and prognosis unless mass affect or a primary cancer is identi fi ed. 
Positron emission tomography (PET) scanning, bone scanning, and serum tumor 
makers may also be needed to stage a patient’s systemic disease  [  49  ] . If a 
patient’s systemic disease is well controlled, the intracranial disease becomes a 
more important determinant of patient survival. Patchell et al. found that 71% of 
the patients in the surgically treated group died from progression of their sys-
temic disease rather than from neurological causes  [  11  ] . This point was further 
expanded upon in 1996 by Mintz and colleagues who reported a prospective, 
randomized trial in which surgery plus WBRT was not shown to suggest a sur-
vival advantage over WBRT alone in patients with a single metastases  [  52  ] . 
However, their results were deceiving as greater than 45% of the patients in 
their series had uncontrolled systemic disease and 41% had a KPS of 50 or less. 
This is in contrast to Patchell’s study where only 38% of the patients had 
extracranial disease and all patients had KPS of 70 or greater. Further examina-
tion of Mintz’s patient cohort revealed that a great majority of the patients died 
from progression of their systemic (extracranial) disease. Also, Wronski and 
 colleagues found that the presence of leptomeningeal disease is associated 
with poorer prognosis, and that surgery is contraindicated in these patients  [  17  ] . 
The current tendency is to offer surgery to patients with an expected survival of 
greater than 3–4 months, based on the degree and control of their systemic dis-
ease  [  49,   53  ] . 

 Other important factors that should be assessed are gender, location of the BM, 
and neurological status  [  10,   11,   54  ] . In general, a worse prognosis is associated with 
posterior fossa lesions and the chance of leptomeningeal dissemination is higher in 
this location  [  55,   56  ] . A patient’s preoperative neurological status is highly sugges-
tive of their potential for neurological recovery post operatively, and as previously 
stated it is of critical importance to limit prolonged recovery. A  fi nal independent 
factor in patient survival is that patients with minimal neurological de fi cits survive 
longer than those with severe de fi cits  [  8,   57  ] .  
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    3.2   Primary Tumor Characteristics 

 Before embarking upon the surgical resection of brain metastases, it is useful to 
consider the chemosensitivity and radiosensitivity of the primary tumor. For exam-
ple, metastases from small cell lung cancer and lymphoma tend to be highly radio-
sensitive and most often treated with WBRT in the United States. Conversely, renal 
cell carcinoma, melanoma and most sarcomas are radioresistant and are more often 
treated with surgery, while the chemosensitivity of germ cell tumors and choriocar-
cinoma lend themselves to chemotherapy as the primary treatment  [  53  ] . 

 Tumor histology also plays a vital role as an indicator in patient survival. Median 
survival for treated brain metastases ranges from less than 6 months in melanoma 
 [  58  ] , to 8 months in lung  [  59  ] , nearly 12 months in breast  [  60  ]  and 21.5 months in 
renal cell carcinoma  [  61  ] . For example, the fact that patients with BM from mela-
noma have poorer survival, even after surgery, when compared to patients with other 
types of cerebral metastases suggests that more aggressive tumors such as mela-
noma may be better treated with modalities other than surgery  [  30,   62–  64  ] . Since 
melanoma has a high tendency to metastasize to the brain many patients may be 
sheltering undetectable lesions at the time of resection or radiosurgery that may 
become apparent later and lead to earlier neurologic progression.  

    3.3   Number of Lesions 

    3.3.1   Single Brain Metastases 

 Currently, operative resection is considered the optimal treatment for patients with 
surgically-accessible, single BM who have a good functional status  [  1,   49  ] . As 
 previously discussed, multiple retrospective studies have shown a bene fi t in survival 
for patients with single brain metastases undergoing surgical resection when com-
pared to other treatments. However, it was not until two independent randomized, 
prospective trials by Patchell and Vecht in the 1990s con fi rmed the ef fi cacy of surgi-
cal resection  [  11,   12  ] . In a Patchell et al. study, patients treated with surgery plus 
WBRT, when compared to WBRT alone, had a longer median survival (9.2 and 
3.4 months, respectively), better local tumor control (80% and 48%, respectively) 
and better KPS at distant interval from treatment, signifying better quality of life 
 [  11  ] . Vecht et al. reported similar results, with an increased survival in patients receiv-
ing surgery plus WBRT as compared to patients in the radiotherapy group alone 
(10 and 6 months, respectively)  [  12  ] . The surgical group also had a longer period of 
functional independence. Importantly, this bene fi t of increased survival may only be 
seen in patients with the potential for long-term survival as outlined by those with 
lower age, higher Karnofsky scores, and stable extracranial disease  [  11,   44  ] .  
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    3.3.2   Multiple Brain Metastases 

 Historically, surgical resection of multiple BM was fraught with  nihilism. It was 
believed that the patients would likely die before any bene fi t, therefore surgery 
was not considered a good treatment option  [  65–  67  ] . In 1993, Bindal and col-
leagues challenged this notion by retrospectively reviewing 56 consecutive 
patients in whom multiple brain metastases had been surgically resected  [  27  ] . Of 
the 56 patients, 30 patients had one or more lesions left unresected (Group A) 
and 26 patients had resection of all lesions, up to 3 (Group B). Groups A and B 
were compared to Group C, which was 26 matched controls with single surgi-
cally resected lesion. Survival was only 6 months in Group A, with unresected 
lesions; whereas, Groups B and C both had median survivals of 14 months. There 
was no difference in surgical morbidity, mortality, or complications due to cran-
iotomy in all three groups. The authors concluded that the removal of multiple 
metastatic lesions (<4) is as effective as resection of single BM, when all lesions 
are surgically accessible and completely resected. Similarly, Wronski et al. com-
pared 70 patients with cerebral metastases from breast cancer that were treated 
by surgical resection and found no signi fi cant difference in overall survival in 
patients with two or three lesions resected when compared to those with a single 
brain metastasis  [  17  ] . Similarly, Paek and coworkers retrospectively evaluated 
208 patients who underwent surgical resection of brain metastases  [  68  ] . A single 
lesion was resected in 191 patients and two or more metastases were resected in 
17 patients. Survival was nearly identical in the two groups, suggesting that in 
good prognostic patients with single or multiple brain metastases, surgical resec-
tion improved or stabilized neurological symptoms, conveying a survival advan-
tage without an increase in perioperative risk. Lastly, in 2000, Iwadate and 
colleagues studied 61 patients who underwent surgical resection of multiple 
brain metastasis and they observed a median survival time of 9.2 months, which 
did not vary signi fi cantly from 77 patients who had resection of a single brain 
metastasis (8.7 months)  [  69  ] . 

 While the bene fi t of surgical resection of multiple BM needs to be evaluated by 
a randomized study, current recommendations are that patients with multiple 
cerebral metastases, not greater than four, not be excluded from surgical consid-
eration. Furthermore, each lesion should be evaluated independently and if deemed 
resectable then be removed through one or more craniotomies. If not all lesions 
are considered resectable then surgery may be considered for the symptomatic 
lesion as long as further therapy with whole brain or stereotactic radiation is pur-
sued. Finally, in patients with four or more lesions in whom there is a dominant 
lesion with signi fi cant mass effect and neurological signs or symptoms, surgical 
resection of the dominant lesion may be reasonable, to diminish mass effect and 
permit subsequent treatment with WBRT, SRS, chemotherapy, or a combination 
of these modalities.   
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    3.4   Recurrent Metastases 

 Recurrence of brain metastases in patients who had previously undergone surgical 
resection for a single brain metastasis is roughly 31–48%  [  1,   33,   70  ] . This includes 
both local (initial resection site) and distant (a brain lesion distant from initial 
resection) recurrences. Typically, local recurrences are from the growth of resid-
ual, microscopic tumor cells that may remain after gross resection at the time of 
initial surgery whereas distant recurrences result from the growth of dormant or 
newly established embolic tumor foci. Surgical resection has a signi fi cant role in 
recurrent brain metastases. Resection has shown to improve survival and quality 
of life in patients who undergo repeat craniotomy for recurrent disease  [  29,   70  ] . 
Bindal et al. reviewed 48 patients with recurrent brain metastases, 30 with local 
recurrence, 16 patients with distant recurrence and 2 with both local and distant 
 [  29  ] . Reoperation resulted in 75% of the patients showing neurological improve-
ment, with no operative morbidity or mortality. Their conclusion was reoperation 
for recurrent brain lesions could prolong survival and increase quality of life. 
Furthermore, they concluded that  fi ve factors in fl uence survival: status of systemic 
disease, KPS score, time to recurrence, age, and type of primary tumor. They used 
this data to predict which patients may bene fi t from repeat resection. A grading 
system was devised using  fi ve variables that negatively correlated with survival. 
Each of the following, if present, was given a value of 1; or O, if absent: preoperative 
KPS 70 or less; presence of active systemic disease; age greater than 40; if mela-
noma or breast cancer was the primary tumor; and a time to recurrence less than 
4 months. The maximum score possible was 5. Each numerical total was converted 
to a Roman numeral grade. Bindal found that there was a correlation between 
grade and survival. Grade I patients had a 57% 5-year survival, while Grades II, 
III, and IV had median survivals of 13.4, 6.8 and 3.4 months, respectively. 
Typically, patients in grades I and II are considered for surgery while those in 
grade III are less likely candidates and Grade IV patients are rarely offered surgery. 
Arbit et al. also reviewed patients with non-small lung cancer harboring recurrent 
brain metastases and described a statistically signi fi cant survival bene fi t with 
repeat resections  [  71  ] . 

 Other bene fi ts of reoperation are to con fi rm tumor histology and discern between 
radiation necrosis and recurrent tumor. Determination of radiation necrosis has 
proved dif fi cult when exclusively based on imaging characteristics, yet pathological 
determination of radiation necrosis may be important to plan adjuvant treatment. 
The presence of radiation necrosis may preclude radiation treatment  [  49  ] . 
Furthermore, it allows for resection of necrotic tissue, which may exert signi fi cant 
mass effect, and for those patients in whom additional radiation is contraindicated, 
resection may allow for the placement of intracavitary chemotherapy, which may 
provide prolonged local control  [  72  ] , although de fi nitive data on this modality is 
still lacking.  
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    3.5   Tumor Size 

 The size of BM is another important variable that needs to be considered when 
assessing patients for possible surgical resection. Even though the size of cerebral 
metastases has not been shown to effect survival, with the wide availability of SRS, 
size has become progressively more important when deciding treatment modalities. 
Although the considerations regarding the use of SRS to treat a single brain metas-
tasis will be addressed elsewhere in this volume, SRS has been shown to be effec-
tive for small BM  [  73–  75  ] . The treatment paradigm tends to be clearest with lesions 
>4 centimeters (cm) in maximum diameter and lesions less than or equal to 1 cm. 
Lesions greater than 4 cm are not amenable to SRS and are typically better treated 
with surgical resection. On the other hand, lesions less than or equal to 1-2 cm and 
especially those located deep with the brain or solely in eloquent brain regions may 
also be treated with SRS  [  49  ] . If both treatment modalities seem feasible for a given 
patient then ultimately other variables need to be taken into account such as the 
extent of systemic disease, presence or absence of seizures, amount of peritumoral 
edema, and the patient’s overall medical condition.   

    4   Surgical Methods 

    4.1   Principles and Goals 

 Brain metastases can arise in any part of the brain but tend to have a predilection for 
the grey-white junction, especially within the vascular distribution of the middle 
cerebral artery  [  76,   77  ] . This unfortunately often positions them in or near eloquent 
areas of brain, such as the angular gyrus or the pre- and post-central gyrus. Brain 
metastases typically are solid masses and displace rather than invade the surround-
ing brain. However, in fi ltration from brain metastases can occur although it typi-
cally does not extend beyond 5 mm within the brain parenchyma  [  33  ] . In larger 
lesions there may be areas of central necrosis. The primary goal of surgery for brain 
metastasis is gross total resection. This involves meticulously de fi ning the tumor-
brain interface and removing all of the tumor tissue as safely as possible. Often a 
gliotic pseudo-capsule that surrounds the metastasis separates it from the edematous 
brain, which can help aid in gross total resection  [  33  ] . Meticulous attention must be 
taken as to not injure any vessels that traverse or are adjacent to the tumor and that 
may perfuse normal brain parenchyma. Conversely, vessels supplying only tumor 
tissue can be appropriately coagulated and divided. In 2009, Yoo et al. reported that 
gross total resection along with microscopic resection of tumor cells in fi ltrating 
adjacent brain parenchyma, to a maximum depth of 5 mm circumferentially around 
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tumor bed, signi fi cantly reduced local recurrence when compared to gross total 
resection alone  [  26  ] . 

 Surgical resection of brain metastases can be complicated by leptomeningeal dis-
semination (LMD). Primarily, metastatic tumors should be resected  en bloc ; however, 
until recently, there has been little in the neurosurgical literature to suggest bene fi t of 
 en bloc  resection over piecemeal tumor resection. In general, a piecemeal resection 
carries an increased risk of leaving residual tumor as well as increasing the potential 
risk of tumor spillage into the surrounding area  [  78  ] . Recently, Suki et al. studied 260 
patients with posterior fossa brain metastases to see if there was a higher incidence of 
LMD in patients treated with surgery when compared to patients treated with SRS 
 [  56  ] . They found that piecemeal tumor resection was associated with a signi fi cantly 
higher risk for LMD when compared to  en bloc  resection and to SRS (123 cases, 
P = 0.006). The same group presented a second study that showed an increase risk of 
local recurrence of brain metastases when resected via piecemeal rather than  en bloc  
 [  49  ] . As helpful as  en bloc  resection may be in preventing LMD and local recurrence, 
there are larger tumors that may not be amenable to  en bloc  resection. These tumors 
may require central debulking to prevent damaging  eloquent cortex. 

 Improved understanding of brain anatomy and surgical approaches, along with 
technological advances in imaging, microsurgery, neuronavigation and intraoperative 
surgical adjuncts aid surgeons in performing safer surgery with increased likelihood 
of gross total resection.  

    4.2   Surgical Approaches 

 Surgically, supratentorial metastases can be described based on their relationship to 
adjacent sulci and gyri while cerebellar metastases are characterized by hemispheric 
(lateral or medial) or deep locations  [  28,   79  ] . Supratentorially, metastases can occur 
super fi cially just below the cortex,  fi lling a gyrus (subcortically), deep within a 
sulcus (subsulcal), or deep within a gyrus adjacent to a sulcus (subgyral), deep 
within white matter, or lobar, which is independent of a single sulci and gyrus. Less 
common, BM can occur in the ventricles (intraventricular)  [  53  ] . 

 When planning for surgical resection, the approach is determined by the  anatomical 
location of the metastasis. Lang et al. thoroughly explain multiple surgical approaches, 
based on anatomical location, as follows  [  53  ] . Supratentorial subcortical lesions are 
best approached making an incision at the apex of the sulcus with circumferential 
removal of the lesion. By removing cortical tissue above the lesion this will aid in 
removal of the tumor. If the lesion lies within eloquent cortex, a longitudinal incision 
planned via local functional mapping; with direct brain stimulation can suf fi ce in 
tumor resection. Subgyral and subsulcal metastases are best approached via splitting 
the  fi ssure leading to the lesion, with the only difference being for subgyral lesions 
an incision is made in the side of the sulcus where as for subsulcal lesions an incision 
is made at the base of the sulcus. Tumors located deep within the white matter can be 
approached either by transsulcal or transcortical approaches. Splitting of the sylvian 
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 fi ssure allows access to tumors in the subinsular cortex while the interhemispheric 
approach is used for lesions located in the midline. Intraventricular tumors can be 
approached either by the transcortical or transcallosal routes. 

 Surgical planning for cerebellar lesions is best approached using the shortest 
transparenchymal route to the tumor. Superior hemispheric lesions are best resected 
through the supracerebellar cistern, while lateral hemispheric lesions are approached 
directly via a posterior approach. Resection of inferior cerebellar tumors often 
requires removal of the bone of the midline aspect of the posterior rim of the fora-
men magnum, with opening of the cisterna magna to decompress the cerebellum.   

    5   Surgical Adjuncts 

 Due to the technological advances in tumor localization and ability to identify 
 eloquent brain, safe and effective tumor resection is plausible for lesions previously 
considered unresectable. With the advent of computer-assisted, image-guided 
stereotaxis, intraoperative ultrasonography and increasing availability of intraoperative 
CT and MR imaging, the ability to localize the lesion is signi fi cantly improved  [  80  ] . 
Our ability to identify the central sulcus is enhanced by somatosensory evoked 
potentials. Awake craniotomy can also be a useful adjunct in the resection of tumors 
in or near eloquent cortex  [  35  ] . These tools allow for more precise identi fi cation of 
the lesion or lesions resulting in more accurate and smaller operative corridors 
through which the lesion can be resected. They also allow for resection of small, 
deep tumors or tumors located within functional brain with fewer complications and 
decreased length of stay, while enhancing functional outcomes (KPS) and quality of 
life  [  35  ] . 

    5.1   Ultrasound 

 Intraoperative ultrasound has been used in neurosurgery since the 1980s and was a 
major surgical adjunct until the introduction of newer localizing techniques, such as 
frameless stereotactic neuronavigation  [  81,   82  ] . Portable, two-dimensional intra-
operative ultrasound is able to determine real-time information such as tumor loca-
tion, size, and morphology (cystic or solid) as well as evaluate the extent of tumor 
resection and outline a tumor’s relationship to adjacent anatomic structures, like 
ventricles and sulci  [  83  ] . The majority of metastatic lesions are highly echogenic 
and well demarcated, when compared to normal or edematous brain. On the other 
hand, cystic metastases may appear inhomogeneous with only a small echogenic 
rim surrounding the anechoic cyst  [  84  ] . The major added bene fi t of intraoperative 
ultrasound is its ability to overcome the brain shift that inevitably occurs during 
surgery and the resultant inaccuracy that arises in other forms of localizing 
techniques that rely on preoperative data  [  85  ] . Ultrasound is also portable and 
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inexpensive. One limitation of ultrasound is that since it cannot penetrate bone, it 
cannot be used for pre-operative surgical planning; which may be obviated by using 
it in combination with stereotactic navigation systems.  

    5.2   Stereotaxis 

 The invention of computer-assisted image-guided stereotaxis has allowed for more 
accurate surgical planning and smaller, more direct corridors for surgical resection of 
brain tumors (Fig.  7.1 ). Frameless stereotaxy is an essential tool in the surgical 

  Fig. 7.1    In surgical excision 
of brain metastases, the 
surgical team relies upon 
stereotactic navigation using 
preoperative images of the 
patient to identify the location 
of the tumor deep to the skull 
( a ). This allows precise 
localization of the lesion and 
 en bloc  resection ( b )       
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management of deep, small cerebral metastases. A virtual projection of the patient’s 
brain is constructed from the pre-operative CT or MRI imaging studies. Fiducial 
markers, or anatomic landmarks, are matched directly to the pre-operative imaging, 
re-constructing a virtual map which becomes the stereotactic space of the operative 
 fi eld  [  28,   86  ] . This advanced localization technique is useful for planning the skin 
incision, the boundaries of the craniotomy and the initial surgical route. However, as 
eluded to previously, this technique does not account for the intraoperative changes 
that occur, such as brain shift  [  85  ] . Currently available systems are able to combine 
diffusion  tensor imaging (DTI) or functional MRI and integrate this data with 
anatomical  stereotaxic images  [  87,   88  ] . Intra-operative CT or MR imaging suites have 
also been developed, although they as previously stated their utility and cost effectiveness 
remains to be determined.   

    5.3   Functional Mapping 

 When BM are located within eloquent regions of the brain, neurophysiologic 
brain mapping is useful in preserving function and decreasing neurological 
morbidity. While DTI can help identify important white matter tracts and func-
tional MRI can help identify motor, sensory and language, these modalities 
remain imprecise, as a rough localization based on pre-operative studies. When 
precise intraoperative localization is crucial to preserve neurological function, 
one may use either phase reversal techniques or direct cortical or subcortical 
stimulation. 

    5.3.1   Phase Reversal 

 Somatosensory evoked potentials (SSEPs) can be used to de fi ne the central sulcus 
and thus the motor and sensory cortices (Fig.  7.2 ). After exposure of the cortical 
surface a strip electrode is placed perpendicular to the long axis of the motor and 
sensory gyrus. An SSEP is produced via stimulation of the median, ulnar or tibial 
nerves on the limb contralateral to the exposed hemisphere. After electrical stimula-
tion, the signal is transmitted by the dorsal columns of the spinal cord to the medial 
lemniscus, thalamus and ultimately the contralateral somatosensory cortex  [  36  ] . 
This results in a recordable potential via the strip electrode. A phase reversal is seen 
when the positive potentials of the motor cortex are simultaneously seen with nega-
tive de fl ections from the sensory cortex. The corresponding number on the strip 
electrode where the reversal of positive and negative de fl ection occurs corresponds 
to the central sulcus. Visual inspection then will allow for identi fi cation of the motor 
and sensory cortices. It should be noted that the vector of the tibial waveforms is 
often dif fi cult to localize on the cortical surface and may lead to inaccurate localiza-
tion of the central sulcus  [  89  ] .    
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  Fig. 7.2    In central sulcus localization for tumors in or near the motor strip, a surface electrode is 
placed upon the brain ( a ) in order to identify the somatosensory evoked potential impulses from the 
stimulation of the contralateral median nerve. In this patient, the impulses show a phase reversal 
between electrodes 3 and 5 ( b ), suggesting that the central sulcus is immediately beneath electrode 4       
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    5.4   Direct Cortical Stimulation 

 Direct cortical stimulation can be used alone or in conjunction with phase reversal, 
to identify motor cortex but tends to play an especially crucial role when used with 
awake craniotomies to localize language areas. The procedure consists of stimulat-
ing the cortical surface with constant current biphasic, square wave pulses and a 
current incrementally raised from 1-15 mA until the desired affect is observed  [  90–
  92  ] . Direct cortical stimulation of the motor cortex will result in a direct response 
from the patient, for example, movement of the contralateral face, arm or leg, or 
speech arrest. Direct cortical stimulation reveals eloquent cortex to be avoided in 
attempting resection of cortical and subcortical lesions.   

    6   Role of Whole-Brain Radiation Therapy After Resection 
of Metastatic Brain Tumors 

 WBRT has been a mainstay in the treatment of brain metastases for many decades. 
It is used as an adjunct after surgical resection of a brain metastasis in an attempt to 
eliminate local residual tumor cells as well as distant tumor deposits, if present. 
Multiple retrospective studies have examined the ef fi cacy of WBRT, with most 
showing bene fi t  [  8,   64,   93,   94  ] . However, WBRT does have known side effects, 
such as dementia, in long-term survivors. The neurocognitive side affects tend to 
occur 6-12 months post radiation and may outweigh the intended bene fi t of WBRT 
 [  95  ] . Therefore, several authors have advocated that WBRT be deferred, especially 
for radioresistant tumors and only employed if local treatment fails. Multiple ran-
domized trials have been conducted in recent years evaluating the outcome of with-
holding WBRT  [  13,   96,   97  ] . Patchell and coworkers conducted a prospective, 
randomized trial comparing the effectiveness of adjunct WBRT in patients, with 
single brain metastases, treated by surgery  [  13  ] . Following surgery, patients were 
randomly assigned either to an observation group or a treatment group (received 
50.4 Gy over 5.5 weeks). The patients who received WBRT had a reduction of 
tumor recurrence when compared to the observational group (18% vs. 70%, respec-
tively) and 46% and 10% local recurrence rates in the surgery alone group and sur-
gery plus WBRT, respectively. Unfortunately, the study did not show any increase 
in functional independence or survival, suggesting that the long-term neurotoxicity 
of WBRT offsets its potential bene fi ts. Opponents of this study suggested that the 
deleterious effects in neurocognition were potentially attributable to the higher than 
standard radiation doses (50.4 Gy vs. more conventional 30 Gy). However, a ran-
domized control trial in 2006 by Aoyama and colleagues using 30 Gy in 10 frac-
tions reported that omitting WBRT in patients after either surgery or SRS results in 
worse local and distant control but it does not increase functional independence 
or survival  [  96  ] . More recently, Kocher et al. showed that after stereotactic radiosur-
gery or surgery the addition of WBRT (30 Gy in 10 equal fractions) reduces 
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 intracranial recurrence and neurological death, but fails to improve the duration of 
functional independence or overall  survival  [  97  ] . Although becoming increasingly 
more popular, withholding adjuvant WBRT until local treatment failure will need 
more study in an attempt to avoid the deleterious neurocognitive side effects of 
WBRT.  

    7   Post-Operative Management and Potential Complications 

 Post-operatively most patients undergo an MRI within 24 h of surgery to determine 
the completeness of resection. This study also serves as the baseline scan to aid in 
determining recurrent tumor at follow-up imaging. 

 Two immediate concerns perioperatively in the care of brain metastasis patients 
are post-operative peritumoral edema and seizures. The use of post-operative steroids 
is largely determined by the edema on post-operative imaging as well as the patient’s 
clinical exam. If steroids are used, the clinician should strive to administer the lowest 
effective dose and taper rapidly. A number of studies have tried to answer the ques-
tion of whether or not to administer prophylactic anticonvulsants in the setting of 
brain tumors, unfortunately they were unable to achieve consensus  [  64,   98  ] . The 
American Academy of Neurology has since released practice guidelines, these 
guidelines recommend that anticonvulsants need not be given unless seizures 
have been documented  [  99  ] . 

 Surgical complications must be considered when weighing the risks and bene fi ts 
of resection of BM. Non-neurologic complications that can arise are similar to 
 complications that can arise from other neurosurgical procedures, such as venous 
thromboembolic disease, pulmonary embolism, postoperative hematoma, wound 
infection, pneumonia and others. Non-neurological complications range from 
3–6%, while neurologic complications (hemiparesis, speech dysfunction) are less 
well documented, with rates ranging from 3–6%  [  8,   27,   100,   101  ] . 

 Surgical mortality is most often de fi ned as death within 30 days of operation, 
although historically some studies used different intervals  [  102  ] . In the early 
 twentieth century, Harvey Cushing found that surgical mortality after resection of 
brain metastases was 38%  [  103  ] . Today, with the introduction of modern surgical 
techniques, mortality rates of less than 3% are expected  [  29–  31  ] .  

    8   Survival 

 Currently, surgery for BM shows a 1 year survival of 44% (range of 22–68%) and a 
median survival of 10 months (range of 6–16 months), when not segregated by his-
tological type  [  21  ] . The shortest survival is found in patients harboring metastatic 
melanoma, while patients with metastatic lung, breast or renal cell carcinomas have 
the longest survival  [  53  ] .  
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    9   Conclusions 

 As oncologists develop improved treatments for systemic cancers, patients with 
metastatic disease are surviving longer and more patients are being considered 
for surgical resection of brain metastases. Improvements in neurosurgical and 
neuroanesthetic techniques, along with advances in computer-assisted stereotactic 
navigation, intraoperative ultrasound and functional mapping has led to safer, more 
complete resections for BM. Furthermore, these advances have led to marked 
improvements in both length and quality of life in patients with BM. Thus, surgery 
continues to have an important role in the treatment of patients with BM. Further 
re fi nements in the surgical treatment of BM will depend upon critical analysis of data 
related to speci fi c histologic types of metastatic tumors in general and speci fi c 
molecular subgroups in particular (for example, in breast cancer, women with “tri-
ple negative” status versus those that have HER2 ampli fi cation)  [  104  ] ; and assess 
the role of limited  fi eld irradiation (for example, SRS to the operative bed and a 
small margin or intra-operative radiotherapy to the resection bed) as well as the role 
for chemotherapy and small molecule inhibitors to enhance the ef fi cacy of treat-
ments for patients with brain metastatic disease.      
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  Abstract   Brain metastases (BM) are the most common metastatic complication of 
systemic cancer to the central nervous system (CNS). Treatment is most often with 
radiotherapy (whole brain radiotherapy (WBRT), stereotactic radiotherapy (SRT) or 
a combination) and in selected patients (for example solitary metastasis) resective 
surgery. The role for chemotherapy in the treatment of BM is dif fi cult to de fi ne due 
to a paucity of clinical trials the majority of which are nonrandomized, retrospective 
studies and case reports. Two factors in fl uence the ef fi cacy of chemotherapy in BM; 
the intrinsic chemosensitivity of the tumor and chemotherapy drug delivery. Several 
generalizations can be made regarding chemotherapy of BM based on the limited 
literature. Response to chemotherapy re fl ects inherent chemosensitivity of the primary 
tumor with best responses seen with small cell lung cancer, intermediate responses 
seen with non-small cell lung cancer and breast cancer and low response rates with 
melanoma. Response to chemotherapy is in addition determined by prior chemo-
therapy exposure as front-line chemotherapy has higher response rates than second- 
or third-line chemotherapy. Response to chemotherapy as compared to WBRT or 
SRT is inferior and less durable. The use of chemotherapy for the treatment of BM 
is most often limited to patients having failed radiotherapy (often both WBRT and 
SRT) and with multiple lesions. Emerging data suggests that targeted therapies may 
play an increasing role in the treatment of BM.      
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    1   Introduction 

 Brain metastasis (BM) like other metastatic complications of cancer is a multistep 
process characterized as a sequence of distinctive steps that have been termed the 
invasion-metastases cascade  [  1  ] . The cascade entails a successive series of biologic 
processes commencing with local invasion at the primary cancer site of origination, 
then intravasation of cancer cells into neighboring lymphatics and blood vessels, 
 transit of cancer cells to the parenchyma of distant tissues (site of metastasis), extrava-
sation of cancer cells into the site of metastasis with formation of micrometastases 
followed by macrometastases, a process termed colonization  [  2  ] . However unlike 
other sites of metastasis, BM is characterized by colonization in the brain, an organ 
that in part is both an immune and pharmacological sanctuary that has consequences 
with respect to delivery of systemic therapies  [  3–  5  ] . 

 Malignant cells contributing to the development of central nervous system (CNS) 
metastases may localize to the brain parenchyma, pachymeninges (dura), or leptom-
eninges (pia, arachnoid and cerebrospinal  fl uid (CSF)), compartments within the CNS 
 [  6  ] . About one third of all CNS metastases occur within multiple compartments, 
resulting in a combination of parenchymal, dural and/or leptomeningeal disease  [  6  ] . 
However, in the majority of cases, CNS metastases are isolated to a single compart-
ment  [  6  ] . Post-mortem evaluations indicate that about 39% of all CNS metastases are 
restricted to the parenchyma, 18% are isolated to the dura, and 12% are isolated to the 
leptomeninges  [  6  ] . Intraparenchymal BM are the most common neurological compli-
cation related to cancer, and represent the most common brain cancer exceeding 
gliomas in prevalence by nearly ten times and occur in 20–25% of all patients with 
systemic cancer  [  3–  11  ] . 

 More than 170,000 new adult cases of BM occur annually in the United States 
with lung cancer accounting for the majority  [  5,   9–  11  ] . Lung cancer accounts for 
60% of all BM and 25–30% of patients with lung cancer will develop BM. The 
incidence of brain as the  fi rst site of relapse is 15–30% in non-small cell lung cancer 
(NSCLC) and in 33% of patients the brain is the only site of recurrent disease. In an 
analysis of Southwest Oncology Group (SWOG) trials, Gaspar et al. reported on 
422 patients with NSCLC amongst whom 64% progressed  [  12  ] . Amongst the pro-
gressing patients, 26% progressed in brain (20% brain only and 6% brain + other 
site). Median time to BM was approximately 6.5 months, with nearly one quarter 
manifesting BM during treatment. Greater than 40% of patients dying of NSCLC 
are discovered at autopsy to have evidence of BM. These rates of failure of NSCLC 
in the brain have provided the rationale for trials utilizing prophylactic whole brain 
irradiation in stage 3a NSCLC  [  13  ] . Even higher rates of brain failure are seen in 
small cell lung cancer (SCLC) and based on randomized trials, prophylactic cranial 
irradiation is recommended for both limited and extensive SCLC responding to 
adjuvant chemotherapy  [  14–  16  ] . Though prophylactic cranial irradiation reduces 
rates of BM and purportedly without signi fi cant neurocognitive consequences, no 
difference in overall survival is seen when comparing patients treated with or with-
out prophylactic cranial irradiation. 
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 Breast cancer represents the second most common etiology of BM (approximately 
25% of all patients with BM)  [  3–  11,   17  ] . It is estimated that 6–16% of all breast 
cancer patients ultimately develop BM. A further increased incidence of BM is seen 
in patients with hormone receptor negative and HER2 negative (triple negative 
breast cancers) as well as HER2 positive breast cancers (estimated at >30%)  [  18, 
  19  ] . Autopsy studies suggest a further 15–30% of all patients with metastatic breast 
cancer harbor BM that were asymptomatic in life  [  20  ] . Unlike NSCLC, breast can-
cer related BM develops later on average 19 months after initial diagnosis. HER2 
positive breast cancer endows tumor cells with increased metastatic aggressiveness 
to speci fi c sites. The chemokine receptor CXCR4 and its ligand stromal cell derived 
factor 1-alpha (SDF-1 a ) are expressed in organs that represent sites of breast cancer 
metastases  [  21  ] . CXCR4 expression is associated with HER2 ampli fi cation and 
overexpression  [  22  ] . SDF-1 a  is selectively expressed in the CNS, increases vascu-
lar permeability and penetration of HER2 positive metastatic breast cancer through 
brain endothelium  [  23  ] . This emerging data suggests a role for chemokine-mediated 
movement of malignant cells to speci fi c organs that is likely a general etiopatho-
genic theme for BM as well. The increased incidence of BM in breast cancer re fl ects 
limitations of drug delivery imposed by an intact blood brain barrier (BBB) in early 
breast cancer treatment (as well as other solid cancers), trends for improved sys-
temic disease control and overall survival in metastatic breast cancer (not yet real-
ized in other solid cancers) and the above mentioned role of chemokine-mediated 
chemotaxic breast cancer with tropism for brain relapse (organotropism)  [  24  ] . 

 Brain metastases are common in patients with metastatic melanoma (clinically 
recognized in >30% of all patients) and is the third most common cause of BM 
(approximately 10% of all BM)  [  25  ] . Approximately 60% of patients with BM and 
melanoma have 1–3 metastases (50% solitary, 50% 2–3 BM) and 40% manifest 
with >3 BM. Similar to breast cancer, presentation of BM in patients with mela-
noma averages >2.5 years after initial diagnosis and >65% of patients are symptom-
atic  [  25,   26  ] . Hemorrhagic BM are common in patients with melanoma (as well as 
in NSCLC, renal cell cancer and choriocarcinoma) and is seen radiographically in 
approximately one third of all patients. Postmortem evidence of BM is seen in 
50–75% of all patients dying of melanoma  [  6,   25  ] . It is estimated that 20–50% all 
melanoma deaths are secondary to BM. The incidence of BM both as a site of 
metastases and isolated disease is likely to increase with new and more effective 
systemic cancer treatment (BRAF inhibitors and ipilimumab) as has been demon-
strated with HER2 positive breast cancer treated with trastuzumab  [  27  ] .  

    2   Treatment: Medical 

 The treatment of BM entails symptomatic and de fi nitive therapy  [  3–  11,   28–  30  ] . 
Symptomatic therapy is de fi ned as the administration of steroids and anticonvul-
sants, whereas de fi nitive therapy is de fi ned as systemic chemotherapy in selected 
instances, surgery or radiotherapy. 
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 Vasogenic edema is commonly seen with BM, contributes to intracranial mass 
effect and often can be ameliorated with administration of oral steroids. 
Dexamethasone is most often utilized for symptomatic and  fi rst-line treatment of 
BM for several reasons including the fact that it is the most potent steroid, has the 
best CNS penetration, the least mineralocorticoid side effects, the least protein 
bound steroid and has a long biologic half-life (24–36 h)  [  31  ] . Dexamethasone dose 
response data have never been established and therefore an empiric dose of 4–16 
milligrams (mg) of dexamethasone is administered daily. How often to administer 
dexamethasone varies but based on the biologic half-life once or twice per day is 
suf fi cient, though more often dexamethasone is administered four times per day 
without a clear rationale. As the clinical situation permits, the lowest dose of dex-
amethasone that controls symptoms should be utilized. Asymptomatic patients with 
BM, for example patients discovered incidentally to have BM by cranial imaging, 
do not require dexamethasone and may be therefore spared of potential steroid-
related toxicity. Prolonged use of dexamethasone (de fi ned as greater than 3 weeks) 
is associated with the emergence of steroid-related side effects (for example proxi-
mal myopathy, weight gain, skin fragility) that may seriously compromise patient 
quality of life  [  31,   32  ] . How much and how rapid to taper dexamethasone is again 
not evidence based but rather is empiric and determined by patient symptoms with 
steroid withdrawal. There is very little data to commend the concurrent use of  gastric 
acid inhibitors however their use with dexamethasone is frequent and pervasive. 

 The use of antiepileptic drugs (AED) in patients with BM should be reserved for 
patients with seizures (seen in 15–25% of patients at presentation, 10–20% after 
diagnosis and 25–45% overall) and for seizure prophylaxis immediately following 
surgical resection. Based on the recommendations of the American Academy of 
Neurology guidelines regarding AED use in patients with brain tumors, AED pro-
phylaxis does not prevent  fi rst seizures, AED may manifest novel and increased 
risks in patients with cancer and the practice of AED prophylaxis in patients with 
primary and metastatic brain tumors should be abandoned  [  33  ] . If AED are indi-
cated, emerging data recommends the use of non-enzyme inducing AED to mini-
mize drug interactions that may confound the treatment of patients with cancer 
 [  34  ] .  

    3   Treatment: Chemotherapy 

    3.1   Overview 

 Several issues are pertinent to a discussion of chemotherapy for BM (Table  8.1 ) 
 [  4,   5,   11,   17,   28–  30  ] . First and most important, there is a paucity of clinical trials 
with very few randomized trials. The limited evidence supporting the use of chemo-
therapy for BM comes primarily from nonrandomized, retrospective studies and 
case reports. Second, survival in BM is often limited by death from systemic disease 
(approximately 30% of patients with BM die as a direct result of CNS disease) 
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 [  3,   6,   17,   28–  30,   35,   36  ] . Patients with BM are heterogeneous and the importance of 
strati fi cation for prognostic factors for example by way of the Radiation Therapy 
Oncology Group (RTOG) recursive portioning analysis is often overlooked  [  37, 
  38  ] . Third, how to measure ef fi cacy has proven challenging as many studies report 
overall survival as a primary outcome (Table  8.2 ). Survival is most often used as an 
outcome measure of chemotherapeutic response. However, in patients with BM this 
is unlikely to re fl ect chemotherapy ef fi cacy  [  35,   37,   39–  41  ] . As mentioned above, 
the majority of patients with BM die of systemic disease progression. More relevant 
is radiographic response, duration of response, maintenance or improvement in neu-
rologic function and quality of life (Table  8.2 ). Fourth, the majority of patients with 
BM have in general been treated with at least one and often two or more prior che-
motherapy regimens. Consequently, the systemic cancer has developed acquired 
chemotherapy resistance such that few active chemotherapy agents remain available 
for treatment. Lastly, the majority of BM-chemotherapy trials have evaluated 
a single chemotherapy regimen directed at multiple tumor histology’s making deter-
minations of responsiveness against speci fi c tumor histology problematic.   

 Two factors in fl uence the ef fi cacy of chemotherapy in BM; the intrinsic chemo-
sensitivity of the tumor and chemotherapy drug delivery  [  28–  30,   42  ] . Parenchymal 
brain drug delivery is determined by drug properties such as lipophilicity, ionization 
state and molecular weight and by the BBB (Table  8.3 )  [  43  ] . The BBB protects the 

   Table 8.1    Issues regarding the treatment of brain metastases with chemotherapy   

 Blood–brain-barrier 
 Prior treatment with acquisition of acquired drug resistance 
 Few effective chemotherapy agents 
 Concurrent systemic disease 
 Heterogeneity of patient population 
 Heterogeneity of tumor types enrolled 
 Measurement of ef fi cacy 
 Interpretation of the literature 

   Table 8.2    Outcome measures in brain metastases   

 Survival 
  Overall 
  6-months 
  12-months 
  Brain-speci fi c 
 Time to tumor progression 
 Control rate 
  Local 
  Distant 
 Response rate 
 Functional status 
  Karnofsky performance status 
  FACT-Brain 



138 M.C. Chamberlain

brain from exposure to toxins and prevents many traditional and novel drugs from 
crossing the systemic circulation into the CSF and brain parenchyma. The BBB consists 
of a network of closely opposed endothelial cells in the brain’s capillaries character-
ized by the presence of continuous tight junctions, a lack of fenestrations, and very 
low levels of pinocytic activity compared with endothelial cells in the periphery  [  44  ] . 
Impermeability of the BBB is further mediated by the presence of an enhanced extra-
cellular matrix, pericyctes, astrocyte foot processes, and a high electrical resistance 
that excludes polar and ionic substrates. There are also high levels of proteins that 
pump foreign molecules away from the brain (ef fl ux protein pumps) but allow others 
necessary for brain function, such as glucose and insulin, to cross the barrier. Drugs 
and other substances can enter the brain by either passive transcellular diffusion, 
which is restricted to lipid-soluble agents, or by receptor-mediated transcytosis of 
molecules such as insulin, glucose, amino acids, and other substances necessary for 
brain function. Substances can exit the brain via CSF absorption through the arach-
noid granulations, diffusion into the extracellular  fl uid and surrounding cells (cell/
extracellular  fl uid partitioning), diffusion across brain capillaries (transcapillary 
uptake), and biotransformation  [  44  ] . Because the majority of chemotherapy agents 
with activity against systemic cancer are non-lipophilic i.e. water soluble and of large 
molecular weight, parenchymal drug delivery is limited. Consequently, the optimal 
treatment for systemic disease often does not cross the BBB. As a result, optimal 
chemotherapy treatment for BM is often different than that used to treat systemic 
disease. The BBB normally is a barrier to xenobiotic drug brain entrance, however it 
is disrupted in patients with BM as evidenced by radiographic contrast enhancement. 
Consequently, the BM is permeable to chemotherapy agents that otherwise would 
not penetrate the BBB. However, brain adjacent to tumor (usually contaminated with 
tumor) and micrometastases within the brain (tumors 1–3 mm in size) maintain an 
intact BBB and therefore are regions physically inaccessible to non-lipophilic and 
large molecular weight chemotherapy. Furthermore, the concomitant use of corticos-
teroids (most often dexamethasone) in patients with BM re-establishes the BBB and 
thereby limits chemotherapy access into brain/tumor. Lastly, up to 40% of patients 
with BM develop tumor-related seizures and accordingly are often treated with 
hepatic cytochrome P450 inducing anticonvulsant drugs such as phenytoin that alter 
the metabolism of systemic  chemotherapy  [  34  ] .  

 Several generalizations can be made regarding chemotherapy of BM based on 
the limited literature  [  28–  30  ] . Response to chemotherapy re fl ects inherent chemo-
sensitivity of the primary tumor with best responses seen with SCLC, and intermediate 

   Table 8.3    Chemotherapy and BBB passage (Adapted  [  43  ] )   

 Very good  Good  Poor  No penetration 

 ACNU  DTIC  VP-16  Taxanes 
 BCNU  MTX  Cisplatin  Gemcitabine 
 CCNU  Temozolomide  Carboplatin  CPT-11 
 Procarbazine  Ara-C  Vincristine  Cytokines 
 Hydroxyurea  Capecitabine  Fluorouracil  _ 
 Topotecan  _  _  _ 
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responses seen with NSCLC and breast cancer and then low response rates with 
melanoma. Response to chemotherapy is in addition determined by prior chemo-
therapy exposure as front-line chemotherapy has higher response rates than second- 
or third-line chemotherapy. Response to chemotherapy as compared to whole brain 
radiotherapy (WBRT) or stereotactic radiotherapy (SRT) is inferior and less durable 
in patients with breast cancer, SCLC, NSCLC and melanoma  [  3–  5,   28–  30  ] . The use 
of chemotherapy for the treatment of BM is most often limited to patients having 
failed radiotherapy (often both WBRT and SRT), with multiple lesions and in 
selected instances, for example, solitary BM surgically resected and previously 
treated with intracavitary chemotherapy. The majority of chemotherapy trials for 
BM have utilized either single agent, for example, temozolomide or histology-
speci fi c multi-agent chemotherapy (Tables  8.4 ,  8.5 ,  8.6 )  [  45–  66  ] . A less common 

   Table 8.4    Single agent    temozolomide for brain metastases   

 Author, 
reference 

 Number of 
patients (primary) 

 Time to tumor 
progression (months) 

 Response (%) 

 Complete  Partial  Stable 

 Abrey  [  45  ]   41 (various)  2  0  5  37 
 Agarwala  [  46  ]  a   117 (melanoma)  1  1  5  29 
 Christodoulou  [  47  ]   27 (various)  3  0  4  17 
 Dzidziuszko  [  48  ]   25 (NSCLC)  Not reported  0  0  25 
 Friedman  [  49  ]   52 (various)  Not reported  0  6  63 
 Giannitto  [  50  ]   9 (NSCLC)  Not reported  3  0   3 
 Siena [  51  ]  a   21 (NSCLC)  Not reported  0  8  24 
 Siena [  51  ]  a   21 (melanoma)  Not reported  0  8  40 
 Siena [  51  ]  a , Arena  [  52  ] , 

Christodoulou  [  47  ] , 
Friedman  [  49  ] , 
Abrey  [  45  ]  

 72 (breast)  Not reported  –  7  – 

 Schadendorf  [  53  ]  a   45 (melanoma)  <2 months  0  4.4  11.1 
 Boogerd  [  54  ]   52 (melanoma)  7 months  6  4  12 

   a No prior radiotherapy, TMZ used as  fi rst-line therapy  

   Table 8.5    Single agent topotecan for brain metastases   

 Author, 
reference 

 Number of patients 
(primary) 

 Time to tumor 
progression (months) 

 Response (%) 

 Complete  Partial  Stable 

 Larruso  [  55  ]   19 (various)  2  0  5  37 
 Oberhoff  [  56  ]   16 (breast)  Not reported  6  31  31 
 Manegold  [  57  ]  a   16 (SCLC)  Not reported  25  38  31 
 Ardizzoni  [  58  ]   7 (SCLC)  1  43  14  0 
 Depierre  [  59  ]   9 (SCLC)  Not reported  11  44  33 
 Schutte  [  60  ]   24 (2 NSCLC; 

22 SCLC) 
 Not reported  17  33  25 

 Korfel  [  61  ]   30 (SCLC)  Not reported  10  23  27 

   a No prior radiotherapy, TMZ used as  fi rst-line therapy  
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   Table 8.6    Single agent for breast cancer brain metastases   

 Author, 
reference 

 Number 
of patients  Agent 

 Time to tumor 
progression (months) 

 Response (%) 

 Complete  Partial  Stable 

 Zulkowski  [  62  ]   –  Bendamustine  2   0  5  37 
 Wang  [  62  ]   –  Capecitabine  Not reported   6  31  31 
 Pons  [  64  ]  a   16  Tamoxifen  Not reported  25  38  31 
 Stewart  [  65  ]    9  Megestrol acetate  Not reported  11  44  33 

   a No prior radiotherapy  

   Table 8.7    Carmustine wafer implants in patients with brain metastases   

 Author, reference  Ewend  [  67  ]   Golden  [  68  ]   Brem  [  69  ]  
 Number of patients  25  36  42 
 Local recurrence  0  0  0 
 Distant recurrence  4/25  7/36  3/42 
 Median survival  14.2 months  Not reported  16.8 months 

   Table 8.8    Epidermal growth factor receptor inhibitors as single agent therapy for NSCLC brain 
metastases   

 Author, reference 
 Number 
of patients 

 Concurrent 
WBRT 

 Intracranial response (%)  Median survival 
(months)  Complete  Partial  Stable 

 Cappuzzo  [  70  ]    4   3  25  75   0  6 
 Ceresoli  [  71  ]   41  18   0  10  17  3 
 Hotta  [  72  ]   14   0   7  36  57  9 
 Namba  [  73  ]   15   1   7  53  13  8.3 
 Shimato  [  74  ]    8   8   0  37.5   0  9.5 

chemotherapy approach has been the placement of carmustine wafers (Gliadel) in 
the bed of a resected and most often solitary metastasis as mentioned above 
(Table  8.7 )  [  67–  69  ] . More recently, targeted therapies, for example, tyrosine kinase 
inhibitors such as erlotinib (Tarceva) have been used in patients with NSCLC and 
BM with modest success (Table  8.8 )  [  70–  74  ] . In patients with asymptomatic and 
small volume BM, primary chemotherapy and deferred WBRT is reasonable how-
ever careful assessment of intracranial response is required. Often, the intracranial 
response is discordant with and less than the systemic response. In the later instance 
in which no response to primary chemotherapy is seen, WBRT would be adminis-
tered. As the majority of patients with BM are treated with WBRT, the question of 
whether concurrent chemotherapy adds bene fi t remains uncertain  [  28–  30  ] . A syner-
getic effect may be seen with respect to intracranial response, though less certain is 
whether meaningful bene fi t is realized as overall survival appears similar in patients 
treated with or without chemotherapy and WBRT. The major utility of systemic 
chemotherapy in the treatment of BM is in a patients’ refractory response to radio-
therapy and in which no other treatment options remain. In this limited context, 
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chemotherapy may offer limited bene fi t though whether an advantage is seen with 
single vs. multi-agent chemotherapy is uncertain. The utility of targeted therapy and 
in particular small molecule inhibitors continues to evolve in oncology and hope-
fully will offer new therapies for patients with BM.       

    3.2   Single Agent Chemotherapy 

 Temozolomide (TMZ) has been the chemotherapy agent studied most and not sur-
prisingly, used most often in patients with refractory BM (Table  8.4 )  [  45–  54  ] . TMZ 
crosses the BBB (approximate serum to CSF ratio 0.33), has a favorable toxicity 
pro fi le and has emerged as the chemotherapy agent of  fi rst choice for patients with 
gliomas. However, the data regarding the ef fi cacy in extraneural tumors is quite 
limited aside from melanoma and consequently TMZ is rarely used as a primary 
therapy for either lung or breast cancer. Several TMZ drug schedules have been 
used to treat BM (42/56; 75 mg/m 2 /day for 42 days with 14 day break in therapy: 
21/28; 75–100 mg/m 2 /day for 21 days with 7 day break: and 5/28; 150–200 mg/m 2 /
day for 5 days with a 23 day break) though most commonly the 5/28 schedule has 
been utilized. As can be seen in Table  8.4 , TMZ for BM results in neuroradiographic 
responses in approximately 5% (all partial responses) and 25% disease stabilization. 
However, median time to tumor progression is only 1–3 months. All but the trials by 
Sienna and Argawala administered TMZ as salvage therapy after evidence of disease 
progression following WBRT  [  46,   51  ] . In the trial by Schadendorf et al., a dose 
intensive TMZ schedule (7/14) was utilized for asymptomatic melanoma BM with-
out prior application of WBRT  [  53  ] . Response rate was 4% and median survival was 
4 months. The best response data regarding single agent TMZ (5/28 schedule) was 
reported by Boogerd  [  54  ] . Amongst 52 patients (29 treated with TMZ only; 23 with 
TMZ and immunotherapy) with melanoma and small mostly asymptomatic (73%) 
BM, there were 5 responders (11%) with a median duration of response (including 
stable disease) of 7 months. These data suggest that TMZ has limited ef fi cacy as a single 
agent in patients with BM though may provide palliation for a brief period of time. 

 Single agent fotemustine, a nitrosourea available in Europe, results in similar 
response rates and duration of response as TMZ in patients with melanoma and BM. 
In a trial by Jacquillat et al. of 153 patients with metastatic melanoma of whom 36 
(23%) had BM, fotemustine resulted in a 25% partial response rate with a median 
duration of response of 4 months  [  75  ] . 

 Single agent topotecan has been investigated in several studies for the treatment 
of BM primarily due to its well-established activity and the fact that it freely pene-
trates the BBB (Table  8.5 )  [  55–  61  ] . Lorusso et al. report on 19 patients with 
a variety of systemic cancers and BM treated with topotecan (1.5 mg/m 2 /day for 
5-consecutive days every 3-weeks)  [  55  ] . Two responses were seen (both small cell 
lung cancer) however the trial was stopped for failing to meet pre-speci fi ed ef fi cacy 
criteria. In a phase 2 study of 92 patients with SCLC treated with topotecan (same 
schedule as above) and 7 patients with BM, Ardizzoni et al. reported that 3 patients 
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achieved a complete response and one a partial response  [  58  ] . Similar response data 
is seen in Table  8.5  suggesting that topotecan is an active agent in patients with 
either breast cancer or small cell lung cancer. There is limited data to suggest that 
patients with NSCLC and BM not previously treated with pemetrexed (Alimta) may 
respond to single agent therapy in part due to use of a tumor active agent with good 
CNS penetration  [  76–  78  ] . Similarly, there is limited data to suggest ef fi cacy and 
safety of bevacizumab in the treatment of bevacizumab naïve patients with NSCLC 
and BM  [  79  ] . 

 Experience with targeted agents in the treatment of BM is limited and best char-
acterized in NSCLC treated with ge fi tinib or erlotinib (Table  8.7 )  [  70–  74  ] . 
Intracranial response is predominantly seen in patients with responding concurrent 
systemic disease (usually Asian female nonsmokers with adenocarcinoma), pres-
ence of epidermal growth factor receptor (EGFR) mutations (EGFRmut) and mani-
festing treatment- related rash. An increased radiographic response and survival is 
seen in patients with EGFRmut NSCLC BM compared to EGFR wild type patients. 
It has been suggested that EGFRmut NSCLC represents a radiosensitive phenotype 
 [  80,   81  ] . An additional advantage of EGFR inhibitors is the potential of both sys-
temic and CNS control in patients with EGFRmut NSCLC. EGFR inhibitors when 
used alone illicit response in 70% or more in EGFR inhibitor naïve NSCLC patients. 
EGFR inhibitors are appropriate therapy for EGFRmut NCSLC patients with 
asymptomatic BM permitting deferred WBRT. As is true for other tumor speci fi c 
chemo- and targeted therapies for the treatment of BM, response to therapy is 
dependent upon prior therapy. Previous treatment with an EGFR inhibitor in a 
patient with NSCLC rarely results in control of BM when an EGFR inhibitor is 
reintroduced. At present there is no data regarding crizotinib (an ALK inhibitor) 
in the treatment of patients with BM and EMLA-ALK mutant NSCLC, but 
very likely the response will be similar to that seen with EGFR inhibitors in patients 
with NSCLC and EGFRmut. Two new targeted agents have been introduced in the 
treatment of metastatic melanoma: ipilimumab, an immune checkpoint inhibitor 
(CTLA-4 antagonist that sustains T-cell activation) and vermurafenib (PLX4032), a 
BRAF inhibitor (50% of all melanoma with mutations in BRAF, the V600E mutant) 
 [  82–  86  ] . Both agents have shown signi fi cant activity in recurrent systemic disease 
and there is limited evidence these targeted agents may as well be active for mela-
noma related BM. A prospective trial of vermurafenib in patients with V600E 
BRAF mutations, melanoma and BM is presently on-going to speci fi cally address 
the utility of this targeted agent for this indication. Lapatinib monotherapy was 
evaluated in a study of 242 women with BM from HER2 positive breast cancer prior 
trastuzumab therapy and cranial radiotherapy  [  87  ] . CNS antitumor activity of lapa-
tinib monotherapy was modest; 8% of the patients treated with lapatinib alone expe-
rienced a 50% reduction in CNS lesion volume and 21% had a 20% reduction in 
CNS lesion volume. The median survival duration was 6.4 months. Patients who 
experienced CNS progression with lapatinib monotherapy were given the option to 
receive lapatinib in combination with capecitabine. Of these patients (n = 50), 22% 
experienced a  ³  50% reduction and 40% experienced a  ³  20% reduction in the CNS 
lesion volume. Thus, response rates were substantially higher when lapatinib was 
administered in combination with capecitabine than when given as monotherapy. 
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Although a single agent effect of capecitabine cannot be excluded due to the design 
of this particular study, a growing body of evidence suggests that lapatinib may have 
a synergistic effect with capecitabine within the CNS  [  87–  89  ] . Lapatinib is addi-
tionally associated with a decreased risk of relapse within the CNS in patients with 
HER2 positive advanced breast cancer who have progressed on trastuzumab  [  90  ] . 
Speci fi cally, 2% (4/198) of patients treated with lapatinib and capecitabine and 6% 
(13/201; p = 0.045) of patients treated with capecitabine alone had their  fi rst pro-
gression in the CNS  [  90  ] .  

    3.3   Multi-Agent Chemotherapy 

 A number of nonrandomized trials have evaluated combination chemotherapy in 
patients with BM  [  91–  115  ] . Notwithstanding higher response rates in SCLC, median 
survival is similar when comparing NSCLC to SCLC (approximately 7 months). In 
a recent study of SCLC and BM, Seute et al. evaluated 181 consecutive patients 
with newly diagnosed SCLC by cranial MRI  [  112  ] . Twenty-four (13%) had asymp-
tomatic BM compared to 38 patients (21%) with symptomatic BM. All patients 
were treated in a similar manner with respect to systemic chemotherapy (cytoxan, 
etoposide and doxorubicin). In patients with asymptomatic BM, the intracranial 
response rate was one third that of the systemic response rate (27% vs. 73%) sug-
gesting that poor brain drug delivery limits response of BM to active systemic 
therapy. These results are similar to those reported by Kristensen in a review of BM 
response to chemotherapy in patients with SCLC (overall response 40%)  [  99  ] . The 
largest series of patients with breast cancer and BM treated with chemotherapy was 
reported by Rosner et al.  [  113  ] . In this study, 100 women were treated with multi-
agent chemotherapy using a variety of regimens and 50% response rate was seen 
with a median duration of response of 7 months. Boogerd et al. using a similar che-
motherapy regimen reported a response rate of 59% in women with BM and breast 
cancer  [  115  ] . However both studies treated women with breast cancer and BM not 
previously treated with chemotherapy, suggesting chemotherapy naïve patients with 
BM and breast cancer have high response rates. More problematic however is the 
fact the majority of women with BM and breast cancer have seen prior therapy and 
often multiple regimens. The combination of cisplatin and etoposide was studied in 
107 patients who had newly diagnosed brain metastases, 56 of whom had breast 
cancer (all not previously treated with WBRT)  [  94  ] . A total of 38% of breast cancer 
patients achieved either complete or partial response, more so than any other 
histology (non–small cell lung cancer was second with a 30% response rate). Median 
survival for breast cancer patients was nearly 8 months, again comparable to WBRT 
alone historically suggesting a subgroup of patients with breast cancer and BM may 
respond to systemic chemotherapy  [  94  ] . 

 Multi-agent therapy when compared to single agent TMZ appears to offer no 
advantage with respect to response rates in the treatment of BM and melanoma. 
Furthermore, duration of response to TMZ plus therapy and melanoma BM is lim-
ited to 3+ months in patients previously treated with systemic chemotherapy.  
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    3.4   Pre-Radiation Chemotherapy 

 Several trials demonstrate the feasibility and safety of concurrent therapy in the 
treatment of patients with BM  [  93,   101,   104,   116–  120  ] . Robinet conducted a ran-
domized trial in 171 patients with newly diagnosed BM and NSCLC. Patients 
received either upfront WBRT or deferred radiotherapy at time of intracranial dis-
ease progression  [  93  ] . Both groups were treated with systemic cisplatin and navel-
bine chemotherapy. Response rates (both intracranial and extracranial), progression 
free survival and overall survival were similar in both groups. Two thirds of patients 
in the deferred radiotherapy group required radiotherapy. This trial suggests that in 
patients with NSCLC and synchronous BM, primary chemotherapy is a reasonable 
approach however, patients require careful neurological follow-up. A similar  fi nding 
(primary chemotherapy in patients with NSCLC and synchronous asymptomatic 
BM) was demonstrated in the survey evaluation by Moscetti et al.  [  104  ] . The Robinet 
et al. trial of NSCLC is to be contrasted with that of Seute et al. in patients with 
SCLC mentioned above wherein the intracranial response rate was one third that of 
the systemic disease response to chemotherapy  [  78,   106  ] . Consequently, a majority 
of patients with BM required WBRT. These studies suggest a subset of patients with 
either SCLC or NSCLC-related BM may respond to systemic chemotherapy per-
mitting deferred radiotherapy.   

    4   Concurrent Treatment: Chemotherapy and Radiotherapy 

 Antonadou et al. studied 52 patients with BM and solid tumors (40 with lung can-
cer; 5 with breast cancer) in which patients were randomized to either WBRT with 
or without TMZ  [  116  ] . The radiographic response rate was 96% (38% complete; 
58% partial) in the TMZ arm compared to 67% (33% complete; partial 33%) in the 
radiotherapy only arm (p = 0.017). Margolin et al., in a single arm study of 31 
patients with BM secondary to melanoma, treated with TMZ and WBRT demon-
strated a very modest response rate (1/31 complete; 2/31 partial)  [  118  ] . In a similar 
study, Hofman et al. treated 34 patients with melanoma and BM with WBRT and 
TMZ  [  119  ] . Observed response rate was 9% (3% complete; 6% partial) with a 
median progression free survival of 5 months and overall survival of 7 months. 
Ulrich et al. treated 12 patients with metastatic melanoma and BM with WBRT and 
concurrent fotemustine  [  120  ] . A 50% response (33% complete; 17% partial) and 
8 months median survival was reported. Two other studies, both in patients with 
NSCLC, utilized either daily topotecan (n = 80) or once weekly paclitaxel (n = 86) in 
conjunction with WBRT reported a 10–12% response rate (all partial) and a median 
survival of 5–6 months. 

 Several novel strategies have been used to improve drug delivery to brain in 
patients with symptomatic BM. One strategy is by local administration using car-
mustine impregnated biodegradable wafers (Table  8.7 )  [  67–  69  ] . This therapy is per-
formed in patients undergoing surgical resection at which time carmustine wafers 
are implanted following which patients are treated with WBRT. This therapy however 
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is for select patients (surgical candidates, solitary metastasis in whom local control 
is paramount), and purportedly results in improved local control rates. Problematic 
with interpreting these studies is WBRT is variously applied, metastatic tumors are 
treated either at presentation or recurrence and administration of systemic chemo-
therapy is usually not reported. Another strategy though less often used approach 
entails administration of intra-arterial chemotherapy with or without osmotic BBB 
disruption. Again, this therapy is for select patients and can be performed only by 
centers skilled at intracerebral intra-arterial drug administration  [  102  ] . At present, it 
is unclear as to whether intra-arterial therapy is superior to alternative approaches 
discussed above and furthermore has associated risks as seen with invasive intra-
arterial therapies. 

 In aggregate, these studies suggest that chemotherapy and WBRT may be syner-
gistic in the treatment of BM and thereby result in improved radiographic responses. 
However less clear is whether there is bene fi t with respect to either neurological 
function or quality of life and brain-speci fi c survival.  

    5   Conclusions 

 Chemotherapy has a limited role in the management of patients with BM  [  28–  30, 
  114  ] . For the majority of patients, primary therapy of symptomatic BM will be 
WBRT except in patients with either solitary or oligometastatic disease  [  22,   121  ] . 
Surgery is of bene fi t in good risk patients i.e. the RTOG recursive partitioning 
analysis (RPA) class 1 and some class 2  [  4,   5,   9,   11,   39  ] . Whether added bene fi t is 
gained by placement of carmustine wafer implants at time of surgery is unclear 
 [  67–  69  ] . Furthermore, whether the use of carmustine implants in patients with 
resected solitary BM can permit deferral of WBRT is unknown. In patients with 
asymptomatic BM, primary chemotherapy and deferred WBRT is reasonable how-
ever careful assessment of intracranial response is required. Often, the intracranial 
response is discordant with and less than the systemic response. In the later instance 
in which no response to primary chemotherapy is seen, WBRT would be adminis-
tered. As the majority of patients with BM are treated with WBRT, the question of 
whether concurrent chemotherapy adds bene fi t remains uncertain. A synergetic 
effect may be seen with respect to intracranial response though less certain is 
whether meaningful bene fi t is realized as overall survival appears similar in patients 
treated with or without chemotherapy and WBRT. The major utility of systemic 
chemotherapy in the treatment of BM is in patients’ refractory to radiotherapy and 
in which no other treatment options remain. In this limited context, chemotherapy 
may offer limited bene fi t though whether an advantage is seen with single vs. 
multi-agent chemotherapy is uncertain. The utility of targeted therapy and in par-
ticular small molecule inhibitors continues to evolve in oncology and hopefully 
will offer new therapies for patients with BM  [  79–  90,   122  ] . An approach not yet 
realized is the use of systemic adjuvant therapies that either prevent or decrease the 
incidence of BM thereby resulting in a smaller fraction of patients with treatment 
requiring BM.      
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  Abstract   Radiation treatment of central nervous system (CNS) metastases, particularly 
brain metastasis, is changing. The role of radiation for intraaxial disease was origi-
nally limited to palliation. However, now there is an increasing expectation by both 
patients and physicians to integrate radiotherapy in an overall strategy for eradica-
tion of disease. Recent innovations in radiobiology and technical advances in radio-
therapy have proven bene fi cial to many extracranial sites. Nevertheless, these 
advances have lagged behind in the treatment of brain and spinal metastases and 
have not kept pace with changing expectations. We aim to explain the scienti fi c 
basis of radiotherapy for CNS metastasis, current treatment options and techniques, 
controversies, and future goals for potential improvement.      

    1   Molecular Basis of Radiation Therapy 

 Radiation therapy is used as a localized treatment modality for a wide variety 
of malignant and benign diseases, and is utilized in both de fi nitive therapy and for 
palliation of symptoms. The total dose of radiation delivered and the number of 
treatments in which the total dose is delivered vary depending on the indication. 
Ionizing radiation is employed because it can be absorbed in all tissues and pro-
duces disruptions in atomic structure, which in turn, produces chemical and bio-
logical damage on the subcellular level. The mechanism of action of ionizing 
radiation appears to be multifold. The ability of photons from x- and  g -rays to 
hydrolyze water produces breakage of chemical bonds, particularly within DNA  [  1  ] . 
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The  fi xation of double stranded DNA breaks leading to mitotic catastrophe is the 
most supported mechanism of radiation-induced cell death in solid tumors  [  2  ] . 
Apoptosis in response to radiation occurs less often, mostly in cell populations that 
have diminished repair capacities such as lymphomas and leukemias  [  3  ] . However, 
in addition to effects on the nucleus, there is growing evidence to suggest that oxi-
dation of the lipid bilayer  [  4  ] , changes in microvascular permeability  [  5  ] , cell-cell 
junctional complex rearrangements  [  6  ] , and mitochondrial alterations inducing 
additional oxidative stress  [  7  ] , are also subcellular targets for ionizing radiation. 
Because of these effects, radiation has the capacity to alter tumor microenviron-
ment, cellular architecture, permeability of tumor vasculature and permeation of 
drugs within the tumor, and to produce biochemical alterations which allow for 
additive or synergistic cell killing in combination with pharmacological agents. 

    1.1   Fractionation Versus Single Dose 

 The ability of ionizing radiation to successfully treat a cancer is dependent on pro-
ducing adequate cell killing within the target without destroying the normal tissues 
in the path of the ionizing radiation. The response of solid tumors to radiation 
depends primarily on three factors: (1) the intrinsic radiosensitivity of the tumor 
cells, (2) the oxygenation of the tumor cells, and (3) the number of tumor cells 
undergoing division between radiation treatments. Modi fi cation or changes in any 
of these factors would be expected to modify the radiation response of tumors. 
Therefore, an effective radiotherapy regimen has to overcome the obstacles of 
repopulation after a single radiation exposure, repair of sublethal damage, and reas-
sortment within the cell cycle following treatment. Reoxygenation of hypoxic cells 
due to diminishing tumor volume allows for increased cell killing on subsequent 
radiation exposure  [  1  ] . This forms the biological basis for the use of fractionation. 

 The concept of fractionation involves the division of a total prescribed radiation 
dose over a de fi ned period of time.  In vivo , fractionation allows for multiple logs 
of tumor cell killing, while also allowing suf fi cient time for normal tissue repair to 
occur  [  8  ] . Standard daily radiation fraction doses of 1.8–2 Gray (Gy; a standard 
measure of absorbed dose) are used in a wide variety of regimens, including those 
where concurrent chemotherapy is delivered. Altering fractionation schemes to 
allow multiple radiation treatments per day within the same total treatment time is 
de fi ned as hyperfractionation and may be used in specialized indications to mini-
mize normal tissue toxicities, or to overcome tumor cell repopulation between 
radiation fractions. Alternatively, delivery of larger doses of radiation per treat-
ment to shorten the total time required for administration of a prescribed dose is 
de fi ned as hypofractionation and may be used in clinical situations to overcome 
increased repair capacity of a tumor, as with melanoma  [  9  ] , or when it is in the 
patient’s interest to complete treatment in a shorter time period, as in most fractionation 
schedules for whole brain radiation therapy (WBRT) and palliative spine treatments. 
Large fraction sizes (>4 Gy), such as those used for stereotactic radiosurgery (SRS) 
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and some stereotactic radiotherapy regimens (SRT), may also have a secondary 
effect on the tumor vasculature leading to vascular collapse and tumor necrosis 
 [  10  ] , as compared to standard fractionation. However, doses >4 Gy at a time are 
classically reserved for cases where the extent of disease is easily de fi ned and 
where the volume of disease is limited and in a location that can tolerate the treat-
ment. This is particularly important within the CNS, where fraction size in addition 
to total radiation dose, and treatment volume are most closely linked to the long 
term toxicities of non-cancerous normal parenchyma  [  11  ] . However, regimens 
with non-standard fractionation in combination with sensitizing therapies remain 
largely untested, principally due to concerns for increased normal tissue toxicity 
without a de fi ned, clear bene fi t. 

 An equally important consideration to how total radiation dose is divided is the 
acknowledgement that hypoxic cells require higher doses of radiation to produce 
the same amount of cell kill  [  12,   13  ] . The larger the volume of the metastasis, the 
greater the number of hypoxic, relatively radioresistant, cells. Approximately two-
thirds of the biologic damage produced on double-stranded DNA by photons occurs 
as an indirect action mediated by free radicals generated by the hydrolysis of water. 
Oxygen that is present at the time of ionizing radiation exposure and during the 
subsequent formation of free radicals makes permanent the effect of free radicals. 
Thus, under hypoxic conditions when oxygen levels fall below 0.5%, the effect of 
radiation is diminished, since the cells have an increased ability to repair the free 
radical-induced damage without suf fi cient oxygen  [  1  ] . Larger tumors with signi fi cant 
numbers of hypoxic cells, therefore, require relatively larger radiation doses to pro-
duce the same biologic effect. As initial radiation doses induce lethal damage within 
the well-oxygenated outer cell layers of a three-dimensional tumor, the tumor vol-
ume decreases, allowing for re-oxygenation of previously hypoxic cell populations 
which increases ef fi ciency of killing with subsequent radiation fractions. Attempts 
to sensitize hypoxic cells to the effects of radiation have focused on delivery of 
compounds to the tumor which mimic the chemical effects of oxygen, however, 
they have not been thoroughly vetted in the setting of CNS metastasis  [  14–  16  ] . 
Thus, testing of newer generation oxygen-mimetic agents in combination with radi-
ation for treatment of CNS metastases remains promising for future investigation, 
particularly for improved control of larger lesions. 

 Although radiation aims to maximize irreversible damage to the tumor, the total 
amount of radiation that can be safely delivered depends on the environment in 
which the tumor resides. Each normal tissue has its own endogenous radiation limits, 
beyond which repair to exposure is not possible and permanent damage ensues. 
Within the brain, the neurons, astrocytes and vascular endothelial cells all respond 
in slightly different ways to radiation. The brain is a late-responding tissue to radia-
tion, due to the relatively slower rate of cellular turnover compared to most extracra-
nial tissues, with reactions manifesting months to years after exposure. Radiation 
limits are de fi ned as the dose for a speci fi ed volume that produces a de fi ned effect 
in 5% of patients at 5 years (TD 

5/5
 ) and 50% of patients at 5 years (TD 

50/5
 ). 

Traditionally, the TD 
5/5

  for the whole brain occurs when doses exceed 45 Gy, and 
the TD 

50/5
  occurs when whole brain doses exceed 60 Gy. However, smaller volumes 
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of brain can sustain higher doses. The TD 
5/5

  when 1/3 the brain volume is treated 
with standard fractionation is thought to approximate 60 Gy, and the TD 

50/5
  after 

70 Gy. The spine is noted to have a TD 
5/5

  of 50 Gy and a TD 
50/5

  of 70 Gy for a treated 
length of 5–10 cm  [  17  ] . One caveat of these dose limits is that it is assumed the 
doses are given in standard fractionation schedules of 2 Gy per day. Another consid-
eration is that these limits are based on empiric evidence and older radiotherapy 
techniques, while newer data suggests slightly higher doses may be tolerated due to 
better conformality and three-dimensional modeling software  [  18–  20  ] . 

 Toxicity evaluations for radiation treatments differ based on anatomical location 
and are divided into discrete sets of acute and late toxicities. Effects manifesting 
from the onset of therapy to within 90 days following treatment are referred to as 
acute toxicities, whereas late toxicities typically develop after the 90 day mark. 
Although evaluation of acute toxicity within the 90 days surrounding radiation is 
usually the focus of toxicity evaluation in many clinical trials, the collection and 
analysis of data on late toxicity effects are essential because such data can often 
assist with interpretation of late events seen in the initial stages of phase III trials 
 [  21  ] . This is an exceedingly important concern for brain metastasis trials, as the 
CNS is noted to be a late-responding tissue, with effects from radiotherapy not 
manifesting for months to years  [  11  ] . The time course of adverse long-term toxici-
ties varies and typically occurs gradually over a protracted period of time. When 
early histopathologic changes occur, they initially involve the white matter. As time 
progresses beyond a year, grey matter and vascular-based lesions begin to arise. 
Cognitive effects such as decreased attention and concentration are unpredictable 
and highly individualized, typically not manifesting until 1–2 years  [  22  ] . Radiation 
necrosis, when it occurs, typically arises from 6 months to 2–3 years following 
treatment and is typically accompanied by vasogenic edema adjacent to the area of 
necrosis. The edema, in turn, causes tissue distortion, and possible associated cogni-
tive changes, which is why symptoms are often improved by steroid administration 
 [  23  ] . Vasculopathy, stroke and endocrinopathy are also other possible late side 
effects and depend on the area of the brain treated, as well as total dose  [  24  ] . 

 The optimal dosage and timing schedules for CNS treatments aim to strike a bal-
ance between acute-responding tumor and late-responding normal tissue. To deci-
pher the impact of regimens and to compare different fractionation schedules, the 
concept of biologically equivalent dose (BED) is utilized. The determination of 
BED is the calculation of a standardized numerical score that takes into account the 
dose per fraction, number of fractions, and the  a / b  ratio of the tumor or normal tis-
sue as determined by its particular linear-quadratic radiation dose response charac-
teristics. Depending on how the calculation is utilized, BED can be calculated for 
both normal tissue and/or tumor control, and equal BED values have the same theo-
retical probability of tumor control or normal tissue effect, respectively. What this 
means on a practical scale, for example, is that 20 Gy delivered over 5 fractions of 
4 Gy is  not  the radiobiological equivalent of 20 Gy delivered over 4 fractions of 
5 Gy. Within the CNS, fraction size is the dominant factor in determining late 
effects, with overall treatment time as a lesser in fl uence  [  25  ] . Therefore, hypofrac-
tionation regimens have the potential to be particularly damaging when large vol-
umes of normal brain and spinal cord are exposed. 
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 Based on an increased understanding of the molecular mechanisms of radiore-
sponse, current efforts to develop strategies for enhancing tumor radiosensitivity 
have focused on the use of agents that target molecules putatively involved in regu-
lating radiation-induced cell death. However, complicating this approach, it has also 
become increasingly clear that cellular radiosensitivity is the sum effect of a combi-
nation of a wide variety of signaling and effector molecules, and the ability of a 
single molecule to affect radioresponse also varies with changes in the genetic and 
epigenetic background  [  26  ] . Accordingly, there are numerous examples in which 
targeting a selected radioresponse-associated molecule affects radiosensitivity in a 
cell type–dependent manner  [  27,   28  ] . 

 Conversely, what constitutes “radiation resistance” is a matter of signi fi cant con-
troversy. Brain metastases are often referred to as being “radioresistant” compared 
to extracranial tumors of the same cell type  [  19  ] , most often because of the emer-
gence of new metastases or regrowth of lesions following conventionally fraction-
ated radiotherapy. There is little scienti fi c evidence to support that the CNS confers 
a relative radiation-resistant microenvironment compared to extra-axial disease. 
 [  29  ] , However, some tumor types are believed to be inherently more resistant to the 
effects of a standard dose of radiation, such as renal cell carcinoma, sarcoma and 
melanoma, which are noted to have increased repair capacities to single standard 
radiation doses, thus requiring altered fractionation and dosing to achieve improved 
control rates  [  30  ] . This is possibly related to the fact that these tumors are often 
highly vascularized with a tendency to bleed, and often form larger lesions with 
large regions of hypoxia and necrotic cores. Therefore, one would hypothesize that 
it may be more appropriate to pursue hypofractionated schedules versus single dose 
or standard fractionation options for long-term control of certain histologies. Indeed, 
improved local control rates are seen in the post-operative setting for extracranial 
head and neck melanomas when hypofractionation is used to overcome the increased 
repair capacity of the tumor  [  9  ] . 

 The concept of radiation resistance rests on the assumption that certain types of 
malignant cells are in fi nitely able to repair themselves from damage after absorp-
tion of ionizing radiation. Accordingly, it may also be incorrect to assume that just 
because a lesion grows following a de fi nitive radiation treatment that the lesion is 
somehow unsusceptible to the effects of additional radiotherapy  [  31  ] . Radiation 
damage is a stochastic event that randomly affects some tumor cells versus others 
 [  1  ] , and delivers lethal damage to only a certain number of cells per fraction. 
Curative regimens are designed with the aim to deliver enough treatment doses to 
exceed the number of cells that require exposure to lethal damage. A lack of respon-
siveness to radiation most likely comes from the limitations of dose and fraction-
ation employed due to the necessity to respect normal tissue tolerances. Simply 
because a tumor has demonstrated the ability to overcome one type of radiation 
dose and fractionation schedule, does not necessarily mean that another would not 
be more effective. The purpose of the chosen radiation regimen must also be taken 
into account. If the regimen is designed with the goal of palliation of symptoms, it 
is therefore not likely it will also be adequate for tumor eradication. It is no surprise 
that some lesions will begin to grow following a non-ablative regimen, but it does 
not necessarily de fi ne a tumor as being radioresistant.  
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    1.2   Radiation Modi fi ers 

 A radiation sensitizer is an agent that increases the sensitivity of cells to radiation 
 [  32  ] . An ideal radiosensitizer would not have any cytotoxic effects on its own, being 
inert to both normal and tumor cells. However, most agents have a measureable 
amount of cytotoxicity which is separate from their effects in altering the cellular 
response to radiation damage. Thus, agents that have inherent cytotoxicity which 
additionally produce increased sensitivity to a dose of radiation are often instead 
referred to as radiation modi fi ers. 

 Combined chemoradiation approaches have proven most successful for clinical 
situations in which the amount of radiation alone that would be required to destroy 
a tumor would greatly exceed normal tissue tolerance, otherwise rendering radiation 
therapy as a single modality ineffective and highly toxic  [  33  ] . This is indeed the 
situation with the majority of CNS metastases. The potential bene fi ts of a chemora-
diation approach include: (1) providing a combination of systemic treatment for 
both CNS and non-CNS gross tumor along with simultaneous micrometastatic con-
trol of subclinical disease (potentially outside the radiation  fi eld), and (2) augment-
ing the localized effectiveness of radiation therapy. While combined chemoradiation 
approaches have demonstrated success in improving outcomes in many extracranial 
disease sites, chemoradiation trials to date have not demonstrated a signi fi cant 
bene fi t to patients with brain metastases  [  34  ] . This is believed to be due in large part to 
a lack of full penetration leading to sub-therapeutic concentrations of most chemo-
therapeutic agents within intracranial lesions  [  35  ] . Nevertheless, the potential exists 
to develop or identify a blood-CNS barrier permeable agent that would be speci fi cally 
cytotoxic for tumor, protective for normal brain and spine, and would synergistically 
augment the cellular damage induced by localized radiotherapy. 

 Traditional “radiosensitizers” for extracranial diseases, cytotoxic chemothera-
peutic agents such as 5- fl uorouracil and methotrexate, cisplatin and taxanes, are 
administered on a regimented schedule to optimize the interaction between the 
agent and radiation  [  36–  39  ] , and were devised on an empirical approach where 
chemotherapy is administered prior to scheduled delivery of radiotherapy. Although 
often highly effective in experimental models, the results obtained when these com-
binations are applied in a clinical setting have been generally less than expected, 
primarily due to concomitant increases in radiation-induced normal tissue injury. In 
the setting of CNS disease, methotrexate, cisplatin, and taxanes given concurrently 
with radiotherapy have been noted to adversely affect normal tissue to a greater 
degree than the metastases which they were intended to treat  [  40–  42  ] . 

 In any situation, an effective radiation modi fi er must show a differential effect 
between tumor cells and normal tissue. As previously mentioned, when the differ-
ential effect is to enhance radiation-induced tumor cell damage at the time radiation 
is being delivered, the agent is identi fi ed as a radiosensitizer. However, when the 
differential effect is to reduce the damage of ionizing radiation on normal tissue at 
the time radiation is being delivered, the agent is identi fi ed as a radioprotector. 
When the agent lessens or reverses the effect of radiation-induced damage after the 
exposure has occurred, the agent is identi fi ed as a radiation mitigator. Effective 
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agents in any of these categories are developed by exploiting biological differences 
between normal tissue and tumor. For example, cisplatin, an empiric radiosensitizer, 
induces cell death by crosslinking DNA, thereby taking advantage of the fact that 
most cancer cells have a higher proliferation rate than the surrounding normal tissue. 
Conversely, amifostine, a classic radiation protector which functions as a sulfhydryl 
donor, distributes preferentially in salivary gland tissue compared to tumor tissue, 
which makes it useful in reducing the toxicity of xerostomia in radiation treatment 
of head and neck cancers  [  43  ] . However, both of these agents have their own set of 
toxicities independent of the side effects produced from radiotherapy, and produce 
poor penetration into CNS metastases or normal CNS parenchyma, respectively, 
which has limited their usefulness in the setting of brain and spine metastases  [  44  ] . 
To date, unfortunately, no such radiation modi fi ers have proven to improve the ther-
apeutic ratio in the setting of WBRT, SRS, or spinal irradiation to the point where 
widescale use is recommended  [  45  ] . 

 The recent explosion in targeted therapies development has made it possible to 
allow radiosensitization with less toxicity to normal tissues, more effective augmen-
tation of radiation-induced tumor cell death, and more  fl exible administration routes 
and regimens compared to traditional cytotoxic chemotherapies  [  46  ] . However, 
given that a single molecule’s in fl uence on regulating cellular radioresponse is 
dependent on a variety of genetic/epigenetic circumstances, the possibility exists 
that the effectiveness of target-based radiation sensitizers against solid neoplasms 
could be signi fi cantly limited by intertumor and intratumor heterogeneity. As a 
means of reducing the consequences of cell type speci fi city, targeting more than one 
of the potential molecular determinants of radiosensitivity has been suggested as a 
strategy for increasing the probability and/or degree of radiosensitization. 
Overcoming such a limitation would involve identifying markers that indicate which 
tumors may be susceptible to a given target-based radiosensitizer  [  47  ] , and then 
using a multipharmacologic approach to improve clinical results. Naturally, the 
effect would also be dependent of the level of penetration into the metastasis. 

 However, there are novel radiation modi fi ers being discovered and developed 
which may prove a future bene fi t for CNS metastases. Histone acetylation, controlled 
by histone acetylases and histone deacetylases (HDAC), modi fi es nucleosome and 
chromatin structures and regulates gene expression. The aberrant HDAC activity 
leading to transcriptional repression of tumor suppressor genes is considered to be a 
common event contributing to tumor formation. Accordingly, molecules that can 
inhibit histone deacetylases and reverse the aberrant epigenetic changes associated 
with various cancers are being investigated. HDAC inhibitors have been shown to 
induce tumor cell differentiation, apoptosis, and/or growth arrest in several  in vitro  
and  in vivo  experimental models. Multiple HDAC inhibitors have also been shown to 
affect radiosensitivity in preclinical models  [  48,   49  ] . Clinical trials are currently 
being conducted using these novel radiation sensitizers to determine their clinical 
safety and ef fi cacy. Additionally, the use of antiangiogenic agents and radiosensitiz-
ers used in primary brain tumors, such as temozolomide, are being investigated to 
augment the effectiveness of established radiotherapy options in the setting of brain 
metastases, and represent additional paradigms to affect radiosensitization  [  50,   51  ] . 
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    1.2.1   Considerations of Radiation Sensitizers in Clinical Trials 

 The consideration of a radiosensitizing agent should be limited to a disease site or 
process where an indication exists for curative or palliative radiation therapy alone 
as standard of care, making CNS metastases prime targets for evaluation. Clinical 
trials with radiosensitizers typically seek to determine the dose of the modi fi er that 
is to be administered concurrently with radiotherapy, although radiation regimens 
may differ greatly based on the tumor type and clinical scenario. The trials are 
designed so that the agents are administered exclusively concurrently with radia-
tion. When agents are administered neoadjuvantly or adjuvantly along with concur-
rent chemoradiotherapy, it can be an extremely dif fi cult task to attribute the outcome 
to a radiation modi fi er effect, particularly if the agent exhibits signi fi cant cytotoxicity. 
Because of the potential for confounding effects, direct anticancer properties need 
to be examined prior to a combination of sequential chemotherapy with a chemora-
diation regimen. Endpoints such as complete response rates, local control rates, 
locoregional time to progression, and survival are generally preferable to overall 
response rates and are determined by the primary tumor being studied. As an added 
consideration, dose-limiting toxicities for clinical evaluation of radiosensitizers are 
often de fi ned by the organ and site, as determined by the body areas targeted with 
radiotherapy, and therefore, initial clinical investigations are often performed in a 
curative as opposed to a palliative setting. This presents a conundrum for CNS 
metastasis trials: highly restrictive patient selection and development of algorithms 
for “de fi nitive” radiotherapy would be required for what is usually considered to be 
an incurable condition. 

 Novel serum biomarkers are currently under investigation which may one day 
provide a reliable early marker of clinical response to radiation therapy and may 
provide a means to evaluate the clinical effect of radiation sensitizers as part of an 
individualized cancer treatment strategy. Instead of categorical radiation dosing 
techniques, serum proteomic tests may allow us to better quantify the biological 
effect of serial exposures, making it easier to avoid toxicity while maximizing thera-
peutic ef fi cacy  [  52  ] . 

 With current advances in molecular radiobiology, strategies for enhancing radio-
sensitivity now focus on targeting the molecules and processes that regulate cellular 
radioresponse on a localized and systemic level. A wide variety of pharmacologic 
agents have been shown to in fl uence radiosensitivity affecting such fundamental 
processes as cell cycle checkpoints, DNA repair, gene expression, and apoptosis. 
However, to be clinically relevant, a molecular target must not only serve as a deter-
minant of radiosensitivity, but should also be susceptible to pharmacologic manipu-
lation, and importantly, be selective for tumor cells over normal tissue.   

    1.3   Radiation as Immunomodulator (Abscopal Effect) 

 One of the more exciting possibilities is the use of radiation in stimulating immune 
responsiveness. Local radiation therapy that produces systemic effects on distant 
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tumors has become known as the abscopal effect  [  53  ]  and has suggested a potential 
use as an adjunct to tumor immunotherapy  [  54  ] . Experiments in animal models have 
suggested that the biological mechanisms which result in the abscopal effect may be 
multifactorial  [  55  ] , and are most likely dependent on CD4+ and CD8+ T cells and 
NK cells. The combination of radiation and interleukin-2 (IL-2) treatment results in 
increased antigen presentation and lymphocyte invasion in tissue at the site of irra-
diation, along with initiation of a systemic immunosensitization. For example, tar-
geted radiation improves systemic responses to IL-2, and is associated with increased 
tumor cell surface expression of MHC Class I  [  56  ] . In contrast, irradiated tumor 
demonstrates an in fl ux of Mac-1 +  cells  [  57  ] . Because irradiated tumor results in 
changes in cell surface antigen presentation which leads to targeted immune-
mediated cytotoxicity  [  58  ] , the abscopal effect may present an opportunity to allow 
targeted radiotherapy to enhance the ef fi cacy of immuotherapeutic agents such as 
sirolimus and rapamycin as well as the development of effective tumor vaccines. 
The combination of radiation and vaccine-based immunotherapy has resulted in 
improved response rates versus radiotherapy alone in cervical cancer, localized and 
metastatic prostate cancer, hepatoma, and metastatic renal cell carcinoma, provid-
ing the ground work for consideration for trials in other disease sites  [  59–  64  ] . This 
is an area of radiobiology which has remained largely unexplored for CNS metasta-
ses. There is existing evidence that for melanoma brain metastasis, antibodies that 
block the interaction of cytotoxic T-lymphocyte-associated antigen (CTLA) with its 
ligands B7.1 and B7.2 and thus enhanced antitumor immune responses have shown 
clinical bene fi t in patients with metastatic melanoma, including durable control of 
brain metastases  [  65  ] . However, the added effect of radiotherapy in this setting 
remains unknown.  

    1.4   Radiation Effects on the Blood–Brain Barrier (BBB) 

 The effect of radiation therapy on brain microvascular permeability has been recog-
nized for more than 80 years. In the 1920s, Beclere  [  66  ]  discussed the treatment of 
craniospinal tumors and cautioned against the dangers of acute vasodilation, hyper-
emia, transudation of serous  fl uid, and edematous swelling. Later, it was noted that 
chlorides and sugar increased in the cerebrospinal  fl uid relative to blood between 
4.5 and 6.5 weeks in patients following head irradiation at high, supratherapeutic 
doses  [  67  ] . These observations gave way to the hypothesis that cranial irradiation 
enhances the toxicity of systemically administered drugs. 

 The reverse can also be true. Prior administration of certain chemotherapy agents 
can alter the BBB, potentiating the effect of radiation, such as demonstrated in studies 
of the effect of cranial irradiation following intrathecal methotrexate in patients 
with primary CNS lymphoma  [  40  ] . In this study, patients began sequential WBRT 
(45 Gy delivered in 1.8 Gy fractions) 1 week after intrathecal methotrexate admin-
istration. With only a 7 day interval between methotrexate and WBRT, there was a 
15% (if age <60) to 20% (if age >60) chance that late severe neurotoxicity would 
occur at a median follow-up time of 504 days. This implies that the effect of 
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radiotherapy is magni fi ed when neurotoxic chemotherapy is delivered in close 
proximity to radiotherapy. Further, it suggests the hypothesis that BBB alterations 
produced by the combination of intrathecal chemotherapy and cranial irradiation 
are responsible for the observed encephalopathy subsequent to the prior effect of 
chemotherapy on increased BBB permeability. The study also demonstrates that 
age is a major factor when considering how much neurologic reserve one has to 
neurotoxic insult, be it from chemotherapy, radiation, or both. 

 Although the mechanism of this radiation effect has not been elucidated, selective 
biophysical damage to endothelial cell membranes or opening of interendothelial tight 
junctions would provide an explanation for the observed phenomena  [  68  ] . 
Corticosteroids protect against or moderate the acute complications of WBRT in the 
short-term, when patients undergoing WBRT take dexamethasone at doses of 4-16 mg/
day. A positron emission tomography study using 82Rb as a tracer, failed to demon-
strate an increase in blood-to-brain or blood-to-tumor transport of 82Rb following 
WBRT on patients taking high-dose corticosteroids, believed to re fl ect the stabilizing 
effect of corticosteroids on the blood–brain and blood-tumor barriers  [  69  ] . 

 The response of the BBB to ionizing radiation is dependent both on the dose to 
which the brain is exposed and on speci fi c properties of the tracer. Either an increase 
or a decrease of BBB permeability, or both, occurring in a certain time sequence, 
can be observed. The mechanism of hyperpermeability after irradiation may be 
related to the activation of vesicular transport. However, the response of the BBB to 
ionizing radiation may also be nonspeci fi c and its responses to other physical or 
chemical noxious factors  [  70  ] . Whether induced by speci fi c or non-speci fi c path-
ways, the ultrastructural changes to both standard and hypofractionated radiation in 
humans remain to be elucidated in suf fi cient detail and in a standardized fashion 
that would allow for a reliable time-dependent prediction of behavior following 
radiation exposure.   

    2   Radiation Techniques 

 Fundamentally, radiation is a local treatment employed as an integrated component 
of multimodality therapy. Radiotherapy treats what is localized within a de fi ned 
 fi eld, and the  fi eld is determined on what can be visualized, either with computer-
ized tomography (CT), magnetic resonance imaging (MRI), and/or positron emis-
sion tomography. All of these imaging modalities have limitations in resolution in 
being able to image micrometastatic disease, as well as in determining in geometric 
space the true extent of tumor. Single brain metastases are typically easily visual-
ized and well de fi ned relative to normal tissue, rendering them easily treated by a 
technique which can provide high dose radiation with rapid falloff to minimize 
adjacent normal tissue damage. Multiple brain metastases require treatment of the 
entire brain for local control due to the presence of micrometastases that cannot be 
visualized by current techniques. Treatment of limited brain disease, such as 1–3 
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metastases, is an area of signi fi cant controversy, with some practitioners preferring 
localized SRS  fi rst, followed by WBRT at the time of relapse, or WBRT  fi rst followed 
by SRS to treat relapsed disease  [  71  ] . 

 The optimal technique for radiation treatment of CNS metastases depends on the 
location, size and number of lesions, the extracranial tumor control, the patient’s 
neurologic and general medical conditions, and the natural history of the primary 
tumor site. All forms of radiotherapy have a basic requirement that the patient be 
cooperative and able to follow commands, since the treatment is delivered with the 
patient alone in the treatment room. A treatment planning session, or simulation, is 
required, as every radiation plan is uniquely constructed for each patient based on 
differences in anatomy and in tumor characteristics. For WBRT, the simulation is 
performed with the patient supine with arms at the side, and head in neutral position 
on a headrest. Immobilization of the head is typically achieved with a custom-made 
mask to prevent movement during treatment and in order to reproduce the position 
exactly between daily treatments. If stereotactic techniques are used, a headframe is 
attached to the patient (Fig.  9.1 ).  

 In the case of emergency WBRT, the simulation may be done on the treatment 
table. Otherwise,  fl uoroscopic imaging or CT simulation may be used to visualize 
the anatomy. The anatomic limits of the brain are de fi ned on portal  fi lms with the 
linear accelerator gantry at the 90° and 270° positions to give opposed-lateral  fi eld 
arrangements. Custom blocks are then prepared to shield the lens and facial struc-
tures. The inferior border is most commonly set at the bottom of the C1 vertebral 
body. The bottom of the C2 may be used if the patient has a higher risk of drop 
metastases, such as in medulloblastoma, leukemia, and posterior fossa disease. The 
other  fi eld borders extend to 2 cm beyond the bony limits of the skull in the anterior, 
superior, and posterior positions (Fig.  9.2 ). In instances where lymphoma or leuke-
mia is the origin of the intracranial disease, the  fi eld is modi fi ed to ensure coverage 
of the cribriform plate, retina, and the upper cervical spine. These modi fi cations are 
not typically necessary in instances of metastases from solid extracranial tumors. 
Sophisticated software packages allow reconstruction of planning images and fusion 
with diagnostic imaging so that custom radiation plans can be devised based on the 
unique anatomy and tumor characteristics of each patient, taking into account both 
the target and surrounding normal tissues. The planning software is able to provide 
a “topographical map” of radiation dose distributions within a three-dimensional 
model of the patient.  

 X-rays and  g -rays enter a tissue for a distance, then begin to slow down and 
deposit dose once they encounter dense tissue, a process known as attenuation. The 
energy of the beam dictates the characteristics of how attenuation occurs, repre-
sented as a depth-dose distribution. Physical characteristics of 6 megavoltage (MV) 
photons, most commonly used for cranial radiation, have a maximum dose (Dmax) 
at 1.5 cm and a therapeutic range of approximately 3–4 cm at 90% depth dose. 

 Linear accelerators (linacs) are the workhorses of the radiation therapy universe. 
They are the most widely used type of unit on which radiation patients are treated 
and have replaced older cobalt teletherapy units. They are comprised of a micro-
wave power source, a linear accelerator guide, a bending magnet, an X-ray target 
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usually made of tungsten, a  fl attening  fi lter, a monitor ionization chamber, and a 
collimator that is used to shape the beam as it exits the head of the machine. When 
electrons created by the microwave power source are accelerated against the tung-
sten target, brehmstrahlung radiation provides a spectrum of X-ray energies in the 
megavoltage range (as compared to kilovoltage X-ray energies required for diag-
nostic purposes). The head is located on a gantry which can rotate 360°, which may 
be parked in pre-de fi ned positions to deliver a prescribed amount of radiation, or 
can deliver radiation while moving so that the dose is spread out into an arc forma-
tion. Linear accelerators can be  fi tted with beam modi fi ers and shapers such as 
multileaf collimators, as well as specialized collimators which allow pencil-type 
beams to treat SRS cases (Fig.  9.3 ). Many newer linear accelerators are often 
equipped with special imaging equipment, so that image-guided therapy may be 

  Fig. 9.1    Immobilization devices for the head commonly used in radiotherapy of brain metastases. 
( a ) Aquaplast immobilization mask that has been custom  fi tted for the patient. ( b ) Removable 
headframe used for external coordinate system in stereotactic radiation delivery. The beige cup  fi ts 
along the occiput of the patient’s head. The  green mold  represents a bite block, which inserts into 
the patient’s mouth and secures onto the upper dentition. The  black straps  are used to secure the 
frame to the patient’s crown. There are multiple variations of this type of headframe, some with pins 
that percutaneously attach the frame directly to the skull, as in a Brown-Robert-Wells headframe 
commonly used for SRS       
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  Fig. 9.2    An example of a whole brain radiotherapy plan in a patient with metastatic lung cancer 
treated with opposed lateral  fi elds, 6 MV photons, to a dose of 30 Gy in 10 fractions of 3 Gy, 
prescribed to the 100% isodose line. Dosimetry was calculated on Eclipse 8.6 software (Varian 
Systems, Palo Alto, CA). ( a ) DRR (digitally reconstructed radiograph) of the left lateral treatment 
 fi eld. ( b ) Dose distribution is modeled to demonstrate entire coverage of the brain parenchyma       
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possible. Special adaptations to linear accelarators, such as placing a compact linear 
accelerator on a continuously rotating gantry along with a diagnostic x-ray tube 
forms the basis for helical tomotherapy (Fig.  9.4 ). Linear accelerators that are 
mounted onto a robotic arm and employ image-guided software are the basis of 
robotic radiosurgery units (e.g. Cyberknife, Accuray, Sunnyvale, CA). However, at 
their root, the radiation that is delivered is derived with each of these technologies 
is derived from a linear accelerator.   

 In contrast, Gamma Knife units were engineered in the 1950s and 1960s to treat 
isolated intracranial lesions before the advent of modern linear accelerators. Gamma 
Knife units (Elekta, Stockholm, Sweden) utilize gamma rays produced as part of the 
natural decay of radioactive Cobalt-60 sources located in the housing of the machine. 
Cobalt-60 is made as a by-product of neutron bombardment in nuclear reactors and 
has a half-life of 5.26 years with energies of 1.17–1.33 MV and a Dmax at 0.5 cm. 
Both gamma rays from Cobalt-60 and photons from x-rays produce entrance and 
exit dose. Where the dose  fi elds overlap onto a target, or isocenter, the dose is addi-
tive. Therefore multiple beam positions are used to spread a low radiation dose over 
a wide area, so that a focused, higher dose may be delivered to a smaller region. 

 Protons are a relatively new particle used in selected CNS treatments, and have 
the theoretical advantage of eliminating the exit dose produced by photon and gamma 
radiation treatments. However, since the availability and cost is currently prohibitive 
to be used on a large scale for CNS metastasis, data on comparing protons to photons 
in the setting of CNS metastasis is extremely limited, remains largely explorative, 
and is currently advised only for selected clinical situations  [  72  ] . 

  Fig. 9.3    Modern linear accelerator (linac) (Varian Systems, Palo Alto, CA)       
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    2.1   Whole Brain Radiotherapy (WBRT) 

 In August, 1973, a landmark Radiation Therapy Oncology (RTOG) trial enrolled its 
 fi nal patient on what would set the standard of care for the treatment of multiple 
brain metastases. That standard of WBRT has remained unchanged in the nearly 
40 years since  [  73  ] . In those days, intracranial imaging with CT scans or MRIs were 
non-existant, and chemotherapy treatments for cancer were in their infancy. The 
study treated patients with symptomatic brain lesions with WBRT and randomized 
subjects to multiple fractionation schemes. The results demonstrated that patients 
who were treated with a large single fraction size of 10 Gy had a much poorer 
outcome, but otherwise there was no statistically signi fi cant difference between 
fractionation schemes that took between 1 and 4 weeks of treatment. Given the very 
limited lifespan of patients with brain metastases at the time, the investigators con-
cluded that the most ef fi cacious regimen in terms of economic cost, inconvenience 
to the patient, and bene fi t of therapy was a fractionation scheme of 3 Gy × 10 fractions. 
The addition of corticosteroids to WBRT was found to help improve short-term 
symptomatic control. Although long-term symptomatic control was achieved by 
WBRT, overall survival was not improved. 

 A follow up trial to evaluate the ef fi cacy of still shorter time-dose fractionation 
schemes was initiated in November 1973 and closed in February 1976  [  74  ] . The 
methods of diagnosis, randomization and follow-up assessment were essentially the 
same as for the  fi rst study. Three treatment options (arms) were utilized with 902 
evaluable patients. The initial neurologic function status, general performance 

  Fig. 9.4    Helical tomotherapy unit (TomoTherapy HiArt, Accuray, Sunnyvale, CA)       
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status and ambulatory status were implicated as prognosticators of response. 
This study demonstrated that WBRT improved overall neurologic function in 
approximately 50% of patients and improvement of speci fi c neurologic symptoms 
was as high as 90%. Patients who presented with initial higher neurologic func-
tional status and who were ambulatory at the time of WBRT had higher response 
rates and more rapid improvements. Treatment schedule and primary site of disease 
had no in fl uence on response in these studies. Administration of steroids during 
irradiation resulted in slightly faster improvement for patients with neurologic 
de fi cit, however, after 3-4 weeks of steroid treatment, response to WBRT was no 
longer dependent on steroid administration. In terms of survival, ambulatory patients 
survived longer (21 weeks) than did non-ambulatory patients, and breast cancer 
patients as a group survived longer than did lung cancer patients. For all schedules, 
75-80% of remaining life was spent in either an improved or stable neurologic state, 
thus, shorter time-dose fractionation schedules than 50 Gy delivered in 4 weeks 
were preferred. Importantly, the intent of these studies was to establish guidelines 
for whole brain radiation as palliative therapy, since at the time, there was no expec-
tation of cure. With the advent of modern improved systemic therapies, the brain 
increasingly may serve as a sanctuary site in a patient with controlled extracranial 
disease. Subsequently, selection of fraction size and total dose for WBRT has 
depended mostly on patient comorbidities and prognosis  [  75  ] . 

 Patients who receive WBRT usually experience mild acute toxicities, such as 
transient worsening of neurologic symptoms prior to resolution, otitis, alopecia, skin 
reaction, headache, mild fatigue, and possibly slight nausea or vomiting. Late-term 
side effects such as decreased concentration and short-term memory loss are not 
expected to appear in the majority of patients with a poor prognosis, and therefore, 
short survival times. These neurocognitive sequelae are usually subtle, may take 
months to years to manifest, and occur in varying degrees. The most feared neuro-
logic complication is radiation-associated dementia. Thankfully, modern planning 
WBRT techniques, radiation dose limits to 3 Gy per day or less, and the omission of 
radiosensitizers during WBRT whenever possible have decreased the severity of neu-
rocognitive sequelae. Current severe dementia rates from WBRT with modern tech-
niques and conventional fractionation schemes, are <5% in long-term follow up of 
patients who have good overall disease control  [  76  ] . This is in contrast to a long-term 
study from the Memorial Sloan Kettering Cancer Center published in 1989 that 
treated patients with WBRT with curative intent and demonstrated an 11% risk of 
dementia in patient subjects at 1 year following treatment  [  25  ] . Since this informa-
tion is often misquoted to patients, it is important to note that the adverse neurocogni-
tive effects from this study were seen when doses “exceed 3 Gy per fraction”, and the 
11% rate of severe dementia was solely contained within a patient subgroup which 
exceeded 3 Gy per day. Many patients within the same subgroup also received con-
current systemic radiosensitizing chemotherapy such as adriamycin. Therefore, it is 
not a surprise these patients sustained adverse reactions attributed to radiotherapy. As 
a consequence, some institutions have adopted the 2.5 Gy fraction size as the stan-
dard protocol for patients with a good prognosis. Additional investigations have 
introduced the concept of multifactorial cause for the dementia (comorbidities, 
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 paraneoplastic syndromes, and chemotherapy) and some studies have found no 
objective evidence of decline in mental status after radiotherapy  [  77,   78  ] . Nevertheless, 
despite current data, the stigma of neurocognitive toxicity remains. 

 The decision as to optimal timing of WBRT in asymptomatic patients is cur-
rently an area of signi fi cant controversy. The overriding rationale rests on the 
assumption that a delay in WBRT translates to a delay in any untoward neurocogni-
tive effects. Despite the fact that the neurocognitive effects are poorly understood 
and appear to impact a small minority of patients, multiple studies suggest that 
uncontrolled tumor produces far worse consequences for neurocognition, and ulti-
mately, quality of life  [  22,   79–  81  ] . Another possible negative consequence for 
delaying WBRT in patients who are at high risk of harboring micrometastatic dis-
ease, is that when WBRT is eventually given, it is less likely to be fully effective. 
Once lesions are big enough to image on MRI, it is unlikely that radiation alone at 
doses and fractionation that are amenable to normal brain tissue will be adequate to 
eradicate disease. In other words, the potential cost of withholding WBRT translates 
into higher intracranial relapse rates  [  82  ] . Current investigations into radiation miti-
gators, as well as techniques for sparing the hippocampus during WBRT are under 
current investigation as a means to further decrease the adverse neurocognitive 
effects that occur in some patients. 

 Rarely, does a patient have brain metastasis as their only site of active disease. 
Therefore, it makes sense to segregate those with brain-only disease and active 
extracranial disease in the analysis. Several studies have suggested that those with 
brain-only disease have the greatest bene fi t from an aggressive approach to include a 
combination of WBRT and SRS boost  [  83,   84  ] . Recursive partitioning analysis (RPA) 
from brain metastasis patients enrolled in RTOG trials from 1979 to 1993 were cate-
gorized according to pre-treatment and treatment-related variables. Class I patients 
were de fi ned as having a Karnovsky performance status (KPS) score >70, age <65, 
and controlled extracranial primary tumor. Class I patients were noted to have a 
median survival of 7.1 months. Class II patients were de fi ned as having a KPS <70, an 
age > 65,  or  an uncontrolled primary tumor. Class II patients had a median survival 
time of 4.2 months. Class III patients were de fi ned as having a KPS <70, age >65  and  
uncontrolled primary tumor. Class III patient demonstrated the poorest prognosis, 
with a median survival time of only 2.3 months. Traditionally, Class I RPA patients 
have been treated most aggressively with surgical resection or SRS with or without 
WBRT. In addition to patient prognosis, it is important to note that the volume of 
disease or numbers of metastases may also dictate appropriate therapy. 

 Regardless of RPA class, patients with multiple brain metastases have tradition-
ally received WBRT alone  [  85,   86  ]  with the goal of limiting tumor progression, and 
in the most poorly performing patients, to limit the use of corticosteroids which 
have multiple unwanted side effects. Patients with 2–3 lesions in Class I or II may 
also be considered for multiple modalities including surgery with or without WBRT. 
Several retrospective and randomized studies have shown that surgery added to 
WBRT confers both survival and local control advantage in select patients present-
ing with a limited brain metastasis  [  85,   87  ] . When comparing surgery alone to sur-
gery combined with WBRT, the addition of WBRT did not demonstrate an 
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improvement in survival, however, patients in the radiotherapy arm experienced a 
decrease in local recurrence. Furthermore, the addition of WBRT markedly 
decreased the incidence of local recurrence (46% versus 10%), distant brain recur-
rence (37% versus 14%), and death from a neurologic cause (44% versus 14%). 
This has led some to recommend that surgery without WBRT is advised only for 
patients with a particular risk of radiation-induced dementia, or for patients with 
histologies deemed “radioresistant”  [  82,   88  ] . 

 To answer the question of when the addition of SRS boost is most bene fi cial fol-
lowing WBRT was the goal of the prospective randomized study RTOG 95–08  [  84  ] . 
This trial included 331 patients randomized to receive WBRT (37.5 Gy in 15 frac-
tions) versus WBRT plus SRS boost. All histologies were eligible, with patients 
strati fi ed according to number of metastases. SRS dose varied according to guide-
lines established by a previous Phase II study, RTOG 90–05, which found that the 
dose limiting toxicity for lesions up to 2 cm to be 24 Gy as a single dose, lesions 
2–3 cm at a limit of 18 Gy as a single dose, and for lesions >3 cm up to 15 Gy as a 
single dose. Patients who received the addition of SRS boost had a signi fi cantly 
improved rate of stability or improvement in performance status at 6 months (27% 
vs. 43%), and a slightly improved median survival from 4.9 vs. 6.5 months. In 
patients with single brain metastasis, and meeting the criteria for RPA class I, 
median survivals were extended to 11.5 months with the addition of SRS boost. 
1 year relapse rate of 18% was noted with SRS vs. 29% without. Therefore, 
WBRT + SRS may be considered alternative to craniotomy. Subgroup analysis sug-
gested a potential for bene fi t in patients with up to three brain metastasis, especially 
those patients with minimal extracranial disease, younger age and lung cancer 
histology. 

    2.1.1   Prophylactic Cranial Irradiation 

 The use of WBRT based on a high likelihood of the presence of micrometastatic 
disease within the brain, but without radiographic evidence of metastasis, is termed 
prophylactic cranial irradiation (PCI). The use of PCI has been most extensively 
studied as a preventative measure in the treatment of small-cell and non-small cell 
lung cancers. In a trial comparing PCI versus observation in small-cell lung cancer 
to patients with extensive stage disease who had a favorable response to chemo-
therapy, PCI was found to reduce the incidence of symptomatic brain metastases 
and prolong disease-free and overall survival  [  89  ] . The cumulative risk of brain 
metastases within 1 year was 14.6% in the irradiation group versus 40.4% in the 
control group. The 1-year survival rate was 27.1% in the PCI group and 13.3% in 
the control group. Although PCI did produce some side effects, it was not found to 
produce a clinically signi fi cant effect on global health status. Similarly, in non-small 
cell lung cancer, a randomized trial of PCI versus observation in patients who had 
responded favorably to treatment of their primary disease yielded similar results. 
PCI in this study was delivered to 30 Gy in 15 fractions, with a primary end point of 
overall survival. Patients in the observation arm were 2.52 times more likely to develop 
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brain metastases than those in the PCI arm  [  90  ] . However, unlike its small-cell lung 
cancer counterpart, there was no difference in overall survival in this trial. 

 Therefore, if PCI reduces the incidence of brain metastases, possibly leading to 
improved overall survival, what dose of PCI is ideal to combat micrometastatic 
disease? Doses used in PCI are typically less than that used in the treatment of gross 
disease, at 2.0–2.5 Gy instead of 3.0 Gy per fraction. Based on  fi rst radiation 
principles, more durable control of disease can be obtained with a limited radiation 
dose if less disease is present at the time of treatment. Accordingly, a randomized 
clinical trial compared the effect of standard versus higher PCI doses on the inci-
dence of brain metastases in patients with small cell lung cancer. 720 patients with 
limited-stage small-cell lung cancer in complete remission after chemotherapy 
and thoracic radiotherapy were randomly assigned to a standard (25 Gy in 10 daily 
fractions of 2.5 Gy) or higher PCI total dose (36 Gy) delivered using either conven-
tional (18 daily fractions of 2 Gy) or accelerated hyperfractionated (24 fractions in 
16 days with two daily sessions of 1.5 Gy separated by a minimum interval of 6 h) 
radiotherapy. The primary endpoint was the incidence of brain metastases at 2 years. 
There was no signi fi cant difference in the 2-year incidence of brain metastases 
between the standard PCI dose group and the higher-dose group, at 29% and 23%, 
respectively. Two-year overall survival was 42% in the standard-dose group and 
37% in the higher-dose group. The study concluded that in patients with good local 
control of systemic disease, a signi fi cant reduction in the total incidence of brain 
metastases was observed after higher-dose PCI, but with a trend toward an adverse 
impact on mortality. These data suggest that 25 Gy should be considered the optimal 
PCI dose in limited-stage small-cell lung cancer  [  91  ] . 

 When WBRT is utilized in a scenario without proven metastases, the risk to 
bene fi t ratio is reevaluated and minimization of normal tissue toxicity becomes a 
higher priority. Therefore, much attention has been paid to the neurocognitive 
effects in this particular patient population who receive PCI. Some investigations 
have demonstrated that many patients undergoing PCI have neurocognitive 
de fi ciencies at baseline, and the addition of PCI does not result in additional de fi cits 
 [  92  ] . In an evaluation of neurocognitive functions and quality of life assessments in 
patients with non-small cell lung cancer who receive either PCI or observation, 
there were no statistically signi fi cant differences at 1 year between the two groups 
in any component of several global assessments of neurocognition and quality of 
life. However, a test with greater sensitivity for subtle differences in neurocognitive 
parameters did note statistically signi fi cant declines in immediate recall and delayed 
recall in the PCI arm at 1 year. Nevertheless, PCI signi fi cantly decreased the risk of 
brain metastasis in the group that did receive PCI  [  93  ] . 

 When neurocognitive function and quality of life assessments were performed in 
patients with small cell lung cancer who received PCI at a standard dose of 25 Gy 
in 10 daily fractions versus a higher PCI dose at 36 Gy, the data revealed there was 
no signi fi cant differences between the two groups in 17 selected items assessing 
Quality of Life (QOL) and neurological and cognitive functions  [  94  ] . However, a 
mild deterioration across time in communication de fi cit, weakness of legs, intel-
lectual de fi cit and memory were noted in both patient groups. Again, there were some 
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mild adverse effects of PCI, which were outweighed by the bene fi t of PCI on overall 
survival and delayed development of brain metastases in patients with small cell 
lung cancer. 

 It is possible that future advances in imaging and/or development of biomarkers 
may reveal the presence of micrometastases at earlier and earlier stages. This may 
open up the investigation of potential use of PCI in other patients at high risk of 
developing CNS metastases. Currently PCI is actively utilized in the setting of lung 
cancer, but may prove bene fi cial in preventing brain metastases in other primary 
disease sites as well.   

    2.2   Stereotactic Radiation 

 Stereotactic radiation is a procedure designed to deliver a highly conformal dose of 
radiation to a small volume. Multiple converging static  fi elds or arcs centered on a 
single isocenter are used to generate the high dose region. These techniques utilize 
multiple beams spread in a large solid angle to minimize entrance dose and volume 
of normal tissue irradiated. The term “stereotactic” as it pertains to radiotherapy 
implies the use of highly precise localization techniques and treatment planning in 
three-dimensional space with a highly conformal radiation plan and rapid dose fall-
off outside of the target margin, typically through the use of an external three-
dimensional reference system capable of submillimeter precision. Stereotactic 
radiation is a technique which may be accomplished using multiple methods, includ-
ing Gamma Knife, robotic-assisted stereotactic radiotherapy, helical tomotherapy, 
as well as linear accelerator-based radiosurgery. Linear accelerators commonly used 
to provide standard external beam radiation treatments may be modi fi ed to allow for 
stereotactic radiation treatment with specialized adaptors which may be mounted to 
the head of the machine. Although there are minor advantages and disadvantages to 
each type of stereotactic equipment, stereotactic radiation may be best described by 
the analogy of different types of automobiles with different appearances and engines. 
They all do essentially the same job. 

 Stereotactic radiosurgery (SRS) implies the use of high-dose, single treatment 
regimens, where the goal is obliteration of all tissue within the target volume. There 
is no invasive surgery in the traditional sense where the skull is physically pene-
trated with surgical instruments. With SRS, the treatment is entirely with radiation. 
SRS is sometimes offered in place of traditional invasive surgery because many 
patients are poor medical candidates or have lesions in locations not amenable to 
resection. In addition, patients with multiple lesions have rarely been offered sur-
gery because the morbidity is often felt to be excessive  [  95  ] . As with excisional 
surgery, SRS is a focused treatment that would not be expected to address the risk 
of distant brain progression. Based on Patchell’s randomized data, WBRT would be 
expected to decrease the risk of distant brain progression  [  85  ] . This study demon-
strated a surgery bene fi t in survival, local recurrence, time to recurrence, time to 
neurologic death, and QOL when given in conjunction with WBRT in a favorable 
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subset of patients with a single brain metastasis at a median follow up of 40 weeks. 
The use of SRS was then extrapolated from these data as a possible substitute for 
surgical resection. Metastases are ideal targets for SRS because most lesions are 
small, pseudospherical and well demarcated from the surrounding CNS tissue. 
Rates of local control in large series of SRS treatment for brain metastases have 
averaged 80-90%  [  96  ] . Although there are no randomized trials directly comparing 
SRS to surgery, the preponderance of retrospective data supports an equivalence of 
modalities for small, single lesions. For example, a retrospective, matched comparison 
analysis of 108 patients concluded that survival for patients with a single metastasis 
was similar whether they received SRS alone or surgery and WBRT  [  97  ] . However, 
these studies are limited by extremely short-term follow up in the range of 
6 months–2 years. In a recent retrospective study of stereotactic radiosurgery treat-
ment failures, a rare occurence at a rate of 1.2%, concluded that radionecrosis and 
radiation resistance were the primary risk factors  [  98  ] . 

 The goal of radiosurgery is to provide an area of small volume destruction, 
resulting in the radiobiological inactivation of the ability of a tumor cell to divide 
and multiply. Preservation of the surrounding normal brain is achieved by the very 
sharp fall-off of the radiation dose gradient and can reduce the risk of complica-
tions to normal brain, especially in contrast to surgical extirpation. For malignant 
tumors, radiosurgery used in conjunction with fractionated radiation therapy may 
take advantage of the single fraction destructive effects of radiosurgery followed or 
preceded by conventional fractionated radiation therapy. Radiosurgery intentionally 
excludes normal tissue within its target volume, and by de fi nition, is a poor 
technique choice compared to conventional planning methods in clinical situations 
when coverage of microscopic disease is necessary for improved outcome. In the 
United States, the vast majority of centers provide SRS based on the multidisci-
plinary input of neurosurgeons, radiation oncologists and medical physicists. The 
team provides both the necessary experience as well as the different perspectives 
that facilitate safe intervention and effective outcomes. 

 Radiobiological studies have suggested that it is necessary to have doses in 
excess of 15 Gy in a single fraction to achieve the collapse of vasculature that is the 
hallmark of SRS  [  10  ] . Although stereotactic radiosurgery is a competing modality 
to surgical resection for small brain lesions, there are size and dose limits. As men-
tioned in the previous section, RTOG 90–05  [  99  ]  established the mean tolerated 
doses of SRS after WBRT to a median dose of 30 Gy. Dose recommendations are a 
function of size, up to a maximum diameter of 3–4 cm. 

 The therapeutic effect of stereotactic radiosurgery is related primarily to geo-
graphic accuracy and rapid dose fall-off outside the tumor volume rather than 
exploiting the differential ability of normal and tumor tissue to repair DNA damage 
as seen with large  fi eld, conventionally fractionated radiotherapy. As a consequence, 
the immobilization systems used in many stereotactic radiosurgery techniques 
consist of a stereotactic frame that is bolted to the patient’s head prior to the target-
localization procedure. The placement is often uncomfortable for the patient, 
requiring local anesthesia, and is therefore only used for single-fraction treatments. 
Fiducial markers for three-dimensional target localization and image correlation are 
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present on a variety of attachments that are rigidly  fi xed to the frame. The stereotactic 
frame, which remains in place from the beginning of the localization procedure 
until the treatment is completed, is  fi xed to the treatment couch in a reproducible 
fashion during the treatment to facilitate accurate treatment delivery. 

 Corticosteroids are commonly given in conjunction with SRS treatment to 
decrease the probability of complications due to acute tumor swelling. The gross 
tumor volumes are de fi ned by the contrast enhanced tumor on a pre-treatment plan-
ning MRI brain scan, with the patient in the treatment position (Fig.  9.5 ). The maxi-
mal cross-sectional diameter is typically < 3.0 cm. The dose should be prescribed to 
the highest isodose line encompassing the gross tumor volume, which can range 
from 50% to 80% of the maximum dose. Prescription doses for metastases are gen-
erally based on tumor size as per RTOG 90–05. Dose conformity, also considered 
as the ratio of the prescription isodose volume to the target volume, should be 
between 1.0 and 2.0. For lesions less than 5 mm in size, a ratio up to 3.0 is generally 
acceptable. The treatment parameters should be modi fi ed to optimize the  fi t of the 
prescription volume to the target volume while minimizing dose to critical structures. 

  Fig. 9.5    MRI images of a 60 year-old male with a single brain metastasis in the right temporal 
lobe from a non-small cell lung cancer primary. ( a ) T1-post gadolinium contrast axial image. ( b ) 
FLAIR axial image. ( c ) T1-post gadolinium contrast sagittal image. ( d ) FLAIR sagittal image       
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Common institutional constrains suggest that the dose to the optic chiasm and optic 
nerves should be less than 8 Gy to any point in the structure. Dose to the brainstem 
should be kept less than 12 Gy to any point (Fig.  9.6 ). Some doses do fall outside 
of the treatment  fi eld, and when multiple lesions are treated, the integral dose to 
the entire brain can be substantial, and not unlike WBRT in its radiobiological 
equivalent. Some radiation dose may be deposited several centimeters outside of the 
radiation beam due to lateral electronic disequilibrium [ 100 ], and may occur in 
radiosurgery techniques due to the outscatter of electrons.   

 When is SRS alone without WBRT of bene fi t? Can WBRT be eliminated for 
some patients with brain metastasis? These are currently questions which raise a 
signi fi cant amount of controversy and are areas of active investigation. Results from 
retrospective analysis suggest an increased likelihood of relapse but not necessarily 
survival with the use of SRS alone  [  101  ] . The argument for withholding WBRT is 

  Fig. 9.6    Stereotactic radiosurgery boost following WBRT to 30 Gy to a dose of 24 Gy (2,400 cGy). 
( a ) The treatment plan consists of four arcs with 6 MV photons, con fi gured by XKnifeRT TM  4.0.1 
software (Integra Radionics, Burlington, MA). ( b ) Dose is prescribed to the 87% isodose line as 
24 Gy delivered in a single fraction. Please note that the prescription isodose is highly conformal 
to the lesion, however, there is still a signi fi cant volume of normal brain, which does receive a 
signi fi cant radiation dose. ( c ) Isodose lines and DVH (dose-volume histogram) of the treated 
metastasis showing sharp dose fall off around the target       
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based on the perception of late neurotoxicity from retrospective data utilizing 
unconventional fractionation schemes without sensitive neurocognitive testing  [  25  ] . 
Given the consistent evidence derived from the surgical and SRS literature support-
ing a clear increase in the rate of intracranial recurrences when WBRT is withheld 
 [  82,   101  ] , and the strong association of intracranial recurrences with a detriment in 
neurocognitive function  [  22,   79  ] , the data suggest against the routine use of SRS 
alone. Sneed et al. reported a retrospective comparison of outcomes in 569 patients 
treated at 10 institutions either with WBRT + SRS or with SRS alone. They found no 
survival difference, but patients in the SRS alone group required salvage treatment 
more often (37% vs. 7%)  [  101  ] . Retrospective data have demonstrated that freedom 
from progression of brain metastases was signi fi cantly worse for patients who received 
SRS alone versus those who received SRS + WBRT, (28% vs. 69% at 1 year). 
However, an argument in favor of SRS alone comes from recent data that suggest that 
patients treated with SRS plus WBRT were at a greater risk of a signi fi cant decline 
in learning and memory function compared with the group that received SRS alone 
as measured by the Hopkins Verbal Learning Test-Revised at 4 months post-treatment 
 [  102  ] . Unfortunately, later timepoints were not evaluated, so there is no indication, as 
other studies have suggested  [  78  ] , that function recovers after 4 months. Again, most 
of these studies have short-term follow up, and it is unknown whether this control is 
applicable for someone who survives for many years with brain metastasis. 

 Nevertheless, the American College of Surgical Oncologists opened a phase III 
trial of radiosurgery randomized to observation or WBRT in patients with one to 
three cerebral metastases. The goal of the trial is to compare 6 month overall sur-
vival in patients with SRS alone vs. SRS and WBRT. At the time of this writing, 
results are still forthcoming. At the current time, it is unclear whether the addition 
of conventional WBRT to SRS results in either survival advantage or decreased risk 
of neurological death. It is possible that even if there is no survival advantage to 
WBRT, quality of life may be improved and treatment may be cost effective, due to 
avoiding the psychological distress of brain recurrence and the future need for sub-
sequent salvage therapy. On the other hand, the potential side effects of WBRT may 
outweigh the potential bene fi ts. 

 However, SRS isn’t without its own set of side effects  [  103  ] . When SRS is used 
in de fi nitive therapy for meningiomas, the patient is expected to live to many years. 
In long-term follow up of these patients, 13% experienced treatment-related com-
plications at a median follow up of only 5 years. Complications included cranial 
nerve de fi cits, symptomatic parenchymal changes, carotid artery stenosis, and 
symptomatic cyst formation. 

 While stereotactic radiosurgery is a single “fraction” treatment, stereotactic 
radiotherapy (SRT or fSRT) connotes a fractionated approach where a stereotactic 
planning technique is utilized using rigid immobilization, but the dose is divided 
into multiple treatment sessions. Since the bolted system is impractical for fraction-
ated treatments, relocatable  fi xation systems have been developed (Fig.  9.1b ). Thus, 
use of SRT combines the bene fi ts of the two approaches. Stereotactic radiotherapy 
techniques yield the precision of stereotaxy within 1–2 mm, as well as allowing for 
normal structures to repair sublethal damage. For example, if a patient has a large 
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metastasis, greater than 3–4 cm that is not amenable to surgical resection, a regimen 
of fractionated stereotactic radiotherapy may be effective. Cyberknife, or robotic-
assisted stereotactic radiation, is essentially an SRT planning technique, using 
hypofractionated radiotherapy typically delivered over  fi ve sessions. 

 A note of caution about the potential indiscriminate use of radiosurgery is that 
the central nervous system is the most unforgiving organ in terms of late radiation 
effects. In general radiobiologic principles, hypofractionation typically leads to 
poorer tumor control, and more frequent and severe normal tissue complications 
compared to conventional fractionation schemes. It makes sense to encourage the 
investigation of radiosurgery as a boost following conventional fractionated radio-
therapy, or further explore bene fi ts of treatment with stereotactic radiotherapies in 
carefully selected patient populations.  

    2.3   Treatment of Spinal Metastases 

 Like brain metastases, the goal of most spinal metastasis treatments is to prevent 
neurological complications from tumor progression, with a lesser consideration of 
overall survival. Spinal metastases may present as leptomeningeal seeding of the 
thecal sac, or localized tumor extension causing compression of the nerves or cord. 
Spine tumors are frequently symptomatic with associated pain or neurologic dys-
function. Conformal radiotherapy is an option offering palliation to the majority of 
patients  [  104  ] . However, the ability to deliver doses that can effectively control 
gross tumor with this approach is limited by spinal cord tolerance. As a result, those 
patients who go on to develop symptomatic progression within their previous radia-
tion  fi eld are offered surgery to avoid the potential complications associated with 
re-irradiation. For patients with localized disease, stereotactic body radiotherapy 
(SBRT) can sometimes be considered as a non-invasive alternative to surgery. For 
patients with disseminated disease, treatment of the entire thecal sac, termed “cran-
iospinal radiation” may be required to prevent re-seeding of a treated area and to 
provide adequate disease control (Fig.  9.7 ).  

 Spinal cord compression secondary to malignancy is seen in 5–10% of all cancer 
patients  [  105  ] . Symptoms of cord compression occur in a predictable pattern. Back 
pain is seen in almost all patients and is usually the  fi rst symptom, progressing to 
radicular pain, weakness, sensory de fi cits, eventual loss of bladder or bowel control, 
and then paralysis. A full neurologic assessment is required during the physical 
examination of patients in who cord compression or nerve entrapment is suspected. 
Imaging the extent of disease and identifying the involved vertebral levels may be 
achieved with a screening spine MRI. If no pathologic diagnosis of metastasis 
exists, consideration of biopsy is done prior to corticosteroid administration, since 
corticosteroids may obscure the accurate diagnosis of certain histologies such as 
lymphomas. Treatment options are then contemplated including decompressive sur-
gery and radiotherapy. Radiotherapy is indicated for most patients, whether alone or 
after surgery to improve local control  [  106  ] . Treatment  fi elds traditionally include 
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the spinal lesion with the addition of two vertebral bodies above and below the 
lesion for margin. Consideration may be given to decreasing the margin when larger 
 fi elds would result in signi fi cant toxicity. Fraction size for standard therapy depends 
on  fi eld size, anatomic location and patient prognosis and comorbidities. There are 
a wide variety of acceptable fraction sizes, ranging from 8 Gy delivered in one dose 
to up to 40 Gy delivered in 20 fractions. However, 30 Gy in 10 fractions or 37.5 Gy 
delivered in 15 fractions is used most commonly  [  107  ] . Signi fi cant reduction of 
back pain after radiation occurs in 80–90% of patients. The return of neurologic 
function depends on pretreatment function, duration of motor de fi cits, and tumor 
cell type. In general, full neurologic function is obtained for >90% of patients who 
are ambulatory at the time of spinal cord compression presentation and treatment. 
In contrast, only 28% of patients presenting with paresis, and 21% of patients with 
paraplegia regain ambulatory capacity after treatment  [  108  ] . 

 SBRT doses delivered to the tumor (10–16 Gy in one fraction; 20–30 Gy in 5 
fractions) allow for keeping dose to the cord within conventional fraction sizes. This 
approach appears to offer durable palliation in the majority of patients (84–90%) 
without an apparent neurologic toxicity  [  109,   110  ] . SBRT appears to be a safe and 
effective palliative treatment for spinal and paraspinal metastasis, although further 
study is necessary to establish the long-term safety and ef fi cacy of this approach, 

  Fig. 9.7    Craniospinal irradiation plan for a 51-year old female with drop metastases and leptom-
eningeal seeding from a metastatic carcinoma, producing pain, gait ataxia and weakness of bilat-
eral lower extremities. A cranial  fi eld (not shown) was planned similar to that displayed in Fig.  9.2 . 
The entirety of the thecal sac is covered in the spinal  fi eld, dosed to 36 Gy with 6 MV photons       
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as well as to better de fi ne the dose constraints of the cord. For patients presenting 
with mild-moderate cord compression, SBRT may be used for pain relief and 
improved neurologic status  [  111  ] . Patients with frank cord compression are poor 
candidates for SBRT because the in fl ammation produced by the hypofractionated 
radiotherapy may produce more signi fi cant compressive symptoms, possibly result-
ing in permanent paralysis.  

    2.4   Economic Considerations 

 Treatment of CNS metastases carries a signi fi cant  fi nancial cost, which must be 
weighed against potential bene fi ts in potential survival and functional indepen-
dence. One study in 1997 suggested that the average cost per week of survival at that 
time was $310 for whole brain radiotherapy alone, $524 for resection plus radiation, 
and $270 for radiosurgery plus radiation  [  112  ] . Therefore for selected patients, 
aggressive strategies such as resection or radiosurgery are warranted, as they 
result in improved median survival and functional independence. However, radio-
surgery appeared to be the more cost-effective procedure as compared to surgical 
resection. 

 A recent study analyzed the cost-effectiveness of SRS followed by observation 
versus SRS in addition to WBRT in patients with 1–3 cerebral metastases, in terms 
of actual life years saved, quality-adjusted life years, and by an incremental cost-
effectiveness ratio. Compared with SRS and whole brain radiation therapy, SRS and 
observation had a higher average cost at $74,000 versus $119,000, respectively  [  113  ] . 
Therefore, patient selection is key to improving the economic cost to bene fi t ratio. As 
treatments for CNS metastases improve, and patients have extended overall survival 
times, aggressive therapies will render themselves a better economic value.   

    3   Future Directions 

 It is no exaggeration to say there is much to be done to improve the lot of patients 
with CNS metastases. Currently enrolling trials include novel methods to spare hip-
pocampus in the radiation therapy plan and delivery, as well as evaluation of temo-
zolomide and erlotinib during WBRT and SRS treatments (  www.clinicaltrials.gov    ). 
However, improving radiotherapy will have challenge the notion that all tumor types 
respond to radiation therapy the same. Future directions should aim to distinguish 
and devise therapies that are intended to be palliative versus those where eradication 
of disease is the goal. At present, whether a patient has a brain metastasis from 
breast cancer versus lung cancer, they receive nearly the same treatment options, 
dosing and fractionation. Further studies need to be done to optimize therapy for 
certain histologies and patient groups with CNS metastases. Improvements in 

http://www.clinicaltrials.gov
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radiographic visualization of the physical boundaries of tumor extension and function 
as well as critical normal structures will greatly enhance current radiotherapy tech-
niques and effectiveness. 

 Molecular investigations into serum biomarkers, genetic signatures to stratify 
patients at risk of radiation toxicity, as well as the development of next-generation 
normal tissue radioprotectors and tumor-speci fi c radiosensitizers are currently being 
investigated. Techniques borrowed from other disciplines might include the future 
use of neuronal stem cell rescue, as well as manipulation of pathways to overcome 
molecular mechanisms of radiation resistance. 

 However, with improved therapies must also come the recognition of needed 
improvements in QOF parameters. Lessons extrapolated from cognitive rehabilita-
tion in traumatic brain injury patients, improved recognition of depression and its 
treatment, as well as aggressive involvement of palliative care specialists could do 
as much to improve survival as the radiation and chemotherapies themselves.  

    4   Conclusions 

 There is a love affair with new medical technologies both on the part of physicians 
and patients. New technologies are easily sellable to patients on the incorrect 
assumption that new technology automatically equals improved outcomes and fewer 
side effects. It is no wonder that a sense of pessimism prejudices the  fi eld, that 
research has not kept pace, and that the process of CNS metastasis is an under-
funded disease entity. The discussion presented here has put forth that we have 
much more work to do in understanding the basic mechanisms of how radiation 
damages and ablates CNS metastases, which pharmacologic agents might prove 
bene fi cial, how normal tissue may be protected from both a technical, radiobiologi-
cal and pharmaceutical perspective, and what treatments are most effective for indi-
vidual disease-related metastatic processes. A “one size  fi ts all” approach needs to 
be discarded, and as we shift our focus from the use of radiotherapy as a palliative 
measure to that of a de fi nitive one, we have to tailor the therapy to the tumor itself, 
the biological background of the individual, and more effectively integrate the use 
of radiation as a localized measure into the overall systemic treatment plan of the 
individual patient. Patients need not assume what is good for their neighbor will be 
in their own best interests or produce the same results. 

 Advancements may be achievable with quality trial design and speci fi c trials dedi-
cated to particular tumor types. The other side of the coin requires patient trial par-
ticipation to move the  fi eld forward. Because radiation therapy is, by de fi nition, a 
local treatment, it is no surprise that using a local therapy to control a systemic pro-
cess has not produced astounding increases in overall survival. However, more than 
50 years of experience has shown radiation to be a fantastically effective tool for 
local control, and it will continue to be an essential ingredient in the future recipe of 
how we cure individuals with advanced metastatic cancer and brain metastases.      
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  Abstract   Neoplastic meningitis is a common complication in cancer with a median 
survival on the order of weeks to months. Although there is no current standard of 
care, management of neoplastic meningitis typically requires a multidisciplinary 
approach that may include surgery, radiation and chemotherapy. Results from retro-
spective analyses have suggested that intrathecal chemotherapy improves patient 
outcomes in neoplastic meningitis. Chemotherapeutic agents commonly adminis-
tered into the cerebrospinal  fl uid include methotrexate, thiotepa, cytosine arabino-
side and liposomal cytarabine. Systemically administered agents are an alternative 
to intrathecal chemotherapy, and targeted agents are showing promise. Larger ran-
domized controlled studies are needed to determine the optimal treatment regimen 
for this devastating manifestation of cancer.      
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    1   Introduction 

 Neoplastic meningitis (NM, also referred to as leptomeningeal metastases and carci-
nomatous meningitis) is not an infrequent complication of cancer, occurring in up to 
8% of patients with solid tumors and up to 15% in patients with leukemia and lym-
phoma  [  1,   2  ] . The incidence is rising likely because of longer survival times and 
improved diagnostic techniques. Median survival is typically on the order of weeks 
to several months, despite therapy  [  1  ] . Management of NM requires a multidisci-
plinary approach that may include radiation, chemotherapy or surgery; the objective 
is palliation of symptoms and prolongation of survival. In this chapter, we review the 
epidemiology, pathogenesis, clinical presentation, and treatment approaches of NM.  

    2   Epidemiology 

 Approximately 1–8% of patients with cancer develop NM; the most frequent solid 
tumors to metastasize to the leptomeninges are lung, breast and melanoma  [  3,   4  ] . 
Although melanoma has the highest rate of metastasis to the leptomeninges (20% 
rate), breast cancer accounts for the majority of cases because of its higher incidence 
 [  3–  5  ] . Approximately 5–15% of patients with lymphoma and leukemia develop lep-
tomeningeal metastases. However, given the dif fi culties in diagnosing NM, the 
reported incidence of NM may be an underestimate of the actual incidence  [  6  ] .  

    3   Pathogenesis 

 The pathogenesis and molecular mechanisms that drive certain tumors to metasta-
size to the leptomeninges are poorly understood. In fi ltration of the cerebrospinal 
 fl uid (CSF) by cancer cells can occur by a variety of mechanisms: (a) direct exten-
sion of tumor from vertebral, subdural, epidural, parenchymal metastases into the 
meninges; (b) hematogenous spread from the arachnoid vessels; (c) migration of 
tumor along cranial or peripheral nerves, or perivascular spaces; and (d) de novo 
tumors arising within the meninges (melanoma, lymphoma, sarcoma, etc.). Once 
within the CSF, cancer cells can disseminate and deposit anywhere within the 
neuraxis, causing symptoms. Localized deposits can obstruct CSF  fl ow, leading to 
hydrocephalus  [  7  ] . Common sites of in fi ltration include the base of the brain, the 
Sylvian  fi ssures and the cauda equina  [  8  ] .  

    4   Clinical Presentation 

 In up to 75% of cases, NM occurs in the setting of progressive metastatic disease, 
but can occur as the initial presenting manifestation of cancer in 5–10% of patients, or 
during periods of remission  [  3,   5  ] . Common presenting symptoms include headaches, 
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change in mental status, confusion, seizures, weakness, neck or back pain and cranial 
nerve dysfunction  [  3,   4  ] . The speci fi c signs and symptoms depend on the site of 
leptomeningeal involvement. Symptoms of increased intracranial pressure occur in 
the setting of CSF obstruction. Meningeal signs occur secondary to tumor invasion 
and in fl ammation of the leptomeninges. Cranial nerve involvement results in more 
focal symptoms. The most common symptom of cranial nerve dysfunction is diplo-
pia, but optic neuropathy, trigeminal sensory or motor loss are also common  [  3,   4, 
  8  ] . Invasion of the spinal roots – the most common being the roots of the cauda 
equina – can result in radicular pain, paresis, and loss of bowel or bladder function. 
Multifocal disease within the neuraxis in a patient with a history of malignancy 
should always raise suspicion for NM.  

    5   Diagnosis 

 The diagnosis of NM can often be challenging and should always begin with a thor-
ough clinical history and comprehensive neurologic examination, followed by 
neuro-imaging of the entire neuroaxis and CSF examination. Other conditions that 
can mimic NM should be ruled out, and these include infection, ischemia, post-
radiation effects, metabolic disturbances, medication-related neurotoxicities, and 
hemorrhage. 

    5.1   Examination of the Cerebrospinal Fluid 

 If safe, examination of the CSF should be carried out in patients with suspected 
NM, both to con fi rm the diagnosis and to monitor response to treatment. CSF exam-
ination may reveal an elevated opening pressure, decreased glucose, elevated pro-
tein, and increased leukocytes. Positive cytology in the CSF is diagnostic of 
leptomeningeal carcinomatosis. However, the sensitivity of CSF cytology, particu-
larly after one lumbar puncture, is low, and up to 41% of patients may be cytologi-
cally negative with one lumbar puncture  [  9  ] . A second lumbar puncture can increase 
sensitivity to 80%. To minimize false negative results, large CSF volumes (>10 mL), 
repeat lumbar punctures, sampling from an area of known leptomeningeal disease, 
and immediate processing of the CSF specimen is recommended  [  10  ] . 

 Levels of glucose, protein and leukocytes vary depending on the location of the 
neuroaxis from which the CSF was drawn, even in the absence of CSF  fl ow obstruc-
tions  [  11  ] . Cell count and chemistries are frequently normal, even in the setting of 
positive cytology. In a series of 63 patients with cytologically con fi rmed leptomen-
ingeal metastases, 29% of lumbar punctures with positive cytology yielded normal 
cell counts  [  3  ] . In the presence of negative cytology and normal cell counts, elevated 
tumor markers within the CSF such as carcinoembryonic antigen (CEA), prostate 
speci fi c antigen (PSA), CA-125 and CA15-3 can support the diagnosis of NM; 
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however, given the low sensitivity of this test, low levels of biochemical markers in 
the CSF does not rule out the diagnosis  [  12–  16  ] . Other novel biochemical markers 
that have shown promise as diagnostic tests are angiogenesis-related markers includ-
ing vascular endothelial growth factor (VEGF) and urokinase-type plasminogen 
activator (uPA)  [  17  ] , but more evidence is needed to validate these results before 
they can be integrated into clinical practice. 

 A promising technique currently being investigated is  fl ow cytometry immuno-
phenotyping (FCI) of CSF samples. In a recent study of 78 patients with solid 
tumors and clinical symptoms suggestive of NM, cells expressing the epithelial cell 
antigen EpCAM and their DNA content were identi fi ed from CSF samples. The 
sensitivity and negative predictive value were higher for FCI when compared to 
cytology, and the negative predictive value and speci fi cities were similar  [  18  ] .  

    5.2   Imaging 

 Magnetic resonance imaging (MRI) with gadolinium is the imaging modality of 
choice in patients with symptoms suspicious for NM, as CT scans have a low sensi-
tivity in this setting  [  19  ] . The entire neuroaxis should be examined (brain and spinal 
cord) given the potential for diffuse involvement of the CNS. T1-weighted images 
with and without gadolinium, and T2-weighted images should be obtained  [  20  ] . 
Leptomeningeal enhancement is visualized as a  fi ne signal intense layer following 
the gyri and sulci on MRI  [  20  ] . This is often most obvious in the posterior fossa as 
enhancement within the folia of the cerebellar hemispheres and vermis on coronal 
T1-post contrast views (Fig.  10.1 ). Other etiologies for leptomeningeal enhancement 

  Fig. 10.1    T1-weighted 
post-contrast coronal MRI 
showing prominent 
leptomeningeal enhancement 
within the bilateral cerebellum 
( arrows ) and vermis 
( arrowhead )       
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include in fl ammation, infection, metabolic disturbances, subarachnoid hemorrhage, 
increased CSF pressure, trauma, and local ischemia  [  20  ] . Thus, the imaging results 
must be considered in combination with the clinical presentation and other labora-
tory abnormalities, particularly CSF results. Other MRI  fi ndings also include cra-
nial nerve enhancement, communicating hydrocephalus, or enhancing intradural 
extramedullary nodules frequently in the cauda equina. Optimally, an MRI should 
be obtained prior to a lumbar puncture, as the lumbar puncture itself can cause 
dural-arachnoidal enhancement  [  21  ] . Radio-isotope CSF- fl ow studies can be useful 
to evaluate the patency of CSF pathways. CSF  fl ow abnormalities have been docu-
mented in up to 70% of patients with NM and are associated with worse prognosis 
and increased treatment-related neurotoxicities  [  7,   22,   23  ] . Restoration of  fl ow 
using involved- fi eld radiation can prolong survival and decrease the rate of treat-
ment-related morbidities  [  22  ] . Uncorrected hydrocephalus is a contraindication to 
instillation of intrathecal chemotherapy.    

    6   Prognosis 

 Untreated, median survival is 4–6 weeks, with neurologic deterioration as the cause 
of death in most patients  [  4  ] . In some patients, survival can be extended to 4–6 months 
with treatment  [  24  ] . Poor prognostic factors include bulky leptomeningeal metasta-
ses, extensive systemic disease, obstruction of CSF, poor Karnofsky performance 
status, multiple  fi xed neurologic de fi cits, signi fi cant cranial nerve palsies and pres-
ence of encephalopathy  [  1,   5,   7,   22,   25  ] . In a multivariate analysis of 70 patients 
with leptomeningeal carcinomatosis, an elevated glucose ( ³ 2.7 mmol/L), good per-
formance status (Radiation Therapy Oncology Group score  £ 2), infratentorial 
symptoms at onset, and intrathecal treatment were associated with improved overall 
survival and better response to treatment  [  24  ] . Positive CSF cytology did not 
in fl uence survival in a retrospective series of 84 patients divided into 2 cohorts with 
or without positive CSF cytology matched for known prognostic variables  [  5  ] .  

    7   Treatment 

 The goals of treatment in NM are to improve or stabilize neurologic symptoms and 
prolong survival. Treatment typically requires a multidisciplinary approach of surgery, 
radiation, and chemotherapy. Given the heterogeneity in this patient population and 
the paucity of randomized controlled trials, there is no standard treatment approach 
for NM. Unfortunately, current treatments have high rates of treatment-related tox-
icities and ef fi cacy is limited. More than half of patients progress several weeks 
after initiation of treatment  [  24  ] ; resistance to treatment is high, likely because this 
patient population is heavily pretreated, there are barriers to effective CNS drug 
delivery, and because of progressive systemic disease. Most systemically administered 
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chemotherapeutic agents have limited penetration into the CSF, with the exception 
of high-dose intravenous methotrexate, cytarabine and thiotepa. Nevertheless, certain 
patients do gain bene fi t, particularly in terms of quality of life, from an aggressive 
treatment approach. Early detection and treatment of NM can result in good pallia-
tion and local disease control  [  25,   26  ] . 

    7.1   Surgery 

 Surgery plays a role in the treatment of NM in two ways: (1) placement of a ven-
tricular reservoir for direct administration of therapy into the CSF and (2) relief of 
hydrocephalus using ventriculoperitoneal shunting. When compared to repeated 
lumbar punctures, drug delivery via a ventricular reservoir is more uniform and 
more comfortable for a patient  [  27  ] . Hydrocephalus is common in leptomeningeal 
carcinomatosis and is often present at diagnosis (Fig.  10.2 ). Hydrocephalus is 
important to recognize in patients with NM, not only because it increases risks of 
neurotoxicity from intrathecal chemotherapy, but also because patients can bene fi t 
palliatively from shunting for relief of headaches and other symptoms due to ele-
vated intracranial pressure (ICP) [  28  ] . Although there is theoretical concern about 
seeding the peritoneal cavity with cancer, in practice the risk appears to be very low 
 [  28,   29  ] . Most commonly, hydrocephalus and NM itself are managed by separate 
procedures. However, a shunt construct is available that allows for both CSF diver-
sion and injection of intrathecal drug, and a recent study suggests that this approach 
may be safe and effective in patients with NM. Lin et al.. employed a CSF reservoir-
on/off valve-ventriculoperitoneal shunt (RO-VPS) construct for the diversion of 

  Fig. 10.2    FLAIR MRI 
sequence demonstrating 
dilated ventricles with 
abnormal hyperintense signal 
in the periventricular white 
matter ( asterix ), consistent 
with acute hydrocephalus with 
transependymal  fl ow of CSF       
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CSF and injection of intrathecal agents in 24 patients with hydrocephalus and NM. 
Twenty patients experienced symptomatic relief and eighteen patients received 
intrathecal chemotherapy. Compared with demographically matched patients who 
only underwent CSF reservoir placement only, there was a survival bene fi t in the 
patients who underwent RO-VPS placement  [  29  ] . The safety pro fi le was excellent, 
with only one shunt failure, no infections and no severe intrathecal    chemotherapy-
related side effects reported. This was a promising preliminary study and cerebro-
spinal diversion should be considered in patients with NM and hydrocephalus.   

    7.2   Radiation Therapy 

 Radiation therapy is generally administered to patients with bulky metastatic depos-
its, as intrathecal chemotherapy has limited penetration into tumor  [  30  ] . Furthermore, 
radiation may help correct CSF  fl ow abnormalities that would otherwise hinder 
homogenous distribution of intrathecal chemotherapy  [  7  ] . Glantz et al. reported a 
survival bene fi t in patients with carcinomatous meningitis with CSF  fl ow blockage 
corrected by focal radiotherapy compared to those that did not have their blockage 
corrected  [  22  ] . Intrathecal administration of chemotherapy in the setting of 
signi fi cant  fl ow abnormalities, if uncorrected, can result in signi fi cant neurotoxicity, 
systemic toxicities, and treatment failures  [  22  ] . Universal addition of radiation ther-
apy to all patients with leptomeningeal metastasis has not been demonstrated to 
procure a survival bene fi t. Craniospinal radiation is generally felt to be too toxic for 
palliative bene fi t in the solid tumor NM patient population.  

    7.3   Intrathecal Chemotherapy 

 Results from retrospective analyses have suggested that intra-CSF chemotherapy 
may improve patient outcomes in NM. Chemotherapeutic agents commonly admin-
istered into the CSF include methotrexate, thiotepa, cytosine arabinoside and lipo-
somal cytarabine (Table  10.1 ). Methotrexate is a folate anti-metabolite with a half-life 
in the CSF of 4.5–8 h. Pharmacokinetic studies have demonstrated that intraventricu-
lar administration of methotrexate through an Ommaya results in a more reliable 
CSF distribution when compared to lumbar administration  [  27  ] . However, no studies 
to date have demonstrated a survival bene fi t of the intraventricular route compared to 
the lumbar approach.  

 Cytarabine (Ara-C) is a pyrimidine nucleoside analog with a half-life of 3.4 h 
 [  26  ]  that has been used for the treatment of NM since the 1970s  [  35  ] . Liposomal 
cytarabine is a slow-release formation of ara-C that maintains cytotoxic concentra-
tions in the CSF for more than 2 weeks. A study of intrathecal DepoCyt vs ara-C in 
25 patients with lymphomatous neoplastic meningitis demonstrated superiority of 
DepoCyt over ara-C with a hazard ratio of 0.12 (0.02, 0.07) for progression-free 
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survival. The serious adverse event rate was high in both groups (86% in DepoCyt 
arm vs 77% in ara-C arm)  [  34  ] . In a randomized controlled trial of DepoCyt versus 
methotrexate in 61 patients with NM, response rates (26% vs 20%; p = 0.76) and 
median overall survival (105 days vs 78 days; p = 0.15) were similar between the 
two groups. However, the time to neurological progression was signi fi cantly 
increased in the DepoCyt group (58 versus 30 days; p = 0.007). The severity and 
frequency of treatment-related toxicities were similar between the two groups  [  32  ] . 
Given the less frequent administration of DepoCyt, DepoCyt may be considered as 
the intrathecal agent of choice in the treatment of NM. 

 Thiotepa is a potent alkylating ethyleneimine with a half-life of 3–5 min in the 
CSF  [  36  ] . In a randomized cooperative group study, 59 patients with NM from non-
leukemic malignancies received either intrathecal methotrexate or thiotepa. 
Radiation was administered for symptomatic or mass lesions. Systemic chemother-
apy was administered concomitantly. No patients had signi fi cant neurologic 
improvement with therapy. Median survival was similar in the two groups (15.9 for 
the methotrexate arm vs 14.1 weeks in the thiotepa arm). Though the rates of severe 
toxicities were similar in the two groups, neurologic complications and mucositis 
were more common in the methotrexate arm  [  25  ] . 

 The  fi rst randomized study of combination intrathecal chemotherapy, where 44 
patients were randomized to intrathecal methotrexate versus intrathecal methotrexate 
plus Ara-C, did not reveal a signi fi cant increase in response rate with the addition of 
Ara-C  [  33  ] . Median survival was poor in both groups (12 weeks in methotrexate arm 
vs 7 weeks in combination arm, p = 0.084)  [  33  ] . When the combination of intrathecal 
ara-C, methotrexate and thiotepa was administered to 22 patients, the toxicity pro fi le 
was unacceptable. Myelosuppression occurred in 77% of patients. No patients had a 
complete response, and median survival was 10 weeks  [  37  ] . 

 Other agents are currently being investigated for intrathecal administration. A 
pilot study demonstrated that intraventricular etoposide, a topoisomerase-II inhibitor 
administered daily for 5 days every 2–5 weeks was well-tolerated in patients with 
metastatic brain tumors that included leptomeningeal and parenchymal disease  [  38  ] . 
Topotecan can also be delivered intrathecally, and a phase II multicenter study of 62 
patients showed that response rates and tolerability with twice weekly injections 
were similar to those of other intrathecal agents  [  39  ] . Intrathecal bevacizumab was 
investigated in a rabbit model of NM and was well-tolerated  [  40  ] . Human trials are 
being designed to study this further. Intrathecal administration of radiolabelled anti-
bodies has also been studied. Though the reported toxicities have been minimal thus 
far, data demonstrating clinical responsiveness and ef fi cacy is sparse thus far  [  41  ] . 

 There have been several case reports that have demonstrated that intrathecal tras-
tuzumab is safe and may have activity in patients with leptomeningeal carcinomato-
sis from HER2+ breast cancer. Intrathecal trastuzumab is currently being investigated 
as monotherapy or in combination with methotrexate or cytarabine  [  42  ] . 

 Intrathecal therapy is not without its risks. The most common complication is a 
chemical aseptic meningitis which occurs in 20–40% of patients, characterized by 
symptoms of headaches, lethargy, fevers, nausea, vomiting, at times indistinguish-
able from acute bacterial meningitis. These symptoms usually resolve within 12–72 h, 
and respond to steroids, antipyretics and antiemetics  [  43  ] . Surgical complications 
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following ventricular reservoir placement include infection, equipment malfunction 
and hemorrhage  [  44  ] . For patients that survive more than 4 months, there is a risk of 
a delayed leukoencephalopathy in patients (Fig.  10.3 ), particularly in those have 
received combined chemotherapy and radiation  [  45  ] .   

    7.4   Systemic Chemotherapy 

 Given the risks of intrathecal chemotherapy and the lack of de fi nitive evidence for 
its bene fi ts, some clinicians prefer systemic therapy. Systemically-administered 
chemotherapies that achieve cytotoxic levels in the CSF include high-dose metho-
trexate, thiotepa and cytarabine. However, the timing and dosing of these chemo-
therapeutic agents may often be challenging, and may have signi fi cant toxicities 
when patients are on other chemotherapeutic regimens for their systemic disease or 
have received prior brain irradiation. 

 Prospective randomized studies directly comparing intrathecal therapy with systemic 
chemotherapies are lacking. In a small study of breast cancer patients with leptomenin-
geal metastases, 35 patients were randomized to intrathecal chemotherapy vs non- 
intrathecal treatment, with appropriate radiation and systemic therapy administered in 
both groups. Median time to progression was similar in the two groups (23 weeks vs 
24 weeks). There was no evidence of improved survival in the intrathecal group 
(18.3 weeks in intrathecal group vs 30.3 weeks in non- intrathecal group; P = 0.32). 
Neurologic toxicities were signi fi cantly higher in the intrathecal group (47% vs 6%; 
p = 0.0072). However, the results of this study must be carefully considered as there was 
an unequal distribution of prognostic variables between the two groups  [  31  ] . 

  Fig. 10.3    T2-weighted images of a patient before ( left ) and after ( right ) administration of several 
months of intrathecal methotrexate. In the image on the right, there is interval development of 
abnormal T2 hyperintense signal involving the bilateral subcortical and periventricular white mat-
ter, in a pattern consistent with treatment-related leukoencephalopathy       
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 The most common alternative to intrathecal chemotherapy is high-dose systemic 
methotrexate with leucovorin rescue; however, studies have yielded mixed results. 
A pharmacokinetic and toxicity study of 16 patients with NM from breast cancer, 
osteosarcoma or lung cancer, who received high-dose intravenous methotrexate 
demonstrated no objective antitumor response  [  46  ] . In contrast, in a study by Glantz 
et al.., 16 patients with solid tumor NM were treated with intravenous high-dose 
methotrexate and leucovorin rescue, and compared to a retrospective cohort of 15 
patients treated with intrathecal methotrexate. Cytotoxic levels of methotrexate 
were maintained for longer with intravenous dosing, and toxicities were minimal. 
Median survival was also signi fi cantly longer in the group that received systemic 
methotrexate (13.8 vs 2.3 months, P = 0.003)  [  47  ] . Though these data need to be 
veri fi ed prospectively, it is not unreasonable to treat NM from cancers that are meth-
otrexate-sensitive with systemic methotrexate  [  47  ] . 

 Several case reports have suggested that capecitabine, an oral prodrug of 
5- fl uorouracil, may have activity in leptomeningeal carcinomatosis from breast can-
cer and esophageal carcinoma  [  48–  50  ] . A case report of cisplatin and temozolomide 
administered in leptomeningeal carcinomatosis from an ethmoid-sinus intestinal 
type adenocarcinoma demonstrated a prolonged response and disease control  [  51  ] . 

 Tyrosine kinase inhibitors (TKI) may have ef fi cacy in leptomeningeal carcinoma-
tosis arising from EGFR-positive non-small cell ling cancer. In a retrospective study 
of patients with an EGFR mutation or clinical factors predicting sensitivity to an 
EGFR inhibitor (never smoker, prior response to a TKI), 11 patients were treated with 
erlotinib or ge fi tinib followed by erlotinib. Nine patients demonstrated an improve-
ment in ECOG performance status, with 6 patients surviving more than 6 months. 
Overall survival was not reached at the time of the publication  [  52  ] . Pulsatile admin-
istration of high-dose erlotinib (1,500 mg once weekly) was also demonstrated to be 
well-tolerated in a series of 9 patients with EGFR-mutant lung cancer diagnosed with 
leptomeningeal and/or parenchymal brain metastases while on conventional doses of 
erlotinib or other EGFR TKIs. A partial radiographic response was observed in 67% 
of patients, and stable disease in 11% of patients, with a median overall survival of 
12 months  [  53  ] . Though these results need to be validated in larger prospective stud-
ies, TKIs in select patient populations should be considered. 

 Unfortunately, much of the evidence supporting the use of systemic therapies in 
NM is based on retrospective series and small phase II trials. Larger randomized 
controlled studies are needed to determine the optimal drugs, and route of adminis-
tration in this setting.  

    7.5   Palliative Care 

 Aggressive supportive care should be incorporated into every treatment regimen. 
Patients with poor performance status (<60%) often are best treated with supportive 
care alone, as patients may not be able to tolerate other approaches. Symptom man-
agement with analgesics, antiemetics, anxiolytics, or antidepressants may be necessary. 
Corticosteroids play a role in the treatment of symptomatic vasogenic edema, and 
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can also alleviate radicular pain and headaches. Approximately 15% of patients 
with NM have seizures, thus adequate anticonvulsant therapy may be critical for 
maintaining a good quality of life in this patient population. Prophylactic anticon-
vulsants are usually not indicated. Radiation therapy may provide the best palliation 
when there are focal symptomatic metastatic deposits.   

    8   Conclusions 

 Neoplastic meningitis is a common complication in cancer, with a rising incidence, 
and poor prognosis. Given the relative paucity of randomized controlled studies in 
this area, there is no current standard of care. Management of NM typically requires 
a multidisciplinary approach that may include radiation, intrathecal chemotherapy 
or surgery; the goal is to alleviate or stabilize neurologic symptoms and prolong 
survival.      
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  Abstract   Quality of life (QOL) is a concept that involves an individual’s general 
sense of well-being and satisfaction, and may include concerns regarding physical 
ability and comfort, mental health and sense of autonomy, and social situation 
(including relationship and economic factors). Given the generally poor prognosis 
and survival for persons with central nervous system (CNS) metastases, addressing 
concerns about and enhancing QOL for patients is vital, particularly as many 
patients report poor quality of life prior to engaging in treatment for the metastases. 
This chapter addresses important topics related to QOL for such patients, including 
common dif fi culties encountered in assessment of QOL, instruments used to 
 evaluate QOL, predictors of better perceived quality of life (e.g., disease  parameters, 
treatment, and psychological factors), and interventions to support QOL in 
 individuals with CNS metastasis.      

    1   Introduction 

 Quality of life (QOL) is a construct that encompasses an individual’s sense of 
 well-being and satisfaction. As such, it is more than the sum of one’s symptoms, 
prognosis, mood, and outlook. Despite the potential for wide variability in de fi nition 
and assessment of QOL in illness and in health, there is general agreement on some 
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of the factors that contribute to it including physical ability and comfort, mental 
health and sense of autonomy, and social situation (including relationship and 
 economic factors). In essence, QOL is based on self-assessment of function and 
satisfaction/acceptance of it. At this time, the prognosis for individuals with central 
nervous system (CNS) metastases is poor and survival is often measured in months. 
Although the underlying cancer cannot be effectively eradicated, local therapies for 
brain metastases have advanced such that the majority of patients don’t succumb to 
their brain metastases but rather to their primary cancer. As such, symptom 
 management and enhancement of QOL are paramount. To that end, assessment to 
understand the issues important to patients and development of treatments to posi-
tively impact them are central to advanced cancer care. This chapter will review the 
assessment instruments used clinically and in research studies to evaluate QOL and 
the interventions that may contribute to maintaining or improving QOL.  

    2   Assessment Instruments for QOL 

   Clearly, quality-of-life measurements are important in patients likely to be cured, but they 
may be more important in those likely to die. In fact, in the latter group, quality-of-life data 
may be the only information on which to base selection or comparison of alternate 
 treatments.  [  1 , p. 415].   

 Both subjective and objective measures have been used in studies assessing 
 quality of life in patients with brain metastases (Table  11.1 ). Objective measures 
typically focus on general well-being and performance status of the patient, such 
as level of functioning and ability for self-care, and are typically scored by an 
observer rather than by the patient. One of the most commonly used measures in 
research and in clinical trials of patients with cancer is the Karnofsky Performance 
Status (KPS)  [  2  ] . The KPS is rated on a scale of 0 to 100 (in increments of 10), 
with 100 meaning “normal” and 0 meaning “death.” [  3  ]  Other instruments that 
measure performance status and are typically used to assess patients with cancer 
include the Eastern Cooperative Oncology Group (ECOG) performance score  [  4  ] , 
the Katz Activities of Daily Living Index,  [  5  ]  and the Barthel Index of Activity of 
Daily Living  [  6  ] . The Functional Independence Measure (FIM) is  frequently used 
in studies addressing rehabilitation after injury (stroke, brain injury, etc.) or sub-
sequent to treatment of cancer  [  7  ] .  

 In addition to assessing aspects of quality of life, performance status instruments 
are also often used for determining eligibility in research studies and clinical trials. 
The KPS in particular is used as one aspect of determining recursive partitioning 
analysis (RPA) class for brain metastases, which strati fi es patients into 3 different 
prognostic categories  [  8  ] . Patients with a KPS score of less than 70 are typically 
classi fi ed as RPA Class III, which has the shortest median survival time (2.3 months). 
Patients with KPS scores of 70 or above are classi fi ed as RPA Class I or II (median 
survival of 7.1 and 4.2 months, respectively) depending on other disease factors 
(e.g., controlled vs. uncontrolled disease status, age, extracranial metastases, etc.). 
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 While quite useful for the purpose of describing a group of patients, performance 
status measures do not address other aspects of quality of life, such as mood, 
 perception, and overall satisfaction. Unfortunately, at this time, there is no standard 
questionnaire that is used across research studies or clinical trials to assess quality 
of life in patients with brain metastases. There are, however, several scales devel-
oped for use in cancer patients, a few of which have speci fi c sections to address 
issues that commonly affect persons with brain cancer. One such measure is the 
Spitzer Quality of Life Index (SQLI)  [  9  ] . It is frequently used to assess some of the 
more subjective aspects of quality of life for patients with cancer. It includes 5 
domains rated on a scale from 0 to 2: general activity, daily living, health, support, 
and outlook. Each score is accompanied by a verbal description as well (e.g., “great” 
for 2, “up to par” for 1, and “lousy” for 0 when describing energy). A study by Scott 
et al. found that the SQLI was a better predictor of survival in patients with brain 
metastases than the KPS  [  10  ] . 

 Similar quality of life instruments include the Edmonton Symptom Assessment 
Scale  [  11  ] , European Organization for Research and Treatment of Cancer (EORTC) 
Core Quality of Life Questionnaire  [  12  ] , the Functional Assessment of Cancer 
Therapy-General Scale (FACT-G)  [  13  ] , as well as scales developed for speci fi c 
research studies  [  14–  17  ] . Other measures such as the M.D. Anderson Symptom 
Inventory (MDASI)  [  18  ]  look speci fi cally at health-related quality of life factors such 
as common physical, cognitive, and emotional dif fi culties, as well as degree of inter-
ference the symptoms cause in the patient’s life. The EORTC, FACT, and MDASI 
have modules designed for use with patients who have brain cancer. These subscales 
assess speci fi c issues that may apply to patients with brain cancer,  including 
 symptoms, effects of treatment, outlook, self-care, cognitive concerns, activities of 
daily living, and interference in daily life  [  12,   13,   18  ] . 

 While these broader measures may better encapsulate a patient’s overall  experience 
and perception of their quality of life, there are some challenges associated with using 
such measures. One particular concern regarding the use of subjective self-report 
scales is length of the measure and associated demand on subjects, particularly due to 
the typically short length of survival for patients. Several studies have had dif fi culty 
measuring quality of life, particularly for poor prognosis brain cancer patients, due to 
dif fi culty with data collection  [  19–  22  ] . Functional impairment may also impact a 
patient’s ability to complete assessment measures. For example, in developing the 
FACT-BR the authors noted that only higher-functioning patients (KPS > 60) were 
able to complete the questionnaire  [  12  ] . 

 Similarly, neurocognitive dysfunction may make it dif fi cult for the patient to 
accurately complete such measures. A few studies have attempted to address this 
latter concern by using proxy raters, with mixed results. A study by Sneeuw and 
colleagues  [  23  ]  did  fi nd a high correlation between patient and caregiver ratings, but 
noted a trend in which rating agreement decreased as the patient’s level of physical 
and cognitive impairment increased. Other studies have found proxy ratings (by 
surgeons or caregivers) on quality of life scales to be poorly correlated with patient 
reports on those same scales  [  20,   24  ] , suggesting that proxy ratings for quality of 
life measures should generally be avoided. As such, a major concern in assessing 



20711 Quality of Life with CNS Metastasis

quality of life is to ensure that the measure is both effective enough to capture the 
important factors that may impact overall quality of life, while also being as 
 simplistic and brief as possible to ensure compliance  [  25  ] .  

    3   Predictors of QOL 

 In studies of patients with primary brain tumors, disease severity and associated 
symptoms appeared to have a signi fi cant negative association with patient’s reported 
health-related quality of life  [  15,   26–  29  ] . Neurological symptoms, such as seizure 
frequency and motor de fi cits, appear to have a particularly notable impact on 
 perceived health-related quality of life  [  30,   31  ] . However, other studies have found 
disease histology and severity are not signi fi cant predictors of quality of life  [  32, 
  33  ] , perhaps due to the generally poor reported quality of life in patients with brain 
tumors (compared to the general population). 

 Other research suggests that tumor status (stable vs progressive), as opposed to 
the grade of the tumor, may be more important to perceived quality of life in patients 
with primary brain tumors  [  34  ] . For patients with brain metastases, severity of prog-
nosis appears to correspond with perceived quality of life, with persons in RPA class 
II for brain metastases (better prognosis) having better QOL scores and less severe 
symptom ratings than those in RPA class III  [  35  ] . Similarly, better prognosis has 
also been found to be associated with improved quality of life subsequent to whole 
brain radiation therapy in patients with brain metastases  [  10,   36,   37  ] . 

 Investigations of demographic predictors of quality of life in patients with brain 
tumors have found older age  [  32  ]  and female sex  [  15,   32,   38,   39  ]  to be predictive of 
lower overall quality of life scores. In assessing the quality of life for caregivers of 
patients with advanced cancer, it has been found that caregiver mental health and 
the physical well being of the patient are associated with better quality of life  [  40  ] . 
Similarly, for caregivers of patients with brain tumors, disease severity of the patient 
was predictive of poorer quality of life ratings for the caregiver  [  32  ] .  

    4   QOL and Treatment of Metastases 

   Quality of life can be seen as a balance between minimizing treatment risks and maximizing 
bene fi ts, including physical and psychological effects.  [  17 , p. 26]   

 Studies of patients with brain metastases have found that at baseline (prior to 
treatment for metastases) many patients report low activity and health-related 
quality of life scores despite reported independence for activities of daily living 
 [  35  ] . DiBiase et al. point out that in patients with brain metastases, median sur-
vival time is often less than 4 months and as such, less invasive treatments that 
 maximize quality of life are essential  [  41  ] . To that end, they evaluated QOL in 
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patients undergoing  stereotactic radiosurgery for brain metastases and found that 
in patients without tumor progression (intra- or extracranial) QOL scores (using 
the SQLI) remained unchanged or improved at follow up. Those with tumor 
 progression had lower QOL scores. 

 Although patients report more side effects with whole brain radiation than with 
radiosurgery  [  14  ] , individuals with brain metastases treated with a palliative course 
of whole brain radiation did not show a signi fi cant difference from baseline in 
 quality of life 1 and 2 months after treatment. However, there was a trend toward 
worsening general and brain-speci fi c QOL scores on the FACT-BR  [  20  ] . 

 Similar to the report of reduced QOL in patients prior to treatment for brain 
 metastases, the majority have impairments in cognitive functioning  [  42,   43  ] . Although 
the literature is inconsistent due to methodological factors, there appears to be a 
 relationship between systemic chemotherapy and reduced performance on neuropsy-
chological tests even when factors such as age, baseline IQ, time since treatment, and 
mood disturbance have been controlled for  [  44  ] . Imaging studies 1 year after  treatment 
have found reduced white and gray matter volumes in  individuals treated with 
 chemotherapy as compared to controls, and these changes correlated with worse 
 performance on cognitive tests  [  45  ] . Given that many individuals with brain metasta-
ses will have already received some form of chemotherapy for their primary cancer, it 
is likely that most, but perhaps not all, will enter into the metastatic phase with some 
degree of “chemo-brain” which could compromise quality of life. As reviewed by 
Kayl et al., other agents may also negatively affect cognitive functioning including 
steroids and antiepileptic medications  [  46  ] . Kayl et al. also highlight the potential 
impact of anemia, fatigue, depression, and anxiety. A decline in neurocognitive 
f unctioning has been shown to be associated with signi fi cant a decline in self-reported 
quality of life in patients with primary brain tumors  [  30  ]  and brain metastases  [  43,   47  ] , 
with some authors suggesting that efforts to prevent worsening neurocognitive 
functioning could help patients to maintain better quality of life. 

 In a pilot study to assess neurocognitive functioning in patients with 1–3 
 metastatic lesions treated with stereotactic radiosurgery, 67% showed some degree 
of impairment at baseline, typically in the domains of executive functioning, motor 
dexterity, and new learning/recall. While some degree of cognitive decline was 
noted in all patients 1 month after treatment, among those (few) surviving 200 days 
after enrollment, most displayed stable or improved cognitive functioning  [  48  ] . 
A trial comparing the cognitive effects of stereotactic radiosurgery vs. stereotactic 
radiosurgery plus whole brain radiation treatment in patients with newly diagnosed 
brain metastases was stopped early as patients receiving the combined treatment 
were signi fi cantly more likely to show a decline in learning and memory  functioning. 
However, a higher percentage of patients in the combination treatment arm were 
recurrence-free at 1 year  [  49  ] . In a retrospective study, Sneed et al. found that the 
risk of dementia from whole brain radiation in long-term survivors is such that it can 
be deferred as a salvage treatment in favor of using stereotactic radiosurgery for 
initial treatment of brain metastases  [  50  ] . 

 Meyers et al. have suggested that when assessing the clinical bene fi t of a new 
treatment for CNS metastases, a survival endpoint may be of limited value as 
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patients frequently die as a result of systemic disease progression  [  51  ] . As such, 
they used measures of neurologic and cognitive function to assess whether a  putative 
radiation sensitizer (motexa fi n gadolinium) improved outcome in a randomized 
phase II study. Baseline cognitive test performance was highly correlated with the 
volume of the target lesions but not with the number of brain metastases, suggesting 
that cognitive function is more affected by tumor burden than number of lesions. 
Additionally, baseline cognitive functioning was predictive of overall survival – 
especially measures of memory, motor speed and dexterity, executive functioning, 
and an index of global neurocognitive impairment. In a related lead-in study, Mehta 
et al. found scores on measures of executive functioning and  fi ne motor  coordination 
were associated with survival  [  42  ] .  

    5   Outlook and QOL 

 As might be predicted, individual expectations regarding prognosis and impact 
of the illness on one’s life appear to also play a role in determining quality of life. 
A study by Wan et al. of patients with advanced cancer who were functional with 
regard to activities of daily living (referred to as ADLs) found that the most 
signi fi cant predictor of health-related quality of life was performance status, 
 followed closely by overall expectation rating  [  52  ] . That is, those patients who 
had better ratings of current activity level and a better than expected experience 
were more likely to report better physical well-being. Additionally, the size of 
the gap between the patient’s expectations and actual experience was found to be 
a signi fi cant predictor for all aspects of quality of life measured. The study 
authors suggest that those patients with the greatest discrepancies between actual 
experience and expectations experience poorer quality of life and as such may be 
most in need of interventions to improve it. 

 It is a popular and strongly held belief that mental attitude or having a “ fi ghting 
spirit” can impact cancer survival  [  53,   54  ] . It follows then that intervention aimed at 
facilitating that attitude could potentially prolong life. While some studies appear to 
support this notion  [  55,   56  ] , a closer examination of these and subsequent studies 
has pointed out methodological limitations that temper claims regarding the ability 
of psychotherapy to confer a survival bene fi t  [  57,   58  ] . In fact, Coyne et al. discuss 
the mechanisms by which psychotherapy could affect survival and  fi nd no evidence 
to support these  [  57  ] . In particular they point out that psychosocial interventions 
could promote adherence to treatment or other health-related behavior. As such, the 
effect of psychotherapy is confounded by the effect of medical treatment. Another 
proposed mechanism for psychotherapy is the indirect effect on neuroendocrine and 
immune function. However, Coyne et al. point out that studies have not found a 
relationship between psychotherapy, changes in immune functioning, and survival 
in persons with cancer  [  57  ] . In their review, Paton and Perez found that there is no 
conclusive evidence that group psychosocial interventions prolong survival in 
patients with metastatic cancer  [  58  ] . They allow that there are some limitations in 
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the literature as most research has been done on women with metastatic breast 
 cancer and that the effects of individual psychotherapy have not been thoroughly 
evaluated through a randomized clinical trial. Their review suggests that a patient’s 
baseline scores on global health-related quality of life measures or their physical 
functioning scores are better predictors of survival than attitude or participation in 
psychotherapy. In essence, they suggest a patient’s health and quality of life at the 
start of the metastatic phase are better predictors of survival than any changes in 
psychological coping style. However, it is important to note that the authors do not 
argue that psychotherapy is without value. In fact, Paton and Perez conclude their 
paper by pointing out that psychosocial programs aimed at improving quality of life 
should remain an important component of care  [  58  ] . Thus it seems the debate over 
psychotherapy’s ability to confer a survival bene fi t may be irrelevant if the goal of 
such treatment is to promote quality of life.  

    6   Depression and QOL 

 Compared to patients with chronic illnesses (diabetes, renal disease, etc.), cancer 
patients tend to report similar mental health concerns  [  59  ] . However, depression 
with brain metastasis may be shaped by the illness and its sequelae. For example, in 
a study comparing patients with motor neuron disease and metastatic cancer (both 
groups presumed incurable), scores on a depression inventory were similar, but the 
end stage cancer patients’ scores re fl ected a greater degree of anhedonia versus 
higher scores for hopelessness and suicidal ideation in those with motor neuron 
disease. This latter group also tended to be younger with more physical disability 
 [  60  ] . Psychological distress has been found to be negatively correlated with 
 health-related quality of life in various types of cancer  [  59,   61,   62  ] . Similarly, 
depression and anxiety have been found to be strongly correlated with poorer  quality 
of life in patients with brain tumors  [  32,   38,   63,   64  ] . Studies of non-metastatic 
 cancers have also found particular personality variables (hostility, sense of coherence) 
to be predictors of worse health-related quality of life  [  62,   65  ] . 

 Depression has been linked to a diminished quality of life in cancer patients  [  66  ]  
and symptoms of depression may be magni fi ed in individuals with metastatic 
 disease as they move closer to death  [  67  ] . While cognitive therapy  [  68  ]  aimed at 
identifying and modifying beliefs and self-statements coupled with the teaching and 
practice of stress-reducing behaviors has been shown to be effective in improving 
depressive symptoms in cancer patients when delivered in a group format  [  69,   70  ] , 
few studies have speci fi cally examined use of that therapeutic modality in patients 
with brain metastases. The dif fi culties conducting this type of study in individuals 
with a short life expectancy are clear, but short-term, individual cognitive- behavioral 
therapy has been shown to be effective in women with metastatic breast cancer in 
improving depressed mood, anhedonia, fatigue, and quality of life  [  71  ] . In that 
study, patients participated in 8 individual weekly session followed by 3 “booster” 
sessions with a goal of developing “an optimistic but realistic” attitude. The  sessions 
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involved identifying negative thoughts such as fears of dying alone and in pain or of 
being a burden to family members and modifying these to more positive yet realistic 
thoughts such as con fi dence that physicians will be able to control pain and that 
there is still quality time to be had with family. An important point from that study 
is that it was possible, within a relatively brief period of time, to alleviate depression 
and thus improve quality of life. While antidepressant medications are frequently 
used to address mood disturbance, there is also some evidence that stimulant medi-
cation may confer a bene fi t to mood and cognition in individuals with cancer  [  72  ] .  

    7   Interventions to Support QOL 

 Just as there are far fewer studies regarding the effects of treatment on QOL in patients 
with CNS metastases than in primary cancers, there are also very few studies assessing 
the impact of symptomatic interventions on QOL in this population. While it is  tempting 
to generalize the  fi ndings from primary cancers, it is important to keep in mind the 
 different prognosis and perhaps even goal of treatment for CNS patients. 

 Studies of patients with primary brain tumors have found that fatigue, pain, 
 headache, and sleep disturbance are some of the most common health-related 
 symptoms reported  [  33,   73,   74  ] , with fatigue possibly being a more signi fi cant 
problem for patients with higher-grade tumors  [  33,   75,   76  ] . Similarly, fatigue, head-
aches, weakness, balance problems and reduced appetite are commonly reported in 
patients with brain metastases [  17,   35,   77,   78  ] . 

 Exercise has been found to be a particularly helpful intervention in addressing 
 quality of life issues in patients with various types of cancer. For example, exercise was 
shown to slow decline in physical well being, as well as reduce fatigue scores on QOL 
measures in women with advanced breast cancer  [  79  ] . Similarly, other studies have 
shown that patients with various forms of advanced or metastatic  cancer who partici-
pated in exercise therapy evidenced increased physical functioning, improved quality 
of life scores, and decreased fatigue  [  80–  82  ] . One study even found an improvement in 
immune functioning after exercise training in breast  cancer survivors  [  83  ] . 

 Other studies have looked at the bene fi t of inpatient rehabilitation for patients 
with primary and metastatic brain cancer. Tang et al. found that patients with both 
primary and metastatic tumors made signi fi cant functional gains with inpatient 
rehabilitation treatment, and that those who made the most functional recovery 
tended to survive longer  [  84  ] . In fact, patients with brain metastases were found to 
have greater functional improvement than many of the patients with primary tumors. 
Other studies have found similar gains in functioning (including ability to return 
home post discharge) in patients with both primary and metastatic brain tumors  [  85, 
  86  ] , which tended to be comparable to gains made by patients undergoing 
 rehabilitation for stroke and traumatic brain injury  [  87–  89  ] . Those patients with 
recurrent tumors tended to make smaller gains, regardless of tumor type  [  85  ] . 

 Although not speci fi c to CNS metastases, Stephenson et al. found that caregivers 
can be trained to deliver foot re fl exology to their partners with metastatic cancer and 
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that this resulted in a reduction in pain and anxiety in contrast to minimal changes 
in a control group in which the caregiver read to the patient  [  90  ] . Along these lines, 
it seems feasible that other relaxation techniques such as yoga, directed stretching, 
and meditation could be of bene fi t in reducing stress and improving QOL. Given 
that many patients may have dif fi culties with attention and concentration, it seems 
that this type of intervention might be best delivered using a live instructor or audio/
video directions. 

 Studies of patients with metastatic breast cancer have shown that interventions, 
including group psychotherapy, help to improve psychosocial outcomes by  reducing 
anxiety and improving mood scores  [  19,   91–  95  ] . However, no signi fi cant effects 
were found for supportive group therapy regarding global quality of life scores in 
two studies of metastatic breast cancer patients, in part due to signi fi cant decline in 
quality of life scores across time in most patients and small sample sizes  [  19,   96  ] .  

    8   QOL and Survival Prediction 

 Clear information regarding prognosis/survival is rated as very important by 
 individuals with advanced cancer and their caregivers especially as they struggle 
with decisions regarding treatment  [  97,   98  ] . Physicians often use the patient’s 
Karnofsky Performance Status (KPS) as a basis for this type of estimate. While 
prediction of imminent death is fairly reliable when the score is low (i.e., <50), 
survival prediction is more variable at higher scores  [  99  ]  and is often overesti-
mated  [  100  ] . In their analyses, Hwang et al. showed that KPS is the most signi fi cant 
predictor of survival overall, but in patients with KPS  ³  50, QOL indices of 
 physical well-being and physical symptom distress were also signi fi cant  predictors 
of survival as those with impaired quality of life or symptoms of distress had 
markedly decreased survival  [  101  ] . The authors posit that failure to take this type 
of information into account may explain why physicians who rely only on the 
KPS may overestimate survival. 

 Further, there may be a role for assessment of cognitive variables in predicting 
survival in metastatic cancer. As noted by Meyers et al., “The relation between 
 cognitive functioning and survival, observed in these different studies, suggests that 
cognitive tests are a relatively sensitive measure of the functioning of the brain and 
that a combination of tumor prognostic variables and brain function assessments 
seem to predict survival better than tumor variables alone in patients with brain 
metastases”  [  51  ] . In a pilot study, Herman et al. demonstrated that a brief battery of 
standardized neurocognitive tests was tolerable to patients with brain metastases 
and could measure a suf fi cient breadth of abilities  [  102  ] . Also, even in the presence 
of a high KPS or Barthel index score, patients in that study exhibited de fi ciencies in 
 memory, motor speed, and dexterity. Thus it appears that the results of cognitive 
assessment can contribute unique information that could factor into an  understanding 
of a patient’s overall quality of life and help guide physicians, patients, and their 
caregivers in making treatment and care decisions.  
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    9   Summary and Observations 

 While the manner in which QOL is assessed may vary across studies and clinical 
practices, there is agreement in the literature of the value of supporting QOL in 
patients with CNS metastases and factoring in impact on QOL when making treat-
ment decisions. It is important for work in this area to continue as new treatments 
emerge. Just as biochemical agents are developed to disrupt tumor growth based on 
the genetic characteristics of the tumor cells, certain treatments may be more or less 
indicated for certain individuals based on their personal characteristics, preferences, 
and ability to tolerate side effects. 

 One aspect of QOL not addressed in this chapter but that has been evident in 
our clinical work is the sense of failure some individuals experience when they 
are told that they have metastatic cancer. For many who readily adopted the 
“battle” mindset of  fi ghting cancer, this news can be ego-shattering as they may 
have felt that up to this point, they had “won.” Some respond with anger at 
themselves (“I was not strong enough”), their physicians (“My initial treatment 
was not aggressive enough”), or even loved ones (“My spouse was never really 
there for me”). Some who never fully got past the “Why me?” question with 
their initial diagnosis may revisit this and experience feelings of guilt regarding 
past lifestyle choices or behaviors that they may believe to be the roots of their 
cancer. Clearly these thoughts and feelings can impact mood and potentially 
lead an individual to “give up” and  perhaps not consider treatments that could 
extend the quantity and quality of life. This can create distress within families 
who have also adopted an “attitude is everything” mindset. Thus it is important 
for health care professionals and family members to understand this grief 
 phenomenon and sense of loss of control in order to support the patient in 
 working through it. This is especially dif fi cult for family members who are 
 facing their own grief and who may be somewhat burnt out from their  previous 
caregiving responsibilities. The importance of a cancer care multidisciplinary 
team to address these issues cannot be overstated. 

 We started this chapter suggesting that QOL is an individually-de fi ned construct 
that clinicians and researchers seek to better understand through instruments to assess 
aspects of patient experience and to document change with intervention or disease 
progression. Given the variety of instruments used to assess QOL, it is clear that 
there is no one all-encompassing measure that can fully capture an individual’s 
 experience. As such it may be easier to understand QOL in smaller components that 
can be addressed by different members of a multi-disciplinary treatment team. Some 
aspects of QOL such as physical mobility can be readily observed and measured, but 
others such as anxiety, hopefulness, or contentment may be mercurial and dependent 
partly on long-standing traits or individual social circumstances. In addressing QOL 
it is clear there is a role not only for the treating physician in providing clear informa-
tion regarding treatment options and prognosis, but also for the oncology nurse to 
assist in patient (and family) education and support. As noted in this chapter, there is 
evidence that rehabilitation interventions can enhance QOL as can supportive 
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 psychotherapy and psychosocial interventions offered by psychologists, clinical 
social workers, and pastoral counselors. 

 Just as their is no one single facet of QOL that is equally important to all 
patients, there is no one clear technique or treatment that will guarantee enhanced 
QOL as a patient deals with CNS metastasis. Patients are different, their cancers 
are different, and their life circumstances are varied. Despite this, it seems that the 
ability to  maintain a sense of self, connection with others, and a sense of purpose 
is vital. To date there is no pharmacological agent that can confer those qualities, 
but many patients will  fi nd them through friends and family, fellow patients, and 
compassionate medical care providers. While we attempt to understand quality of 
life in CNS metastasis through our questionnaires and studies, we should remain 
humbled by the struggles of our patients and remember that they have something 
to teach us about the human experience.      
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