
Chapter 8
On the Advantages and Drawbacks
of A Posteriori Error Estimation
for Fourth-Order Elliptic Problems

Karel Segeth

Abstract In this survey contribution, we present and compare, from the viewpoint
of adaptive computation, several recently published error estimation procedures for
the numerical solution of biharmonic and some further fourth order elliptic problems
mostly in 2D. In the hp-adaptive finite element method, there are two possibilities
to assess the error of the computed solution a posteriori: to construct a classical
analytical error estimate or to obtain a more accurate reference solution by the same
procedure as the approximate solution and, from it, the computational error estimate.
For the lack of space, we sometimes only refer to the notation introduced in the
papers quoted. The complete hypotheses and statements of the theorems presented
should also be looked for there.

8.1 Introduction

Numerical computation has always been connected with some control procedures.
It means that the approximate result is of primary importance, but also the error
of this computed result, i.e. some norm of the difference between the exact and
approximate solution brings important information. The exact solution is usually
not known. This means that we can get only some estimates of the error.

The development of numerical procedures has been accompanied with a priori
error estimates that are very useful in theory but usually include constants that are
completely unknown, in better cases can be estimated. In particular, the development
of the finite element method, and its h-version and hp-version required reliable and
computable estimates of the error that depend only on the approximate solution
just computed, if possible. This is the means for the local mesh refinement in the
h-version and, moreover, also for the increase of the polynomial degree in the p-
version.
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We employ a quantity called the a posteriori error indicator ηT for all triangles
T of the triangulation Th and, if not defined otherwise, the error estimator

ε =
√ ∑

T ∈Th

η2
T ,

see [5], in each of the estimation strategies that follow to assess the error of the
approximate solution. The quality of an a posteriori error estimator is often mea-
sured by its effectivity index, i.e. the ratio of some norm of the error estimate and the
true error. An error estimator is called effective if both its effectivity index and the
inverse of the index remain bounded for all meshsizes of triangulations. It is called
asymptotically exact if its effectivity index converges to 1 as the meshsize tends to 0.

Undoubtedly, obtaining efficient and computable a posteriori error estimates is
not easy. (Note that computable means, among others, that the degree of piece-
wise polynomials approximating the solution is high enough.) The papers [2, 3] by
Babuška and Rheinboldt represent the pioneering work in this field. The books [1, 4]
are surveys of the state of the art some time ago while [17] is an attempt to compare
some a posteriori error estimators.

There are several classes of a posteriori error indicators and estimators based
on different approaches and their names slightly vary in the literature. We consider
residual or recovery a posteriori error indicators for the solution of the biharmonic
equation in the classical weak formulation [19, 20] and in the Ciarlet-Raviart for-
mulation [8, 12] in Sect. 8.3. We further present recovery or residual a posteriori
error indicators for the solution of a more general 4th order equation [6, 14] and, in
particular, functional error estimators [11, 13, 16] in Sect. 8.4. Section 8.5 is devoted
to a brief conclusion.

8.2 Notation and Preliminaries

A common notation is introduced in this section. We write C(S) for the space of
all functions continuous on the set S, Cm(S) for that of all functions continuous
together with their m derivatives.

Let Ω ⊂ Rn, n ≥ 1, be a bounded domain (i.e. a bounded connected open set)
with the boundary Γ . We use the obvious notation for the L2(Ω), L∞(Ω), H 1(Ω)

and H 2(Ω) norms, and for the Hk(Ω) seminorm. Let Φ = [ϕik] and Ψ = [ψik]
be n × n matrices, Φ,Ψ ∈ Rn×n. We introduce their elementwise matrix product
Φ � Ψ ∈ R and the Frobenius or Schur norm of the matrix Φ as ‖Φ‖F = √

Φ � Φ .
The norm or seminorm may be restricted to any open set ω ⊂ Ω with the Lips-

chitz boundary γ . We thus write, e.g., ‖ · ‖0;ω for the L2(ω) norm. We also employ
the spaces H 1

0 (Ω), H 2
0 (Ω), etc. and the adjoint spaces H−k(Ω), k > 0, of linear

functionals. We often omit the symbol Ω if Ω is the domain concerned.
Let V be a real Hilbert space and a : V × V → R a bounded symmetric coercive

bilinear form. The energy norm induced by this bilinear form is denoted by

|||v||| = √
a(v, v). (8.1)
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We use the notation

divA = ∇ · A =
n∑

s=1

∂as

∂xs

∈ R

for the divergence of a differentiable vector-valued function A = [a1, . . . , an]. We
put ∇A = ∇ ⊗ A ∈ Rn×n, where ⊗ is the tensor product, for the vector-valued
function A and ∇b = gradb ∈ Rn for the gradient of a differentiable scalar-valued
function b. Furthermore, for a differentiable matrix-valued function Θ = [ϑij ]ni,j=1
we introduce its divergence as a vector-valued function

DivΘ = ∇ · Θ =
n∑

j=1

∂ϑij

∂xj

∈ Rn.

Let Rn×n
s be the space of real symmetric n × n matrices. We consider also the

space H(div,Ω) = {Y ∈ L2(Ω,Rn) | divY ∈ L2(Ω)} of vector-valued functions Y

and the space H(Div,Ω) = {Θ ∈ L2(Ω,Rn×n
s ) | DivΘ ∈ L2(Ω,Rn)} of symmet-

ric matrix-valued functions Θ .
For a matrix-valued function Φ : Ω → Rn×n, Φ = [ϕik], we put

div2 Φ =
n∑

i=1

n∑
k=1

∂2ϕik

∂xi∂xk

∈ R

provided these derivatives exist.
Finally, let

H
(
div2,Ω

) = {
Φ ∈ L2

(
Ω,Rn×n

) | div2 Φ ∈ L2(Ω)
}
,

H(div Div,Ω) = {
Φ ∈ L2

(
Ω,Rn×n

s

) | div DivΦ ∈ L2(Ω)
}

be the spaces of matrix-valued and symmetric matrix-valued functions, respectively.
Symbols c, c1, . . . are generic. They may represent different quantities (depend-

ing possibly on other different quantities) at different occurrences.

8.2.1 Finite Element Mesh Notation

Let F = {Th | h > 0} be a family of triangulations Th of Ω . For any triangle
T ∈ Th we denote by hT its diameter, while h indicates the maximum size of all
the triangles in the mesh. We further denote by �T the diameter of the largest ball
inscribed into T . Let E (T ) be the set of all edges and N (T ) the set of all nodes
of T . We set

Eh =
⋃

T ∈Th

E (T ), Nh =
⋃

T ∈Th

N (T ).
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We split Eh in the form Eh = Eh,Ω ∪ Eh,Γ with

Eh,Ω = {E ∈ Eh | E ⊂ Ω}, Eh,Γ = {E ∈ Eh | E ⊂ Γ }.
For T ∈ Th we define

ωT =
⋃

E (T )∩E (T ′)�=∅
T ′.

The length of E ∈ Eh is denoted by hE . Finally, with every edge E ∈ Eh we
associate a unit normal vector nE . The choice of the outer direction of nE is arbitrary
but fixed.

Let T+ and T− be any two triangles with a common edge E ∈ Eh,Ω , the sub-
scripts + and − being chosen in such a way that the unit outer normal to T− at E

corresponds to nE . Given a piecewise continuous scalar-valued function w on Ω ,
call w+ or w− its trace w|T+ or w|T− on E. The jump of w across E in the direction
of nE is given by

[w]E = w+ − w−.

The jump across an edge from Eh,Γ is simply given by the trace of the function w on
the edge (i.e., the value of w outside Ω is assumed to be zero). For a vector-valued
function, the jump is defined componentwise.

We further write Pl(T ) for the space of polynomials of degree at most l on T ,
l ≥ 0 fixed. In the sequel, πl,T denotes the L2 orthogonal projection of L1(T ) onto
Pl(T ).

Finally, let fh be an approximation of a function f ∈ L2(Ω) on a triangle T ∈
Th. We then put

eT = ‖f − fh‖0;T . (8.2)

8.3 Dirichlet and Second Problems for Biharmonic Equation

8.3.1 Dirichlet Problem for Biharmonic Equation

Let the domain Ω ⊂ R2 have a polygonal boundary Γ . We consider the two dimen-
sional biharmonic problem

�2u = f in Ω, (8.3)

u = ∂u

∂n
= 0 on Γ (8.4)

with f ∈ L2(Ω) that models, e.g., the vertical displacement of the mid-surface of a
clamped plate subject to bending.

Let X and Y be two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y . Let L (X,Y )

denote the Banach space of continuous linear maps of X on Y and Isom(X,Y ) ⊂
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L (X,Y ) an open subset of linear homeomorphisms of X onto Y . Let Y ∗ =
L (Y,R) be the dual space of Y and 〈·, ·〉 the corresponding duality pairing.

Let us put, in particular,

X = Y = H 2
0 (Ω), ‖ · ‖X = ‖ · ‖Y = ‖ · ‖2,

(8.5)〈
F(u), v

〉 = ∫
Ω

�u�v −
∫

Ω

f v.

We then say that u ∈ X is the weak solution of the problem (8.3), (8.4) if

〈
F(u), v

〉 = 0 (8.6)

for all v ∈ Y .
Since the bilinear form

{u,v} →
∫

Ω

�u�v

is continuous and coercive on X (cf. [9]), we have dF(u) ∈ Isom(X,Y ∗) for all
u ∈ X, where dF is the derivative.

Let F = {Th | h > 0} be a regular family of triangulations Th of Ω (see, e.g.,
[9]). For the discretization of the problem (8.3), (8.4) we assume that Xh ⊂ X and
Yh ⊂ Y are finite element spaces corresponding to Th and consisting of piecewise
polynomials. These conditions imply in particular that the functions in Xh and Yh

are of class C1. Denote by k, k ≥ 1, the maximum polynomial degree of the func-
tions in Xh. Further, put fh = πl,T f on T for a fixed l ≥ 0.

Replacing f in the definition (8.5) by fh to get the functional Fh, we say that
uh ∈ Xh is the approximate solution of the problem (8.3), (8.4) if

〈
Fh(uh), vh

〉 = 0 (8.7)

for all vh ∈ Yh.
Using the notation (8.2) for eT and defining the local residual a posteriori error

indicator

ηV,T =
(

h4
T

∥∥�2uh − fh

∥∥2
0;T

+
∑

E∈E (T )∩Eh,Ω

(
hE

∥∥[�uh]E
∥∥2

0;E + h3
E

∥∥[nE · ∇�uh]E
∥∥2

0;E
))1/2

for all T ∈ Th, we have the following theorem [19].

Theorem 8.1 Let u ∈ X be the unique weak solution of the problem (8.3), (8.4), i.e.
of (8.6), and let uh ∈ Xh be an approximate solution of the corresponding discrete
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problem (8.7). Then we have the a posteriori estimates

‖u−uh‖2 ≤ c1εV + c2

( ∑
T ∈Th

h4
T e2

T

)1/2

+ c3
∥∥F(uh)−Fh(uh)

∥∥
Y ∗

h
+ c4

∥∥Fh(uh)
∥∥

Y ∗
h

and

ηV,T ≤ c5‖u − uh‖2;ωT
+ c6

( ∑
T ′⊂ωT

h4
T ′ε2

T ′

)1/2

for all T ∈ Th. The quantities ‖F(uh) − Fh(uh)‖Y ∗
h

and ‖Fh(uh)‖Y ∗
h

represent the
consistency error of the discretization and the residual of the discrete problem, and
the quantities c1, . . . , c6 may depend only on hT /�T , and the integers k and l.

The proof is given in [19]. It seems that this is the first a posteriori error estimate
for 4th order problems published.

Let us now consider a nonconforming approximate solution. We say that the
family F = {Th | h > 0} of triangulations Th is shape regular if there are posi-
tive constants r1 and r2 such that for each triangle T ∈ Th we may inscribe a ball of
radius r1hT in T and inscribe T in a ball of radius r2hT . Thus, let F be a shape reg-
ular family of triangulations Th of Ω . Letting Tx be an arbitrary triangle containing
the point x, we denote by h(x) the diameter of the triangle Tx .

Let (T ,PT ,ΦT ) be the Zienkiewicz element with the triangle T ∈ Th, the shape
function space PT , and the set of nodal parameters ΦT consisting of the function
values and two values of first-order derivatives at the three vertices of T [9]. This
element is sometimes called the TQC9 element and the corresponding finite element
approximation of the fourth-order problem (8.3), (8.4) is nonconforming.

Corresponding to Th, denote by Vh and Vh0 the above introduced Zienkiewicz
element spaces with respect to H 2 and H 2

0 , respectively. For uh ∈ Vh and T ∈ Th,
we define the local residual a posteriori error indicators ηW,T and η̃W,T like in [20].
The corresponding statement proven there yields two a posteriori error estimates that
contain unknown positive constants C1 and C2.

8.3.2 Dirichlet and Second Problems for Biharmonic Equation
in Mixed Finite Element Formulation

Let Ω ⊂ R2 be a convex polygonal domain with the boundary Γ . We consider the
two-dimensional biharmonic problem

�2u = f in Ω, (8.8)

u = ∂u

∂n
= 0 on Γ (8.9)
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with f ∈ H−1(Ω) that is used both for linear plate analysis and incompressible flow
simulation.

Put V = H 1
0 (Ω) and X = H 1(Ω) and define the continuous bilinear forms

a(w, z) =
∫

Ω

wz on X × X and b(z,u) =
∫

Ω

∇z · ∇u on X × V (8.10)

with scalar-valued functions u, w, and z.
The Ciarlet-Raviart weak formulation [10] of (8.8) and (8.9) then reads: Find

{w,u} ∈ X × V such that

a(w, z) + b(z,u) = 0 for all z ∈ X, (8.11)

b(w,v) +
∫

Ω

f v = 0 for all v ∈ V. (8.12)

The existence and uniqueness of the solution {w = �u,u} of the problem (8.11)
and (8.12) are proven in [7].

We construct the conforming second order discretization according to [15]. Let
F = {Th | h > 0} be a regular family of triangulations Th of Ω . For the sake of
simplicity, we also assume that the family is uniformly regular [9] to guarantee that
the inequality (8.13) holds, even though it is not easy to satisfy this condition in the
presence of mesh refinements.

The finite element spaces Xh and Vh are then

Xh = {
xh ∈ X | xh|T ∈ P2(T ) for all T ∈ Th

}
,

Vh = {
vh ∈ V | vh|T ∈ P2(T ) for all T ∈ Th

}
.

Our assumption of uniform regularity of the family F implies that there is a
positive constant c such that the inverse inequality

|xh|m;T ≤ chl−m|xh|l;T (8.13)

holds for all integers l and m, l ≤ m, and all xh ∈ Xh and T ∈ Th.
The discrete formulation of the problem (8.11) and (8.12) now reads: Find

{wh,uh} ∈ Xh × Vh such that

a(wh, zh) + b(zh,uh) = 0 for all zh ∈ Xh, (8.14)

b(wh, vh) +
∫

Ω

f vh = 0 for all vh ∈ Vh. (8.15)

We introduce the local residual a posteriori error indicators ηC,T and η̃C,T based
on local residuals like in [8]. Then the following theorem holds.

Theorem 8.2 Let {w,u} ∈ X × V be the unique weak solution of the problem (8.8)
and (8.9), i.e. of (8.11) and (8.12), and let {wh,uh} ∈ Xh × Vh be an approximate
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solution of the corresponding discrete problem (8.14) and (8.15). Then we have the
a posteriori estimates

‖u − uh‖1 + h‖w − wh‖0 ≤ C1
(
εC + h2̃εC

)
with some positive constant C1 independent of h and

ηC,T + h2
T η̃C,T ≤ C2

(
|u − uh|1;ωT

+ hT ‖w − wh‖0;ωT
+ h3

T

∑
T ′⊂ωT

eT ′
)

for T ∈ Th with some positive constant C2 independent of h and eT given by (8.2).

The proof is given in [8].
On the convex polygonal domain Ω ⊂ R2 with the boundary Γ we now consider

the two dimensional second biharmonic problem

�2u = f in Ω, (8.16)

u = �u = 0 on Γ (8.17)

with f ∈ L2(Ω) that models the deformation of a simply supported thin elastic
plate. Putting w = �u, we can rewrite the problem (8.16), (8.17) as the system of
two Poisson equations, both with the homogeneous Dirichlet boundary condition.

Define the continuous bilinear forms a(w, z) and b(z,u) by (8.10) but with all
the scalar-valued functions u, w, and z from V = H 1

0 (Ω). The Ciarlet-Raviart weak
formulation [10] of (8.16) and (8.17) then reads: Find {w,u} ∈ V × V such that
(8.11) and (8.12) hold for all z, v ∈ V .

Let F = {Th | h > 0} be a quasiuniform family of triangular or rectangular par-
titions Th of Ω [1]. Put

Vh = {
z ∈ C(Ω) | z|T ∈ Pk(T ), k ≥ 1, for all T ∈ Th

} ∩ H 1
0 (Ω).

The discrete weak formulation of the problem (8.16) and (8.17) now reads: Find
{wh,uh} ∈ Vh × Vh such that (8.14) and (8.15) hold for all zh, vh ∈ Vh.

Let the basis function vh,N from Vh be associated with the node N ∈ Nh,Ω =
Nh ∩ Ω . Put ωN = suppvh,N . We introduce the gradient recovery operator Gvh :
Vh → Vh × Vh in the following way [12]. Assume that

vh(x) =
∑

N∈Nh,Ω

βNvh,N (x), x ∈ Ω,

with some coefficients βN and put

G̃vh,N =
∑

T ∩ωN �=∅
αT

N(∇vh,N )|T , where
∑

T ∩ωN �=∅
αT

N = 1
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and 0 ≤ αT
N ≤ 1 are chosen weights. Note that the vector ∇vh,N is constant on each

triangle. Finally, we set

Gvh(x) =
∑

N∈Nh,Ω

G̃vh,N vh,N(x), x ∈ Ω.

For uh,wh ∈ Vh and T ∈ Th, define a local recovery a posteriori error indicator
ηL,T like in [12]. The corresponding statement proven there yields a lower as well
as an upper a posteriori error estimate that both contain unknown positive constants
c, C, C1, and C2 independent of h. In the paper, the authors further claim that the
global error estimator εL is asymptotically exact if the mesh is uniform and the
solution is smooth enough.

8.4 Dirichlet Problem for Fourth Order Elliptic Equation

8.4.1 Some Recovery and Residual Error Indicators

Put Ω = (0,1) ⊂ R1. Let all the functions concerned be scalar-valued functions of
a single variable. We consider the one dimensional boundary value problem for the
ordinary fourth-order elliptic equation(

au′′)′′ = f in Ω

with the boundary conditions

u(0) = u′(0) = 0, u(1) = u′(1) = 0.

The weak solution u ∈ H 2
0 (Ω) and the approximate solution uh ∈ Vh are defined

in the usual way [14]. Vh is a finite element space consisting of piecewise Hermite
cubic polynomials.

We introduce a recovery operator Gvh for the second derivative of vh ∈ Vh and,
for uh ∈ Vh and T ∈ Th, define a local recovery a posteriori error indicator ηP,T

like in [14]. The corresponding statement proven there yields an upper estimate for
the difference of the global error estimator εP and the energy norm of the true error
[14]. The global error estimator is asymptotically exact.

Consider the bending problem of an isotropic linearly elastic plate. The bilinear
form for the problem is

a(u, v) = (
γ ε(∇u), ε(∇v)

)
0, u, v ∈ H 2

0 ,

where γ is the fourth-order positive definite elasticity tensor and ε the small strain
tensor [6]. We employ the discrete Morley space Wh that is nonconforming for the
finite element solution of the problem, see, e.g., [9].
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With the help of the bilinear form ah(uh, vh), vh ∈ Wh, defined in an obvious
way we introduce the approximate solution uh ∈ Wh. The bilinear form ah is pos-
itive definite on the space Wh, therefore there is a unique solution uh ∈ Wh to the
problem, cf. [6].

For uh ∈ Wh and T ∈ Th, define a local residual a posteriori error indicator
ηB,T like in [6]. The corresponding statement proven there yields lower as well as
upper a posteriori error estimates in a discrete norm introduced there. Both these
estimates contain an unknown positive constant C independent of h.

8.4.2 Dirichlet Problem for Fourth Order Partial Differential
Equation

Let Ω ∈ Rn be a bounded connected domain and Γ its Lipschitz continuous bound-
ary. We consider the 4th order elliptic problem for a scalar-valued function u,

div Div(γ∇∇u) = f in Ω, (8.18)

u = ∂u

∂n
= 0 on Γ, (8.19)

where f ∈ L2(Ω), γ = [γijkl]ni,j,k,l=1 and γijkl = γjikl = γklij ∈ L∞(Ω).
We assume the existence of constants 0 < m ≤ M such that

m‖Φ‖2
F ≤ (γΦ) � Φ ≤ M‖Φ‖2

F for all Φ ∈ Rn×n
s . (8.20)

Then the inverse tensor γ −1 exists and we define for any matrix-valued function
Φ ∈ L2(Ω,Rn×n), analogically to (8.1), the norms

|||Φ|||2 =
∫

Ω

(γΦ) � Φ and |||Φ|||2∗ =
∫

Ω

(
γ −1Φ

) � Φ.

A function u ∈ H 2
0 (Ω) is now said to be the weak solution of the problem (8.18),

(8.19) if it satisfies the identity∫
Ω

(γ∇∇u) � (∇∇v) =
∫

Ω

f v

for all test functions v ∈ H 2
0 (Ω).

Let ū be a function from H 2
0 (Ω) considered as an approximation of the weak

solution u. In [16], no specification of the way ū has been computed is required, it
is just an arbitrary function of the admissible class.

Define the global functional a posteriori error estimator

εR(β,Φ, ū) = (1 + β)|||γ∇∇ū − Φ|||2∗ +
(

1 + 1

β

)
C2

1Ω‖div DivΦ − f ‖2
0,
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where β is an arbitrary positive real number, Φ an arbitrary symmetric matrix-
valued function from H(div Div,Ω), and C1Ω the constant from the Friedrichs in-
equality

‖w‖0 ≤ C1Ω |||∇∇w||| (8.21)

valid for all w ∈ H 2
0 (Ω). Then the following theorem holds [16].

Theorem 8.3 Let u ∈ H 2
0 (Ω) be the weak solution of the problem (8.18), (8.19)

and ū ∈ H 2
0 (Ω) an arbitrary function. Then

∣∣∣∣∣∣∇∇(ū − u)
∣∣∣∣∣∣2 ≤ εR(β,Φ, ū) (8.22)

for any symmetric matrix-valued function Φ ∈ H(div Div,Ω) and any positive num-
ber β .

The proof of the theorem is based on a more general statement proven in [16].
The estimate (8.22) corresponds to the decomposition div DivΘ = f , Θ = γ∇∇u

of Eq. (8.18). However, the condition div DivΘ ∈ L2(Ω) is rather demanding.
To avoid possible difficulties of this kind, we can derive another error estimate if

we introduce a further global functional error estimator,

ε̃R(β,Φ,Y, ū) = (1 + β)|||γ∇∇ū − Φ|||2∗
+ 1 + β

β
(C1Ω‖divY − f ‖0 + C2Ω‖DivΦ − Y‖0)

2,

where β is a positive real number, Φ an arbitrary symmetric matrix-valued function
from H(Div,Ω), C2Ω the constant from the Friedrichs inequality

‖∇w‖0 ≤ C2Ω |||γ∇∇w||| (8.23)

valid for all w ∈ H 2
0 (Ω), and Y an arbitrary vector-valued function from H(div,Ω).

Then we get the same statement as in Theorem 8.3 but with ε̃R(β,Φ,Y, ū) on the
right-hand part of (8.22) (cf. [16], where the proof is given). The estimate corre-
sponds to the decomposition divY = f , DivΘ = Y , Θ = γ∇∇u of Eq. (8.18).

Theorem 8.3 is equivalent to the statements proven in [13, Sect. 6.6]. Moreover,
in [13] the authors use another global functional a posteriori error estimator to prove
a lower estimate for the error.

The constants C1Ω and C2Ω can be estimated from above by m−1C1� and
m−1C2�, where m is the constant from (8.20), and C1� and C2� appear in the
Friedrichs inequalities (8.21), (8.23) that hold for any w ∈ H 2

0 (Ω) on a rectangular
domain � containing Ω [16].

A posteriori error estimates for Eq. (8.18) with other boundary conditions can be
derived, too. Instead of C1Ω and C2Ω they involve constants appearing in inequali-
ties analogous to (8.21) and (8.23).
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The biharmonic equation

�2u = f in Ω

is a particular case of Eq. (8.18). Considering it with the Dirichlet boundary con-
dition (8.19) and introducing a particular error estimator, we obtain a statement
analogous to Theorem 8.3, see [16].

Consider another Dirichlet problem. Let d2u denote the Hessian matrix of
a function u : Ω → R, u ∈ H 2(Ω). Let the matrix-valued function Λ = [λik],
Λ : Ω × Rn×n → Rn×n be measurable and bounded with respect to the variable
x ∈ Ω and of class C2 with respect to the matrix variable Θ ∈ Rn×n.

Let the domain Ω ⊂ Rn have a piecewise C1 boundary. We consider the fourth-
order elliptic problem

div2 Λ
(
x,d2u

) = f in Ω, (8.24)

u = ∂u

∂n
= 0 on Γ (8.25)

with f ∈ L2(Ω).
Making proper assumptions on the Jacobian arrays Λ′(x,Θ), we get the exis-

tence of Λ−1, the inverse of Λ with respect to Θ ∈ Rn×n [11].
The problem (8.24), (8.25) has a unique weak solution u ∈ H 2

0 (Ω) that satisfies∫
Ω

Λ
(
x,d2u

) � d2v −
∫

Ω

f v = 0 for all v ∈ H 2
0 (Ω).

Let ū be a function from H 2
0 (Ω) considered as an approximation of the weak

solution u. In [11], no specification of the way ū has been computed is required, it
is just an arbitrary function of the admissible class.

We measure the error of the approximate solution ū by a functional E(ū)

introduced in [11]. For ū ∈ H 2
0 (Ω), an arbitrary matrix-valued function Ψ ∈

H(div2,Ω) ∩ L∞(Ω,Rn×n) and an arbitrary scalar-valued function w ∈ H 2
0 (Ω),

define the global functional a posteriori error estimator εK(Ψ,w, ū) like in [11]. It
contains four generally unknown positive constants. The corresponding statement
proven there yields an upper a posteriori error estimate. To avoid the computation
of Λ−1 we can introduce another global functional a posteriori error estimator and
reformulate the above mentioned statement. Moreover, the authors prove in [11] that
the global estimator εK(Ψ,w, ū) is sharp for a sufficiently smooth weak solution.

8.5 Conclusion

The quantitative properties of the indicators and estimators cannot be easily assessed
and compared analytically. There are, however, analytical error estimators for some
classes of problems (see, e.g., [11, 13, 18]) that require as few unknown constants as
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possible. The a posteriori estimates with unknown constants, however, are not opti-
mal for the practical computation. They can be efficient if they are asymptotically
exact.

The computation of the reference solution is rather time-consuming. Neverthe-
less, we use reference solutions as robust error indicators with no unknown constants
to control the adaptive strategies in the most complex finite element computations.
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