
Chapter 6
Balancing Discretization and Iteration Error
in Finite Element A Posteriori Error Analysis

Rolf Rannacher and Jevgeni Vihharev

Abstract This article surveys recent developments in a combined a posteriori anal-
ysis for the discretization and iteration errors in the finite element approximation
of elliptic PDE systems. The underlying theoretical framework is that of the Dual
Weighted Residual (DWR) method for goal-oriented error control. Based on com-
putable a posteriori error estimates the algebraic iteration can be adjusted to the
discretization in a successive mesh adaptation process. The performance of the pro-
posed method is demonstrated for several model situations including the simple
Poisson equation, the Stokes equations in fluid mechanics and the KKT system of
a linear-quadratic elliptic optimal control problem. Furthermore, extensions are dis-
cussed for certain classes of nonlinear problems including eigenvalue problems and
nonlinear reaction-diffusion equations.

6.1 Introduction

The use of adaptive techniques based on a posteriori estimates for the discretization
error is well accepted in the context of finite element discretization of partial differ-
ential equations (see, e.g., [1, 8, 25]). Although the convergence properties of linear
as well as nonlinear iterative methods such as the multigrid method or the Newton
method are discussed in many publications (see, e.g., [3, 10–12, 14]), there are only
few results on a posteriori error estimation of the iteration error. In the case of solv-
ing the Poisson equation, work has been done in [6] and was extended to the Stokes
equations in [4]. There, the automatic control of the discretization and multigrid er-
rors has been developed with respect to L2- and energy norms. The reliability of the
proposed adaptive algorithm has been verified on uniformly refined meshes.

However, in many applications, the error measured in global norms does not pro-
vide useful bounds for the error in terms of a given functional, a so-called quantity
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of interest. In this work, we propose the simultaneous control of both discretization
and iteration errors with respect to a prescribed output functional. This approach is
based on a posteriori error estimation by dual weighted residuals as presented in [8]
as the Dual Weighted Residual (DWR) method. We incorporate the adaptive itera-
tion method into the solution process of a given problem. It seems natural to stop the
linear or nonlinear iteration when the error due to the approximate solution of the
discrete equations is comparable to the error due to the finite element discretization
itself. To this purpose, we derive an a posteriori error estimator which simultane-
ously assesses the influences of the discretization and the inexact solution of the
arising algebraic equations. This allows us to balance both sources of errors.

For illustration, we consider the model problem

Au = f in Ω, u = 0 on Γ, (6.1)

with a linear elliptic operator A and a right-hand side f ∈ L2(Ω) where Ω is as-
sumed to be a bounded domain in R

d , d ∈ {2,3}, with polygonal respectively poly-
hedral boundary Γ . For simplicity, we impose homogeneous Dirichlet boundary
conditions. However, the techniques developed in this paper can also be applied to
problems with other types of boundary conditions. For the variational formulation
of the problem (6.1), we introduce the Hilbert space V := H 1

0 (Ω) and the L2-scalar
product (v,w) := (v,w)L2(Ω). With the bilinear form a(·, ·) : V × V → R associ-
ated to the linear operator A, the weak formulation of the problem (6.1) reads as
follows: Find u ∈ V such that

a(u,φ) = (f,φ) ∀φ ∈ V. (6.2)

We discretize this problem by a standard finite element method (see [13]) in finite
dimensional spaces Vh ⊂ V resulting in “discrete” problems

a(uh,φh) = (f,φh) ∀φh ∈ Vh, (6.3)

which are equivalent to linear systems of algebraic equations. Usually the a pos-
teriori error estimators for the discretization error u − uh are derived under the as-
sumption that the discrete problems (6.3) are solved exactly. This ensures the crucial
property of the Galerkin orthogonality,

a(u − uh,φh) = 0, φh ∈ Vh. (6.4)

In contrast, here, we assume that the discrete problems are solved only approxi-
mately and denote the obtained approximate solution in Vh by ũh in contrast to the
notation uh for the “exact” discrete solution. Let the quantity of interest J (u) of the
computation be given in terms of a linear functional J : V → R. Our goal is the
derivation of an a posteriori error estimate of the form

∣
∣J (u) − J (ũh)

∣
∣ ≤ ηh + ηit. (6.5)

Here, ηh and ηit denote error estimators which can be evaluated from the com-
puted discrete solution ũh, where ηh assesses the error due to the finite element
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discretization and ηit the error due to the inexact solution of the discrete equa-
tions. The adaptation strategy then aims at equilibrating these two error components,
ηit ≈ ηh ≈ 1

2 TOL, according to the prescribed error tolerance TOL. This results in a
practical stopping criterion for the linear or nonlinear algebraic iteration.

This article is based on the results of the articles [6, 17, 20, 21]. The outline is
as follows: In Sect. 6.2, we describe the finite element discretization of the problem
(6.1) and develop the principles of the DWR method for goal-oriented a posteriori
error estimation of the discretization as well as the iteration errors. Section 6.2.1
discusses the practical evaluation of these error estimators and the implementation
of the resulting adaptation strategies. The numerical results presented in Sect. 6.2.2
demonstrate the efficiency and reliability of the proposed method for a prototypi-
cal scalar model problem. In Sect. 6.3 this approach is developed for the associated
symmetric eigenvalue problem. Then, Sect. 6.4 is devoted to the treatment of dif-
ferent types of saddle point problems, the Stokes system in fluid mechanics, and
the Karush-Kuhn-Tucker (KKT) system in linear-quadratic optimization. Finally, in
Sect. 6.5, we consider the extension of our theory to the Newton iteration for nonlin-
ear elliptic problems. The article concludes with Sect. 6.6, which addresses current
work and open problems.

6.2 Goal-Oriented Mesh Adaptation: The DWR Method

We briefly sketch the essentials of “goal-oriented” a posteriori error estimation and
mesh adaptation underlying the Dual Weighted Residual (DWR) method [2, 7, 8].

Let the goal of the computation be the approximation of a scalar quantity J (u)

with maximal accuracy TOL on a mesh Th from models

A (u) = 0, Ah(uh) = 0.

In this process the goal of adaptivity is the optimization of the mesh Th guided by
an a posteriori error estimate of the form

J (u) − J (uh) ≈ η(uh) :=
∑

K∈Th

ρK(uh)ωK

with local cell residuals ρK(uh) and weights ωK (sensitivity factors). Then, the
mesh adaptation is driven by the local error indicators ηK := ρK(uh)ωK . The inher-
ent problem in this approach is that usually only an approximation ũh of the exact
discrete solution uh is available obtained by a nonlinear or linear iteration process.

For illustration, we consider the following model situation. For the solution of
the boundary value problem

−�u = f in Ω ⊂ R
2, u|∂Ω = 0, (6.6)

the quantity J (u) is to be determined, where J (·) is a linear functional defined on
the natural solution space of this problem. The variational formulation of (6.6) reads

u ∈ V : a(u,ψ) := (∇u,∇ψ) = (f,ψ) ∀ψ ∈ V, (6.7)
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Fig. 6.1 Mesh refinement
and coarsening using
“hanging nodes”

where V := H 1
0 (Ω) is the usual first-order Sobolev Hilbert space. For approximat-

ing this variational problem, we consider a Galerkin finite element method using
subspaces Vh ⊂ V (P1 or Q1 elements):

uh ∈ Vh: a(uh,ψh) = (f,ψh) ∀ψh ∈ Vh. (6.8)

The spaces Vh are defined on form-regular decompositions Th = {K} of Ω con-
sisting of closed cells K (triangular/quadrilateral in 2D and tetrahedral/hexahedral
in 3D) with diameter hK (see [13]). The global mesh size is h := maxK∈Th

hK . To
ease local mesh adaptation, we allow “hanging nodes” (at most one per face or edge)
where the corresponding “irregular” nodal values are eliminated from the system by
linear interpolation of neighboring regular nodal values (see Fig. 6.1).

The error e := u − uh satisfies the Galerkin orthogonality relation

a(e,ψh) = 0, ψh ∈ Vh. (6.9)

We introduce the associated continuous and discrete “dual” problems

z ∈ V : a(φ, z) = J (φ) ∀φ ∈ V, (6.10)

zh ∈ Vh: a(φh, zh) = J (φh) ∀φh ∈ Vh. (6.11)

Taking the test function φ = e in (6.10) yields the error identity

J (e) = a(e, z) = a(e, z − ψh) = (f, z − ψh) − a(uh, z − ψh) =: ρ(uh)(z − ψh)

with an arbitrary ψh ∈ Vh. By cell-wise integration by parts, we obtain

J (e) =
∑

K∈Th

{(

R(uh), z − ψh

)

K
+ (

r(uh), z − ψh

)

∂K

}

,

with the cell and edge residuals R(uh) and r(uh) defined by

R(uh)|K := f + �uh, r(uh)|Γ :=
{

− 1
2n · [∇uh], if Γ ⊂ ∂K \ ∂Ω,

0, if Γ ⊂ ∂Ω,
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Fig. 6.2 Local post-processing by higher-order patchwise interpolation: “biquadratic” interpola-
tion of computed “bilinear” nodal values

where [∇uh] denotes the jump of the normal derivative across interelement edges.
Then, using the refinement indicators

ηK := ∣
∣
(

R(uh), z − ψh

)

K
+ (

r(uh), z − ψh

)

∂K

∣
∣,

the mesh adaptation aims at “error balancing”, i.e.,

η :=
∑

K∈Th

ηK, N := #{K ∈ Th}, ηK ≈ TOL/N,

which at the end results in η ≈ TOL.
The unknown dual solution z occurring in the error indicators ηK is approximated

by local higher-order post-processing from the computed dual solution zh,

z − I
(1)
h z ≈ I

(2)
2h zh − zh,

where I
(1)
h and I

(2)
2h denote the operators of cell-wise bilinear and patch-wise bi-

quadratic interpolation, respectively (see Fig. 6.2). This results in the approximate
error estimator

∣
∣J (e)

∣
∣ ≈

∑

K∈Th

η̃K,

η̃K := ∣
∣
(

R(uh), I
(2)
2h zh − zh

)

K
+ (

r(uh), I
(2)
2h zh − zh

)

∂K

∣
∣.

(6.12)

This is to be compared with the traditional global “energy-norm” error estimator

∥
∥∇(u − uh)

∥
∥ ≤ ηE := cI cS

(
∑

K∈Th

h2
KρK(uh)

2
)1/2

(6.13)

with the cell residuals

ρK(uh) := (∥
∥R(uh)

∥
∥2

K
+ 1

2

∥
∥r(uh)

∥
∥2

∂K

)1/2

and certain interpolation and stability constants cI ≈ 1 and cS ≈ 1.
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6.2.1 Balancing of Iteration and Discretization Error

In practice, the “exact” discrete solution uh ∈ Vh on the current mesh Th is
not known but rather an approximation ũh ∈ Vh obtained by an iterative process
uk

h → uh (k → ∞), such as a simple fixed point method (Gauß-Seidel), a Krylov
space method (PCG), or a multigrid method (MG). Hence, in the a posteriori error
representation

J (e) = η := ρ(uh)(z − ψh),

we have to use this approximation ũh := uk
h,

J (ẽ) ≈ η̃ := ρ(ũh)(z − ψh)+?

We need to balance the “iteration error” and the “discretization error” in order to
have a useful stopping criterion (or fine tuning) for the iteration. Suppose that the
adaptation process has generated a successively refined sequence of meshes Tl :=
Thl

, l = 0, . . . ,L, and corresponding approximate discrete solutions ul ∈ Vl := Vhl
.

Algorithm 6.1 Multigrid iteration MG(l, γ,uk
l , fl)

1: if l = 0 then
2: Solve A0u

k+1
0 = f0 exactly.

3: else
4: Pre-smoothing: ūk

l := Sν
l (uk

l )

5: Residual: dk
l := fl − Alū

k
l

6: Restriction: d̃k
l−1 := rl−1

l dk
l (L2 projection)

7: for r = 1 to γ do
8: Starting with v0

l−1 := 0 iterate vr
l−1 := MG(l − 1, γ, vr−1

l−1 , d̃k
l−1)

9: end for
10: Correction: ¯̄uk

l := ūk
l + pl

l−1ṽ
γ

l−1 (natural embedding)

11: Post-smoothing: uk+1
l := S

μ
l ( ¯̄uk

l )

12: end if

Theorem 6.1 Let ũL, z̃L ∈ VL be any approximations to the exact primal and dual
discrete solutions uL, zL ∈ VL, respectively, on the finest mesh TL. Then, there holds
the error representation

J (u − ũL) = ρ(ũL)(z − ẑL) + ρ(ũL)(ẑL). (6.14)

If a MG method has been used with canonical components, the following refined
representation holds:

ρ(ũL)(ẑL) =
L

∑

l=1

(

Rl(ṽl), ẑl − ẑl−1
)

. (6.15)

Here, ẑl ∈ Vl , l = 0, . . . ,L, can be chosen arbitrarily and Rl(ṽl) are the iteration
residuals on the mesh levels l = 0, . . . ,L.
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Proof [17] For the error ẽL := u − ũL there holds

J (ẽL) = a(ẽL, z) = a(ẽL, z − ẑL) + a(ẽL, ẑL)

= (f, z − ẑL) − a(ũL, z − ẑL) + (f, ẑL) − a(ũL, ẑL)

= ρ(ũL)(z − ẑL) + ρ(ũL)(ẑL).

If the multigrid method has been used, then the second term corresponding to the
iteration error can be rewritten in the form

ρ(ũL)(ẑL) =
L

∑

l=1

{

(f, ẑl − ẑl−1) − a(ũL, ẑl − ẑl−1)
} + {

(f, ẑ0) − a(ũL, ẑ0)
}

.

Since Vl ⊂ VL for l ≤ L, we observe by the definitions of Ql (Ritz projection), Pl

(L2 projection), and Al (discrete Laplacian) that for φl ∈ Vl there holds

(f,φl) − a(ũL,φl) = (Plf,φl) − (AlQlũL,φl).

Further, by the identity AlQl = PlAL for l ≤ L, we have

(Plf,φl) − (AlQlũL,φl) = (

Pl(f − ALũL),φl

) = (

Rl(ũL),φl

)

.

Using the particular structure of the multigrid method, there holds

Rl(ũL) = Pl(fL − ALũL)

= PlfL − PlALSν
L

(

ũ
(0)
L

) − PlALpL
L−1ṽL−1

= Pl(dL − AL−1ṽL−1)

= PldL − PlAL−1S
ν
L−1

(

ṽ
(0)
L−1

) − PlAL−1p
L−1
L−2 ṽL−2

...

= Pl(dl+2 − Alṽl+1)

= Pldl+2 − PlAl+1S
ν
l+1

(

ṽ
(0)
l+1

) − PlAl+1p
l+1
l ṽl

= Pl(dl+1 − Alṽl) = Rl(ṽl).

Using this for φl = ẑl − ẑl−1 and φ0 = ẑ0 completes the proof. �

On the basis of the error representation (6.14), we use the following error bal-
ancing criterion:

∣
∣ρ(ũL)(ẑL)

∣
∣ 
 ∣

∣ρ(ũL)(z − ẑL)
∣
∣. (6.16)

Since ρ(uL)(ẑL) = 0 the term on the left tends to zero for proceeding iteration while
the term on the right approaches the (generally) non-zero discretization error. There-
fore, the left-hand term can be interpreted as measuring deviation from Galerkin
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orthogonality of ũL and the right-hand term is used for estimating the discretization
error, however evaluated at the approximative solution ũL, i.e.,

∣
∣J (u − uL)

∣
∣ ≈ ρ(ũL)(z − ẑL),

∣
∣J (uL − ũL)

∣
∣ ≈ ρ(ũL)(ẑL). (6.17)

This heuristic concept is supported by the results of the test calculations presented
below. It seems to be valid even on coarser meshes provided that the algebraic it-
eration is organized in a nested fashion, i.e., the approximate solution on the mesh
Tl−1 is used as the starting value for the iteration on the next refined mesh Tl .

Remark 6.1 It is worth noting that:

1. The proof of the analogue of Theorem 6.1 for “energy-norm” and L2-norm error
control is due to [6].

2. The first error representation,

J (ẽL) = ρ(ũL)(z − ẑL) + ρ(ũL)(ẑL),

can be used for approximative solutions ũL obtained by any solution process in
VL, such as simple fixed point iterations, Krylov space methods, or multigrid
methods as well as perturbations caused by numerical quadrature or other “vari-
ational crimes”.

3. The second error representation holds for V -, W -, or F -cycles and for any type
of smoothing. It allows not only balancing the iteration against the discretization
error but also tuning the smoothing iteration separately on the different mesh
levels,

J (ẽL) = ρ(ũL)(z − ẑL) +
L

∑

l=1

(

Rl(ṽl), ẑl − ẑl−1
)

.

The corresponding adaptive algorithm is formulated below.

Algorithm 6.2 Adaptive algorithm

1: Choose an initial discretization Th0 and set l = 0.
2: loop
3: Set k = 1
4: repeat
5: if k = 1 then
6: for j = 0 to l do
7: Set νj = 1, μj = 1.
8: end for
9: end if

10: Apply one multigrid cycle to the problem Alul = fl .
11: Set k = k + 1.
12: Evaluate the estimators ηml

and ηhl
.
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13: According to the error indicators on the different levels, (Rj (ṽj ), z̃j −
p

j

j−1z̃j−1) determine the subset of levels I = {i1, . . . , in} with the biggest
contribution to the error estimator and increase the number of smoothing
steps by

14: if k > 1 then
15: for j = 1 to n do
16: Set νij = 4, μij = 4.
17: end for
18: end if
19: until |ηml

| ≤ c|ηhl
|

20: if |ηhl
+ ηml

| ≤ TOL then
21: stop
22: end if
23: Refine the mesh Thl

→ Thl+1 accordingly to size of ηhl,i .
24: Interpolate the previous solution ũl on the mesh Thl+1 .
25: Increment l.
26: end loop

6.2.2 Numerical Tests

We consider a model Poisson problem (6.6) on a L-shaped domain Ω ⊂ R
2. The

target value is the function value J (u) := u(a) where a = (0.2,0.2). This irregular
functional is regularized by

Jε(u) := ∣
∣Bε(a)

∣
∣
−1

∫

Bε(a)

u(x) dx = u(a) + O
(

ε2).

The discrete problems are solved by an MG method using a V -cycle and 4 + 4
ILU-smoothing steps. The tolerance is TOL = 5 × 10−7. By “MG I”, we indicate
iteration towards a round-off error level, while “MG II” refers to the use of an adap-
tive stopping criterion. The computational results are shown in Figs. 6.3, 6.4, and 6.5
as well as Tables 6.1 and 6.2. The “effectivity indices” for measuring the quality of
the a posteriori error estimators are defined by

I tot
eff := |J (e)|

ηh + ηit
, I h

eff := |J (eh)|
ηh

, I it
eff := |J (eit)|

ηit
.

Next, we consider the computation of the approximate solution uh on a fixed
locally refined, but still rather coarse, mesh by the Gauß-Seidel and the conjugate
gradient (CG) method. The computational results are shown in Tables 6.3 and 6.4.
In all cases the adaptive strategies proposed lead to significant work savings. Fur-
thermore, the effectivity indices are close to one on finer meshes, which confirms
the quality of the error estimators.
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Fig. 6.3 Configuration and locally refined meshes

Fig. 6.4 Comparison of the
CPU time used by the
different MG methods MG I
and MG II

Fig. 6.5 Gain in efficiency of
the multigrid algorithm by the
adaptive choice of smoothing
type and number of steps on
the different mesh levels:
1 + 1 ILU steps or 4 + 4 ILU
steps
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Table 6.1 Iteration with MG I (iteration towards a round-off error level)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

225 5 4.06e-03 1.57e-03 1.57e-03 6.01e-14 2.56

721 6 1.16e-03 9.57e-04 9.57e-04 3.95e-14 1.21

1 625 7 4.35e-04 2.26e-04 2.26e-04 4.70e-14 1.92

4 573 8 1.43e-04 9.95e-05 9.95e-05 7.71e-13 1.43

11 565 8 5.50e-05 2.98e-05 2.98e-05 1.67e-12 1.85

31 077 10 1.85e-05 1.28e-05 1.28e-05 6.33e-13 1.43

67 669 9 5.94e-06 4.89e-06 4.89e-06 2.67e-12 1.22

174 585 10 8.47e-07 2.00e-06 2.00e-06 1.79e-12 2.38

427 185 10 4.94e-07 7.63e-07 7.63e-07 1.37e-12 0.64

Table 6.2 Iteration with MG II (an adaptive stopping criterion)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

225 1 4.06e-03 1.67e-03 1.58e-03 9.42e-05 2.44

721 2 1.16e-03 9.58e-04 9.57e-04 1.35e-06 1.21

1 625 1 4.35e-04 2.44e-04 2.26e-04 1.89e-05 1.19

4 573 2 1.43e-04 1.01e-04 9.95e-05 1.28e-06 1.43

11 565 2 5.50e-05 3.04e-05 2.98e-05 6.43e-07 1.82

31 077 2 1.85e-05 1.40e-05 1.28e-05 1.23e-06 1.32

67 669 2 5.94e-06 5.36e-06 4.89e-06 4.71e-07 1.11

174 585 3 8.47e-07 2.05e-06 2.00e-06 5.04e-08 0.41

427 185 3 4.94e-07 8.04e-07 7.63e-07 4.07e-08 0.64

Table 6.3 Gauss-Seidel iteration on a locally refined mesh with 721 knots (starting value taken
from the preceding mesh)

Iter J (eh) ηh Ih
eff J (eit) ηit I it

eff ‖u(k)
L − uL‖∞

10 1.16e-3 9.42e-4 1.24 1.68e-3 1.65e-3 1.02 4.21e-2

20 1.16e-3 9.48e-4 1.22 1.21e-3 1.20e-3 1.01 3.66e-2

30 1.16e-3 9.51e-4 1.22 9.10e-4 9.01e-4 1.01 3.20e-2

40 1.16e-3 9.53e-4 1.22 6.86e-4 6.81e-4 1.01 2.78e-2

50 1.16e-3 9.54e-4 1.22 5.18e-4 5.15e-4 1.01 2.42e-2

60 1.16e-3 9.55e-4 1.22 3.90e-4 3.88e-4 1.00 2.10e-2

70 1.16e-3 9.55e-4 1.22 2.94e-4 2.93e-4 1.00 1.83e-2

80 1.16e-3 9.56e-4 1.22 2.21e-4 2.21e-4 1.00 1.59e-2

90 1.16e-3 9.56e-4 1.22 1.67e-4 1.66e-4 1.00 1.38e-2

100 1.16e-3 9.56e-4 1.22 1.25e-4 1.25e-4 1.00 1.19e-2
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Table 6.4 CG iteration on a locally refined mesh with 721 knots (the starting value taken from the
preceding mesh)

Iter J (eh) ηh Ih
eff J (eit) ηit I it

eff ‖b − Ax(k)‖A−1

5 1.16e-3 9.50e-4 1.24 1.85e-03 1.80e-03 1.03 7.57e-3

10 1.16e-3 9.54e-4 1.22 4.60e-04 4.50e-04 1.03 6.34e-3

15 1.16e-3 9.50e-4 1.24 3.10e-05 2.99e-05 1.04 1.17e-3

20 1.16e-3 9.55e-4 1.22 2.17e-05 2.17e-05 1.01 3.08e-4

25 1.16e-3 9.57e-4 1.22 4.12e-06 4.12e-06 1.01 1.01e-4

30 1.16e-3 9.57e-4 1.22 1.09e-06 1.09e-06 1.00 1.32e-5

35 1.16e-3 9.57e-4 1.22 2.72e-07 2.72e-07 1.01 2.02e-6

40 1.16e-3 9.57e-4 1.22 8.22e-09 8.22e-09 1.00 2.31e-7

45 1.16e-03 9.57e-4 1.22 2.05e-09 2.05e-09 1.00 2.46e-08

50 1.16e-03 9.57e-4 1.22 1.93e-10 1.93e-10 1.00 1.94e-09

6.3 Eigenvalue Problems

Next, we consider the eigenvalue problem associated with the boundary value prob-
lem (6.6) of the Laplacian,

−�u = λu in Ω, u|∂Ω = 0. (6.18)

The corresponding variational formulation reads

a(u,φ) = λ(u,φ) ∀φ ∈ V = H 1
0 (Ω), (6.19)

with the normalization ‖u‖ = 1. The corresponding Galerkin finite element approx-
imation in Vh ⊂ V reads

a(uh,φh) = λh(uh,φh) ∀φh ∈ Vh (6.20)

with the normalization ‖uh‖ = 1. The corresponding residual is given by

ρ(uh,λh)(ψ) := λh(uh,ψ) − a(uh,ψ)

=
∑

K∈Th

{(

R(uh,λh),ψ
)

K
+ (

r(uh),ψ
)

∂K\∂Ω

}

,

with the cell and edge residuals R(uh,λh) and r(uh) defined by

R(uh)|K := λhuh + �uh, r(uh)|Γ :=
{

− 1
2n · [∇uh], if Γ ⊂ ∂K \ ∂Ω,

0, if Γ ⊂ ∂Ω.

Theorem 6.2 Let {ũh, λ̃h} ∈ Vh×R, ‖ũh‖ = 1, be any approximation to the discrete
eigenpair {uh,λh} ∈ Vh ×R on the current mesh Th. Then, there holds

(λ̃h − λ)(1 − σh) = ρ(ũh, λ̃h)(u − φh) + ρ(ũh, λ̃h)(φh) (6.21)
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for an arbitrary φh ∈ Vh. Here σh := 1
2‖ũh − u‖2.

Proof [21] Observing ‖ũh‖ = ‖u‖ = 1, there holds

ρ(ũh, λ̃h)(u − φh) + ρ(ũh, λ̃h)(φh)

= λ̃h(ũh, u) − a(ũh, u)

= (λ̃h − λ)(ũh, u) + λ(ũh, u) − a(ũh, u)

= (λ̃h − λ)(ũh, u)

= (λ̃h − λ)
( 1

2‖ũh‖2 + 1
2‖u‖2 − 1

2‖ũh − u‖2)

= (λ̃h − λ)(1 − σh). �

Remark 6.2 It is worth noting that:

1. The error representation has to be evaluated for a convergent sequence of ap-
proximate eigenfunctions: ‖ũh − u‖2 → 0.

2. The evaluation of the error representation requires higher-order approximations
ûh ≈ u and σ̂h ≈ σh obtained, for example, from ũh by post-processing as de-
scribed above:

λ̃h − λ ≈ 1

1 − σ̂h

{

ρ(ũh, λ̃h)(ûh − ũh) + ρ(ũh, λ̃h)(ũh)
}

. (6.22)

3. The second term on the right-hand side represents the deviation from Galerkin
orthogonality and can be evaluated without any approximation.

4. The error representation (6.21) has a natural extension to non-symmetric eigen-
value problems (non-deficient eigenvalues):

(λ̃h − λ) ≈ 1

1 − σ̂h

{ 1
2ρ(ũh, λ̃h)

(

û∗
h − ũ∗

h

) + 1
2ρ∗(ũ∗

h, λ̃h

)

(ûh − ũh)

+ 1
2ρ(ũh, λ̃h)

(

ũ∗
h

) + 1
2ρ∗(ũ∗

h, λ̃h

)

(ũh)
}

, (6.23)

where σ̂h := 1
2 (ũh − ûh, ũ

∗
h − û∗

h), and ũ∗
h is an approximation to the adjoint

eigenfunction u∗ corresponding to the eigenvalue λ. In the non-degenerate case,
we can use the normalization (uh,u

∗
h) = 1 (see [15, 21]).

The results of various test computations reported in [21] demonstrate that our
general approach to balancing discretization and iteration error also works well for
symmetric as well as nonsymmetric eigenvalue problems. Based on the a posteri-
ori error representations (6.21) or (6.23), we obtain effective stopping criteria for
Krylov-space methods such as, for example, the Arnoldi method (see [22, 24]),
which result in significant work savings.
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6.4 Saddle Point Problems

The approach for simultaneous estimation of discretization and iteration errors in-
troduced above can also be used for indefinite (linear) systems such as saddle point
problems. We illustrate this for two different kinds of saddle point problems, the
Stokes equation for modeling incompressible creeping viscous flow and the Karush-
Kuhn-Tucker (KKT) system occurring as a first-order optimality condition of linear-
quadratic optimal control problems.

6.4.1 Stokes Equations

The Stokes equation of fluid mechanics describes the behavior of a creeping incom-
pressible fluid occupying a domain Ω ⊂ R

d , d = 2,3,

−ν�v + ∇p = 0, ∇ · v = 0 in Ω,

v = 0 on Γrigid, v = vin on Γin, ν∂nv − pn = 0 on Γout.
(6.24)

The boundary is split like ∂Ω = Γrigid ∪ Γin ∪ Γout, where Γrigid is the rigid part,
Γin the inflow part, and Γout the usually artificial outflow part. For the meaning
and properties of the Neumann-type outflow boundary condition (so-called “do-
nothing” condition), we refer to [16]. Here, we consider the two-dimensional bench-
mark problem “channel flow around an obstacle” introduced in [23] (see Fig. 6.6).
The quantity of interest is the drag coefficient

J (u) := 2

Ū2D

∫

S

nT
(

2ντ(v) − pI
)

e1 ds,

where u = {v,p}, τ(v) := 1
2 (∇v + ∇vT ) the strain tensor, n the outer normal unit

vector along S, D the diameter of the obstacle, Ū the maximum inflow velocity,
and e1 the unit vector in the main flow direction. The variational formulation of the

Fig. 6.6 Configuration of the flow example
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Table 6.5 Iteration with MG I (iteration towards a round-off error level)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

708 12 5.69e-05 9.19e-05 9.19e-05 2.03e-18 0.62

1 754 9 3.12e-05 2.81e-05 2.81e-05 1.05e-16 1.11

4 898 9 1.83e-05 1.21e-05 1.21e-05 2.20e-15 1.52

11 156 9 1.05e-05 7.01e-06 7.01e-06 9.49e-15 1.49

22 526 10 5.34e-06 3.77e-06 3.77e-06 8.36e-17 1.41

44 874 10 2.75e-06 2.12e-06 2.12e-06 3.39e-16 1.30

82 162 10 1.26e-06 1.09e-06 1.09e-06 4.29e-17 1.16

159 268 11 5.76e-07 6.11e-07 6.11e-07 1.26e-17 1.06

306 308 12 1.85e-07 2.98e-07 2.98e-07 8.74e-19 1.61

Table 6.6 Iteration with MG II (an adaptive stopping criterion)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

708 2 5.69e-05 9.74e-05 9.17e-05 5.62e-06 0.59

1 754 2 3.12e-05 2.82e-05 2.81e-05 6.81e-08 1.11

4 898 2 1.83e-05 1.21e-05 1.21e-05 1.60e-08 1.52

11 156 2 1.05e-05 7.05e-06 7.01e-06 3.42e-08 1.49

22 526 2 5.34e-06 3.82e-06 3.77e-06 5.48e-08 1.39

44 874 2 2.75e-06 2.16e-06 2.12e-06 4.04e-08 1.28

82 162 2 1.27e-06 1.11e-06 1.09e-06 2.63e-08 1.14

159 268 2 5.76e-07 6.41e-07 6.10e-07 3.07e-08 0.90

306 308 2 1.86e-07 3.10e-07 2.97e-07 1.31e-08 0.60

problem (6.24) reads: Find {v,p} ∈ (v̂in + H) × L satisfying

ν(∇v,∇φ) − (p,∇ · φ) = (f,φ) ∀φ ∈ H,

(χ,∇ · v) = 0 ∀χ ∈ L,

where H := H 1
0 (Γrigid ∪ Γin;Ω)2, L := L2(Ω), and v̂in is a suitable (solenoidal)

extension of the boundary data.
The discretization uses equal-order (bilinear) Q1 elements for velocity and pres-

sure with additional pressure stabilization for circumventing the usual “inf-sup” sta-
bility condition,

ν(∇vh,∇φh) − (ph,∇ · φh) = (f,φh) ∀φh ∈ Hh,

(χh,∇ · vh) + sh(χh,ph) = 0 ∀χh ∈ Lh,
(6.25)

where Vh ⊂ V and Lh ⊂ L are the finite element subspaces and sh(χh,ph) is a stabi-
lizing form. For more details on pressure stabilization, we refer to the survey articles
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Fig. 6.7 A refined mesh with 4 898 knots in the flow example

Fig. 6.8 Comparison of the
CPU time used by the two
MG variants MG I and MG II

[18, 19]. The discrete saddle point problem (6.25) is solved by an MG method us-
ing the canonical mesh transfer operations and “block ILU” smoothing (with 4 + 4
smoothing steps). The computational results are shown in Tables 6.5 and 6.6 as well
as Figs. 6.7 and 6.8.

6.4.2 The KKT System of Linear-Quadratic Optimization Problems

We consider the linear-quadratic optimization problem

J (u, q) := 1
2‖u − ū‖2 + 1

2α‖q‖2 −→ min,

−�u = f + q in Ω, u = 0 on ∂Ω,
(6.26)

on Ω := (0,1)2 ⊂ R
2 with the force term f , prescribed target distribution ū, and

distributed control q . The regularization parameter is taken as α = 10−3. This prob-
lem is solved by the Euler-Lagrange approach, which uses the Lagrangian functional

L (u, q,λ) := J (u, q) + (f + q,λ) − (∇u,∇λ),

with the adjoint variable λ ∈ V := H 1
0 (Ω). Then, for any optimal solution {u,q} ∈

V × Q := H 1
0 (Ω) × L2(Ω) there exists an adjoint solution λ ∈ V such that the
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triplet {u,q,λ} ∈ V × Q × V is a stationary point of the Lagrangian, i.e., it solves
the following (linear) saddle point system:

(∇φ,∇λ) − (u,φ) = −(ū, φ) ∀φ ∈ V,

(χ,λ) + α(χ,q) = 0 ∀χ ∈ Q,

(∇u,∇ψ) − (q,ψ) = (f,ψ) ∀ψ ∈ V.

(6.27)

This first-order necessary optimality condition is the so-called Karush-Kuhn-Tucker
(KKT) system of the optimization problem.

For solving the KKT system (6.27), we use conforming bilinear Q1 elements for
all three variables {u,q,λ}. Denoting the corresponding finite element subspaces by
Vh ⊂ V and Qh ⊂ Q, we obtain the discrete saddle point problem

(∇φh,∇λh) − (uh,φh) = −(ū, φh) ∀φh ∈ Vh,

(χh,λh) + α(χh, qh) = 0 ∀χh ∈ Qh,

(∇uh,∇ψh) − (qh,ψh) = (f,ψh) ∀ψh ∈ Vh.

(6.28)

This reads in a strong form as

−�λ − u = −ū, in Ω, λ|∂Ω = 0,

λ + αq = 0, in Ω,

−�u − q = f, in Ω, u|∂Ω = 0.

(6.29)

This linear algebraic saddle point problem is again solved by a MG method using a
block ILU iteration as a smoother.

Theorem 6.3 Let {u,q,λ} ∈ V × Q × V be the solution of the KKT system and
{ũh, q̃h, λ̃h} ∈ Vh ×Qh ×Vh the approximative finite element solution of the discrete
KKT system on the current mesh Th. Then, we have the error representation

J (u, q) − J (ũh, q̃h) = 1
2ρ∗(ũh, λ̃h)(u − ũh) + 1

2ρq(q̃h, λ̃h)(q − q̃h)

+ 1
2ρ(ũh, q̃h)(λ − λ̃h) + ρ(ũh, q̃h)(λ̃h), (6.30)

with the residuals

ρ∗(ũh, λ̃h)(φ) := (ũh − ū, φ) − (∇φ,∇λ̃h),

ρq(q̃h, λ̃h)(φ) := α(φ, q̃h) + (φ, λ̃h),

ρ(ũh, q̃h)(φ) := (f + q̃h, φ) − (∇ũh,∇φ).

Proof For the proof, we refer to [17]. �

Remark 6.3 The choice of the cost functional J (·, ·) for error control may not be
considered appropriate in the present case of a tracking problem where the particular
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Table 6.7 MG II with block ILU smoothing, α = 10−3

N Etot # Iter Eh ηh Ih
eff Eit ηit I it

eff

25 9.35e-4 2 9.35e-4 1.83e-3 0.51 1.14e-07 1.97e-07 0.58

81 1.64e-4 2 1.78e-4 2.19e-4 0.82 1.42e-05 1.68e-05 0.85

289 3.75e-5 2 4.16e-5 4.39e-5 0.95 4.13e-06 4.33e-06 0.96

1 089 1.05e-5 2 1.02e-5 1.03e-5 0.99 3.48e-07 3.52e-07 0.99

3 985 2.67e-6 2 2.54e-6 2.55e-6 1.00 1.28e-07 1.28e-07 1.00

13 321 6.65e-7 2 6.48e-7 6.49e-7 1.00 1.63e-08 1.63e-08 1.00

47 201 1.76e-7 2 1.70e-7 1.69e-7 1.01 6.76e-09 6.77e-09 1.00

163 361 4.89e-8 2 4.69e-8 4.68e-8 1.01 1.97e-09 1.97e-09 1.00

627 697 1.23e-8 2 1.21e-8 1.21e-8 1.01 2.13e-10 2.13e-10 1.00

least-squares form of the functional is somewhat arbitrary. Instead, one may want
to measure the solution accuracy rather in terms of some more relevant quantity
depending on control and state, such as for example the norm ‖q − q̃h‖Q of the
error in the control. This can be accomplished by utilizing an additional “outer”
dual problem such as described in [5, 9].

We consider the example with the target distribution

ū = 2π2−1
2π2 sin(πx) sin(πy)

and the exact solution

u = − 1

2π2
sin(πx) sin(πy), q = 1

2απ2
sin(πx) sin(πy),

λ = − 1

2π2
sin(πx) sin(πy).

The forcing term f is accordingly adjusted. For simplicity, the discrete state and
control spaces are chosen the same, Vh = Qh, using isoparametric bilinear shape
functions. For this test, we use the MG II algorithm with the stopping criterion

ηit ≤ 1

10
ηh.

First, we solve the discretized KKT system by the adaptive multigrid method using
the V -cycle and again 4 + 4-block-ILU smoothing steps on each level. Then, we
use the multigrid method with only one undamped block-Jacobi smoothing step.
The results are shown in Tables 6.7 and 6.8, where we use the abbreviations

Etot := ∣
∣J (u, q) − J (ũh, q̃h)

∣
∣, Eh := ∣

∣J (u, q) − J (uh, qh)
∣
∣,

Eit := ∣
∣J (uh, qh) − J (ũh, q̃h)

∣
∣.
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Table 6.8 MG II with block Jacobi smoothing, α = 10−3

N Etot # Iter Eh ηh Ih
eff Eit ηit I it

eff

25 9.44e-4 4 1.83e-3 9.35e-4 1.96 1.55e-5 8.99e-6 1.73

81 1.84e-4 5 2.20e-4 1.78e-4 1.23 7.59e-6 6.44e-6 1.18

289 4.36e-5 5 4.40e-5 4.16e-5 1.05 2.04e-6 1.96e-6 1.04

1 089 1.10e-5 4 1.03e-5 1.02e-5 1.01 8.53e-7 8.44e-7 1.01

3 985 2.69e-6 4 2.55e-6 2.56e-6 0.99 1.31e-7 1.30e-7 1.00

13 321 6.94e-7 4 6.47e-7 6.69e-7 0.96 2.51e-8 2.51e-8 1.00

47 201 1.95e-7 4 1.69e-7 1.90e-7 0.88 4.39e-9 4.40e-9 1.00

171 969 7.24e-8 3 4.42e-8 6.93e-8 0.63 3.07e-9 3.10e-9 0.99

We observe again a significant work saving by using the adaptive stopping criterion
of the iteration.

6.5 The Nonlinear Case

Finally, we describe how our approach to the simultaneous estimation of the dis-
cretization and iteration errors extends to nonlinear variational problems of the form

A(u)(ψ) = F(ψ) ∀ψ ∈ V, J (u) = ? (6.31)

with a semi-linear “energy form” A(·)(·) and a nonlinear output functional J (·)
defined on the solution space V (both assumed to be sufficiently often differ-
entiable). The starting point is the observation that any solution of the “primal”
problem (6.31) corresponds to a stationary point of the Lagrangian functional
L (u, z) := J (u) + F(z) − A(u)(z) with the dual variable z ∈ V (Lagrangian mul-
tiplier). This results in the system

A(u)(ψ) = F(ψ) ∀ψ ∈ V,

A′(u)(φ, z) = J ′(u)(φ) ∀φ ∈ V.
(6.32)

The finite element discretization of this system in spaces Vh ⊂ V seeks primal and
dual approximation {uh, zh} ∈ Vh × Vh satisfying

A(uh)(ψh) = F(ψh) ∀ψh ∈ Vh,

A′(uh)(φh, zh) = J ′(uh)(φh) ∀φh ∈ Vh.
(6.33)

The corresponding primal and dual residuals are defined by

ρ(uh)(·) := F(·) − A(uh)(·), ρ∗(uh, zh)(·) := J ′(uh)(·) − A′(uh)(·, zh).
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Theorem 6.4 Let ũh, z̃h ∈ Vh be any approximations to the primal and dual discrete
solutions uh, zh ∈ Vh on the current mesh Th. Then, there holds

J (u)−J (ũh) = 1
2ρ(ũh)(z− z̃h)+ 1

2ρ∗(ũh, z̃h)(u− ũh)+ρ(ũh)(z̃h)+ R̃
(3)
h (6.34)

with a remainder R̃
(3)
h cubic in the errors u − ũh and z − z̃h.

Proof [20] For pairs x = {u, z}, we set L(x) := L (u, z). Then, with the abbrevia-
tion ẽz := u − ũh, ẽz := z − z̃h, and ẽ := {ẽu, ẽz}, there holds

J (u) − J (ũh) = L(x)−F(z) + A(u)(z)
︸ ︷︷ ︸

=0

−L(x̃h) + F(z̃h) − A(ũh)(z̃h)
︸ ︷︷ ︸

�=0

=
∫ 1

0
L′(x̃h + sẽ)(ẽ) ds + F(z̃h) − A(ũh)(z̃h).

For the integral, we use the trapezoidal rule with integral remainder as follows:

J (u) − J (ũh) = 1
2

{

L′(x)(ẽ)
︸ ︷︷ ︸

= 0

+L ′(x̃h)(ẽ)
}

+ 1
2

∫ 1

0
L′′′(x̃h + sẽ)(ẽ, ẽ, ẽ)s(s − 1) ds

︸ ︷︷ ︸

=: R̃(3)
h

+ F(z̃h) − A(ũh)(z̃h)
︸ ︷︷ ︸

= ρ(ũh)(z̃h)

= 1
2L′(x̃h)(ẽ) + R̃

(3)
h + ρ(ũh)(z̃h)

= 1
2

{

F
(

ẽz
) − A(ũh)

(

ẽz
) + J ′(ũh)

(

ẽu
) − A′(ũh)

(

ẽu, z̃h

)}

+ R̃
(3)
h + ρ(ũh)(z̃h)

= 1
2ρ(ũh)(z − z̃h) + 1

2ρ∗(ũh, z̃h)(u − ũh) + R̃
(3)
h + ρ(ũh)(z̃h). �

Remark 6.4 We make the following remarks:

1. The cubic remainder term R̃
(3)
h is neglected or monitored by replacing u − uk

h ≈
uk+1

h − uk
h and z − zk

h ≈ zk+1
h − zk

h.
2. For non-unique solutions the following a priori assumption {uh, zh} → {u, z} for

h → 0 is needed.
3. We have to solve the linear discrete dual problem

A′(uh)(φh, zh) = J ′(uh)(φh) ∀φh ∈ Vh. (6.35)

4. The weights in the error representation are again approximated by patch-wise
higher-order interpolation: (z − z̃h)|K ≈ (Ĩ

(2)
2h z̃h − z̃h)|K . The steps 1–4 are the

essence of the Dual Weighted Residual (DWR) method applied to the Galerkin
finite element approximation of nonlinear problems.



6 Balancing Discretization and Iteration Error 129

5. The error representation (6.34) can be used to control the accuracy in the Newton
iteration or in any other simple fixed point iteration for solving the algebraic
problem (6.32).

6. If the approximative discrete solution ũh is obtained by the Newton method,
also an adaptive stopping criterion is needed for the inner linear solver of the
single Newton steps. Such a strategy for simultaneous control of a discretization
error, an outer nonlinear iteration error, and an inner linear iteration error can
be developed on the basis of an a posteriori error representation by exploiting
the structure of the Newton methods. For details, we refer to the forthcoming
paper [20].

6.5.1 Numerical Example

We consider the following simple test problem: Compute J (u) := u1(a) for the
solution u ∈ V := H 1

0 (Ω)2 of the nonlinear system

−�u1 + 2u2
2 = 1, u1|∂Ω = 0,

−�u2 + u1u2 = 0, u2|∂Ω = 0.
(6.36)

The configuration is shown in Fig. 6.9.
In this case the corresponding variational formulation reads

A(u)(φ) := (∇u1,∇φ1) + 2
(

u2
1, φ1

) + (∇u2,∇φ2) + (u1u2, φ2)

= F(φ) := (f,φ) ∀φ ∈ V. (6.37)

For the discretization of the problem (6.37), we use again a standard finite element
method with continuous Q1 elements. The resulting nonlinear algebraic problems
are solved by a damped Newton method with damping a factor θ = 0.5,

A′(ut
h

)(

ut+1
h ,φh

) = A′(ut
h

)(

ut
h,φh

) − θ
{

F(φh) − A
(

ut
h

)

(φh)
}

, ∀φh ∈ Vh.

(6.38)
We consider the following two different stopping criteria:

• Newton I: Reduction of initial Newton residual by factor 10−11;
• Newton II: Iteration error ≈ 10−1× discretization error.

Fig. 6.9 Configuration of the
nonlinear test problem: slit
domain and point value
evaluation
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Table 6.9 Newton I: Iteration towards a “round-off error level” 10−11

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

85 31 3.31e-03 1.49e-03 1.49e-03 1.69e-11 2.22

297 29 1.24e-03 5.78e-04 5.78e-04 7.14e-11 2.13

897 29 5.46e-04 2.30e-04 2.30e-04 7.26e-11 2.38

2063 29 2.43e-04 9.59e-05 9.59e-05 7.32e-11 2.56

4537 27 1.14e-04 4.34e-05 4.34e-05 2.94e-10 2.63

9969 27 5.28e-05 2.15e-05 2.15e-05 2.94e-10 2.44

21389 27 2.23e-05 1.03e-05 1.03e-05 2.94e-10 2.17

39549 27 7.58e-06 5.36e-06 5.36e-06 2.94e-10 1.41

Table 6.10 Newton II: An adaptive stopping criterion

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

85 8 3.31e-03 1.63e-03 1.49e-03 1.41e-04 2.13

297 10 1.24e-03 6.15e-04 5.77e-04 3.74e-05 2.08

897 11 5.46e-04 2.49e-04 2.30e-04 1.90e-05 2.27

2063 13 2.43e-04 1.01e-04 9.59e-05 4.79e-06 2.44

4537 14 1.14e-04 4.58e-05 4.34e-05 2.40e-06 2.56

9969 15 5.28e-05 2.27e-05 2.15e-05 1.20e-06 2.38

21389 16 2.23e-05 1.09e-05 1.03e-05 6.03e-07 2.08

39549 17 7.58e-06 5.66e-06 5.36e-06 3.01e-07 1.39

The linear subproblems are solved by an MG iteration with

• Smoother: Jacobi with damping factor 0.5;
• Stopping criterion: Reduction of the initial multigrid residual by factor 10−11.

The obtained results are shown in Tables 6.9 and 6.10. Again, we observe significant
work savings through the adaptive stopping criterion. The effectivity indices are
relatively close to one, even on coarser meshes, which demonstrates the sharpness
of our error indicators. However, we observe slight underestimation on all meshes.

6.6 Conclusion and Outlook

Goal-oriented adaptivity by the DWR method is in principle possible for all prob-
lems formulated within a variational setting. Though largely of heuristic nature the
DWR method provides a general guideline for treating even most complex non-
linear systems. However, its theoretical justification in any particular case requires
additional assumptions and hard work. In this way the discretization error and the al-
gebraic iteration error, linear as well as nonlinear, can be simultaneously controlled
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leading to effective stopping criteria and significant work savings. Current devel-
opments into the same direction are a posteriori control of the following additional
“variational crimes”:

• Quadrature error,
• Boundary approximation,
• Stabilization error (“inf-sup” and “transport” stabilization),
• Domain approximation (truncation of unbounded domains),
• Various modeling errors.

This will be the subject of forthcoming papers.
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