
Chapter 5
GAs and Nash GAs Using a Fast Meshless
Method for CFD Design

Hong Wang, Hong-Quan Chen, and Jacques Periaux

Abstract Solving CFD inverse problems dealing with complex aerodynamic con-
figurations like multi-element airfoils remains a difficult and expensive procedure,
which requires seamless interfacing between several softwares like computer-aided
design (CAD) system, mesh generator, flow analyzer, and an optimizer. It is essen-
tial to ensure the mesh quality during the optimization procedure for maintaining
an accurate design. A fast meshless method using second and fourth order artificial
dissipations and dynamic clouds of points based on the Delaunay graph mapping
strategy is introduced to solve inverse computational fluid dynamics problems. The
purpose of this paper is to use genetic algorithms and Nash genetic algorithms for
position reconstructions of oscillating airfoils. The main feature of this paper is a
detailed investigation on inverse problems in aerodynamics using both flexibility
and efficiency of the fast meshless method. Comparisons of prescribed and com-
puted aerodynamics parameters are presented for position reconstruction problems
in aerodynamic design using both the fast meshless method coupled with artificial
dissipation and a finite volume method. Numerical results are presented to illustrate
the potential of the fast meshless method coupled with artificial dissipation and evo-
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lutionary algorithms, to solve more complex optimization problems of industrial
interest occurring in multidisciplinary design.

5.1 Introduction

Compared to direct computational fluid dynamics (CFD) problems, inverse prob-
lems [15] have been of ongoing interest to aerodynamic researchers. The position
reconstruction is one of the important problems in high lift devices using multi el-
ement airfoils configurations. The goal of our present study is to implement effi-
ciently on the computer a simple reconstruction problem with Genetic Algorithms
(GAs) [10] and/or Nash GAs [11, 15] to reconstruct the target position of oscillating
airfoils based on prescribed conditions.

Meshless methods (see, e.g., [2–9]) do not use the concept of mesh topology and
provide more geometrical flexibility for computing flow fields. In addition, they are
also useful in design optimization problems around complex configurations without
constraints required by mesh quality and topology. A fast meshless method coupled
with artificial dissipation (AD) using second and fourth order derivatives is em-
ployed for solving two-dimensional (2D) Euler equations. Spatial derivatives of the
governing equations are approximated by a weighted least square (WLS) method
discretizing the computational domain into clouds of points (see, e.g., [1–4]). An
explicit five-stage Runge-Kutta scheme is utilized to reach the steady-state solution.
A local time-stepping method and a residual averaging [3] are employed to acceler-
ate the rate of convergence. Dynamic clouds of points based on the Delaunay graph
mapping [8] are selected to ensure the flow field points following the movements of
body boundaries.

The proposed approach is validated by comparing our numerical results against
a finite volume method presented in [6] for a single oscillating NACA0012 airfoil.
In this paper, we have tested the position reconstructions of oscillating airfoils op-
erating in transonic regimes for aerodynamic design. Position reconstruction of a
single airfoil has been tested using GAs optimizer. Position reconstruction of two
airfoils has been tested with Nash GAs using both the fast meshless method coupled
with AD and the finite volume method on the same computational nodes. Compar-
isons of prescribed and computed parameters are presented to show the efficacy of
the fast meshless method coupled with AD and Nash game strategy in the position
reconstruction problems in aerodynamic design.

The rest of the paper is organized as follows. Section 2 describes the methodol-
ogy of the dynamic cloud method based on the Delaunay graph mapping strategy
and the meshless method coupled with AD. Section 3 shows the validation of the
proposed meshless method. Section 4 conducts two practical optimization applica-
tions and conclusions are presented in Sect. 5.
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Fig. 5.1 Global and close-up views of a Delaunay graph in the case of NACA0012 airfoils

5.2 Methodology

5.2.1 Dynamic Cloud Method Based on the Delaunay Graph
Mapping Strategy

In order to simulate the relative movement of boundaries in the position reconstruc-
tion, it is required that a cloud of points has the ability to move with the rigid body
boundaries. Hence, a fast and efficient dynamic cloud method based on the Delau-
nay graph mapping strategy [8] is introduced here.

Firstly, as shown in Fig. 5.1, a Delaunay triangulation of the computational field
is set up by using the given points located on the boundaries for BI-NACA0012
airfoils. Then, the triangulation is contained for every point P(x, y) in the computa-
tional field. Notate the points of every element E(x1, y1), E(x2, y2) and E(x3, y3),
then the coordinates of the point can be expressed as{

x = a1x1 + a2x2 + a3x3,

y = a1y1 + a2y2 + a3y3,
(5.1)

where a1 = S1/S, a2 = S2/S, a3 = S3/S; S, S1, S2, S3 are the relevant triangle’s
areas [8]. Then, all the background points by the movement of the boundary’s points
are adjusted. The coordinates of the relevant triangle become E(x′

1, y
′
1), E(x′

2, y
′
2)

and E(x′
3, y

′
3), and the new coordinates of point can be denoted as{

x′ = a1x
′
1 + a2x

′
2 + a3x

′
3,

y′ = a1y
′
1 + a2y

′
2 + a3y

′
3.

(5.2)

In [14] it is shown that better results can be obtained by using the Delaunay
graph mapping strategy to ensure the flow field points following the movements
of the body boundaries without any iteration. And compared to the spring analogy
method described in [5].
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5.2.2 Governing Equations

The so-called Euler equations represent the conservation principle for mass, mo-
mentum, and energy for inviscid fluids. In a 2D Cartesian coordinate system, Euler
equations are expressed in the following form:

∂W
∂t

+ ∂E
∂x

+ ∂F
∂y

= 0, (5.3)

where t denotes time and (x, y) the Cartesian coordinates. The expressions of con-
servative variables W and convective fluxes E, F are introduced as

W =

⎡
⎢⎢⎣

ρ

ρu

ρv

e

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

ρu

ρu2 + p

ρuv

(e + p)u

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p

(e + p)v

⎤
⎥⎥⎦ , (5.4)

where ρ denotes the density, u is the x-velocity component, v is the y-velocity
component, p is the pressure, and e is the total energy per unit volume. For an ideal
gas, e can be written as

e = p

γ − 1
+ 1

2
ρ
(
u2 + v2),

where γ is the ratio of specific heat. Additionally, the equation of state is given by

p = ρR̄T ,

where T is the static temperature and R̄ is the ideal gas constant.

5.2.3 Spatial Discretization

The WLS method [4] is used to approximate the spatial first-order derivatives, and
in the cloud C(i) as shown in Fig. 5.2, (5.3) becomes

∂W
∂t

∣∣∣∣
i

+
(

∂E
∂x

+ ∂F
∂y

)
i

= 0. (5.5)

For the convective fluxes, let

Qi =
(

∂E
∂x

+ ∂F
∂y

)
i

. (5.6)

According to the WLS method [4], (5.6) could be written as

Qi =
∑

αikEik +
∑

βikFik. (5.7)
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Fig. 5.2 A typical structure
of the cloud C(i)

Then the governing equation can be written as

dWi

dt
= −

(
Qi −

N∑
k=1

dik

)
, (5.8)

where [3]

dik = ε
(2)
ik (Wk − Wi ) − ε

(4)
ik

(∇2Wk − ∇2Wi

)
,

ε
(2)
ik = K(2)λik max(υi, υk),

ε
(4)
ik = λik max

[
0,K(4) − ε

(2)
ik

]
,

υi = |∇2Pi |∑N
k=1(Pi + Pk)

,

∇2Wi =
N∑

k=1

Wk − NWi ,

λik = |αiku + βikv| + c

√
α2

ik + β2
ik.

Here c = √
γp/ρ is the local speed of sound.

5.2.4 Temporal Discretization

Within the cloud C(i), the semi-discretisation Euler equations are rewritten as

∂W
∂t

∣∣∣∣
i

= Ri , (5.9)
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where Ri means the residual value. An explicit scheme is used for time discretisa-
tion in (5.9), and we get

Wn+1
i − Wn

i


t
= Ri . (5.10)

The superscripts n and (n + 1) denote the time levels. Hence, Wn means the flow
solution at the present time t , and Wn+1 represents the solution at the time (t +
t).
An explicit five-stage Runge-Kutta time integration scheme is used⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(0)
i = Wn

i ,

W(1)
i = W(0)

i + α1
tiR
(0)
i ,

W(2)
i = W(0)

i + α2
tiR
(1)
i ,

W(3)
i = W(0)

i + α3
tiR
(2)
i ,

W(4)
i = W(0)

i + α4
tiR
(3)
i ,

W(5)
i = W(0)

i + α5
tiR
(4)
i ,

Wn+1
i = W(5)

i ,

(5.11)

where αk , k = 1,2,3,4,5, represents the stage coefficients, and we have α1 = 1
4 ,

α2 = 1
6 , α3 = 3

8 , α4 = 1
2 , α5 = 1.

The major disadvantage of the explicit scheme is that the time step is restricted
by the Courant-Friedrichs-Lewy (CFL) stability condition [3].

5.2.5 Acceleration Techniques

In order to accelerate the convergence, a local time stepping method and an implicit
residual averaging method are employed in our present work. The local time step

ti of a discrete point is given by the equation [3, 12, 13]


t = CCFL∑N
k=1 |αiku + βikv| + c

√
α2

ik + β2
ik

, (5.12)

where CCFL denotes the coefficient of CFL.
In the meshless method for the time marching equation, let Ri represent the resid-

ual at node i. The new residual [3] can be given as

R′
i = Ri + ε

∑M
k=1 R′

k

1 + εM
, (5.13)

where ε = [0.2,0.5] and it can be obtained by performing two Jacobi iterations. The
above technique allows the CFL number to be increased twofold or threefold when
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compared to the unsmoothed value, and consequently the CFL number is increased
from 2

√
2 to 5 in the present study.

5.3 Validation of the Fast Meshless Method Implemented with
Artificial Dissipation (AD)

In order to validate the proposed fast meshless method coupled with AD, a single
NACA0012 airfoil operating with flow conditions at a 3.0° angle of attack and a
Mach number 0.5 is tested. Figure 5.3 provides both the global view and the close-
up view of the cloud of points distributed around one single NACA0012 airfoil, and
Fig. 5.4 shows both the global view and the close-up view of the mesh distributed
for the same airfoil. There are 5047 nodes in the whole computational domain in
the meshless method and 9762 elements in the mesh method. Figure 5.5 shows the
comparison of surface pressure coefficients for this test case using the fast meshless
method coupled with AD and the finite volume method in [6].

Fig. 5.3 Global and close-up views of the cloud of points for the NACA0012 airfoil

Fig. 5.4 Global and close-up views of the mesh for the NACA0012 airfoil
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Fig. 5.5 Comparisons of
surface pressure coefficients
for the NACA0012 airfoil

Fig. 5.6 Comparisons of the
convergence history for the
NACA0012 airfoil

Figure 5.6 shows the comparison of the convergence history for this case using
the fast meshless method coupled with AD and the referenced mesh method [6]. As
shown in the histogram in Figs. 5.7 and 5.8, the meshless method coupled with AD
in this test case saves 71.5 % in the iteration costs compared to the finite volume
method described in [6]. In terms of the CPU time needed in this test case, the
meshless method coupled with AD saves 65.7 % compared to the finite volume
method in [6]. The computer hardware used in this paper is an Intel(R) Core(TM)
with 2 Quad CPU Q9650 with frequency 2.00 GHz/2.99 GHz and 3.00 GB of RAM.
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Fig. 5.7 Comparisons of the convergence history in terms of the number of iterations for the
NACA0012 airfoil

Fig. 5.8 Comparisons of the convergence history in terms of the CPU cost for the NACA0012
airfoil

5.4 Practical Optimization Applications

In this section, both the fast meshless method coupled with AD and the finite vol-
ume method referenced in [6] are used to test two inverse position reconstruction
problems: a single pitching NACA0012 airfoil and BI-NACA0012 airfoils.
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Fig. 5.9 Comparisons of the
convergence history in terms
of fitness value for a single
NACA0012 airfoil

5.4.1 A Single Pitching NACA0012 Airfoil

Let one airfoil oscillate in pitch about its quarter chord, and the rotating angle α is
selected as the design parameter. The objective function is defined according to the
surface pressure coefficients as

minf (α) =
M∑
i=1

∣∣Cp(α) − Cp

(
α∗)∣∣2

i
, (5.14)

where M is the total number of points distributed on the surface of an airfoil, the
search space is α ∈ [−10.0◦,10.0◦], and α∗ is the prescribed design variable. Param-
eters of the GAs optimizer are chosen as: the size of population is 20, the probability
of crossover is 0.85, and the probability of mutation is 0.01.

The flow conditions of the reconstruction test case are as follows: the Mach num-
ber is 0.8 and the target angle of attack is 0.0°. Figure 5.9 shows the convergence
history of fitness value during the reconstruction process using the fast meshless
method coupled with AD and the finite volume method in [6] separately. As shown
on the histogram of Fig. 5.10, the meshless method coupled with AD saves 69.7 %
compared to the finite volume method referenced in [6] in terms of the CPU time
cost.

5.4.2 BI-NACA0012 Airfoil’s Configuration

Let two airfoils oscillate in pitch about their quarter chords, and rotating angles
α1, α2 are selected as design parameters. The two objective functions defined in a
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Fig. 5.10 Comparisons of the convergence history in terms of the CPU cost for the NACA0012
airfoil

reconstruction problem solved by the Nash-GAs optimizer are

minf1
(
α1, α

∗∗
2

) =
M1∑
i=1

∣∣Cp(α1) − Cp

(
α∗

1

)∣∣2
i
+

M2∑
i=1

∣∣Cp

(
α∗∗

2

) − Cp

(
α∗

2

)∣∣2
i
, (5.15)

minf2
(
α∗∗

1 , α2
) =

M1∑
i=1

∣∣Cp

(
α∗∗

1

) − Cp

(
α∗

1

)∣∣2
i
+

M2∑
i=1

∣∣Cp(α2) − Cp

(
α∗

2

)∣∣2
i
, (5.16)

where M1 is the total number of points distributed on the surface of the upper airfoil
while M2 is the total number of points distributed on the surface of the lower airfoil,
the search spaces are α1 ∈ [−10.0◦,10.0◦], α2 ∈ [−10.0◦,10.0◦], and α∗

1 , α∗
2 are

prescribed parameters. The parameters in Nash GAs are chosen as follows: the size
of the population is 10, the probability of crossover is 0.85, and the probability of
mutation is 0.02.

The Euler flow conditions around the BINACA0012 configuration are the fol-
lowing: the Mach number is 0.5 and the prescribed parameters are 0.0° and 0.0°.
Figure 5.11 shows the convergence history of the objective function during the re-
construction process using Nash GAs based on the meshless method coupled with
AD and the finite volume method in [6]. As shown in the histogram in Fig. 5.12,
the meshless method coupled with AD saves 75.8 % compared to the finite volume
method in [6] in terms of the CPU time cost.
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Fig. 5.11 Comparisons of
the convergence history for
BINACA0012 airfoils in
terms of the objective
function using the fast
meshless method coupled
with AD and the standard
mesh method

Fig. 5.12 Comparisons of the convergence history in terms of the CPU cost for the BI-NACA0012
airfoils

5.5 Conclusions and Future

A fast Euler meshless method using artificial dissipations is used in this paper. Dy-
namic clouds of points based on a Delaunay graph mapping strategy have been
introduced to ensure that flow field points can easily follow the movements of solid
body boundaries. Position reconstructions of oscillating airfoils operating in tran-
sonic regimes have been tested for future aerodynamic design like high lift devices.
First a single airfoil position reconstruction has been tested successfully with a sim-
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ple GAs optimizer. Then, position reconstruction of two airfoils has been tested
with Nash GAs using both the fast meshless method coupled with AD and the finite
volume method referenced in [6] using the same number of computational nodes.
Comparisons of target geometries and computed parameters are presented to prove
the superiority of the meshless Euler flow analyzer methods implemented with AD
coupled with the Nash evolutionary optimizer for position reconstruction inverse
problems in aerodynamic design. This study is a roadmap to more complex design
optimization problems which can benefit of game coalitions [7] in terms of accuracy
and efficiency.
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