
Chapter 4
Numerical Study of a High Order 3D FEM-Level
Set Approach for Immiscible Flow Simulation

Stefan Turek, Otto Mierka, Shuren Hysing, and Dmitri Kuzmin

Abstract Numerical simulation of incompressible multiphase flows with immisci-
ble fluids is still a challenging field, particularly for 3D configurations undergoing
complex topological changes. In this paper, we discuss a 3D FEM approach with
high-order Stokes elements (Q2/P1) for velocity and pressure on general hexahe-
dral meshes. A discontinuous Galerkin approach with piecewise linear polynomials
(dG(1)) is used to treat the Level Set function. The developed methodology allows
the application of special redistancing algorithms which do not change the position
of the interface. We explain the corresponding FEM techniques for treating the ad-
vection steps and surface tension effects, and validate the corresponding 3D code
with respect to both numerical test cases and experimental data. The corresponding
applications describe the classical rising bubble problem for various parameters and
the generation of droplets from a viscous liquid jet in a coflowing surrounding fluid.
Both of these applications can be used for rigorous benchmarking of 3D multiphase
flow simulations.
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4.1 Introduction

Multiphase flow problems are very important in many applications, and performing
accurate, robust and efficient numerical simulations of them has been the object
of numerous research and simulation projects for several years. One of the main
challenges for the underlying numerical methods is that the position of the moving
interface between two fluids is unknown and must be determined as a part of the
boundary value problem which should be solved. If we assume a domain Ω with
two immiscible fluids, then the time-dependent subdomains Ω1(t) and Ω2(t) are
bounded by an external boundary Σ and a dynamic interior boundary or interface
Γ (t) which might consist of several components (see Fig. 4.1).

Then, the usual model for laminar (multiphase) flow is described by the incom-
pressible Navier-Stokes equations

ρ(x)

[
∂u
∂t

+ u · ∇u
]

− ∇ · (μ(x)
[∇u + (∇u)T

]) + ∇p = ρ(x)g + fΓ (σ ), (4.1)

∇ · u = 0 in Ω = Ω1 ∪ Γ ∪ Ω2, (4.2)

which contain an additional force term fΓ (σ ) due to the surface tension σ at the
free interface Γ . Here, the density ρ as well as the viscosity μ are variable and
discontinuous, that is

ρ(x, t) =
{

ρ1, ∀x ∈ Ω1(t),

ρ2, ∀x ∈ Ω2(t),
μ(x, t) =

{
μ1, ∀x ∈ Ω1(t),

μ2, ∀x ∈ Ω2(t),
(4.3)

which significantly influences the velocity u as well as the pressure p.
This contribution describes the numerical analysis and application of a new Level

Set approach in the framework of the Finite Element Method (FEM) for such mul-
tiphase flow problems. For this reason the open-source CFD package FEATFLOW

(www.featflow.de) was utilized and extended with the corresponding newly created
Level Set module so that the existing methodology of the FEATFLOW approach,
namely flexible, high order FEM discretization schemes in space and time with flux
correction [34] and edge-oriented stabilization techniques [62], unstructured meshes
with adaptive grid deformation, efficient Newton-Multigrid solvers, and paralleliza-
tion based on domain decomposition could be directly exploited.

Fig. 4.1 A sketch of the
complete domain
Ω = Ω1 ∪ Γ ∪ Ω2

http://www.featflow.de
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The outline of the paper is as follows: after a short description in Sect. 4.2 of
the state-of-the-art regarding interface tracking and capturing methods, particularly
for Level Set approaches, we describe in Sect. 4.3 the chosen solution technique
which is based on a discrete projection method [60, 61] for the Navier–Stokes equa-
tions, the Level Set advection equation, and the corresponding reinitialization pro-
cedure. Moreover, the discretization aspects regarding the incompressible Navier–
Stokes equations using the Crank–Nicolson method and the Q2/P1 element pair
are discussed in Sect. 4.3, too, whereas the details of the employed Discontinuous
Galerkin FEM approach with P1 elements for the Level Set equation can be found
in Sect. 4.4. Section 4.5 presents several numerical results which first of all evaluate
the grid-independent behaviour of the developed CFD solver.

Furthermore, based on experimental and computational studies, we propose and
discuss new benchmark configurations for prototypical 3D multiphase flows which
can be used for ‘simple’ validation and evaluation of multiphase flow CFD codes
without the necessity of complex postprocessing operations. Finally, the results are
summarized in Sect. 4.6 where an outlook is provided for more complex 3D multi-
phase flow problems.

4.2 Mathematical Model

The free interface Γ is constantly being deformed and moved so that its position
has to be treated as unknown and determined in every time step. Depending on the
technique for the representation of the interface, one can distinguish between front
tracking and front capturing approaches which can be realized on fixed as well as
dynamic moving meshes. For an overview of existing numerical approaches and
their classification, we recommend [52, 56]. The “natural” front tracking approach
[21, 41, 55, 65] is based on an explicit tracing of the dynamic interface between the
two phases. Here, in the case of Lagrangian finite element methods [25], the under-
lying mesh has to be constantly adapted to the free interface so that the grid points
move with the interface. More flexibility is promised by the Arbitrary Lagrangian
Eulerian (ALE) formulation [1, 2, 7, 17, 19, 51] which is based on local grid adap-
tation and which provides excellent results in the case of moderate deformations
(for instance for small waves at the free surface). Moreover, there are many more
techniques of fictitious domain and Chimera type which allow the highly accurate
tracking of the dynamic interfaces via overlapping surface meshes [26]. However,
such front tracking methods do not allow large deformations of the free interfaces
or even topological changes such as drop formation and bubble breakup or coales-
cence, which typically lead to highly distorted meshes. Moreover, the computational
costs regarding the implementation and also CPU timings are often very large for
complex 3D simulations.

In contrast to such Lagrangian methods, Eulerian front capturing methods are
much more robust and flexible. They are applicable even to free interface problems
with significant topology changes (breakup of bubbles, fragmentation, coalescence,
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etc.). Based on the early Marker-and-Cell method of Harlow and Welch [67], the
implicit reconstruction of the interface is based on an indicator function φ(x, t)

which contains the information about the corresponding subdomain for the point x
at time t . The distribution in the complete domain Ω can then be calculated via the
scalar transport equation

∂φ

∂t
+ u · ∇φ = 0 (4.4)

so that the exact position of the free interface Γ (φ) at any time can be reconstructed
from φ with the help of postprocessing techniques. One of the most well-known
methods is the Volume-of-Fluid (VOF) method [42, 54] in which case the indicator
function φ can be interpreted as volume fraction which should have the discrete
values 0 or 1 depending on the location of x:

φ(x, t) =
{

1, ∀x ∈ Ω1(t),

0, ∀x ∈ Ω2(t).
(4.5)

The numerical drawback of this approach is that artificial diffusion smears out
the (originally) discontinuous indicator function which arises from the solution of
the discretized advection problems resulting in a boundary layer with 0 < φ < 1.
Therefore, numerical schemes and locally adapted meshes have to be designed to
address this boundary layer as thin as possible so that the corresponding error for
reconstructing the free interface is reduced. Moreover, due to the steep gradients
and the discontinuity of the indicator function, standard Galerkin schemes lead to
unphysical oscillations which significantly deteriorate the accuracy or even lead to
unphysical over- and undershoots. As a conclusion, the development of correspond-
ing high-order monotone discretization schemes in combination with unstructured,
locally refined meshes still belongs to the numerical challenges one has to solve.

As a successful alternative, the Level Set approach [43, 44, 53] has been es-
tablished which represents the interface as zero isoline of a continuous indicator
function φ which should be close to the distance with respect to the free interface

φ(x, t) =
{

dist(x,Γ ), ∀x ∈ Ω1(t),

−dist(x,Γ ), ∀x ∈ Ω2(t)
(4.6)

so that Γ (t) = {x ∈ Ω | φ(x, t) = 0} holds. In contrast to the VOF approach, φ as a
distance function is smooth and allows the calculation of a globally defined normal
vector n towards the interface Γ and of the corresponding curvature via

n = ∇φ

|∇φ| , κ = −∇ · n = −∇ ·
( ∇φ

|∇φ|
)

. (4.7)

Here, special FEM techniques for gradient recovery can be used which allow
highly accurate approximations of normals and curvature [56] which are necessary
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for the direct evaluation of the surface tension force fΓ = κσδ(φ)n, with δ(φ) de-
noting the corresponding Dirac Delta function. Hence, the development and im-
plementation of a typical Level Set approach consists of performing the following
sequence of tasks:

• Discretization of the Level Set transport problem (4.4).
• Reinitialisation, resp., redistancing of the Level Set function.
• Additional correction so that mass and volume are preserved (if necessary).
• Calculation of normal vector fields (and curvature if needed) based on φ.
• Evaluation of the discontinuous fluid parameters ρ(φ), μ(φ), and of fΓ , with or

without reconstruction of Γ .

The above sequence of tasks involves a myriad of different possibilities and
choices which inevitably lead to numerous differing solution approaches. This is
evident from the rich collection of publications on Level Set methods which also
demonstrates the high potential of these methods for a wide range of applications
(see for instance the books by Osher [43] and Sethian [53]). However, the resulting
quality of the solutions mainly depends on the underlying numerical and compu-
tational approaches, and one has to acknowledge the fact that most of the existing
Level Set codes are still based on finite differences on uniform Cartesian meshes
which are easy to implement. The drawback is that the computational cost typi-
cally is quite high since uniform mesh refinement has to be performed to resolve
the necessary scales, particularly near the fluidic interfaces, but also due to compli-
cated geometries with small-scale structures. Unstructured meshes are particularly
well suited for such approaches which leads us to finite volume and finite element
discretization methods which are the most prominent candidates for unstructured
simulation approaches. Examples for corresponding approaches in the framework
of VOF and Level Set methods can be found in [3, 7, 9, 16, 29, 38, 40, 49]. In many
approaches, for example in the Interface Proximity Adaption Method of Barth and
Sethian [3], the mesh is locally refined near the interface which also is quite easy to
find if φ is a distance function [38].

Although finite element methods together with locally refined grids seem to pos-
sess a very advantageous behaviour for simulation of multiphase flow problems with
free interfaces, most existing Level Set codes are still based on finite differences. It
is only during the last ten years that FEM codes have been successfully applied
for these special CFD problems ([46, 50, 57]; see also [15, 23, 40, 47, 56, 59]).
However, there is still a huge potential for improvement if ‘optimal’ modern dis-
cretization and solution techniques shall be adapted to the special characteristics
of FEM-Level Set methods. In constructing a modern Level Set solver it is impor-
tant to focus on unstructured meshes with local grid refinement strategies for highly
nonstationary multiphase flow simulations, and make detailed studies for higher nu-
merical stability. Additionally, stable and accurate discretization of the convective
terms (for instance, VOF and Phase-Field methods show very steep gradients near
the interface, similarly as Level Set approaches without redistancing), robust treat-
ment of large density differences, and the handling of large surface tension σ also
require special attention.
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Summarizing the properties of FEM-Level Set techniques for multiphase flow
problems, we can conclude the following (potentially) advantageous behaviour in
comparison to interface tracking methods as well as VOF and Phase-Field ap-
proaches which motivates our recent and future work for the combination of FEM
and Level Set methods:

• If the Level Set function satisfies the distance property, it is smooth so that even
on highly uniform meshes qualitatively good results can be obtained. Local re-
finement around the interface will help to improve the accuracy, but in contrast
to VOF and Phase-Field methods, which may lead to smeared interfaces due to
numerical diffusion or to unphysical oscillations due to steep gradients, adaptive
meshes are not necessary.

• Accurate FEM discretizations of a higher order can be adapted to the special
characteristics of Level Set functions, that means higher smoothness because of
the distance function properties.

• Accurate representations of the interface are provided, without explicit descrip-
tion, but even for complex geometrical changes, which is important for handling
the surface tension term.

• Auxiliary quantities like normal vectors and curvature are provided, even glob-
ally, which is particularly advantageous for the Continuous Surface Force (CSF)
[6] approach.

On the other hand, there are still several problems with Level Set approaches (and
some of them are also valid for VOF and Phase-Field methods) which are numeri-
cally challenging and which are in the focus of our recent and also planned research
activities:

• The standard Level Set formulation is not conservative which may lead to mass
loss.

• Since reinitialisation is necessary to preserve the distance property, often highly
expensive computational operations might be necessary, for instance via solv-
ing globally the Eikonal equation, or redistancing is based on ‘cheaper’ methods
which however change the position and shape of the interface, again leading to
mass loss.

• Due to the standard explicit treatment of surface tension, the time step size is
restricted by the capillary time step restriction, that means the necessary time
steps depend by purely numerical reasons on the size of surface tension and on
the local mesh size.

In the following sections, we first of all describe the overall solution technique
which is based on a discrete projection method which is followed by a discussion
of the FEM discretization details, particularly regarding the Discontinuous Galerkin
approach for treating the Level Set equation.
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4.3 Discrete Projection Methods for Navier–Stokes Equations

In this section, we briefly review the ‘Discrete Projection Method’ as a special vari-
ant of Multilevel Pressure Schur Complement (MPSC) approaches for the solution
of incompressible flow problems, and we combine it with FEM discretization tech-
niques. We will explain some characteristics of high-resolution FEM schemes as
applied to incompressible flow problems and discuss the computational details re-
garding the efficient numerical solution of the resulting nonlinear and linear alge-
braic systems. Furthermore, we will discuss the coupling mechanisms between the
‘basic’ flow model (standard Navier–Stokes equations for velocity and pressure) and
the scalar transport equations for the Level Set indicator function in our multiphase
flow solver.

4.3.1 Discretization Techniques

For a better illustration, we consider first of all numerical solution techniques for
the (single phase) incompressible Navier–Stokes equations,

ut − ν�u + u · ∇u + ∇pρ = f,

∇ · u = 0, in Ω × (0, T ] with pρ = p

ρ
and ν = μ

ρ
,

(4.8)

for the given force f which might contain the surface tension. Moreover, boundary
values are prescribed on the boundary ∂Ω as well as an initial condition at t = 0.
Solving this problem numerically is still a considerable task in the case of long-time
calculations and high Reynolds numbers, particularly in 3D and also in 2D if the
time dynamics is complex. The common solution approach is a separate discretiza-
tion in space and time. We first (semi-) discretize in time by one of the usual methods
known from the treatment of ordinary differential equations, such as the Forward or
Backward Euler-, the Crank–Nicolson- or Fractional-Step-θ–scheme, or others, and
obtain a sequence of generalized stationary Navier-Stokes problems.

Basic θ -scheme Given un and �t = tn+1 − tn, then solve for u = un+1 and pρ =
pn+1

ρ

u − un

�t
+ θ [−ν�u + u · ∇u] + ∇pρ = gn+1, ∇ · u = 0, in Ω (4.9)

with the right-hand side gn+1 := θ fn+1 + (1 − θ)fn − (1 − θ)[−ν�un + un · ∇un].
In the following simulations, the parameter θ is chosen as θ = 1/2, representing

the Crank-Nicolson-scheme which is of second order. Alternatively, the Fractional-
Step-θ -scheme [63], which uses three different values for θ and for the time step
�t at each time level, is another excellent candidate with slightly better robustness
properties.
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For the spatial discretization, we choose a finite element approach based on a
suitable variational formulation. On the finite mesh Th (3D hexahedral elements in
our case) covering the domain Ω with the local mesh size h, one defines polynomial
trial functions for velocity and pressure. These spaces Hh and Lh should lead to
numerically stable approximations as h → 0, i.e., they should satisfy the so-called
inf-sup (LBB) condition [20]

min
qh∈Lh

max
vh∈Hh

(qh,∇ · vh)

‖qh‖0 ‖∇vh‖0
≥ γ > 0 (4.10)

with a mesh-independent constant γ . While the original FEATFLOW solvers are
based on rotated multilinear nonconforming finite element functions for the velocity
and piecewise constant pressure approximations, we recently extended the complete
solver package to higher-order Stokes elements, namely conforming triquadratic
ansatz functions for the velocity and linear pressure approximations (Q2/P1), which
belong to the ‘best’ finite element pairs for laminar incompressible flow due to their
accuracy and robustness. Since so far most of our numerical simulations have been
performed for small up to moderate Reynolds numbers, the (nonlinear) convective
operator was discretized using standard stabilization techniques only. Currently, we
use edge-, resp., face-oriented FEM stabilization techniques [62] which can be eas-
ily realized for higher-order ansatz functions, too. Here, special jump terms of the
gradient of the solution as well as of the test function have to be included into the
weak formulation which leads to a consistent stabilization, for stationary as well
as nonstationary configurations. It is planned to apply this technique in the case of
higher Reynolds number flows, too, which will be a subject of our further studies
for such multiphase flow problems. For an overview regarding such special FEM
stabilization techniques, we refer to [45, 62] and particularly to [10] which contains
corresponding results for the Q2/P1 approach, too.

4.3.2 Solution Techniques

Using the same notation u and pρ also for the coefficient vectors in the represen-
tation of the approximate solution, the discretized Navier-Stokes equations may be
written as a coupled (nonlinear) algebraic system of the form: Given un and f, com-
pute u = un+1 and pρ = pn+1

ρ by solving

Au + �tBpρ = g, BT u = 0, (4.11)

where

g = [
M − θ1�tN

(
un

)]
un + θ2�tfn+1 + θ3�tfn. (4.12)

Here and in the following, we use the more compact form for the diffusive and
advective part

N(v)u := −ν�u + v · ∇u, (4.13)
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while M is the (lumped) mass matrix [66], B is the discrete gradient operator, and
−BT is the associated divergence operator. Furthermore,

Au = [
M − θ�tN(u)

]
u, N(u) = K(u) + νL, (4.14)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator in-
corporating a certain amount of artificial diffusion due to some appropriate FEM
stabilization as described before. The solution of nonlinear algebraic systems like
(4.11) is a rather difficult task and many aspects, namely the treatment of the nonlin-
earity and of the incompressibility as well as the outer control of the couplings, need
to be taken into account. Consequently, this leads to a great variety of incompress-
ible flow solvers which are closely related to one another but exhibit considerable
differences in terms of their stability, convergence, and efficiency. The Multilevel
Pressure Schur Complement (MPSC) approach outlined below makes it possible to
put many existing solution techniques into a common framework and to combine
their advantages so as to obtain better run-time characteristics.

The fully discretized Navier-Stokes equations (4.11) as well as the linear sub-
problems to be solved within the outer iteration loop for a fixed-point defect cor-
rection or, with a similar structure, for a Newton-like method admit the following
representation: [

A �tB

BT 0

][
u
pρ

]
=

[
g
0

]
. (4.15)

In general, we have A = M + βN(u), with β = −θ�t for time-dependent prob-
lems. If the operator A is nonsingular, the velocity can be formally expressed as

u = A−1(g − �tBpρ) (4.16)

and plugged into the discretized continuity equation

BT u = 0 (4.17)

which gives a scalar Schur complement equation for the pressure only

BT A−1Bpρ = 1

�t
BT A−1g. (4.18)

Thus, the coupled system (4.15) can be handled as follows:

1. Solve the Pressure Schur Complement (PSC) equation (4.18) for pρ .
2. Substitute pρ into the relation (4.16) and compute the velocity u.

It is worth mentioning that the matrix A−1 is full and should not be assembled
explicitly. Instead, an auxiliary problem is to be solved by a direct method or by
inner iterations. For instance, the velocity update (4.16) is equivalent to the solu-
tion of the discretized momentum equation Au = g − �tBpρ . Likewise, the matrix
S := BT A−1B is never generated in practice. Doing so would be prohibitively ex-
pensive in terms of CPU time and memory requirements. It is instructive to consider
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a preconditioned Richardson method which yields the following basic iteration for
the PSC equation:

p(l+1)
ρ = p(l)

ρ − C−1
[
Sp(l)

ρ − 1

�t
BT A−1g

]
, l = 0, . . . ,L − 1. (4.19)

Here, C has to be chosen as a suitable preconditioner to S but being easier to ‘invert’
in an iterative way. The number of PSC cycles L can be fixed or chosen adaptively
so as to achieve a prescribed tolerance for the residual. The basic idea behind the
family of global MPSC schemes is the construction of globally defined additive
preconditioners for the Schur complement operator S = BT A−1B . Recall that the
matrix A has the structure

A := M + βK(u) + γL, (4.20)

where β = −θ�t and γ = νβ . Unfortunately, even today it is still a very challeng-
ing task to construct a matrix Ã and a preconditioner C = BT Ã−1B that would be
a sufficiently good approximation to all three components of A and S, respectively;
particularly for the convective part with K(u). Therefore, one may start with devel-
oping individual preconditioners for the reactive (M) and diffusive (L) part, while
the convective (K) part is neglected by applying this special kind of operator split-
ting. In our case, the Reynolds numbers in the considered flow configurations are so
far quite small, so that this approach can be justified, particularly if small time steps
are used to resolve the complex dynamical behaviour. Therefore, the (lumped) mass
matrix M proves to be a reasonable approximation to the complete operator A, so
that our basic iteration (4.19) for the pressure Schur complement equation

p(l+1)
ρ = p(l)

ρ + [
BT M−1B

]−1 1

�t
BT A−1[g − �tBp(l)

ρ

]
(4.21)

can be interpreted and implemented as a discrete projection scheme, if L = 1, such
as those proposed in [12, 22]. Here, the important step is that for the chosen Stokes
element pair, Q2/P1, the matrix P := BT M−1B can be explicitly built up relatively
easily even in a domain decomposition framework due to the chosen discontinuous
pressure. Then, the main algorithmic steps are as follows [60]:

Step 1. Solve the ‘viscous Burgers’ equation for ũ

Aũ = g − �tBp(l)
ρ .

Step 2. Solve the discrete ‘Pressure-Poisson’ problem

Pqρ = 1

�t
BT ũ.

Step 3. Correct the pressure and the velocity

p(l+1)
ρ = p(l)

ρ + qρ, u = ũ − �tM−1Bqρ.
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In essence, the right-hand side of the momentum equation is assembled using the
old pressure iterate, and the intermediate velocity ũ is projected onto the subspace
of solenoidal functions so as to satisfy the constraint BT u = 0. Moreover, the matrix
P corresponds to a mixed discretization of the Laplacian operator [22] so that this
method is a discrete analogue of the classical projection schemes derived by Chorin
(p(0)

ρ = 0) and Van Kan (p(0)
ρ = pρ(tn)) via operator splitting for the continuous

problem.
Next, we apply this special operator-splitting approach to the full multiphase

flow system with a discontinuous density ρ(φ) and viscosity μ(φ) distribution, that
means

ρ(φ)

[
∂u
∂t

+ u · ∇u
]

− ∇ · (μ(φ)
[∇u + (∇u)T

]) + ∇p = ρ(φ)g + fΓ,σ (φ),

(4.22)

∂φ

∂t
+ u · ∇φ = 0, ∇ · u = 0. (4.23)

After discretization in space and time, we obtain again a system of nonlinear alge-
braic equations which can be written in a matrix form as follows:

Au

(
un+1, φn+1)un+1 + �tF

(
φn+1) + �tBpn+1 = gu, (4.24)

Aφ

(
un+1)φn+1 = gφ, BT un+1 = 0. (4.25)

Note that Eq. (4.24) in contrast to (4.11) and (4.14) is multiplied with ρ(φ), which
gives rise to the modified operators Mρ , Kρ(u), and Lμ. Here and below the super-
script n + 1 refers to the time level, while subscripts identify the origin of discrete
operators (u for the momentum equation and φ for the Level Set equation); more-
over, ρ and μ are evaluated w.r.t. the old time level tn which makes this formulation
semi-implicit. Note that we have the freedom of using different finite element ap-
proximations and discretization schemes for the velocity u and the indicator func-
tion φ, and the discrete problem (4.24)–(4.25) can be solved again in the framework
of the discrete projection method. For relatively small time steps, this strategy works
very well, and simulation software can be developed in a modular way making use
of optimized multigrid solvers. Consequently, in the simplest case (just one outer
iteration per time step), the sequence of algorithmic steps to be performed is as
follows:

Step 1. Compute ũ from the momentum equation

Au

(
ũ, φn

)
ũ = gu − �tF

(
φn

) − �tBpn.

Step 2. Solve the discrete Pressure-Poisson problem

Pρq = 1

�t
BT ũ with Pρ := BT M−1

ρ B.
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Step 3. Correct the pressure and the velocity

pn+1 = pn + q, un+1 = ũ − �tM−1
ρ Bq.

Step 4. Solve the Level Set equation for φ

Aφ

(
un+1)φn+1 = gφ.

Due to the nonlinearity of the discretized convective terms, resp., of the reinitial-
isation step, iterative defect correction or Newton-like methods, resp., corrections
via redistancing, must be invoked in Steps 1 and 4. However, due to the assumed
relatively small time steps, such nonlinear iteration methods are not critical for the
complete flow simulation.

4.4 The FEM-Level Set-dG(1) Approach

Our chosen Level Set approach is based on a first-order Discontinuous Galerkin
discretization in space, dG(1)-FEM, that means on piecewise linear polynomials. In
the following, we will discuss the corresponding techniques for the discretization
of the advection equation, for the treatment of the surface tension force, and for the
reinitialisation procedure.

4.4.1 Discontinuous Galerkin Upwinding for the Level Set
Approach

There are several ways to approximate and solve Discontinuous Galerkin approxi-
mations for the Level Set function φ [11, 15, 36, 41]. The general form of the Level
Set transport equation involving the normal front velocity can for instance be solved
directly by using a Runge–Kutta dG-formulation for the Hamilton–Jacobi equations
[27, 35]. The starting point to introduce our discretization of the Level Set transport
equation is

∂φ

∂t
+ u · ∇φ = 0 (4.26)

with a given velocity field u. In our case u is taken as the convective velocity from
the Navier–Stokes solver and must accordingly be updated in each time step. We
have u · n = un, where n is the unit normal to the interface Γ according to (4.7).
The Level Set equation (4.26) can thus be rewritten as

∂φ

∂t
+ ∇ · (uφ) = φ∇ · u. (4.27)

The reformulated Level Set equation above is simply a linear convection or ad-
vection equation in conservative formulation with a source term on the right hand
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side. We continue to rewriting it in weak form by introducing a triangulation, Mh,
of the domain Ω where E is an element E ∈ M h. We are thus seeking an approxi-
mated solution in the following space

Vh = {
vh ∈ L∞(Ω) : vh|E ∈ Vh(E ),∀E ∈ M h

}
.

Here, Vh(E ) denotes the local discrete test and trial spaces. The corresponding
derivation follows by multiplying the equation (4.26) by a suitably chosen test func-
tion after which partial integration over each element E is performed. If the trial
solution space is accordingly discretized as φh ∈ Vh(E ), this results in

∫
E

vh

∂φh

∂t
dx =

∫
E

φhu · ∇vhdx −
∫

∂E
vhφhu · nE ds +

∫
E

vhφh∇ · udx,

∀vh ∈ Vh(E ), (4.28)

where nE is the outward pointing unit normal belonging to the element E . The
fluxes on the internal boundaries are twofold defined since the underlying test and
trial spaces are discontinuous. This is handled by replacing the outer flux in the last
term of the right-hand side of Eq. (4.28) with a numerically upwinded flux, that is

∫
E

vh

∂φh

∂t
dx =

∫
E

φh∇ · (uvh)dx −
∫

∂E
vhφ

up
h u · nE ds, ∀vh ∈ Vh(E ). (4.29)

The upwinding flux is calculated as

φup =
{

φ−, if u · nE ≥ 0,

φ+, otherwise,

where φ− and φ+ are defined as

φ− = lim
ε→0− φ(x + εnε, t),

φ+ = lim
ε→0+ φ(x + εnε, t).

In other words this means that φup is the value of φ taken from an upwind element
at an element interface.

In our approach, Eq. (4.29) is discretized in space by firstly constructing the tri-
angulation Mh by subdivision in the hexahedral elements E . Furthermore, both the
test and trial function spaces, vh and φh, are constructed by employing linear first-
order polynomial basis functions on each element E , the so-called dG(1) approach.
These basis functions are completely determined by interior nodes of the element
and are thus discontinuous at inter-element edges. Moreover, the discretization in
time utilizes as before the standard second-order Crank–Nicolson scheme as de-
scribed for instance in [61].
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4.4.2 Treatment of Surface Tension Effects

Surface tension effects are taken into account through the following force balance
at the interface Γ :

[u]|Γ = 0,
[−pI + μ

(∇u + (∇u)T
)]∣∣

Γ
·n = σκn.

Here n is the unit normal at the interface pointing into Ω1, [A]|Γ = A|Ω1∩Γ −
A|Ω2∩Γ denotes the jump of a quantity A across the interface, σ is the surface tension
coefficient, and κ is the curvature of the interface Γ . The first condition implies con-
tinuity of the velocity across the interface, whereas the second describes the force
balance on Γ . Two strategies are often used to handle the curvature term, either to
rewrite it as a volume force, that means

fst = σκnδ(Γ,x),

where δ(Γ,x) is the Dirac delta function localizing the surface tension forces to the
interface, or to introduce the Laplace–Beltrami operator �Γ on the interface, that
means

κn = �Γ id

and integrating the corresponding term in the weak formulation of the problem by
parts [1, 17]. In the case of our current explicit treatment we get

(fst ,v) =
∫

Γ n

σκnnn · vdΓ, (4.30)

where the superscript n denotes the previous time level. The extension of the surface
integrals into volumetric ones can be obtained by the indicated incorporation of the
Dirac Delta function δ = δ(Γ,x), which has the value ∞ at the location of the
interface, φ = 0, and zero elsewhere, that means

(fst ,v) =
∫

Ω

σκnnn · vδ
(
Γ n

)
dx. (4.31)

According to the applied CSF approach we approximate the Dirac Delta function
δ by a continuous regularized one, which is a smooth function in the vicinity ε of
the interface:

δ(φ) =
⎧⎨
⎩

φ < 0, max(0, 1
ε

+ 1
ε2 φ),

φ ≥ 0, max(0, 1
ε

− 1
ε2 φ).

(4.32)

Since the interface normal nn and curvature κn are higher order derivatives of the
Level Set function φn, their distributions can be obtained by a combination of ap-
propriate projection and gradient recovery techniques. Accordingly, the continuous
(piecewise trilinear) interface normal nn

Q1
is obtained by L2-projection (and normal-

ization) from the piecewise discontinuous P1 space into the continuous Q1 space.
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Finally, the continuous approximation κn
Q1

of the curvature κn is reconstructed via
L2-projection, too, ∫

Ω

κn
Q1

w dx = −
∫

Ω

w ∇ · nn
Q1

dx, (4.33)

where w denotes the test functions from the conforming trilinear Q1 space.
One of the remaining challenging problems is the capillary time step restric-

tion which couples the time step size with the (local) mesh size h and 1/σ leading
to very high computational cost due to such strict stability constraints. Beside the
classical work by Bänsch, who developed a semi-implicit approach for front track-
ing, the FEM-Level Set approach by Hysing [28] is one of the very few attempts
for interface capturing methods, which is in the focus of our future research on 3D
multiphase flow problems. Very recently, an alternative method containing a survey
on this problem and existing solution strategies was published by Sussmann [58].
However, it still has to be stated that the combination of adaptive Level Set or VOF
methods on locally adapted meshes shows severe numerical problems if configura-
tions with large surface tension shall be simulated in an accurate, robust, and effi-
cient way. Moreover, the challenges further increase for non-Newtonian multiphase
fluids, for instance for Power Law models (‘shear thinning’ [13]) or for viscoelastic
fluids [68] which even for single-phase flows lead to huge problems for large Weis-
senberg numbers. Nevertheless, we are convinced that the described FEM-Level Set
techniques have the potential to solve these challenging problems in future.

As a final comment, in the framework of variational formulations, the corre-
sponding volume integral can be reduced to a boundary integral which serves as
a natural boundary condition at the free interface [48, 56]. Moreover, if partial in-
tegration of the Laplace-Beltrami operator is applied in tangential direction of the
interface [1, 2, 14, 18, 24, 37] then the calculation of the second derivatives of φ for
the curvature can be omitted which can be used for very efficient evaluations of the
surface tension force in combination with Level Set functions satisfying the distance
property. This is in contrast to the usual finite difference approaches which require a
less accurate Continuum Surface Force (CSF) approximation of the (singular) Delta
function [6]. The above-mentioned alternative treatment of the surface tension force
term is in the scope of our forthcoming studies.

4.4.3 Reinitialization Procedure for LS-dG(1)

For the accurate calculation of the normal vector and curvature, as defined in (4.7),
and hence for the accurate position and shape of the dynamic interface, one has
to take care that φ satisfies—at least near the interface Γ —the distance property
which typically is achieved via appropriate postprocessing of a given numerical
approximation φ̃. Since the direct reinitialisation φi := sign(φ̃i)dist(xi , Γ ) is very
expensive, one way to do the corresponding corrections is to solve the so-called
Eikonal equation |∇φ| = 1 [30, 33] with boundary conditions φ = 0 on Γ = {x ∈
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Ω | φ̃(x) = 0}. Typical methods are based on fast marching [53] or fast sweeping
[69], while another approach is based on pseudo-timestepping for this nonlinear
equation which leads to a Hamilton–Jacobi PDE:

∂φ

∂τ
= sign(φ̃)

(
1 − |∇φ|), φ|τ=0 = φ̃. (4.34)

Corresponding numerical approaches exploit that this problem can be written as a
(nonlinear) transport equation

∂φ

∂τ
+ w · ∇φ = sign(φ̃), with w = sign(φ̃)

∇φ

|∇φ| . (4.35)

By stability reasons, the (discontinuous) sign function is typically replaced by a
smoothed approximation which may lead to loss of accuracy and shift of the free
interface. In the framework of FEM, the interface local projection of Parolini [47]
helps, particularly for piecewise linear functions leading to a constant gradient vec-
tor, which combines the advantages of direct and PDE-based reinitialisation. Then,
the correction of φ̃ mostly consists of three steps:

1. In mesh cells which contain the free boundary Γ , an exact reconstruction via
(piecewise constant) gradient is applied.

2. Use a L2 projection to obtain the best approximation of φ near Γ .
3. Outside of the ‘surface domain’ Ωint, solve the equation (4.35) using the already

calculated values of φ at the boundary of Ωint as Dirichlet boundary conditions.

According to our implementation, the reinitialization of the Level Set distribution
is based on the advantages offered by the Discontinuous Galerkin Finite Element
Method dG(1). This particularly means that we perform segregated reinitialization
procedures on different groups of elements. The identified groups are as follows:

• Elements intersected by the interface, we denote them by E ⊂ M 0.
• A few layers of elements in the positive direction (φ > 0) from the interface,

E ⊂ M +.
• A few layers of elements in the negative direction (φ < 0) from the interface,

E ⊂ M −.
• The rest of the domain, these are the elements E ⊂ M ∞.

Such a segregated approach enables us to get rid of the discontinuity that the sign
function S(φ) exhibits at elements intersected by the interface. Moreover, it reduces
the computational overhead since the PDEs are computed in a reduced computa-
tional domain only. Summarizing, the developed algorithm for the reinitialization is
as follows:

Step 1. Direct reinitialization for E ⊂ M 0:

φn |∇φ|=1−→ φn+1.



4 A 3D FEM-Level Set approach 81

Step 2. PDE-based solution for E ⊂ M + with

∂φ

∂τ
+ n · ∇φ = +1.

Step 3. PDE-based solution for E ⊂ M − with

∂φ

∂τ
− n · ∇φ = −1.

Step 4. Prescription of far field values for E ⊂ M ∞: φn+1
RI = φ∞.

Here

n := nn = ∇φn

|∇φn| .
The coupling between the individual groups of elements is achieved by imposing
of boundary conditions from E ⊂ M 0 for the PDE-based reinitialization which is
treated via the Fictitious Boundary Method approach [39]. One has to keep in mind
that the discontinuous sign function does not cause a problem in Steps 2 and 3 since
the discontinuity has been treated already in Step 1. Additionally, the Level Set
function can be corrected due to mass loss which typically is performed by adding
an appropriate constant cφ so that the total volume of both phases remains constant
[56]. Moreover, further improvements can be obtained via high-order discretization
and grid adaptivity [11] which is a subject of ongoing research.

4.5 Numerical Simulations

This section contains several numerical studies for validating and evaluating the
methodology described in the previous sections.

4.5.1 Single-Phase Flow Around a Cylinder

The first incompressible flow problem to be dealt with, particularly to demonstrate
the accuracy of the high-order Q2/P1 approach, is the well-known benchmark Flow
around cylinder developed in 1995 for the priority research program “Flow simu-
lation on high-performance computers” under the auspices of DFG, the German
Research Association [64]. This project was intended to facilitate the evaluation of
various numerical algorithms for the incompressible Navier-Stokes equations in the
laminar flow regime. A quantitative comparison of simulation results is possible on
the basis of relevant flow characteristics such as pressure values as well as drag and
lift coefficients, for which sufficiently accurate reference values are available (see
also: www.featflow.de/en/benchmarks/ff_benchmarks.html).

http://www.featflow.de/en/benchmarks/ff_benchmarks.html
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Fig. 4.2 Geometry and a coarse mesh for the ‘Flow around cylinder’ benchmark

Table 4.1 Mesh convergence results (levels 2 to 6) in terms of drag, lift, and pressure difference
for the ‘DFG Flow around cylinder problem’ at Re = 20. Comparison of our results with reference
results [5, 32]. �P refers to the pressure difference (front/back) on the cylinder and CD and CL

are the normalized ( 1
2 ρU2

meanLcylDcyl) drag and lift coefficients

Level �P CD CL NEL NDOF(u,p)

2 0.171956 6.01954 0.012316 768 21,560

3 0.171553 6.13973 0.009569 6,144 199,200

4 0.171156 6.17433 0.009381 49,152 1,482,816

5 0.171031 6.18261 0.009387 393,216 11,432,064

6 0.171022 6.18465 0.009397 3,145,728 89,760,016

Authors Reference values

Braack [5] 0.171007 6.18533 0.009401 1,000,000 40,000,000

John [32] 0.170779 6.18533 0.009401 2,000,000 55,000,000

Here, we consider the steady incompressible flow around a cylinder with circular
cross-section (see Fig. 4.2). An in-depth description of the geometrical details and
boundary conditions can be found in [4, 64] which contain all relevant information
regarding this benchmark configuration. The flow at Re = 20 is actually dominated
by diffusion and could be simulated by the standard Galerkin method without any
extra stabilization. The corresponding results are shown in Table 4.1 and demon-
strate the high quality of the Q2/P1 approach compared to quasi-reference values
from the literature [5, 32].

4.5.2 Two-Phase Flow of a Rising Bubble

The rising bubble configurations described in this section were chosen as the ones
established by the numerical studies of van Sint Annaland et al. [54] in order to
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Table 4.2 Resulting the Reynolds numbers obtained for the different configurations. The sub-
scripts E and S stand for empirical and simulational reference values from Grace [8] and van Sint
Annaland [54], respectively. The last four values refer to our simulation results obtained on the
meshes A and B and on the refinement levels 2, 3, and 4

Case Shape Mo Eo ReE ReS RemAl2 RemAl3 RemBl3 RemBl4

B Ellipsoidal 0.100 9.71 4.6 4.3 5.50 5.50 5.60 5.60

C Skirted 0.971 97.1 20.0 18.0 17.7 18.0 18.0 18.0

D Dimpled 1000 97.1 1.5 1.7 2.00 2.03 2.03 2.03

validate the implementation of our Level Set approach. According to the mentioned
studies, the cases B, C, and D were analysed which results in a considerable defor-
mation of the initial bubble. The ratios of physical properties (ρg : ρl and μg : μl) of
the present phases were set to (1 : 100). The ratios of the bubble diameter, db, with
respect to the domain sizes, ax , ay , az, were (db : ax : ay : az) = (3 : 10 : 10 : 20).
The values of the interfacial tension coefficient σgl and gravitational acceleration gz

for the simulations were set based on the characteristic Eötvös and Morton numbers
defined as in [8]:

Mo = gzμ
4
l �ρgl

ρ2
l σ 3

gl

, Eo = gz�ρgld
2
b

σgl

. (4.36)

As a result of the given settings the bubbles deform to a final shape and they reach
an equilibrium rising velocity, v∞, characterized by the Reynolds number defined
as in [8]:

Re = ρlv∞db

μl

. (4.37)

Since the Level Set approach by its nature does not preserve the mass of the
individual phases, certain mass correction techniques were incorporated to prevent
artificial ‘mass transformation’ from one phase to another. To this end we adopted a
simple but efficient method proposed by Smolianski [56] which elevates the level set
function at every time step with a limited constant min(dε,max(−dε, cφ)), where dε

is related to the characteristic element size and cφ is a value enforcing absolute mass
conservation. According to our experience setting dε to 3 % of the characteristic
element size already prevents the occurrence of permanent mass loss.

In order to achieve mesh-independent simulation results in terms of bubble shape
and terminal rising velocity, we performed the simulations on two sets of meshes of
two consequent levels of refinements (mesh A with refinement level 2, 3 and mesh
B refinement level 3, 4). As it can be seen from Fig. 4.3, which displays the equilib-
rium bubble shapes centered with respect to their center of mass, the bubble shapes
converge fairly well with increasing mesh resolution, especially in cases B and D.
The terminal rise velocities compared with the empirical predictions of Grace [8]
and numerical predictions of van Sint Annaland [54] are given in Table 4.2. De-
spite the mesh-independent properties of the obtained results, the comparison of the
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Fig. 4.3 Left: Cutplanes of continuous reconstructions of the interphase for the equilibrium bub-
ble shapes. Right: Time evolution of the bubble shapes (from bottom to top). The cases are orga-
nized as: Top—case B—Eo = 9.71, Mo = 0.1; Middle—case C—Eo = 97.1, Mo = 0.971; Bot-
tom—case D—Eo = 97.1, Mo = 1000
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terminal rise velocities shows a weaker correlation of our results with the empiri-
cal predictions of Grace than it was the case in van Sint Annaland’s computational
studies. This contradiction leaves behind the challenges for further numerical anal-
ysis, possibly leading to a benchmark problem to which other researchers will also
be welcome to contribute, as was the case with the well-known 2D rising bubble
problem [31].

4.5.3 Droplet Dripping Simulation

The corresponding experimental setup involves a two-phase problem consisting of a
glucose-water mixture (as a continuous phase) and silicon oil (as a dispersed phase).
The measurements are restricted to the so-called dripping mode. This mode is char-
acterized by relatively low volumetric flow rates and by the fact that the droplets
are generated in the near vicinity of the capillary so that the stream length is com-
parable with the size of the generated droplets. Since the temperature is kept at a
constant value during the whole experiment, all physical properties of the present
phases are constant. The experimental measurements were realized (by the group of
Prof. Walzel, BCI, TU Dortmund) to obtain statistically averaged quantities such as
droplet size, droplet generation frequency and stream length. These experimentally
measured quantities are compared with our subsequent simulation results.

The basic units used to define the derived quantities are the following ones:

[length] = dm, [time] = s, [mass] = kg.

The list of physical quantities is as follows (Fig. 4.4):

gz = −9.81 m s−2 = −98.1 dm s−2,

σ = 0.034 N m−1 = 0.034 kg s−2,

ρC = 1340 kg m−3 = 1.34 kg dm−3,

ρD = 970 kg m−3 = 0.97 kg dm−3,

μ = μC = μD = 500 mPa s = 0.050 kg dm s−1.

The list of geometrical parameters reads:

[domain size] = [−0.15 : 0.15] × [−0.15 : 0.15] × [0.0 : 1.2] dm3,
[inner capillary radius] = R1 = 0.015 dm,
[outer capillary radius] = R2 = 0.030 dm,
[primary phase inflow radius] = R3 = 0.15 dm.
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Fig. 4.4 A sketch of the
benchmark domain

The boundary conditions imposed on the inflow velocity are the following:

w =

⎧⎪⎨
⎪⎩

a2(R1 − r)(R1 + r) if 0 < r < R1 (a dispersed phase),

a1(R3 − r)(r − R2) if R2 < r < R3 (a continuous phase),

0 otherwise.

The parameters a1 and a2 are defined to achieve the required volumetric flow rates:

V̇C =
∫ R3

R2

(
2πra1(R3 − r)(r − R2)

)
dr

= −2πa1

[
r4

4
− (R2 + R3)

r3

3
+ R2R3

r2

2

]R3

R2

= πa1

6
(R2 + R3)(R3 − R2)

3.

V̇D =
∫ R1

0

(
2πra2(R1 − r)(R1 + r)

)
dr = 2πa2

[
R2

1r2

2
− r4

4

]R1

0
= πa2

2
R4

1 .

The volumetric flow rates for the simulations are set to:

V̇C = 99.04 ml min−1 = 99.04 cm3 min−1 = 99.04
10−3 dm3

60 s

= 1.65 × 10−3 dm3 s−1,

V̇D = 3.64 ml min−1 = 3.64 cm3 min−1 = 3.64
10−3 dm3

60 s

= 6.07 × 10−5 dm3 s−1,

which is guaranteed by setting a1 = 10.14 dm−1 s−1 and a2 = 763.7 dm−1 s−1.
The resulting process leads to a pseudo-steady state, where the droplet separation

happens according to the so-called dripping mode. The frequency of the given mode
is f = 0.60 Hz (cca 0.58 Hzexp), which produces droplets of size d = 0.058 dm (cca
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Fig. 4.5 A sequence of one droplet separation compared with experimental measurements

Fig. 4.6 Evolution of the volume of the secondary phase. Theoretical lines are characterized by
the slope q = 6.07 × 10−5 dm3 s−1

0.062 dmexp). The maximum stream length during the process is L = 0.102 dm (cca
0.122 dmexp). The snapshots of one full droplet generation compared with experi-
mental measurements are given in Fig. 4.5. The time evolution of the volume of the
secondary phase is given in Fig. 4.6. As it can be seen, the increase of the volume of
the dispersed phase follows the theoretically expected trend in a reasonable way de-
spite the fact that the mass correction technique (previously described in Sect. 4.5.2)
was not activated.
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4.6 Summary

In this contribution, we have shown that the realization of a new FEM-Level Set
approach in the framework of Discontinuous Galerkin Finite Elements together
with special PDE-based reinitialization techniques leads to very efficient simula-
tion tools for modelling multiphase flow problems. The implemented parallel 3D
multiphase flow solver has been validated in the case of the rising bubble and for
the droplet dripping problem. A detailed description of these problems together with
the obtained results—which are accurate and in fairly good agreement with the cor-
responding empirical data—are left in the form of a benchmark proposal for the
engineering community.
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