
Chapter 3
Analytical-Numerical Methods for Hidden
Attractors’ Localization: The 16th Hilbert
Problem, Aizerman and Kalman Conjectures,
and Chua Circuits

Gennady A. Leonov and Nikolay V. Kuznetsov

Abstract This survey is devoted to analytical-numerical methods for hidden at-
tractors’ localization and their application to well-known problems and systems.
From the computation point of view, in nonlinear dynamical systems the attrac-
tors can be regarded as self-exciting and hidden attractors. Self-exciting attractors
can be localized numerically by the following standard computational procedure:
after a transient process a trajectory, started from a point of an unstable manifold
in a small neighborhood of unstable equilibrium, reaches an attractor and com-
putes it. In contrast, a hidden attractor is an attractor whose basin of attraction
does not contain neighborhoods of equilibria. In well-known Van der Pol, Belousov-
Zhabotinsky, Lorenz, Chua, and many other dynamical systems classical attractors
are self-exciting attractors and can be obtained numerically by the standard compu-
tational procedure. However, for localization of hidden attractors it is necessary to
develop special analytical-numerical methods, in which at the first step the initial
data are chosen in a basin of attraction and then the numerical localization (visual-
ization) of the attractor is performed. The simplest examples of hidden attractors are
internal nested limit cycles (hidden oscillations) in two-dimensional systems (see,
e.g., the results concerning the second part of the 16th Hilbert’s problem). Other
examples of hidden oscillations are counterexamples to Aizerman’s conjecture and
Kalman’s conjecture on absolute stability in the automatic control theory (a unique
stable equilibrium coexists with a stable periodic solution in these counterexam-
ples). In 2010, for the first time, a chaotic hidden attractor was computed first by
the authors in a generalized Chua’s circuit and then one chaotic hidden attractor was
discovered in a classical Chua’s circuit.
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Fig. 3.1 Numerical
localization of the limit cycle
in the Rayleigh system

3.1 Introduction

In the first half of last century, during the initial period of development of the theory
of nonlinear oscillations [2, 11, 32, 33], main attention has been given to analysis
and synthesis of oscillating systems, for which the existence problem of oscilla-
tions can be solved relatively easily. The structure of many mechanical, electro-
mechanical, and electronic systems is such that the existence of oscillations in them
is almost obvious, namely the oscillations are excited from unstable equilibria. From
the computational point of view it means that one can use a standard numerical
method, in which after a transient process a trajectory, started from a point of an
unstable manifold in a small neighborhood of equilibrium, reaches an attractor and
identifies it.

Consider the following classical examples.

Example 3.1 (The Rayleigh string oscillator) In studying string oscillations [31]
Rayleigh discovered first that in the two-dimensional nonlinear dynamical system

ẍ − (
a − bẋ2)ẋ + x = 0, (3.1)

undamped vibrations (namely limit cycles—this term was introduced later by
Poincare) can arise. A well-known generalization of this system is the Van der Pol
equation [34] that describes the nonlinear electrical circuits used in radio engineer-
ing. The result of the simulation of this system (3.1) for a = 1, b = 0.1 is presented
in Fig. 3.1.

Example 3.2 (The Belousov-Zhabotinsky (BZ) reaction) In 1951 B.P. Belousov
discovered the first oscillations in the chemical reactions [3]. Consider one of the



3 Analytical-Numerical Methods for Hidden Attractors’ Localization 43

Fig. 3.2 Numerical
localization of the limit cycle
in the Belousov-Zhabotinsky
model

Belousov-Zhabotinsky dynamical models

εẋ = x(1 − x) + f (q − x)

q + x
z,

ż = x − z,

(3.2)

and perform its simulation, using standard parameters: f = 2/3, q = 8 × 10−4,
ε = 4 × 10−2 (see Fig. 3.2).

Consider now the examples of numerical localization of well-known chaotic at-
tractors in three-dimensional dynamical models.

Example 3.3 (The Lorenz system) Consider the Lorenz system [27]

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz,

(3.3)

and carry out its simulation with standard parameters σ = 10, β = 8/3, ρ = 28 (see
Fig. 3.3). Here the computed trajectory is started from a small neighborhood of an
unstable zero stationary point.
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Fig. 3.3 Numerical
localization of a chaotic
attractor in the Lorenz system

Example 3.4 (The Chua system) Consider the classical Chua circuit [7] and its dy-
namical model in dimensionless coordinates

ẋ = α(y − x) − αf (x),

ẏ = x − y + z,

ż = −(βy + γ z).

(3.4)

Here the function

f (x) = m1x + (m0 − m1)sat(x) (3.5)

characterizes a nonlinear element called the Chua diode. In this system, strange at-
tractors [29] then called the Chua attractors were discovered. To date all the known
classical Chua attractors are those excited from unstable equilibria. This makes it
possible to compute different Chua attractors with relative ease [5]. Perform the sim-
ulation of the Chua attractor with the following parameters: α = 9.35, β = 14.79,
γ = 0.016, m0 = −1.1384, m1 = 0.7225 (see Fig. 3.4).

Here, in all examples, the limit cycles and attractors are those excited from un-
stable equilibria (i.e., self-excited attractors).

3.2 Hidden Oscillations and Hidden Attractors

In the middle of the last century, oscillations of another type were found, so-called
hidden oscillations: the oscillations, the existence of which is not obvious. They
are not “connected” with equilibrium (i.e. in this case it is impossible to localize a
periodic solution by the computing of trajectory with the initial data from a small
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Fig. 3.4 Numerical
localization of a chaotic
attractor in the Chua circuit

neighborhood of equilibrium). In addition, in this case it is unlikely that the integra-
tion of trajectories with random initial data will lead to localization of such hidden
oscillation since the basin of attraction can be very small and the considered system
dimension can be large.

For the first time the problem of finding hidden oscillations arose in the 16th
Hilbert problem (1900) for two-dimensional polynomial systems. For more than a
century, in the framework of the solution of this problem, the numerous theoretical
and numerical results were obtained. However, the problem is still far from being
resolved even for the simple class of quadratic systems. In the 1940s and 1950s, aca-
demician A.N. Kolmogorov became the initiator of a few hundred of the following
computational experiments [16]: he asked students (at Moscow State University) to
find limit cycles in two-dimensional quadratic systems with randomly chosen coef-
ficients. The result was absolutely unexpected: limit cycles were not found in any of
the experiments, though it is known that quadratic systems with limit cycles form
open domains in the space of coefficients and, therefore, for a random choice of
polynomial coefficients, the probability of hitting in these sets is positive.

Note that numerical localization of small and nested limit cycles [13, 16, 20, 22,
24, 25] is a difficult problem.

Example 3.5 (Four limit cycles in a quadratic system) Nowadays the application
of special analytical-numerical methods [17, 25] allows one to visualize four limit
cycles in a quadratic system [12].
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Fig. 3.5 Visualization of
four limit cycles in a
polynomial quadratic system

Consider the following quadratic system:

dx

dt
= x2 + xy + y,

dy

dt
= a2x

2 + b2xy + c2y
2 + α2x + β2y.

(3.6)

In Fig. 3.5 for the coefficients

b2 = 2.7, c2 = 0.4, a2 = −10, α2 = −437.5, β2 = 0.003,

three “large” (normal size) limit cycles around the zero point and one “large” limit
cycle to the left of the straight line x = −1 are visualized.

Further the problem of analysis of hidden oscillations arose in engineering prob-
lems of automatic control. In 1961 Gubar’ [8] showed analytically the possibility of
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existence of hidden oscillation in a two-dimensional system of a phase locked-loop
with piecewise-constant impulse nonlinearity. In the 1950s and 1960s, the investiga-
tions of widely known Markus-Yamabe [28], Aizerman [1], and Kalman [9] conjec-
tures on absolute stability had led to the finding of hidden oscillations in automatic
control systems with a unique stable stationary point and the nonlinearity belonging
to the sector of linear stability (see, e.g., [4, 6, 18, 30]).

Later, in 2010, for the first time, a chaotic hidden attractor was computed, by the
authors, in a generalized Chua circuit [14] and then one chaotic hidden attractor was
discovered in the classical Chua circuit [23].

Since the key factor, providing the possibility of computing the oscillation, is a
basin of attraction, the following definition can be formulated.

Definition 3.1 Hidden attractors are those attractors whose basin of attraction does
not contain neighborhoods of equilibria.

Here it is of the essence to consider a basin of attraction in forward and backward
time since the computation in backward time may allow one to localize an unstable
oscillation.

3.2.1 Analytical-Numerical Method for Localization of Hidden
Oscillations in Multidimensional Dynamical Systems

For numerical localization of hidden oscillations the methods based on homotopy
turned out to be the most effective ones. In this case a sequence of similar systems
is considered such that for the first starting system the initial data for numerical lo-
calization of a periodic solution (starting periodic solution) can be obtained analyt-
ically and then the transformation of this starting periodic solution in the transition
from one system to another is followed numerically.

Further we consider an effective analytical-numerical approach for localization
of hidden oscillations in multidimensional dynamical systems, which are based on
the method of a small parameter, the method of harmonic linearization (the describ-
ing function method), numerical methods, and an applied bifurcation theory.

Consider a system with one scalar1 nonlinearity:

dx
dt

= Px + qψ
(
r∗x

)
, x ∈ R

n. (3.7)

Here P is a constant (n × n)-matrix, q, r are constant n-dimensional vectors, ∗ is
a transposition operation, ψ(σ) is a scalar function, and ψ(0) = 0. Define a coeffi-
cient of harmonic linearization k in such a way that the matrix

P0 = P + kqr∗ (3.8)

1Vector nonlinearity can be considered similarly [26].
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has a pair of purely imaginary eigenvalues ±iω0 (ω0 > 0) and the rest of its eigen-
values have negative real parts. Assume that such k exists. Rewrite the system (3.7)
as

dx
dt

= P0x + qϕ
(
r∗x

)
, (3.9)

where ϕ(σ) = ψ(σ) − kσ .
Introduce a finite sequence of functions ϕ0(σ ),ϕ1(σ ), . . . , ϕm(σ ) such that the

graphs of the neighboring functions ϕj (σ ) and ϕj+1(σ ) slightly differ from one
another, the function ϕ0(σ ) is small, and ϕm(σ) = ϕ(σ). Using a smallness of the
function ϕ0(σ ), one can apply and mathematically strictly justify [15, 16, 18, 26] the
method of harmonic linearization (the describing function method) for the system

dx
dt

= P0x + qϕ0(r∗x
)

(3.10)

and find a stable nontrivial periodic solution x0(t). For the localization of the oscil-
lating solution (attractor) of the original system (3.9), we shall follow numerically
the transformation of this periodic solution (a starting oscillating attractor, i.e. an
attractor not including equilibria, denoted further by A0), with increasing j in pass-
ing from nonlinearity ϕj (σ ) to ϕj+1(σ ). Here two cases are possible:

Case 1: All the points of A0 are in the attraction domain of the attractor A1, being
an oscillating attractor of the system

dx
dt

= P0x + qϕj
(
r∗x

)
(3.11)

with j = 1.
Case 2: In the change from the system (3.10) to the system (3.11) with j = 1 a loss

of stability (bifurcation) and the vanishing of A0 are observed.

In Case 1 the solution x1(t) can be determined numerically by starting a trajec-
tory of the system (3.11) with j = 1 from the initial point x0(0). If in the process
of computation the solution x1(t) has not fallen to an equilibrium and it is not in-
creased indefinitely (here a sufficiently large computational interval [0, T ] should
always be considered), then this solution reaches an attractor A1. Then it is possible
to proceed to the system (3.11) with j = 2 and to perform a similar procedure of
computation of A2, by starting a trajectory of the system (3.11) with j = 2 from the
initial point x1(T ) and computing the trajectory x2(t).

Proceeding this procedure and sequentially increasing j and computing xj (t)

(being a trajectory of the system (3.11) with the initial data xj−1(T )), one either
arrives at the computation of Am (being an attractor of the system (3.11) with j = m,
i.e. the original system (3.9)), either, at a certain step, observes a loss of stability
(bifurcation) and the vanishing of the attractor.
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3.2.1.1 System Reduction

To determine the initial data x0(0) of the starting periodic solution, one transforms
the system (3.10) with nonlinearity ϕ0(σ ) by the linear nonsingular transformation
S to the form

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c∗

3y3
)
,

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗

3y3
)
,

ẏ3 = A3y3 + b3ϕ
0(y1 + c∗

3y3
)
.

(3.12)

Here y1, y2 are scalar values, y3 is an (n − 2)-dimensional vector, b3 and c3 are
(n − 2)-dimensional vectors, b1 and b2 are real numbers, and A3 is an ((n − 2) ×
(n − 2))-matrix, all eigenvalues of which have negative real parts. Without loss of
generality, it can be assumed that for the matrix A3 there exists a positive number
d > 0 such that

y∗
3

(
A3 + A∗

3

)
y3 ≤ −2d|y3|2, ∀y3 ∈ R

n−2. (3.13)

In practice, for determining k and ω0 the transfer function W(p) of the system
(3.7) is used:

W(p) = r∗(P − pI)−1q,

where p is a complex variable. The number ω0 is obtained from the equation
ImW(iω0) = 0 and k is computed then by the formula k = −(ReW(iω0))

−1.
Let us write a transfer function of the system (3.10):

r∗(P0 − pI)−1q = ηp + θ

p2 + ω2
0

+ R(p)

Q(p)
, (3.14)

and a transfer function of the system (3.12):

−b1p + b2ω0

p2 + ω2
0

+ c∗
3(A3 − pI)−1b3. (3.15)

Here I is a unit matrix, η and θ are certain real numbers, Q(p) is a stable polynomial
of the degree (n−2), R(p) is a polynomial of a degree smaller than (n−2). Suppose
that the polynomials R(p) and Q(p) have no common roots. Since the systems
(3.10) and (3.12) are equivalent, the transfer functions of these systems coincide.
This implies the following relations:

η = −b1, θ = b2ω0,

c∗
3b3 + b1 = r∗q,

R(p)

Q(p)
= c∗

3(A3 − pI)−1b3.
(3.16)
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3.2.1.2 Justification of Harmonic Balance in Non-critical Case

Consider the system (3.10) with differentiable2 nonlinearity ϕ0(σ ) = εϕ(σ ), where
ε is a small positive parameter.

Introduce the describing function

Φ(a) =
∫ 2π/ω0

0
ϕ
(
cos(ω0t)a

)
cos(ω0t) dt.

Theorem 3.1 ([6, 16]) Let the number a0 > 0 exist such that the conditions

Φ(a0) = 0, b1
dΦ(a)

da

∣∣∣∣
a=a0

< 0 (3.17)

are satisfied. Then for sufficiently small ε > 0 the system (3.12) with nonlinearity
ϕ0(σ ) = εϕ(σ ) has a periodic solution of the form

y1(t) = cos(ω0t)y1(0) + O(ε),

y2(t) = sin(ω0t)y1(0) + O(ε),

y3(t) = exp(A3t)y3(0) + On−2(ε),

t ∈ [0, T ] (3.18)

with the initial data

y1(0) = a0 + O(ε), y2(0) = 0, y3(0) = On−2(ε) (3.19)

and with the period

T = 2π

ω0
+ O(ε).

Here On−2(ε) is an (n − 2)-dimensional vector such that its components are O(ε).
Taking into account the relations (3.16), this theorem can be reformulated in the

following way.

Corollary 3.1 Let the number a0 > 0 exist such that the conditions

Φ(a0) = 0, η
dΦ(a)

da

∣∣∣∣
a=a0

> 0 (3.20)

are satisfied. Then for sufficiently small ε > 0 the system (3.10) with the transfer
function (3.14) and the nonlinearity ϕ0(σ ) = εϕ(σ ) has a T -periodic solution such
that

r∗x(t) = a0 cos(ω0t) + O(ε), T = 2π

ω0
+ O(ε). (3.21)

2There is similar consideration for piecewise- continuous function being Lipschitz on closed con-
tinuity intervals [16].
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Theorem 3.1 coincides with the procedure of the search of stable periodic solu-
tions by means of the standard describing function method (see, for example, [10]).
Similar assertions can be proved in the case of vector nonlinearity [26].

It should be noted that the condition (3.20) cannot be satisfied in the case when
conditions of the Aizerman and Kalman conjectures are fulfilled (i.e. nonlinearity ϕ

belongs to the sector of linear stability). In this case the methods of harmonic bal-
ance and describing function lead to a wrong result, namely nonexistence of periodic
solutions and global stability of unique equilibrium, but nowadays the counterexam-
ples are well known [6, 16].

3.2.1.3 Justification of Harmonic Balance in the Critical Case

In 1957 R.E. Kalman formulated the following conjecture [9]:

Conjecture 3.1 Suppose that for all k ∈ (μ1,μ2) a zero solution of the system (3.9)
with ϕ(σ) = kσ is asymptotically stable in the large (i.e., a zero solution is Lya-
punov stable and any solution of the system (3.9) tends to zero as t → ∞. In other
words, a zero solution is a global attractor of the system (3.9) with ϕ(σ) = kσ ).

If at the points of differentiability of ϕ(σ) the condition

μ1 < ϕ′(σ ) < μ2 (3.22)

is satisfied, then the system (3.9) is stable in the large.

The Kalman conjecture is a strengthening of the Aizerman conjecture, where in
place of the condition (3.22) on the derivative of nonlinearity it is required that the
nonlinearity itself belongs to a linear sector.

To justify the method of harmonic balance in this critical case special nonlinear-
ities will be considered. Let us assume first that μ1 = 0, μ2 > 0 and consider the
system (3.12) with nonlinearity ϕ0(σ ) of a special form

ϕ0(σ ) =
{

μσ, ∀|σ | ≤ ε;
sign(σ )Mε3, ∀|σ | > ε.

(3.23)

Here μ < μ2 and M are certain positive numbers and ε is a small positive parameter.
Then the following result is valid.

Theorem 3.2 ([6, 16]) If the inequalities

b1 < 0, 0 < μb2ω0
(
c∗

3b3 + b1
) + b1ω

2
0
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are satisfied, then for small enough ε the system (3.12) with nonlinearity (3.23) has
an orbitally stable periodic solution

y1(t) = − sin(ω0t)y2(0) + O(ε),

y2(t) = cos(ω0t)y2(0) + O(ε),

y3(t) = On−2(ε)

(3.24)

with the initial date

y1(0) = O
(
ε2),

y2(0) = −
√

μ(μb2ω0(c∗
3b3 + b1) + b1ω

2
0)

−3ω2
0Mb1

+ O(ε),

y3(0) = On−2
(
ε2).

(3.25)

The methods for the proof of this theorem are developed in [6, 15, 16, 21].

3.2.2 Hidden Oscillations in Counterexamples to the Aizerman
and Kalman Conjectures

Based on this theorem, it is possible to apply the described above multi-step proce-
dure for the localization of hidden oscillations: the initial data, obtained analytically,
allows one to step aside from stable zero equilibrium and to start a numerical local-
ization of possible oscillations.

Consider a finite sequence of piecewise-linear functions

ϕj (σ ) =
{

μσ, ∀|σ | ≤ εj ,

sign(σ )Mε3
j , ∀|σ | > εj ,

εj = j

m

√
μ

M
j = 1, . . . ,m. (3.26)

Here the function ϕm(σ) is a monotone continuous piecewise-linear function sat(σ )

(“saturation”). Choose m in such a way that the graphs of the functions ϕj and
ϕj+1 are slightly distinct from each other outside small neighborhoods of points of
discontinuity.

Suppose that the periodic solution xm(t) of the system (3.9) with the monotone
and continuous function ϕm(σ) = sat(σ ) is computed. In this case a similar compu-
tational procedure for the sequence of systems with nonlinearities can be organized:

θi(σ ) = ϕm(σ) + sat(σ ) + i

10

(
tanh(σ ) − sat(σ )

)
, i = 0, . . . ,10,

θ0(σ ) = sat(σ ), θ10(σ ) = tanh(σ ) = eσ − e−σ

eσ + e−σ
.

(3.27)
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Note that, using the similar technique of small changes, it is also possible to ap-
proach other continuous monotonic increasing functions [26]. The finding of peri-
odic solutions for a system with nonlinearity (3.27) gives a certain counterexample
to the Kalman conjecture for each i = 1, . . . ,10.

Consider the following system:

ẋ1 = −x2 − 10ϕ(σ),

ẋ2 = x1 − 10.1ϕ(σ),

ẋ3 = x4,

ẋ4 = −x3 − x4 + ϕ(σ),

σ = x1 − 10.1x3 − 0.1x4.

(3.28)

Here for ϕ(σ) = kσ the linear system (3.28) is stable for k ∈ (0,9.9) (see (3.25)).
For piecewise-continuous nonlinearity ϕ(σ) = ϕ0(σ ) with sufficiently small ε there
exists a periodic solution.

Now let us use the algorithm for construction of periodic solutions. Suppose
μ = M = 1, ε1 = 0.1, ε2 = 0.2, . . . , ε10 = 1. For j = 1, . . . ,10, the solutions of the
system (3.28) with nonlinearity ϕ(σ) equal to ϕj (σ ) can be constructed sequen-
tially. Here for all εj , j = 1, . . . ,10 there exists a periodic solution.

At the first step, for j = 0, the initial data of stable periodic oscillation take the
form

x1(0) = O(ε), x3(0) = O(ε),

x2(0) = −1.7513 + O(ε) x4(0) = O(ε).
(3.29)

Therefore for j = 1 a trajectory starts from the point x1(0) = x3(0) = x4(0) = 0,
x2(0) = −1.7513. The projection of this trajectory on the plane (x1, x2) and the
sector of linear stability are shown in Fig. 3.6 for the odd steps.

From Fig. 3.6 it follows that at each step after a transient process a stable periodic
solution is reached. At each step, the last trajectory point is used as the initial data
for the next step of the computational procedure.

Proceeding this procedure for j = 3, . . . ,10, one sequentially approximates a
periodic solution of the initial system (3.28) (Fig. 3.7). It should also be noted that
if in place of sequential increasing εj to compute, for ε = 1, a solution with the
initial data according to (3.29), then the solution will “fall down” to zero.

Change the nonlinearity ϕ(σ) to the increasing function θi(σ ), and continue se-
quential construction of periodic solutions of the system (3.28) for i = 1, . . . ,10.
The obtained periodic solutions are shown in Fig. 3.8.

At the last step for the system (3.28) with smooth strictly increasing nonlinearity

ϕ(σ) = tanh(σ ) = eσ − e−σ

eσ + e−σ
, 0 <

d

dσ
tanh(σ ) ≤ 1, ∀σ (3.30)

there exists a periodic solution (Fig. 3.9).
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Fig. 3.6 εj : trajectory projection on the plane (x1, x2) and nonlinearity
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Fig. 3.7 Hidden oscillation
projection on the plane
(x1, x2), the system output
σ(t), and nonlinearity

3.2.3 Hidden Chaotic Attractors in the Chua Circuit

The development of modern computers allows one to perform numerical simula-
tion of nonlinear chaotic systems and to obtain new information on the structure of
their trajectories. In the well-known Lorenz, Chen, Chua, and many other chaotic
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Fig. 3.8 Trajectory projection on the plane (x1, x2), system output and nonlinearity

dynamical systems the classical attractors are self-exciting attractors and can be
obtained numerically by means of a standard computational procedure. In contra-
diction, there are attractors of another type: hidden chaotic attractors, which cannot
be obtained by a standard computational procedure and show limitations of such a
simple computational approach.
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Fig. 3.9 A counterexample
to the Kalman conjecture:
hidden oscillation in a system
with the increasing
nonlinearity tanh(σ ), which
belongs to the sector of linear
stability

In 2010, for the first time, a chaotic hidden attractor was discovered [14, 23] in
the Chua circuit, which is described by a three-dimensional dynamical system. Let
us demonstrate the application of the above algorithm for localization of a hidden
chaotic attractor in the Chua system. For this purpose, rewrite the Chua system (3.4)
as (3.7)

dx
dt

= Px + qψ
(
r∗x

)
, x ∈R

3. (3.31)
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Here

P =
⎛

⎝
−α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞

⎠ , q =
⎛

⎝
−α

0
0

⎞

⎠ , r =
⎛

⎝
1
0
0

⎞

⎠ ,

ψ(σ ) = (m0 − m1)sat(σ ).

Introduce the coefficient k and the small parameter ε, and represent the system
(3.31) as (3.10), namely

dx
dt

= P0x + qεϕ
(
r∗x

)
, (3.32)

where

P0 = P + kqr∗ =
⎛

⎝
−α(m1 + 1 + k) α 0

1 −1 1
0 −β −γ

⎞

⎠ ,

λ
P0
1,2 = ±iω0, λ

P0
3 = −d,

ϕ(σ ) = ψ(σ) − kσ = (m0 − m1)sat(σ ) − kσ.

By the nonsingular linear transformation x = Sy the system (3.32) is reduced to the
form (3.12), namely

dy
dt

= Ay + bεϕ
(
c∗y

)
, (3.33)

where

A =
⎛

⎝
0 −ω0 0
ω0 0 0
0 0 −d

⎞

⎠ , b =
⎛

⎝
b1
b2
1

⎞

⎠ , c =
⎛

⎝
1
0

−h

⎞

⎠ .

The transfer function WA(p) of the system (3.33) can be represented as

WA(p) = −b1p + b2ω0

p2 + ω2
0

+ h

p + d
.

Further, using the equality of the transfer functions of the systems (3.32) and (3.33),
one obtains

WA(p) = r∗(P0 − pI)−1q.
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This implies the following relations:

k = −α(m1 + m1γ + γ ) + ω2
0 − γ − β

α(1 + γ )
,

d = α + ω2
0 − β + 1 + γ + γ 2

1 + γ
,

h = α(γ + β − (1 + γ )d + d2)

ω2
0 + d2

,

b1 = α(γ + β − ω2
0 − (1 + γ )d)

ω2
0 + d2

,

b2 = α((1 + γ − d)ω2
0 + (γ + β)d)

ω0(ω
2
0 + d2)

.

(3.34)

Since the system (3.32) can be reduced to the form (3.33) by the nonsingular
linear transformation x = Sy, for the matrix S the relations

A = S−1P0S, b = S−1q, c∗ = r∗S (3.35)

are valid. Having solved these matrix equations, one obtains the transformation ma-
trix

S =
⎛

⎝
s11 s12 s13
s21 s22 s23
s31 s32 s33

⎞

⎠ .

Here

s11 = 1, s12 = 0, s13 = −h,

s21 = m1 + 1 + k, s22 = −ω0

α
, s23 = −h(α(m1 + 1 + k) − d)

α
,

s31 = α(m1 + k) − ω2
0

α
, s32 = −α(β + γ )(m1 + k) + αβ − γω2

0

αω0
,

s33 = h
α(m1 + k)(d − 1) + d(1 + α − d)

α
.

By (3.19), for small enough ε initial data for the first step of multistage localiza-
tion procedure take the form

x(0) = Sy(0) = S

⎛

⎝
a0
0
0

⎞

⎠ =
⎛

⎝
a0s11
a0s21
a0s31

⎞

⎠ .
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Fig. 3.10 Localization of a hidden chaotic attractor: a road to chaos: the projections of trajectories
on the plane (x, y)

Returning to the Chua system’s denotations, for determining the initial data of the
starting solution of the multistage procedure we have the following formulas:

x(0) = a0, y(0) = a0(m1 + 1 + k), z(0) = a0
α(m1 + k) − ω2

0

α
. (3.36)

Consider the system (3.32) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(3.37)

Note that in this case for the considered values of parameters there are three equi-
libria in the system: a locally stable zero equilibrium and two saddle equilibria.
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Fig. 3.11 Equilibrium, stable
manifolds of saddles, and
localization of hidden
attractor

Now we apply the above procedure of hidden attractors’ localization to the Chua
system (3.31) with the parameters (3.37). For this purpose let us compute a starting
frequency and a coefficient of harmonic linearization. We have

ω0 = 2.0392, k = 0.2098.
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Then, one computes solutions of the system (3.32) with nonlinearity εϕ(x) =
ε(ψ(x) − kx), sequentially increasing ε from the value ε1 = 0.1 to ε10 = 1 with
the step 0.1 (see Fig. 3.10).

By (3.34) and (3.36) we obtain the initial data

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of the multistage procedure for the construction of solutions. For
the value of the parameter ε1 = 0.1, after the transient process the computational
procedure reaches the starting oscillation x1(t). Further, by the sequential transfor-
mation of xj (t) with increasing the parameter εj , using the numerical procedure, for
the original Chua system (3.31) the set Ahidden is computed. This set is presented in
Fig. 3.11.

It should be noted that the decreasing of the integration step, the increasing of
integration time, and the computation of different trajectories of the original system
with initial data from a small neighborhood of Ahidden lead to the localization of the
same set Ahidden (all the computed trajectories densely trace the set Ahidden). Note
also that for the computed trajectories Zhukovsky instability and the positiveness of
the Lyapunov exponent [19] is observed.

The behavior of system trajectories in the neighborhood of equilibria is presented
in Fig. 3.11. Here Munst

1,2 are unstable manifolds, Mst
1,2 are stable manifolds. Thus, in

a phase space of the system there are stable separating manifolds of saddles.
The above and the remark on the existence, in the system, of a locally stable zero

equilibrium F0, attracting the stable manifolds Mst
1,2 of two symmetric saddles S1

and S2, lead to the conclusion that in Ahidden a hidden strange attractor is computed.

3.3 Conclusion

The study of hidden oscillations and hidden chaotic attractors requires the develop-
ment of new analytical and numerical methods. This survey includes discussion on
new analytical-numerical approaches to investigation of hidden oscillations in dy-
namical systems, based on the development of numerical methods, computers, and
an applied bifurcation theory, which suggests revising early ideas on the application
of the small parameter method and the harmonic linearization [16, 18, 23, 26].
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