
Chapter 24
Failure Simulations with a Strain Rate
Dependent Ductile-to-Brittle Transition Model

Juha Hartikainen, Kari Kolari, and Reijo Kouhia

Abstract In this paper, simulations with a phenomenological model to describe
the ductile-to-brittle transition of rate-dependent solids are presented. The model is
based on consistent thermodynamic formulation using proper expressions for the
Helmholtz free energy and the dissipation potential. In the model, the dissipation
potential is additively split into damage and visco-plastic parts and the transition
behaviour is obtained using a stress dependent damage potential. The damage is
described by using a vectorial variable.

Keywords Constitutive model · Continuum damage mechanics · Viscoplasticity ·
Dissipation potential · Ductile-to-brittle transition

24.1 Introduction

Most materials exhibit rate-dependent inelastic behaviour. An increasing strain rate
usually increases the yield stress thus enlarging the elastic range. However, the duc-
tility is gradually lost and for some materials there exists a rather sharp transition
strain rate zone after which the material behaviour is completely brittle.

In this paper, a phenomenological approach to model the ductile-to-brittle transi-
tion of rate-dependent solids is presented. It is an extension to the model presented
in [1, 5] using a vectorial damage variable [8]. The model is based on consistent
thermodynamic formulation using proper expressions for the Helmholtz free energy
and dissipation potential. The dissipation potential is additively split into damage
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and visco-plastic parts and the transition behaviour is obtained using a stress depen-
dent damage potential. The basic features of the model are discussed.

24.2 Thermodynamic Formulation

The constitutive model is derived using a thermodynamic formulation, in which
the material behaviour is described completely through the Helmholz free energy
and the dissipation potential in terms of the variables of state and dissipation and
considering that the Clausius-Duhem inequality is satisfied [6].

The Helmholtz free energy

ψ = ψ(εe,D)

is assumed to be a function of the elastic strains, εe, and the damage vector D.
Assuming small strains, the total strain can be additively decomposed into elastic
and inelastic strains εi as ε = εe + εi.

The Clausius-Duhem inequality, in the absence of thermal effects, is formulated
as

γ ≥ 0, γ = −ρψ̇ + σ : ε̇, (24.1)

where ρ is the material density. As usual in the solid mechanics, the dissipation
potential

ϕ = ϕ(σ ,Y)

is expressed in terms of the thermodynamic forces σ and Y dual to the fluxes ε̇i and
Ḋ, respectively. The dissipation potential is associated with the power of dissipation,
γ , such that

γ = ∂ϕ

∂σ
: σ + ∂ϕ

∂Y
· Y. (24.2)

Using the definition (24.2), Eq. (24.1)2, and defining that ρ∂ψ/∂D = −Y, results in
the equation

(
σ − ρ

∂ψ

∂εe

)
: ε̇e +

(
ε̇i − ∂ϕ

∂σ

)
: σ +

(
Ḋ − ∂ϕ

∂Y

)
· Y = 0. (24.3)

Then, if (24.3) holds for any evolution of ε̇e, σ and Y , the inequality (24.1) is satis-
fied and the following relevant constitutive relations are obtained:

σ = ρ
∂ψ

∂εe
, ε̇i = ∂ϕ

∂σ
, Ḋ = ∂ϕ

∂Y
. (24.4)
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24.3 Particular Model

In the present formulation, the Helmholtz free energy, ψ , is a function depending on
the symmetric second-order strain tensor εe and the damage vector D. The integrity
basis thus consists of the following six invariants:

I1 = trεe, I2 = 1

2
trε2

e, I3 = 1

3
trε3

e, I4 = ‖D‖,
(24.5)

I5 = D · εe · D, I6 = D · ε2
e · D.

A particular expression for the free energy, describing the elastic material behaviour
with the directional reduction effect due to damage, is given by [8]

ρψ = (1 − I4)

(
1

2
λI 2

1 + 2μI2

)
+ H

(
σ⊥) λμ

λ + 2μ

(
I4I

2
1 − 2I1I5I

−1
4 + I 2

5 I−3
4

)

+ (
1 − H

(
σ⊥))(1

2
λI4I

2
1 + μI 2

5 I−3
4

)
+ μ

(
2I4I2 + I 2

5 I−3
4 − 2I6I

−1
4

)
,

(24.6)

where λ and μ are the Lamé parameters, H is the Heaviside step function and

σ⊥ = λI1 + 2μD̂ · εe · D̂, and D̂ = D/I4. (24.7)

To model the ductile-to-brittle transition due to an increasing strain rate, the dis-
sipation potential is decomposed into the brittle damage part, ϕd, and the ductile
viscoplastic part, ϕvp, as

ϕ(σ ,Y) = ϕd(Y)ϕtr(σ ) + ϕvp(σ ), (24.8)

where the transition function, ϕtr, deals with the change in the mode of deformation
when the strain rate ε̇i increases. Applying an overstress type of viscoplasticity [2,
13, 14] and the principle of strain equivalence [11, 12], the following choices are
made to characterize the inelastic material behaviour:

ϕd = 1

2r + 2

Y 2
r

τd(1 − I4)
H(ε1 − εtresh)

(
(Y − Y0) · M · (Y − Y0)

Y 2
r

)r+1

, (24.9)

ϕtr = 1 − I4

pn

[
1

τvpη

(
σ̄

(1 − I4)σr

)p]n

, (24.10)

ϕvp = 1

p + 1

(1 − I4)σr

τvp

(
σ̄

(1 − I4)σr

)p+1

, (24.11)

where the parameters τd, r and n are associated with the damage evolution, and the
parameters τvp and p with the visco-plastic flow. In addition, η denotes the inelastic
transition strain rate and Y0 = βYrn, where β is a small number, acts as a seed for the
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damage evolution, and n is the eigenvector of the elastic strain tensor corresponding
to the largest principal strain ε1. The damage threshold strain is εtresh. The direction
of the damage vector is defined through the tensor M = n ⊗ n where ⊗ denotes the
tensor product. The relaxation times τd and τvp have the dimension of time and the
exponents r,p ≥ 0 and n ≥ 1 are dimensionless. σ̄ is a scalar function of stress, e.g.
the effective stress σeff = √

3J2, where J2 is the second invariant of the deviatoric
stress. The reference values Yr and σr can be chosen arbitrarily, and they are used
to make the expressions dimensionally reasonable. Since only isotropic elasticity is
considered, the reference value Yr has been chosen as

Yr = σ 2
r /E, (24.12)

where E is the Young modulus.
Making use of (24.4), the choices (24.6)–(24.11) yield the desired constitutive

equations.

24.4 On the Integration Algorithms

There are many different algorithms for the integration of inelastic constitutive mod-
els. However, the fully implicit backward Euler scheme seems to be the most popu-
lar, although it is only first-order accurate [15–17]. In practical problems, especially
in those of creep and viscoplasticity, the time steps are often large, several magni-
tudes larger than the critical time step of some explicit methods, e.g. the forward
Euler method. Therefore, the integrator should be unconditionally stable and suffi-
ciently accurate for large time steps.

As shown in [10], the asymptotic convergence rate does not necessarily reflect
high accuracy outside the asymptotic range, which usually means step sizes smaller
than the critical time step of the explicit Euler method. For large time steps, the first-
order accurate backward Euler method seems to be more accurate than many higher-
order schemes. Therefore, an integrator for inelastic constitutive models should be
at least [9, 10]:

• L-stable
• and for σ̇ + λσ = 0, λ = constant, the stability function should be

– strictly positive, and
– monotonous with respect to time step.

It is obvious that the standard backward Euler scheme fulfils these requirements.
When damage is included in the constitutive model, behaviour of the solution of

the governing evolution equations is completely different from that of viscous and
plastic solutions. Solutions of problems in creep, plasticity, and viscoplasticity are
diffusive and decay exponentially with time whereas damage produces a reactive
type of solutions growing exponentially with time [3].
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24.4.1 Standard Backward Euler Scheme

For rate-dependent solids implicit time integrators are preferable. In this study, the
backward Euler scheme is used to integrate the constitutive model at the integration
point level. Although the backward Euler scheme is asymptotically only first-order
accurate, it has good accuracy properties for large, practically relevant time steps
[10].

Using matrix notation, the constitutive model (24.4) is rewritten in the form

σ̇ = fσ (σ ,D), (24.13)

Ḋ = fD(σ ,D) (24.14)

such that

fσ (σ ,D) = C(ε̇ − ε̇i) + ∂C
∂D

C−1σ , (24.15)

fD(σ ,D) = −ϕtrH(ε1 − εtresh)

τd(1 − I4)

(
(Y − Y0) · M · (Y − Y0)

Y 2
r

)r

, (24.16)

where the elastic stress is σ e = C : εe, and the elastic constitutive matrix C of a
damaged solid can be most conveniently written using the tensor component repre-
sentation

Cijkl = λ
(
1 − λ̃I4H

(
σ⊥))

δij δkl + 2μ
[
δikδjl − λ̃I4H

(
σ⊥)

(δij D̂iD̂j + D̂iD̂j δkl)
]

+ 2μ
[
2 + (λ̃ − 1)H

(
σ⊥)]

I4D̂iD̂j D̂kD̂l

− 2μI4(δilD̂j D̂k + δjkD̂iD̂l), (24.17)

where λ̃ = λ/(λ + 2μ).
Applying the backward Euler scheme and the Newton linearisation method to the

evolution equations (24.13) and (24.14) results in the linear system of equations1

[
H11 H12
H21 H22

]{
δσ

δD

}
= �t

{
fσ
fD

}
−

{
�σ

�D

}
, (24.18)

where

H11 = I − �t
∂fσ
∂σ

, H12 = −�t
∂fσ
∂D

,

H21 = −�t
∂fD
∂σ

, H22 = 1 − �t
∂fD
∂D

.

1The symbols � and δ refer to incremental and iterative values, σ i+1
n = σ i

n + δσ i
n, �σ i

n = σ i
n −

σ n−1, where the sub- and superscripts refer to step and iteration numbers, respectively.
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Fig. 24.1 The discontinuous
Galerkin method, dG(1);
notation

The algorithmic tangent matrix, i.e. the Jacobian of the algorithmic stress-strain
relation has the simple form

CATS = H̃−1
11 C, (24.19)

where

H̃11 = H11 − H12H−1
22 H21.

As it can be seen, the Jacobian matrix is in general nonsymmetric due to the dam-
age. The algorithmic tangent matrix is a necessity for the Newton method to obtain
asymptotically quadratic convergence of the global equilibrium iterations.

24.4.2 The Discontinuous Galerkin Method

Rewrite the evolution equations (24.13) in the form

ẏ = f(y), (24.20)

where y = [σ T ,DT ]T and f = [fTσ , fTD]T . The discontinuous Galerkin method of
degree q can be stated as follows [4]. For a given time interval In = (tn, tn+1] find y
(polynomial of degree q) such that

∫
In

(
ẏ − f(y)

)T ŷdt + �yn�T ŷ+
n = 0. (24.21)

For the test functions ŷ, polynomials of degree q are used. The notations y+
n and

y−
n are the limits y±

n = limε→0 y(tn ± |ε|), �yn� = y+
n − y−

n . These notations are
illustrated in Fig. 24.1.

After the Newton linearisation step, the following system of linear equations is
obtained:

[
A11I − M11 A12I − M12
A21I − M21 (1 + A22)I − M22

]i {
δy−
δy+

}

=
{

r1
r2

}i

−
[
A11I A12I
A21I A22I

]{
y−
y+

}i

−
{

0
y+i
n − y−

n

}
, (24.22)
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where

Aij =
∫

In

NiṄj dt, Mij =
∫

In

Ni

∂f
∂y

Nj dt, ri =
∫

In

Nifdt,

and Ni ’s are the linear interpolation functions N1 = (t − tn)/�t , N2 = 1 − (t −
tn)/�t , which can be collected into a row vector N = [N1,N2]. When the Newton
iteration is converged after the k-th iteration, then y−

n+1 = (y−)k .

Partitioning the unknowns in the vector y as y = [(σ−)T , (σ+)T , D̃T ]T , where
D̃ = [D−T

,D+T ]T , the coefficient matrix on the right-hand side of (24.22) can be
written as

JdG(1) =
⎡
⎣ B11 B12 G1D

B21 I + B22 G2D

GD1 GD2 GDD

⎤
⎦ ,

where

Bij = Aij I − Mσ ij , Mσ ij =
∫

In

Ni

∂fσ
∂σ

Nj dt,

GiD = −
∫

In

Ni

∂fσ
∂D̃

Ndt, GDi = −
∫

In

NT ∂fD
∂σ

Nidt,

GDD = Ã −
∫

In

NT ∂fD
∂D̃

Ndt, Ã =
[
A11I A12I
A21I (1 + A22)I

]
.

The Jacobian of the algorithmic stress-strain relation for the dG(1) method has the
form

CATS = (
B̃11 − B̃12B̃−1

22 B̃21
)−1(I − B̃12B̃−1

22

)
C,

where

B̃ij = Bij − GiDG−1
DDGDj .

From the results of the subsequent section, it seems that the dG(1) method per-
forms well in computing inelastic material behaviour with damage. The only draw-
back is that the method is twice as laborious as the backward Euler scheme. How-
ever, numerical experiments show that the dG(1) scheme allows larger time steps to
get a converged solution, such that the overall computing time can be even shorter
than with the backward Euler method in strongly non-linear cases.

24.5 Numerical Example

24.5.1 Uniaxial Straining

Performance of the integrators is tested for the coupled viscous-damage model de-
scribed in Sect. 24.3. For simplicity, the transition function is assumed to be unity
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Fig. 24.2 The stress-strain
relation for uniaxial constant
strain-rate loading, from [3]

in this example, i.e. ϕtr ≡ 1. The accuracy properties, when sufficiently large time
steps are used, is of primary interest. The following material parameters are used:
the Young modulus E = 40 GPa, reference stress σr = 20 MPa, the viscosity param-
eters τvp = 1000 s, τd = 0.2 s, and the exponents p = 4 and r = 1.5. The reference
value Yr is chosen as in (24.12).

The stress-strain curves for an uniaxial constant strain rate ε̇c = 5 × 10−4 s−1 are
shown in Fig. 24.2, where the true dG(1) solution, i.e. a discontinuous, piecewise
linear approximation is depicted. To keep the figure readable, the end point solution
values for the dG(1) methods are connected in Fig. 24.3, where the damage and
inelastic strain are shown as a function of strain. Ten equal time steps are used
for strain up to 4εr, thus �t = 0.4 s. Inability of the backward Euler scheme to
capture the damage evolution well is clearly visible in these figures. The “exact”
solution shown in Figs. 24.2 and 24.3 is obtained by using the dG(1) method with the
time step �t = 8 × 10−4 s, resulting in 5000 steps in the range shown in Fig. 24.3.
The estimated relative error for this solution is less than 10−5.

24.6 Finite Element Simulations

24.6.1 Compression Test with the Scalar Damage Model

A compressed specimen ((x, y, z) ∈ Ω = (0,L) × (0,B) × (0,H), L = 200 mm,
B = 100 mm, H = 1 mm) is analysed under a plane strain condition, as shown in
Fig. 24.4. A‘strain localisation into a shear band is expected to take place due to
damage-induced strain softening. The horizontal displacement at the left-hand side
edge is prescribed at a constant rate u̇prescibed and constrained to remain straight.
A von-Mises type viscoplastic solid is used, i.e. σ̄ = σeff. The constitutive pa-
rameters have the following values: the Young modulus E = 40 GPa, the Pois-
son ratio ν = 0.3, reference stress σr = 20 MPa, the viscoplastic relaxation time
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Fig. 24.3 Uniaxial constant
strain-rate loading. For the
dG(1) schemes, only the end
points are connected [3]

Fig. 24.4 The problem
description

τvp = 1000 s, and the transition strain rate η = 10−3 s−1. The exponents have the
values: p = n = 4, and r = 1.5.2

2This corresponds to the same case as in [5], where the damage potential (24.9) was in the scalar
case was defined in a slightly different way.
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Fig. 24.5 Load-displacement
curves with the mesh of 12×6
elements

Eight-node-trilinear elements with the mean dilatation formulation [7] were used
in the computations, which were carried out for two different meshes, a coarse mesh
of 12×6 elements and a finer mesh of 48×24 elements. To trigger the unstable lo-
calisation, an imperfection via a small patch of elements was introduced by reducing
the reference stress by 5 %.

Figure 24.5 shows the load-displacement curves calculated for three different
loading rates (on the upper left) and four different damage relaxation times (on
the upper right) using the coarse mesh, and for both meshes considering that
τdη = 10−3 and ε̇0/η = 10 (at the bottom). The average strain rate is defined as
ε̇0 = u̇prescribed/L. In comparison to the results of pure material behaviour (Fig. 24.3,



24 Strain Rate Dependent Ductile-to-Brittle Transition Model 441

Fig. 24.6 Damage D distribution for ε̇ = 10η and τdη = 10−3 at the end of the computation
(F = 0.618BHσr). A mesh of 48×24 elements. Displacements magnified 50 times

upper), the softening behaviour of the structure is much more rapid due to the local-
isation band.

As explained in the preceding section, a large number of time step reductions,
due to diminished convergence of local iterations, had to be done during the com-
putations, especially in the computations for the highest loading rate.

Damage distribution is shown in Fig. 24.6. It can be observed that damage bands
are approximately at ±45◦ angles as in the classical strain-softening von-Mises type
elastoplasticity. Therefore it could be concluded that the scalar damage model is
unable to capture the correct failure mode characteristic to brittle materials. It should
be noted that the failure mode in tension is identical to the mode in compression
with the scalar damage model. As it can be seen from the next section, to be able
to predict the failure mode correctly, at least the vectorial damage model should be
used.

24.6.2 Compression/Tensile Tests with the Vectorial Damage
Model

The model with the vector description of damage has been implemented in the com-
mercial finite element code ABAQUS as a user subroutine. A simple tensile test
of the same specimen as in the previous example has been simulated using differ-
ent loading rates, see Fig. 24.7. The same material parameters are used as with the
scalar damage model simulation. The seed parameter for the damage initialisation
has been β = 0.025. In Fig. 24.7(a) the load-displacement curves are shown with
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Fig. 24.7 The tensile test:
stress-displacement curves
with different loading rates
and localisation of damage in
the brittle case ε̇ > 0.001 s−1

different loading rates and the failure mode is shown in Fig. 24.7(b). It can be seen
that the damage is localising in an area which has a width larger than one element
layer.

For the compressive loading case, the damage vectors are shown in Fig. 24.8. As
it can be seen, the splitting failure mode starts to develop from the weaker elements
in the mesh.

24.7 Concluding Remarks

A phenomenological constitutive model for modelling the ductile-to-brittle transi-
tion due to an increased strain rate is presented. In the present model, the dissipa-
tion potential is additively split into damage and visco-plastic parts and the transi-
tion behaviour is obtained using a stress-dependent damage potential. In this study,
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Fig. 24.8 The compression test: damage vectors D at the integration points on the softening regime

isotropic and vectorial damage coupled with von-Mises type viscoplastic flow are
considered. However, the chosen approach allows easily an extension to more ad-
vanced damage models applicable also for realistic simulations of pressure depen-
dent materials. To predict the correct failure mode for brittle solids, the damage
cannot be described by a scalar variable. If the vectorial damage model is used, the
tensile failure and splitting failure in compression can be simulated. Further inves-
tigations will be focused on the study of a material length scale.

The numerical implementation is also discussed. Due to the unstable nature of
damage, the conventional backward Euler method does not perform well. Oscilla-
tions in the damage variable can result in convergence problems in the local Newton
iteration at the integration point level. The discontinuous Galerkin approach seems
to result in accurate results also for large time steps, and in addition, it seems to
improve the convergence of the global equilibrium equations. Further studies will
be directed to develop a robust integration scheme for inelastic constitutive models
coupled with damage.

Acknowledgements This research has been supported in part by the Academy of Finland, deci-
sion number 121778.

References

1. Askes H, Hartikainen J, Kolari K, Kouhia R (2009) Dispersion analysis of a strain-rate depen-
dent ductile-to-brittle transition model. In: Mäkinen R, Neittaanmäki P, Tuovinen T, Valpe K
(eds) Proceedings of the 10th finnish mechanics days, University of Jyväskylä, Jyväskylä, pp
478–489

2. Duvault G, Lions L (1972) Inequalities in mechanics and physics. Springer, Berlin
3. Eirola T, Hartikainen J, Kouhia R, Manninen T (2006) Some observations on the integration

of inelastic constitutive models with damage. In: Dahlblom O, Fuchs L, Persson K, Ristinmaa
M, Sandberg G, Svensson I (eds) Proceedings of the 19th nordic seminar on computational
mechanics, Division of Structural Mechanics, LTH, Lund University, pp 23–32



444 J. Hartikainen et al.

4. Eriksson K, Estep PHD, Johnsson C (1996) Computational differential equations. Studentlit-
teratur

5. Fortino S, Hartikainen J, Kolari K, Kouhia R, Manninen T (2006) A constitutive model for
strain-rate dependent ductile-to brittle-transition. In: von Hertzen R, Halme T (eds) The IX
finnish mechanics days, Lappeenranta University of Technology, Lappeenranta, pp 652–662

6. Frémond M (2002) Non-smooth thermomechanics. Springer, Berlin
7. Hughes T (1987) The finite element method. Linear static and dynamic finite element analysis.

Prentice-Hall, Englewood Cliffs
8. Kolari K (2007) Damage mechanics model for brittle failure of transversely isotropic solids—

finite element implementation. Tech rep 628, VTT Publications, Espoo
9. Kouhia R (2004) A time discontinuous Petrov-Galerkin method for the integration of inelastic

constitutive equations. In: Neittaanmäki P, Rossi T, Majava K, Pironneau O (eds) ECCOMAS
2004 CD-ROM proceedings

10. Kouhia R, Marjamäki P, Kivilahti J (2005) On the implicit integration of rate-dependent in-
elastic constitutive models. Int J Numer Methods Eng 62(13):1832–1856

11. Lemaitre J (1992) A course on damage mechanics. Springer, Berlin
12. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press,

Cambridge
13. Perzyna P (1966) Fundamental problems in viscoplasticity. Advances in Applied Mechanics,

vol 9. Academic Press, London
14. Ristinmaa M, Ottosen N (2000) Consequences of dynamic yield surface in viscoplasticity. Int

J Solids Struct 37:4601–4622
15. Runesson K, Sture S, Willam K (1988) Integration in computational plasticity. Comput Struct

30:119–130
16. Simo J, Hughes T (1998) Computational inelasticity, 1st edn. Springer, New York
17. Wallin M, Ristinmaa M (2001) Accurate stress updating algorithm based on constant strain

rate assumption. Comput Methods Appl Mech Eng 190:5583–5601


	Chapter 24: Failure Simulations with a Strain Rate Dependent Ductile-to-Brittle Transition Model
	24.1 Introduction
	24.2 Thermodynamic Formulation
	24.3 Particular Model
	24.4 On the Integration Algorithms
	24.4.1 Standard Backward Euler Scheme
	24.4.2 The Discontinuous Galerkin Method

	24.5 Numerical Example
	24.5.1 Uniaxial Straining

	24.6 Finite Element Simulations
	24.6.1 Compression Test with the Scalar Damage Model
	24.6.2 Compression/Tensile Tests with the Vectorial Damage Model

	24.7 Concluding Remarks
	References


