
Chapter 22
Dynamic Behaviour of a Travelling Viscoelastic
Band in Contact with Rollers

Tytti Saksa, Nikolay Banichuk, Juha Jeronen, Matti Kurki, and Tero Tuovinen

Abstract The dynamic behaviour of an axially moving viscoelastic band, in contact
with supporting rollers, is studied. A model of a thin, viscoelastic beam (panel) sub-
jected to bending and centrifugal forces is used. An initial-boundary value problem
for a fifth-order partial differential equation describing the movement of the band is
formulated in detail. In this paper, five boundary conditions in total are used for the
first time within the present model. An external force describing the normal force
of the roller supports is included. Combining this viscoelastic model with the roller
contact simulation is a new approach among moving band behaviour studies. The
initial-boundary value problem is solved numerically using the fourth-order Runge-
Kutta method and the central finite differences, and the band behaviour is illustrated
for different band velocities and degrees of viscosity. It is found that the damping ef-
fect of viscoelasticity increases when the band velocity increases, and that the roller
contact has a greater effect on the elastic panel behaviour than on the viscoelastic
panel behaviour.
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22.1 Introduction

The behaviour of systems, in which some material travels axially at a fast speed
between two supports, has been studied widely. Interest in these studies arises from
the extensive amount of applications in industry, e.g., in paper making processes.

In paper machines, the radius of supporting rollers is usually large compared to
the length of an open draw, see Fig. 22.1. However, in the often studied models, the
effect of the rollers on the behaviour of the moving web has been neglected.

Vibrations of travelling strings, beams, and bands were first studied by Sack [28],
Archibald and Emslie [1], Miranker [22], Swope and Ames [30], Mote [24–26],
Simpson [29], Ulsoy and Mote [31], Chonan [9], and Wickert and Mote [33]. These
studies focused on one-dimensional free and forced vibrations including the na-
ture of wave propagation in moving media and the effects of axial motion on the
eigenfrequencies and eigenmodes. Stability of travelling two-dimensional rectan-
gular membranes and plates was studied, e.g., by Ulsoy and Mote [32], Lin and
Mote [19], Lin [18], and Banichuk et al. [2].

Archibald and Emslie [1] and Simpson [29] studied effects of the axial motion on
the eigenfrequencies and eigenfunctions. It was shown that the natural frequency of
each mode decreases when the transport speed increases, and that both the travelling
string and beam experience divergence instability at a sufficiently high speed.

Wet paper and many other materials have viscoelastic properties. The first study
on transverse vibrations of a travelling viscoelastic material was carried out by Fung
et al. [11], who used a string model. They investigated numerically the effects of
material parameters and transport velocity on the transient amplitudes. Extending
their work, they studied the material damping effect in their later research [12]. Fung
et al. used a standard linear solid model to describe the viscoelasticity of material.

String and beam models have been widely used models in the studies concerning
travelling viscoelastic materials. Oh et al. [27] and Lee and Oh [17] studied critical
speeds, eigenvalues, and natural modes of axially moving viscoelastic beams using
a spectral element model.

Fig. 22.1 An overview. (a) Paper machine cross-section. (b) A qualitative drawing of an open
draw
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Chen and Zhao [8] represented a modified finite difference method to simplify
a non-linear model of an axially moving string. They studied numerically the free
transverse vibrations of elastic and viscoelastic strings.

Yang and Chen [7, 34] studied vibrations and stability of axially moving vis-
coelastic beams with periodic parametric excitations. Yang and Chen [34] studied
dynamic stability of axially moving viscoelastic beams with a time-pulsating speed.
They found that the viscoelastic damping decreases the instability region of subhar-
monic resonance. Chen and Yang [7] studied free vibrations of a viscoelastic beam
travelling between simple supports with torsion strings. They studied the viscoelas-
tic effect by perturbing the similar elastic problem and using the method of multiple
scales.

Marynowski and Kapitaniak [20] studied the difference between the Kelvin-
Voigt model and the Bürgers model in internal damping and found out that both
models give accurate results with a small damping coefficient, but with a large
damping coefficient, the Bürgers model is more accurate. In 2007, they compared
the models with the Zener model studying the dynamic behavior of an axially mov-
ing viscoelastic beam [21]. They found out that the Bürgers and Zener models gave
similar results for the critical transport speed whereas the Kelvin-Voigt model gave
significantly greater transport speed compared to the other two models.

In all discussed studies above, a partial time derivative has been used instead
of a material derivative in the viscoelastic constitutive relations. Mockensturm and
Guo [23] suggested that the material derivative should be used. They studied nonlin-
ear vibrations and the dynamic response of axially moving viscoelastic strings, and
found significant discrepancy in the frequencies at which non-trivial limit cycles
exist comparing the models with the partial time derivative and the material time
derivative. In Chen et al. [4], Ding and Chen [10], Chen and Wang [6], and Chen
and Ding [5], the material derivative was also used in the viscoelastic constitutive
relations. Ding and Chen [10] studied stability of axially accelerating viscoelastic
beams using the method of multiple scales and parametric resonance. Chen and
Wang [6] studied the stability of axially accelerating viscoelastic beams using the
asymptotic perturbation analysis. In a recent research by Chen and Ding [5], the
steady-state response of transverse vibrations for axially moving viscoelastic beams
was studied. Kurki and Lehtinen [16] suggested, separately, that the material deriva-
tive in the constitutive relations should be used in their study concerning the in-plane
displacement field of a travelling viscoelastic plate.

Using the material derivative in the viscoelastic constitutive relations for a beam
model leads to a partial differential equation that is fifth-order with respect to the
space coordinate. In Ding and Chen [10], Chen and Wang [6], and Chen and Ding
[5], the fifth-order dynamic equation is attained but only four boundary conditions
(in space) are used. However, the amount of boundary (initial) conditions should
coincide with the order of the equation with respect to each variable.

We also mention studies by Guan (et al.) [13–15]. They used a different (from the
references mentioned above) kind of approach in modelling of viscoelastic effects in
moving web-handling systems applying the White–Metzner rheological equation. In
those studies, permanent web deformations and web tension behaviour as a function
of time were investigated.
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Fig. 22.2 An assumption
of cylindrical deformation

In this study, we investigate the transverse displacement of a viscoelastic panel
travelling between and in contact with two supports. Using a linear Kirchhoff plate
model and a Kelvin-Voigt viscoelasticity model, a fifth-order partial differential
equation for the transverse displacement of the panel is derived in detail. Simply
supported boundary conditions are used at both edges and, at the in-flow edge, an
additional boundary condition corresponding to the travelling angle is used. That is,
five boundary conditions in total are used. The contact with the supporting rollers is
modelled by a nonlinear spring force between the rollers and the panel. Numerical
simulations of the behaviour of the panel are presented. A comparison of the be-
haviour between the model including the contact effect and the classic model with
no contact is made.

22.2 Problem Setup

Consider a viscoelastic band travelling at a constant axial velocity V0 (in the x di-
rection) in a span. The domain of this study is the span between two rollers located
at x = 0 and x = �. We investigate the transverse displacement w of the band as a
dynamic problem taking into account the contact with the rollers. We assume that
the transverse displacements are small to make the linear theory justifiable. We also
assume that the displacement w is cylindrical, that is, the displacement does not
vary in the cross direction to the movement, see Fig. 22.2. The thickness of the band
is assumed to be constant, h. The tension at the edges is supposed to be constant, T0.
The plate is assumed to have a constant bending rigidity, D, and a constant viscous
bending rigidity Dv. The mass per area of the band is m.

The equation describing the transverse displacement w = w(x, t) of the panel (a
plate with cylindrical deformation) is derived using the Kirchhoff plate model and
the Kelvin-Voigt model for the viscoelasticity.

We first write the equilibrium equation for the bending forces affecting the panel,
which is

∂2M

∂x2
+ T0

∂2w

∂x2
+ q = 0, x ∈ (0, �), (22.1)

where T0 is the tension force in the x direction, M the bending moment, and q the
intensity of external load distributed over the upper surface of the panel.
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Let σ denote the flexural stress. This stress depends on a strain that is defined by

ε = −z
∂2w

∂x2
. (22.2)

The bending moment is related to the flexural stress by

M =
∫ h/2

−h/2
zσ dz. (22.3)

The stress depends on the strain by the relation

σ = Cε + Γ
dε

dt
, (22.4)

where
d

dt
= ∂

∂t
+ V0

∂

∂x
,

and

C = E

1 − ν2
, Γ = η

1 − ϕ2
.

Here, E is the Young modulus, ν the Poisson ratio, and η and ϕ are the correspond-
ing viscous material constants.

For the balance equation (22.1), we calculate, first, the bending moment. By in-
serting (22.4) into (22.3) and (22.2) into (22.4), we obtain

M =
∫ h/2

−h/2
zσ dz =

∫ h/2

−h/2
z

(
Cε + Γ

dε

dt

)
dz = −h3

12

(
C

∂2w

∂x2
+ Γ

d

dt

∂2w

∂x2

)
.

(22.5)
We calculate the second space derivative of the bending moment (22.5). We obtain

∂2M

∂x2
= −h3

12

(
C

∂4w

∂x4
+ Γ

d

dt

∂4w

∂x4

)
. (22.6)

Substituting (22.6) into (22.1), we obtain

−h3

12

(
C

∂4w

∂x4
+ Γ

d

dt

∂4w

∂x4

)
+ T0

∂2w

∂x2
+ q = 0. (22.7)

Introducing the parameters

D = h3

12
C, Dv = h3

12
Γ,

and adding dynamical components into (22.7), we obtain

−D
∂4w

∂x4
− Dv d

dt

∂4w

∂x4
+ T0

∂2w

∂x2
+ q = m

d2w

dt2
. (22.8)



398 T. Saksa et al.

Fig. 22.3 A spring model in
the cross direction of the
plate. A detail near one end of
the span

Expanding the expressions in (22.8) and re-organizing the terms, the dynamic
equation for w = w(x, t) reads

∂2w

∂t2
+

(
2V0

∂

∂x
+ Dv

m

∂4

∂x4

)
∂w

∂t

+
[(

V 2
0 − T0

m

)
∂2

∂x2
+ D

m

∂4

∂x4
+ V0

Dv

m

∂5

∂x5

]
w = q

m
, (22.9)

where x ∈ (0, �), t ∈ (0, tf), and tf is the end point of the time domain. We use
classical simply supported boundary conditions at both edges, and an additional
condition at the in-flow edge. The boundary conditions read

w(0, t) = w(�, t) = 0,
∂2w

∂x2
(0, t) = ∂2w

∂x2
(�, t) = 0, (22.10)

and

∂w

∂x
(0, t) = θ, (22.11)

where θ is a given constant describing the angle between the panel and the x axis
at the in-flow edge. The angle θ represents the feeding angle of the web, and in a
multi-span system it could be predicted (calculated) for one span from the behaviour
of the panel on the preceding span. However, in this study we concentrate only on
one isolated span and assume that the feeding angle is known. The initial conditions
for the dynamic problem are

w(x,0) = g1(x),
∂w

∂t
(x,0) = g2(x), (22.12)

where g1 and g2 are some given functions.
The contact force between the moving panel and the supporting rollers is now to

be included in the panel model. The transverse direction of the panel is modelled as
a non-linear spring such that the maximum compression of the panel is one half of
its thickness, see Figs. 22.3 and 22.4. The force function depending on the distance
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Fig. 22.4 Contact force as a
function of the distance
between the plate center and
the roller

d between the panel center and the roller surface is given by

q(d) = a

(
h

2d
− 1

)
, 0 < d ≤ h/2. (22.13)

The parameter a is a constant describing the strength of the force. Inside the rollers
(d ≤ 0) the force is not defined, and if there is no contact (d > h/2), then the force
q is zero.

22.3 Numerical Investigation

We use central difference formulae and the fourth-order Runge-Kutta for the space
and time discretisations, respectively. In the central differences, the higher order
derivatives need node values from a distance of three nodes of the node being com-
puted. We neglect the fifth-order derivatives at the boundary. The interval [0, �] is
divided to n + 1 subintervals equal in length. The end points of the subintervals are
labeled as 0 = x0, x1, . . . , xn, xn+1 = �. We need one virtual point from the bound-
ary conditions for both edges. From the boundary conditions, we get w(x0) = 0,
w(xn+1) = 0, w(x−1) = −w(x1) and w(xn+2) = −w(xn). In boundary condition
(22.11), we choose θ = 0, which leads to w(x−1) = w(x1) and finally w(x1) = 0.

In Fig. 22.5, it is illustrated how the rollers and computation nodes are connected
by simple geometry. It must be noticed that we are considering the transverse dis-
placements merely, and therefore, the contact force effects are considered in the z

direction only.
The parameters used are as follows:

� = 0.25 m, T0 = 500 N/m, h = 10−4 m, m = 0.08 kg/m2,

E = 109 Pa, ν = 0.3, hs = 0.5 · h, rs = 0.12 m.

(22.14)
Here, � is the length of the open draw, T0 is constant tension applied at the ends of
the panel, h is the thickness of the panel, m is mass per unit area, E is the Young
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Fig. 22.5 Nodes between the
rollers. A detail near one end
of the span

modulus, ν is the Poisson ratio, rs is the radius of the rollers, and hs is one half of
the distance between the pressing rollers, see Fig. 22.5. We define

Dv = αv D.

The multiplier αv is here called the relative viscosity, for which the values αv =
0.0008,0.08 were used. We studied the dynamic behaviour of the panel for the
first 0.05 seconds, for three different velocities V0 = 0, 30, 60 m/s. The strength
of the force (22.13) was a = 0.01. The used number of the computation nodes was
n = 150.

The used initial conditions were

w(x,0) = 0.01 sin

(
πx

�

)
,

∂w

∂t
(x,0) = 0.

The investigated cases include the behaviour of the midpoint of the panel
(Figs. 22.6 and 22.7), from which the frequency and amplitude of the vibrations
can be analysed, and the space-time behaviour of the panel (Figs. 22.8 and 22.10).
The results for the stationary panel are shown in Figs. 22.6a, 22.8 (almost elastic
material), and Figs. 22.7(a), 22.9 (viscoelastic material). The results for the mov-
ing panel are shown in Figs. 22.6(b), 22.6(c), 22.10 (almost elastic material), and
Figs. 22.7(b), 22.7(c), 22.11 (viscoelastic material).

In Figs. 22.6 and 22.7, the behaviour of the panel center is shown for a panel
travelling at different velocities for both viscoelastic and almost elastic materials.
From Figs. 22.6(a) and 22.7(a), it can be seen that the contact with the rollers is
decreasing the amplitude of the vibrations in the case of an almost elastic panel and
increasing the amplitude in the case of a viscoelastic panel compared to the case with
no roller contact. In both cases, the frequency of the vibrations is increased. Also,
when the panel is moving at a constant velocity (Figs. 22.6(b), 22.6(c), 22.7(b),
and 22.7(c)), the frequency of vibrations in the case with roller contact is greater
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Fig. 22.6 Behaviour of the midpoint of the panel during the first 0.05 seconds for an almost
elastic material. The solid line shows the case with roller contact, and the dashed line shows the
case without contact. V0 is the panel velocity and αv is the relative viscosity
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Fig. 22.7 Behaviour of the midpoint of the panel during the first 0.05 seconds for a viscoelastic
material. Solid line shows the case with roller contact, and the dashed line shows the case without
contact. V0 is the panel velocity and αv is the relative viscosity
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Fig. 22.8 Behaviour of the panel during the first 0.05 seconds, when the panel is not moving
(V0 = 0). Almost elastic material, αv = 0.0008

to the case with no roller contact. When the viscoelastic panel is moving fast (see
Fig. 22.7(c)), the viscous damping is so fast that the effect of contact cannot be
noticed.

In Figs. 22.8, 22.9, 22.10 and 22.11, coloursheets of the panel behaviour are
provided for different panel velocities (V0 = 0,30,60 m/s) for both almost elastic
and viscoelastic materials. For a stationary panel, also the cases with no contact are
drawn as reference cases (Figs. 22.8(b) and 22.9(b)). It can be seen that the viscous
damping depends on the panel velocity and the relative viscosity. For a stationary
panel (Figs. 22.8 and 22.9), the effect of the contact can be seen clearly for the
almost elastic panel but the effect is very slight for the viscoelastic panel.

For a moving panel (Figs. 22.10 and 22.11), it can be noted that the upper-x half
of the panel experiences its maximum or minimum amplitude before the lower-x
half does. Similar behaviour was reported in [3]. The effect of viscous damping
increases if the panel velocity is increased. Note that the viscoelastic panel (beam)
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Fig. 22.9 Behaviour of the panel during the first 0.05 seconds, when the panel is not moving
(V0 = 0). Viscoelastic material, αv = 0.08

is expected to experience divergence instability at a sufficiently high speed, and the
divergence velocity is expected to be close to the one of an elastic panel (beam) [17].
The critical velocity of a travelling elastic panel can be determined analytically by
(V0)cr = √

T0/m + (π/�)2 D/m ≈ 79.0581 m/s [33].

22.4 Conclusions

In this study, the dynamical behaviour of an axially moving viscoelastic panel in
contact with supporting rollers was investigated. The combination of the contact
model with this kind of viscoelastic model was done for the first time. The dynam-
ical equation describing the panel vibrations was derived and an initial-boundary
value problem was formulated. The continuum equation was discretised via cen-
tral finite differences in space and by the fourth-order Runge-Kutta method in time,
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Fig. 22.10 Behaviour of the panel during the first 0.05 seconds, when the panel is moving at a
constant velocity. Almost elastic material, αv = 0.0008

and solved numerically. Dynamics of the panel was studied for different relative
viscosities and for different panel velocities, and the effect of roller contact was in-
vestigated by comparing the behaviour including contact with the behaviour with
no contact.

In this study, it was noted that in the partial differential equation, describing the
dynamics of an viscoelastic panel or beam and which is fifth-order in space, the
amount of boundary conditions must be five in total.

From numerical investigations, it was seen that the contact force may decrease
the amplitude of vibrations in the case of an almost elastic panel and increase the
amplitude in the case of a viscoelastic panel compared to the case with no roller
contact. The decrease in viscous damping introduced by the roller contact was sur-
prising. It was also noted that the viscous damping increases a lot when the panel
velocity is increased.
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Fig. 22.11 Behaviour of the panel during the first 0.05 seconds, when the panel is moving at a
constant velocity. Viscoelastic material, αv = 0.08

Note that, in this study concerning moving viscoelastic panels, the effects of
surrounding fluid were excluded to investigate solely the role of material viscoelas-
ticity in the panel dynamics. The presence of fluid is known to considerably affect
the panel behaviour [3], and thus the present study should primarily be seen as aca-
demic basic research. The behaviour of a moving viscoelastic panel submerged in
fluid remains a topic of future research.
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