
Chapter 21
Safety Analysis and Optimization of Travelling
Webs Subjected to Fracture and Instability

Nikolay Banichuk, Svetlana Ivanova, Matti Kurki, Tytti Saksa,
Maria Tirronen, and Tero Tuovinen

Abstract The problems of safety analysis and optimization of a moving elastic
web travelling between two rollers at a constant axial velocity are considered in this
study. A model of a thin elastic plate subjected to bending and in-plane tension (dis-
tributed membrane forces) is used. Transverse buckling of the web and its brittle and
fatigue fracture caused by fatigue crack growth under cyclic in-plane tension (load-
ing) are studied. Safe ranges of velocities of an axially moving web are investigated
analytically under the constraints of longevity and instability. The expressions for
critical buckling velocity and the number of cycles before the fracture (longevity of
the web) as a function of in-plane tension and other problem parameters are used
for formulation and investigation of the following optimization problem. Finding
the optimal in-plane tension to maximize the performance function of paper pro-
duction is required. This problem is solved analytically and the obtained results are
presented as formulae and numerical tables.
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21.1 Introduction

Good runnability (performance) of webs and other axially moving bands and belts
depends on the realized velocity and in-plane tension. Web breaks and instability are
the most serious threats to good runnability. Arisen fracture and instability modes
cause problems, e.g., for paper machines and printing presses. In practice, web insta-
bility in the form of buckling occurs when tension applied to the webs is less than
some critical value, and extension of a safe stability range is realized by increas-
ing the tension. However, a web break occurs when tension exceeds some critical
value. Thus, the increase of the in-plane tension has opposite influences on the web
stability and fracture. Both criteria are significant from the viewpoint of increased
productivity demands, which mean faster production speeds and a longer safe pro-
duction time interval (longevity).

Several studies related to the stable web movement exist in the literature. Vibra-
tions of travelling membranes and thin plates were first studied by Archibald and
Emslie [1], Miranker [11], Swope and Ames [18], Mote [12], Simpson [16], Cho-
nan [4], and Wickert and Mote [22], concentrating on various aspects of free and
forced vibrations. Stability of travelling rectangular membranes and plates was first
studied by Ulsoy and Mote [19], Lin and Mote [9, 10], and Lin [8]. Recently, the
behaviour of axially moving materials has been studied by, e.g., Shin et al. [15],
Wang et al. [20], and Banichuk et al. [2].

In [2], buckling of an axially moving elastic plate was studied. The critical ve-
locity and the corresponding buckling shapes were studied analytically as functions
of problem parameters.

The field of fracture mechanics was developed by Irwin [7], based on the early
papers of Inglis [6], Griffith [5], and Westergard [21]. Linear elastic fracture me-
chanics (LEFM), assuming a small plastic zone ahead of the crack tip, was first
applied to paper material by Seth and Page [14], who measured fracture toughness
of different paper materials. Swinehart and Broek [17] determined fracture tough-
ness of paper using both the stress intensity factor and the strain energy release rate.
They found that the measured crack length and fracture toughness were in a good
agreement with the LEFM theory.

In this study, the product of critical buckling velocity and a safe time (longevity)
will be taken as a maximized productivity function. We will evaluate analytically
the performance criterion as a function of the applied tension and other problem pa-
rameters, and will study the problem of finding the optimal tension that maximizes
the considered criterion.

21.2 Basic Relations and Formulation of the Optimization
Problem

Consider an elastic web travelling at a constant velocity V0 in the x direction
and being simply supported by a system of rollers located at x = 0, �,2�,3�, . . .
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Fig. 21.1 Top: A travelling web having an initial crack, and being supported by a system of rollers.
Bottom: A travelling web under cyclic tension, which is produced by the Earth’s gravity

(Fig. 21.1). A rectangular element Ωi , i = 1,2,3, . . . , of the web

Ωi = {
(x, y) : i� ≤ x ≤ (i + 1)�, −b ≤ y ≤ b

}
(21.1)

is considered in a Cartesian coordinate system, where � and b are prescribed geo-
metric parameters. Additionally, assume that the considered web is represented as
an elastic plate having constant thickness h, the Poisson ratio ν, the Young modu-
lus E, and bending rigidity D. The plate elements in (21.1) have small initial surface
cracks (Fig. 21.1) of the length a with a given upper bound a0, i.e.,

0 < a ≤ a0,

and are subjected to homogeneous tension T , acting in the x direction.
The sides of the plate element (i = 1,2,3, . . . )

Γ� = {x = 0, −b ≤ y ≤ b} and Γr = {x = �, −b ≤ y ≤ b}
are simply supported, and the sides

Γ− = {y = −b, 0 ≤ x ≤ �} and Γ+ = {y = b, 0 ≤ x ≤ �}
are free of traction.

Consider the following scenario where the web is moving under cyclic in-plane
tension and fatigue crack growth is realized. Suppose that the web is subjected to a
cyclic tension T that varies in the given limits

Tmin ≤ T ≤ Tmax,

where

Tmin = T0 − �T, Tmax = T0 + �T.
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Above �T > 0 is a given parameter such that

T0 − �T > 0 and
�T

T0
� 1. (21.2)

For one cycle, the tension increases from T = Tmin up to T = Tmax (the loading
process) and then decreases from T = Tmax to T = Tmin (the unloading process).
The loading and unloading processes are supposed to be quasistatic: the dynamical
effects are excluded.

The cyclic tension T may be produced by different imperfections. One cause of
cyclic tension could be elastic vibrations of the rollers resulting in small changes
in the distance between the rollers. In this case, the number of tension cycles may
be very large. Another cause of cyclic tension could be the Earth’s gravity [3] (see
Fig. 21.1).

The product of the moving web velocity V0 and the process time tf can be con-
sidered a productivity criterion (performance function), i.e.,

J = m0V0tf, m0 = 2bm. (21.3)

Here, m is the mass per unit area of the middle surface of the band. In (21.3), the
velocity V0 is taken from the safe interval

0 < V0 < V cr
0 ,

where V cr
0 is the critical buckling speed.

A safe interval for the safe functioning time (the number of cycles) is written as

0 < tf < tcr
f or 0 < n < ncr,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture. For a small cycle time period τ and a big number of cycles
n, we assume that tf = nτ (approximately). Note that the critical buckling velocity
V cr

0 and the critical functioning time tcr
f (the critical number of cycles ncr) depend

on the parameters of the average in-plane tension T0, and the admissible variance
�T , i.e.

V cr
0 = V cr

0 (T0,�T ), tcr
f = tcr

f (T0,�T ), ncr = ncr(T0,�T ).

Consequently, the maximum value of the productivity criterion for the given values
T0 and �T is evaluated as

J (T0,�T ) = m0V
cr
0 (T0,�T )tcr

f (T0,�T ) = m0τV cr
0 (T0,�T )ncr(T0,�T ).

The optimal average (mean) in-plane tension T0 is found from a solution of the
following optimization problem:

J ∗ = max
T0

J (T0,�T ). (21.4)
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To solve the formulated optimization problem (21.4), we will use the explicit ana-
lytical expressions for the values V cr

0 and ncr. The value of T0, giving the maximal
production J ∗, is denoted by T ∗

0 .

21.3 Evaluation of the Web Longevity and the Critical Buckling
Velocity

To evaluate ncr, let us apply the fatigue crack growth theory. Suppose that the web
contains one initial crack of length a0. The process of fatigue crack growth under
cyclic tension (loading) can be described by the following equation [13] and the
initial condition:

da

dn
= C(�K)k, (a)n=0 = a0. (21.5)

Here the variance �K of the stress intensity factor K is determined with the help of
formulae

�K = Kmax − Kmin, Kmax = βσmax
√

πa,

Kmin = βσmin
√

πa, σmax = Tmax

h
, σmin = Tmin

h
.

(21.6)

In (21.5), C and k are material constants. In (21.6), h is the thickness of the web,
n is the number of cycles, and σmax, Kmax, σmin and Kmin are, respectively, the
maximum and minimum values of the stress σ and the stress intensity factor K in
any given loading cycle. For the considered case, the surface crack geometric factor
is β = 1.12.

Using (21.5) and (21.6), we write the crack growth equation in the following
form:

da

dn
= Cκk

0 ak/2, κ0 = 2β
√

π

h
�T . (21.7)

It follows from (21.7) and the initial condition in (21.5) that for considered values
of the parameter k �= 2, we will have

n = A

[
1

a
(k−2)/2
0

− 1

a(k−2)/2

]
, A = 2

(k − 2)Cκk
0

. (21.8)

Take into account that the unstable crack growth is obtained after n = ncr cycles
when the critical crack length acr satisfies the limiting relation

(Kmax)a=acr = KC,

or, in another form, we have

β
Tmax

h

√
πacr = KC. (21.9)
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Fig. 21.2 Dependence of the
(dimensionless) critical
number of cycles ñcr on the
(dimensionless) average
tension T̃0 for different values
of the Paris constant k

Note that σmax and Tmax (σmin and Tmin) are the maximum (minimum) stresses and
tensions in the uncracked web, where the crack is located. Using (21.9) and the
inequality �T/T0 � 1 in (21.2), we obtain

acr = 1

π

(
KCh

βTmax

)2

≈ 1

π

(
KCh

βT0

)2

and, by (21.8), we will have the following expression for the critical number of
cycles:

ncr = (n)a=acr = A

[
1

a
(k−2)/2
0

−
(√

πβT0

KCh

)k−2]
. (21.10)

From the condition of positiveness of the expression in (21.10), we find the maxi-
mum value of admissible tensions:

T0 ≤ 1√
πa0

KCh

β
≡ T M

0 . (21.11)

In the special case k = 2, we can find the critical number of cycles to be

ncr = B ln

[
1

πa0

(
KCh

βT0

)2]
, B = 1

Cκ2
0

, (21.12)

and the tension limit T M
0 is expressed by (21.11).

The dependence of the critical number of cycles ncr on the average tension T0

and the problem parameter k is shown in Fig. 21.2 using dimensionless quantities
(defined below in (21.18) and (21.21)).
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Stationary equations describing the behaviour of the web with the applied bound-
ary conditions form the following eigenvalue problem (a buckling problem):

(
mV 2

0 − T0
)∂2w

∂x2
+ D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
= 0, in Ω,

w = 0,
∂2w

∂x2
= 0, on Γ� and Γr,

∂2w

∂y2
+ ν

∂2w

∂x2
= 0, on Γ− and Γ+,

∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y
= 0, on Γ− and Γ+.

(21.13)
Here D = Eh3/(12(1 − ν2)), and m is the mass per unit area of the middle surface
of the plate, and we denote the eigenvalue

λ = γ 2 = �2

π2D

(
mV 2

0 − T0
)
.

The critical instability (buckling mode) velocity of the travelling plate, as was
shown by [2], is given by

(
V cr

0

)2 = T0

m
+ γ 2∗

m

π2D

�2
, (21.14)

where γ 2∗ = λ∗ is the minimal eigenvalue of the problem (21.13). The parameter
γ = γ∗ is found as the root of the equation (see Fig. 21.3)

Φ(γ,μ) − Ψ (γ, ν) = 0, (21.15)

where

Φ(γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
,

Ψ (γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2
, μ = �

πb
.

(21.16)

As it is seen from (21.15) and (21.16), the root γ = γ∗ depends on ν and μ and
does not depend on the other problem parameters, including the value of tension T0.
Consequently, the critical instability velocity, defined in (21.14), is increased with
the increasing of tension T0. However, the increasing of T0 is limited due to initial
damages and other imperfections.
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Fig. 21.3 Behaviour of Φ

and Ψ as functions of γ

21.4 Optimization and Performance Function

The most important factor for runnability and stability of moving bands, containing
initial imperfections, is the applied tension. To find a safe and optimal T0 maximiz-
ing the performance function is our considered problem. To perform this task, let us
represent the optimized functional (21.3) as a function of the average tension T0. If
we take into account explicit expressions for ncr, in (21.10), and for V cr

0 , in (21.14),
use (21.3), and perform necessary algebraic transformations, assuming that k �= 2,
we will have

J (T0) = m0τV cr
0 (T0)n

cr(T0) = J0

[
1 + 1

D

(
�

γ∗π

)2

T0

]1/2[
1 −

(
β
√

πa0

hKC
T0

)k−2]
,

where

J0 = 4bτπa0γ∗
√

Dm

(k − 2)C�

(
h

2β�T
√

πa0

)k

. (21.17)

The performance function J is proportional to the multiplier J0 and, consequently,
the optimized tension T0 does not depend on this parameter.

For convenience of the following estimations and reduction of characteristic pa-
rameters, we introduce the dimensionless values

J̃ = J

J0
, T̃0 = T0

T M
0

= β
√

πa0

KCh
T0, g = KCh

βD
√

πa0

(
�

γ∗π

)2

, (21.18)

and represent the optimized functional and the interval of optimization as

J̃ (T̃0) = (1 + gT̃0)
1/2(1 − T̃ k−2

0

)
, k > 2 (21.19)

with

0 < T̃0 < 1. (21.20)
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In other words,

J̃ (T̃0) = Ṽ cr
0 (T̃0) ñcr(T̃0)

with

Ṽ cr
0 (T̃0) = (1 + gT̃0)

1/2 and ñcr(T̃0) = 1 − T̃ k−2
0 . (21.21)

In the special case k = 2, we will use the expressions (21.3), (21.12) and (21.14)
and perform algebraic transformations. We will have

J (T0) = m0τV cr
0 (T0)n

cr(T0) = J1

[
1 + 1

D

(
�

γ∗π

)2

T0

]1/2

ln

(
hKC

β
√

πa0

1

T0

)

with

J1 = 4bτπγ∗
√

Dm

C�

(
h

2β�T
√

π

)2

.

Using the dimensionless values J̃ = J/J1 and T̃0, g from (21.18), we find

J̃ (T̃0) = ln

(
1

T̃0

)
(1 + gT̃0)

1/2, 0 < T̃0 < 1. (21.22)

It is seen from (21.22) that

0 = (J̃ )
T̃0=1 ≤ J̃ (T̃0) ≤ (J̃ )

T̃0=0 = ∞, 0 < T̃0 < 1. (21.23)

Note that (21.23) also holds in the case k < 2, when

J̃ (T̃0) = −(1 + gT̃0)
1/2(1 − T̃ k−2

0

)

and

J0 = 4bτπa0γ∗
√

Dm

(2 − k)C�

(
h

2β�T
√

πa0

)k

.

Thus, in the case k ≤ 2, the optimum is T̃0 = 0, meaning that the model omits the
effect of the critical speed. However, for most materials k ≈ 3 or bigger.

21.5 Results and Discussion

The optimization problem (21.19)–(21.20) was solved numerically for different val-
ues of k: for k = 2.5, k = 3, and k = 3.5. The material parameters were chosen
to describe a paper material. Young’s modulus was E = 109 Pa, the Poisson ratio
was ν = 0.3, the mass per unit area was m = 0.08 kg/m2, and the strain energy rate
over density was GC/ρ = 10 J m/kg. The size of the rectangular element (Ωi ) was
� × 2b = 0.1 m × 10 m, and the surface crack geometric factor was β = 1.12. The
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Fig. 21.4 Performance (J̃ )
dependence on tension (T̃0)
(dimensionless quantities)

Table 21.1 Dependence of the optimum of J̃ (performance) on the parameters k (Paris constant)
and a0 (m, initial crack length)

J̃ ∗ a0 (m)

0.005 0.01 0.05 0.1

k 2.5 37.4023 31.4527 21.0369 17.6920

3 57.5834 48.4230 32.3862 27.2358

3.5 70.6836 59.4390 39.7532 33.4308

g

2.2379×104 1.5824×104 7.0768×103 5.0201×103

material constants in (21.5) were k = 2.5, 3, 3.5, and C = 10−14. Paper fracture
toughness KC was calculated from the relation GC = K2

C/E [7]. The variance in
tension was chosen to be small, �T = 0.1 N/m. The investigated values of initial
crack lengths were a0 = 0.005 m, 0.01 m,0.05 m, 0.1 m. As illustrated in Fig. 21.1,
the length of one cycle was assumed to be 2�. This value was used to approximate
the cycle time period τ by τ = 2�/V cr

0 after the value of V cr
0 was evaluated by the

optimization.
In Fig. 21.4, the dimensionless performance function (21.19) is plotted for k =

2.5, 3, 3.5. It is seen that the value of optimal tension T̃ ∗
0 is increased with increasing

the value of k.
In Tables 21.1 and 21.2, the results of the non-dimensional optimization problem

(21.19)–(21.20) are shown for the considered values of the parameters k and a0. In
Table 21.1, the values of the productivity function J̃ at the optimum are shown. It
can be noted that an increase in the length of the initial crack a0 decreases produc-
tivity. The values of productivity seem to increase when k is increased. However,
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Table 21.2 Dependence of
the optimal tension T̃ ∗

0 on the
parameters k (Paris constant)
and a0 (m, initial crack
length)

T̃ ∗
0 a0 (m)

0.005 0.01 0.05 0.1

k 2.5 0.2500 0.2499 0.2499 0.2498

3 0.3333 0.3333 0.3332 0.3332

3.5 0.3968 0.3968 0.3968 0.3967

Table 21.3 Left: Dependence of the optimal tension T ∗
0 (N/m) on the parameters k (Paris constant)

and a0 (m, initial crack length). Right: Critical velocity V cr
0 (m/s) at the optimum, depending on

the parameters k and a0

T ∗
0

(N/m)
a0 (m)

0.005 0.01 0.05 0.1

k 2.5 504 356 159 113

3 672 475 212 150

3.5 800 565 253 179

V cr
0 (T ∗

0 )

(m/s)
a0 (m)

0.005 0.01 0.05 0.1

k 2.5 79.352 66.727 44.623 37.523

3 91.628 77.051 51.529 43.332

3.5 99.979 84.073 56.226 47.282

Table 21.4 Left: Dependence of the optimum of J (kg, performance) on the parameters k (Paris
constant) and a0 (m, initial crack length). Right: The number of cycles ncr at the optimum, depend-
ing on the parameters k and a0

J ∗
(kg)

a0 (m)

0.005 0.01 0.05 0.1

k 2.5 121168 101894 68151 57315

3 4821 3409 1525 1078

3.5 216 128 38 23

ncr(T ∗
0 ) a0 (m)

0.005 0.01 0.05 0.1

k 2.5 757300 636834 425943 358216

3 30130 21306 9529 6738

3.5 1348 801 239 142

one must take into account that also J0, in (21.17), depends on k, which affects the
actual productivity J = J0J̃ . In Table 21.2, the optimal values of the dimension-
less tension T̃ ∗

0 are shown. It is seen that the dimensionless tension values slightly
decrease when the crack size is increased.

Since the actual optimal productivity, the actual tension, and the related critical
speed and the critical number of cycles are of interest, these values were found at
the optimum and are shown in Tables 21.3 and 21.4. Note that several assumptions
have been made. Firstly, the Paris constant C = 10−14 is assumed to be independent
of k, and both of the values are not measured for paper but were chosen to be close
to the typical values of some known materials. Secondly, the cycle time period τ

is approximated assuming that one cycle length is 2�, and using the relation, τ =
2�/V cr

0 .
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Fig. 21.5 A colorsheet
showing the dependence of
the optimal tension T ∗

0 (N/m)
on the parameters k (Paris
constant) and a0 (m, initial
crack length). Note the
logarithmic scale of a0

The actual optimal tension T ∗
0 is calculated from (21.18), that is T ∗

0 = T M
0 T̃ ∗

0 .
Since T M

0 only depends on fixed values, and the material parameters in T M
0 are

measured and known for paper material, the results for the actual optimal tension,
shown in Table 21.3 (left), are comparable and quite reliable. The results for the
optimal tension T ∗

0 are also illustrated as a colorsheet in Fig. 21.5.
In Table 21.3 (right), the critical velocities corresponding to the optimal values of

tension V cr
0 (T ∗

0 ) are shown. The values of velocities can be calculated directly from
(21.14) using the values in Table 21.3 (left). As expected, the velocities decrease as
a0 is increased.

The actual optimal number of cycles ncr(T ∗
0 ) and the actual optimal productivity

J ∗ are more difficult to predict, since they depend on the Paris constant C, which
is not known for paper materials. As mentioned above, the same value of C, C =
10−14, is used for all investigated values of k, which may not be reasonable. Since
the value of κ0 defined in (21.7) is big (in this case �T > h), then κk

0 increases with
the increase in k. Keeping C constant, we see from (21.7) that the crack growth
rate may be bigger with a bigger value of k depending on the value of ak/2, which is
small. This means that the number of cycles may be the smaller the greater the value
of k is, which can also be seen from (21.8): the greater the value of k, the smaller
the value of A. In the results in Table 21.4 (right), it can be seen that the effect of
κ0 is big, and the number of cycles at the optimum decreases remarkably when k is
increased. This also results in a decrease in the optimal productivity J ∗, which is
shown in Table 21.4 (left).

Comparing the results in Tables 21.1 and 21.4 (left), we therefore make no con-
clusion about the effect of k on the actual performance J ∗. The qualitative result of
the decrease in the performance J ∗ when a0 is increased is, however, reported.
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21.6 Conclusion

In this study, the problems of safety analysis and optimization of a moving elastic
web travelling between two rollers at a constant axial velocity were investigated.
Instability of the web (transverse buckling) and its fatigue crack growth under a
cyclic in-plane tension were included in the study. The expressions for the critical
buckling velocity and the number of cycles before the fracture (longevity of the
web) as a function of in-plane tension and other problem parameters were used
to formulate analytically an optimization problem, in which the productivity was
maximized. The optimal tension maximizing the productivity function was found.

The optimal values of tension seemed to be very sensitive to the length of the
initial crack. It was found that the greater the initial crack, the smaller the optimal
tension and, consequently, the smaller the maximal productivity.

It should be noted that the critical velocity of the (paper) web was considered
in vacuum, and the effects of the surrounding fluid were excluded in this study,
and remain as topics for future research. Thus, the results are to be interpreted as
approximate.
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