
Chapter 2
Iterative Solution Methods for Large-Scale
Constrained Saddle-Point Problems

Erkki Laitinen and Alexander Lapin

Abstract Iterative solution methods for a class of finite-dimensional constrained
saddle point problems are developed. These problems arise if variational inequal-
ities and minimization problems are solved with the help of mixed finite element
statements involving primal and dual variables. In the paper, we suggest several
new approaches to the construction of saddle point problems and present conver-
gence results for the iteration methods. Numerical results confirm the theoretical
analysis.
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2.1 Introduction

We construct and investigate iteration methods for the finite dimensional constrained
saddle point problem
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where f ∈R
Nx and g ∈R

Nλ are given vectors, and the following assumptions hold:

(A1) Operator A :RNx →R
Nx is continuous, strictly monotone and coercive;

(A2) C ∈ R
Nλ×Nx , Nλ ≤ Nx , is a full rank matrix: rankC = Nλ;
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(A3) P = ∂Φ , Q = ∂Ψ , where Φ : RNx → R̄ and Ψ : RNλ → R̄ are proper, convex
and lower semi-continuous functions.

Different particular cases of the problem (2.1) arise if grid approximations (finite
difference, finite element, etc.) are used to approximate variational inequalities or
optimal control problems. Specifically, introducing the dual variables to the grid
approximations of the variational inequalities with constraints for the gradient of a
solution leads to (2.1) with Q = 0. Approximations of the control problems with
control function in the right-hand side of a linear differential equation or in the
boundary conditions give rise to the saddle point problem (2.1) with Q = 0 and
linear A. Finally, we note that mixed and hybrid finite element schemes for the 2-nd
order variational inequalities with pointwise constraints to the solution imply (2.1)
with P = 0.

The solution methods for large-scale unconstrained saddle point problems are
thoroughly investigated. The state-of-the-art for this problem can be found in the
survey paper [1] and in the book [6]. Constrained saddle point problems arising
from the Lagrangian approach for solving variational inequalities in mechanics and
physics are considered in [8–10] (see also the bibliography therein). Namely, the
convergence of Uzawa-type, Arrow-Hurwitz-type, and operator-splitting iterative
methods are investigated in these books.

The development of the efficient numerical methods designed to solve state-
constrained optimal control problems represents severe numerical challenges. The
construction of the effective iterative solution methods for them is an actual prob-
lem. The achievements in this field during the past two decades are reported in
the book [5] and the articles [2–4, 11–15, 21]. The augmented Lagrangian method
as well as regularization and penalty methods have been investigated for particu-
lar classes of the state-constrained optimal control problems. Adjustment schemes
for the regularization parameter of a Moreau–Yosida-based regularization and for
the relaxation parameter of interior point approaches to the numerical solution of
pointwise state constrained elliptic optimal control problems have been constructed.
Lavrentiev regularization has been applied to transform the state constraints to the
mixed control-state constraints in the linear-quadratic elliptic control problem with
pointwise constraints on the state. The interior point methods and the primal-dual
active set strategy have been applied to the transformed problem.

In this article, we prove convergence of the iterative solution methods for the
saddle point problem (2.1). The sufficient conditions of convergence for the iterative
methods are presented in the form of matrix inequalities and give rise to construct-
ing appropriate preconditioners and allow choosing the iterative parameter. Appli-
cations of the general convergence results to sample examples of the variational
inequalities and optimal control problems, as well as several numerical results, are
included. The results of this article are founded in the previous papers [16–19] by
the authors.



2 Iterative Methods for Large-Scale Saddle-Point Problems 21

2.2 Iterative Methods for the Saddle-Point Problem

2.2.1 Existence of the Solutions

Consider the problem (2.1) and suppose that it has a nonempty set of solutions
X = {(x,λ)}. Below we present the existence results for the cases P = 0 or Q = 0,
which are mostly interesting for the applications included in the article. Note that
the assumptions (A1)–(A3) ensure the uniqueness of the component x.

Lemma 2.1 Let the assumptions (A1)–(A3) be fulfilled and P = 0. Let also the
operator A be uniformly monotone, i.e.,

(Ax − Ay,x − y) ≥ α‖x − y‖2
A0

α > 0, (2.2)

and Lipshitz-continuous

‖Ax − Ay‖
A−1

0
≤ β‖x − y‖A0 (2.3)

with a symmetric and positive definite matrix A0 ∈R
Nx×Nx . Then, the problem (2.1)

has a unique solution (x,λ).

Lemma 2.2 ([17]) Let the assumptions (A1)–(A3) be fulfilled, Q = 0, and

int domΦ ∩ {
x ∈R

Nx : Cx = g
} 	= ∅.

Then, the problem (2.1) has a nonempty set of solutions X = {(x,λ)} with a uniquely
defined component x.

2.2.2 Iteration Methods

We consider two iteration methods for solving (2.1): a preconditioned Uzawa-type
method

Axk+1 + P
(
xk+1) − CT λk � f,

1

τ
Bλ

(
λk+1 − λk

) + Q
(
λk+1) + Cxk+1 � g

(2.4)

and a preconditioned Arrow-Hurwitz-type method

1

τ
Bx

(
xk+1 − xk

) + Axk + P
(
xk+1) − CT λk � f,

1

τ
Bλ

(
λk+1 − λk

) + Q
(
λk+1) + Cxk+1 � g.

(2.5)
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Preconditioners Bx and Bλ are supposed to be symmetric and positive definite ma-
trices, τ > 0 is an iteration parameter.

In the forthcoming theorem, we give sufficient conditions of the convergence for
the iterative method (2.4).

Theorem 2.1 ([17]) Let the operator A be uniformly monotone (2.2). If

Bλ >
τ

2α
CA−1

0 CT , (2.6)

then the iterations of the method (2.4) converge to a solution of (2.1) starting from
any initial guess λ0.

Note 1 Since the component x of the exact solution (x,λ), as well as the compo-
nents xk of the iterations belong to D(P ) ⊂ domΦ , it is sufficient for A to be a
uniform monotone operator only on domΦ .

Note 2

(a) In [6], it is proved that the positive eigenvalues μ of two generalized eigenvalue
problems

CA−1
0 CT = μBλ and CT B−1

λ C = μA0

with symmetric and positive definite matrices A0 and Bλ coincide. Owing to
this inequality, (2.6) is equivalent to the inequality

A0 >
τ

2α
CT B−1

λ C. (2.7)

(b) The inequality

(Ax − Ay,x − y) >
τ

2

(
CT B−1

λ C(x − y), x − y
) ∀x 	= y

replaces both (2.2) and (2.6).
(c) If A is linear then we can take A0 = 0/5(A+AT ) and the inequalities (2.6) and

(2.7) become, respectively (cf. [18]):

Bλ >
τ

2
CA−1

0 CT and A0 >
τ

2
CT B−1

λ C.

(d) In the case of a potential operator A : A = ∇Ξ , where Ξ is a differentiable
convex function, the method (2.4) is just the preconditioned Uzawa method
applied to finding a saddle point of the Lagrangian

2L (x,λ) = 1

2
Ξ(x) + Φ(x) − (λ,Cx − g) − (f, x).

The sufficient conditions for the choice of the preconditioning matrices Bx and
Bλ and iterative parameter τ > 0 required to ensure the convergence of the Arrow–
Hurwitz-type method (2.5) are given by
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Theorem 2.2 ([17]) Let the operator A be uniformly monotone (2.2) and Lipshitz-
continuous (2.3). If

(
2α − τμmaxβ

2)A0 > τ CT B−1
λ C, (2.8)

where μmax = λmax(B
−1/2
x A0B

−1/2
x ) is the maximal eigenvalue of the matrix

B
−1/2
x A0B

−1/2
x , then iterations of the method (2.5) converge to a solution of (2.1)

starting from any initial guess (x0, λ0).

Note 3 It is sufficient for A to be a uniform monotone and Lipshitz-continuous
operator only on domΦ (cf. Note 1).

Note 4

(a) The choice Bx = A0 gives the best limit for the iterative parameter τ ensuring
the convergence of the method. In this case, the inequality (2.8) reads

A0 >
τ

2α − τβ2
CT B−1

λ C,

and further choice of a preconditioner Bλ is similar to the case of the
method (2.4).

(b) If A is linear then the sufficient convergence condition (2.8) can be replaced by
the following sharper condition:

A >
τ

2

(
AB−1

x AT + CT B−1
λ C

)
.

2.2.3 Stopping Criterion

One possible stopping criterium for an iterative process is based on the evaluation
of residual norms. Namely, when solving the problem (2.1) by an iterative method
we find not only the pair (xk, λk)—approximations of the exact solution (x,λ), but
also uniquely defined selections γ k ∈ P(xk), δk ∈ Q(λk). Let us define the residual
vectors

rk
x = f − Axk − γ k + CT λk, rk

λ = g − δk − Cxk.

Lemma 2.3 Let the operator A be uniformly monotone (2.2). Then the error esti-
mate ∥∥x − xk

∥∥
A0

≤ c1
∥∥rk

x

∥∥
A−1

0
+ c2

∥∥λ − λk
∥∥1/2∥∥rk

λ

∥∥1/2 ∀k (2.9)

is valid for the methods (2.4) and (2.5). Constants c1 and c2 depend only on the
constant α of uniform monotonicity of operator A.



24 E. Laitinen and A. Lapin

Since ‖λ − λk‖ → 0 for k → ∞, then the inequality (2.9) gives an estimate for
the error ‖x − xk‖A0 throughout the norms ‖rk

x‖
A−1

0
and ‖rk

λ‖.

Note 5 In the Uzawa-type method for the saddle point problem, the inclusion Ax −
BT λ + ∂ϕ(x) � f is solved exactly on each iteration. Due to this fact, rk

x = 0 and
the estimate (2.9) reads

∥∥x − xk
∥∥

A0
≤ c2

∥∥λ − λk
∥∥1/2∥∥rk

λ

∥∥1/2 ∀k, (2.10)

whence ∥∥x − xk
∥∥ = o

(∥∥rk
λ

∥∥1/2) for k → ∞.

2.3 Application to Variational Inequalities

Now we consider the application of the previous results to a sample example of the
variational inequality: find u ∈ V such that ∀v ∈ V

∫
Ω

a(x) k(∇u) ·∇(v−u)dx +
∫

Ω

|∇v|dx −
∫

Ω

|∇u|dx ≥
∫

Ω

f (v−u)dx. (2.11)

Here H 1
0 (Ω) ⊂ V ⊂ H 1(Ω), a(x) > 0, and k(t̄) : R2 → R

2 is a continuous and
uniformly monotone vector-function:

(
k(t̄1) − k(t̄2)

) · (t̄1 − t̄2) ≥ σ0|t̄1 − t̄2|2 ∀t̄i , σ0 > 0. (2.12)

We construct a simple finite element approximation of (2.11) in the case of polyg-
onal domain Ω . Let Ω = ⋃

e∈Th
e be a conforming triangulation of Ω [7], where

Th is a family of Ne non-overlapping closed triangles e (finite elements) and h is
the maximal diameter of all e ∈ Th. Further Vh ⊂ H 1

0 (Ω) is the space of the contin-
uous and piecewise linear functions (linear on each e ∈ Th), while Uh ∈ L2(Ω) is
the space of the piecewise constant functions. Define fh ∈ Uh and ah ∈ Uh by the
equalities

fh(x) = |e|−1
∫

t∈e

f (t)dt, ah(x) = |e|−1
∫

t∈e

a(t)dt, ∀x ∈ e, |e| = meas e.

The finite element approximation of the problem (2.11) satisfies the relation

uh ∈ Vh :
∫

Ω

ah(x)k(∇uh) · ∇(vh − uh)dx +
∫

Ω

|∇vh|dx −
∫

Ω

|∇uh|dx

≥
∫

Ω

fh(vh − uh)dx, ∀vh ∈ Vh. (2.13)
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In order to formulate (2.13) in a vector-matrix form, we first define the vectors
u ∈ R

Nu and w ∈ R
Ne of the nodal values of functions uh ∈ Vh and wh ∈ Uh, re-

spectively. We correspond a vector valued function q̄h = (q1h, q2h) ∈ Uh × Uh to
the vector q = (q11, q21, . . . , q1i , q2i , . . . , q1Ne, q2Ne) ∈ R

2Ny , where q1i = q1h(x),
q2i = q2h(x) for x ∈ ei . Further, we define the matrix L ∈ R

Nu×Ny and the operator
k : RNy →R

Ny by the equalities

(Lu,q) =
∫

Ω

∇uh(x) · q̄h(x)dx,
(
k(p), q

) =
∫

Ω

ah(x)k
(
p̄h(x)

) · q̄h(x)dx,

diagonal matrix D = diag(a1, a1, . . . , ai, ai, . . . , aNe , aNe) ∈ R
Ny×Ny with the en-

tries ai = ah(x) for x ∈ ei , and vector f ∈R
Nu , (f,u) = ∫

Ω
fh(x)uh(x)dx. Finally,

let the convex function be defined by the relation

θ(p) =
Ne∑
j=1

|ej |
(
p2

2j + p2
2j−1

)1/2
.

Now, the discrete variational inequality (2.13) can be written in the form

u ∈R
Nu : (D k(Lu),L(v − u)

) + θ(Lv) − θ(Lu) ≥ (f, v − u) ∀v ∈ R
Nu

or, equivalently, as the inclusion

LT Dk(Lu) + LT ∂θ(Lu) � f. (2.14)

We will construct different saddle point problems using the inclusion (2.14).

2.3.1 Variational Inequality with the Linear Main Operator

First, let us consider the discrete problem approximating variational inequality with
the linear differential operator: k(∇u) = ∇u. The corresponding discrete inclusion
is

LT D Lu + LT ∂θ(Lu) � f.

Denoting p = Lu, we transform it to one of the following three systems:

1

2
LT DLu + LT λ = f, λ ∈ 1

2
Dp + ∂θ(p), p = Lu; (2.15)

LT DLu + LT λ = f, λ ∈ ∂θ(p), p = Lu; (2.16)

LT λ = f, λ ∈ Dp + ∂θ(p), p = Lu. (2.17)

The matrix A1 = (
0.5LT DL 0

0 0.5D

)
of the first two equations in the system (2.15)

is positive definite and block diagonal. Thus, the Uzawa-type method (2.4), being
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applied to this system, can be effectively implemented. On the other side, the saddle
point problems (2.16) and (2.17) contain degenerate matrices A2 = (

LT DL 0
0 0

)
and

A3 = ( 0 0
0 D

)
, respectively, so, the iterative method (2.4) cannot be applied for their

solution. We realize different equivalent transformations of (2.16) and (2.17) by
using the equation Lu = p, to obtain the systems with positive definite matrices Ai .
In particular, we can get the system corresponding to the augmented Lagrangian
method⎛

⎝(1 + r)LT DL −rLT D LT

−rDL rD −E

L −E 0

⎞
⎠

⎛
⎝u

p

λ

⎞
⎠ +

⎛
⎝ −f

∂θ(p)

0

⎞
⎠ � 0, r > 0. (2.18)

The matrix Ar = (
(1+r)LT DL −rLT D

−rDL rD

)
in (2.18) is symmetric and positive definite for

any r > 0. However, it is not block diagonal or block triangle. In view of this, the
method (2.4) cannot be effectively implemented (while it converges for this prob-
lem). The most well-known methods for solving (2.18) are the so-called Algorithms
2–6 (see [8, 9]), based on the block relaxation technique to inverse Ar and updat-
ing of the Lagrange multipliers λ. Instead of (2.18) we construct the systems with
positive definite and block triangle 2 × 2 left upper blocks:

⎛
⎝LT DL 0 LT

−rDL rD −E

L −E 0

⎞
⎠

⎛
⎝u

p

λ

⎞
⎠ +

⎛
⎝ −f

∂θ(p)

0

⎞
⎠ � 0, (2.19)

⎛
⎝rLT DL −rLT D LT

0 D −E

L −E 0

⎞
⎠

⎛
⎝u

p

λ

⎞
⎠ +

⎛
⎝ −f

∂θ(p)

0

⎞
⎠ � 0. (2.20)

Lemma 2.4 Let 0 < r < 4. Then the matrices

A2[r] =
(

LT DL 0
−rDL rD

)
, A3[r] =

(
rLT DL −rLT D

0 D

)
(2.21)

in the systems (2.19) and (2.20) are energy equivalent to the block diagonal and
positive definite matrix

A0 =
(

LT DL 0
0 D

)

with the constants depending only on r :

αi(r)(A0x, x) ≤ (
Ai[r]x, x

) ≤ βi(r)(A0x, x) ∀x, i = 2,3.

As the matrices A2[r] and A3[r] defined in (2.21) are block triangle, the Uzawa-
type iterative method (2.4) can be easily implemented for the solution of the systems
(2.19) and (2.20). Owing to Theorem 2.1, the most reasonable preconditioner is
Bλ = D−1. The convergence result in the particular case r = 1 reads as follows:
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Theorem 2.3 ([18]) Let r = 1. Then the method (2.4) with Bλ = D−1 applied to
the systems (2.19) and (2.20) converges provided that 0 < τ < 1

2 .

Implementation of the method (2.4) for (2.19) and (2.20) includes solving a sys-
tem of linear equations with the matrix LT DL and solving an inclusion of the form
cDp + ∂θ(p) � F , c = const with a known vector F . In the example under consid-
eration, the matrix D is diagonal and the multivalued operator ∂θ is block-diagonal
with 2 × 2 blocks. Because of this, the inclusion cDp + ∂θ(p) � F can be easily
solved by the direct methods.

2.3.2 Variational Inequality with Non-linear Main Operator

To construct saddle point problems for the inclusion (2.14) with the non-linear main
operator, we proceed similarly to the linear case. Namely, by using Lagrange mul-
tipliers λ and the equation Lu = p, we construct saddle point problems with uni-
formly monotone operators in the space of the vectors x = (u,p)T . Consider two of
them:

LT k(Lu) + LT λ = 0, −rDLu + rDp + ∂θ(p) − λ � 0,

Lu − p = 0, (2.22)

rLT DLu − rLT Dp + LT λ = 0, Dk(p) + ∂θ(p) − λ � 0,

Lu − p = 0. (2.23)

The systems (2.22) and (2.23) contain block-triangle operators

A1(x) =
(

LT k(Lu) 0
−rDLu rDp

)
and A2(x) =

(
rLT DLu −rLT Dp

0 Dk(p)

)
.

Lemma 2.5 Let the uniform monotonicity property (2.12) with the constant σ0 hold
and 0 < r < 4σ0. Then the operators A1 and A2 are uniformly monotone:

(Aix1 − Aix2, x1 − x2) ≥ αi‖x1 − x2‖2
A0

, αi = αi(r, σ0) > 0, i = 1,2, (2.24)

where A0 = (
LT DL 0

0 D

)
is the positive definite matrix.

Lemma 2.6 Let the function k be Lipschitz-continuous:

(
k(t̄1) − k(t̄2)

) · (s̄) ≤ σ1|t̄1 − t̄2||s̄| ∀t̄i , s̄. (2.25)

Then the operators A1 and A2 are Lipschitz-continuous:

‖Aix1 − Aix2‖A−1
0

≤ βi‖x1 − x2‖A0, βi = βi(r, σ1), i = 1,2. (2.26)
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Application of Lemmas 2.5 and 2.6 and Theorem 2.1 gives the following result:

Theorem 2.4 Let 0 < r < 4σ0. Then the Uzawa-type iterative method (2.4) with the
preconditioner Bλ = D−1 applied for solving (2.22) and (2.23) converges if

0 < τ <
2α2r

1 + r
.

Implementation of the method (2.4) for (2.23) includes solving a system of linear
equations with the matrix LT DL and solving the inclusion Dk(p)+∂θ(p) � F with
a known vector F . This inclusion can be effectively solved because the operator k

is diagonal and ∂θ is a 2 × 2 block diagonal operator.
Implementation of (2.4) for the problem (2.22) requires solving the system

of nonlinear equations LT k(Lu) + LT λ = 0 by an inner iterative method. Thus,
the effectiveness of the algorithm depends also on the effectiveness of an inner
iterative method. Instead of the Uzawa-type method we can apply the Arrow–
Hurwitz-type iterative method (2.5) for the problem (2.22) with Bλ = D−1 and
Bx = A0 = (

LT DL 0
0 D

)
. The results of Lemmas 2.5 and 2.6 and Theorem 2.2 yield

Theorem 2.5 Let 0 < r < 4σ0. Then the iterative method (2.5) for the problem
(2.22)

r

τ
LT DL

(
uk+1 − uk

) + LT k
(
Luk

) + LT λk = 0,

1

τ
D

(
pk+1 − pk

) − rDLuk + rDpk + ∂θ
(
pk+1) − λk � 0,

1

τ

(
λk+1 − λk

) + D
(
Luk+1 − pk+1) = 0

(2.27)

converges if

τ <
2α1

β1 + (1 + r)/r
.

It is easy to see that the implementation of (2.27) includes the same steps as the
implementation of the method (2.4) for (2.23).

2.3.3 Variational Inequality with Pointwise Constraints both for
the Solution and Its Gradient

Consider the variational inequality: find u ∈ Uad = {u ∈ H 1
0 (Ω) : u(x) ≥ 0 in Ω},

such that for all v ∈ Uad∫
Ω

a(x)k
(|∇u|)∇u · ∇(v − u)dx +

∫
Ω

(|∇v| − |∇u|)dx ≥
∫

Ω

f (v − u)dx,
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where a(x) > 0 and the vector-function k(|t̄ |)t̄ satisfies (2.12). After approximation
of this variational inequality, we obtain the discrete variational inequality
(
D k(Lu),L(v − u)

) + θ(Lv) − θ(Lu) + ϕ(v) − ϕ(u) ≥ (f, v − u) ∀v ∈ R
Nu,

where ϕ is the indicator function of the constraint set {u ∈ R
Nu : ui ≥ 0 ∀i}, while

all other notations are the same as above. We write this variational inequality in the
form of inclusion

LT D k(Lu) + LT ∂θ(Lu) + ∂ϕ(u) � f.

We proceed as before and construct the saddle point problems

LT k(Lu) + ∂ϕ(u) + LT λ = 0, −rDLu + rDp + ∂θ(p) − λ � 0,

Lu − p = 0, (2.28)

rLT DLu − rLT Dp + ∂ϕ(u) + LT λ = 0, Dk(p) + ∂θ(p) − λ � 0,

Lu − p = 0. (2.29)

Both iterative methods, (2.4) and (2.5), can be applied for solving these saddle point
problems because the results of Theorems 2.1 and 2.2 are valid with the operator
P defined by P(x) = (∂ϕ(u), ∂θ(p))T . But now, the implementation of the Uzawa-
type iterative method (2.4) for (2.29) includes the solution of the finite dimensional
obstacle problem—the inclusion

rLT DLu + ∂ϕ(u) � rLT Dp − LT λ

with the symmetric and positive definite matrix rLT DL, and the implementation
of this method for (2.28) includes the solution of the problem with the non-linear
operator

LT k(Lu) + ∂ϕ(u) � −LT λ.

The Arrow–Hurwitz-type method (2.5) with preconditioners Bx = (
D 0
0 D

)
and

Bλ = D−1 being applied to (2.28) or (2.29) converges and it can be easily imple-
mented. On the other hand, in this case the maximal eigenvalue μmax of the matrix
B

−1/2
x A0B

−1/2
x depends on condition numbers of the matrices D and LT L, thus, on

the mesh step h. Convergence of the corresponding iterative methods is guaranteed
for the very small iterative parameter τ , and numerical experiments demonstrate
slow convergence of the Arrow–Hurwitz-type method (2.5).

2.3.4 Results of Numerical Experiments

We have solved a number of 1D and 2D linear and non-linear variational inequalities
using the simplest finite element and finite difference approximations and applying
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Table 2.1 Dependence of nit on τ and n for Problem 2.1

n 5000 50000 500000

τ 1.3 1.2 1.1 1 0.9 1 1

nit 10 8 6 2 6 2 2

the Uzawa-type method. The main purpose of the numerical experiments was to ob-
serve the dependence of the number of iterations upon the mesh step h and iterative
parameter τ . We also compared proposed iterative algorithms with well-known al-
gorithms for saddle point problems constructed via an augmented Lagrangian tech-
nique. Several numerical results are reported below.

Consider the following one-dimensional variational inequality

u ∈ K :
∫ 1

0
u′(v′ − v′)dx ≥

∫ 1

0
f (v − u)dx ∀v ∈ K

with the set of constraints K = {u ∈ H 1
0 (0,1) : |u′(x)| ≤ 1 for x ∈ (0,1)}. Finite

element approximation with piecewise linear elements on the uniform grid leads
to the inclusion LT Lu + LT ∂θ(Lu) � f , where the matrix L corresponds to the
approximation of the first order derivative. We solve the corresponding saddle point
problems:

Problem 2.1 The saddle point problem with A = (
LT L 0
−L E

)
(which corresponds

to (2.19)).

Problem 2.2 The saddle point problem with A = ( 1
2 LT L 0

0 1
2 E

)
(which corresponds

to (2.15)).

We use the stopping criterion

∥∥u − u∗∥∥
L2

=
(

h

n∑
i=1

(
ui − u∗

i

)2

)1/2

< 10−4,

where h = n−1 is the mesh step and u∗ is the known exact solution, and the initial
guess λ = 0. Table 2.1 demonstrates the dependence of the number of iterations nit

upon the iterative parameter and the number of the grid nodes for Problem 2.1.
For Problem 2.2 the optimal iterative parameter was found τ = 0.4 and the num-

ber of iterations to achieve the accuracy ‖u − u∗‖L2 < 10−4 for the grids with the
number of nodes from n = 50 to n = 500 000 was equal to 12.
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Table 2.2 Left: The Uzawa method with the preconditioner Bλ equals to the unit matrix for Prob-
lem 2.3, the initial guess λ = 0. Right: Algorithm 2 for Problem 2.4, corresponding to the aug-
mented Lagrangian method, the initial guess λ = 0, p = 0

n 200 400

τ 1.2 1.3 1.4 1.5 1.6 1.3

nit 11 11 13 17 23 11

n 200 400 500

τ 1.3 1.3 1.3

nit 9 9 9

Now we consider two-dimensional variational inequalities with linear differential
operators

∫
Ω

∇u · ∇(v − u)dx ≥
∫

Ω

f (v − u)dx, ∀v ∈ K,

K =
{
u ∈ H 1

0 (Ω) :
∣∣∣∣ ∂u

∂x1

∣∣∣∣ ≤ 1,

∣∣∣∣ ∂u

∂x2

∣∣∣∣ ≤ 1 in Ω

}
; (2.30)

∫
Ω

∇u · ∇(v − u)dx +
∫

Ω

|∇v| − |∇u|dx ≥
∫

Ω

f (v − u)dx ∀v ∈ H 1
0 (Ω).

(2.31)

We set Ω = (0,1) × (0,1) and construct finite difference approximations on uni-
form grids. These finite difference schemes can be written in the form of the inclu-
sion LT Lu + LT ∂θ(Lu) � f , where the rectangular matrix L corresponds to the
approximation of the gradient operator. We have studied the following two saddle
point problems:

Problem 2.3 2D saddle point problem with the matrix A = (
LT L 0
−L E

)
.

Problem 2.4 2D saddle point problem with the matrix A = (
2LT L −LT

−L E

)
(which

corresponds to the augmented Lagrangian method with r = 1).

We use the stopping criterion

∥∥u − u∗∥∥
L2

=
(

h2
n∑

i,j=1

(
uij − u∗

ij

)2

)1/2

< 10−3,

where n = h−1 is the number of nodes in one direction and u∗ is the known exact
solution. Table 2.2 contains results for the variational inequality (2.30).

For the discrete saddle point problems corresponding to (2.31) the results were
similar. Namely, for both aforementioned methods and grids with the number of
nodes n = 100,200,400 the accuracy ‖u − u∗‖L2 < 10−3 was achieved within 19
iterations for τ = 1.2, which was found as numerically optimal.
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Table 2.3 2D non-linear saddle point problem; C = 10, τ = 1/2, n = 500

nit 1 10 20 30 40 50 60 70

‖rλ‖ 0.7137 0.1144 0.0248 0.0095 0.0050 0.0030 0.0020 0.0015

δu 0.0829 0.0123 0.0058 0.0014 0.0009 0.0005 0.0003 0.0001

Finally, we consider a two-dimensional variational inequality associated with the
non-linear differential operator

∫
Ω

k
(|∇u|)∇u · ∇(v − u)dx ≥ C

∫
Ω

(v − u)dx, ∀v ∈ K, (2.32)

where Ω = (0,1) × (0,1), k(t)t = √
t and K = {u ∈ H 1

0 (Ω) : |∇u(x)| ≤ 1 in Ω}.
We constructed a finite difference approximation of (2.32) on the uniform grid. Ac-
cording to the theory the iterative parameter was taken τ = 1/2. Since the exact
solution was not known we estimated the norms of the residuals ‖rλ‖|L2 (see the
estimate (2.10)). Calculations were made for different amount of nodes in one di-
rection. For all grids, we observed typical dependence of norms of the residuals
upon the iteration number: very fast decreasing during the first iterations with fur-
ther deceleration. After 20–25 iterations the norm ‖uk −uk−1‖L2 became very close
to zero and the vector uk could be taken as the exact solution. The calculation re-
sults for the case n = 500 are given in Table 2.3, where δu = ‖uk − u100‖L2 is the
norm of the difference between the current iteration and the 100th iteration which
was taken as the exact solution.

In the computations performed for 1D and 2D variational inequalities, the fol-
lowing features were observed:

• The dependence of the rate of convergence for the method (2.4) on the parameters
r and τ = τ(r) was quite low;

• The number of iterations did not depend on the mesh size h = 1/n;
• In all cases the Uzawa-type method (2.4) applied to transformed saddle point

problems with the block triangle A was similar by a rate of convergence to Al-
gorithm 2 applied to the saddle point problem constructed via the augmented
Lagrangian technique.

2.4 Application to Optimal Control Problems

Consider the following elliptic boundary value problem:

∫
Ω

2∑
i,j=1

(
aij

∂y

∂xj

∂z

∂xi

+ a0yz

)
dx =

∫
Ω

(f + χ0u)zdx ∀z ∈ H 1
0 (Ω). (2.33)
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Here Ω0 ⊆ Ω , χ0 ≡ χΩ0 is the characteristic function of the domain Ω0, the func-
tion f ∈ L2(Ω) is fixed, while u ∈ L2(Ω0) is a variable control function. Coef-
ficients aij (x) and a0(x) are continuous in Ω and satisfy the following ellipticity
assumptions:

2∑
i,j=1

aij (x)ξj ξi ≥ c0

2∑
i=1

ξ2
i , a0(x) ≥ 0 ∀x ∈ Ω, c0 = const > 0.

Define the goal functional

J (y,f ) = 1

2

∫
Ω1

(y − yd)2 dx + 1

2

∫
Ω0

u2 dx

with a given function yd(x) ∈ L2(Ω1), Ω1 ⊆ Ω , and the sets of the constraints

Yad = {
y ∈V : y(x) ≥ 0 ∀x ∈Ω

}
, Uad = {

u∈L2(Ω0) : ∣∣u(x)
∣∣ ≤ ud ∀x ∈Ω0

}
.

The optimal control problem reads as follows:

min
(y,u)∈Z

J (y,u), Z = {
(y,u) : y ∈ Yad, u ∈ Uad, Eq. (2.33) holds

}
. (2.34)

We suppose that the set Z is non-empty. Then, the problem (2.34) has a unique
solution (cf., e.g., [20]).

Construct a finite element approximation of the problem (2.34) in the case of
polygonal domains Ω , Ω0 and Ω1. Let a triangulation of Ω be consistent with Ω0
and Ω1. Define the spaces of the continuous and piecewise linear functions (linear
on each triangle of the triangulation) on the domain Ω (Vh ⊂ H 1

0 (Ω)) and on the
subdomains Ω0 and Ω1. Let functions f , u and yd be continuous and fh, uh and
yd h be their piecewise linear interpolations. We use the quadrature formulas

∫
e

g(x)dx ≈ Se(g) = 1

3
|e|

3∑
α=1

g(xα),

SΩ(g) =
∑
e∈Th

Se(g), SΩi
(g) =

∑
e∈T i

h

Se(g),

where xα are the vertices of e, and |e| = meas e. Finite element approximations of
the state equation, the goal function, and the constraints are as follows:

SΩ

(
2∑

i,j=1

aij

∂yh

∂xj

∂zh

∂xi

+ a0yhzh

)
= SΩ(fh zh) + SΩ0(uh zh) ∀zh ∈ Vh, (2.35)

Jh(yh,uh) = 1

2
SΩ1

(
(yh − yd h)

2) + 1

2
SΩ0

(
u2

h

)
,

Y h
ad = {

yh ∈ Vh : yh(x) ≥ 0 in Ω
}
, Uh

ad = {
uh : ∣∣uh(x)

∣∣ ≤ ud in Ω0
}
.



34 E. Laitinen and A. Lapin

The state equation (2.35) has a unique solution yh and the following stability in-
equality holds:

S
1/2
Ω

(|yh|2
) ≤ ka

(
S

1/2
Ω

(
f 2

h

) + S
1/2
Ω0

(
u2

h

))
(2.36)

with a constant ka independent on h. The finite element approximation of the opti-
mal control problem (2.34) is

⎧⎨
⎩

min
(yh,uh)∈Zh

Jh(yh,uh),

Zh = {(yh,uh) : yh ∈ Yh
ad, uh ∈ Uh

ad, Eq. (2.35) holds}.
(2.37)

To obtain the matrix-vector form of (2.37), we define the vectors of nodal values
y ∈R

Ny , u ∈R
Nu and the matrices

L ∈ R
Ny×Ny : (Ly, z) = SΩ

(
2∑

i,j=1

aij

∂yh

∂xj

∂zh

∂xi

+ a0yhzh

)
,

S ∈ R
Ny×Nu : (Su, z) = SΩ0(uhzh), K ∈R

Ny×Ny : (Ky, z) = SΩ1(yhzh),

M ∈ R
Ny×Ny : (Mf, z) = SΩ(fhzh), M0 ∈R

Nu×Nu : (M0u,v) = SΩ0(uhvh).

Then, the discrete optimal control problem can be written in the form

min
Ly=Mf +Su

{
1

2
(Ky,y) − (Kyd, y) + θ(y) + 1

2
(M0u,u) + ϕ(u)

}
,

where θ(y) = IYad
(y) and ϕ(u) = IUad

(u) are the indicator functions of the sets
Yad = {y ∈ R

Ny : yi ≥ 0 ∀i} and Uad = {u ∈ R
Nu : |ui | ≤ ud ∀i}, respectively. The

corresponding saddle point problem reads as follows:
⎛
⎝ K 0 −LT

0 M0 ST

−L S 0

⎞
⎠

⎛
⎝y

u

λ

⎞
⎠ +

⎛
⎝∂θ(y)

∂ϕ(u)

0

⎞
⎠ �

⎛
⎝ Kyd

0
−Mf

⎞
⎠ . (2.38)

In the problem (2.38), the stiffness matrix L is positive definite, and M > 0, M0 > 0,
K ≥ 0 are diagonal matrices. The main feature of (2.38) is that K is a degenerate
matrix. We transform the system (2.38) to obtain a positive definite and block trian-
gle left upper 2 × 2 block. To this end we add to the first inclusion in (2.38) the last
equation multiplying by −rML−1, r > 0, and obtain the saddle point problem

(
A[r] −CT

−C 0

)(
x

λ

)
+

(
∂Θ(x)

0

)
�

(
g̃

−Mf

)
(2.39)

with

A[r] =
(

K + rM −rML−1S

0 M0

)
, ∂Θ(x) =

(
∂θ(y)

∂ϕ(u)

)

and g̃ = (f̃ ,0)T , f̃ = Kyd + rML−1Mf .
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Lemma 2.7 Let 0 < r < 4
k2
a

, where the constant ka is defined in (2.36). Then, the

matrix A[r] is an energy equivalent to A0 = ( M 0
0 M0

)
with constants depending only

on r . In particular,

(
A[r]x, x

) ≥ α
(
A0x, x

)
, α = α(r, ka) > 0.

We solve (2.39) by using the iterative Uzawa-type method (2.4) with the precon-
ditioner Bλ = LM−1 LT :

(K + rM)yk+1 + ∂θ
(
yk+1) − rML−1Suk+1 � LT λk + f̃ ,

M0u
k+1 + ∂ϕ

(
uk+1) � −ST λk,

1

τ
LM−1LT

(
λk+1 − λk

) + Lyk+1 − Suk+1 � Mf.

(2.40)

Theorem 2.6 ([18]) The iterative method (2.40) converges if

0 < τ <
2α

k2
a + 1

.

Along with the iterative method (2.40) we can use the gradient method for the
regularized problem. Namely, let us change the indicator function θ(y) = IYad

(y) of
the constraint set Yad = {y ∈R

Ny : yi ≥ 0 ∀i} by the differentiable function

θε(y) = 1

ε

(
My−, y−)

.

For the corresponding regularized saddle point problem we can apply the “tradi-
tional” gradient method

Lyk+1 = Suk + Mf,

LT λk+1 = (K + rM)yk+1 + ∇θε

(
yk+1) − rML−1Suk − f̃ ,

M0
uk+1 − uk

τ
+ M0u

k+1 + ∂ϕ
(
uk+1) + ST λk+1 � 0.

(2.41)

Theorem 2.7 ([19]) The iterative method (2.41) converges if

0 < τ <
2ε

k2
a(1 + ε) + rε

.

When implementing any of the iterative methods (2.40) or (2.41) we have to
solve the systems of linear equations with matrices L and LT , and to solve two
inclusions with diagonal operators M0 + ∂ϕ and K + rM + ∂θ .
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Table 2.4 The Uzawa-type method for Problem 2.5, y = 3(sin(6πx1x2))
+

nit n = 100, F ∗ = 1.70 n = 300, F ∗ = 1.68 n = 500, F ∗ = 1.68

F Err F Err F Err

1 0 0.05 0 0.048604 0 0.048052

2 1.71 0.0001 1.68 0.00012238 1.68 0.00012111

3 1.70 3 × 10−7 1.68 3.1 × 10−7 1.68 3.1 × 10−7

4 1.70 1.69 × 10−7 1.68 6.79 × 10−8 1.68 1.47 × 10−7

5 1.70 1.69 × 10−7 1.68 6.79 × 10−8 1.68 1.47 × 10−7

2.4.1 Numerical Experiments

Problem 2.5 A control- and state-constrained optimal control problem with obser-
vation in the whole domain Ω = (0,1) × (0,1): minimize the goal functional

1

2

∫
Ω

y2(x)dx + 1

2

∫
Ω

u2(x)dx

under the constraints

−�y = f + u, x ∈ Ω, y(x) = 0, x ∈ ∂Ω,

y(x) ≥ 0, x ∈ Ω,
∣∣u(x)

∣∣ ≤ 1, x ∈ Ω.
(2.42)

We constructed a finite difference approximation of this problem on the uniform
grid. The corresponding saddle point problem has the form (2.38) with unit matri-
ces K , M0 and S. Therefore, we can use the preconditioned Uzawa-type method
(2.40) for solving this saddle point problem without its transformation. The results
of the calculations are reported in Table 2.4, where F ∗ = J (y,u) is the value of the
discrete goal function on the known exact solution (y,u) (y = 3(sin(6πx1x2))

+ for
the corresponding grid), while F = J (yk, vk) is its value on the current iteration;

Err = (‖yk − y‖2
L2

+ ‖uk − u‖2
L2

)
1
2 .

Problem 2.6 A control- and state-constrained optimal control problem with obser-
vation in the part Ω1 = (0,0.7)× (0,1) of the domain Ω = (0,1)× (0,1): minimize
the goal functional

1

2

∫
Ω1

y2(x)dx + 1

2

∫
Ω

u2(x)dx

under the constraints (2.42). We constructed a finite difference approximation of
this problem on the uniform grid. The corresponding saddle point problem has the
form (2.38) with the degenerate matrix K . We transformed it to the problem of the
form (2.39) with r = 1 and applied the Uzawa-type method (2.40) for its solution.
The corresponding calculation results are included in Table 2.5.
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Table 2.5 The Uzawa-type method for Problem 2.6

nit n = 100, F ∗ = 2.7783 n = 200, F ∗ = 2.7897 n = 500, F ∗ = 2.7965

F Err F Err F Err

1 0.6836 0.8652 0.6900 0.8705 0.6974 0.8736

2 1.5378 0.4285 1.5574 0.4311 1.5689 0.4327

3 2.0928 0.2113 2.1194 0.2125 2.1352 0.2133

4 2.4020 0.1073 2.4326 0.1080 2.4507 0.1084

5 2.5645 0.0580 2.5972 0.0583 2.6165 0.0585

6 2.6477 0.0336 2.6814 0.0337 2.7013 0.0338

7 2.6897 0.0214 2.7240 0.0215 2.7442 0.0215

8 2.7109 0.0153 2.7454 0.0153 2.7658 0.0154

9 2.7215 0.0122 2.7561 0.0123 2.7766 0.0123

10 2.7268 0.0107 2.7615 0.0107 2.7820 0.0107
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

50 2.7320 0.0088 2.7669 0.0088 2.7874 0.0088

Problem 2.7 A state-constrained optimal control problem with observation in the
whole domain: minimize the goal functional

J (y,u) = 1

2

∫
Ω

(y − yd)2 dx + 1

2

∫
Ω

u2 dx

under the constraints

−�y = f + u, x ∈ Ω, y(x) = 0, x ∈ ∂Ω,

y(x) ≤ 0.5, x ∈ Ω.

We constructed a finite difference approximation on the uniform grid and applied
the Uzawa-type method (2.40) and the gradient method (2.41) for solving the cor-
responding discrete saddle point problems. We compared the calculated iterations
with the exact solution y, calculated by using a great deal of convergent iterations.
Table 2.6 contains the results for the case f = 20, h = 10−2, F ∗ = 44.1789. The
notations are Erry = ‖y − yk‖, δyk = ‖yk−1 − yk‖.

Along with the Uzawa-type and regularization methods, we have also applied
the Douglas-Rachford splitting method for solving state-constrained optimal control
problems. We have found that none of the methods could be defined as the efficient
one in all situations. More numerical experiments should be made to define the
classes of the optimal control problems and the corresponding iterative methods
which are the most efficient for their solving.
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Table 2.6 Uzawa-type and gradient methods for Problem 2.7

nit Uzawa method with τ = 1.8 Gradient method with ε = 10−5, τ = 2×10−5

F Erry δyk F Erry δyk

1 0 0.3629 0.0750 0.3396 21.7302 0.8665

2 0.1089 0.1552 0.4683 0.3406 21.5275 0.0455

3 0.0984 0.1085 0.1350 0.3435 21.3268 0.0452

4 0.1092 0.1229 0.1110 0.3482 21.1279 0.0450

5 0.1090 0.0986 0.0953 0.3547 20.9310 0.0448

6 0.1215 0.1125 0.0827 0.3630 20.7361 0.0446

7 0.1267 0.0971 0.0738 0.3731 20.5430 0.0443

8 0.1405 0.1069 0.0670 0.3848 20.3517 0.0441

9 0.1499 0.0970 0.0624 0.3983 20.1623 0.0439

10 0.1654 0.1034 0.0590 0.4134 19.9748 0.0437
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

300 21.1177 0.0568 0.0157 23.3858 1.5660 0.0108
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

500 31.2662 0.0425 0.0064 33.4540 0.3330 0.0045
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