
Chapter 17
Multi-Objective Actuator Placement
Optimization for Local Sound Control
Evaluated in a Stochastic Domain

Tuomas Airaksinen and Timo Aittokoski

Abstract A method to find optimal locations and properties of anti-noise actuators
in a local noise control system is considered. The local noise control performance
is approximated by an approach based on a finite element method, attempting to
estimate the average performance of an optimal active noise control (ANC) system.
Local noise control uses a fixed number of circular actuators that are located on the
boundary of a three-dimensional enclosed acoustic space. Actuator signals are used
to minimize the known harmonic noise at specified locations. The average noise
reduction is maximized at two frequency ranges by adjusting the anti-noise actu-
ator configuration, which is a non-linear multi-objective optimization problem. To
solve the optimization problem, an unsorted population size evolutionary optimiza-
tion algorithm (UPS-EMOA) is considered, and its performance is compared to the
widely-known NSGA-II method. As a numerical example problem, the ANC in a
passenger car cabin is considered. Significantly better noise control is obtained with
the optimized actuator locations than only by a engineer’s sophisticated guess.

17.1 Introduction

Noise generated by different machines is an increasing problem in modern working
environments. Wheels, engines, and cooler fans are typical noise sources. There is
an obvious need for noise control applications in factory environments, engineering
vehicles, and passenger cars, for example. Sometimes it is possible to remove or
reduce important noise source mechanisms by suitable design choices, which makes
particular noise control approaches unnecessary. In many cases, however, this is not
possible or the design is limited by other more important factors than noise.

Passive noise control techniques such as absorbing and insulating acoustic ele-
ments are effective methods in reducing high frequency sound, whereas active noise
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control (ANC) methods [11] are good at reducing low-frequency noise. The ANC
is based on generating anti-sound with actuators. So the original noise is attenuated.
In order to cancel the noise perfectly, the anti-sound must have the same amplitude
as the noise, but an opposite phase so that destructive interference occurs. Local
noise control employs ANC methods so that noise is reduced locally in a desired
subdomain.

The most important frequencies originating in the passenger car engine are below
500 Hz [14]. As there are significant low-frequency noise sources, the local sound
control can provide a significant noise reduction to the car cabin environment. Ad-
vanced methods designing and assessing such systems employ numerical simulation
and optimization. Approaches using finite element modeling are presented in the ar-
ticles [1, 5, 13, 15] of which [5, 13] consider also optimizing locations for anti-noise
actuators.

In [1], a numerical evaluation method is developed for optimal local noise con-
trol, based on finite element modeling. The method determines the optimal perfor-
mance of a local sound control by including the stochasticity of the cavity domain
in the model. The anti-noise is optimized by minimizing the expected value of the
noise computed using the finite element method. In this paper, this method is used
to develop a technique to find optimal locations for anti-noise actuators. The op-
timization of actuator configuration is formulated as a multi-objective optimization
problem such that optimal noise reduction at appropriate frequency ranges forms ob-
jective functions. By solving a multi-objective optimization problem, a whole family
of Pareto-optimal solutions is obtained. An unrestricted population-size evolution-
ary multi-objective algorithm (UPS-EMOA, [3]) is used to solve the multi-objective
optimization problem, and its performance is also compared to a well-known elitist
non-dominated sorting genetic algorithm (NSGA-II, [8]).

This article is organized as follows. In Sect. 17.2, a mathematical model of sound
propagation, the Helmholtz partial differential equation, and a numerical method to
solve it are briefly presented. In Sect. 17.3, the local noise control in a stochas-
tic domain is formulated as a quadratic optimization problem and an example of
local noise control in a car driver’s ears is described. The objective functions are
also derived to evaluate actual anti-noise configurations. In Sect. 17.4, the multi-
objective optimization methods used in actuator configuration optimization are de-
scribed briefly and the used parameters are given. In Sect. 17.5, the numerical results
of actuator configuration optimization in a three-dimensional car cabin problem are
studied and analyzed. Finally, in Sect. 17.6, conclusions are given.

17.2 An Acoustic Model

The time harmonic sound propagation is modeled by the Helmholtz equation

−∇ · 1

ρ
∇p − ω2

c2ρ
p = 0 in Ω, (17.1)
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where ρ(x) is the density of the material at the location x, and c(x) is the speed of
sound in the material. The complex pressure p(x) defines the amplitude and phase
of the pressure. The sound pressure at time t is obtained by Re(e−iωtp), where ω

is the angular frequency of sound and i = √−1. A sound source f acting on a part
S of the boundary ∂Ω is modeled via a boundary condition. A partially absorbing
wall material is described by the impedance boundary conditions

∂p

∂n
= iηω

c
p + f on S,

∂p

∂n
= iηω

c
p on ∂Ω \ S,

(17.2)

where η(x) is the absorption coefficient depending on the properties of the surface
material. The value η = 1 approximates a perfectly absorbing material and the value
η = 0 approximates a sound-hard material (the Neumann boundary condition).

An approximate solution for the partial differential equation (PDE) (17.1) can
be obtained using a finite element method [16]. The finite element discretization
transforms (17.1) into a system of linear equations Ax = b, where the matrix A is
generally symmetric, large, and sparse. Due to the large size and structure of A,
direct solution methods are computationally too expensive. Instead, an iterative so-
lution method like GMRES needs to be used. Solving the system with a reasonable
number of iterations is, however, challenging as the matrix A is badly conditioned
and especially so when the calculation domain is large and the frequency is high. In
the numerical example in Sect. 17.5, the solutions are computed after the systems
are preconditioned by a damped Helmholtz preconditioner [2].

17.3 The Noise Control Problem

17.3.1 Anti-noise Actuator Signal Optimization

The noise control problem is next presented briefly. A more detailed description is
given in an earlier paper [1]. The problem is considered in the frequency domain, i.e.
noise control is considered for one frequency at once; it should, however, be noted
that the noise is not restricted to a single-frequency sound. The acoustic model is
considered in an enclosed stochastic domain Ω(r), where r is a random vector that
conforms to a known probability distribution F(r). The sound pressure p(ω,x, r,γ )

at an angular frequency ω is the sum of the sound pressures caused by noise and n

anti-noise sources

p(ω,x, r,γ ) = p0(ω,x, r) +
n∑

j=1

γjpj (ω,x, r), (17.3)

where the pressure amplitude p0 is due to the noise source, pj is due to the j th
anti-noise source, and γj is a complex coefficient defining the amplitude and phase



324 T. Airaksinen and T. Aittokoski

of the j th anti-noise source. The noise and anti-noise sources are located on the
boundaries of Ω . The anti-noise defined by the coefficients γj is optimized so that
the noise is minimized in a subdomain denoted by Ξ(r) ⊂ Ω(r). For this, a noise
measure is defined as

N(ω, r,γ ) =
∫

Ξ(r)

∣∣p(ω,x, r,γ )
∣∣2

g(x)dx

=
∫

Ξ(r)
p(ω,x, r,γ )p̄(ω,x, r,γ )g(x)dx, (17.4)

where g(x) is a weighting function and p̄ is the complex conjugate of p. The ex-
pected value of the noise measure in the stochastic domain Ω is given by

E
(
N(ω, r,γ )

) =
∫

N(ω, r,γ )F (r)dr, (17.5)

where F(r) is the probability distribution of r.
The objective function J for optimization of the noise control problem for the

single frequency ω is chosen to be an approximation of the integral (17.5) and it is
given by the numerical quadrature

J (ω,γ ) =
m∑

j=1

wjN(ω, rj ,γ )F (rj ), (17.6)

where the pairs (rj ,wj ) give the quadrature points and weights. The optimization
problem is defined as

min
γ∈Γ

J (ω,γ ), (17.7)

where Γ is the set of feasible controls, which, for simplicity, is here Γ = C
n. The

optimal complex coefficients γi that give phases and amplitudes for anti-noise actu-
ators are now given by the optimality condition ∇γ J = 0, which leads to a system
of linear equations.

17.3.2 Anti-noise Actuator Configuration Quality Measure

The actual configuration of anti-noise actuators, i.e. their number, locations and
other properties such as size, determine the performance that can be obtained for
a local noise control system.

Let us first define another noise measure function

Ñ(ω,a, r,γ ) =
∫

Ξ(r)

∣∣p(ω,a,x, r,γ )
∣∣g(x) dx, (17.8)
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where a = (x1, y1, r1, . . . , xn, yn, rn) is the anti-noise actuator configuration vector
with (xi, yi) determining the location and ri the radius of the ith anti-noise actuator.
Noise reduction for the frequency ω in dB is now

R(ω) = 10 log10

E(Ñ(ω, r,γ opt ))

E(Ñ(ω, r,0))
= 10 log10

∫
Ñ(ω, r,γ opt )F (r) dr
∫

Ñ(ω, r,0)F (r) dr
, (17.9)

for γ opt which is optimized according to (17.7). The quality measure of anti-noise
actuator configuration at the frequency ω is obtained by replacing integrals in (17.9)
with trapezoidal quadratures

Q(a,ω) = 10 log10

∑
j wr

j Ñ(ω,a, rj ,γ opt )F (rj )
∑

j wr
j Ñ(ω, rj ,a,0)F (rj )

, (17.10)

where wr
j is quadrature weight from the trapezoidal rule for the integral of the prob-

ability distribution function F , and rj is the co-ordinate triplet of the j th quadrature
point.

17.3.3 Numerical Integration over Actuator

Circle-shaped anti-noise actuators are placed on a subdomain of a boundary sur-
face, which is denoted by A ⊂ ∂Ω . The subdomain A is composed of subdomains
Ai such that A = ⋃

i Ai . In order to allow convenient implementation of anti-noise
actuator configuration optimization, a geometrical linear mapping is defined from
the two-dimensional rectangular plane-domain Ã = ⋃

i Ãi to A, such that the sub-
domains Ãi are mapped to Ai , respectively. Integrals are approximated by using a fi-
nite element solution on a triangular mesh. In order to improve integration accuracy
of the boundary line, the triangles that reside on the anti-noise actuator boundary
are divided into smaller triangles.

17.3.4 Noise Control in a Car Interior

As an example application of the method, noise control in a BMW 330i car interior
is considered, see Fig. 17.1(a). The interior of the car excluding the driver is the
domain Ω(r). The objective of the noise control is to minimize the noise in the
driver’s ears. Thus, Ξ is defined as a set

Ξ(r) = {el , er} ⊂ Ω(r), (17.11)

where el(r) and er (r) are the co-ordinates of the left and right ear, respectively. The
noise measures (17.4) and (17.8) have now expressions
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Fig. 17.1 (a) A three-dimensional model of a BMW 330i car interior. The subdomains A1 and
A2 are marked with red and green colors, respectively. The subdomain A3 is located on the right
front door, which is not visible. (b) The driver’s posture parameters from left to right: r1 is the
driver’s sideways bending, r2 is the forward bending, r3 is head rotation. In the upper figures, the
parameter’s lowest value is shown and in the lower figures, the highest value is shown

N(ω, r,γ ) = ∣∣p(ω, el , r,γ )
∣∣2 + ∣∣p(ω, er , r,γ )

∣∣2
,

(17.12)
Ñ(ω,a, r,γ ) = ∣∣p(ω,a, el , r,γ )

∣∣ + ∣∣p(ω,a, er , r,γ )
∣∣.

It is assumed that there is only the driver and no other passengers or significant
objects in the car that would influence the sound propagation. The driver’s variable
properties like shape and posture are taken into account by considering a stochastic
domain in the computation.

The driver is modeled by using the freely available Animorph library, based on
[4]. Three parameters to model the driver are considered: r1 is the driver’s side-
ways bending angle, r2 is the forward bending angle, and r3 is the head rotation
angle to left/right. These parameters are illustrated in Fig. 17.1(b) and their dis-
crete values are as follows: r1 ∈ {−20,−10,0,10,20}, r2 ∈ {−5,0,5,10,15}, and
r3 ∈ {−50,−25,0,25,50}. The random variable vector r = (r1, r2,r3) determines
the posture of the driver.

In the car cabin interior, the noise source is modeled as a uniformly vibrating
surface behind the leg room, which is a simplification of the real noise source. There
are three possible surfaces where actuators may be located: on the left front door
below window (A1), on the roof (A2) and on the right front door below window
(A3), see Fig. 17.1(a). The size of the door subdomains A1,3 is 0.35 × 0.8 m2 and
the roof subdomain 1.0 × 1.0 m2. These subdomains are placed and scaled beside
each other so that they form a unit square, which makes it possible to use generic
optimization formulation where optimization variables take values between [0,1].
If an actuator crosses the boundary of the subdomain that it belongs to, it is cut
so that only the part inside the subdomain is considered as an actuator. The anti-
noise actuators are let to overlap freely and it also appears that they overlap in many
optimized solutions. Overlapping could be avoided by penalizing such solutions
during the optimization process.

To solve the Helmholtz equation (17.1) with the finite element method, a col-
lection of meshes consisting of linear tetrahedra and triangles were generated with
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Ansys ICEM CFD. Each mesh corresponds to a different driver posture and they
were generated so that there are at least 10 nodes per wavelength at a 1000 Hz wave.
The total number of meshes is 53 = 125 which is the number of the parameter com-
binations (r1, r2, r3).

The study was done in the frequency range 50–500 Hz with 25 Hz steps. This
means that 18 frequencies were sampled. By employing the reciprocity principle,
a sound source was placed in an ear. The acoustic model was solved for all 125
sampled driver’s postures for both ears. Thus, discrete Helmholtz equations were
solved 125 × 18 × 2 = 4500 times for the optimal anti-noise control.

17.4 Evolutionary Multi-objective Optimization

A general form of a multi-objective minimization problem is

minimize
{
f1(x), f2(x), . . . , fk(x)

}

subject to x ∈ S,
(17.13)

where f1,...,k : Rn → R are conflicting objective functions that are minimized by
altering values of the design variables forming a vector x ∈ R

n within a feasible
region S ⊂ R

n. The solution A is said to dominate the solution B if all components
of f (A) are at least as good as those of components of f (B), with at least one
strictly better component. Furthermore, A is non-dominated if it is not dominated by
any feasible solution. Correspondingly, the solution A belongs to the Pareto optimal
set if it is not dominated by any other feasible solution.

The multi-objective optimization problem for the locations and sizes of anti-noise
actuators is defined to maximize the average expected attenuation obtained by local
noise control at two frequency ranges simultaneously. The frequency ranges are
given by the vectors ω = (ω1, . . . ,ωnω), ι = (ι1, . . . , ιnι ). The objective functions
are as follows:

f1(x) = 1

nω

∑

i

Q(x,ωi) and f2(x) = 1

nι

∑

i

Q(x, ιi), (17.14)

where Q is the quality measure (17.10) and x is the design vector containing the
location co-ordinates and radii of the anti-noise actuators.

Evolutionary multi-objective optimization algorithms (EMOA) (see, e.g., [6]) are
among the widely used approaches in solving demanding engineering problems with
multiple objectives. Different EMOAs employ various methods in the way they gen-
erate trial points and how they bring about the evolution of the population. Usually
fitness is based primarily on dominance (non-dominated solutions are preferred),
and secondarily on diversity (solutions on crowded regions are pruned).

Probably the most often referred and widely utilized algorithm in the above-
mentioned category is the elitist non-dominated sorting genetic algorithm (NSGA-
II) [8]. Yet, NSGA-II is claimed to have certain defects both in its performance
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and in its basic foundations, and for this reason both NSGA-II and one algorithm
that should overcome its defects, namely unrestricted population-size EMOA (UPS-
EMOA) [3], are considered. In the following subsections short descriptions of both
of these algorithms are given together with the corresponding parameters that are
used in the numerical examples.

17.4.1 NSGA-II

Functioning of the dominance and diversity preservation based NSGA-II algorithm
as it is implemented here is described briefly as follows:

Step 1. Create an initial (parent) population of nbeginpop = 10npop = 10000 popu-
lation members randomly.

Step 2. Evaluate objective function values for the initial population and choose the
npop = 1000 best ones based on non-domination.

Step 3. Generate npop trial points to create a child population by using the sim-
ulated binary cross-over operation (SBX, see [7]). The following parame-
ters have been used: cross-over probability pc = 0.9, mutation probability
pm = 1/nvars where nvars is the number of variables, SBX cross-over pa-
rameters for the crossover ηc = 10, and mutation ηm = 10, tournament size
ntour = 2.

Step 4. Evaluate objective function values for the child population.
Step 5. Combine the parent and the child populations. Identify non-dominated so-

lutions from the combined population. Create the next parent population by
taking solutions from the combined population to the new one:

a. If there is excess of non-dominated solutions to fit into the next popu-
lation, prune such excess solutions which are located in more crowded
areas (diversity preservation).

b. If there are not enough non-dominated solutions to fill the next popula-
tion, identify again non-dominated solutions remaining in the combined
population, and continue this cycle until the population is filled.

Step 6. If the number of allowed generations is not exceeded, or the budget for
objective function evaluations is not exhausted, go back to Step 3.

Unfortunately, it seems not to be widely fathomed that this type of algorithm suf-
fers from several theoretical drawbacks, such as oscillation [3] (lack of convergence
[10]), deterioration of the population, and lack of performance.

It is said that the method involves oscillation if a solution close to the Pareto opti-
mal set is replaced by another non-dominated solution which improves diversity but
is at the same time located much farther from the Pareto optimal set. If in the history
of all the evaluated solutions there exist solutions that dominate the solutions in the
current population, then the population is said to be deteriorated. If deterioration oc-
curs, it suggests that the algorithm has wasted some objective function evaluations,
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and could have actually performed better. This behaviour also contributes to general
lack of performance.

17.4.2 UPS-EMOA

The basic feature of the recently published UPS-EMOA [3] is the use of a population
which has no artificial size limit. Instead, the population always contains all the non-
dominated solutions found during the optimization process, and thus the population
expands. Theoretically, this may lead to a situation where storage requirements are
unbounded. In practice, we have not witnessed such behaviour, as the number of
evaluations is kept finite. By expanding population, the algorithm overcomes some
problems of the current EMO approaches, such as oscillation (lack of convergence),
deterioration of the population, and lack of performance. Steps of the UPS-EMOA
implementation used in this paper are presented as follows:

Step 1. Initialize the population within the given search space using nbeginpop =
10000 points covering the space as uniformly as possible. Points are created
using a space-filling Hammersley sequence [9].

Step 2. Evaluate the objective function values of the new points.
Step 3. Combine the current population with the new points. Identify non-dominated

solutions, and move all these to the next population. If the minimum size
of the population nmin = 50 is not reached, take non-dominated solutions
from the remaining points, and continue until the minimum size is reached.

Step 4. Select randomly nburst = 260 points from the current population to be used
as parents. Generate one new child point for every parent point using the
point generation mechanism of differential evolution (DE, see [12]), using
cross-over probability Cr = 0.5 and the scaling factor F = 1.0. In the cre-
ation of the new point, all points in the current population may participate.
Points which are not inside the given search space are truncated to the bor-
der, similarly as in NSGA-II.

Step 5. Evaluate the objective function values of the child population, and if the
budget for objective function evaluations is not exhausted, go back to Step 3.

17.4.3 Comparison of EMOAs by Hypervolume Measure

With multi-objective optimization algorithms that produce an approximation of the
Pareto-optimal set, measuring the performance of a given algorithm is far from triv-
ial. To characterize the goodness of the solution set, all solutions should be as close
as possible to the real Pareto optimal set (closeness) and the solutions should cover
the whole Pareto optimal set as well as possible (diversity), meaning that the distri-
bution of the solutions along the Pareto optimal set should be even, and the extent
of the solutions should be as high as possible.



330 T. Airaksinen and T. Aittokoski

Recently, a hypervolume indicator [17] has gained popularity both as a perfor-
mance metric and as a selection criterion in EMOAs. The hypervolume defines the
volume of the objective space dominated by the given solution set, and as such it
can give information about both closeness and diversity at the same time.

In this study, hypervolume is used as a performance metric to make a rough
comparison between two selected algorithms.

17.5 Numerical Experiments

Four numerical optimization test cases are considered to demonstrate and analyze
the efficiency of the method. All test cases involve local noise control in a car interior
(see Fig. 17.1) as explained in Sect. 17.3.4. The test cases are as follows:

• Test case #1: 2 fixed-size actuators (4 design variables)
• Test case #2: 3 fixed-size actuators (6 design variables)
• Test case #3: 3 variable-size actuators (9 design variables)
• Test case #4: 8 variable-size actuators (24 design variables)

Equations (17.14) are considered as contradicting objective functions, with two
frequency ranges 50–275 Hz and 275–500 Hz corresponding to vectors ω =
[50,75, . . . ,250] and ι = [275,300, . . . ,500]. For the test case #1, the design vec-
tor x = (x1, x2, r, x3,x4, r), where r = 0.112 m, i.e. there are four design variables.
For the test case #2, similarly x = (x1, x2, r, x3,x4, r, x5, x6, r). For the test cases
#3 and #4, where the actuator radius r ∈ [0.05,0.175] m is also a design variable,
x = (x1, . . . , xn), with n = 9 and n = 24, respectively. The test cases #1–#3 were
run until the limit of 100000 objective function evaluations and the test case #4 was
run until the limit of 200000 objective function evaluations.

The first test case was chosen in order to present a simple case with a low num-
ber of design variables. The test cases #2–#4 present more difficult optimization
problems, where EMO approaches may not be able to find a global unambiguous
optimum, which is a well-known feature of the used methods when the search space
is large due to the number of design variables and when there are plenty of local
minima in the problem. Nevertheless, these methods are able to bring about a sig-
nificant improvement, when compared with a sophisticated engineer guess.

17.5.1 Convergence of Multi-objective Optimization Methods

To justify the choice of using UPS-EMOA as a preferred optimization algorithm for
the presented problem, the convergence was compared to the NSGA-II by evaluat-
ing hypervolumes of the solution fronts (see Sect. 17.4.3). The hypervolume as a
function of the number of objective function evaluations is plotted for all test cases
in Fig. 17.2.
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Fig. 17.2 Hypervolume as a function of the number of objective function evaluations with UPS-E-
MOA and NSGA-II. Six random number generator seed numbers for each test case and algorithm.
The resulting lines of different test cases should not be compared to each other, due to incompatible
scales

For the test case #1, UPS-EMOA converges notably faster to its maximum, al-
ready at 14000 evaluations, while NSGA-II reaches the same level at 20000 evalua-
tions. This is the only test case where robust convergence towards the identical solu-
tion front is obtained and it is due to the low number of design variables, nvars = 4.
For all test cases, it is clearly seen that UPS-EMOA convergence is notably faster
in the beginning of the optimization process. However, none of the test cases #2–#4
converge robustly towards a single solution front, which is due to the larger search
space with plenty of local minima.

For the test cases #2 and #3, NSGA-II eventually finds better solution fronts,
despite its slower convergence in the beginning. In Fig. 17.5 (on p. 333), the final
solution fronts after 99440 objective function evaluations are plotted, where it can
clearly be seen that while the right part of the front is identical, on the left part the
NSGA-II has progressed further. We suggest that this is due to concentrated point
density of the UPS-EMOA results on the right part of the front, leading to a situation
where points on the left have only diminishing probability to be selected as parents.
Thus the development of the front in that region suffers.

For the test case #4, where there are 24 design variables and for all runs, UPS-
EMOA converges faster and gives better solution fronts than NSGA-II. As a con-
clusion, UPS-EMOA is clearly a better choice, when the CPU time usage is limited
and/or when a larger number of design variables is involved.

17.5.2 Example Solutions

In Fig. 17.3, the solution fronts for all test cases are shown, obtained by UPS-
EMOA. These fronts can be compared to the objective function values obtained by
sophisticated engineer guesses (see Fig. 17.4) that are plotted as well. It is clearly
seen that optimization improves the noise control remarkably. The figure also il-
lustrates the big improvement obtained when the number of anti-noise actuators is
increased; compare the solution fronts for the test cases #1 to #2 where the number
of actuators increases from 2 to 3 (∼ 3–5 dB improvement in both objective func-
tion values), and the solution fronts for the test cases #3 to #4, where the number
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Fig. 17.3 The solution fronts for all test cases obtained by UPS-EMOA. Blue crosses correspond
to non-optimized engineer guesses, shown in Fig. 17.4. One solution from each front is selected
and shown in small subfigures, similarly as in Fig. 17.4

Fig. 17.4 Engineer guesses of good anti-noise actuator configurations. The figures show (1) the
anti-noise actuator configuration in the subdomains A1, A2, and A3 (see Fig. 17.1), and (2) the
expected value of attenuation in the left and right ear with standard deviation (the shaded region).
Corresponding objective function values of (17.10) are plotted in Fig. 17.3

of actuators increases from 3 to 8 (∼ 10 dB improvement in both objective function
values).

In Fig. 17.5, the solution fronts for the test cases #2 and #3 are given after 99440
objective function evaluations. Three solutions are selected for both test cases from
a single front obtained by UPS-EMOA. Both test cases have three anti-noise actu-
ators, but the difference between them is that while in the test case #2, the sizes
(radii) of each actuator are constant, in the test case #3 they may vary. It is seen
that this increase in the degree of freedom gives only a 0.2–0.5 dB enhancement in
objective function values. It is also seen that smaller anti-noise actuators seem to be
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Fig. 17.5 The solution fronts for the test problems #2 and #3 obtained by NSGA-II and UPS-E-
MOA, six random number generator seed numbers. Three solutions (cyan circles) from a single
UPS-EMO front are selected for both test cases and they are shown in small subfigures, similarly
as in Fig. 17.4

preferable in this case. Similar behavior in actuator placements is seen in both test
cases.

17.6 Conclusions

A novel technique was proposed to find optimal locations for anti-noise actuators by
using a finite element model based numerical evaluation method for optimal local
noise control. The optimization of anti-noise actuator configuration, i.e. the placing
and size of each actuator, was formulated as a multi-objective optimization problem
so that optimal noise reduction at two frequency ranges could be obtained.

As an example problem, local noise control in a car interior with a driver in vary-
ing postures was considered and numerical results were presented. Two evolutionary
multi-objective algorithms, UPS-EMOA and NSGA-II were used as optimization
methods and their performance was compared. It was found that in all test cases
UPS-EMOA was converging faster in the beginning of the optimization process, but
NSGA-II was able to give better final solution fronts in two test cases.

Numerical examples clearly demonstrated that, by employing optimization of
anti-noise actuator configuration, it is possible to obtain a significant improvement
in the objective function values over sophisticated engineer guesses.
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