
Chapter 15
Subgradient and Bundle Methods
for Nonsmooth Optimization

Marko M. Mäkelä, Napsu Karmitsa, and Adil Bagirov

Abstract The nonsmooth optimization methods can mainly be divided into two
groups: subgradient and bundle methods. Usually, when developing new algorithms
and testing them, the comparison is made between similar kinds of methods. The
goal of this work is to test and compare different bundle and subgradient methods
as well as some hybrids of these two and/or some others. The test set included a large
amount of different unconstrained nonsmooth minimization problems, e.g., convex
and nonconvex problems, piecewise linear and quadratic problems, and problems
with different sizes. Rather than foreground some method over the others, our aim
is to get some insight on which method is suitable for certain types of problems.

15.1 Introduction

We consider unconstrained nonsmooth optimization (NSO) problems of the form

min
x∈Rn

f (x), (15.1)

where the objective function f : Rn → R is supposed to be locally Lipschitz con-
tinuous. Note that no differentiability or convexity assumptions are made.

NSO problems of type (15.1) arise in many application areas: in economics [38],
mechanics [37], engineering [36], control theory [11], optimal shape design [17],
data mining [1, 7] and in particular cluster analysis [12], and machine learning [20].
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Most of the methods for solving problems of type (15.1) can be divided into
two main groups: subgradient (see, e.g., [4, 5, 42, 43]) and bundle methods (see,
e.g., [14, 18, 23, 32, 35, 40, 41]). Both of these method groups have their own
supporters. Usually, when developing new methods, researchers compare them with
similar methods. Moreover, it is quite common that the test set used is rather concise.

In this work, we compare different subgradient and bundle methods, as well as
some of the methods that lie between these two. The main criteria in numerical
comparison are the efficiency and the reliability of the methods. Moreover, we use a
broad test setting including different classes of nonsmooth problems. All the solvers
tested are so-called general black box methods and, naturally, cannot beat the codes
designed specially for a particular class of problems (say, e.g., for piecewise linear,
min-max, or partially separable problems). However, rather than seeing this gener-
ality as a weakness, it should be seen as a strength due to the minimal information of
the objective function required for the calculations. Namely, the value of the objec-
tive function and, possibly, one arbitrary subgradient (the generalized gradient [10])
at each point.

The aim of our research is not to foreground some method over the others—it is
a well-known fact that different methods work well for different types of problems
and none of them is good for all types of problems—but to get some kind of insight
on which kind of method to select for certain types of problems.

This work is organized as follows. Section 15.2 introduces the NSO methods
tested and compared. The results of the numerical experiments are presented and
discussed in Sects. 15.3 and 15.4 concludes the work and gives our credentials for
well-performing algorithms for different problem classes.

In what follows, we denote by ‖ · ‖ the Euclidean norm in R
n and by aT b the

inner product of the vectors a and b. The subdifferential ∂f (x) [10] of a locally
Lipschitz continuous function f : Rn → R at any point x ∈ R

n is given by

∂f (x) = conv
{

lim
i→∞∇f (xi ) | xi → x and ∇f (xi ) exists

}
,

where “conv” denotes the convex hull of a set. Each vector ξ ∈ ∂f (x) is called a
subgradient.

15.2 Methods

In this section, we give short descriptions of the methods to be compared. For more
details we refer to [22] and to the original references. In what follows (if not stated
otherwise), we assume that at every point x we can evaluate the value of the objec-
tive function f (x) and an arbitrary subgradient ξ from the subdifferential ∂f (x).
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15.2.1 Standard Subgradient Method

The first method to be considered here is the cornerstone of NSO: the standard
subgradient method [42]. The idea behind subgradient methods (Kiev methods) is
to generalize smooth methods (e.g., the steepest descent method) by replacing the
gradient with an arbitrary subgradient. Therefore, the iteration formula for these
methods is

xk+1 = xk − tk
ξ k

‖ξ k‖
,

where ξ k ∈ ∂f (xk) is any subgradient and tk > 0 is a predetermined step size.
Due to this simple structure and low storage requirements, subgradient methods

are widely used methods in NSO. However, basic subgradient methods suffer from
some serious disadvantages: a nondescent search direction may occur and thus, the
selection of step size is difficult; there exists no implementable subgradient-based
stopping criterion; and the convergence speed is poor (not even linear) (see, e.g.,
[26]).

The standard subgradient method is proved to be globally convergent if the ob-
jective function is convex and the step sizes satisfy

lim
k→∞ tk = 0 and

∞∑
j=1

tj = ∞.

15.2.2 Shor’s r-Algorithm (Space Dilation Method)

Next we shortly describe the ideas of a more sophisticated subgradient method, the
well-known Shor’s r-algorithm with space dilations along the difference of two suc-
cessive subgradients. The basic idea of Shor’s r-algorithm is to interpolate between
the steepest descent and conjugate gradient method.

The iteration formula for Shor’s r-algorithm is

xk+1 = xk − tkBk+1B
T
k+1ξ k,

where ξ k ∈ ∂f (xk) and tk > 0. The space dilation matrix Bk+1 is initialized with
B1 = I and it is updated by

Bk+1 = Bk

(
I + (β − 1)sksT

k

)
,

where β ∈ (0,1), sk = rk/‖rk‖ and rk = BT
k (ξ k − ξ k−1).

In order to turn the above r-algorithm into an efficient optimization routine, one
has to find a solution to the following problems: how to choose the step sizes tk
(including the initial step size t1) and how to design a stopping criterion which does
not need information on subgradients.
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If the objective function is convex and twice continuously differentiable, its Hes-
sian is Lipschitz, and the starting point is chosen from some neighborhood of the
optimal solution, then the n-step quadratic rate convergence can be proved for the
r-algorithm. If the objective function is nonconvex and coercive under some addi-
tional assumptions, then the r-algorithm is convergent to isolated local minimiz-
ers [42].

15.2.3 Proximal Bundle Method (PBM)

In this subsection, we describe the ideas of the proximal bundle method (PBM) for
nonsmooth and nonconvex minimization (see, e.g., [24, 35, 41]).

The basic idea of bundle methods is to approximate the whole subdifferential of
the objective function instead of using only one arbitrary subgradient at each point.
In practice, this is done by gathering subgradients from the previous iterations into
a bundle. Suppose that at the k-th iteration of the algorithm we have the current iter-
ation point xk and some trial points yj ∈R

n (from past iterations) and subgradients
ξ j ∈ ∂f (yj ) for j ∈ Jk , where the index set Jk �= ∅ and Jk ⊂ {1, . . . , k}.

The idea behind the PBM is to approximate the objective function f below by a
piecewise linear function, that is, f is replaced by the so-called cutting-plane model

f̂k(x) = max
j∈Jk

{
f (yj ) + ξT

j (x − yj )
}
. (15.2)

This model can be written in an equivalent form

f̂k(x) = max
j∈Jk

{
f (xk) + ξT

j (x − xk) − αk
j

}
,

where

αk
j = f (xk) − f (yj ) − ξT

j (xk − yj ) for all j ∈ Jk

is a so-called linearization error. If f is convex, then f̂k is an underestimate for f

and αk
j ≥ 0 for all j ∈ Jk . In the nonconvex case, these facts are not valid anymore

and thus the linearization error αk
j can be replaced by the so-called subgradient

locality measure (cf. [23])

βk
j = max

{∣∣αk
j

∣∣, γ ‖xk − yj‖2}, (15.3)

where γ ≥ 0 is the distance measure parameter (γ = 0 if f is convex). Then obvi-
ously βk

j ≥ 0 for all j ∈ Jk and minx∈K f̂k(x) ≤ f (xk).
The descent direction is calculated by

dk = arg min
d∈Rn

{
f̂k(xk + d) + 1

2
ukdT d

}
, (15.4)
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where the stabilizing term 1
2ukdT d guarantees the existence of the solution dk and

keeps the approximation local enough. The weighting parameter uk > 0 improves
the convergence rate and accumulates some second order information about the cur-
vature of f around xk (see, e.g., [24, 35, 41]).

In order to determine the step size into the search direction dk , the PBM uses the
following line search procedure: Assume that mL ∈ (0, 1

2 ), mR ∈ (mL,1) and t̄ ∈
(0,1] are some fixed line search parameters. We first search for the largest number
tkL ∈ [0,1] such that tkL ≥ t̄ and

f
(
xk + tkLdk

) ≤ f (xk) + mLtkLvk, (15.5)

where vk is the predicted amount of descent

vk = f̂k(xk + dk) − f (xk) < 0.

If such a parameter exists, we take a long serious step

xk+1 = xk + tkLdk and yk+1 = xk+1. (15.6)

Otherwise, if (15.5) holds but 0 < tkL < t̄ , we take a short serious step

xk+1 = xk + tkLdk and yk+1 = xk + tkRdk

and, if tkL = 0, we take a null step

xk+1 = xk and yk+1 = xk + tkRdk, (15.7)

where tkR > tkL is such that

−βk+1
k+1 + ξT

k+1dk ≥ mRvk. (15.8)

In short serious steps and null steps there exists discontinuity in the gradient of f .
Then the requirement (15.8) ensures that xk and yk+1 lie on the opposite sides of
this discontinuity and the new subgradient ξ k+1 ∈ ∂f (yk+1) will force a remarkable
modification of the next search direction finding problem. The iteration is terminated
if vk ≥ −εs , where εs > 0 is a final accuracy tolerance supplied by the user.

Under the upper semi-smoothness assumption [6] the PBM can be proved to be
globally convergent for locally Lipschitz continuous functions (see, e.g., [24, 35]).
In addition, in order to implement the above algorithm one has to bound somehow
the number of stored subgradient and trial points, that is, the cardinality of the index
set Jk . The global convergence of bundle methods with a limited number of stored
subgradients can be guaranteed by using a subgradient aggregation strategy [23],
which accumulates information from the previous iterations. The convergence rate
of the PBM is linear for convex functions [39] and for piecewise linear problems the
PBM achieves a finite convergence [41].
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15.2.4 Bundle Newton Method (BNEW)

Next we describe the main ideas of the second-order bundle-Newton method
(BNEW) [29]. We suppose that at each x ∈ R

n we can evaluate, in addition to the
function value and an arbitrary subgradient ξ ∈ ∂f (x), also an n× n symmetric ma-
trix G(x) approximating the Hessian matrix ∇2f (x). Now, instead of the piecewise
linear cutting-pane model (15.2) we introduce a piecewise quadratic model of the
form

f̃k(x) = max
j∈Jk

{
f (yj ) + ξT

j (x − yj ) + 1

2
�j (x − yj )

T Gj (x − yj )

}
, (15.9)

where Gj = G(yj ) and �j ∈ [0,1] is some damping parameter. The model (15.9)
can be written equivalently as

f̃k(x) = max
j∈Jk

{
f (xk) + ξT

j (x − xk) + 1

2
�j (x − xk)

T Gj (x − xk) − αk
j

}

and for all j ∈ Jk the linearization error takes the form

αk
j = f (xk) − f (yj ) − ξT

j (xk − yj ) − 1

2
�j (xk − yj )

T Gj (xk − yj ). (15.10)

Note that now, even in the convex case, αk
j might be negative. Therefore we replace

the linearization error (15.10) by the subgradient locality measure (15.3) and we
remain the property minx∈Rn f̃k(x) ≤ f (xk) (see [29]).

The search direction dk ∈ R
n is now calculated as the solution of

dk = arg min
d∈Rn

{
f̃k(xk + d)

}
. (15.11)

The line search procedure of the BNEW follows the same principles than in the
PBM (see Sect. 15.2.3). The only remarkable difference occurs in the termination
condition for short and null steps. In other words, (15.8) is replaced by two condi-
tions

−βk+1
k+1 + (

ξ k+1
k+1

)T
dk ≥ mRvk

and

‖xk+1 − yk+1‖ ≤ CS,

where CS > 0 is a parameter supplied by the user.
Under the upper semi-smoothness assumption [6] the BNEW can be proved to

be globally convergent for locally Lipschitz continuous objective functions. For
strongly convex functions, the convergence rate of the BNEW is superlinear [29].
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15.2.5 Limited Memory Bundle Method (LMBM)

In this subsection, we very shortly describe the limited memory bundle algorithm
(LMBM) [15, 16] for solving general, possibly nonconvex, large-scale NSO prob-
lems. The method is a hybrid of the variable metric bundle methods [44] and the
limited memory variable metric methods (see, e.g., [9]), where the first ones have
been developed for small- and medium-scale nonsmooth optimization and the latter
ones, on the contrary, for smooth large-scale optimization.

LMBM exploits the ideas of the variable metric bundle methods, namely the
utilization of null steps, simple aggregation of subgradients, and the subgradient
locality measures, but the search direction dk is calculated using a limited memory
approach. That is,

dk = −Dk ξ̃ k,

where ξ̃ k is an (aggregate) subgradient and Dk is the limited memory variable metric
update that, in the smooth case, represents the approximation of the inverse of the
Hessian matrix. Note that the matrix Dk is not formed explicitly but the search
direction dk is calculated using the limited memory approach.

The LMBM uses the original subgradient ξ k after the serious step (cf. (15.6)) and
the aggregate subgradient ξ̃ k after the null step (cf. (15.7)) for direction finding (i.e.
we set ξ̃ k = ξ k if the previous step was a serious step). The aggregation procedure is
carried out by determining multipliers λk

i satisfying λk
i ≥ 0 for all i ∈ {1,2,3}, and∑3

i=1 λk
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξ k+1 + λ3ξ̃ k]T Dk[λ1ξm + λ2ξ k+1 + λ3ξ̃ k]
+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f (xk) is the current subgradient (m denotes the index of the iteration
after the latest serious step, i.e. xk = xm), ξ k+1 ∈ ∂f (yk+1) is the auxiliary sub-
gradient, and ξ̃ k is the current aggregate subgradient from the previous iteration
(ξ̃1 = ξ1). In addition, βk+1 is the current subgradient locality measure (cf. (15.3))
and β̃k is the current aggregate subgradient locality measure (β̃1 = 0). The resulting
aggregate subgradient ξ̃ k+1 and the aggregate subgradient locality measure β̃k+1 are
computed from the formulae

ξ̃ k+1 = λk
1ξm + λk

2ξ k+1 + λk
3ξ̃ k and β̃k+1 = λk

2βk+1 + λk
3β̃k.

The line search procedure used in the LMBM is rather similar to that used
in the PBM (see Sect. 15.2.3). However, due to the simple aggregation proce-
dure above only one trial point yk+1 = xk + tkRdk and a corresponding subgradient
ξ k+1 ∈ ∂f (yk+1) need to be stored.

As a stopping parameter, we use the value wk = −ξ̃
T

k dk + 2β̃k and we stop if
wk ≤ εs for some user specified εs > 0. The parameter wk is also used during the
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line search procedure to represent the desirable amount of descent (cf. vk in the
PBM).

In the LMBM both the limited memory BFGS (L-BFGS) and the limited memory
SR1 (L-SR1) update formulae [9] are used in calculations of the search direction and
the aggregate values. The idea of limited memory matrix updating is that instead of
storing large n × n matrices Dk , one stores a certain (usually small) number of
vectors obtained at the previous iterations of the algorithm, and uses these vectors
to implicitly define the variable metric matrices. In the case of a null step, we use the
L-SR1 update, since this update formula allows us to preserve the boundedness and
some other properties of generated matrices which guarantee the global convergence
of the method. Otherwise, since these properties are not required after a serious step,
the more efficient L-BFGS update is employed (for more details, see [15, 16]).

Under the upper semi-smoothness assumption [6] the LMBM can be proved to
be globally convergent for locally Lipschitz continuous objective functions [16].

15.2.6 Discrete Gradient Method (DGM)

Next we briefly describe the discrete gradient method (DGM) [3]. The idea of the
DGM is to hybridize derivative free methods with bundle methods. That is, the
DGM approximates subgradients by discrete gradients using function values only.
Similarly to bundle methods, the previous values of discrete gradients are gathered
into a bundle and the null step is used if the current search direction is not good
enough.

We start with the definition of the discrete gradient. Let us denote by

S1 = {
g ∈R

n | ‖g‖ = 1
}

the sphere of the unit ball and by

P = {
z | z : R+ →R+, λ > 0, λ−1z(λ) → 0, λ → 0

}

the set of univariate positive infinitesimal functions. In addition, let

G = {
e ∈ R

n | e = (e1, . . . , en), |ej | = 1, j = 1, . . . , n
}

be a set of all vertices of the unit hypercube in R
n. We take any g ∈ S1, e ∈ G, z ∈ P ,

a positive number α ∈ (0,1], and we compute i = arg max{|gj |, j = 1, . . . , n}. For
e ∈ G we define the sequence of n vectors ej (α) = (αe1, α

2e2, . . . , α
j ej ,0, . . . ,0)

j = 1, . . . , n and for x ∈R
n and λ > 0, we consider the points

x0 = x + λg, xj = x0 + z(λ)ej (α), j = 1, . . . , n.

Definition 15.1 The discrete gradient of the function f at the point x ∈ R
n is the

vector Γ i(x,g, e, z, λ,α) = (Γ i
1 , . . . ,Γ i

n ) ∈ R
n with the following coordinates:

Γ i
j = [

z(λ)αj ej )
]−1[

f (xj ) − f (xj−1)
]
, j = 1, . . . , n, j �= i,
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Γ i
i = (λgi)

−1

[
f (x + λg) − f (x) − λ

n∑
j=1,j �=i

Γ i
j gj

]
.

It has been proved in [3] that the closed convex set of discrete gradients

D0(x, λ) = cl conv
{
v ∈R

n | ∃g ∈ S1, e ∈ G, z ∈ P

such that v = Γ i(x,g, e, z, λ,α)
}

is an approximation to the subdifferential ∂f (x) for sufficiently small λ > 0. Thus,
it can be used to compute the descent direction for the objective. However, the com-
putation of the whole set D0(x, λ) is not easy, and therefore, in the DGM we use
only a few discrete gradients from the set to calculate the descent direction.

Let us denote by l the index of the subiteration in the direction-finding procedure,
by k the index of the outer iteration, and by s the index of the inner iteration. In what
follows we use only the iteration counter l whenever possible without confusion. At
every iteration ks we first compute the discrete gradient v1 = Γ i(x,g1, e, z, λ,α)

with respect to any initial direction g1 ∈ S1 and we set the initial bundle of discrete
gradients D̄1(x) = {v1}. Then we compute the vector

wl = arg min
w∈D̄l(x)

‖w‖2,

that is the distance between the convex hull D̄l(x) of all computed discrete gradi-
ents and the origin. If this distance is less than a given tolerance δ > 0, we accept
the point x as an approximate stationary point and go to the next outer iteration.
Otherwise, we compute another search direction

gl+1 = − wl

‖wl‖
and we check whether this direction is descent. If it is, we have

f (x + λgl+1) − f (x) ≤ −c1λ‖wl‖,
with the given numbers c1 ∈ (0,1) and λ > 0. Then we set dks = gl+1, vks = wl

and stop the direction finding procedure. Otherwise, we compute another discrete
gradient vl+1 = Γ i(x,gl+1, e, z, λ,α) into the direction gl+1, update the bundle of
discrete gradients

D̄l+1(x) = conv
{
D̄l(x) ∪ {vl+1}

}

and continue the direction finding procedure with l = l+1. Note that at each subiter-
ation the approximation of the subdifferential ∂f (x) is improved. It has been proved
in [3] that the direction finding procedure is terminating.

In [3], it is proved that the DGM is globally convergent for locally Lipschitz con-
tinuous functions under the assumption that the set of discrete gradients uniformly
approximates the subdifferential.
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15.2.7 Quasisecant Method (QSM)

In this subsection, we briefly describe the quasisecant method (QSM) [2]. Here, it
is again assumed that one can compute both the function value and one subgradient
at any point.

The QSM can be considered as a hybrid of bundle methods and the gradient
sampling method [8]. The method builds up information about the approximation of
the subdifferential using a bundling idea, which makes it similar to bundle methods,
while subgradients are computed from a given neighborhood of a current iteration
point, which makes the method similar to the gradient sampling method.

We start this subsection with the definition of a quasisecant for locally Lipschitz
continuous functions.

Definition 15.2 A vector v ∈ R
n is called a quasisecant of the function f at the

point x ∈R
n in the direction g ∈ S1 with the length h > 0 if

f (x + hg) − f (x) ≤ hvT g.

We will denote this quasisecant by v(x,g, h).
For a given h > 0 let us consider the set of quasisecants at a point x

QSec(x, h) = {
w ∈R

n | ∃g ∈ S1 s.t. w = v(x,g, h)
}

and the set of limit points of quasisecants as h ↘ 0:

QSL(x) =
{

w ∈ R
n | ∃g ∈ S1, hk > 0, hk ↘ 0 when k → ∞

s.t. w = lim
k→∞ v(x,g, hk)

}
.

A mapping x �→ QSec(x, h) is called a subgradient-related (SR)-quasisecant map-
ping if the corresponding set QSL(x) ⊆ ∂f (x) for all x ∈ R

n. In this case, the el-
ements of QSec(x, h) are called SR-quasisecants. In the sequel, we will consider
sets QSec(x, h) which contain only SR-quasisecants.

It has been shown in [2] that the closed convex set of quasisecants

W0(x, h) = cl convQSec(x, h)

can be used to find a descent direction for the objective with any h > 0. However,
it is not easy to compute the entire set W0(x, h), and therefore we use only a few
quasisecants from the set to calculate the descent direction in the QSM.

The procedures used in the QSM are pretty similar to those in the DGM but
instead of the discrete gradient vl = Γ i(x,gl , e, z, λ,α) we use here the quasisecant
vl(x,gl , h). Thus, at every iteration ks we compute the vector

wl = arg min
w∈V̄l (x)

‖w‖2,
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Table 15.1 Tested pieces of software

Software Author(s) Method Reference

SUBG Karmitsa Subgradient [42]

SolvOpt Kuntsevich & Kappel Shor’s r-algorithm [19, 25, 42]

PBNCGC Mäkelä Proximal bundle [33, 35]

PNEW Lukšan & Vlček Bundle-Newton [29]

LMBM Karmitsa Limited memory bundle [15, 16]

DGM Bagirov et al. Discrete Gradient [3]

QSM Bagirov & Ganjehlou QuasiSecant [2]

where V̄l(x) is a set of all quasisecants computed so far. If ‖wl‖ < δ with a given
tolerance δ > 0, we accept the point x as an approximate stationary point, a so-
called (h, δ)-stationary point [2], and we go to the next outer iteration. Otherwise,
we compute another search direction gl+1 = −wl/‖wl‖ and we check whether this
direction is descent or not. If it is, we set dks = gl+1, vks = wl and stop the direction-
finding procedure. Otherwise, we compute another quasisecant vl+1(x,gl+1, h), up-
date the bundle of quasisecants V̄l+1(x) = conv{V̄l(x)∪{vl+1(x,gl+1, h)}} and con-
tinue the direction-finding procedure with l = l + 1. It has been proved in [2] that
the direction-finding procedure is terminating. When the descent direction dks has
been found, we need to compute the next (inner) iteration point similarly to that in
the DGM.

The QSM is globally convergent for locally Lipschitz continuous functions un-
der the assumption that the set QSec(x, h) is a SR-quasisecant mapping, that is,
quasisecants can be computed using subgradients [2].

15.3 Numerical Experiments

In what follows, we compare the implementations of the methods described above.
The more detailed description about the test results can be found in [21].

15.3.1 Solvers

The tested optimization codes are presented in Table 15.1. The codes or links for
downloading the codes are available from http://napsu.karmitsa.fi/nsosoftware/. The
experiments were performed on an Intel® Core™ 2 CPU 1.80 GHz.
SUBG is a crude implementation of the basic subgradient algorithm. The step

length is chosen to be to some extent constant. We use the following three criteria
as a stopping rule for SUBG: the number of function evaluations (and iterations) is
restricted by a parameter and also the algorithm stops if either it cannot decrease the

http://napsu.karmitsa.fi/nsosoftware/
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value of the objective function within some successive iterations, or it cannot find a
descent direction within some successive iterations. Since a subgradient method is
not a descent method, we store the best value fbest of the objective function and the
corresponding point xbest and return them as a solution if any of the stopping rules
above is met.
SolvOpt (a solver for local nonlinear optimization problems) is an implemen-

tation of Shor’s r-algorithm. The approaches used to handle the difficulties with
step size selection and termination criteria in Shor’s r-algorithm are heuristic (for
details see [19]). In SolvOpt one can select to use either original subgradients
or their difference approximations (i.e. the user does not have to code difference
approximations but to select one parameter to do this automatically). In our exper-
iments we have used both analytically and numerically calculated subgradients. In
what follows, we denote SolvOptA and SolvOptN, respectively, the correspond-
ing solvers. There exist MatLab, C, and Fortran source codes for SolvOpt. In our
experiments we used SolvOpt v.1.1 HP-UX FORTRAN-90 sources. To compile
the code, we used gfortran, the GNU Fortran 95 compiler.
PBNCGC is an implementation of the most frequently used bundle method in

NSO, that is, the proximal bundle method. The code includes the constraint han-
dling (bound constraints, linear constraints, and nonlinear/nonsmooth constraints).
The quadratic direction-finding problem (15.4) is solved by the subroutine PLQDF1
implementing dual projected gradient method proposed in [27].
PNEW is a bundle-Newton solver for unconstrained and linearly constrained

NSO. We used the numerical calculation of the Hessian matrix in our experiments
(this can be done automatically). The quadratic direction-finding problem (15.11) is
solved by the same subroutine PLQDF1 [27] like in PBNCGC.
LMBM is an implementation of a limited memory bundle method specifically de-

veloped for large-scale nonsmooth problems. In our experiments we used the adap-
tive version of the code with the initial number of stored correction pairs (used to
form the variable metric update) equal to 7 and the maximum number of stored cor-
rection pairs equal to 15. These values have been chosen according to the numerical
experiments.
DGM is a discrete gradient solver for derivative free optimization. To apply DGM,

one only needs to be able to compute at every point x the value of the objective
function and the subgradient will be approximated.
QSM is a quasisecant solver for nonsmooth, possibly nonconvex minimization.

We have used both analytically calculated subgradients and approximated subgra-
dients in our experiments (this can be done automatically by selecting one param-
eter). In what follows, we denote QSMA and QSMN, respectively, the corresponding
solvers.

All the algorithms but SolvOpt were implemented in Fortran77 with double-
precision arithmetic. To compile the codes, we used g77, the GNU Fortran 77 com-
piler.
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15.3.2 Problems

We consider ten types of problems:

XSC: Extra-small convex problems, n ≤ 20 ([31, Problems 2.1–2.7, 2.9, 2.22 and
2.23, and 3.4–3.8, 3.10, 3.12, 3.16, 3.19 and 3.20]);

XSNC: Extra-small nonconvex problems ([31, Problems 2.8, 2.10–2.12, 2.14–2.16,
2.18–2.21, 2.24 and 2.25, and 3.1, 3.2, 3.15, 3.17, 3.18 and 3.25]);

SC: Small-scale convex problems, n = 50 ([15, Problems 1–5], Problems 2 and 5
in TEST29 [28], and six maximum of quadratic functions [21]);

SNC: Small-scale nonconvex problems ([15, Problems 6–10], and Problems 13, 17
and 22 in TEST29 [28], and six maximum of quadratic functions);

MC and MNC: Medium-scale convex and nonconvex problems, n = 200 (see SC
and SNC problems);

LC and LNC: Large-scale convex and nonconvex problems, n = 1000 (see MC and
MNC problems);

XLC and XLNC: Extra-large-scale convex and nonconvex problems, n = 4000
(see MC and MNC problems but only two maximum of quadratics with a diag-
onal matrix);

Problems 2, 5, 13, 17, and 22 in TEST29 are from the software package UFO
(Universal Functional Optimization) [28]. The problems were selected so that in all
cases all the solvers converged to the same local minimum. However, it is worth
mentioning that, in the case of different local minima (i.e. in some nonconvex prob-
lems omitted from the test set), solvers LMBM, SolvOpt, and SUBG usually con-
verged to the same local minimum, while PBNCGC, DGM, and QSM converged to
a different local minimum. The solver PNEW converged sometimes with the first
group and some other times with the second. Moreover, DGM and QSM seem to have
an aptitude for finding global or at least smaller local minima than the other solvers.
For example, in Problems 3.13 and 3.14 in [31] all the other solvers converged to
the minimum reported in [31] but DGM and QSM “converged” to minus infinity.

15.3.3 Termination, Parameters, and Acceptance of the Results

The determination of stopping criteria for different solvers, such that the comparison
of different methods is fair, is not a trivial task.

We say that a solver finds the solution with respect to a tolerance ε > 0 if

fbest − fopt

1 + |fopt | ≤ ε,

where fbest is a solution obtained with the solver and fopt is the best-known (or
optimal) solution.
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We fixed the stopping criteria and parameters for the solvers using three different
problems from three different problem classes: Problem 2.4 in [31] (XSC), Prob-
lem 3.15 in [31] (XSNC), and Problem 3 in [15] with n = 50 (SC). With all the
solvers we sought the loosest termination parameters such that the results for all the
three test problems were still acceptable with respect to the tolerance ε = 10−4. In
addition to the usual stopping criteria of the solvers, we terminated the experiments
if the elapsed CPU time exceeded half an hour.

We have accepted the results for XS and S problems (n ≤ 50) with respect to
the tolerance ε = 5 × 10−4. With larger problems (n ≥ 200), we have accepted
the results with the tolerance ε = 10−3. In what follows, we report also the results
for all problem classes with respect to the relaxed tolerance ε = 10−2 to have an
insight into the reliability of the solvers (i.e. is a failure a real failure or is it just
an inaccurate result which could possible be prevented with a more tight stopping
parameter).

With all the bundle-based solvers the distance measure parameter value γ = 0.5
was used with nonconvex problems. With PBNCGC and LMBM the value γ = 0 was
used with convex problems and, since with PNEW γ has to be positive, γ = 10−10

was used with PNEW. For those solvers storing subgradients (or approximations of
subgradients)—that is, PBNCGC, PNEW, LMBM, DGM, and QSM—the maximum size
of the bundle was set to min{n+3,100}. For all other parameters we used the default
settings of the codes.

15.3.4 Results

The results are summarized in Figs. 15.1–15.8 and in Table 15.2. The results are
analyzed using the performance profiles introduced in [13]. We compare the effi-
ciency of the solvers both in terms of computational times and numbers of function
and subgradient evaluations (evaluations for short). In the performance profiles, the
value of ρs(τ ) at τ = 0 gives the percentage of test problems for which the corre-
sponding solver is the best (it uses least computational time or evaluations) and the
value of ρs(τ ) at the rightmost abscissa gives the percentage of test problems that
the corresponding solver can solve, that is, the reliability of the solver (this does
not depend on the measured performance). Moreover, the relative efficiency of each
solver can be directly seen from the performance profiles: the higher the particular
curve, the better the corresponding solver. For more information on performance
profiles, see [13].

15.3.4.1 Extra-Small Problems

There was not a big difference in the computational times of the different solvers
when solving the XS problems. Thus, only the numbers of function and subgradient
evaluations are reported in Fig. 15.1.
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Fig. 15.1 Evaluations for XS
problems (20 problems with
n ≤ 20, ε = 5 × 10−4)

PBNCGC was usually the most efficient solver when comparing the numbers of
evaluations. This is, in fact, true for all sizes of problems. Thus, PBNCGC should be
a good choice as a solver in case the objective function value and/or the subgradient
are expensive to compute. However, PBNCGC failed to achieve the desired accuracy
in 25 % of the extra-small problems (both XSC and XSNC) which means that it had
almost the worst degree of success in solving these problems.
SUBG is highly unsuitable for nonconvex problems: it failed in 60 % of the prob-

lems (ε = 5 × 10−4, see Fig. 15.1(b)). On the other hand, SolvOpt was one of
the most reliable solvers together with QSM in both convex and nonconvex set-
tings although, theoretically, Shor’s r-algorithm is not supposed to solve noncon-
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vex problems. SolvOptA was also the most efficient method except for PBNCGC
(especially in the nonconvex case).

Except for SUBG, the solvers did not have big differences in the numbers of
success in solving XSC or XSNC problems. However, it is noteworthy that the QSM
computed nonconvex problems more reliably than convex ones.

Most of the failures reported here are, in fact, inaccurate results: all the solvers
but PNEW succeed in solving equal or more than 95 % of XSC problems with re-
spect to the relaxed tolerance ε = 10−2. The corresponding percentage for XSNC
problems was 85 %, although here also SUBG failed to solve so many problems.

In XSC problems PNEW was the second most efficient solver (see Fig. 15.1(a)).
However, it failed to solve 30 % of the convex problems and 35 % of the nonconvex
problems. The reason for this relatively large number of failures with PNEW is in its
sensitivity to the internal parameter XMAX (RPAR(9) in the code) which is noted
also in [30]. If we, instead of only one (default) value, used a selected value for this
parameter, also the solver PNEW solved 85 % of XSNC problems.

The derivative-free solvers DGM and QSMN performed similarly in these small-
scale problems but QSMN was clearly more reliable in the nonconvex case.
SolvOptN usually used less evaluations than the derivative-free solvers both in
XSC and XSNC problems. However, in the nonconvex case, also SolvOptN lost
out to QSMN in reliability.

15.3.4.2 Small-Scale Problems

Already with small-scale problems, there was a wide diversity on the computational
times of different codes. Moreover, the numbers of evaluations used with solvers
were no longer directly comparable with the elapsed computational times. For in-
stance, PBNCGCwas clearly the winner when comparing the numbers of evaluations
(see Figs. 15.2(b) and 15.3(b)). However, when comparing computational times,
SolvOptA was equally efficient with PBNCGC in SC problems (see Fig. 15.2(a))
and LMBM was the most efficient solver in SNC problems (see Fig. 15.3(a)).
SUBG was clearly the worst solver with respect to both computational times and

evaluations in both SC and SNC problems. It was also the most unreliable solver. It
solved only about 30 % of the convex and 20 % of the nonconvex problems and it
failed in all the quadratic problems.

Also the other subgradient solver SolvOpt had some difficulties with the accu-
racy, especially in the nonconvex case. SolvOptN solved about 77 % of the con-
vex problems with respect to tolerance ε = 5 × 10−4 and 92 % with ε = 10−2. For
SolvOptA the corresponding values were 85 % and 92 %. In the nonconvex case,
the values were 64 % vs. 92 % for SolvOptN and 71 % vs. 86 % for SolvOptA.
In other words, SolvOpt would have benefited most if we instead of tolerance
ε = 5 × 10−4 had used the relaxed tolerance ε = 10−2 to accept the results. Note,
however, that with small-scale problems SolvOpt was one of the most reliable
solvers.

With the other solvers there were no big differences in solving convex or non-
convex problems apart from PNEW: PNEW solved about 79 % of the nonconvex
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Fig. 15.2 CPU-time and
evaluations for SC problems
(13 problems with n = 50,
ε = 5 × 10−4)

problems and only 46 % of the convex problems. Also LMBM succeeded in solving
a little bit more nonconvex than convex problems. In the convex case, PBNCGC,
QSMA, and QSMN succeeded in solving all the problems with the desired accuracy.
With the relaxed tolerance ε = 10−2 also DGM managed to solve all the problems
and all the solvers but PNEW and SUBG succeeded in solving more than 90 % of the
problems. In the nonconvex case, PBNCGC and DGM solved all the problems suc-
cessfully. With a relaxed parameter QSMA and QSMN succeeded as well and all the
solvers except PNEW and SUBG managed to solve more than 85 % of the problems.

The solvers DGM and QSMN behaved rather similarly but QSMN was a little bit
more efficient both with respect to computational times and evaluations. SolvOptN
outperformed these two methods in efficiency but lost clearly in reliability.
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Fig. 15.3 CPU-time and
evaluations for SNC
problems (14 problems with
n = 50, ε = 5 × 10−4)

PNEW failed to solve all but one of the convex quadratic problems and succeeded
in solving all but one non-quadratic problems. In the nonconvex case PNEW suc-
ceeded in solving all the quadratic problems but then it had some difficulties with
the other problems. Again, the reason for these failures is in its sensitivity to the
internal parameter XMAX.

In [34], PNEW is reported to be very efficient in quadratic problems. Also in our
experiments, PNEWwas clearly more efficient with the quadratic problems than with
the non-quadratic. However, except for some small problems, it was not the most
efficient method in any of the cases.
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Fig. 15.4 CPU-time and
evaluations for LNC
problems (14 problems with
n = 1000, ε = 10−3)

15.3.4.3 Medium and Large-Scale Problems

The results for medium and large-scale problems reveal similar trends. Thus, we
show here only the results for large problems in Figs. 15.4 and 15.5. More illustrated
results also for medium-scale problems can be found in [21].

When solving medium and large-scale problems, the solvers are divided into two
groups: the first group consists of more efficient solvers: LMBM, PBNCGC, QSMA,
and SolvOptA. The second group consists of solvers using some kind of ap-
proximation for subgradients or Hessian, and SUBG. In the nonconvex case (see
Fig. 15.4), the inaccuracy of SolvOptA made it slide to the group of less efficient
solvers. In Fig. 15.5 illustrating the results with the relaxed tolerance, SolvOptA
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Fig. 15.5 CPU-time and
evaluations for LNC
problems, low accuracy
(14 problems with n = 1000,
ε = 10−2)

is among the more efficient solvers. Nevertheless, its accuracy is not as good as that
of the others. At the same time, the successfully solved quadratic problems almost
lifted PNEW to the group of more efficient solvers in large-scale nonconvex settings
(especially when comparing the numbers of evaluations, see [21]). The similar trend
cannot have been seen here, since in LNC problems the time limit was exceeded in
all the maximum of quadratic problems with PNEW.

Although PBNCGC was usually (on 70 % of medium-sized and 60 % of large
problems) the most efficient solver tested in the convex case, it was also the one that
needed the longest time to compute Problem 3 in [15] (both in medium and large-
scale settings). Indeed, an average time used to solve an MC (LC) problem with
PBNCGC was 15.7 (266.0) seconds while with SolvOptA, LMBM, and QSMA they
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were 1.3 (22.0), 1.6 (54.5), and 4.9 (98.6) seconds, respectively (the average times
are calculated using 9 (7) problems that all the solvers above managed to solve).

In the MNC case, LMBM and PBNCGC were the most efficient solvers. However,
also here with PBNCGC there was notable variation in the computational times for
different problems while with LMBM all the problems were solved equally efficiently.
In LNC settings also the solver QSMA solved the problems quite efficiently (see
Figs. 15.4 and 15.5).

The efficiency of PBNCGC is mostly due to its efficiency in quadratic problems:
it was the most efficient solver in almost all quadratic problems when comparing
the computational times, and superior when comparing the numbers of evaluations.
As before, PNEW failed in all but one of the convex quadratic problems.

Besides usually being the most efficient solver, PBNCGC was also the most
reliable solver tested in medium-scale settings. In the MC case it was the only
solver that succeeded in solving all the problems with the desired accuracy. In the
MNC case QSMA was successful as well. With the relaxed tolerance ε = 10−2 also
SolvOptA, QSMA, QSMN, and DGM managed to solve all the MC problems, while
LMBM and SolvOptN succeeded in solving more than 84 % of the problems. In the
MNC case, LMBM, PBNCGC QSMA, QSMN, and DGM solved all the problems with
the relaxed tolerance.
SolvOptN had some serious difficulties with the accuracy, especially in non-

convex cases. For instance, with the relaxed tolerance SolvOptN solved almost
80 % of the MNC problems while with the tolerance ε = 10−3 less than 30 %.
A similar effect could be seen with SolvOptA, although not as pronounced. Nat-
urally, with the LNC problems the difficulties with the accuracy degenerated (see
Figs. 15.4 and 15.5).

Also LMBM and QSMA had some difficulties with the accuracy in the LNC case
(see Fig. 15.4). With the relaxed tolerance, they solved all LNC problems (see
Fig. 15.5). With this tolerance LMBM was clearly the most efficient solver in non-
quadratic problems and the computational times of both LMBM and QSMAwere com-
parable with those of PBNCGC in the whole test set.

The solvers PBNCGC, DGM, and QSM were the only solvers which solved two LC
problems in which there is only one nonzero element in the subgradient vector (i.e.
Problem 1 in [15] and Problem 2 in TEST29 [28]). With the other methods, there
were some difficulties already with n = 50 and some more with n = 200. (Note
that for small, medium and large-scale settings, the problems are the same, only the
number of variables is changing.) In the case of LMBM these difficulties are easy to
explain: the approximation of the Hessian formed during the calculations is dense
and, naturally, not even close to the real Hessian in sparse problems. It has been
reported [15] that LMBM is best suited for the problems with a dense subgradient
vector whose components depend on the current iteration point. This result is in line
with the noted result that LMBM solves nonconvex problems very efficiently.

In the LC case PNEW solved all but the above mentioned two problems and the
maximum of quadratics problems. The solvers DGM, LMBM, SUBG, and QSMN failed
to solve (possible in addition to the two above-mentioned problems) two piecewise
linear problems (Problem 2 in [15] and Problem 5 in TEST29 [28]) and QSMA also
failed to solve one of them.
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Naturally, for the solvers using difference approximation or some other approx-
imation based on the calculation of the function or subgradient values, the number
of evaluations (and thus also the computational time) grows enormously when the
number of variables increases. Particularly, in large-scale problems the time limit
was exceeded with all these solvers in all the maximum of quadratic problems.
Thus, the number of failures with these solvers is probably larger than it should
be. Nevertheless, if you need to solve a problem where the subgradient is not avail-
able, the best solver would probably be SolvOptN (only in the convex case) due
to its efficiency or QSMN due to its reliability.

15.3.4.4 Extra-Large Problems

Finally, we tested the most efficient solvers so far, that is LMBM, PBNCGC, QSMA
and SolvOptA, using the problems with n = 4000. In the convex case, the solver
QSMA, which has kept a rather low profile until now, was clearly the most efficient
method although PBNCGC still used the least evaluations. QSMA was also the most
reliable of the solvers tested (see Fig. 15.6(a)).

In the nonconvex case, LMBM and QSMA were approximately equally good in
computational times, evaluations, and reliability (see Fig. 15.6(b)). Here PBNCGC
was the most reliable solver, although with the tolerance ε = 10−2 QSMA was the
only solver that solved all the nonconvex problems. LMBM and PBNCGC failed in
one and SolvOpt in two problems.

As before, LMBM solved all the problems it could solve in a relatively short time
while with all the other solvers there was notable variation in the computational
times elapsed for different problems. However, in the convex case, the efficiency of
LMBM was again ruined by its unreliability.

15.3.4.5 Convergence Speed and Number of Success

In this subsection, we first study (experimentally) the convergence speed of the al-
gorithms using one small-scale convex problem (Problem 3 in [15]). The exact min-
imum value for this function (with n = 50) is −49 × 21/2 ≈ −69.296.

For the limited memory bundle method the rate of convergence has not been
studied theoretically. However, at least in this particular problem, the solvers LMBM
and PBNCGC converged at approximately the same rate. Moreover, if we study the
number of evaluations, PBNCGC and LMBM seem to have the fastest converge speed
of the solvers tested (see Fig. 15.7(b)) although, theoretically, the proximal bundle
method is only linearly convergent.
SUBG converged linearly but extremely slowly and PNEW, although it finally

found the minimum, did not decrease the value of the function in the first 200 eval-
uations. Naturally, with PNEW a large amount of subgradient evaluations are needed
to compute the approximative Hessian. The solvers SolvOptA, SolvOptN, DGM,
QSMA, and QSMN took a very big step downwards already in iteration two (see
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Fig. 15.6 CPU-times for
convex (9 pc.) and nonconvex
(10 ps.) XL problems
(n = 4000, ε = 10−3)

Fig. 15.7(a)). However, they took quite many function evaluations per iteration.
In Fig. 15.7 it is easy to see that Shor’s r-algorithm (i.e. solvers SolvOptA and
SolvOptN) is not a descent method.

In order to see how quickly the solvers reach some specific level, we studied the
value of the function equal to −69. With PBNCGC it took only 8 iterations to go
below that level. The corresponding values for other solvers were 17 with QSMA
and QSMN, 20 with LMBM and PNEW, and more than 20 with all the other solvers. In
terms of function and subgradient evaluations, the values were 18 with PBNCGC, 64
with LMBM, and 133 with SolvOptA. Other solvers needed more than 200 evalua-
tions to go below −69.
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Fig. 15.7 Function values
versus iterations (a), and
function values versus the
number of function and
subgradient evaluations (b)

The worst of the solvers were SUBG which took 7382 iterations and 14764 evalu-
ations to reach the desired accuracy and stop, and SolvOptN which never reached
the desired accuracy (the final value obtained after 42 iterations and 2342 evalua-
tions was −68.915).

Finally, in Fig. 15.8 we give the proportions of the successfully terminated runs
obtained with each solver within the different problem classes. Although we have
already said something about the reliability of the solvers, we study the figure to see
if the convexity or the number of variables have any significant effect on the success
rate of the solvers.

In Fig. 15.8, we see that with both variants of SolvOpt the degree of success
decreases clearly when the number of variables increases or the problem is noncon-
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Fig. 15.8 Proportions of
successfully terminated runs
within different problem
classes: convex problems (a)
and nonconvex problems (b)

vex. In addition, with the solvers that use approximations to subgradient or Hessian
there is a clear drop-out when moving from 200 variables to 1000 variables. At
least one reason for this is that with n = 1000 the solvers terminated because of the
maximum time limit (thus failing to reach the desired accuracy).
DGM and QSMNwere reliable methods both with convex and nonconvex problems

up to 200 variables, while LMBM and PNEW solved the nonconvex problems more
reliably than the convex ones. With PNEW the maximum time limit was exceeded
in many cases with n = 1000, thus the exception. With PNEW the result could be
different if the tuned parameter XMAX was used. With LMBM the result is in harmony
with the earlier claims [15] that LMBM works better for more nonlinear functions.
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PBNCGC solved small-scale and larger problems in a very reliable way but it was
almost the worst solver in extra-small problems. This result has probably nothing to
do with the problem’s size but more with the different problem classes used.

15.4 Conclusions

We have tested the performance of different nonsmooth optimization solvers in the
solution of different nonsmooth problems. The results are summarized in Table 15.2,
where we give our recommendations for the “best” solver for different problem
classes. Since it is not always unambiguous what the best option is, we give cre-
dentials both in the cases where the most efficient (in terms of used computer time)
and the most reliable solver are sought out. If there is more than one solver recom-
mended in Table 15.2, the solvers are given in alphabetical order. The parenthesis in
the table mean that the solver is not exactly as good as the first one but still a solver
to be reckoned with the problem class.

Although in our experiments we got extremely good results with the proximal
bundle solver PBNCGC, we cannot say that it is clearly the best method tested. The
inaccuracy in extra-small problems, great variations in the computational times oc-
curred in larger problems, and the earlier results obtained make us believe that our
test set favored this solver over the others a little bit. Even so, we can say that
PBNCGC was one of the best solvers tested and it is especially efficient for the max-
imum of quadratic and piecewise linear problems.

On the other hand, the limited memory bundle solver LMBM suffered from ill-
conditioned test problems in convex small, medium, large and extra-large cases.
In the test set there were four problems (out of 13) in which LMBM was known
to have difficulties. In addition, LMBM did not beat PBNCGC in any maximum
of quadratics problems but in one with n = 4000. This, however, is not the in-
feriority of LMBM but rather the superiority of PBNCGC in these kinds of prob-
lems. LMBM was quite reliable in the nonconvex case in all numbers of variables
tested and it solved all the problems—even the largest ones—a in relatively short
time while, for example, with PBNCGC there was great variation on the computa-
tional times of different problems. LMBM works best for (highly) nonlinear func-
tions while for piecewise linear functions it might be a good idea to find another
solver.

In convex extra-small problems, the bundle-Newton solver PNEW was the second
most efficient solver tested. However, PNEW suffers greatly from the fact that it is
very sensitive to the internal parameter XMAX. Already using two values for this
parameter (e.g., default value 1000 and the smallest recommended value 2), the
results would have been much better and especially the degree of success would
have been much higher. The solver has been reported to be best suited for quadratic
problems [34] and, indeed, it solved (nonconvex) quadratic problems faster that non-
quadratic. However, with n ≥ 50 it did not beat the other solvers in these problems
due to the large approximation of the Hessian matrix required.
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Table 15.2 Summation of the results

Problem’s type Problem’s size Seeking for efficiency Seeking for reliability

Convex XS PBNCGC, PNEW(1),
(SolvOpt(A+N))

DGM, SolvOpt(A+N)

S, M, L LMBM(2), PBNCGC,
(QSMA, SolvOptA)

PBNCGC, QSMA

XL LMBM(2), QSMA QSMA, (PBNCGC)

Nonconvex XS PBNCGC,
SolvOptA, (QSMA)

QSM(A+N), (SolvOptA)

S, M, L LMBM, PBNCGC, (QSMA) DGM, LMBM, PBNCGC

XL LMBM, QSMA PBNCGC, (LMBM, QSMA)

Piecewise linear
or sparse

XS, S PBNCGC, SolvOptA PBNCGC, SolvOptA

M, L, XL PBNCGC, QSMA(3) DGM, PBNCGC, QSMA

Piecewise quadratic XS PBNCGC, PNEW(1),
(LMBM, SolvOptA)

LMBM, PBNCGC,
PNEW(1), SolvOptA

S, M, L, XL LMBM, PBNCGC,
(SolvOptA)

DGM, LMBM, PBNCGC, QSMA

Highly nonlinear XS LMBM, PBNCGC,
SolvOptA

LMBM, QSMA, SolvOptA

S LMBM, PBNCGC LMBM, PBNCGC, QSMA

M, L, XL LMBM LMBM, QSMA

Function evaluations
are expensive

XS PBNCGC, (PNEW(1),
SolvOptA)

QSMA, SolvOptA

S, M, L, XL PBNCGC, (LMBM(4),
SolvOptA)

PBNCGC, (LMBM(4), QSMA)

Subgradients are
not available

XS SolvOptN QSMN, SolvOptN(5), (DGM)

S, M SolvOptN, QSMN DGM, QSMN

L QSMN, (DGM) DGM, QSMN

The standard subgradient solver SUBG is usable only for extra-small convex
problems: the degree of success was 80 % in XSC, otherwise it was less than 40 %.
In addition, the implementations of Shor’s r-algorithm SolvOptA and SolvOptN
did their best in extra-small problems (also in the nonconvex case!). Neverthe-
less, SolvOptA solved also medium, large and even extra-large problems (con-
vex) rather efficiently. In larger nonconvex problems these methods suffered from
inaccuracy.

Thus, when comparing the reliability in medium-scale settings, it seems that one
should select PBNCGC for convex problems while LMBM is good for nonconvex
problems. On the other hand, the quasi-secant solver QSMA was reliable and effi-
cient both in convex and nonconvex medium-sized problems. However, with QSMA
there was some variation on the computational times of different problems (not as
much as PBNCGC, though) while LMBM solved all the problems in a relatively short
time.
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The solvers using discrete gradients, that is, the discrete gradient solver DGM and
the quasisecant solver with discrete gradients, QSMN, usually lost out in efficiency
to the solvers using analytical subgradients. However, in extra-small and small-scale
problems the differences were not significant and the reliability of DGM and QSMN
seems to be very good both with convex and nonconvex problems. Moreover in the
case of highly nonconvex functions (supposing that you seek for global optimum)
DGM or QSM (either with or without subgradients) would be a good choice, since
these methods tend to jump over the narrow local minima.
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