
Chapter 12
Inversion of the Heat Equation by a Block Based
Algorithm Using Spline Wavelet Packets

Amir Averbuch, Pekka Neittaanmäki, and Valery Zheludev

Abstract We present a robust algorithm starting from 1D or 2D discrete noised
data to approximately invert the heat equation, which is an ill-conditioned problem.
Relative contributions of the coherent structure and the noise in different frequency
bands of the available data are different. We propose to solve the inversion problem
separately in different frequency bands by methods similar to the Tikhonov regular-
ization. This separation is achieved by using spline wavelet packets. The solutions
are derived as linear combinations of those wavelet packets.

12.1 Introduction

The problems are formulated as follows: Let the functions f (x) ∈ C2(R1) and
f (x, y) ∈ C2(R2) be compactly supported. Denote by U1

t and by U2
t the linear op-

erators such that U1
t f (x) = g(x, t) and U2

t f (x, y) = g(x, y, t) where g(x, t) and
g(x, y, t) are the solutions of the heat equations with the initial conditions f (x) and
f (x, y), respectively:

∂g(x, t)

∂t
= g′′

x (x, t), g(x,0) = f (x),

∂g(x, y, t)

∂t
= g′′

x (x, y, t) + g′′
y (x, y, t), g(x, y,0) = f (x, y).

(12.1)
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Problem 12.1 Let t be a fixed time parameter. Given g(x, t) = U1
t f (x), find f (x).

Problem 12.2 Let t be a fixed time parameter. Given g(x, y, t) = U2
t f (x, y), find

f (x, y).

For brevity, we concentrate on Problem 12.1. Extension to the 2D case is
straightforward. The problem has explicit theoretical solutions [6]. We assume that
the initial temperature distribution f (x) is a T -periodic function. Consequently,
g(x, t) = U1

t f (x) is T -periodic as well. These functions can be expanded into the
following Fourier series:

f (x) = 1

T

∑

n∈Z
fne

2πinx/T , g(x, t) = 1

T

∑

n∈Z
gn(t)e

2πinx/T , gn(0) = fn.

If we know the function g(x, t) at some fixed t then

fn = gn(t)e
t (2πn/T )2 =⇒ f (x) = 1

T

∑

n∈Z
gn(t)e

t (2πn/T )2
e2πinx/T . (12.2)

In real life, the function g(x, t) is known up to some errors, modeled as g̃(x, t) =
g(x, t)+e(x). Generally, there is no reason to assume that the Fourier coefficients of
the error tend to zero faster than e−n2t (if they tend to zero at all). Therefore, accord-
ing to (12.2), application of the direct inversion to the available data g̃(x, t) results
in an unstable solution. However, as the magnitude of the error function |e(x)| be-
comes smaller, the function f̃ (x) can comprise strong high-frequency components,
which do not exist in the original function f (x). Therefore, a regularization, which
provides a stability to the solution at the expense of deviation from the available
data g̃(x, t), is needed.

Typically, the data function g(x, t) is sampled on a grid {x[k]} and the samples
are corrupted by a random noise, while the sought-after initial temperature distribu-
tion f (x) is continuous. Therefore, it is reasonable to design approximated solutions
as splines. Splines bridge the gap between the discrete input data and the continu-
ous solution. To take into account different relative shares of the coherent signal and
the noise in different frequency components of the available data, we propose to
solve the inversion problem separately in different frequency bands. This approach
significantly extends the adaptation abilities and the robustness of the method. Prac-
tically, this scheme is implemented via the application of the orthonormal spline
wavelet packets, which are constructed by using the Spline Harmonic Analysis
(SHA) framework. The wavelet packet transform splits the frequency domain of
a signal into a set of bands whose overlap is minimal.

12.2 Elements of SHA

We briefly outline the basics of the SHA techniques. A detailed description is given,
for example, in [2, 3].
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We assume that N = 2j , j ∈ N and p = 2r > 0 is an even integer. The space
of N -periodic splines of even order p = 2r , which have nodes on the grid {k}, is
denoted by pS . A basis in pS is formed by translations of the centered periodic
B-spline Bp(x):

Sp(x) =
N−1∑

k=0

q[k]Bp(x − k) ∈ pS .

The B-spline Bp(x) belongs to the space Cp−2. The circular convolution Bp �

Br(x) = Bp+r (x) =⇒ S
p

1 � Sr
2(x) = S

p+r

3 (x) ∈ p+rS . Thus, the circular convo-
lution of two periodic splines is a spline. Therefore, splines are a proper tool for
dealing with convolution-type problems where inversion of the heat equation be-
longs to.

There exist orthogonal bases in pS which resemble the Fourier basis. Denote

ω
def= e2πi/N . The orthogonal basis of the space pS is constituted by exponential

splines

βp[n](x)
def=

N∑

k=0

ω−nkBp(x + k), n = 0, . . . ,N − 1.

The following representation holds:

Sp(x) =
N−1∑

k=0

q[k]Bp(x − k) = 1

N

N−1∑

n=0

q̂[n]βp[n](x).

Here q̂[n] = ∑N
k=0 ω−nkq[k] is the discrete Fourier transform (DFT) of the coeffi-

cients {q[k]}. For further use, we single out the sequence

up[n] def= βp[n](0) =
N−1∑

k=0

ω−nkBp(k), (12.3)

which is the DFT of the sampled B-spline. The sequences up[n] are N -periodic and
strictly positive. The norms of the exponential splines are ‖βp[n]‖ =

√
Nu2p[n].

Thus, the splines,

γ p[n](x)
def= βp[n](x)

‖βp[n]‖ = βp[n](x)√
Nu2p[n] , n = 0, . . . ,N − 1,

form an orthonormal basis of S p . The spline Sp(x) ∈ pS is represented by

Sp(x) =
√

1

N

N−1∑

n=0

σ [n]γ p[n](x), σ [n] =
√

u[n]2pq̂[n]. (12.4)

This expansion imposes a specific form of the SHA methodology onto the spline
space, where the splines {γ p[n](x)}N−1

n=0 act as harmonics and the coordinates
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{σ [n]}, n = 0, . . . ,N − 1, which we refer to as to the SHA spectrum of the spline
Sp(x). They act as the Fourier coefficients. Many operations on splines are sig-
nificantly simplified [2, 3]. Denote by δ2 the second central difference: δ2f (x) =
f (x + 1) − 2f (x) + f (x − 1) and

w[n] def= 4 sin2 πn

M
, W [n] def=

√
u2(p−2)[n]

u2p[n] w[n], V [n] def= up[n]√
u2p[n] .

(12.5)
Then

δ2Sp(x) = −
√

1

N

N−1∑

n=0

w[n]σ [n]γ p[n](x), Sp(k) = 1

N

N−1∑

n=0

ωknV [n]σ [n],
(12.6)

S′′(x) = −
√

1

N

N−1∑

n=0

W [n]σ [n]γ p−2[n](x),
∥∥S′′∥∥2 = 1

N

N−1∑

n=0

∣∣W [n]σ [n]∣∣2
.

(12.7)

It follows from (12.6) that, if a spline Sp(x) interpolates a sequence y = {y[k]} at
grid points Sp(k) = y[k], then its SHA spectrum is

σ [n] = ŷ[n]
V [n] , ŷ[n] =

N−1∑

k=0

ω−kny[k]. (12.8)

12.3 Global Regularized Spline Solution

We briefly outline the scheme for global solution, which is a realization of the
Tikhonov regularization algorithm [7] in the space of periodic splines. A full pre-
sentation of the scheme is given in [1].

To immerse Problem 12.1 into the spline setting, Vt denotes the linear operator
defined on the spline space pS such that Vt S(x) = s(x, t), where s(x, t) is the
spline solution to the difference approximation of the heat equation

∂s(x, t)

∂t
= δ2

xs(x, t), s(x,0) = S(x) (12.9)

from pS (with respect to x).
Assume the spline Sp(x) is represented by (12.4). The spline s(x, t) ∈ S p can

be represented as

s(x, t) = N−1/2
N−1∑

n=0

σ [n](t)γ p[n](x).
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Using (12.6), we get

σ [n](t) = η[n](t)σ [n], (12.10)

where η[n](t) = e−w[n]t . If we know the spline s(x, t) by a fixed t then the spline
S(x) becomes

S(x) =
√

1

N

N−1∑

n=0

ew[n]t σ [n](t)γ p[n](x).

However, typically only the data vector z = {z[k]}, k = 0, . . . ,N − 1, is known,
where z[k] = g(k, t) + ek , e = {ek} are the measurement errors, which we assume
to be white noise.

The approximated solution to Problem 12.1 is derived as a spline

Sρ(x) = arg min
S∈S p

(
ρI (S) + E(S)

)
,

where

I (S)
def= ∥∥S′′∥∥2 = 1

N

N−1∑

n=0

∣∣W [n]σ [n]∣∣2
,

E(S)
def=

∑

k

(
Vt S(k) − z[k])2 = 1

N

N−1∑

n=0

∣∣V [n]σ [n]η[n](t) − ẑ[n]∣∣2
.

A spline solution to the minimization problem is

Sρ(x) =
√

1

N

N−1∑

n=0

σ [n](ρ)γ p[n](x), σ [n](ρ) = η[n](t)ẑ[n]V [n]
A[n](ρ)

,

where η[n](t) is the complex conjugate of η[n](t), A[n](ρ)
def= ρW [n] +

(η[n](t)V [n])2.
Assume we are able to estimate the variance var(e) = ε2 of the error vector. The

regularization parameter ρ is derived from the solution of the equation

e(ρ)
def= E(Sρ)/N = 1

N2

N−1∑

n=0

(
ρW [n]|ẑ[n]|

A[n](ρ)

)2

= ε2. (12.11)

The function e(ρ) grows strictly monotonically as ρ → ∞ and limρ→∞ e(ρ) =
N−2‖z‖2. If N−1‖z‖ > ε, then (12.11) has a unique solution.

The parameter ρ, which provides a trade-off between approximation and reg-
ularization, depends on the relative shares of the coherent signal and the noise in
the available data. These shares are different in different frequency components of
the data. We propose to solve the problems separately in different frequency bands,
while the regularization parameters are to be found according to the signal-to-noise
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ratio in each band. It is achieved by the application of the orthonormal spline wavelet
packet transform, which splits the frequency domain of a signal into a set of bands
whose overlap is minimal. The SHA framework provides tools for the design of
wavelet packets and for the efficient implementation of the algorithm.

12.4 Wavelet Packets

Denote by pSr,0, r ∈ N, the space of N -periodic splines of even order p on the

grid {2rk}. In the rest of the paper Nr
def= N/2r , nr

def= n + Nr/2. The space pSr,0
is an Nr -dimensional space, where a basis consists of 2r -sample shifts of the B-
splines B

p
r constructed on the grid {2rk}. The inclusion relations between the spaces

pSr,0 ⊂ pS r−1,0 ⊂ · · · ⊂ pS 0,0 ≡ S p hold. Similarly to the space S p , the or-
thogonal and orthonormal bases of pSr,0 are formed by the exponential splines

β
p

r,0[n](x)
def=

Nr∑

k=0

ω−2r nkBp
(
x + 2rk

)
, u

p
r [n] def= β

p

r,0[n](0),

γ
p

r,0[n](x)
def= β

p

r,0[n](x)
√

Nru
2p
r [n]

.

For the initial scale, we retain the notations γ p[n] ≡ γ
p

0,0[n](x), up[n] ≡ u
p

0 [n].
When it will not produce a confusion, we drop the order index ·p .
The two-scale relation between basis splines from adjacent spaces holds to be

γr,0[n](x) = br−1[n]γr−1,0[n](x) + br−1[nr ]γr−1,0[nr ](x), (12.12)

where

br−1[n] def=
√√√√u

2p

r−1[n]
2u

2p
r [n]

cosp

(
2r−1πn

N

)
, nr

def= n + Nr

2
.

Denote by pSr,1 the orthogonal complement to pSr,0 in the space pS r−1,0. An
orthonormal basis in pSr,1 contains the splines

γr,1[n](x) = b̃r−1[n]γr−1,0[n](x) + ω2r−1n
r−1 [nr ]γr−1,0[nr ](x), (12.13)

where b̃r−1[n] def= ω2r−1nbr−1[nr ]. If r > 1, we can apply a similar procedure to the
space pSr−1,1. As a result, we get the decomposition pSr−1,1 = pSr,2 ⊕ pSr,3.
By applying the same procedure to all the derived subspaces, we decompose the
spline space pS into a series of orthogonal sums

pS = pS1,0 ⊕ pS1,1 = pS2,0 ⊕ pS2,1 ⊕ pS2,2 ⊕ pS2,3 = · · · =
2r−1⊕

l=0

pSr,l .
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The orthonormal bases {γr,l[n](x)}[n] of the subspaces pSr,l are derived iteratively
by the two-scale relations using the coefficients br−1[n] and b̃r−1[n].

Similarly to the Fourier exponentials, the exponential basis splines γr,l[n](x) are
complex-valued and are not localized in the space domain. However, their real-
valued and well-localized counterparts satisfy

ψr,l(x)
def=

√
1

N

Nr−1∑

n=0

γr,l[n](x) ∈ pSr,l ⊂ pS . (12.14)

These splines are called the spline wavelet packets. The shifts {ψr,l(x − 2rk)}, k =
0, . . . ,Nr − 1, form an orthonormal basis for the space pSr,l . Consequently, the
union

⊎2r−1
l=0 {ψr,l(x − 2rk)} forms an orthonormal basis for the entire space pS .

At the initial scale, the one-sample shifts of the splines

ϕp(x)
def= ψ

p

0,0(x) = N−1/2
N−1∑

n=0

γ p[n](x)

form an orthonormal basis.
All the spaces pSr,l belong to pS , thus, the wavelet packet ψr,l(x) forms a

subspace pSr,l and can be expanded over the orthonormal basis {γ p[n](x)} of S p:

ψr,l(x) =
√

1

N

N−1∑

n=0

νr,l[n]γ p[n](x). (12.15)

The SHA spectra {νr,l[n]}N−1
n=0 of the wavelet can be explicitly calculated using

the two-scale relations.

Example 12.1 (The first decomposition scale r = 1) The SHA spectra are

ν1,0[n] = √
2b0[n] =

√
u2p[n]
u

2p

1 [n]
cosp πn

N
,

ν1,1[n] = √
2b̃0[n] = ω−n

√
u2p[nr ]
u

p

1 [n] sinp πn

N
.

Example 12.2 (The second decomposition scale r = 2) The SHA spectra are

ν2,0[n] = 2b0[n]b1[n], ν2,1[n] = 2b0[n]b̃1[n],
ν2,2[n] = 2b̃0[n]b̃1[n], ν2,3[n] = 2b̃0[n]b1[n].

Figure 12.1 displays the wavelet packets from the first and the second decompo-
sition scales with their SHA spectra.
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Fig. 12.1 Wavelet packets of order 8 from the 1st (top) the 2nd decomposition scales with their
SHA spectra (bottom half-band)

The wavelet packets are well localized in space. Their SHA spectra have a near
rectangular shape (the higher the spline order is the closer the shape is to rectangu-
lar) and produce a sequence of partitions of the frequency band. The SHA spectrum
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of the wavelet packet ψr,l(x) is effectively confined within the band

Λr,l
def=

[
− (l + 1)N

2r+1
,− (l)N

2r+1

]
∪

[
(l)N

2r+1
,
(l + 1)N

2r+1

]
, l = 0, . . . ,2r − 1. (12.16)

Since a spline from pSr,l is the linear combination of the wavelet packets

Sr,l(x) =
Nr−1∑

k=0

qr,l[k]ψp
r,l

(
x − 2rk

)
, (12.17)

then its SHA spectrum is effectively confined within the band Λr,l . This provides
opportunities to approximate the heat inversion separately in different frequency
bands.

12.5 Spline Wavelet Packet Transforms

Let a spline S(x) ∈ pS be represented by the orthonormal basis splines

S(x) =
√

1

N

N/2−1∑

n=−N/2

σ [n]γ p[n](x). (12.18)

The sequence {σ [n]}, n = −N/2, . . . ,N/2 − 1, is the SHA spectrum of the spline
S(x). The space pS is the orthogonal sum of the subspaces pS1,0 and pS1,1

whose orthonormal bases are {γ p

1,0[n](x)} and {γ p

1,1[n](x)}, respectively, where
n = 0, . . . ,N1 − 1 and N1 = N/2. Thus, S(x) can be represented as the sum of its
orthogonal projections onto the subspaces pS1,i , i = 0,1: S(x) = S1,0(x)⊕S1,1(x),
where

S1,i (x)
def=

√
2

N

N/2−1∑

n=0

σ1[n]γ p

1,i[n](x), i = 0,1. (12.19)

The orthonormality of the spline basis implies

σ [n] = √
N

〈
S,γ p[n]〉, σ1,i[n] = √

N/2
〈
S,γ

p

1,i[n]〉, i = 0,1. (12.20)

By using the two-scale relations given by (12.12) and (12.13), we derive for n =
0, . . . ,N/2 − 1

σ1,0[n] = √
N/2

〈
S,γ

p

1,0[n]〉 =
√

1

2

(
b0[n]σ [n] + b0[n1]σ [n1]

)
, (12.21)

σ1,1[n] =
√

1

2

(
b̃0[n]σ [n] + b̃0[n1]σ [n1]

)
, n1 = n + N/2. (12.22)
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We can present (12.21) and (12.22) in a matrix form

(
σ1,0[n]
σ1,1[n]

)
=

√
1

2
A0[n] ·

(
σ [n]
σ [n1]

)
, Am[n] def=

(
bm[n] bm[nm+1]
b̃m[n] b̃m[nm+1]

)
. (12.23)

The coordinates of the projections of S(x) onto the subspaces pSr,l are derived
iteratively:

(
σm,2l[n]

σm,2l+1[n]
)

=
√

1

2
Am−1[n] ·

(
σm−1,l[n]

σm−1,1[n + Nr ]
)

if l is even,

(
σm,2l+1[n]
σm,2l[n]

)
=

√
1

2
Am−1[n] ·

(
σm−1,l[n]

σm−1,1[n + Nr ]
)

if l is odd.

(12.24)

12.6 Wavelet Packet Bases

Assume that the spline S(x) ∈ pS is expanded over the orthonormal bases

S(x) = 1√
N

N−1∑

n=0

σ [n]γ p[n](x) =
N−1∑

k=0

q[k]ϕp(x − k),

σ [n] =
N−1∑

k=0

ω−nkq[k] = q̂[n], q[k] = 1

N

N−1∑

n=0

ωnkσ [n].

For example, if the samples S(k) = y[k], k = 0, . . . ,N − 1, are available then
(12.8) claims that σ [n] = ŷ[n]/V [n]. Iterative application of the transform given
by (12.24) expands the projections splines Sr,l(x) ∈ pSr,l over the orthonor-
mal bases {γr,l[n](x)}. Then, the coordinates {qr,l[k]} of the alternative expan-
sion (12.17) over the orthonormal wavelet packet bases {ψp

r,l(x − 2rk)} are de-

rived by the application of the IDFT: qr,l[k] = N−1
r

∑Nr−1
n=0 ω2r nkσr,l[n]. The sub-

space pSr−1,l = pSr,2l ⊕ pSr,2l+1. The spline Sr−1,l(x) can be expanded either

over the basis {ψp

r−1,l(x − 2r−1k)}Nr−1−1
k=0 or over the combined orthonormal basis

{ψp

r,2l(x − 2rk)}⊎{ψp

r,2l (x − 2rk)}Nr−1
k=0 . The decision of which basis is preferable

is made once a cost function is defined.
Consequently, once the wavelet packet transform of the spline S(x) is imple-

mented, a wide variety of orthonormal wavelet packet bases becomes available.
A basis, which is optimal for a given spline with respect to a certain purpose, can be
designed by the Best Basis algorithm [4], which compares the cost function of the
“parent” spline Sr−1,l(x) with the cost of the “offsprings” Sr,2l (x) and Sr,2l+1(x).
Entropy us a typical cost function.
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12.7 Parameterized Spline Solution in the Subspace pSr,l

12.7.1 Splines from the Subspaces pSr,l

The spline Sr,l(x), which is the orthogonal projection of the spline S(x) onto the
subspace pSr,l , is expanded over the orthonormal wavelet packet basis as in (12.17).
On the other hand, the spline Sr,l(x) belongs to the initial space pS and can be
expanded over the orthonormal basis of pS

Sr,l(x) =
√

1

N

N−1∑

n=0

ζr,l[n]γ p[n](x), ζr,l[n] = νr,l[n]q̂r,l[n]. (12.25)

The coefficients νr,l[n] are the SHA spectrum of the wavelet packet ψ
p
r,l . We em-

phasize that the DFT sequence q̂r,l[n] is Nr -periodic, where Nr = N/2r .
The projection coordinates ζr,l[n] can be expressed via the coordinates σ [n] of

the spline S(x).

Proposition 12.1 The following representation of the projection coordinates holds:

ζr,l[n] = νr,l[n]
2r

2r /2−1∑

λ=−2r /2

σ [n + λNr ]νr,l[n + λNr ] ≈ 1

2r
σ [n]∣∣νr,l[n]∣∣2

. (12.26)

Remark 12.1 The higher the order p is, the closer ζr,l[n] is to 2−rσ [n]|νr,l[n]|2.

Equation (12.9) implies that the application of the operator Vt to Sr,l(x) results
in

Sr,l(x, t) = Vt Sr,l(x) = 1√
N

N−1∑

n=0

η[n](t)ζr,l[n]γ p[n](x). (12.27)

From (12.6), sampling of the spline S(x, t) = Vt S(x) becomes

y[k] def= S(k, t) = 1

N

N−1∑

n=0

η[n](t)σ [n]V [n]ωkn, V [n] def= up[n]√
u2p[n] ,

while sampling of Sr,l(x, t) = Vt Sr,l(x)

yr,l[k] def= Sr,l(k, t) = 1

N

N−1∑

n=0

η[n](t)ζr,l[n]V [n]ωkn. (12.28)

Equation (12.26) implies the approximated relation

ŷr,l[n] ≈ 1

2r
η[n](t)σ [n]V [n]∣∣νr,l[n]∣∣2 = 1

2r
ŷ[n]∣∣νr,l[n]∣∣2

. (12.29)
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Remark 12.2 Equation (12.29) can be interpreted in a sense that confinement of
the operator’s Vt domain from the whole spline space pS to the subspace pSr,l

effectively results in multiplication of the DFT ŷ[n] of the sampled output y[k] =
Vt S(k) with the factor 2−r |νr,l[n]|2.

12.7.2 Parameterized Spline Solution

The scheme for a partial solution of Problem 12.1 in the subspace pSr,l is very
similar to the scheme of a global solution presented in Sect. 12.3. By assumption,
t is a known time parameter and the vector z = {z[k] = g(k, t) + ek} = g + e is
available, where g(x, t) = Ut f (x). Then, a partial approximated inversion of the
heat equation (12.1) is derived as a spline

Sr,l(x) =
Nr−1∑

k=0

qr,l[k]ψp
r,l

(
x − 2rk

) =
√

1

N

N−1∑

n=0

ζr,l[n]γ p[n](x) (12.30)

such that the spline Sr,l(x, t) = Vt Sr,l(x) approximates, in some sense, the avail-
able discrete data z. To be specific, Remark 12.2 suggests that the sampled spline
Sr,l(k, t) should approximate the “filtered”

z̃r,l[k] def= 1

N

N−1∑

n=0

ωkn ˆ̃zr,l[n], where ˆ̃zr,l[n] def= ẑ[n] |νr,l[n]|2
2r

, (12.31)

rather than the entire data z. Similarly to Sect. 12.3, we find a spline S(ρ, x) ∈ pSr,l ,
which minimizes the functional ρI (S) + Er,l(S), where

I (S)
def= ∥∥(S)′′

∥∥2
, Er,l(S)

def=
∑

k

(
S(k, t) − z̃r,l[k])2

, S(x, t)
def= Vt S(x),

(12.32)
and ρ is a numerical parameter.

Let a spline s(x) ∈ pSr,l be represented as in (12.30)

s(x) =
√

1

N

N−1∑

n=0

ζr,l[n]γ p[n](x).

Then,

I (s) = 1

N

N−1∑

n=0

W [n]∣∣ζr,l[n]∣∣2
, Er,l(s) = 1

N

N−1∑

n=0

∣∣η[n](t)ζr,l[n]V [n] − ˆ̃zr,l[n]∣∣2
.

The sequences W [n] and V [n] are defined in (12.5).
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A solution to the minimization problem is the spline from pSr,l

Sr,l(ρ, x) =
√

1

N

N−1∑

n=0

ζr,l(ρ)[n]γ p[n](x), ζr,l(ρ)[n] = η[n](t)V [n]ˆ̃zr,l(n)

A[n](ρ)
,

A[n](ρ)
def= ρW [n] + ∣∣η[n](t)V [n]∣∣2

.

Its samples on the grid points

Sr,l(ρ, k) = 1

N

N−1∑

n=0

ωknζr,l(ρ)[n]V [n] = 1

N

N−1∑

n=0

ωkn η[n](t)V 2[n]ˆ̃zr,l(n)

A[n](ρ)
. (12.33)

12.7.3 Selection of the Regularization Parameter

Assume that we are able to evaluate the errors vector e = {ek}N−1
k=0 , ek = N−1 ×∑N−1

n=0 ωknê[n], whose variance var(e) = ε2 ≈ N−1 ∑N−1
k=0 (ek)

2. Keeping (12.31)
in mind, denote

er,l[k] def= 1

N

N−1∑

n=0

ωknêr,l[n], where êr,l[n] def= ê[n] |νr,l[n]|2
2r

,

(εr,l)
2 def=

N−1∑

k=0

(
er,l[k])2 = 1

N

N−1∑

n=0

∣∣êr,l[n]∣∣2
.

The function

er,l(ρ)
def= Er,l

(
Sr,l(ρ, ·)) = 1

N

N−1∑

n=0

(
ρW [n]|ˆ̃zr,l[n]|

A[n](ρ))

)2

grows monotonically from zero to N−1 ∑N−1
n=0 | ˆ̃zr,l[n]|2 = ∑N−1

k=0 (z̃r,l[k])2 as ρ

grows from zero to infinity. Therefore, we derive ρr,l from the equation er,l(ρ) =
(εr,l)

2.

12.7.4 Modeling the Noise

We assume that the error vector e is a zero mean Gaussian white noise. It is
seen from (12.2) that the Fourier coefficients of the function g(x, t) = Ut f (x):
gn(t) = fne

−t (2πn/N)2
are fast decaying when n is growing. Thus, the function

g(x, t) is efficiently bandlimited. Its significant Fourier coefficients gn(t) occupy
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a relatively narrow band around zero, −K(t) < n < K(t), K(t) < N/2, K(t) → 0
as t → ∞. Hence, the DFT coefficients of the data vector z: {ẑ[n]} ≈ {ê[n]} as n ∈
[K(t),N/2 − 1] ∪ [−N/2,−K(t)]. By relying on the fact that the power spectrum
{|ê[n]|2} of the white noise e is close to a constant for all n = −N/2, . . . ,N/2 − 1,
it is possible to evaluate the variance

σ 2 ≈ 1

(N − K(t))2

∑

n∈[K(t),N/2−1]∪[−N/2,−K(t)]

∣∣ẑ[n]∣∣2
. (12.34)

Then, the noise vector e is modeled as a zero mean Gaussian random process ẽ =
{ẽi}N−1

i=0 , whose variance is σ 2. Let {̂ẽ[n]}N/2−1
n=−N/2 be the DFT spectrum of the model

vector ẽ. Then, the values (εr,l)
2, which are needed for the parameter ρ selection,

are estimated as

(εr,l)
2 ≈ 1

2rN

N−1∑

n=0

∣∣(νr,l[n])2̂
ẽ[n]∣∣2

. (12.35)

Another option for the noise evaluation is to use the scheme in [5].

12.8 Spline Wavelet Packet Solution to Problem 12.1

The partial spline solution Sm,l(ρ, x) of the inversion problem in the subspace pSr,l

is derived from the filtered data such that the DFT is ˆ̃zm,l[n] def= ẑ[n]|νm,l[n]|22−m.
To determine an optimal set of the subspaces pSr,l , which reveal the internal

structure of the data vector z, we construct the spline Z(x) = ∑N−1
n=0 ξ [n]γ p[n](x),

ξ [n] = ẑ[n]/V [n], which interpolates the data z. Then, we apply the Best Basis
algorithm to obtain the list PL = {(p̄, l̄)} such that the shifts of the wavelet pack-
ets ψm̄,l̄ form an optimal basis for the spline Z(x). The list PL determines the

subspaces pS m̄,l̄ , where the partial solutions for the inversion problem are to be
derived. Due to the effective bandlimitedness of the function g(x, t) = U1

t f (x),

some subspaces pS m̄,l̄ , which correspond to higher frequency bands are “empty”
in a sense that they, actually, do not contain a contribution from the initial function
f (x). Such subspaces are discarded from the list PL.

A scheme for the approximated inversion of the heat equation

1. Calculate the coefficients η[n](t) defined in (12.10).
2. Construct the data interpolating spline Z(x).
3. Implement the wavelet packet transform of order p of the spline Z(x).
4. Apply the Best Basis algorithm to the transform coefficients to collect the list PL

of relevant subspaces.
5. Reduce the list PL to PL by discarding the “empty” subspaces.
6. Evaluate the error vector to estimate the partial variances (εp,l)

2, (p, l) ∈ PL, of
noise (see (12.35)).
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7. Determine the optimal values ρm̄,l̄ of the regularization parameter for each pair

(m̄, l̄) ∈ PL.
8. Find the partial solutions Sm̄,l̄(ρm̄,l̄ , x) ∈ pSm̄,l̄ for each pair (m̄, l̄) ∈ PL (see

(12.33)).

The approximated solution to the inversion Problem 12.1 is

f (x) ≈ S(x) =
∑

(m̄,l̄)∈PL

Sm̄,l̄(ρm̄,l̄ , x) ∈ pS̃ .

Extension of the algorithm to the 2D case is straightforward once the tensor products
of the basis splines are utilized:

γ p(x, y)
def= γ p(x)γ p(y), ϕp(x, y)

def= ϕp(x)ϕp(y),

ψ
p

r,l,l̃
(x, y)

def= ψ
p
r,l(x)ψ

p

r,l̃
(y).

Figure 12.2 displays the SHA spectra of two wavelet packets of order 10 from the
second scale. We observe that the spectra have near-parallelepiped shape. The de-
scribed algorithm can be utilized for signal and image denoising when the time
parameter t = 0. In this case, the general scheme remains unchanged.

12.9 Numerical Examples

The following are examples, derived from three groups of experiments, on using the
block-based methods for 2D images’ restoration:

Denoising: Restoration of objects corrupted by Gaussian noise (the time parameter
t = 0).

Pure blurred input: Restoration of blurred objects when the time parameter t > 0
and noise is not known. The advantage of the block based method over the global
one materialized in the accurate tuning of the subspaces where the looked for
solution is in the effective frequency domain of the blurred image.

Noised blurred input: Restoration of objects from blurred inputs, which were cor-
rupted by Gaussian noise.

These examples illustrate the difference between the performance of the global
Tikhonov algorithm (GTA) presented in Sect. 12.3 and of the Best Basis Algorithm
(BBA). Visual perception is compared and the peak-signal-to-noise-ratio (PSNR).
Three benchmark images each of which is presented by a 512×512 array of samples
are used as the initial temperature distributions. The source images for the experi-
ments are shown in Fig. 12.3.

Example 12.3 (Barbara Denoising) The “Barbara” image was corrupted by Gaus-
sian zero-mean noise with standard deviations STD = 25. The time parameter is
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Fig. 12.2 The SHA spectra of wavelet packets of order 10 from the second resolution scale. Top:
ψ10

2,2,3(x, y). Bottom: ψ10
2,3,1(x, y)

t = 0. Figure 12.4 displays fragments of the noised input image and of the image
that was restored by the applications of GTA and BBA. We observe that BBA pro-
duces high PSNR values. The noise was suppressed almost completely. The GTA
method did not succeed in noise suppression, although the texture is resolved a little
bit better in comparison to BBA.
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Fig. 12.3 Left: “Barbara”. Center: “Lena”. Right: Fingerprint

Fig. 12.4 “Barbara”. Left: A noised image, STD = 25, PSNR = 20.17. Center: An image restored
by GTA, PSNR = 24.12. Right: An image restored by BBA, PSNR = 25.77, spline wavelet packets
of the fourth order from 4 levels were used

Fig. 12.5 “Fingerprint”. Left: A blurred image, t = 46, PSNR = 15.71. Center: An image restored
by GTA, PSNR = 17.57. Right: An image restored by BBA, PSNR = 20.22, spline wavelet packets
of the fourth order from 3 levels were used

Example 12.4 (Restoration of a Strongly Blurred Fingerprint) In this example, the
“Fingerprint” image was used as the initial temperature distribution. The input
presents the temperature distribution when the time parameter was t = 46. The BBA
restored the texture of the fingerprint, which was completely smeared in the input.
The result produced by GTA was much worse. The results are illustrated in Fig. 12.5.

Example 12.5 (Restoration of Blurred and Noised “Lena”) The “Lena” image was
used as the initial temperature distribution. The input is the distribution when the
time parameter was t = 2.5 corrupted by Gaussian noise whose STD = 10. The
BBA-restored image is sharper compared to the GTA and its PSNR is higher. See
Fig. 12.6 for the results.



236 A. Averbuch et al.

Fig. 12.6 “Lena”. Left: A blurred noised image, t = 2.5, noise STD = 10, PSNR = 24.79. Center:
An image restored by GTA, PSNR = 28.22. Right: An image restored by BBA, PSNR = 28.47,
spline wavelet packets of the fourth order from 4 levels were used
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