
Chapter 11
Hermitian Interpolation Subject to Uncertainties

Jean-Antoine Désidéri, Manuel Bompard, and Jacques Peter

Abstract This contribution is a sequel of the report (Bompard et al. in http://hal.
inria.fr/inria-00526558/en/, 2010). In PDE-constrained global optimization (e.g.,
Jones (in J. Global Optim. 21(4):345–383, 2001)), iterative algorithms are com-
monly efficiently accelerated by techniques relying on approximate evaluations of
the functional to be minimized by an economical but lower-fidelity model (“meta-
model”), in a so-called “Design of Experiment” (DoE) (Sacks et al. in Stat. Sci.
4(4):409–435, 1989). Various types of meta-models exist (interpolation polynomi-
als, neural networks, Kriging models, etc.). Such meta-models are constructed by
pre-calculation of a database of functional values by the costly high-fidelity model.
In adjoint-based numerical methods, derivatives of the functional are also available
at the same cost, although usually with poorer accuracy. Thus, a question arises:
should the derivative information, available but known to be less accurate, be used
to construct the meta-model or be ignored? As the first step to investigate this issue,
we consider the case of the Hermitian interpolation of a function of a single variable,
when the function values are known exactly, and the derivatives only approximately,
assuming a uniform upper bound ε on this approximation is known. The classical
notion of best approximation is revisited in this context, and a criterion is intro-
duced to define the best set of interpolation points. This set is identified by either
analytical or numerical means. If n + 1 is the number of interpolation points, it is
advantageous to account for the derivative information when ε ≤ ε0, where ε0 de-
creases with n, and this is in favor of piecewise, low-degree Hermitian interpolants.
In all our numerical tests, we have found that the distribution of Chebyshev points
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is always close to optimal, and provides bounded approximants with close-to-least
sensitivity to the uncertainties.

11.1 Introduction: The Classical Notion of Best Approximation

In this section, we review certain classical notions on polynomial interpolation, in
particular the concept of “best approximation” or “Chebyshev economization”. The
literature contains numerous elementary and advanced texts on this fundamental
issue, and we refer to [2, 4, 5].

Let n be an integer and x0, x1, . . . , xn be n + 1 distinct points of the normalized
interval [−1,1]. Let π(x) be the following polynomial of degree n + 1:

π(x) =
n∏

i=0

(x − xi)

and consider the following n + 1 polynomials of degree n:

Li (x) =
n∏

j=0
j �=i

x − xj

xi − xj

(i = 0,1, . . . , n).

Clearly

∀i, j ∈ {0,1, . . . , n} : Li (xj ) = δi,j ,

where δ stands for Krönecker’s symbol. Application of L’Hospital’s rule yields the
following compact formula:

Li (x) = π(x)

π ′(xi)(x − xi)
. (11.1)

Let f : [−1,1] →R be a smooth function of the real variable x. The polynomial

Pn(x) =
n∑

i=0

f (xi)Li (x)

is of degree at most equal to n, and it clearly satisfies the following interpolation
conditions:

∀i ∈ {0,1, . . . , n} : Pn(xi) = f (xi).

One such interpolant is unique among all polynomials of degree ≤ n. Thus, Pn(x)

is the Lagrange interpolation polynomial of f at the points {xi}0≤i≤n.
It is well known that if f ∈ Cn+1([−1,1]), for any given x ∈ [a, b], the interpo-

lation error is given by

en(x) = f (x) − Pn(x) = f (n+1)(ξ)

(n + 1)! π(x)
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for some ξ ∈ [−1,1].

Proof Let x ∈ [−1,1] be given. If x = xi for some i, the result is trivially satisfied.
Otherwise, π(x) �= 0; then let

λ = en(x)

π(x)

so that

f (x) = Pn(x) + λπ(x)

and define the function

φ(t) = f (t) − Pn(t) − λπ(t) t ∈ [−1,1].
The function φ(t) is of class Cn+1([−1,1]) and it admits a nonempty set of roots
in the interval [−1,1] that includes X = {x0, x1, . . . , xn, x}. The n + 2 elements of
X are distinct and can be arranged as the elements of a strictly increasing sequence
{x0

i }0≤i≤n+1 whose precise definition depends on the position of x w.r.t. the inter-
polation points {xi}0≤i≤n. By application of Rolle’s theorem to φ(t) = φ(0)(t) over
the subinterval [x0

i , x0
i+1], i = 0,1, . . . , n, it follows that φ′(t) admits a root x1

i in
the open interval ]x0

i , x0
i+1[, and this, for each i. In this way we identify a strictly-

increasing sequence of n+1 roots of φ′(t), {x1
i }0≤i≤n. Then Rolle’s theorem can be

applied in a similar way, this time to φ′(t), and so on to the successive derivatives of
φ(t). We conclude that in general φ(k)(t) admits at least n + 2 − k distinct roots in
[−1,1], {xk

i }0≤i≤n+1−k , 0 ≤ k ≤ n+1. In particular, for k = n+1, φ(n+1)(t) admits

at least one root, xn+1
0 , hereafter denoted ξ for simplicity. But since P

(n+1)
n (ξ) = 0

and π(n+1)(ξ) = (n + 1)!, one gets

λ = f (n+1)(ξ)

(n + 1)!
and the conclusion follows. �

Hence, if

K = 1

(n + 1)! max
x∈[−1,1]

∣∣f (n+1)(x)
∣∣

we have

∀x ∈ [−1,1] : ∣∣en(x)
∣∣ ≤ K

∣∣π(x)
∣∣.

Therefore, a natural way to optimize the choice of interpolation points a priori, that
is, independently of f , is to solve the following classical min-max problem:

min{xi }0≤i≤n

xi∈[−1,1], ∀i

max
x∈[−1,1]

∣∣π(x)
∣∣. (11.2)
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In view of this, the problem is to find among all polynomials π(x) whose highest-
degree term is precisely xn+1, and that admit n + 1 distinct roots in the interval
[−1,1], an element, unique or not, that minimizes the sup-norm over [−1,1].

The solution of this problem is given by the n+1 roots of the Chebyshev polyno-
mial of degree n + 1. Before recalling the proof of this, let us establish some useful
auxiliary results. Let k be an arbitrary integer and Tk(x) denote the Chebyshev poly-
nomial of degree k. Recall that for x ∈ [−1,1]

Tk(x) = cos
(
k cos−1 x

)
, k ∈ N,

so that, for k ≥ 1 and x ∈ [−1,1],
Tk+1(x) + Tk−1(x) = cos(k + 1θ) + cos(k − 1θ) = 2 cos(kθ) cos θ = 2xTk(x),

where one has let

x = cos θ, 0 ≤ θ ≤ π.

Thus, if the leading term in Tk(x) is say akx
k , the following recursion applies:

ak+1 = 2ak, k ≥ 1,

and, since a0 = a1 = 1, it follows that

ak = 2k−1, k ≥ 1.

Therefore, an admissible candidate solution for the min-max problem, (11.2), is the
polynomial

π	(x) = 1

2n
Tn+1(x).

It remains to establish that π	(x) is the best choice among all admissible polyno-
mials, and its roots the best possible interpolation points. To arrive at this, we claim
the following lemma:

Lemma 11.1 For all admissible polynomial q(x) one has

∥∥π	
∥∥ ≤ ‖q‖,

where ‖ ‖ is the sup-norm over [−1,1].

Proof Assume otherwise that an admissible polynomial q(x) of a strictly smaller
sup-norm over [−1,1] exists:

‖q‖ <
∥∥π	

∥∥.

Let r(x) = π	(x) − q(x). Since the admissible polynomials π	(x) and q(x) have
the same leading term, xn+1, the polynomial r(x) is of degree at most n. Let us
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examine the sign of this polynomial at the n + 2 points

ηi = cos
iπ

n + 1
, i = 0,1, . . . , n + 1,

at which π	(x) as well as Tn+1(x) achieve a local extremum. At such a point,

∣∣π	(ηi)
∣∣ = 1

2n
= ∥∥π	

∥∥ > ‖q‖ = max
x∈[−1,1]

∣∣q(x)
∣∣ ≥ ∣∣q(ηi)

∣∣

and r(ηi) is nonzero and has the sign of the strictly dominant term π	(ηi) =
1
2n Tn+1(ηi) = (−1)i

2n . Therefore, r(x) admits at least n + 1 sign alternations and as
many distinct roots. But this is in contradiction with the degree of this polynomial.
The contradiction is removed by rejecting the assumption made on ‖q‖. �

Consequently, in (11.2), the min-max is achieved by the roots of Tn+1(x):

x	
i = cos

(2i + 1)π

2(n + 1)
, i = 0,1, . . . , n, (11.3)

and the value of the min-max is 1
2n .

11.2 Best Hermitian Approximation

Now assume that the points {xi}0≤i≤n are used as a support to interpolate the func-
tion values {yi = f (xi)}0≤i≤n, but also the derivatives {y′

i = f ′(xi)}0≤i≤n, that is a
set of 2(n + 1) data. Thus, we anticipate that the polynomial of least degree com-
plying with these interpolation conditions, say H2n+1(x), is of degree at most equal
to 2n + 1. One such polynomial is necessarily of the form

H2n+1(x) = Pn(x) + π(x) · Q(x), (11.4)

where the quotient Q(x) should be adjusted to comply with the interpolation condi-
tions on the derivatives. These conditions are

y′
i = H ′

2n+1(xi) = P ′
n(xi) + π ′

i · Q(xi), i = 0,1, . . . , n, (11.5)

where

π ′
i = π ′(xi) =

∏

j=0
j �=i

(xi − xj ) �= 0, (11.6)

and since π(xi) = 0. Thus Q(x) is solely constrained by the following n + 1 inter-
polation conditions:

Qi = Q(xi) = y′
i − P ′

n(xi)

π ′
i

, i = 0,1, . . . , n. (11.7)
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Therefore, the solution of least degree is obtained when Q(x) is the Lagrange inter-
polation polynomial associated with the above function values:

Q(x) =
n∑

i=0

QiLi (x).

The corresponding solution is thus unique, and we will refer to it as the global
Hermitian interpolant.

The interpolation error associated with the above global Hermitian interpolant
H2n+1(x) is given by the following result valid when f ∈ C2n+2([−1,1]):

∀x ∈ [−1,1], ∃η ∈ [−1,1] : f (x) = H2n+1(x) + f (2n+2)(η)

(2n + 2)! π2(x). (11.8)

Proof Let x ∈ [−1,1] be given. If x = xi for some i, the result is trivially satisfied.
Otherwise, π(x) �= 0; then let

μ = f (x) − H2n+1(x)

π2(x)

so that

f (x) = H2n+1(x) + μπ2(x).

Let

ψ(t) = f (t) − H2n+1(t) − μπ2(t), t ∈ [−1,1].
The function ψ(t) is of class C2n+2([−1,1]), and similarly to the former function
φ(t), it admits a nonempty set of roots in the interval [−1,1] that includes X =
{x0, x1, . . . , xn, x} = {x0

i }0≤i≤n+1. Hence, Rolle’s theorem implies that in the open
interval ]xi, xi+1[, 0 ≤ i ≤ n, a root x′

i of ψ ′(t) exists. But the interpolation points, at
which the derivative also is fitted, are themselves n+ 1 other distinct roots of ψ ′(t).
Thus we get a total of at least 2n + 2 roots for ψ ′(t), and by induction, 2n + 1 for
ψ ′′(t), and so on, and finally one, say η, for ψ(2n+2)(t). Now, since H

(2n+2)
2n+1 (η) = 0

because the interpolant is of degree 2n + 1 at most, and since (π2(t))(2n+2)(t) =
(2n + 2)!, one gets

0 = f (2n+2)(η) − 0 − μ(2n + 2)!
which yields the final result. �

As a consequence of (11.8), the formulation of the best approximation problem
for the global Hermitian interpolant is as follows:

min{xi }0≤i≤n

xi∈[−1,1], ∀i

max
x∈[−1,1]

π2(x). (11.9)
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But, if we define the following functions of Rn+1 → R:
⎧
⎪⎨

⎪⎩

P(x0, x1, . . . , xn) = max
x∈[−1,1]

π2(x),

p(x0, x1, . . . , xn) = max
x∈[−1,1]

∣∣π(x)
∣∣,

it is obvious that

∀x0, x1, . . . , xn : P(x0, x1, . . . , xn) = p2(x0, x1, . . . , xn).

Hence the functions P and p achieve their minimums for the same sequence of
interpolation points, and

min{xi }0≤i≤n

xi∈[−1,1], ∀i

P (x0, x1, . . . , xn) =
(

min{xi }0≤i≤n

xi∈[−1,1], ∀i

p(x0, x1, . . . , xn)
)2 = 1

4n
.

Therefore the best Hermitian interpolation is achieved for the same set of interpo-
lation points as the best Lagrangian interpolation, that is, the roots, {x	

i }0≤i≤n of
(11.3), of the Chebyshev polynomial Tn+1(x).

11.3 Best Inexact Hermitian Approximation

In PDE-constrained global optimization [3], it is often useful to model the functional
criterion to be optimized by a function f (x) of the design variable x ∈ R

n, whose
values are computed through the discrete numerical integration of a PDE, and the
derivative f ′(x), or gradient vector, by means of an adjoint equation. A database of
function values and derivatives is compiled by Design of Experiment, and the sur-
rogate model, or meta-model is constructed from it. This meta-model is then used
in some way in the numerical optimization algorithm with the objective of improv-
ing computational efficiency (see, for example, [3]). The success of such a strategy
depends on the accuracy of the meta-model f (x) to represent the dependency on x

of the actual functional criterion. If all the data were exact, and properly used, the
accuracy would undoubtedly improve by the addition of the derivative information.
However, in practice, since the PDE is solved discretely, the derivatives are almost
inevitably computed with inferior accuracy. Therefore it is not clear that accounting
for the derivatives is definitely advantageous if the corresponding accuracy of the
data is poor. Should special precautions be taken to guarantee it?

In order to initiate a preliminary analysis of this problem, we examine the simple
one-dimensional situation of a function f (x), when x is scalar (x ∈ R), and con-
sider the case of a Hermitian interpolation meta-model based on inexact informa-
tion. Specifically, we assume that the function values {yi}0≤i≤n are known, whereas
only approximations {ȳ′

i}0≤i≤n of the derivatives {y′
i}0≤i≤n are available, and we let:

δy′
i = ȳ′

i − y′
i := εi, i = 0,1, . . . , n.
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Hence the computed interpolant is H 2n+1(x) instead of H2n+1(x), and in view of
the definitions (11.4)–(11.7), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δH2n+1(x) = H 2n+1(x) − H2n+1(x) = π(x) δQ(x),

δQ(x) =
n∑

i=0

δQiLi (x),

δQi = δy′
i

π ′
i

= εi

π ′
i

.

(11.10)

Now, suppose an upper bound ε on the errors εi ’s is known:

|εi | ≤ ε, 0 ≤ i ≤ n. (11.11)

The following questions arise:

1. What is the corresponding upper bound on maxx∈[−1,1] |δH2n+1(x)|?
2. Can we choose the sequence of interpolation points {xi}0≤i≤n to minimize this

upper bound?
3. Is the known sequence of the Chebyshev points a good approximation of the

optimum sequence for this new problem?

This article attempts to bring some answers to these questions. Presently, we try to
identify how the interpolation points should be defined to minimize or reduce the
effect on the meta-model accuracy of uncertainties on the derivatives only. It follows
from (11.10) that

δH2n+1(x) = π(x)

n∑

i=0

εi

π ′
i

Li (x)

which by virtue of (11.1) simplifies as follows:

δH2n+1(x) = π2(x)

n∑

i=0

εi

π ′
i
2
(x − xi)

.

Thus if (11.11) holds, we have
∣∣δH2n+1(x)

∣∣ ≤ εΔ(x)

where

Δ(x) = π2(x)

n∑

i=0

1

π ′
i
2 |x − xi |

.

These considerations have led us to analyze the min-max problem applied to the
new criterion Δ(x) in place of π2(x). In summary, the solution of the min-max
problem associated with the criterion Δ(x) minimizes the effect of uncertainties in
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the derivatives on the identification of the global Hermitian interpolant. In the sub-
sequent sections, this solution is identified formally, or numerically, and compared
with the Chebyshev distribution of points, which is optimal w.r.t. the interpolation
error. Lastly, the corresponding interpolants are compared by numerical experiment.

11.4 Formal or Numerical Treatment of the Min-Max-Δ
Problem

We wish to compare three particular relevant distributions of interpolation points in
terms of performance w.r.t. the criterion Δ(x). These three distributions are sym-
metrical w.r.t. 0, and recall that the total number of interpolation points is n + 1.
Thus, we let

n + 1 = 2m + α

and when n is odd (α = 0; n = 2m − 1 ≥ 1),

{xi}0≤i≤n = {±ξ1,±ξ2, . . . ,±ξm},
where

0 < ξ1 < ξ2 < · · · < ξm

and m ≥ 1. Otherwise, when n is even (α = 1; n = 2m ≥ 0), we adjoin to the list
ξ0 = 0 (once). We consider specifically:

1. The uniform distribution:

n = 2m: ξu
0 = 0 associated with the interpolation point x0 = ξ0 = 0, and ξu

k =
k
m

, 1 ≤ k ≤ m, associated with 2 interpolation points ±ξu
k .

n = 2m − 1: ξu
k = 2k−1

n
, 1 ≤ k ≤ m.

2. The Chebyshev distribution:

ξ	
k = x	

m−k = cos

(
2(m − k) + 1

n + 1

π

2

)
, 1 ≤ k ≤ m.

3. The optimal distribution:

ξ̄ = arg minξ max
x∈[0,1]

Δ(x; ξ),

where ξ = (ξ1, ξ2, . . . , ξm) denotes the vector of adjustable parameters defining,
along with ξ0 = 0 if n is even, the distribution of interpolation points, and the de-
pendence of the criterion Δ on ξ is here indicated explicitly for clarity. (Note that
due to symmetry, the interval for x has been reduced to [0,1] without incidence
on the result.)
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To these three distributions are associated the corresponding values of the max-
imum of Δ(x; ξ) over x ∈ [0,1]; these maximums are denoted Δu, Δ	 and Δ̄, re-
spectively.

As a result of these definitions, the polynomial π(x) is expressed as follows:

π(x) = xα
m∏

k=1

(
x2 − ξ2

k

)
, n + 1 = 2m + α; α = 0 or 1,

and for x > 0, the criterion Δ(x) becomes

Δ(x) = π2(x)

n∑

i=0

1

π ′
i
2 |x − xi |

= π2(x)

[
α

π ′
0

2

1

x
+

m∑

k=1

1

π ′
k

2

(
1

x + ξk

+ 1

|x − ξk|
)]

.

Then, given x, let j be the index for which

ξj−1 ≤ x < ξj

so that

x − ξk ≥ 0 ⇐⇒ k ≤ j − 1.

As a result,

Δ(x) = π2(x)

[
α

π ′
0

2

1

x
+

j−1∑

k=1

1

π ′
k

2

2x

x2 − ξ2
k

+
m∑

k=j

1

π ′
k

2

2ξk

ξ2
k − x2

]
. (11.12)

Calculation of the derivatives π ′
k First, for α = 0, π(x) is an even polynomial,

and π ′
0 = 0. Otherwise, for α = 1,

π ′
0 = lim

x→0

π(x)

x
=

m∏

k=1

(−ξ2
k

)
, α = 1; n = 2m.

Regardless α, for k ≥ 1

π(x) = xα(x − ξk)(x + ξk)
∏

i=1
i �=k

(
x2 − ξ2

i

)

so that:

π ′
k = lim

x→ξk

π(x)

x − ξk

= 2ξα+1
k

∏

i=1
i �=k

(
ξ2
k − ξ2

i

)
.
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11.4.1 Expression of δ0 Applicable Whenever n + 1 is Even
(α = 0; n + 1 = 2m)

Suppose that 0 < x < ξ1. Then j = 1 and (11.12) reduces to

Δ(x) = π2(x)

m∑

k=1

1

π ′
k

2

2ξk

ξ2
k − x2

.

But,

π2(x) =
m∏

i=1

(
x2 − ξ2

i

)2

so that

Δ(x) =
m∑

k=1

2ξk

π ′
k

2
×

m∏

i=1
i �=k

(
ξ2
i − x2)2 × (

ξ2
k − x2).

All the terms in this sum are composed of three factors: a positive constant and two
positive factors that are monotone decreasing as x varies from 0 to ξ1. Hence Δ(x)

is monotone decreasing and

δ0 = max
x∈[0,ξ1]

Δ(x) = Δ(0)

=
m∑

k=1

2ξ3
k

π ′
k

2

m∏

i=1
i �=k

ξ4
i = 2

(
m∏

i=1

ξ4
i

)
m∑

k=1

1

ξkπ
′
k

2
, α = 0; n + 1 = 2m. (11.13)

11.4.2 Expression of δ1 Applicable Whenever ξm < 1

Suppose that ξm < x < 1. Then j = m + 1 and (11.12) reduces to

Δ(x) = π2(x)

[
α

π ′
0

2

1

x
+

m∑

k=1

1

π ′
k

2

2x

x2 − ξ2
k

]

= α

π ′
0

2
x

m∏

i=1

(
x2 − ξ2

i

)2 +
m∑

k=1

2

π ′
k

2
x2α+1(x2 − ξ2

k

) m∏

i=1
i �=k

(
x2 − ξ2

i

)2
. (11.14)
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Fig. 11.1 Contour plot of function z(ξ, η) of (11.16) for n + 1 = 4: the plot is symmetrical w.r.t.
the bisecting line η = ξ , and one location of the minimum is ξ = 0.351, η = 0.926

All the terms in Δ(x) are products of positive factors that are monotone-increasing
with x. Consequently, the maximum is achieved at x = 1. But

Δ(1) = α

π ′
0

2

m∏

i=1

(
1 − ξ2

i

)2 +
m∑

k=1

2

π ′
k

2

(
1 − ξ2

k

) m∏

i=1
i �=k

(
1 − ξ2

i

)2
.

This gives

δ1 = max
x∈[ξm,1]

Δ(x) = Δ(1) =
m∏

i=1

(
1 − ξ2

i

)2

[
α

π ′
0

2
+ 2

m∑

k=1

1

π ′
k

2
(1 − ξ2

k )

]
. (11.15)

11.4.3 Special Cases

For n = 0,1,2, the formal treatment is given in [1].
For n = 3, the four interpolation points form a symmetrical set {±ξ,±η}. Hence

the optimization is made over two parameters ξ and η. Thus, the function

z(η, η) = max
x∈[0,1]

Δ(x) (11.16)

is defined discretely. The iso-value contours of this function are indicated in
Fig. 11.1, which permits after refinement to identify the optimum ξ ≈ 0.351 and
η ≈ 0.926.
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Fig. 11.2 Contour plot of function z(ξ, η) of (11.16) for n + 1 = 5: the plot is symmetrical w.r.t.
the bisecting line η = ξ , and one location of the minimum is ξ = 0.571, η = 0.948

For n = 4, the five interpolation points form a symmetrical set 0, {±ξ,±η}.
Hence the optimization is again made over two parameters ξ and η. Thus, the func-
tion z(η, η) is again defined by (11.16) and evaluated discretely. The iso-value con-
tours of this function are indicated in Fig. 11.2, which permits after refinement to
identify the optimum ξ ≈ 0.571 and η ≈ 0.948.

11.4.4 General Results (n > 4)

The min-max-Δ problem has been solved by either analytical or numerical means
for values of n in the range from 0 to 40. The results are collected in Table 11.1
in which the first column indicates the number of interpolation points n + 1, the
second gives the definition of the Chebyshev points ξ	 (n ≤ 4), the third provides the
definition of the optimal distribution ξ̄ , and the fourth a comparison of performance
by giving, when available, the values of

1. Δ̄ = maxx Δ(x, ξ̄ ), the upper bound on Δ(x) corresponding to the optimal dis-
tribution ξ = ξ̄ of interpolation points;

2. Δ	 = maxx Δ(x, ξ	), the upper bound on Δ(x) corresponding to the approxi-
mately optimal distribution ξ = ξ	 of interpolation points (the Chebyshev distri-
bution);

3. Δu = maxx Δ(x, ξu), the upper bound on Δ(x) corresponding to the uniform
distribution ξ = ξu of interpolation points.

The analytical results are related to the cases for which n ≤ 4, and have been
outlined in a previous subsection.
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Table 11.1 Variation of the criterion maxx Δ(x, ξ), related to Hermitian interpolation with un-
certain derivatives, for different choices of the set ξ = {ξi}, i = 1, . . . , n, of interpolation points
in [−1,1], and different degrees, 2n + 1; Δ̄ = maxx Δ(x, ξ̄ ), Δ	 = maxx Δ(x, ξ	) and Δu =
maxx Δ(x, ξu), where ξu

i = −1 + 2
n−1 (i − 1), i = 1, . . . , n

Chebyshev points: ξ	 ξ̄ =
arg minξ maxx Δ

Performance

Number interpol. pts.: n + 1 Δ̄ Δ	

Degree of interpol.: 2n + 1 Δu

1 0 0 1 1

1 1

2 ± 1√
2

.= ±0.7071 ±0.7549 0.3774 0.5

3 0.5

3 0 0 0.3258 0.3333

5 ±
√

3
2

.= ±0.8660 ±0.8677 0.3755

4 ±
√

1
2 − 1√

8

.= ±0.3827 ±0.351 0.282 0.299

7 ±
√

1
2 + 1√

8

.= ±0.9239 ±0.926 0.439

5 0

±
√

5−√
5

8
.= ±0.5878

±
√

5+√
5

8
.= ±0.9511

0

±0.571

±0.948

0.249 0.262

9 0.652

10 0.164 0.179

19 39.

11 0.154 0.167

21 111.

20 0.103 0.112

39 3.9 × 106

21 0.100 0.108

41 1.3 × 107

For n+1 ≥ 10, the distribution ξ̄ (not given here) has been identified by a numer-
ical minimization realized by a particle-swarm (PSO) algorithm. The table indicates
the corresponding values of Δ̄.

From these results, one observes that the upper bound Δ̄ achieved when the dis-
tribution of interpolation points is optimized, is not only bounded, but it even di-
minishes with increasing n. The Chebyshev distribution has an almost equivalent
performance. Inversely, the uniform distribution yields a value of the upper bound
Δu that is unbounded with n. In conclusion, using the Chebyshev distribution, which
is known explicitly, is highly recommended in practice.
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11.5 Generalized Hermitian Interpolation

In this section, we generalize the notions introduced in the first three to the situation
where one wishes to construct a(the) low(est)-degree polynomial interpolant of the
values, as well as the derivatives up to order, say p (p ∈ N), of a given smooth
function f (x) over [−1,1]. The interpolation points are again denoted {xi}i=0,1,...,n,
and we use the notation

y
(k)
i = f (k)(xi), k = 0,1, . . . , p; i = 0,1, . . . , n.

The interpolation polynomial is denoted Hn,p(x) and it is now constrained to the
following (p + 1)(n + 1) interpolation conditions:

∀k ∈ {0,1, . . . , p}, ∀i ∈ {0,1, . . . , n} : H(k)
n,p(xi) = y

(k)
i . (11.17)

We associate such kind of interpolation with the expression “generalized Hermitian
interpolation”.

11.5.1 Existence and Uniqueness

We first establish existence and uniqueness by the following:

Theorem 11.1 There exists a unique polynomial Hn,p(x) of degree at most equal
to (p + 1)(n + 1) − 1 satisfying the generalized interpolation conditions (11.17).

Proof By recurrence on p. For p = 0, the generalized Hermitian interpolation
reduces to the classical Lagrange interpolation, whose solution is indeed unique
among polynomials of degree at most equal to (p + 1)(n + 1) − 1 = n:

Hn,0(x) = Pn(x).

For p ≥ 1, assume Hn,p−1(x) exists and is unique among polynomials of degree at
most equal to p(n+ 1)− 1. This polynomial, by assumption, satisfies the following
interpolation conditions:

∀k ∈ {0,1, . . . , p − 1}, ∀i ∈ {0,1, . . . , n} : H(k)
n,p−1(xi) = y

(k)
i . (11.18)

Hence, by seeking Hn,p(x) in the form

Hn,p(x) = Hn,p−1(x) + R(x),

one finds that R(x) should be of degree at most equal to (p + 1)(n + 1) − 1 and
satisfy

∀k ∈ {0,1, . . . , p − 1}, ∀i ∈ {0,1, . . . , n} : R(k)(xi) = 0 (11.19)
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and

∀i ∈ {0,1, . . . , n} : R(p)(xi) = y
(p)
i − H

(p)

n,p−1(xi). (11.20)

Now, (11.19) is equivalent to saying that R(x) is of the form

R(x) =
n∏

i=0

(x − xi)
p · Q(x) = π(x)pQ(x)

for some quotient Q(x). Then, the derivative of order p of R(x) at x = xi is calcu-
lated by the Leibniz formula applied to the product u(x)v(x) where

u(x) = (x − xi)
p, v(x) =

n∏

j=0
j �=i

(x − xj )
p · Q(x).

This gives

R(p)(xi) =
p∑

k=0

(
p

k

)
u(k)(xi) v(p−k)(xi).

But, u(k)(xi) = 0 for all k except k = p yielding

R(p)(xi) = p!v(xi) = p!
n∏

j=0
j �=i

(xi − xj )
p Q(xi) = p!π ′(xi)

p Q(xi).

Thus, all the interpolation conditions are satisfied iff the polynomial Q(x) fits the
following interpolation conditions:

∀i ∈ {0,1, . . . , n} : Q(xi) = Qi = R(p)(xi)

p!π ′(xi)p
= y

(p)
i − H

(p)

n,p−1(xi)

p!π ′(xi)p
.

Therefore, solutions exist, and the lowest-degree solution is uniquely obtained when
Q(x) is the Lagrange interpolation polynomial associated with the above function
values. This polynomial is of degree at most equal to n. Hence, R(x) and Hn,p(x)

are of degree at most equal to p(n + 1) + n = (p + 1)(n + 1) − 1. �

11.5.2 Interpolation Error and Best Approximation

We have the following:
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Theorem 11.2 (Interpolation Error Associated with the Generalized Hermitian In-
terpolant) Assuming that f ∈ C(p+1)(n+1)([−1,1]), we have

∀x ∈ [−1,1], ∃ξ ∈ [−1,1] : f (x) = Hn,p(x) + π(x)p+1 f ([(p+1)(n+1)])(ξ)

[(p + 1)(n + 1)]! .

Proof Let x ∈ [−1,1] be fixed. If x = xi for some i ∈ {0,1, . . . , n}, f (x) = Hn,p(x)

and π(x) = 0, and the statement is trivial. Hence, assume now otherwise that x �= xi

for any i ∈ {0,1, . . . , n}. Then, define the constant

γ = f (x) − Hn,p(x)

π(x)p+1

so that

f (x) = Hn,p(x) + γπ(x)p+1.

Now using the symbol t for the independent variable, one considers the function

θ(t) = f (t) − Hn,p(t) − γπ(t)p+1.

By virtue of the interpolation conditions satisfied by the polynomial Hn,p(t),

∀k ∈ {0,1, . . . , p}, ∀i ∈ {0,1, . . . , n} : θ(k)(xi) = 0 (11.21)

but, additionally, by the choice of the constant γ , we also have

θ(x) = 0.

This makes n+2 distinct zeroes for θ(x) : x0, x1, . . . , xn and x. Thus, by application
of Rolle’s theorem in each of the n + 1 consecutive intervals that these n + 2 points
once arranged in an increasing order define, a zero of θ ′(t) exists, yielding n + 1
distinct zeroes for θ ′(t), to which (11.21) adds n + 1 distinct and different ones, for
a total of 2(n + 1) = 2n + 2 zeroes. Strictly between these, one finds 2(n + 1) − 1
zeroes of θ ′′(t) to which (11.21) adds n+ 1 distinct and different ones, for a total of
3(n + 1) − 1 = 3n + 2 zeroes. Thus, for every new derivative, we find one less zero
in every subinterval, but n + 1 more by virtue of (11.21), for a total of n more, and
this as long as (11.21) applies. Hence we get that θ(p)(t) admits at least (p+1)n+2
distinct zeroes. For derivatives of higher order, the number of zeroes is one less for
every new one; hence, (p + 1)n + 1 for θ(p+1)(t), and so on. We finally get that
θ([p+(p+1)n+1])(t) = θ([(p+1)(n+1)])(t) admits at least one zero ξ , that is

0 = f ([(p+1)(n+1)])(ξ) − γ
[
(p + 1)(n + 1)

]!
because H([(p+1)(n+1)])(ξ) = 0 since the degree of Hn,p(t) is at most equal to (p +
1)(n + 1) − 1, and the conclusion follows. �

As a consequence of this result, it is clear that the best generalized Hermitian ap-
proximation is achieved by the Chebyshev distribution of interpolation points again.
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11.5.3 Best Inexact Generalized Hermitian Interpolation

Now suppose that all the data on f and its successive derivatives are exact, ex-
cept for the derivatives of the highest order, {y(p)

i } that are subject to uncertainties
{εi}i=0,1,...,n. Then, the uncertainties on the values {Qi}i=0,1,...,n of the quotient
Q(x) are the following:

δQi = εi

p!π ′(xi)p
;

on the quotient itself the following:

δQ(x) =
n∑

i=0

εi

p!π ′(xi)p
Li (x) = π(x)

n∑

i=0

εi

p!π ′(xi)p+1(x − xi)
;

and, finally, the uncertainty on the generalized Hermitian interpolant Hn,p(x) the
following:

δHn,p(x) = π(x)p+1
n∑

i=0

εi

p!π ′(xi)p+1(x − xi)
.

In conclusion, for situations in which the uncertainties {εi}i=0,1,...,n are bounded
by the same number ε, the criterion that one should consider to conduct the min-
max optimization of the interpolation points {xi}i=0,1,...,n is now the following one
to replace the former Δ(x):

Δ(p)(x) = ∣∣π(x)
∣∣p+1

n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | (11.22)

or, equivalently,

p+1
√

Δ(p)(x) = ∣∣π(x)
∣∣ p+1

√√√√
n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | .

We note that this expression is a homogeneous function of π(x) of degree 0.
We conjecture that the variations of the above criterion, as p → ∞, are domi-

nated by those of the factor |π(x)|. Hence, in this limit, the optimal distribution of
interpolation points should approach the Chebyshev distribution.

11.5.4 Overall Bound on the Approximation Error

The quantity εΔ(p)(x) is an absolute bound on the error committed in the com-
putation of the generalized Hermitian interpolant based on function and derivative
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values in presence of uncertainties on the derivatives of the highest order, p, only,
when these are uniformly bounded by ε:

∀x ∈ [−1,1] : ∣∣δHn,p(x)
∣∣ = ∣∣H̄n,p(x) − Hn,p(x)

∣∣ ≤ εΔ(p)(x),

where H̄n,p(x) represents the actually computed approximation.
On the other hand, the interpolation error is the difference between the actual

function value, f (x), and the “true” interpolant, Hn,p(x), that could be computed if
all function and derivative information was known. The interpolation error satisfies

∀x ∈ [−1,1] : ∣∣f (x)−Hn,p(x)
∣∣ =

∣∣∣∣π(x)p+1 f ([(p+1)(n+1)])(ξ)

[(p + 1)(n + 1)]!
∣∣∣∣ ≤ μn,p

∣∣π(x)
∣∣p+1

,

where one has let

μn,p = max
x∈[−1,1]

∣∣∣∣
f ([(p+1)(n+1)])(x)

[(p + 1)(n + 1)]!
∣∣∣∣.

Consequently, we have

∀x ∈ [−1,1] : ∣∣f (x) − H̄n,p(x)
∣∣ ≤ μn,p

∣∣π(x)
∣∣p+1 + εΔ(p)(x). (11.23)

Now, examining the precise expression for Δ(p)(x), that is (11.22), we see that
the ratio of the second term to the first on the right of the above inequality is equal
to

ε

μn,p

n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | .

For given n and p, this expression is unbounded in x. Thus, (the bound on) the error
is inevitably degraded in the order of magnitude due to presence of uncertainties.

However, the actual dilemma of interest is somewhat different. It is the follow-
ing: given the values {yi, y

′
i , . . . , y

(p−1)
i }, 0 ≤ i ≤ n, and correspondingly, approxi-

mations of the higher derivative {y(p)
i }, which of the following two interpolants is

(guaranteed to be) more accurate:

1. the Hermitian interpolant of the sole exact values: {yi, y
′
i , . . . , y

(p−1)
i }, 0 ≤ i ≤ n,

or
2. the Hermitian interpolant of the entire data set?

The first interpolant differs from f (x) by the sole interpolation error, μn,p−1|π(x)|p .
The second interpolant is associated with the higher-order interpolation error,
μn,p|π(x)|p+1, but is subject to the uncertainty term εΔ(p)(x), which is domi-
nant, as we have just seen. Thus, the decision of whether to include derivatives or
not should be guided by the ratio of the uncertainty term, εΔ(p)(x), to the lower
interpolation error, μn,p−1|π(x)|p . This ratio is equal to

ε

μn,p−1

∣∣π(x)
∣∣

n∑

i=0

1

p!|π ′(xi)|p+1|x − xi |
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Fig. 11.3 Coefficient Bn,p as a function of n for p = 1,2 and 3

and it admits the bound
εBn,p

μn,p−1
, (11.24)

where the bound

Bn,p = max
x∈[−1,1]

∣∣π(x)
∣∣

n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | (11.25)

exists since, in the above, the function over which the max applies is piecewise
polynomial for fixed n and p.

Hermitian interpolation is definitely preferable whenever the expression in
(11.24) is less than 1. This criterion permits us to identify trends as ε, n and p

vary, but is not very practical in general since the factors ε and μn,p−1 are problem-
dependent and out of control. The variation with n of the bound Bn,p has been
plotted in Fig. 11.3 for p = 1, 2 and 3. Visibly, the bound Bn,p can be large unless p

and n are small. Therefore, unsurprisingly, unless n and p, as well as the uncertainty
level ε, are small enough, the criterion in (11.24) is larger than 1, and the interpolant
of the sole exactly known values is likely to be the more accurate one.

To appreciate this in a practical case, we have considered the case of the interpo-
lation of the function

f (x) = fλ(x) = 1

1 + λx2

over the interval [−1,1] for p = 0 (Lagrange interpolation) and p = 1 (Hermitian
interpolation). This smooth function is bounded by 1, and its maximum derivative



11 Hermitian Interpolation Subject to Uncertainties 213

Fig. 11.4 Case λ = 64/27 (maxx |fλ(x)| = maxx |f ′
λ(x)| = 1); function fλ(x) and various inter-

polation polynomials (n = 5)

Fig. 11.5 Case λ = 64/27 (maxx |fλ(x)| = maxx |f ′
λ(x)| = 1); error distribution associated with

the various interpolation polynomials (n = 5)

increases with λ. For λ = 64/27, this maximum is equal to 1. For λ = 256/27, this
maximum is equal to 2.

In the first experiment (Figs. 11.4 and 11.5), λ = 64/27 and n = 5. The Lagrange
interpolant is fairly inaccurate, mostly near the endpoints. Thus the error distribution
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Fig. 11.6 Case λ = 64/27 (maxx |fλ(x)| = maxx |f ′
λ(x)| = 1); function fλ(x) and various inter-

polation polynomials (n = 10)

Fig. 11.7 Case λ = 64/27 (maxx |fλ(x)| = maxx |f ′
λ(x)| = 1); error distribution associated with

the various interpolation polynomials (n = 10)

indicates that the approximate Hermitian interpolant is preferable even for a fairly
high level of uncertainty on the derivatives (20 % is acceptable).

In the second experiment (Figs. 11.6 and 11.7), the interpolated function is the
same, but the number n is doubled (n = 10). Consequently, the Lagrange interpolant
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Fig. 11.8 Case λ = 256/27 (maxx |fλ(x)| = 1; maxx |f ′
λ(x)| = 2); function fλ(x) and various

interpolation polynomials (n = 10)

Fig. 11.9 Case λ = 256/27 (maxx |fλ(x)| = 1; maxx |f ′
λ(x)| = 2); error distribution associated

with the various interpolation polynomials (n = 10)

of the sole exact function values is very accurate. The approximate Hermitian inter-
polant can only surpass it if the level of uncertainty on the derivatives is small (less
than 5 %).
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Lastly, with the same number of interpolation points (n = 10), we have consid-
ered the case of a function with larger derivatives (λ = 256/27). As a result (see
Figs. 11.8 and 11.9), the accuracy of the Lagrange interpolation has been severely
degraded. Then again, the approximate Hermitian interpolation is found superior
for higher levels of uncertainty in the derivatives (the switch is between 20 %
and 50 %).

11.6 Conclusions

Recalling that the Chebyshev distribution of interpolation points is optimal w.r.t. the
minimization of the (known bound on the) interpolation error, we have proposed an
alternate criterion to be subject to the min-max optimization. The new criterion to
be minimized aims at reducing the sensitivity of the Hermitian interpolant of func-
tion values and derivatives, to uncertainties assumed to be present in the derivatives
only. We have found by analytical developments and numerical experiments that
the Chebyshev distribution is close to be optimum w.r.t. this new criterion also, thus
giving the stability of the corresponding approximation a somewhat larger sense.

We have also considered the generalized Hermitian interpolation problem in
which the derivatives up to some order p (p > 1) are fitted. For this problem we
have derived the existence and uniqueness result, as well as the expression of the
interpolation error, and also the definition that one could use for the criterion to be
subject to the min-max optimization to reduce the sensitivity of the interpolant to
uncertainties in the derivatives of the highest order. We conjectured from the de-
rived expression that the corresponding optimal distribution of interpolation points
converges to the Chebyshev distribution as p → ∞.

Lastly, we have made actual interpolation experiments in cases of a function
bounded by 1, whose derivative is either bounded by 1 or 2. These experiments have
confirmed that the approximate Hermitian interpolant was superior to the Lagrange
interpolant of the sole exact function values, when the uncertainty on the derivatives
is below a certain critical value which decreases when n is increased.

In perspective, we intend to examine a much more complicated case in which the
meta-model depends nonlinearly on the adjustable parameters, by means of semi-
formal or numerical analysis tools.
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