
Chapter 1
The Finite Element Immersed Boundary
Method for the Numerical Simulation
of the Motion of Red Blood Cells
in Microfluidic Flows

Ronald H.W. Hoppe and Christopher Linsenmann

Abstract We study the mathematical modeling and numerical simulation of the
motion of red blood cells (RBCs) subject to an external incompressible flow in a
microchannel. RBCs are viscoelastic bodies consisting of a deformable elastic mem-
brane enclosing an incompressible fluid. We study two versions of the Finite Ele-
ment Immersed Boundary Method (FE-IB), a semi-explicit scheme that requires a
CFL-type stability condition and a fully implicit scheme that is unconditionally sta-
ble and numerically realized by a predictor-corrector continuation strategy featuring
an adaptive choice of the time step sizes. The performance of the two schemes is il-
lustrated by numerical simulations for various scenarios including the tank treading
motion in microchannels and the motion through thin capillaries.

Keywords Microfluidic flows · Red blood cells · Finite element immersed
boundary method · Semi-explicit scheme · Fully implicit scheme

1.1 Introduction

Red blood cells are viscoelastic bodies which, roughly speaking, consist of a mem-
brane enclosing a liquid [2, 6–9, 26, 30, 31]. When exposed to an external flow, the
motion in the fluid represents a fluid-structure interaction problem that can be ap-
propriately modeled by the finite element immersed boundary method (FE-IB). As
opposed to the classical immersed boundary method (IB) [24, 25], which is based on
a finite difference approach, the FE-IB relies on the variational formulation of the
problem [3, 4]. We consider a semi-discretization in space by using Taylor–Hood
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Fig. 1.1 Equilibrium configuration of RBCs (left) and deformed shapes in Poiseuille flow (right)

P2–P1 elements for the incompressible Navier–Stokes equations and periodic cubic
splines for the immersed boundaries. For discretization in time we distinguish be-
tween the semi-explicit Backward Euler/Forward Euler FE-IB and the fully implicit
Backward Euler/Backward Euler FE-IB where in both cases we use implicit time-
stepping for the semi-discretized Navier–Stokes equations. On the other hand, the
IB equations are discretized by the forward Euler method in the BE/FE FE-IB and
by the backward Euler method in the fully implicit BE/BE FE-IB. The BE/FE FE-
IB is subject to a CFL-type condition, whereas the BE/BE FE-IB is unconditionally
stable. The latter one will be solved by a predictor-corrector continuation strategy
featuring an adaptive choice of the continuation parameter. For both schemes we
provide a documentation of numerical results including a comparison with experi-
mental data.

1.2 The Finite Element Immersed Boundary Method

As is well-known, human blood is a suspension of viscoelastic cells, the red and
white blood cells, in a viscous fluid, the plasma. The blood flow is not only con-
trolled by the viscosity of the plasma, but additionally viscoelastic effects due to the
deformability of the cells, aggregation of the cells, and hematocrit come into play
and have been experimentally observed.

If not being subjected to an external flow, red blood cells (RBCs) are biconcavely
shaped disks with a diameter of 7.5–8.0 µm and a thickness of about 2 µm (cf.
Fig. 1.1 (left)). However, under the influence of an external flow, the cells deform
and may attain parachute- or slipper-like shapes in Poiseuille flow depending on
their position (centered or decentered) in the flow field [22] (cf. Fig. 1.1 (right)).

The FE-IB describes the fluid-structure interaction problem based on a coupled
Eulerian/Lagrangian approach. The external fluid flow is modeled by the incom-
pressible Navier–Stokes equations in an Eulerian coordinate system, whereas the
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boundaries of the immersed bodies are described by means of a Lagrangian coor-
dinate system. For its variational formulation, we will use standard notation from
Lebesgue and Sobolev space theory [29].

In particular, we assume the computational domain Ω := (a, b) × (c, d), a < b,
c < d , to be a microchannel with boundary Γ := Γ̄in ∪ Γ̄out ∪ Γ̄lat, where Γin :=
{a} × (c, d), Γout := {b} × (c, d), and Γlat := (a, b) × {c} ∪ (a, b) × {d}. We further
assume a stationary velocity g at the inflow boundary Γin and the outflow boundary
Γout as well as zero velocity at the lateral boundary Γlat. The impact of the immersed
bodies on the external force is described by a force density F which will be specified
later. Denoting by ρ, μ the density and the viscosity of the external fluid, by u, p

the velocity and the pressure, by u(0) an initial velocity, and by nΣin , nΣout , tΣin ,
tΣout the exterior unit normal vectors and unit tangential vectors on Σin, Σout, the
incompressible Navier–Stokes equations read

ρ

(
∂v
∂t

+ (u · ∇)v
)

− μ�u + ∇p = F in Q := Ω × (0, T ], (1.1a)

∇ · u = 0 in Q, (1.1b)

tΣin · u = 0, nΣin · u = g on Σin := Γin × (0, T ], (1.1c)

tΣout · u = 0, nΣout · u = g on Σout := Γout × (0, T ], (1.1d)

u = 0 on Σlat := Γlat × (0, T ], (1.1e)

u(·,0) = u(0) in Ω. (1.1f)

The boundary of an immersed body is supposed to be a smooth closed and non-
intersecting, massless curve of length L driven by the velocity u. Denoting by X
the position vector of the boundary, by X(0) the initial configuration, and assuming
periodic boundary conditions, the equations of motion of the immersed body read

∂X
∂t

= u
(
X(·, t), t), (1.2a)

X(q,0) = X(0)(q), q ∈ [0,L], (1.2b)

∂kX/∂qk(0, t) = ∂kX/∂qk(L, t), k = 0,1,2. (1.2c)

The force density F ∈ L2((0, T ),H−1(Ω)) in (1.1a) is given by

〈
F(t),v

〉 =
∫ L

0
f(q, t) · v

(
X(q, t)

)
dq for almost all t ∈ (0, T ). (1.3)

Here, 〈·, ·〉 stands for the dual pairing between H−1(Ω) and H1
0(Ω). The local force

density f is defined according to f(q, t) = −E′(X(q, t)) by means of the Gâteaux
derivative E′ of the total energy E(t) := Ee(t) + Eb(t), where

Ee(t) :=
∫ L

0

κe

2

(∣∣∣∣∂X
∂q

(q, t)

∣∣∣∣ − 1

)2

dq, (1.4a)
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Eb(t) :=
∫ L

0

κb

2

∣∣∣∣∂
2X

∂q2
(q, t)

∣∣∣∣
2

dq. (1.4b)

We introduce the function spaces

V(0, T ) := H1((0, T ),H−1(Ω)
) ∩ L2((0, T ),H1(Ω)

)
,

W(0, T ) := {
w ∈ V(0, T ) | nΣin · w|Σin = nΣout · w|Σout = g,

tΣin · w|Σin = tΣout · w|Σout = 0, w|Σlat = 0
}
,

W0(0, T ) := {
w ∈ V(0, T ) | wΓ ×(0,T ] = 0

}
,

Q(0, T ) := L2((0, T ),L2
0(Ω)

)
.

The variational formulation of the FE-IB amounts to the computation of

(u,p,X) ∈ W(0, T )×Q(0, T )×H1((0, T ),L2([0,L]))∩L2((0, T ),H3
per

([0,L]))

such that for all (w, q) ∈ W0(0, T ) × Q(0, T ) there holds

〈
ρ

∂u
∂t

,w
〉
+ a(u,w) − b(p,w) = 〈

F(t),w
〉
, (1.5a)

b(q,u) = 0, (1.5b)

u(·,0) = u(0), (1.5c)

and X satisfies (1.2a)–(1.2c). Here, the forms a(·, ·) and b(·, ·) are given by

a(u,v) := (
ρ(u · ∇)u,v

)
0,Ω

+ (μ∇u,∇v)0,Ω, (1.6a)

b(p,v) := (p,∇ · v)0,Ω . (1.6b)

The following result provides an energy estimate for the FE-IB.

Theorem 1 Suppose that the data of the FE-IB satisfy

F ∈ L2((0, T );H−1(Ω)
)
, u(0) ∈ L2(Ω), (1.7a)

g ∈ H
5/2+s

00 (Γin ∪ Γout), s ∈ (0,1/2), (1.7b)

and

‖g‖
H

5/2+s
00 (Γin)

≤ (
4ρC(Ω)

)−1
μ, s ∈ (0,1/2), (1.8)

for some constant C(Ω) > 0, depending on the domain Ω . Then, if the triple
(u,p,X) solves (1.5a)–(1.5c) and (1.2a)–(1.2c), there exist positive constants Ci ,
1 ≤ i ≤ 2, only depending on the data of the problem, and C(g), only depending
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on g, such that

ρ

4

∥∥u(·, t)∥∥2
0,Ω

+ μ

4

∫ t

0

∥∥∇u(·, τ )
∥∥2

0,Ω
dτ + E(t)

≤ C1

(
1 + C2 t + ∥∥u(0)

∥∥2
0,Ω

+ E(0) + C(g)

∫ t

0
E(τ)dτ

)
.

Proof We refer to [14]. �

1.3 Space/Time Discretization

For the spatial discretization of the incompressible Navier–Stokes equations we use
P2–P1 Taylor–Hood elements [5] with respect to a simplicial triangulation Th(Ω)

of the computational domain Ω . For T ∈ Th(Ω), we refer to hT as the diameter of
T and set h := maxT ∈Th(Ω) hT . We further denote by Pk(T ), k ∈ N, the linear space
of polynomials of degree ≤ k on T , and we choose the function spaces

Vh := {
vh ∈ C(Ω̄)2 | vh|T ∈ P2(T )2}, Qh := {

qh ∈ C(Ω̄) | qh|T ∈ P1(T )
}
,

and

Wh(0, T ) := {
wh ∈ C

([0, T ],C(Ω̄)2) | wh(·, t) ∈ Vh,

nΓin · wh = nΓout · wh = gh,

tΓin · wh = tΓout · wh = 0, nΓlat · wh = 0
}
,

Wh,0(0, T ) := {
wh ∈ Wh(0, T ) | wh|Γ ×(0,T ) = 0

}
,

Qh(0, T ) := {
qh ∈ C

([0, T ],C(Ω̄) ∩ L2
0(Ω)

) | qh(·, t) ∈ Qh

}
.

Given some approximation gh ∈ C([0, T ],C2(Γin)) of the inflow velocity g and
u(0)

h ∈ Vh of the initial velocity u(0), we compute (uh,ph) ∈ Wh(0, T ) × Qh(0, T )

such that for all (wh, qh) ∈ Wh,0(0, T ) × Qh(0, T ) and t ∈ [0, T ] there holds

(
ρ

∂uh

∂t
,wh

)
0,Ω

+ a(uh,wh) − b(ph,wh) = 〈
Fh(t),wh

〉
h
, (1.9a)

b(qh,uh) = 0, (1.9b)

uh(0, t) = u(0)
h , (1.9c)

where 〈Fh(t),wh〉h will be defined by (1.11) below.
We discretize the immersed boundary by periodic cubic splines with respect to a

partition

T[0,L] := {0 =: q0 < q1 < · · · < qM := L}, M ∈N,
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of the interval [0,L] into subintervals Ii := [qi−1, qi] of length �qi := qi − qi−1,
and we set

Sh := {
Yh ∈ C2([0,L],Ω) | Yh|Ii

∈ P3(Ii)
2, Y(k)

h (q0) = Y(k)
h (qM), 0 ≤ k ≤ 2

}
.

Given some approximation X(0)
h ∈ Sh of X(0), we look for Xh ∈ C1([0, T ],Sh) such

that

∂Xh

∂t
= uh

(
Xh(·, t), t

)
, 0 < t ≤ T , (1.10a)

Xh(·,0) = X(0)
h . (1.10b)

Finally, the right-hand side in (1.9a) reads as follows:

〈
Fh(t),wh

〉
h

= −κe

∫ L

0

∂Xh

∂q
· ∇wh

(
Xh(q, t)

) ∂Xh

∂q
dq

+ κb

M∑
i=1

∂3Xh

∂q3

∣∣∣∣
Ii

·
∫ qi

qi−1

∇wh

(
Xh(q, t)

)∂Xh

∂q
dq. (1.11)

For discretization in time, we consider a partition T[0,T ] of the time interval [0, T ]

T[0,T ] := {0 =: t0 < t1 < · · · < tN := T }, N ∈N,

into subintervals [tn, tn+1], 0 ≤ n ≤ N − 1, of length τn := tn+1 − tn. We denote by
u(n)

h approximations of uh at times tn and define

D+
�tu

(n)
h := u(n+1)

h − u(n)
h

�τn

.

Semi-explicit Scheme The Backward Euler/Forward Euler FE-IB (BE/FE FE-
IB) is a semi-explicit scheme where we discretize the semi-discrete Navier–Stokes
equations (1.9a)–(1.9c) by the implicit Euler scheme and the immersed boundary
equations (1.10a), (1.10b) by the explicit Euler scheme. In particular, given u(0)

h , for

n ≥ 0 we first compute (u(n+1)
h ,p

(n+1)
h ) ∈ Vh × Qh such that

(
ρ D+

�tu
(n)
h ,wh

)
0,Ω

+ a
(
u(n+1)

h ,wh

) − b
(
p

(n+1)
h ,wh

) = 〈
F(n)

h ,wh

〉
h
, (1.12a)

b
(
qh,u(n+1)

h

) = 0, (1.12b)
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where

〈
F(n)

h ,wh

〉
h

:= −κe

∫ L

0

∂X(n)
h

∂q
· ∂

∂q
wh

(
X(n)

h

)
dq

+ κb

M∑
i=1

∂3X(n)
h

∂q3

∣∣∣∣
Ii

·
∫ qi

qi−1

∂

∂q
wh

(
X(n)

h

)
dq

and then compute X(n+1)
h ∈ Sh according to

∫ L

0
X(n+1)

h · Yh dq = τn

∫ L

0
u(n)

h

(
X(n)

h

) · Yh dq +
∫ L

0
X(n)

h · Yh dq, Yh ∈ Sh.

(1.13)
In case of an equidistant partition T[0,T ] with τn = �t := T/N , the following sta-
bility estimate holds true (cf. [14]).

Theorem 2 In addition to the assumptions of Theorem 1 suppose that the CFL-type
condition

�τ

h
≤ μ

4CB(κeL1 + κbL2)
, (1.14)

is satisfied, where CB > 0 is a computable constant, depending on the domain Ω ,
and the constants Li , 1 ≤ i ≤ 2, are given by

L1 := max
0≤n≤N

max
q∈[0,L]

∣∣∂X(n)
h /∂q

∣∣,
L2 := max

0≤n≤N
max

1≤i≤M
max
q∈Ii

∣∣∂3X(n)
h /∂q3|Ii

∣∣. (1.15)

Then, if (uh,ph,Xh) solves the BE/FE FE-IB (1.12a), (1.12b), (1.13), there exist
positive constants Ci , 4 ≤ i ≤ 6, depending only on the data of the problem, such
that

ρ

4

∥∥u(n)
h

∥∥2
0,Ω

+ μ

4

n∑
m=1

∥∥∇u(m)
h

∥∥2
0,Ω

�τ + E
(n)
h

≤ C4

(
1 + C5 tn + ∥∥u(0)

h

∥∥2
0,Ω

+ E
(0)
h + C6

n−1∑
m=1

E
(m)
h �τ

)
. (1.16)

Remark 1 Semi-explicit schemes based on the classical IB have been applied to the
simulation of the motion of RBCs in [11, 23, 33].

Fully Implicit Scheme The Backward Euler/Backward Euler FE-IB (BE/BE FE-
IB) is a fully implicit scheme where we discretize both the semi-discrete Navier–
Stokes equations (1.9a)–(1.9c) and the immersed boundary equations (1.10a),
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(1.10b) by the backward Euler scheme. In particular, we simultaneously compute
(u(n+1)

h ,p
(n+1)
h ) ∈ Vh × Qh such that for all wh ∈ Wh,0(0, T ), qh ∈ Qh it holds

(
ρ D+

τn
u(n)

h ,wh

)
0,Ω

+ a
(
u(n+1)

h ,wh

) − b
(
p

(n+1
h ,wh

) = 〈
F(n+1)

h ,wh

〉
h
, (1.17a)

b
(
qh,u(n+1)

h

) = 0, (1.17b)

where

〈
F(n+1)

h ,wh

〉
h

:= −κe

∫ L

0

∂X(n+1)
h

∂q
· D1wh

(
X(n+1)

h

)∂X(n+1)
h

∂q
dq

+ κb

∫ L

0

∂2X(n+1)
h

∂q2
·
(

D1wh

(
X(n+1)

h

)∂2X(n+1)
h

∂q2

+ D2wh

(
X(n+1)

h

)(∂X(n+1)
h

∂q
,
∂X(n+1)

h

∂q

))
dq,

and compute X(n+1)
h ∈ Sh such that for all Yh ∈ Sh there holds

∫ L

0
X(n+1)

h · Yh dq − τn

∫ L

0
u(n+1)

h

(
X(n+1)

h

) · Yh dq =
∫ L

0
X(n)

h · Yh dq. (1.18)

Remark 2 For the classical IB, semi-explicit, approximate implicit, and fully im-
plicit schemes have been considered in [18–21, 28], whereas the unconditional sta-
bility of fully implicit FE-IB methods has been shown in [4].

1.4 Predictor–Corrector Continuation Strategy for the
Numerical Solution of the Fully Implicit Scheme

The numerical realization of the fully implicit BE/BE FE-IB amounts to the solu-
tion of a nonlinear system of equations. The application of Newton’s method turns
out to be delicate, since the numerical stiffness of the BE/BE FE-IB significantly
affects the convergence radius of Newton’s method in a negative way. In compli-
ance with this, for the fully implicit IB it was stated in [32] that Newton’s method
is computationally too expensive in practice. To overcome this difficulty, we will
use a continuation method in a predictor–corrector manner. Thereby, the time in-
crement is chosen adaptively in such a way that the convergence requirements of
Newton’s method for the next time step are met. Consequently, a successful appli-
cation of Newton’s method is guaranteed without an expensive search for proper
initial guesses.

At each time-step, the BE/BE FE-IB (1.17a), (1.17b), (1.18) amounts to the com-
putation of z(n+1) := (u(n+1), p(n+1),X(n+1))T , 0 ≤ n ≤ M − 1, as the solution of
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the parameter dependent nonlinear system

G
(
z(n+1); τn

) = 0, (1.19)

where the nonlinear mapping G(·; τn) :RN → R
N is given by

G(z; τn) =
⎛
⎝(M1 + τnA)u + τnC(u) + τnBT p − τnF(X) − M1u(n) − τnF0

Bu − b
M3X − M3X(n) − τnK(X)u

⎞
⎠ .

(1.20)
Here, M1, A, and B are the mass and stiffness matrices associated with the fully dis-
cretized Navier–Stokes equations (1.17a), (1.17b). M3 is the mass matrix associated
with (1.18). The nonlinear maps C(u) and K(X) are associated with the nonlinear
parts of (1.17a), (1.18), respectively, and b, F0 are vectors stemming from the in-
homogeneous boundary data on Σin. For scaling purposes, we have multiplied the
second block in (1.20) with τ−1

n .
We note that the continuation parameter is the time t . We attempt to solve (1.19)

by a path-following predictor–corrector continuation strategy with constant contin-
uation as a predictor featuring an adaptive choice of the continuation steplength
and a Newton-type method as a corrector [10]. A first result in this direction is the
invertibility of the Jacobian G′(z; τn).

Theorem 3 For given z ∈ R
N and τmin > 0 there exists τmax

n (z) such that for all
step sizes τmin ≤ τn ≤ τmax

n the Jacobian

G′(z; τn) =
⎛
⎝M1 + τnA + τnC′(u) τnBT −τnF′(X)

B 0 0
−τnK(X) 0 M3 − τnK′

X(X,u)

⎞
⎠ (1.21)

is invertible with bounded inverse
∥∥(

G′(z; τn)
)−1∥∥ ≤ Λn,

where Λn depends on τmin and τmax
n (z).

Proof For a proof we refer to [15]. �

The adaptive predictor-corrector continuation strategy is as follows:

Initialization Specify the initial variables z(t0) = (u(0), p(0),X(0))T , an initial con-
tinuation step size τ(0,0) > 0, and bounds τmin, τmax,Θmin  1. Set n = j = 0.
Here, n is the iteration counter for the outer continuation, whereas j is the itera-
tion counter for the inner predictor–corrector cycles.

Step 1: Predictor As long as tn < T , set t(n+1,j) := tn + τ(n,j) and perform the con-
tinuation

ẑ(0)(t(n+1,j)) := z(tn).
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Step 2: Corrector Solve G(z; τ(n,j)) = 0 by a combination of the ordinary and the
simplified Newton method with initial guess ẑ(0)(t(n+1,j)) and iteration counter
� = �(j) ≥ 0. Thereby, z gets updated by means of

ẑ(�+1)(t(n+1,j)) := ẑ(�)(t(n+1,j)) + α��z(�),

where α� > 0 is a suitable damping factor, and contraction factors Θ�, � ≥ 0, are
computed according to

Θ� := ‖�z
�+1‖

‖�z
�‖

, � ≥ 0.

The contraction factors serve as a convergence monitor in the simplified New-
ton method. If the simplified Newton corrector was successful, predict the new
continuation step size by

τ(n+1,0) := min

(
(
√

2 − 1)‖�z(0)‖
2 max(Θ0,Θmin)‖z(tn) − z(tn+1)‖τ(n,j), τmax

)
,

where tn+1 := t(n+1,j) and z(tn+1) := ẑ(�)(t(n+1,j)). Set n := n + 1, j := 0 and
go to Step 1.
Else correct the continuation step size τ by means of

τ(n,j+1) := (
√

2 − 1)√
4Θ� + 1 − 1

τ(n,j).

If τ(n,j+1) < τmin, stop the algorithm (convergence failure). Otherwise, set j :=
j + 1 and go to Step 1.

1.5 Documentation of Numerical Results

In this section, we provide a documentation of simulation results for both the semi-
explicit BE/FE FE-IB and the fully implicit BE/BE FE-IB.

1.5.1 The Semi-explicit BE/FE FE-IB

For studying the so-called tank treading motion [1, 12, 13, 16, 17] of viscoelas-
tic particles under shear flow, we have applied the semi-explicit BE/FE FE-
IB to a microchannel Ω = (0.0,1.2) × (0.0,0.1)10−3 m with inflow boundary
Γin = {0.0} × (0.0,0.1), inflow velocity g = 1.0 × 10−4 m/s, and outflow bound-
ary Γout := {1.2} × (0.0,0.1). We have further used ρ = 1.0 × 103 kg/m3 and
μ = 6.0 × 10−3 Pa/s resulting in a Reynolds number of approximately 0.1 which is
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Fig. 1.2 Tank treading motion of a vesicle in shear flow: snapshots from experimental data (top)
and numerical simulation by the FE/BE FE-IB (bottom)

typical for microfluidic flows. The elasticity coefficients have been chosen accord-
ing to κe = 6.0 × 10−6 N/m and κb = 2.0 × 10−19 N/m, which correspond to the
values of RBCs [11]. We have chosen a simplicial triangulation with h = √

2/16
and an equidistant partitioning of [0,L] with �q = h/2 giving rise to a total of
42555 degrees of freedom. The time step has been chosen as �t = 1/240.

Figure 1.2 displays snapshots from experimental data (top) and the simulation
results due to the application of the BE/FE FE-IB (bottom). The initially spherical
particle first gets deformed by attaining an ellipsoidal shape and then continues to
move forward with a rotating membrane (cf. the motion of a material point on the
immersed boundary marked by an arrow in the experimental result and by a black
dot in the simulations). As can be observed as well, the particle experiences some lift
towards the center of the channel. We computed an inclination angle of 34◦ which
is in very good agreement with the experimental data.

The deformability of RBCs is such that they can pass through capillaries with
diameters significantly less than the diameter of an RBC [27]. We have studied the
motion of an RBC in a microchannel of width 20 × 10−6 m featuring a capillary
of width 4.0 × 10−6 m (cf. Fig. 1.3). The inflow and outflow occur through the left
and right boundary of the microchannel, respectively. The inflow velocity g as well
as the other data ρ, μ, κe , κb have been chosen as in the previous example. For
discretization in space and time, we have used h = 1/15 and �q = h/2 yielding a
total of 26709 degrees of freedom and a time step size of �t = 1/1000. We note that
�t had to be chosen that small in order to satisfy the CFL condition (1.14), since the
velocity at the opening of the capillary is almost five times higher than the inflow
velocity. Figure 1.3 (top) displays the results obtained by the BE/FE FE-IB. For
comparison, Fig. 1.3 (bottom) shows the snapshot of an RBC shortly before leaving
a capillary in an experimental set up under essentially the same flow conditions. The
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Fig. 1.3 RBC passing through a capillary of half its resting diameter: numerical simulation by the
BE/FE FE-IB (top) and snapshot from an experiment (bottom)

Fig. 1.4 Breakdown of the BE/FE FE-IB for τ = 1/250 due to high oscillations of membrane
nodes

fish-like shape of the RBC inside the capillary is very well captured by the numerical
simulation.

1.5.2 The Fully Implicit BE/BE FE-IB

The motion of an RBC through a thin capillary is an appropriate example to illustrate
the limitations of the semi-explicit BE/FE FE-IB and the advantages of the fully
implicit BE/BE FE-IB. We have studied the same scenario as before, but applied
the BE/FE FE-IB with a time step size �t = 1/250. Figure 1.4 shows the onset
of numerical instabilities due to oscillations of membrane nodes which caused a
breakdown of the algorithm after t = 0.05. Such instabilities do not occur when
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Fig. 1.5 Application of the BE/BE FE-IB: Snapshots of the RBC’s membrane at selected time
instants corresponding to the ∗-marked time instants in Fig. 1.6

Fig. 1.6 Application of the BE/BE FE-IB: Evolution of the adaptively chosen time step sizes
(solid line) and of the (scaled) total energy (dashed line)

using the fully implicit BE/BE FE-IB and its numerical realization by the predictor-
corrector continuation strategy as described in Sect. 1.4 (cf. Fig. 1.5).

In fact, the adaptive time step size selection detects the critical stage of the pro-
cess which occurs when the RBC starts to deform before entering the capillary and
thus leads to a significant increase of its total energy. This is displayed in Fig. 1.6
which shows the evolution of the adaptively chosen time increments and the total
energy.
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