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Dedicated to Professor Pekka Neittaanmäki
on the occasion of his 60th birthday



Foreword

This book exposes the results in numerical analysis and optimization presented at
the ECCOMAS thematic conference “Computational Analysis and Optimization”
(CAO 2011) in Jyväskylä, Finland, on June 9–11, 2011, dedicated to the 60th jubilee
of Professor Pekka Neittaanmäki. It consists of five parts, which are closely related
to his scientific activities and interests.

Part I of the book contains new results associated with numerical analysis of
nonlinear models in continuum mechanics. It begins with a paper due to R.H.W.
Hoppe and C. Linsenmann, in which the authors study the motion of red blood cells
(RBCs) subject to an external incompressible flow in a microchannel and investi-
gate two versions (semiexplicit and fully implicit) of the Finite Element Immersed
Boundary Method (FE-IB). The paper by E. Laitinen and A. Lapin is focused on
iteration methods for saddle-point problems. Such problems often arise in analysis
of nonlinear models associated with variational inequalities.

A survey devoted to analytic-numerical methods for hidden attractors localiza-
tion and their application to nonlinear dynamic systems is presented in a paper by
G. Leonov and V. Kuznetsov. In a paper by S. Turek et al., the authors consider new
numerical schemes created to simulate a 3D multiphase flow of immiscible fluids.
The article of H. Wang and J. Periaux is concerned with a fast meshless method for
problems in computational fluid dynamics.

Part II collects papers associated with the topic “a posteriori error estimates and
reliable computer simulation methods”. The first paper of R. Rannacher and J. Vi-
hharev discusses an important question of balancing discretization and integration
errors in numerical solutions computed by finite element methods. Analysis of this
question is based on dual-weighted residual a posteriori estimates. In a paper due to
S. Repin and T. Rossi, the authors use another class of a posteriori estimates (esti-
mates of the functional type) in order to reformulate the classical inverse problem
in the form of an unconstrained minimization problem. A posteriori estimates of
the same type are derived in the next paper, where O. Mali considers higher-order
boundary value problems in the theory of curvilinear beams. One more method of
deriving a posteriori estimates is used in the article by S. Matsulevich et al. It is
based on the theory of contractive mappings and is applied to the Picard-Lindelöf
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viii Foreword

method. Finally, the paper of K. Segeth contains an overview of a posteriori esti-
mates for the biharmonic problem.

Part III contains publications related to optimization methods. It starts with a
paper by M.M. Mäkelä et al., where the reader will find a new subgradient-type
method of minimizing nonconvex functionals. In the next paper, written by P. Philip
and D. Tiba, the authors discuss shape optimization problems governed by linear or
nonlinear elliptic partial differential equations via a fixed domain approach. Meth-
ods of structural optimization in the application to biological models are discussed
in the paper of M. Nowak.

Part IV is concerned with analysis of “noisy” and uncertain data. The paper of
J.-A. Désidéri et al. investigates approximation properties of the Hermitian interpo-
lation of a function whose nodal values are known exactly and the derivatives only
approximately. The results can be used in analysis of the so-called “meta-models”
arising in the theory of design of an experiment. The paper by A. Zerbinati et al.
addresses the same topic. In a paper by A. Averbuch et al., the authors present a ro-
bust algorithm starting from 1D or 2D discrete noised data to approximately invert
the heat equation. The paper of G. Wolf et al. is devoted to clustering and distance
analysis of data sets.

Part V is focused on problems in paper machine industry and information tech-
nology. The paper by N. Banichuk and S. Ivanova studies the effects caused by
uncertainties in contact mechanics and shape optimization problems. The paper by
J. Jeronen addresses, in principle, the same topic (analysis of uncertainties in a real-
life mechanical problem), but from a different point of view. Two other papers of
the same research group (N. Banichuk et al. and T. Saksa et al.) are devoted to safety
analysis and optimization of a moving elastic web travelling between two rollers at a
constant axial velocity. The paper of A. Averbuch et al. is devoted to network models
arising in information systems. Finally, the paper of J. Hartikainen et al. considers
computer simulation methods for highly nonlinear models in solid mechanics.

In all the parts, we first present papers of invited speakers and then contributed
papers joined by a common topic. We would like to thank all the authors for their
contributions. All the papers included in the volume have been reviewed (normally
by two independent reviewers) and many of them have been modified in accordance
with the comments received. We would like to thank all the reviewers for their work,
which made it possible to essentially improve some publications.

The editors are grateful to all the authors for their contributions and to the Fed-
eration of Finnish Learned Societies for financial support. We would like to thank
Marja-Leena Rantalainen for her careful work on preparing the electronic version
of the book and express sincere thanks to our counterpart in Springer.

Sergey Repin
Timo Tiihonen
Tero Tuovinen

Jyväskylä, Finland



Preface

At the occasion of the 60th birthday of Professor Pekka Neittaanmäki it is time to
take a look at his versatile activities from the decades passed so far.

Young Athlete

Pekka was born in 1951 in Saarijärvi, Central Finland—a rural community associ-
ated with perseverance and a spirit of hope even under the hardest of conditions in
Finnish poetry. Saarijärvi is also known for its active society in athletics which made
sports a natural target for Pekka’s energy in the teen years. His ongoing running and
skiing activities stem from those times. His more extreme hobbies from those times
are perhaps less known. Pole vaulting and ski jumping are certainly not that frequent
in academic CVs. However, they are good indicators of Pekka’s daring attitude.

Emergence of a Researcher

In early 70’s Pekka entered the University of Jyväskylä in the early 70’s (with in-
tention to graduate fast as math’s teacher). Despite of the desire to graduate fast,
Pekka did not ignore the social aspects of life as a student, which in the seventies
implied also political activity, and gathered a strong personal network of future de-
cision makers that has been an essential asset ever since. Fast graduation caught
the attention of Professor I.S. Louhivaara who recruited Pekka for doctoral stud-
ies. Louhivaara, who had been trained as the right hand of Rolf Nevanlinna, had an
extensive and active international network and a broad understanding of the active
fields in mathematics. Thus, in his thesis work on boundary value problems to plate
equation, mentored by K. Witsch from Bonn, Pekka got an extensive background in
mathematical analysis of PDEs.

After his PhD Pekka went to Bonn as a post doc and got acquainted with both a
generation of young German researchers and, more importantly, the finite element
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x Preface

method. When Pekka returned from Bonn, he brought a pile of punch cards con-
taining a FEM code and several manuscripts and ideas to be written jointly with
R. Picard and J. Saranen on FEM for different wave and eigenvalue problems.

Building His Own Group

In the beginning of the 80’s Pekka started to be on his own. The FEM papers after
the PhD qualified him to the level of a docent and it was time to start teaching and
recruiting students. The first seminar around FEM was organized in Jyväskylä in fall
1982 and it attracted the attention of several promising students. Pekka exploited
well the position of Finland as a gateway between East and West and quickly built
a collaboration network with Czech and Romanian researchers. This helped him
to both deepen and broaden the research activities. By a fortunate mishap Pekka
learned about the superconvergence phenomenon related to averaging and managed
to analyze it with M. Krizek with whom he continued the FEM track to review
articles and eventually to monographs.

Simultaneously Pekka found other long-lasting interests: shape optimisation with
J. Haslinger and optimal control with D. Tiba, both of these, in particular, in the con-
text of variational inequalities. These openings led not only to numerous papers and
several monographs in the years to come but also to a fair number of PhD students
and theses, and to the first major industrial collaboration in the field of steel cast-
ing. The collaboration with industry was facilitated by Pekka’s short excursion to
Lappeenranta University of Technology as an associate professor and by a member-
ship in the Research Council of Technology.

To facilitate his return back to Jyväskylä, Pekka played a major role in the Uni-
versity’s initiative of “Applied Science” and managed to raise significant donations
from the region to open new positions in computational and applied sciences, in-
cluding the professorship he has been holding from 1988.

Shaping the University

In the beginning of the 90’s the activities were booming. Being established as full
professor, knowing the research councils from inside, having a successful industrial
case in his portfolio and several young post docs, Pekka could expand the group
with new students and attract new industrial partners and international collabora-
tors. Simultaneously the situation in Eastern Europe had changed. Pekka was fast
to make good contacts in the leading schools in St. Petersburg and Moscow while
summarizing the fruits of collaboration with colleagues from Eastern Europe and
establishing links to the French school of applied mathematics and the European
free boundary community. This all has made Jyväskylä a collaboration hub for sci-
entists from many countries. Simultaneously Pekka was busy internationalizing the
group, by co-initiating the Jyväskylä International Summer Semester, starting the
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organizing of international conferences and by recruiting first foreign PhD students
to the group. This alone would have been more than enough to fill the days of a
professor. But other things emerged in parallel.

Pekka was called to serve in a government-level committee of research issues
and, after a few months as Dean of the Faculty of Natural Sciences, as the first
vice-rector of the University. The period as vice-rector manifested Pekka’s ability
to recognize qualitatively new opportunities as they emerge. Finland, by joining the
European Union in the beginning of 1995, became eligible to European regional
funding—Jyväskylä region, in particular, because of a major crisis in the regional
economy. Thanks to Pekka’s initiatives (and personal network of strategic people),
Jyväskylä was able to harness the EU funding to a real structural change in the local
economy, largely through expansion and modernization of university education by
targeted master programs.

The master programs and other actions expanded the IT-related activities so that
they fitted neither in the facilities nor the organization of the University. This lead to
the creation of the Faculty of Information Technology, splitting up the Department
of Mathematics, and forming the Department of Mathematical Information Tech-
nology. Simultaneously a new building was needed and Pekka was a key person in
the conceptualization of a site that linked several academic disciplines and related
enterprises under a common roof. To implement the idea timely, new types of finan-
cial instruments had to be piloted at the same time. All this helped the University to
move qualitatively forward to the new millennium.

Collaboration Across the Disciplines

In 2000 Pekka turned towards new challenges. Giving up the vice-rector duties,
he started to promote collaboration between computational sciences and human ori-
ented sciences actively. He saw the need of a platform for multidisciplinary research
and collaboration and helped to establish Agora Center as such a unit. Serving sev-
eral years as the head of Agora Center, Pekka has helped several multidisciplinary
groups to find collaborators and new funding opportunities. Once again Pekka has
been alert and able to react to the changes in the society and our region by launching
an impressive series of actions to counterbalance the effects of the global financial
crisis of 2008 by targeted educational and research programs.

To parallel his activities in multidisciplinary research, Pekka has expanded his
personal research interests to game theory, data mining, and the like. When doing
this he has not forgotten his roots. His first love, plate equation and wave phenom-
ena, has led him to active collaboration and contributions in the field of nanotechnol-
ogy. Error estimates for finite elements are still a relevant topic, now in the context
of reliable a posteriori estimates.

Pekka has continued to be active in fatherly supervision of his PhD students, now
passing over 60 in cumulative count.
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60 and Beyond

What can be said about the future? Predicting the behavior of multidimensional dy-
namic systems is never easy. In Pekka’s case it is virtually impossible. Having grown
up with exterior problems, Pekka sees his domain unbounded by nature. He knows
that irregularities from incompatibilities tend to smooth out asymptotically and that
obstacles and barriers can be overcome, perhaps with paying a small penalty. He
knows that even non-smooth systems can be controlled and optimized, that optimal
solutions may be structurally different from the current design and that approximate
solutions will do for practical cases. So, honestly, we cannot predict what exactly
Pekka will be doing in the future.

However, 60 years of observation is enough to infer what Pekka will be working
for—for the benefit of his friends and collaborators, for the University of Jyväskylä,
for the region of Central Finland, for Finland, and beyond.

Timo TiihonenJyväskylä, Finland
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Chapter 1
The Finite Element Immersed Boundary
Method for the Numerical Simulation
of the Motion of Red Blood Cells
in Microfluidic Flows

Ronald H.W. Hoppe and Christopher Linsenmann

Abstract We study the mathematical modeling and numerical simulation of the
motion of red blood cells (RBCs) subject to an external incompressible flow in a
microchannel. RBCs are viscoelastic bodies consisting of a deformable elastic mem-
brane enclosing an incompressible fluid. We study two versions of the Finite Ele-
ment Immersed Boundary Method (FE-IB), a semi-explicit scheme that requires a
CFL-type stability condition and a fully implicit scheme that is unconditionally sta-
ble and numerically realized by a predictor-corrector continuation strategy featuring
an adaptive choice of the time step sizes. The performance of the two schemes is il-
lustrated by numerical simulations for various scenarios including the tank treading
motion in microchannels and the motion through thin capillaries.

Keywords Microfluidic flows · Red blood cells · Finite element immersed
boundary method · Semi-explicit scheme · Fully implicit scheme

1.1 Introduction

Red blood cells are viscoelastic bodies which, roughly speaking, consist of a mem-
brane enclosing a liquid [2, 6–9, 26, 30, 31]. When exposed to an external flow, the
motion in the fluid represents a fluid-structure interaction problem that can be ap-
propriately modeled by the finite element immersed boundary method (FE-IB). As
opposed to the classical immersed boundary method (IB) [24, 25], which is based on
a finite difference approach, the FE-IB relies on the variational formulation of the
problem [3, 4]. We consider a semi-discretization in space by using Taylor–Hood

R.H.W. Hoppe (�) · C. Linsenmann
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4 R.H.W. Hoppe and C. Linsenmann

Fig. 1.1 Equilibrium configuration of RBCs (left) and deformed shapes in Poiseuille flow (right)

P2–P1 elements for the incompressible Navier–Stokes equations and periodic cubic
splines for the immersed boundaries. For discretization in time we distinguish be-
tween the semi-explicit Backward Euler/Forward Euler FE-IB and the fully implicit
Backward Euler/Backward Euler FE-IB where in both cases we use implicit time-
stepping for the semi-discretized Navier–Stokes equations. On the other hand, the
IB equations are discretized by the forward Euler method in the BE/FE FE-IB and
by the backward Euler method in the fully implicit BE/BE FE-IB. The BE/FE FE-
IB is subject to a CFL-type condition, whereas the BE/BE FE-IB is unconditionally
stable. The latter one will be solved by a predictor-corrector continuation strategy
featuring an adaptive choice of the continuation parameter. For both schemes we
provide a documentation of numerical results including a comparison with experi-
mental data.

1.2 The Finite Element Immersed Boundary Method

As is well-known, human blood is a suspension of viscoelastic cells, the red and
white blood cells, in a viscous fluid, the plasma. The blood flow is not only con-
trolled by the viscosity of the plasma, but additionally viscoelastic effects due to the
deformability of the cells, aggregation of the cells, and hematocrit come into play
and have been experimentally observed.

If not being subjected to an external flow, red blood cells (RBCs) are biconcavely
shaped disks with a diameter of 7.5–8.0 µm and a thickness of about 2 µm (cf.
Fig. 1.1 (left)). However, under the influence of an external flow, the cells deform
and may attain parachute- or slipper-like shapes in Poiseuille flow depending on
their position (centered or decentered) in the flow field [22] (cf. Fig. 1.1 (right)).

The FE-IB describes the fluid-structure interaction problem based on a coupled
Eulerian/Lagrangian approach. The external fluid flow is modeled by the incom-
pressible Navier–Stokes equations in an Eulerian coordinate system, whereas the
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boundaries of the immersed bodies are described by means of a Lagrangian coor-
dinate system. For its variational formulation, we will use standard notation from
Lebesgue and Sobolev space theory [29].

In particular, we assume the computational domain Ω := (a, b)× (c, d), a < b,
c < d , to be a microchannel with boundary Γ := Γ̄in ∪ Γ̄out ∪ Γ̄lat, where Γin :=
{a} × (c, d), Γout := {b} × (c, d), and Γlat := (a, b)× {c} ∪ (a, b)× {d}. We further
assume a stationary velocity g at the inflow boundary Γin and the outflow boundary
Γout as well as zero velocity at the lateral boundary Γlat. The impact of the immersed
bodies on the external force is described by a force density F which will be specified
later. Denoting by ρ, μ the density and the viscosity of the external fluid, by u, p
the velocity and the pressure, by u(0) an initial velocity, and by nΣin , nΣout , tΣin ,
tΣout the exterior unit normal vectors and unit tangential vectors on Σin, Σout, the
incompressible Navier–Stokes equations read

ρ

(
∂v
∂t
+ (u · ∇)v

)
−μ�u+∇p = F in Q :=Ω × (0, T ], (1.1a)

∇ · u= 0 in Q, (1.1b)

tΣin · u= 0, nΣin · u= g on Σin := Γin × (0, T ], (1.1c)

tΣout · u= 0, nΣout · u= g on Σout := Γout × (0, T ], (1.1d)

u= 0 on Σlat := Γlat × (0, T ], (1.1e)

u(·,0)= u(0) in Ω. (1.1f)

The boundary of an immersed body is supposed to be a smooth closed and non-
intersecting, massless curve of length L driven by the velocity u. Denoting by X
the position vector of the boundary, by X(0) the initial configuration, and assuming
periodic boundary conditions, the equations of motion of the immersed body read

∂X
∂t
= u

(
X(·, t), t), (1.2a)

X(q,0)=X(0)(q), q ∈ [0,L], (1.2b)

∂kX/∂qk(0, t)= ∂kX/∂qk(L, t), k = 0,1,2. (1.2c)

The force density F ∈ L2((0, T ),H−1(Ω)) in (1.1a) is given by

〈
F(t),v

〉=
∫ L

0
f(q, t) · v(X(q, t)

)
dq for almost all t ∈ (0, T ). (1.3)

Here, 〈·, ·〉 stands for the dual pairing between H−1(Ω) and H1
0(Ω). The local force

density f is defined according to f(q, t) = −E′(X(q, t)) by means of the Gâteaux
derivative E′ of the total energy E(t) :=Ee(t)+Eb(t), where

Ee(t) :=
∫ L

0

κe

2

(∣∣∣∣∂X
∂q

(q, t)

∣∣∣∣− 1

)2

dq, (1.4a)
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Eb(t) :=
∫ L

0

κb

2

∣∣∣∣∂
2X
∂q2

(q, t)

∣∣∣∣
2

dq. (1.4b)

We introduce the function spaces

V(0, T ) :=H1((0, T ),H−1(Ω)
)∩L2((0, T ),H1(Ω)

)
,

W(0, T ) := {
w ∈V(0, T ) | nΣin ·w|Σin = nΣout ·w|Σout = g,

tΣin ·w|Σin = tΣout ·w|Σout = 0, w|Σlat = 0
}
,

W0(0, T ) := {
w ∈V(0, T ) |wΓ×(0,T ] = 0

}
,

Q(0, T ) := L2((0, T ),L2
0(Ω)

)
.

The variational formulation of the FE-IB amounts to the computation of

(u,p,X) ∈W(0, T )×Q(0, T )×H1((0, T ),L2([0,L]))∩L2((0, T ),H3
per

([0,L]))

such that for all (w, q) ∈W0(0, T )×Q(0, T ) there holds

〈
ρ
∂u
∂t

,w
〉
+ a(u,w)− b(p,w)= 〈

F(t),w
〉
, (1.5a)

b(q,u)= 0, (1.5b)

u(·,0)= u(0), (1.5c)

and X satisfies (1.2a)–(1.2c). Here, the forms a(·, ·) and b(·, ·) are given by

a(u,v) := (
ρ(u · ∇)u,v

)
0,Ω + (μ∇u,∇v)0,Ω, (1.6a)

b(p,v) := (p,∇ · v)0,Ω . (1.6b)

The following result provides an energy estimate for the FE-IB.

Theorem 1 Suppose that the data of the FE-IB satisfy

F ∈ L2((0, T );H−1(Ω)
)
, u(0) ∈ L2(Ω), (1.7a)

g ∈H
5/2+s
00 (Γin ∪ Γout), s ∈ (0,1/2), (1.7b)

and

‖g‖
H

5/2+s
00 (Γin)

≤ (
4ρC(Ω)

)−1
μ, s ∈ (0,1/2), (1.8)

for some constant C(Ω) > 0, depending on the domain Ω . Then, if the triple
(u,p,X) solves (1.5a)–(1.5c) and (1.2a)–(1.2c), there exist positive constants Ci ,
1 ≤ i ≤ 2, only depending on the data of the problem, and C(g), only depending
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on g, such that

ρ

4

∥∥u(·, t)∥∥2
0,Ω +

μ

4

∫ t

0

∥∥∇u(·, τ )∥∥2
0,Ω dτ +E(t)

≤ C1

(
1+C2 t + ∥∥u(0)

∥∥2
0,Ω +E(0)+C(g)

∫ t

0
E(τ)dτ

)
.

Proof We refer to [14]. �

1.3 Space/Time Discretization

For the spatial discretization of the incompressible Navier–Stokes equations we use
P2–P1 Taylor–Hood elements [5] with respect to a simplicial triangulation Th(Ω)

of the computational domain Ω . For T ∈Th(Ω), we refer to hT as the diameter of
T and set h :=maxT ∈Th(Ω) hT . We further denote by Pk(T ), k ∈N, the linear space
of polynomials of degree ≤ k on T , and we choose the function spaces

Vh :=
{
vh ∈ C(Ω̄)2 | vh|T ∈ P2(T )2}, Qh :=

{
qh ∈ C(Ω̄) | qh|T ∈ P1(T )

}
,

and

Wh(0, T ) := {
wh ∈ C

([0, T ],C(Ω̄)2) |wh(·, t) ∈Vh,

nΓin ·wh = nΓout ·wh = gh,

tΓin ·wh = tΓout ·wh = 0, nΓlat ·wh = 0
}
,

Wh,0(0, T ) := {
wh ∈Wh(0, T ) |wh|Γ×(0,T ) = 0

}
,

Qh(0, T ) := {
qh ∈ C

([0, T ],C(Ω̄)∩L2
0(Ω)

) | qh(·, t) ∈Qh

}
.

Given some approximation gh ∈ C([0, T ],C2(Γin)) of the inflow velocity g and
u(0)
h ∈ Vh of the initial velocity u(0), we compute (uh,ph) ∈Wh(0, T )×Qh(0, T )

such that for all (wh, qh) ∈Wh,0(0, T )×Qh(0, T ) and t ∈ [0, T ] there holds

(
ρ
∂uh

∂t
,wh

)
0,Ω
+ a(uh,wh)− b(ph,wh)=

〈
Fh(t),wh

〉
h
, (1.9a)

b(qh,uh)= 0, (1.9b)

uh(0, t)= u(0)
h , (1.9c)

where 〈Fh(t),wh〉h will be defined by (1.11) below.
We discretize the immersed boundary by periodic cubic splines with respect to a

partition

T[0,L] := {0=: q0 < q1 < · · ·< qM := L}, M ∈N,
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of the interval [0,L] into subintervals Ii := [qi−1, qi] of length �qi := qi − qi−1,
and we set

Sh :=
{
Yh ∈ C2([0,L],Ω) |Yh|Ii ∈ P3(Ii)

2, Y(k)
h (q0)=Y(k)

h (qM), 0≤ k ≤ 2
}
.

Given some approximation X(0)
h ∈ Sh of X(0), we look for Xh ∈ C1([0, T ],Sh) such

that

∂Xh

∂t
= uh

(
Xh(·, t), t

)
, 0 < t ≤ T , (1.10a)

Xh(·,0)=X(0)
h . (1.10b)

Finally, the right-hand side in (1.9a) reads as follows:

〈
Fh(t),wh

〉
h
= −κe

∫ L

0

∂Xh

∂q
· ∇wh

(
Xh(q, t)

) ∂Xh

∂q
dq

+ κb

M∑
i=1

∂3Xh

∂q3

∣∣∣∣
Ii

·
∫ qi

qi−1

∇wh

(
Xh(q, t)

)∂Xh

∂q
dq. (1.11)

For discretization in time, we consider a partition T[0,T ] of the time interval [0, T ]

T[0,T ] := {0=: t0 < t1 < · · ·< tN := T }, N ∈N,

into subintervals [tn, tn+1], 0≤ n≤N − 1, of length τn := tn+1 − tn. We denote by
u(n)
h approximations of uh at times tn and define

D+�tu
(n)
h := u(n+1)

h − u(n)
h

�τn
.

Semi-explicit Scheme The Backward Euler/Forward Euler FE-IB (BE/FE FE-
IB) is a semi-explicit scheme where we discretize the semi-discrete Navier–Stokes
equations (1.9a)–(1.9c) by the implicit Euler scheme and the immersed boundary
equations (1.10a), (1.10b) by the explicit Euler scheme. In particular, given u(0)

h , for

n≥ 0 we first compute (u(n+1)
h ,p

(n+1)
h ) ∈Vh ×Qh such that

(
ρ D+�tu

(n)
h ,wh

)
0,Ω + a

(
u(n+1)
h ,wh

)− b
(
p
(n+1)
h ,wh

)= 〈
F(n)
h ,wh

〉
h
, (1.12a)

b
(
qh,u(n+1)

h

)= 0, (1.12b)
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where

〈
F(n)
h ,wh

〉
h
:= −κe

∫ L

0

∂X(n)
h

∂q
· ∂

∂q
wh

(
X(n)

h

)
dq

+ κb

M∑
i=1

∂3X(n)
h

∂q3

∣∣∣∣
Ii

·
∫ qi

qi−1

∂

∂q
wh

(
X(n)

h

)
dq

and then compute X(n+1)
h ∈ Sh according to

∫ L

0
X(n+1)

h ·Yh dq = τn

∫ L

0
u(n)
h

(
X(n)

h

) ·Yh dq +
∫ L

0
X(n)

h ·Yh dq, Yh ∈ Sh.

(1.13)
In case of an equidistant partition T[0,T ] with τn =�t := T/N , the following sta-
bility estimate holds true (cf. [14]).

Theorem 2 In addition to the assumptions of Theorem 1 suppose that the CFL-type
condition

�τ

h
≤ μ

4CB(κeL1 + κbL2)
, (1.14)

is satisfied, where CB > 0 is a computable constant, depending on the domain Ω ,
and the constants Li , 1≤ i ≤ 2, are given by

L1 := max
0≤n≤N

max
q∈[0,L]

∣∣∂X(n)
h /∂q

∣∣,
L2 := max

0≤n≤N
max

1≤i≤M
max
q∈Ii

∣∣∂3X(n)
h /∂q3|Ii

∣∣. (1.15)

Then, if (uh,ph,Xh) solves the BE/FE FE-IB (1.12a), (1.12b), (1.13), there exist
positive constants Ci , 4 ≤ i ≤ 6, depending only on the data of the problem, such
that

ρ

4

∥∥u(n)
h

∥∥2
0,Ω +

μ

4

n∑
m=1

∥∥∇u(m)
h

∥∥2
0,Ω�τ +E

(n)
h

≤ C4

(
1+C5 tn +

∥∥u(0)
h

∥∥2
0,Ω +E

(0)
h +C6

n−1∑
m=1

E
(m)
h �τ

)
. (1.16)

Remark 1 Semi-explicit schemes based on the classical IB have been applied to the
simulation of the motion of RBCs in [11, 23, 33].

Fully Implicit Scheme The Backward Euler/Backward Euler FE-IB (BE/BE FE-
IB) is a fully implicit scheme where we discretize both the semi-discrete Navier–
Stokes equations (1.9a)–(1.9c) and the immersed boundary equations (1.10a),
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(1.10b) by the backward Euler scheme. In particular, we simultaneously compute
(u(n+1)

h ,p
(n+1)
h ) ∈Vh ×Qh such that for all wh ∈Wh,0(0, T ), qh ∈Qh it holds

(
ρ D+τnu(n)

h ,wh

)
0,Ω + a

(
u(n+1)
h ,wh

)− b
(
p
(n+1
h ,wh

)= 〈
F(n+1)
h ,wh

〉
h
, (1.17a)

b
(
qh,u(n+1)

h

)= 0, (1.17b)

where

〈
F(n+1)
h ,wh

〉
h
:= −κe

∫ L

0

∂X(n+1)
h

∂q
·D1wh

(
X(n+1)

h

)∂X(n+1)
h

∂q
dq

+ κb

∫ L

0

∂2X(n+1)
h

∂q2
·
(
D1wh

(
X(n+1)

h

)∂2X(n+1)
h

∂q2

+D2wh

(
X(n+1)

h

)(∂X(n+1)
h

∂q
,
∂X(n+1)

h

∂q

))
dq,

and compute X(n+1)
h ∈ Sh such that for all Yh ∈ Sh there holds

∫ L

0
X(n+1)

h ·Yh dq − τn

∫ L

0
u(n+1)
h

(
X(n+1)

h

) ·Yh dq =
∫ L

0
X(n)

h ·Yh dq. (1.18)

Remark 2 For the classical IB, semi-explicit, approximate implicit, and fully im-
plicit schemes have been considered in [18–21, 28], whereas the unconditional sta-
bility of fully implicit FE-IB methods has been shown in [4].

1.4 Predictor–Corrector Continuation Strategy for the
Numerical Solution of the Fully Implicit Scheme

The numerical realization of the fully implicit BE/BE FE-IB amounts to the solu-
tion of a nonlinear system of equations. The application of Newton’s method turns
out to be delicate, since the numerical stiffness of the BE/BE FE-IB significantly
affects the convergence radius of Newton’s method in a negative way. In compli-
ance with this, for the fully implicit IB it was stated in [32] that Newton’s method
is computationally too expensive in practice. To overcome this difficulty, we will
use a continuation method in a predictor–corrector manner. Thereby, the time in-
crement is chosen adaptively in such a way that the convergence requirements of
Newton’s method for the next time step are met. Consequently, a successful appli-
cation of Newton’s method is guaranteed without an expensive search for proper
initial guesses.

At each time-step, the BE/BE FE-IB (1.17a), (1.17b), (1.18) amounts to the com-
putation of z(n+1) := (u(n+1), p(n+1),X(n+1))T , 0 ≤ n ≤M − 1, as the solution of
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the parameter dependent nonlinear system

G
(
z(n+1); τn

)= 0, (1.19)

where the nonlinear mapping G(·; τn) :RN →R
N is given by

G(z; τn)=
⎛
⎝(M1 + τnA)u+ τnC(u)+ τnBT p− τnF(X)−M1u(n) − τnF0

Bu− b
M3X−M3X(n) − τnK(X)u

⎞
⎠ .

(1.20)
Here, M1, A, and B are the mass and stiffness matrices associated with the fully dis-
cretized Navier–Stokes equations (1.17a), (1.17b). M3 is the mass matrix associated
with (1.18). The nonlinear maps C(u) and K(X) are associated with the nonlinear
parts of (1.17a), (1.18), respectively, and b, F0 are vectors stemming from the in-
homogeneous boundary data on Σin. For scaling purposes, we have multiplied the
second block in (1.20) with τ−1

n .
We note that the continuation parameter is the time t . We attempt to solve (1.19)

by a path-following predictor–corrector continuation strategy with constant contin-
uation as a predictor featuring an adaptive choice of the continuation steplength
and a Newton-type method as a corrector [10]. A first result in this direction is the
invertibility of the Jacobian G′(z; τn).

Theorem 3 For given z ∈ R
N and τmin > 0 there exists τmax

n (z) such that for all
step sizes τmin ≤ τn ≤ τmax

n the Jacobian

G′(z; τn)=
⎛
⎝M1 + τnA+ τnC′(u) τnBT −τnF′(X)

B 0 0
−τnK(X) 0 M3 − τnK′X(X,u)

⎞
⎠ (1.21)

is invertible with bounded inverse
∥∥(G′(z; τn))−1∥∥≤Λn,

where Λn depends on τmin and τmax
n (z).

Proof For a proof we refer to [15]. �

The adaptive predictor-corrector continuation strategy is as follows:

Initialization Specify the initial variables z(t0)= (u(0), p(0),X(0))T , an initial con-
tinuation step size τ(0,0) > 0, and bounds τmin, τmax,Θmin 
 1. Set n = j = 0.
Here, n is the iteration counter for the outer continuation, whereas j is the itera-
tion counter for the inner predictor–corrector cycles.

Step 1: Predictor As long as tn < T , set t(n+1,j) := tn+ τ(n,j) and perform the con-
tinuation

ẑ(0)(t(n+1,j)) := z(tn).
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Step 2: Corrector Solve G(z; τ(n,j)) = 0 by a combination of the ordinary and the
simplified Newton method with initial guess ẑ(0)(t(n+1,j)) and iteration counter
�= �(j)≥ 0. Thereby, z gets updated by means of

ẑ(�+1)(t(n+1,j)) := ẑ(�)(t(n+1,j))+ α��z(�),

where α� > 0 is a suitable damping factor, and contraction factors Θ�, �≥ 0, are
computed according to

Θ� := ‖�z
�+1‖

‖�z
�‖

, �≥ 0.

The contraction factors serve as a convergence monitor in the simplified New-
ton method. If the simplified Newton corrector was successful, predict the new
continuation step size by

τ(n+1,0) :=min

(
(
√

2− 1)‖�z(0)‖
2 max(Θ0,Θmin)‖z(tn)− z(tn+1)‖τ(n,j), τmax

)
,

where tn+1 := t(n+1,j) and z(tn+1) := ẑ(�)(t(n+1,j)). Set n := n+ 1, j := 0 and
go to Step 1.
Else correct the continuation step size τ by means of

τ(n,j+1) := (
√

2− 1)√
4Θ� + 1− 1

τ(n,j).

If τ(n,j+1) < τmin, stop the algorithm (convergence failure). Otherwise, set j :=
j + 1 and go to Step 1.

1.5 Documentation of Numerical Results

In this section, we provide a documentation of simulation results for both the semi-
explicit BE/FE FE-IB and the fully implicit BE/BE FE-IB.

1.5.1 The Semi-explicit BE/FE FE-IB

For studying the so-called tank treading motion [1, 12, 13, 16, 17] of viscoelas-
tic particles under shear flow, we have applied the semi-explicit BE/FE FE-
IB to a microchannel Ω = (0.0,1.2) × (0.0,0.1)10−3 m with inflow boundary
Γin = {0.0} × (0.0,0.1), inflow velocity g = 1.0 × 10−4 m/s, and outflow bound-
ary Γout := {1.2} × (0.0,0.1). We have further used ρ = 1.0 × 103 kg/m3 and
μ= 6.0× 10−3 Pa/s resulting in a Reynolds number of approximately 0.1 which is
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Fig. 1.2 Tank treading motion of a vesicle in shear flow: snapshots from experimental data (top)
and numerical simulation by the FE/BE FE-IB (bottom)

typical for microfluidic flows. The elasticity coefficients have been chosen accord-
ing to κe = 6.0× 10−6 N/m and κb = 2.0× 10−19 N/m, which correspond to the
values of RBCs [11]. We have chosen a simplicial triangulation with h = √2/16
and an equidistant partitioning of [0,L] with �q = h/2 giving rise to a total of
42555 degrees of freedom. The time step has been chosen as �t = 1/240.

Figure 1.2 displays snapshots from experimental data (top) and the simulation
results due to the application of the BE/FE FE-IB (bottom). The initially spherical
particle first gets deformed by attaining an ellipsoidal shape and then continues to
move forward with a rotating membrane (cf. the motion of a material point on the
immersed boundary marked by an arrow in the experimental result and by a black
dot in the simulations). As can be observed as well, the particle experiences some lift
towards the center of the channel. We computed an inclination angle of 34◦ which
is in very good agreement with the experimental data.

The deformability of RBCs is such that they can pass through capillaries with
diameters significantly less than the diameter of an RBC [27]. We have studied the
motion of an RBC in a microchannel of width 20 × 10−6 m featuring a capillary
of width 4.0× 10−6 m (cf. Fig. 1.3). The inflow and outflow occur through the left
and right boundary of the microchannel, respectively. The inflow velocity g as well
as the other data ρ, μ, κe , κb have been chosen as in the previous example. For
discretization in space and time, we have used h= 1/15 and �q = h/2 yielding a
total of 26709 degrees of freedom and a time step size of �t = 1/1000. We note that
�t had to be chosen that small in order to satisfy the CFL condition (1.14), since the
velocity at the opening of the capillary is almost five times higher than the inflow
velocity. Figure 1.3 (top) displays the results obtained by the BE/FE FE-IB. For
comparison, Fig. 1.3 (bottom) shows the snapshot of an RBC shortly before leaving
a capillary in an experimental set up under essentially the same flow conditions. The
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Fig. 1.3 RBC passing through a capillary of half its resting diameter: numerical simulation by the
BE/FE FE-IB (top) and snapshot from an experiment (bottom)

Fig. 1.4 Breakdown of the BE/FE FE-IB for τ = 1/250 due to high oscillations of membrane
nodes

fish-like shape of the RBC inside the capillary is very well captured by the numerical
simulation.

1.5.2 The Fully Implicit BE/BE FE-IB

The motion of an RBC through a thin capillary is an appropriate example to illustrate
the limitations of the semi-explicit BE/FE FE-IB and the advantages of the fully
implicit BE/BE FE-IB. We have studied the same scenario as before, but applied
the BE/FE FE-IB with a time step size �t = 1/250. Figure 1.4 shows the onset
of numerical instabilities due to oscillations of membrane nodes which caused a
breakdown of the algorithm after t = 0.05. Such instabilities do not occur when



1 FE-IB for Simulation of the Motion of RBCs 15

Fig. 1.5 Application of the BE/BE FE-IB: Snapshots of the RBC’s membrane at selected time
instants corresponding to the ∗-marked time instants in Fig. 1.6

Fig. 1.6 Application of the BE/BE FE-IB: Evolution of the adaptively chosen time step sizes
(solid line) and of the (scaled) total energy (dashed line)

using the fully implicit BE/BE FE-IB and its numerical realization by the predictor-
corrector continuation strategy as described in Sect. 1.4 (cf. Fig. 1.5).

In fact, the adaptive time step size selection detects the critical stage of the pro-
cess which occurs when the RBC starts to deform before entering the capillary and
thus leads to a significant increase of its total energy. This is displayed in Fig. 1.6
which shows the evolution of the adaptively chosen time increments and the total
energy.
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Chapter 2
Iterative Solution Methods for Large-Scale
Constrained Saddle-Point Problems

Erkki Laitinen and Alexander Lapin

Abstract Iterative solution methods for a class of finite-dimensional constrained
saddle point problems are developed. These problems arise if variational inequal-
ities and minimization problems are solved with the help of mixed finite element
statements involving primal and dual variables. In the paper, we suggest several
new approaches to the construction of saddle point problems and present conver-
gence results for the iteration methods. Numerical results confirm the theoretical
analysis.

Keywords Variational inequality · Optimal control problem · Finite element
method · Constrained saddle point problem · Iteration methods

2.1 Introduction

We construct and investigate iteration methods for the finite dimensional constrained
saddle point problem

(
A −CT

−C 0

)(
x

λ

)
+
(

P(x)

−Q(λ)

)
�
(

f

−g
)
, (2.1)

where f ∈R
Nx and g ∈R

Nλ are given vectors, and the following assumptions hold:

(A1) Operator A :RNx →R
Nx is continuous, strictly monotone and coercive;

(A2) C ∈R
Nλ×Nx , Nλ ≤Nx , is a full rank matrix: rankC =Nλ;
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(A3) P = ∂Φ , Q= ∂Ψ , where Φ :RNx → R̄ and Ψ :RNλ → R̄ are proper, convex
and lower semi-continuous functions.

Different particular cases of the problem (2.1) arise if grid approximations (finite
difference, finite element, etc.) are used to approximate variational inequalities or
optimal control problems. Specifically, introducing the dual variables to the grid
approximations of the variational inequalities with constraints for the gradient of a
solution leads to (2.1) with Q = 0. Approximations of the control problems with
control function in the right-hand side of a linear differential equation or in the
boundary conditions give rise to the saddle point problem (2.1) with Q = 0 and
linear A. Finally, we note that mixed and hybrid finite element schemes for the 2-nd
order variational inequalities with pointwise constraints to the solution imply (2.1)
with P = 0.

The solution methods for large-scale unconstrained saddle point problems are
thoroughly investigated. The state-of-the-art for this problem can be found in the
survey paper [1] and in the book [6]. Constrained saddle point problems arising
from the Lagrangian approach for solving variational inequalities in mechanics and
physics are considered in [8–10] (see also the bibliography therein). Namely, the
convergence of Uzawa-type, Arrow-Hurwitz-type, and operator-splitting iterative
methods are investigated in these books.

The development of the efficient numerical methods designed to solve state-
constrained optimal control problems represents severe numerical challenges. The
construction of the effective iterative solution methods for them is an actual prob-
lem. The achievements in this field during the past two decades are reported in
the book [5] and the articles [2–4, 11–15, 21]. The augmented Lagrangian method
as well as regularization and penalty methods have been investigated for particu-
lar classes of the state-constrained optimal control problems. Adjustment schemes
for the regularization parameter of a Moreau–Yosida-based regularization and for
the relaxation parameter of interior point approaches to the numerical solution of
pointwise state constrained elliptic optimal control problems have been constructed.
Lavrentiev regularization has been applied to transform the state constraints to the
mixed control-state constraints in the linear-quadratic elliptic control problem with
pointwise constraints on the state. The interior point methods and the primal-dual
active set strategy have been applied to the transformed problem.

In this article, we prove convergence of the iterative solution methods for the
saddle point problem (2.1). The sufficient conditions of convergence for the iterative
methods are presented in the form of matrix inequalities and give rise to construct-
ing appropriate preconditioners and allow choosing the iterative parameter. Appli-
cations of the general convergence results to sample examples of the variational
inequalities and optimal control problems, as well as several numerical results, are
included. The results of this article are founded in the previous papers [16–19] by
the authors.
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2.2 Iterative Methods for the Saddle-Point Problem

2.2.1 Existence of the Solutions

Consider the problem (2.1) and suppose that it has a nonempty set of solutions
X = {(x,λ)}. Below we present the existence results for the cases P = 0 or Q= 0,
which are mostly interesting for the applications included in the article. Note that
the assumptions (A1)–(A3) ensure the uniqueness of the component x.

Lemma 2.1 Let the assumptions (A1)–(A3) be fulfilled and P = 0. Let also the
operator A be uniformly monotone, i.e.,

(Ax −Ay,x − y)≥ α‖x − y‖2
A0

α > 0, (2.2)

and Lipshitz-continuous

‖Ax −Ay‖
A−1

0
≤ β‖x − y‖A0 (2.3)

with a symmetric and positive definite matrix A0 ∈R
Nx×Nx . Then, the problem (2.1)

has a unique solution (x,λ).

Lemma 2.2 ([17]) Let the assumptions (A1)–(A3) be fulfilled, Q= 0, and

int domΦ ∩ {x ∈R
Nx : Cx = g

} �= ∅.
Then, the problem (2.1) has a nonempty set of solutions X = {(x,λ)} with a uniquely
defined component x.

2.2.2 Iteration Methods

We consider two iteration methods for solving (2.1): a preconditioned Uzawa-type
method

Axk+1 + P
(
xk+1)−CT λk � f,

1

τ
Bλ

(
λk+1 − λk

)+Q
(
λk+1)+Cxk+1 � g

(2.4)

and a preconditioned Arrow-Hurwitz-type method

1

τ
Bx

(
xk+1 − xk

)+Axk + P
(
xk+1)−CT λk � f,

1

τ
Bλ

(
λk+1 − λk

)+Q
(
λk+1)+Cxk+1 � g.

(2.5)
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Preconditioners Bx and Bλ are supposed to be symmetric and positive definite ma-
trices, τ > 0 is an iteration parameter.

In the forthcoming theorem, we give sufficient conditions of the convergence for
the iterative method (2.4).

Theorem 2.1 ([17]) Let the operator A be uniformly monotone (2.2). If

Bλ >
τ

2α
CA−1

0 CT , (2.6)

then the iterations of the method (2.4) converge to a solution of (2.1) starting from
any initial guess λ0.

Note 1 Since the component x of the exact solution (x,λ), as well as the compo-
nents xk of the iterations belong to D(P ) ⊂ domΦ , it is sufficient for A to be a
uniform monotone operator only on domΦ .

Note 2

(a) In [6], it is proved that the positive eigenvalues μ of two generalized eigenvalue
problems

CA−1
0 CT = μBλ and CT B−1

λ C = μA0

with symmetric and positive definite matrices A0 and Bλ coincide. Owing to
this inequality, (2.6) is equivalent to the inequality

A0 >
τ

2α
CT B−1

λ C. (2.7)

(b) The inequality

(Ax −Ay,x − y) >
τ

2

(
CT B−1

λ C(x − y), x − y
) ∀x �= y

replaces both (2.2) and (2.6).
(c) If A is linear then we can take A0 = 0/5(A+AT ) and the inequalities (2.6) and

(2.7) become, respectively (cf. [18]):

Bλ >
τ

2
CA−1

0 CT and A0 >
τ

2
CT B−1

λ C.

(d) In the case of a potential operator A : A = ∇Ξ , where Ξ is a differentiable
convex function, the method (2.4) is just the preconditioned Uzawa method
applied to finding a saddle point of the Lagrangian

2L (x,λ)= 1

2
Ξ(x)+Φ(x)− (λ,Cx − g)− (f, x).

The sufficient conditions for the choice of the preconditioning matrices Bx and
Bλ and iterative parameter τ > 0 required to ensure the convergence of the Arrow–
Hurwitz-type method (2.5) are given by
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Theorem 2.2 ([17]) Let the operator A be uniformly monotone (2.2) and Lipshitz-
continuous (2.3). If

(
2α − τμmaxβ

2)A0 > τ CT B−1
λ C, (2.8)

where μmax = λmax(B
−1/2
x A0B

−1/2
x ) is the maximal eigenvalue of the matrix

B
−1/2
x A0B

−1/2
x , then iterations of the method (2.5) converge to a solution of (2.1)

starting from any initial guess (x0, λ0).

Note 3 It is sufficient for A to be a uniform monotone and Lipshitz-continuous
operator only on domΦ (cf. Note 1).

Note 4

(a) The choice Bx = A0 gives the best limit for the iterative parameter τ ensuring
the convergence of the method. In this case, the inequality (2.8) reads

A0 >
τ

2α− τβ2
CT B−1

λ C,

and further choice of a preconditioner Bλ is similar to the case of the
method (2.4).

(b) If A is linear then the sufficient convergence condition (2.8) can be replaced by
the following sharper condition:

A>
τ

2

(
AB−1

x AT +CT B−1
λ C

)
.

2.2.3 Stopping Criterion

One possible stopping criterium for an iterative process is based on the evaluation
of residual norms. Namely, when solving the problem (2.1) by an iterative method
we find not only the pair (xk, λk)—approximations of the exact solution (x,λ), but
also uniquely defined selections γ k ∈ P(xk), δk ∈Q(λk). Let us define the residual
vectors

rkx = f −Axk − γ k +CT λk, rkλ = g − δk −Cxk.

Lemma 2.3 Let the operator A be uniformly monotone (2.2). Then the error esti-
mate ∥∥x − xk

∥∥
A0
≤ c1

∥∥rkx∥∥A−1
0
+ c2

∥∥λ− λk
∥∥1/2∥∥rkλ∥∥1/2 ∀k (2.9)

is valid for the methods (2.4) and (2.5). Constants c1 and c2 depend only on the
constant α of uniform monotonicity of operator A.
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Since ‖λ− λk‖→ 0 for k→∞, then the inequality (2.9) gives an estimate for
the error ‖x − xk‖A0 throughout the norms ‖rkx‖A−1

0
and ‖rkλ‖.

Note 5 In the Uzawa-type method for the saddle point problem, the inclusion Ax−
BT λ+ ∂ϕ(x) � f is solved exactly on each iteration. Due to this fact, rkx = 0 and
the estimate (2.9) reads

∥∥x − xk
∥∥
A0
≤ c2

∥∥λ− λk
∥∥1/2∥∥rkλ∥∥1/2 ∀k, (2.10)

whence ∥∥x − xk
∥∥= o

(∥∥rkλ∥∥1/2) for k→∞.

2.3 Application to Variational Inequalities

Now we consider the application of the previous results to a sample example of the
variational inequality: find u ∈ V such that ∀v ∈ V

∫
Ω

a(x) k(∇u) ·∇(v−u)dx+
∫
Ω

|∇v|dx−
∫
Ω

|∇u|dx ≥
∫
Ω

f (v−u)dx. (2.11)

Here H 1
0 (Ω) ⊂ V ⊂ H 1(Ω), a(x) > 0, and k(t̄) : R2 → R

2 is a continuous and
uniformly monotone vector-function:

(
k(t̄1)− k(t̄2)

) · (t̄1 − t̄2)≥ σ0|t̄1 − t̄2|2 ∀t̄i , σ0 > 0. (2.12)

We construct a simple finite element approximation of (2.11) in the case of polyg-
onal domain Ω . Let Ω =⋃

e∈Th e be a conforming triangulation of Ω [7], where
Th is a family of Ne non-overlapping closed triangles e (finite elements) and h is
the maximal diameter of all e ∈ Th. Further Vh ⊂H 1

0 (Ω) is the space of the contin-
uous and piecewise linear functions (linear on each e ∈ Th), while Uh ∈ L2(Ω) is
the space of the piecewise constant functions. Define fh ∈ Uh and ah ∈ Uh by the
equalities

fh(x)= |e|−1
∫
t∈e

f (t)dt, ah(x)= |e|−1
∫
t∈e

a(t)dt, ∀x ∈ e, |e| =meas e.

The finite element approximation of the problem (2.11) satisfies the relation

uh ∈ Vh :
∫
Ω

ah(x)k(∇uh) · ∇(vh − uh)dx +
∫
Ω

|∇vh|dx −
∫
Ω

|∇uh|dx

≥
∫
Ω

fh(vh − uh)dx, ∀vh ∈ Vh. (2.13)
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In order to formulate (2.13) in a vector-matrix form, we first define the vectors
u ∈ R

Nu and w ∈ R
Ne of the nodal values of functions uh ∈ Vh and wh ∈ Uh, re-

spectively. We correspond a vector valued function q̄h = (q1h, q2h) ∈ Uh × Uh to
the vector q = (q11, q21, . . . , q1i , q2i , . . . , q1Ne, q2Ne) ∈ R

2Ny , where q1i = q1h(x),
q2i = q2h(x) for x ∈ ei . Further, we define the matrix L ∈R

Nu×Ny and the operator
k :RNy →R

Ny by the equalities

(Lu,q)=
∫
Ω

∇uh(x) · q̄h(x)dx,
(
k(p), q

)=
∫
Ω

ah(x)k
(
p̄h(x)

) · q̄h(x)dx,

diagonal matrix D = diag(a1, a1, . . . , ai, ai, . . . , aNe , aNe) ∈ R
Ny×Ny with the en-

tries ai = ah(x) for x ∈ ei , and vector f ∈R
Nu , (f,u)= ∫

Ω
fh(x)uh(x)dx. Finally,

let the convex function be defined by the relation

θ(p)=
Ne∑
j=1

|ej |
(
p2

2j + p2
2j−1

)1/2
.

Now, the discrete variational inequality (2.13) can be written in the form

u ∈R
Nu : (Dk(Lu),L(v − u)

)+ θ(Lv)− θ(Lu)≥ (f, v− u) ∀v ∈R
Nu

or, equivalently, as the inclusion

LTDk(Lu)+LT ∂θ(Lu) � f. (2.14)

We will construct different saddle point problems using the inclusion (2.14).

2.3.1 Variational Inequality with the Linear Main Operator

First, let us consider the discrete problem approximating variational inequality with
the linear differential operator: k(∇u)= ∇u. The corresponding discrete inclusion
is

LT DLu+LT ∂θ(Lu) � f.

Denoting p = Lu, we transform it to one of the following three systems:

1

2
LTDLu+LT λ= f, λ ∈ 1

2
Dp+ ∂θ(p), p = Lu; (2.15)

LTDLu+LT λ= f, λ ∈ ∂θ(p), p = Lu; (2.16)

LT λ= f, λ ∈Dp+ ∂θ(p), p = Lu. (2.17)

The matrix A1 =
(

0.5LT DL 0
0 0.5D

)
of the first two equations in the system (2.15)

is positive definite and block diagonal. Thus, the Uzawa-type method (2.4), being
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applied to this system, can be effectively implemented. On the other side, the saddle
point problems (2.16) and (2.17) contain degenerate matrices A2 =

(
LT DL 0

0 0

)
and

A3 =
( 0 0

0 D

)
, respectively, so, the iterative method (2.4) cannot be applied for their

solution. We realize different equivalent transformations of (2.16) and (2.17) by
using the equation Lu= p, to obtain the systems with positive definite matrices Ai .
In particular, we can get the system corresponding to the augmented Lagrangian
method⎛

⎝(1+ r)LT DL −rLT D LT

−rDL rD −E
L −E 0

⎞
⎠
⎛
⎝u

p

λ

⎞
⎠+

⎛
⎝ −f
∂θ(p)

0

⎞
⎠ � 0, r > 0. (2.18)

The matrix Ar =
(
(1+r)LT DL −rLT D

−rDL rD

)
in (2.18) is symmetric and positive definite for

any r > 0. However, it is not block diagonal or block triangle. In view of this, the
method (2.4) cannot be effectively implemented (while it converges for this prob-
lem). The most well-known methods for solving (2.18) are the so-called Algorithms
2–6 (see [8, 9]), based on the block relaxation technique to inverse Ar and updat-
ing of the Lagrange multipliers λ. Instead of (2.18) we construct the systems with
positive definite and block triangle 2× 2 left upper blocks:

⎛
⎝LTDL 0 LT

−rDL rD −E
L −E 0

⎞
⎠
⎛
⎝u

p

λ

⎞
⎠+

⎛
⎝ −f
∂θ(p)

0

⎞
⎠ � 0, (2.19)

⎛
⎝rLT DL −rLT D LT

0 D −E
L −E 0

⎞
⎠
⎛
⎝u

p

λ

⎞
⎠+

⎛
⎝ −f
∂θ(p)

0

⎞
⎠ � 0. (2.20)

Lemma 2.4 Let 0 < r < 4. Then the matrices

A2[r] =
(
LTDL 0
−rDL rD

)
, A3[r] =

(
rLT DL −rLT D

0 D

)
(2.21)

in the systems (2.19) and (2.20) are energy equivalent to the block diagonal and
positive definite matrix

A0 =
(
LTDL 0

0 D

)

with the constants depending only on r :

αi(r)(A0x, x)≤
(
Ai[r]x, x

)≤ βi(r)(A0x, x) ∀x, i = 2,3.

As the matrices A2[r] and A3[r] defined in (2.21) are block triangle, the Uzawa-
type iterative method (2.4) can be easily implemented for the solution of the systems
(2.19) and (2.20). Owing to Theorem 2.1, the most reasonable preconditioner is
Bλ =D−1. The convergence result in the particular case r = 1 reads as follows:
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Theorem 2.3 ([18]) Let r = 1. Then the method (2.4) with Bλ = D−1 applied to
the systems (2.19) and (2.20) converges provided that 0 < τ < 1

2 .

Implementation of the method (2.4) for (2.19) and (2.20) includes solving a sys-
tem of linear equations with the matrix LTDL and solving an inclusion of the form
cDp+ ∂θ(p) � F , c= const with a known vector F . In the example under consid-
eration, the matrix D is diagonal and the multivalued operator ∂θ is block-diagonal
with 2× 2 blocks. Because of this, the inclusion cDp + ∂θ(p) � F can be easily
solved by the direct methods.

2.3.2 Variational Inequality with Non-linear Main Operator

To construct saddle point problems for the inclusion (2.14) with the non-linear main
operator, we proceed similarly to the linear case. Namely, by using Lagrange mul-
tipliers λ and the equation Lu = p, we construct saddle point problems with uni-
formly monotone operators in the space of the vectors x = (u,p)T . Consider two of
them:

LT k(Lu)+LT λ= 0, −rDLu+ rDp+ ∂θ(p)− λ � 0,

Lu− p = 0, (2.22)

rLT DLu− rLT Dp+LT λ= 0, Dk(p)+ ∂θ(p)− λ � 0,

Lu− p = 0. (2.23)

The systems (2.22) and (2.23) contain block-triangle operators

A1(x)=
(
LT k(Lu) 0
−rDLu rDp

)
and A2(x)=

(
rLT DLu −rLT Dp

0 Dk(p)

)
.

Lemma 2.5 Let the uniform monotonicity property (2.12) with the constant σ0 hold
and 0 < r < 4σ0. Then the operators A1 and A2 are uniformly monotone:

(Aix1 −Aix2, x1 − x2)≥ αi‖x1 − x2‖2
A0

, αi = αi(r, σ0) > 0, i = 1,2, (2.24)

where A0 =
(
LT DL 0

0 D

)
is the positive definite matrix.

Lemma 2.6 Let the function k be Lipschitz-continuous:

(
k(t̄1)− k(t̄2)

) · (s̄)≤ σ1|t̄1 − t̄2||s̄| ∀t̄i , s̄. (2.25)

Then the operators A1 and A2 are Lipschitz-continuous:

‖Aix1 −Aix2‖A−1
0
≤ βi‖x1 − x2‖A0, βi = βi(r, σ1), i = 1,2. (2.26)
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Application of Lemmas 2.5 and 2.6 and Theorem 2.1 gives the following result:

Theorem 2.4 Let 0 < r < 4σ0. Then the Uzawa-type iterative method (2.4) with the
preconditioner Bλ =D−1 applied for solving (2.22) and (2.23) converges if

0 < τ <
2α2r

1+ r
.

Implementation of the method (2.4) for (2.23) includes solving a system of linear
equations with the matrix LTDL and solving the inclusion Dk(p)+∂θ(p) � F with
a known vector F . This inclusion can be effectively solved because the operator k
is diagonal and ∂θ is a 2× 2 block diagonal operator.

Implementation of (2.4) for the problem (2.22) requires solving the system
of nonlinear equations LT k(Lu) + LT λ = 0 by an inner iterative method. Thus,
the effectiveness of the algorithm depends also on the effectiveness of an inner
iterative method. Instead of the Uzawa-type method we can apply the Arrow–
Hurwitz-type iterative method (2.5) for the problem (2.22) with Bλ = D−1 and
Bx =A0 =

(
LT DL 0

0 D

)
. The results of Lemmas 2.5 and 2.6 and Theorem 2.2 yield

Theorem 2.5 Let 0 < r < 4σ0. Then the iterative method (2.5) for the problem
(2.22)

r

τ
LT DL

(
uk+1 − uk

)+LT k
(
Luk

)+LT λk = 0,

1

τ
D
(
pk+1 − pk

)− rDLuk + rDpk + ∂θ
(
pk+1)− λk � 0,

1

τ

(
λk+1 − λk

)+D
(
Luk+1 − pk+1)= 0

(2.27)

converges if

τ <
2α1

β1 + (1+ r)/r
.

It is easy to see that the implementation of (2.27) includes the same steps as the
implementation of the method (2.4) for (2.23).

2.3.3 Variational Inequality with Pointwise Constraints both for
the Solution and Its Gradient

Consider the variational inequality: find u ∈ Uad = {u ∈ H 1
0 (Ω) : u(x) ≥ 0 in Ω},

such that for all v ∈Uad∫
Ω

a(x)k
(|∇u|)∇u · ∇(v− u)dx +

∫
Ω

(|∇v| − |∇u|)dx ≥
∫
Ω

f (v − u)dx,
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where a(x) > 0 and the vector-function k(|t̄ |)t̄ satisfies (2.12). After approximation
of this variational inequality, we obtain the discrete variational inequality
(
Dk(Lu),L(v − u)

)+ θ(Lv)− θ(Lu)+ ϕ(v)− ϕ(u)≥ (f, v− u) ∀v ∈R
Nu,

where ϕ is the indicator function of the constraint set {u ∈ R
Nu : ui ≥ 0 ∀i}, while

all other notations are the same as above. We write this variational inequality in the
form of inclusion

LT D k(Lu)+LT ∂θ(Lu)+ ∂ϕ(u) � f.

We proceed as before and construct the saddle point problems

LT k(Lu)+ ∂ϕ(u)+LT λ= 0, −rDLu+ rDp+ ∂θ(p)− λ � 0,

Lu− p = 0, (2.28)

rLT DLu− rLT Dp+ ∂ϕ(u)+LT λ= 0, Dk(p)+ ∂θ(p)− λ � 0,

Lu− p = 0. (2.29)

Both iterative methods, (2.4) and (2.5), can be applied for solving these saddle point
problems because the results of Theorems 2.1 and 2.2 are valid with the operator
P defined by P(x)= (∂ϕ(u), ∂θ(p))T . But now, the implementation of the Uzawa-
type iterative method (2.4) for (2.29) includes the solution of the finite dimensional
obstacle problem—the inclusion

rLT DLu+ ∂ϕ(u) � rLT Dp−LT λ

with the symmetric and positive definite matrix rLT DL, and the implementation
of this method for (2.28) includes the solution of the problem with the non-linear
operator

LT k(Lu)+ ∂ϕ(u) �−LT λ.

The Arrow–Hurwitz-type method (2.5) with preconditioners Bx =
(
D 0
0 D

)
and

Bλ = D−1 being applied to (2.28) or (2.29) converges and it can be easily imple-
mented. On the other hand, in this case the maximal eigenvalue μmax of the matrix
B
−1/2
x A0B

−1/2
x depends on condition numbers of the matrices D and LT L, thus, on

the mesh step h. Convergence of the corresponding iterative methods is guaranteed
for the very small iterative parameter τ , and numerical experiments demonstrate
slow convergence of the Arrow–Hurwitz-type method (2.5).

2.3.4 Results of Numerical Experiments

We have solved a number of 1D and 2D linear and non-linear variational inequalities
using the simplest finite element and finite difference approximations and applying
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Table 2.1 Dependence of nit on τ and n for Problem 2.1

n 5000 50000 500000

τ 1.3 1.2 1.1 1 0.9 1 1

nit 10 8 6 2 6 2 2

the Uzawa-type method. The main purpose of the numerical experiments was to ob-
serve the dependence of the number of iterations upon the mesh step h and iterative
parameter τ . We also compared proposed iterative algorithms with well-known al-
gorithms for saddle point problems constructed via an augmented Lagrangian tech-
nique. Several numerical results are reported below.

Consider the following one-dimensional variational inequality

u ∈K :
∫ 1

0
u′
(
v′ − v′

)
dx ≥

∫ 1

0
f (v− u)dx ∀v ∈K

with the set of constraints K = {u ∈ H 1
0 (0,1) : |u′(x)| ≤ 1 for x ∈ (0,1)}. Finite

element approximation with piecewise linear elements on the uniform grid leads
to the inclusion LT Lu + LT ∂θ(Lu) � f , where the matrix L corresponds to the
approximation of the first order derivative. We solve the corresponding saddle point
problems:

Problem 2.1 The saddle point problem with A = (
LT L 0
−L E

)
(which corresponds

to (2.19)).

Problem 2.2 The saddle point problem with A = ( 1
2L

T L 0

0 1
2E

)
(which corresponds

to (2.15)).

We use the stopping criterion

∥∥u− u∗
∥∥
L2
=
(
h

n∑
i=1

(
ui − u∗i

)2

)1/2

< 10−4,

where h= n−1 is the mesh step and u∗ is the known exact solution, and the initial
guess λ= 0. Table 2.1 demonstrates the dependence of the number of iterations nit
upon the iterative parameter and the number of the grid nodes for Problem 2.1.

For Problem 2.2 the optimal iterative parameter was found τ = 0.4 and the num-
ber of iterations to achieve the accuracy ‖u− u∗‖L2 < 10−4 for the grids with the
number of nodes from n= 50 to n= 500 000 was equal to 12.
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Table 2.2 Left: The Uzawa method with the preconditioner Bλ equals to the unit matrix for Prob-
lem 2.3, the initial guess λ = 0. Right: Algorithm 2 for Problem 2.4, corresponding to the aug-
mented Lagrangian method, the initial guess λ= 0, p = 0

n 200 400

τ 1.2 1.3 1.4 1.5 1.6 1.3

nit 11 11 13 17 23 11

n 200 400 500

τ 1.3 1.3 1.3

nit 9 9 9

Now we consider two-dimensional variational inequalities with linear differential
operators

∫
Ω

∇u · ∇(v− u)dx ≥
∫
Ω

f (v− u)dx, ∀v ∈K,

K =
{
u ∈H 1

0 (Ω) :
∣∣∣∣ ∂u∂x1

∣∣∣∣≤ 1,

∣∣∣∣ ∂u∂x2

∣∣∣∣≤ 1 in Ω

}
; (2.30)

∫
Ω

∇u · ∇(v− u)dx +
∫
Ω

|∇v| − |∇u|dx ≥
∫
Ω

f (v − u)dx ∀v ∈H 1
0 (Ω).

(2.31)

We set Ω = (0,1) × (0,1) and construct finite difference approximations on uni-
form grids. These finite difference schemes can be written in the form of the inclu-
sion LT Lu + LT ∂θ(Lu) � f , where the rectangular matrix L corresponds to the
approximation of the gradient operator. We have studied the following two saddle
point problems:

Problem 2.3 2D saddle point problem with the matrix A= (
LT L 0
−L E

)
.

Problem 2.4 2D saddle point problem with the matrix A = (
2LT L −LT

−L E

)
(which

corresponds to the augmented Lagrangian method with r = 1).

We use the stopping criterion

∥∥u− u∗
∥∥
L2
=
(
h2

n∑
i,j=1

(
uij − u∗ij

)2

)1/2

< 10−3,

where n= h−1 is the number of nodes in one direction and u∗ is the known exact
solution. Table 2.2 contains results for the variational inequality (2.30).

For the discrete saddle point problems corresponding to (2.31) the results were
similar. Namely, for both aforementioned methods and grids with the number of
nodes n= 100,200,400 the accuracy ‖u− u∗‖L2 < 10−3 was achieved within 19
iterations for τ = 1.2, which was found as numerically optimal.
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Table 2.3 2D non-linear saddle point problem; C = 10, τ = 1/2, n= 500

nit 1 10 20 30 40 50 60 70

‖rλ‖ 0.7137 0.1144 0.0248 0.0095 0.0050 0.0030 0.0020 0.0015

δu 0.0829 0.0123 0.0058 0.0014 0.0009 0.0005 0.0003 0.0001

Finally, we consider a two-dimensional variational inequality associated with the
non-linear differential operator

∫
Ω

k
(|∇u|)∇u · ∇(v− u)dx ≥ C

∫
Ω

(v − u)dx, ∀v ∈K, (2.32)

where Ω = (0,1)× (0,1), k(t)t =√t and K = {u ∈ H 1
0 (Ω) : |∇u(x)| ≤ 1 in Ω}.

We constructed a finite difference approximation of (2.32) on the uniform grid. Ac-
cording to the theory the iterative parameter was taken τ = 1/2. Since the exact
solution was not known we estimated the norms of the residuals ‖rλ‖|L2 (see the
estimate (2.10)). Calculations were made for different amount of nodes in one di-
rection. For all grids, we observed typical dependence of norms of the residuals
upon the iteration number: very fast decreasing during the first iterations with fur-
ther deceleration. After 20–25 iterations the norm ‖uk−uk−1‖L2 became very close
to zero and the vector uk could be taken as the exact solution. The calculation re-
sults for the case n= 500 are given in Table 2.3, where δu= ‖uk − u100‖L2 is the
norm of the difference between the current iteration and the 100th iteration which
was taken as the exact solution.

In the computations performed for 1D and 2D variational inequalities, the fol-
lowing features were observed:

• The dependence of the rate of convergence for the method (2.4) on the parameters
r and τ = τ(r) was quite low;

• The number of iterations did not depend on the mesh size h= 1/n;
• In all cases the Uzawa-type method (2.4) applied to transformed saddle point

problems with the block triangle A was similar by a rate of convergence to Al-
gorithm 2 applied to the saddle point problem constructed via the augmented
Lagrangian technique.

2.4 Application to Optimal Control Problems

Consider the following elliptic boundary value problem:

∫
Ω

2∑
i,j=1

(
aij

∂y

∂xj

∂z

∂xi
+ a0yz

)
dx =

∫
Ω

(f + χ0u)zdx ∀z ∈H 1
0 (Ω). (2.33)
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Here Ω0 ⊆Ω , χ0 ≡ χΩ0 is the characteristic function of the domain Ω0, the func-
tion f ∈ L2(Ω) is fixed, while u ∈ L2(Ω0) is a variable control function. Coef-
ficients aij (x) and a0(x) are continuous in Ω and satisfy the following ellipticity
assumptions:

2∑
i,j=1

aij (x)ξj ξi ≥ c0

2∑
i=1

ξ2
i , a0(x)≥ 0 ∀x ∈Ω, c0 = const > 0.

Define the goal functional

J (y,f )= 1

2

∫
Ω1

(y − yd)
2 dx + 1

2

∫
Ω0

u2 dx

with a given function yd(x) ∈ L2(Ω1), Ω1 ⊆Ω , and the sets of the constraints

Yad =
{
y ∈V : y(x)≥ 0 ∀x ∈Ω}

, Uad =
{
u∈L2(Ω0) :

∣∣u(x)∣∣≤ ud ∀x ∈Ω0
}
.

The optimal control problem reads as follows:

min
(y,u)∈Z J (y,u), Z = {

(y,u) : y ∈ Yad, u ∈Uad, Eq. (2.33) holds
}
. (2.34)

We suppose that the set Z is non-empty. Then, the problem (2.34) has a unique
solution (cf., e.g., [20]).

Construct a finite element approximation of the problem (2.34) in the case of
polygonal domains Ω , Ω0 and Ω1. Let a triangulation of Ω be consistent with Ω0
and Ω1. Define the spaces of the continuous and piecewise linear functions (linear
on each triangle of the triangulation) on the domain Ω (Vh ⊂ H 1

0 (Ω)) and on the
subdomains Ω0 and Ω1. Let functions f , u and yd be continuous and fh, uh and
yd h be their piecewise linear interpolations. We use the quadrature formulas

∫
e

g(x)dx ≈ Se(g)= 1

3
|e|

3∑
α=1

g(xα),

SΩ(g)=
∑
e∈Th

Se(g), SΩi
(g)=

∑
e∈T i

h

Se(g),

where xα are the vertices of e, and |e| =meas e. Finite element approximations of
the state equation, the goal function, and the constraints are as follows:

SΩ

(
2∑

i,j=1

aij
∂yh

∂xj

∂zh

∂xi
+ a0yhzh

)
= SΩ(fh zh)+ SΩ0(uh zh) ∀zh ∈ Vh, (2.35)

Jh(yh,uh)= 1

2
SΩ1

(
(yh − yd h)

2)+ 1

2
SΩ0

(
u2
h

)
,

Y h
ad =

{
yh ∈ Vh : yh(x)≥ 0 in Ω

}
, Uh

ad =
{
uh :

∣∣uh(x)∣∣≤ ud in Ω0
}
.
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The state equation (2.35) has a unique solution yh and the following stability in-
equality holds:

S
1/2
Ω

(|yh|2)≤ ka
(
S

1/2
Ω

(
f 2
h

)+ S
1/2
Ω0

(
u2
h

))
(2.36)

with a constant ka independent on h. The finite element approximation of the opti-
mal control problem (2.34) is

⎧⎨
⎩

min
(yh,uh)∈Zh

Jh(yh,uh),

Zh = {(yh,uh) : yh ∈ Yh
ad, uh ∈Uh

ad, Eq. (2.35) holds}.
(2.37)

To obtain the matrix-vector form of (2.37), we define the vectors of nodal values
y ∈R

Ny , u ∈R
Nu and the matrices

L ∈R
Ny×Ny : (Ly, z)= SΩ

(
2∑

i,j=1

aij
∂yh

∂xj

∂zh

∂xi
+ a0yhzh

)
,

S ∈R
Ny×Nu : (Su, z)= SΩ0(uhzh), K ∈R

Ny×Ny : (Ky, z)= SΩ1(yhzh),

M ∈R
Ny×Ny : (Mf, z)= SΩ(fhzh), M0 ∈R

Nu×Nu : (M0u,v)= SΩ0(uhvh).

Then, the discrete optimal control problem can be written in the form

min
Ly=Mf+Su

{
1

2
(Ky,y)− (Kyd, y)+ θ(y)+ 1

2
(M0u,u)+ ϕ(u)

}
,

where θ(y) = IYad (y) and ϕ(u) = IUad
(u) are the indicator functions of the sets

Yad = {y ∈ R
Ny : yi ≥ 0 ∀i} and Uad = {u ∈ R

Nu : |ui | ≤ ud ∀i}, respectively. The
corresponding saddle point problem reads as follows:

⎛
⎝ K 0 −LT

0 M0 ST

−L S 0

⎞
⎠
⎛
⎝y

u

λ

⎞
⎠+

⎛
⎝∂θ(y)

∂ϕ(u)

0

⎞
⎠ �

⎛
⎝ Kyd

0
−Mf

⎞
⎠ . (2.38)

In the problem (2.38), the stiffness matrix L is positive definite, and M > 0, M0 > 0,
K ≥ 0 are diagonal matrices. The main feature of (2.38) is that K is a degenerate
matrix. We transform the system (2.38) to obtain a positive definite and block trian-
gle left upper 2× 2 block. To this end we add to the first inclusion in (2.38) the last
equation multiplying by −rML−1, r > 0, and obtain the saddle point problem

(
A[r] −CT

−C 0

)(
x

λ

)
+
(
∂Θ(x)

0

)
�
(

g̃

−Mf

)
(2.39)

with

A[r] =
(
K + rM −rML−1S

0 M0

)
, ∂Θ(x)=

(
∂θ(y)

∂ϕ(u)

)

and g̃ = (f̃ ,0)T , f̃ =Kyd + rML−1Mf .



2 Iterative Methods for Large-Scale Saddle-Point Problems 35

Lemma 2.7 Let 0 < r < 4
k2
a

, where the constant ka is defined in (2.36). Then, the

matrix A[r] is an energy equivalent to A0 = (M 0
0 M0

)
with constants depending only

on r . In particular,

(
A[r]x, x)≥ α

(
A0x, x

)
, α = α(r, ka) > 0.

We solve (2.39) by using the iterative Uzawa-type method (2.4) with the precon-
ditioner Bλ = LM−1 LT :

(K + rM)yk+1 + ∂θ
(
yk+1)− rML−1Suk+1 � LT λk + f̃ ,

M0u
k+1 + ∂ϕ

(
uk+1) �−ST λk,

1

τ
LM−1LT

(
λk+1 − λk

)+Lyk+1 − Suk+1 �Mf.

(2.40)

Theorem 2.6 ([18]) The iterative method (2.40) converges if

0 < τ <
2α

k2
a + 1

.

Along with the iterative method (2.40) we can use the gradient method for the
regularized problem. Namely, let us change the indicator function θ(y)= IYad (y) of
the constraint set Yad = {y ∈R

Ny : yi ≥ 0 ∀i} by the differentiable function

θε(y)= 1

ε

(
My−, y−

)
.

For the corresponding regularized saddle point problem we can apply the “tradi-
tional” gradient method

Lyk+1 = Suk +Mf,

LT λk+1 = (K + rM)yk+1 +∇θε
(
yk+1)− rML−1Suk − f̃ ,

M0
uk+1 − uk

τ
+M0u

k+1 + ∂ϕ
(
uk+1)+ ST λk+1 � 0.

(2.41)

Theorem 2.7 ([19]) The iterative method (2.41) converges if

0 < τ <
2ε

k2
a(1+ ε)+ rε

.

When implementing any of the iterative methods (2.40) or (2.41) we have to
solve the systems of linear equations with matrices L and LT , and to solve two
inclusions with diagonal operators M0 + ∂ϕ and K + rM + ∂θ .
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Table 2.4 The Uzawa-type method for Problem 2.5, y = 3(sin(6πx1x2))
+

nit n= 100, F ∗ = 1.70 n= 300, F ∗ = 1.68 n= 500, F ∗ = 1.68

F Err F Err F Err

1 0 0.05 0 0.048604 0 0.048052

2 1.71 0.0001 1.68 0.00012238 1.68 0.00012111

3 1.70 3× 10−7 1.68 3.1× 10−7 1.68 3.1× 10−7

4 1.70 1.69× 10−7 1.68 6.79× 10−8 1.68 1.47× 10−7

5 1.70 1.69× 10−7 1.68 6.79× 10−8 1.68 1.47× 10−7

2.4.1 Numerical Experiments

Problem 2.5 A control- and state-constrained optimal control problem with obser-
vation in the whole domain Ω = (0,1)× (0,1): minimize the goal functional

1

2

∫
Ω

y2(x)dx + 1

2

∫
Ω

u2(x)dx

under the constraints

−�y = f + u, x ∈Ω, y(x) = 0, x ∈ ∂Ω,

y(x) ≥ 0, x ∈Ω,
∣∣u(x)∣∣ ≤ 1, x ∈Ω.

(2.42)

We constructed a finite difference approximation of this problem on the uniform
grid. The corresponding saddle point problem has the form (2.38) with unit matri-
ces K , M0 and S. Therefore, we can use the preconditioned Uzawa-type method
(2.40) for solving this saddle point problem without its transformation. The results
of the calculations are reported in Table 2.4, where F ∗ = J (y,u) is the value of the
discrete goal function on the known exact solution (y,u) (y = 3(sin(6πx1x2))

+ for
the corresponding grid), while F = J (yk, vk) is its value on the current iteration;

Err= (‖yk − y‖2
L2
+ ‖uk − u‖2

L2
)

1
2 .

Problem 2.6 A control- and state-constrained optimal control problem with obser-
vation in the part Ω1 = (0,0.7)× (0,1) of the domain Ω = (0,1)× (0,1): minimize
the goal functional

1

2

∫
Ω1

y2(x)dx + 1

2

∫
Ω

u2(x)dx

under the constraints (2.42). We constructed a finite difference approximation of
this problem on the uniform grid. The corresponding saddle point problem has the
form (2.38) with the degenerate matrix K . We transformed it to the problem of the
form (2.39) with r = 1 and applied the Uzawa-type method (2.40) for its solution.
The corresponding calculation results are included in Table 2.5.
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Table 2.5 The Uzawa-type method for Problem 2.6

nit n= 100, F ∗ = 2.7783 n= 200, F ∗ = 2.7897 n= 500, F ∗ = 2.7965

F Err F Err F Err

1 0.6836 0.8652 0.6900 0.8705 0.6974 0.8736

2 1.5378 0.4285 1.5574 0.4311 1.5689 0.4327

3 2.0928 0.2113 2.1194 0.2125 2.1352 0.2133

4 2.4020 0.1073 2.4326 0.1080 2.4507 0.1084

5 2.5645 0.0580 2.5972 0.0583 2.6165 0.0585

6 2.6477 0.0336 2.6814 0.0337 2.7013 0.0338

7 2.6897 0.0214 2.7240 0.0215 2.7442 0.0215

8 2.7109 0.0153 2.7454 0.0153 2.7658 0.0154

9 2.7215 0.0122 2.7561 0.0123 2.7766 0.0123

10 2.7268 0.0107 2.7615 0.0107 2.7820 0.0107
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

50 2.7320 0.0088 2.7669 0.0088 2.7874 0.0088

Problem 2.7 A state-constrained optimal control problem with observation in the
whole domain: minimize the goal functional

J (y,u)= 1

2

∫
Ω

(y − yd)
2 dx + 1

2

∫
Ω

u2 dx

under the constraints

−�y = f + u, x ∈Ω, y(x)= 0, x ∈ ∂Ω,

y(x)≤ 0.5, x ∈Ω.

We constructed a finite difference approximation on the uniform grid and applied
the Uzawa-type method (2.40) and the gradient method (2.41) for solving the cor-
responding discrete saddle point problems. We compared the calculated iterations
with the exact solution y, calculated by using a great deal of convergent iterations.
Table 2.6 contains the results for the case f = 20, h = 10−2, F ∗ = 44.1789. The
notations are Erry = ‖y − yk‖, δyk = ‖yk−1 − yk‖.

Along with the Uzawa-type and regularization methods, we have also applied
the Douglas-Rachford splitting method for solving state-constrained optimal control
problems. We have found that none of the methods could be defined as the efficient
one in all situations. More numerical experiments should be made to define the
classes of the optimal control problems and the corresponding iterative methods
which are the most efficient for their solving.
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Table 2.6 Uzawa-type and gradient methods for Problem 2.7

nit Uzawa method with τ = 1.8 Gradient method with ε = 10−5, τ = 2×10−5

F Erry δyk F Erry δyk

1 0 0.3629 0.0750 0.3396 21.7302 0.8665

2 0.1089 0.1552 0.4683 0.3406 21.5275 0.0455

3 0.0984 0.1085 0.1350 0.3435 21.3268 0.0452

4 0.1092 0.1229 0.1110 0.3482 21.1279 0.0450

5 0.1090 0.0986 0.0953 0.3547 20.9310 0.0448

6 0.1215 0.1125 0.0827 0.3630 20.7361 0.0446

7 0.1267 0.0971 0.0738 0.3731 20.5430 0.0443

8 0.1405 0.1069 0.0670 0.3848 20.3517 0.0441

9 0.1499 0.0970 0.0624 0.3983 20.1623 0.0439

10 0.1654 0.1034 0.0590 0.4134 19.9748 0.0437
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

300 21.1177 0.0568 0.0157 23.3858 1.5660 0.0108
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

500 31.2662 0.0425 0.0064 33.4540 0.3330 0.0045
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Chapter 3
Analytical-Numerical Methods for Hidden
Attractors’ Localization: The 16th Hilbert
Problem, Aizerman and Kalman Conjectures,
and Chua Circuits

Gennady A. Leonov and Nikolay V. Kuznetsov

Abstract This survey is devoted to analytical-numerical methods for hidden at-
tractors’ localization and their application to well-known problems and systems.
From the computation point of view, in nonlinear dynamical systems the attrac-
tors can be regarded as self-exciting and hidden attractors. Self-exciting attractors
can be localized numerically by the following standard computational procedure:
after a transient process a trajectory, started from a point of an unstable manifold
in a small neighborhood of unstable equilibrium, reaches an attractor and com-
putes it. In contrast, a hidden attractor is an attractor whose basin of attraction
does not contain neighborhoods of equilibria. In well-known Van der Pol, Belousov-
Zhabotinsky, Lorenz, Chua, and many other dynamical systems classical attractors
are self-exciting attractors and can be obtained numerically by the standard compu-
tational procedure. However, for localization of hidden attractors it is necessary to
develop special analytical-numerical methods, in which at the first step the initial
data are chosen in a basin of attraction and then the numerical localization (visual-
ization) of the attractor is performed. The simplest examples of hidden attractors are
internal nested limit cycles (hidden oscillations) in two-dimensional systems (see,
e.g., the results concerning the second part of the 16th Hilbert’s problem). Other
examples of hidden oscillations are counterexamples to Aizerman’s conjecture and
Kalman’s conjecture on absolute stability in the automatic control theory (a unique
stable equilibrium coexists with a stable periodic solution in these counterexam-
ples). In 2010, for the first time, a chaotic hidden attractor was computed first by
the authors in a generalized Chua’s circuit and then one chaotic hidden attractor was
discovered in a classical Chua’s circuit.
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Fig. 3.1 Numerical
localization of the limit cycle
in the Rayleigh system

3.1 Introduction

In the first half of last century, during the initial period of development of the theory
of nonlinear oscillations [2, 11, 32, 33], main attention has been given to analysis
and synthesis of oscillating systems, for which the existence problem of oscilla-
tions can be solved relatively easily. The structure of many mechanical, electro-
mechanical, and electronic systems is such that the existence of oscillations in them
is almost obvious, namely the oscillations are excited from unstable equilibria. From
the computational point of view it means that one can use a standard numerical
method, in which after a transient process a trajectory, started from a point of an
unstable manifold in a small neighborhood of equilibrium, reaches an attractor and
identifies it.

Consider the following classical examples.

Example 3.1 (The Rayleigh string oscillator) In studying string oscillations [31]
Rayleigh discovered first that in the two-dimensional nonlinear dynamical system

ẍ − (
a − bẋ2)ẋ + x = 0, (3.1)

undamped vibrations (namely limit cycles—this term was introduced later by
Poincare) can arise. A well-known generalization of this system is the Van der Pol
equation [34] that describes the nonlinear electrical circuits used in radio engineer-
ing. The result of the simulation of this system (3.1) for a = 1, b= 0.1 is presented
in Fig. 3.1.

Example 3.2 (The Belousov-Zhabotinsky (BZ) reaction) In 1951 B.P. Belousov
discovered the first oscillations in the chemical reactions [3]. Consider one of the
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Fig. 3.2 Numerical
localization of the limit cycle
in the Belousov-Zhabotinsky
model

Belousov-Zhabotinsky dynamical models

εẋ = x(1− x)+ f (q − x)

q + x
z,

ż= x − z,

(3.2)

and perform its simulation, using standard parameters: f = 2/3, q = 8 × 10−4,
ε = 4× 10−2 (see Fig. 3.2).

Consider now the examples of numerical localization of well-known chaotic at-
tractors in three-dimensional dynamical models.

Example 3.3 (The Lorenz system) Consider the Lorenz system [27]

ẋ = σ(y − x),

ẏ = x(ρ − z)− y,

ż= xy − βz,

(3.3)

and carry out its simulation with standard parameters σ = 10, β = 8/3, ρ = 28 (see
Fig. 3.3). Here the computed trajectory is started from a small neighborhood of an
unstable zero stationary point.
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Fig. 3.3 Numerical
localization of a chaotic
attractor in the Lorenz system

Example 3.4 (The Chua system) Consider the classical Chua circuit [7] and its dy-
namical model in dimensionless coordinates

ẋ = α(y − x)− αf (x),

ẏ = x − y + z,

ż=−(βy + γ z).

(3.4)

Here the function

f (x)=m1x + (m0 −m1)sat(x) (3.5)

characterizes a nonlinear element called the Chua diode. In this system, strange at-
tractors [29] then called the Chua attractors were discovered. To date all the known
classical Chua attractors are those excited from unstable equilibria. This makes it
possible to compute different Chua attractors with relative ease [5]. Perform the sim-
ulation of the Chua attractor with the following parameters: α = 9.35, β = 14.79,
γ = 0.016, m0 =−1.1384, m1 = 0.7225 (see Fig. 3.4).

Here, in all examples, the limit cycles and attractors are those excited from un-
stable equilibria (i.e., self-excited attractors).

3.2 Hidden Oscillations and Hidden Attractors

In the middle of the last century, oscillations of another type were found, so-called
hidden oscillations: the oscillations, the existence of which is not obvious. They
are not “connected” with equilibrium (i.e. in this case it is impossible to localize a
periodic solution by the computing of trajectory with the initial data from a small
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Fig. 3.4 Numerical
localization of a chaotic
attractor in the Chua circuit

neighborhood of equilibrium). In addition, in this case it is unlikely that the integra-
tion of trajectories with random initial data will lead to localization of such hidden
oscillation since the basin of attraction can be very small and the considered system
dimension can be large.

For the first time the problem of finding hidden oscillations arose in the 16th
Hilbert problem (1900) for two-dimensional polynomial systems. For more than a
century, in the framework of the solution of this problem, the numerous theoretical
and numerical results were obtained. However, the problem is still far from being
resolved even for the simple class of quadratic systems. In the 1940s and 1950s, aca-
demician A.N. Kolmogorov became the initiator of a few hundred of the following
computational experiments [16]: he asked students (at Moscow State University) to
find limit cycles in two-dimensional quadratic systems with randomly chosen coef-
ficients. The result was absolutely unexpected: limit cycles were not found in any of
the experiments, though it is known that quadratic systems with limit cycles form
open domains in the space of coefficients and, therefore, for a random choice of
polynomial coefficients, the probability of hitting in these sets is positive.

Note that numerical localization of small and nested limit cycles [13, 16, 20, 22,
24, 25] is a difficult problem.

Example 3.5 (Four limit cycles in a quadratic system) Nowadays the application
of special analytical-numerical methods [17, 25] allows one to visualize four limit
cycles in a quadratic system [12].
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Fig. 3.5 Visualization of
four limit cycles in a
polynomial quadratic system

Consider the following quadratic system:

dx

dt
= x2 + xy + y,

dy

dt
= a2x

2 + b2xy + c2y
2 + α2x + β2y.

(3.6)

In Fig. 3.5 for the coefficients

b2 = 2.7, c2 = 0.4, a2 =−10, α2 =−437.5, β2 = 0.003,

three “large” (normal size) limit cycles around the zero point and one “large” limit
cycle to the left of the straight line x =−1 are visualized.

Further the problem of analysis of hidden oscillations arose in engineering prob-
lems of automatic control. In 1961 Gubar’ [8] showed analytically the possibility of
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existence of hidden oscillation in a two-dimensional system of a phase locked-loop
with piecewise-constant impulse nonlinearity. In the 1950s and 1960s, the investiga-
tions of widely known Markus-Yamabe [28], Aizerman [1], and Kalman [9] conjec-
tures on absolute stability had led to the finding of hidden oscillations in automatic
control systems with a unique stable stationary point and the nonlinearity belonging
to the sector of linear stability (see, e.g., [4, 6, 18, 30]).

Later, in 2010, for the first time, a chaotic hidden attractor was computed, by the
authors, in a generalized Chua circuit [14] and then one chaotic hidden attractor was
discovered in the classical Chua circuit [23].

Since the key factor, providing the possibility of computing the oscillation, is a
basin of attraction, the following definition can be formulated.

Definition 3.1 Hidden attractors are those attractors whose basin of attraction does
not contain neighborhoods of equilibria.

Here it is of the essence to consider a basin of attraction in forward and backward
time since the computation in backward time may allow one to localize an unstable
oscillation.

3.2.1 Analytical-Numerical Method for Localization of Hidden
Oscillations in Multidimensional Dynamical Systems

For numerical localization of hidden oscillations the methods based on homotopy
turned out to be the most effective ones. In this case a sequence of similar systems
is considered such that for the first starting system the initial data for numerical lo-
calization of a periodic solution (starting periodic solution) can be obtained analyt-
ically and then the transformation of this starting periodic solution in the transition
from one system to another is followed numerically.

Further we consider an effective analytical-numerical approach for localization
of hidden oscillations in multidimensional dynamical systems, which are based on
the method of a small parameter, the method of harmonic linearization (the describ-
ing function method), numerical methods, and an applied bifurcation theory.

Consider a system with one scalar1 nonlinearity:

dx
dt
= Px+ qψ

(
r∗x

)
, x ∈R

n. (3.7)

Here P is a constant (n × n)-matrix, q, r are constant n-dimensional vectors, ∗ is
a transposition operation, ψ(σ) is a scalar function, and ψ(0)= 0. Define a coeffi-
cient of harmonic linearization k in such a way that the matrix

P0 = P+ kqr∗ (3.8)

1Vector nonlinearity can be considered similarly [26].
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has a pair of purely imaginary eigenvalues ±iω0 (ω0 > 0) and the rest of its eigen-
values have negative real parts. Assume that such k exists. Rewrite the system (3.7)
as

dx
dt
= P0x+ qϕ

(
r∗x

)
, (3.9)

where ϕ(σ)=ψ(σ)− kσ .
Introduce a finite sequence of functions ϕ0(σ ),ϕ1(σ ), . . . , ϕm(σ ) such that the

graphs of the neighboring functions ϕj (σ ) and ϕj+1(σ ) slightly differ from one
another, the function ϕ0(σ ) is small, and ϕm(σ) = ϕ(σ). Using a smallness of the
function ϕ0(σ ), one can apply and mathematically strictly justify [15, 16, 18, 26] the
method of harmonic linearization (the describing function method) for the system

dx
dt
= P0x+ qϕ0(r∗x) (3.10)

and find a stable nontrivial periodic solution x0(t). For the localization of the oscil-
lating solution (attractor) of the original system (3.9), we shall follow numerically
the transformation of this periodic solution (a starting oscillating attractor, i.e. an
attractor not including equilibria, denoted further by A0), with increasing j in pass-
ing from nonlinearity ϕj (σ ) to ϕj+1(σ ). Here two cases are possible:

Case 1: All the points of A0 are in the attraction domain of the attractor A1, being
an oscillating attractor of the system

dx
dt
= P0x+ qϕj

(
r∗x

)
(3.11)

with j = 1.
Case 2: In the change from the system (3.10) to the system (3.11) with j = 1 a loss

of stability (bifurcation) and the vanishing of A0 are observed.

In Case 1 the solution x1(t) can be determined numerically by starting a trajec-
tory of the system (3.11) with j = 1 from the initial point x0(0). If in the process
of computation the solution x1(t) has not fallen to an equilibrium and it is not in-
creased indefinitely (here a sufficiently large computational interval [0, T ] should
always be considered), then this solution reaches an attractor A1. Then it is possible
to proceed to the system (3.11) with j = 2 and to perform a similar procedure of
computation of A2, by starting a trajectory of the system (3.11) with j = 2 from the
initial point x1(T ) and computing the trajectory x2(t).

Proceeding this procedure and sequentially increasing j and computing xj (t)
(being a trajectory of the system (3.11) with the initial data xj−1(T )), one either
arrives at the computation of Am (being an attractor of the system (3.11) with j =m,
i.e. the original system (3.9)), either, at a certain step, observes a loss of stability
(bifurcation) and the vanishing of the attractor.
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3.2.1.1 System Reduction

To determine the initial data x0(0) of the starting periodic solution, one transforms
the system (3.10) with nonlinearity ϕ0(σ ) by the linear nonsingular transformation
S to the form

ẏ1 =−ω0y2 + b1ϕ
0(y1 + c∗3y3

)
,

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗3y3

)
,

ẏ3 =A3y3 + b3ϕ
0(y1 + c∗3y3

)
.

(3.12)

Here y1, y2 are scalar values, y3 is an (n − 2)-dimensional vector, b3 and c3 are
(n− 2)-dimensional vectors, b1 and b2 are real numbers, and A3 is an ((n− 2)×
(n− 2))-matrix, all eigenvalues of which have negative real parts. Without loss of
generality, it can be assumed that for the matrix A3 there exists a positive number
d > 0 such that

y∗3
(
A3 +A∗3

)
y3 ≤−2d|y3|2, ∀y3 ∈R

n−2. (3.13)

In practice, for determining k and ω0 the transfer function W(p) of the system
(3.7) is used:

W(p)= r∗(P− pI)−1q,

where p is a complex variable. The number ω0 is obtained from the equation
ImW(iω0)= 0 and k is computed then by the formula k =−(ReW(iω0))

−1.
Let us write a transfer function of the system (3.10):

r∗(P0 − pI)−1q= ηp+ θ

p2 +ω2
0

+ R(p)

Q(p)
, (3.14)

and a transfer function of the system (3.12):

−b1p+ b2ω0

p2 +ω2
0

+ c∗3(A3 − pI)−1b3. (3.15)

Here I is a unit matrix, η and θ are certain real numbers, Q(p) is a stable polynomial
of the degree (n−2), R(p) is a polynomial of a degree smaller than (n−2). Suppose
that the polynomials R(p) and Q(p) have no common roots. Since the systems
(3.10) and (3.12) are equivalent, the transfer functions of these systems coincide.
This implies the following relations:

η=−b1, θ = b2ω0,

c∗3b3 + b1 = r∗q, R(p)

Q(p)
= c∗3(A3 − pI)−1b3.

(3.16)
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3.2.1.2 Justification of Harmonic Balance in Non-critical Case

Consider the system (3.10) with differentiable2 nonlinearity ϕ0(σ )= εϕ(σ ), where
ε is a small positive parameter.

Introduce the describing function

Φ(a)=
∫ 2π/ω0

0
ϕ
(
cos(ω0t)a

)
cos(ω0t) dt.

Theorem 3.1 ([6, 16]) Let the number a0 > 0 exist such that the conditions

Φ(a0)= 0, b1
dΦ(a)

da

∣∣∣∣
a=a0

< 0 (3.17)

are satisfied. Then for sufficiently small ε > 0 the system (3.12) with nonlinearity
ϕ0(σ )= εϕ(σ ) has a periodic solution of the form

y1(t)= cos(ω0t)y1(0)+O(ε),

y2(t)= sin(ω0t)y1(0)+O(ε),

y3(t)= exp(A3t)y3(0)+On−2(ε),

t ∈ [0, T ] (3.18)

with the initial data

y1(0)= a0 +O(ε), y2(0)= 0, y3(0)=On−2(ε) (3.19)

and with the period

T = 2π

ω0
+O(ε).

Here On−2(ε) is an (n− 2)-dimensional vector such that its components are O(ε).
Taking into account the relations (3.16), this theorem can be reformulated in the

following way.

Corollary 3.1 Let the number a0 > 0 exist such that the conditions

Φ(a0)= 0, η
dΦ(a)

da

∣∣∣∣
a=a0

> 0 (3.20)

are satisfied. Then for sufficiently small ε > 0 the system (3.10) with the transfer
function (3.14) and the nonlinearity ϕ0(σ )= εϕ(σ ) has a T -periodic solution such
that

r∗x(t)= a0 cos(ω0t)+O(ε), T = 2π

ω0
+O(ε). (3.21)

2There is similar consideration for piecewise- continuous function being Lipschitz on closed con-
tinuity intervals [16].
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Theorem 3.1 coincides with the procedure of the search of stable periodic solu-
tions by means of the standard describing function method (see, for example, [10]).
Similar assertions can be proved in the case of vector nonlinearity [26].

It should be noted that the condition (3.20) cannot be satisfied in the case when
conditions of the Aizerman and Kalman conjectures are fulfilled (i.e. nonlinearity ϕ

belongs to the sector of linear stability). In this case the methods of harmonic bal-
ance and describing function lead to a wrong result, namely nonexistence of periodic
solutions and global stability of unique equilibrium, but nowadays the counterexam-
ples are well known [6, 16].

3.2.1.3 Justification of Harmonic Balance in the Critical Case

In 1957 R.E. Kalman formulated the following conjecture [9]:

Conjecture 3.1 Suppose that for all k ∈ (μ1,μ2) a zero solution of the system (3.9)
with ϕ(σ) = kσ is asymptotically stable in the large (i.e., a zero solution is Lya-
punov stable and any solution of the system (3.9) tends to zero as t→∞. In other
words, a zero solution is a global attractor of the system (3.9) with ϕ(σ)= kσ ).

If at the points of differentiability of ϕ(σ) the condition

μ1 < ϕ′(σ ) < μ2 (3.22)

is satisfied, then the system (3.9) is stable in the large.

The Kalman conjecture is a strengthening of the Aizerman conjecture, where in
place of the condition (3.22) on the derivative of nonlinearity it is required that the
nonlinearity itself belongs to a linear sector.

To justify the method of harmonic balance in this critical case special nonlinear-
ities will be considered. Let us assume first that μ1 = 0, μ2 > 0 and consider the
system (3.12) with nonlinearity ϕ0(σ ) of a special form

ϕ0(σ )=
{
μσ, ∀|σ | ≤ ε;
sign(σ )Mε3, ∀|σ |> ε.

(3.23)

Here μ<μ2 and M are certain positive numbers and ε is a small positive parameter.
Then the following result is valid.

Theorem 3.2 ([6, 16]) If the inequalities

b1 < 0, 0 <μb2ω0
(
c∗3b3 + b1

)+ b1ω
2
0
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are satisfied, then for small enough ε the system (3.12) with nonlinearity (3.23) has
an orbitally stable periodic solution

y1(t)=− sin(ω0t)y2(0)+O(ε),

y2(t)= cos(ω0t)y2(0)+O(ε),

y3(t)=On−2(ε)

(3.24)

with the initial date

y1(0)=O
(
ε2),

y2(0)=−
√

μ(μb2ω0(c∗3b3 + b1)+ b1ω
2
0)

−3ω2
0Mb1

+O(ε),

y3(0)=On−2
(
ε2).

(3.25)

The methods for the proof of this theorem are developed in [6, 15, 16, 21].

3.2.2 Hidden Oscillations in Counterexamples to the Aizerman
and Kalman Conjectures

Based on this theorem, it is possible to apply the described above multi-step proce-
dure for the localization of hidden oscillations: the initial data, obtained analytically,
allows one to step aside from stable zero equilibrium and to start a numerical local-
ization of possible oscillations.

Consider a finite sequence of piecewise-linear functions

ϕj (σ )=
{
μσ, ∀|σ | ≤ εj ,

sign(σ )Mε3
j , ∀|σ |> εj ,

εj = j

m

√
μ

M
j = 1, . . . ,m. (3.26)

Here the function ϕm(σ) is a monotone continuous piecewise-linear function sat(σ )
(“saturation”). Choose m in such a way that the graphs of the functions ϕj and
ϕj+1 are slightly distinct from each other outside small neighborhoods of points of
discontinuity.

Suppose that the periodic solution xm(t) of the system (3.9) with the monotone
and continuous function ϕm(σ)= sat(σ ) is computed. In this case a similar compu-
tational procedure for the sequence of systems with nonlinearities can be organized:

θi(σ )= ϕm(σ)+ sat(σ )+ i

10

(
tanh(σ )− sat(σ )

)
, i = 0, . . . ,10,

θ0(σ )= sat(σ ), θ10(σ )= tanh(σ )= eσ − e−σ

eσ + e−σ
.

(3.27)
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Note that, using the similar technique of small changes, it is also possible to ap-
proach other continuous monotonic increasing functions [26]. The finding of peri-
odic solutions for a system with nonlinearity (3.27) gives a certain counterexample
to the Kalman conjecture for each i = 1, . . . ,10.

Consider the following system:

ẋ1 =−x2 − 10ϕ(σ),

ẋ2 = x1 − 10.1ϕ(σ),

ẋ3 = x4,

ẋ4 =−x3 − x4 + ϕ(σ),

σ = x1 − 10.1x3 − 0.1x4.

(3.28)

Here for ϕ(σ) = kσ the linear system (3.28) is stable for k ∈ (0,9.9) (see (3.25)).
For piecewise-continuous nonlinearity ϕ(σ)= ϕ0(σ ) with sufficiently small ε there
exists a periodic solution.

Now let us use the algorithm for construction of periodic solutions. Suppose
μ=M = 1, ε1 = 0.1, ε2 = 0.2, . . . , ε10 = 1. For j = 1, . . . ,10, the solutions of the
system (3.28) with nonlinearity ϕ(σ) equal to ϕj (σ ) can be constructed sequen-
tially. Here for all εj , j = 1, . . . ,10 there exists a periodic solution.

At the first step, for j = 0, the initial data of stable periodic oscillation take the
form

x1(0)=O(ε), x3(0)=O(ε),

x2(0)=−1.7513+O(ε) x4(0)=O(ε).
(3.29)

Therefore for j = 1 a trajectory starts from the point x1(0) = x3(0) = x4(0) = 0,
x2(0) = −1.7513. The projection of this trajectory on the plane (x1, x2) and the
sector of linear stability are shown in Fig. 3.6 for the odd steps.

From Fig. 3.6 it follows that at each step after a transient process a stable periodic
solution is reached. At each step, the last trajectory point is used as the initial data
for the next step of the computational procedure.

Proceeding this procedure for j = 3, . . . ,10, one sequentially approximates a
periodic solution of the initial system (3.28) (Fig. 3.7). It should also be noted that
if in place of sequential increasing εj to compute, for ε = 1, a solution with the
initial data according to (3.29), then the solution will “fall down” to zero.

Change the nonlinearity ϕ(σ) to the increasing function θi(σ ), and continue se-
quential construction of periodic solutions of the system (3.28) for i = 1, . . . ,10.
The obtained periodic solutions are shown in Fig. 3.8.

At the last step for the system (3.28) with smooth strictly increasing nonlinearity

ϕ(σ)= tanh(σ )= eσ − e−σ

eσ + e−σ
, 0 <

d

dσ
tanh(σ )≤ 1, ∀σ (3.30)

there exists a periodic solution (Fig. 3.9).



54 G.A. Leonov and N.V. Kuznetsov

Fig. 3.6 εj : trajectory projection on the plane (x1, x2) and nonlinearity
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Fig. 3.7 Hidden oscillation
projection on the plane
(x1, x2), the system output
σ(t), and nonlinearity

3.2.3 Hidden Chaotic Attractors in the Chua Circuit

The development of modern computers allows one to perform numerical simula-
tion of nonlinear chaotic systems and to obtain new information on the structure of
their trajectories. In the well-known Lorenz, Chen, Chua, and many other chaotic
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Fig. 3.8 Trajectory projection on the plane (x1, x2), system output and nonlinearity

dynamical systems the classical attractors are self-exciting attractors and can be
obtained numerically by means of a standard computational procedure. In contra-
diction, there are attractors of another type: hidden chaotic attractors, which cannot
be obtained by a standard computational procedure and show limitations of such a
simple computational approach.
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Fig. 3.9 A counterexample
to the Kalman conjecture:
hidden oscillation in a system
with the increasing
nonlinearity tanh(σ ), which
belongs to the sector of linear
stability

In 2010, for the first time, a chaotic hidden attractor was discovered [14, 23] in
the Chua circuit, which is described by a three-dimensional dynamical system. Let
us demonstrate the application of the above algorithm for localization of a hidden
chaotic attractor in the Chua system. For this purpose, rewrite the Chua system (3.4)
as (3.7)

dx
dt
= Px+ qψ

(
r∗x

)
, x ∈R

3. (3.31)
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Here

P=
⎛
⎝−α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞
⎠ , q=

⎛
⎝−α0

0

⎞
⎠ , r=

⎛
⎝1

0
0

⎞
⎠ ,

ψ(σ )= (m0 −m1)sat(σ ).

Introduce the coefficient k and the small parameter ε, and represent the system
(3.31) as (3.10), namely

dx
dt
= P0x+ qεϕ

(
r∗x

)
, (3.32)

where

P0 = P+ kqr∗ =
⎛
⎝−α(m1 + 1+ k) α 0

1 −1 1
0 −β −γ

⎞
⎠ ,

λ
P0
1,2 =±iω0, λ

P0
3 =−d,

ϕ(σ )=ψ(σ)− kσ = (m0 −m1)sat(σ )− kσ.

By the nonsingular linear transformation x= Sy the system (3.32) is reduced to the
form (3.12), namely

dy
dt
=Ay+ bεϕ

(
c∗y

)
, (3.33)

where

A=
⎛
⎝ 0 −ω0 0
ω0 0 0
0 0 −d

⎞
⎠ , b=

⎛
⎝b1
b2
1

⎞
⎠ , c=

⎛
⎝ 1

0
−h

⎞
⎠ .

The transfer function WA(p) of the system (3.33) can be represented as

WA(p)= −b1p+ b2ω0

p2 +ω2
0

+ h

p+ d
.

Further, using the equality of the transfer functions of the systems (3.32) and (3.33),
one obtains

WA(p)= r∗(P0 − pI)−1q.
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This implies the following relations:

k = −α(m1 +m1γ + γ )+ω2
0 − γ − β

α(1+ γ )
,

d = α +ω2
0 − β + 1+ γ + γ 2

1+ γ
,

h= α(γ + β − (1+ γ )d + d2)

ω2
0 + d2

,

b1 = α(γ + β −ω2
0 − (1+ γ )d)

ω2
0 + d2

,

b2 = α((1+ γ − d)ω2
0 + (γ + β)d)

ω0(ω
2
0 + d2)

.

(3.34)

Since the system (3.32) can be reduced to the form (3.33) by the nonsingular
linear transformation x= Sy, for the matrix S the relations

A= S−1P0S, b= S−1q, c∗ = r∗S (3.35)

are valid. Having solved these matrix equations, one obtains the transformation ma-
trix

S=
⎛
⎝s11 s12 s13
s21 s22 s23
s31 s32 s33

⎞
⎠ .

Here

s11 = 1, s12 = 0, s13 =−h,

s21 =m1 + 1+ k, s22 =−ω0

α
, s23 =−h(α(m1 + 1+ k)− d)

α
,

s31 = α(m1 + k)−ω2
0

α
, s32 =−α(β + γ )(m1 + k)+ αβ − γω2

0

αω0
,

s33 = h
α(m1 + k)(d − 1)+ d(1+ α− d)

α
.

By (3.19), for small enough ε initial data for the first step of multistage localiza-
tion procedure take the form

x(0)= Sy(0)= S

⎛
⎝a0

0
0

⎞
⎠=

⎛
⎝a0s11
a0s21
a0s31

⎞
⎠ .
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Fig. 3.10 Localization of a hidden chaotic attractor: a road to chaos: the projections of trajectories
on the plane (x, y)

Returning to the Chua system’s denotations, for determining the initial data of the
starting solution of the multistage procedure we have the following formulas:

x(0)= a0, y(0)= a0(m1 + 1+ k), z(0)= a0
α(m1 + k)−ω2

0

α
. (3.36)

Consider the system (3.32) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 =−0.1768, m1 =−1.1468.
(3.37)

Note that in this case for the considered values of parameters there are three equi-
libria in the system: a locally stable zero equilibrium and two saddle equilibria.
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Fig. 3.11 Equilibrium, stable
manifolds of saddles, and
localization of hidden
attractor

Now we apply the above procedure of hidden attractors’ localization to the Chua
system (3.31) with the parameters (3.37). For this purpose let us compute a starting
frequency and a coefficient of harmonic linearization. We have

ω0 = 2.0392, k = 0.2098.
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Then, one computes solutions of the system (3.32) with nonlinearity εϕ(x) =
ε(ψ(x) − kx), sequentially increasing ε from the value ε1 = 0.1 to ε10 = 1 with
the step 0.1 (see Fig. 3.10).

By (3.34) and (3.36) we obtain the initial data

x(0)= 9.4287, y(0)= 0.5945, z(0)=−13.4705

for the first step of the multistage procedure for the construction of solutions. For
the value of the parameter ε1 = 0.1, after the transient process the computational
procedure reaches the starting oscillation x1(t). Further, by the sequential transfor-
mation of xj (t) with increasing the parameter εj , using the numerical procedure, for
the original Chua system (3.31) the set Ahidden is computed. This set is presented in
Fig. 3.11.

It should be noted that the decreasing of the integration step, the increasing of
integration time, and the computation of different trajectories of the original system
with initial data from a small neighborhood of Ahidden lead to the localization of the
same set Ahidden (all the computed trajectories densely trace the set Ahidden). Note
also that for the computed trajectories Zhukovsky instability and the positiveness of
the Lyapunov exponent [19] is observed.

The behavior of system trajectories in the neighborhood of equilibria is presented
in Fig. 3.11. Here Munst

1,2 are unstable manifolds, Mst
1,2 are stable manifolds. Thus, in

a phase space of the system there are stable separating manifolds of saddles.
The above and the remark on the existence, in the system, of a locally stable zero

equilibrium F0, attracting the stable manifolds Mst
1,2 of two symmetric saddles S1

and S2, lead to the conclusion that in Ahidden a hidden strange attractor is computed.

3.3 Conclusion

The study of hidden oscillations and hidden chaotic attractors requires the develop-
ment of new analytical and numerical methods. This survey includes discussion on
new analytical-numerical approaches to investigation of hidden oscillations in dy-
namical systems, based on the development of numerical methods, computers, and
an applied bifurcation theory, which suggests revising early ideas on the application
of the small parameter method and the harmonic linearization [16, 18, 23, 26].
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Chapter 4
Numerical Study of a High Order 3D FEM-Level
Set Approach for Immiscible Flow Simulation

Stefan Turek, Otto Mierka, Shuren Hysing, and Dmitri Kuzmin

Abstract Numerical simulation of incompressible multiphase flows with immisci-
ble fluids is still a challenging field, particularly for 3D configurations undergoing
complex topological changes. In this paper, we discuss a 3D FEM approach with
high-order Stokes elements (Q2/P1) for velocity and pressure on general hexahe-
dral meshes. A discontinuous Galerkin approach with piecewise linear polynomials
(dG(1)) is used to treat the Level Set function. The developed methodology allows
the application of special redistancing algorithms which do not change the position
of the interface. We explain the corresponding FEM techniques for treating the ad-
vection steps and surface tension effects, and validate the corresponding 3D code
with respect to both numerical test cases and experimental data. The corresponding
applications describe the classical rising bubble problem for various parameters and
the generation of droplets from a viscous liquid jet in a coflowing surrounding fluid.
Both of these applications can be used for rigorous benchmarking of 3D multiphase
flow simulations.
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4.1 Introduction

Multiphase flow problems are very important in many applications, and performing
accurate, robust and efficient numerical simulations of them has been the object
of numerous research and simulation projects for several years. One of the main
challenges for the underlying numerical methods is that the position of the moving
interface between two fluids is unknown and must be determined as a part of the
boundary value problem which should be solved. If we assume a domain Ω with
two immiscible fluids, then the time-dependent subdomains Ω1(t) and Ω2(t) are
bounded by an external boundary Σ and a dynamic interior boundary or interface
Γ (t) which might consist of several components (see Fig. 4.1).

Then, the usual model for laminar (multiphase) flow is described by the incom-
pressible Navier-Stokes equations

ρ(x)
[
∂u
∂t
+ u · ∇u

]
−∇ · (μ(x)[∇u+ (∇u)T

])+∇p = ρ(x)g+ fΓ (σ ), (4.1)

∇ · u= 0 in Ω =Ω1 ∪ Γ ∪Ω2, (4.2)

which contain an additional force term fΓ (σ ) due to the surface tension σ at the
free interface Γ . Here, the density ρ as well as the viscosity μ are variable and
discontinuous, that is

ρ(x, t)=
{
ρ1, ∀x ∈Ω1(t),

ρ2, ∀x ∈Ω2(t),
μ(x, t)=

{
μ1, ∀x ∈Ω1(t),

μ2, ∀x ∈Ω2(t),
(4.3)

which significantly influences the velocity u as well as the pressure p.
This contribution describes the numerical analysis and application of a new Level

Set approach in the framework of the Finite Element Method (FEM) for such mul-
tiphase flow problems. For this reason the open-source CFD package FEATFLOW

(www.featflow.de) was utilized and extended with the corresponding newly created
Level Set module so that the existing methodology of the FEATFLOW approach,
namely flexible, high order FEM discretization schemes in space and time with flux
correction [34] and edge-oriented stabilization techniques [62], unstructured meshes
with adaptive grid deformation, efficient Newton-Multigrid solvers, and paralleliza-
tion based on domain decomposition could be directly exploited.

Fig. 4.1 A sketch of the
complete domain
Ω =Ω1 ∪ Γ ∪Ω2

http://www.featflow.de


4 A 3D FEM-Level Set approach 67

The outline of the paper is as follows: after a short description in Sect. 4.2 of
the state-of-the-art regarding interface tracking and capturing methods, particularly
for Level Set approaches, we describe in Sect. 4.3 the chosen solution technique
which is based on a discrete projection method [60, 61] for the Navier–Stokes equa-
tions, the Level Set advection equation, and the corresponding reinitialization pro-
cedure. Moreover, the discretization aspects regarding the incompressible Navier–
Stokes equations using the Crank–Nicolson method and the Q2/P1 element pair
are discussed in Sect. 4.3, too, whereas the details of the employed Discontinuous
Galerkin FEM approach with P1 elements for the Level Set equation can be found
in Sect. 4.4. Section 4.5 presents several numerical results which first of all evaluate
the grid-independent behaviour of the developed CFD solver.

Furthermore, based on experimental and computational studies, we propose and
discuss new benchmark configurations for prototypical 3D multiphase flows which
can be used for ‘simple’ validation and evaluation of multiphase flow CFD codes
without the necessity of complex postprocessing operations. Finally, the results are
summarized in Sect. 4.6 where an outlook is provided for more complex 3D multi-
phase flow problems.

4.2 Mathematical Model

The free interface Γ is constantly being deformed and moved so that its position
has to be treated as unknown and determined in every time step. Depending on the
technique for the representation of the interface, one can distinguish between front
tracking and front capturing approaches which can be realized on fixed as well as
dynamic moving meshes. For an overview of existing numerical approaches and
their classification, we recommend [52, 56]. The “natural” front tracking approach
[21, 41, 55, 65] is based on an explicit tracing of the dynamic interface between the
two phases. Here, in the case of Lagrangian finite element methods [25], the under-
lying mesh has to be constantly adapted to the free interface so that the grid points
move with the interface. More flexibility is promised by the Arbitrary Lagrangian
Eulerian (ALE) formulation [1, 2, 7, 17, 19, 51] which is based on local grid adap-
tation and which provides excellent results in the case of moderate deformations
(for instance for small waves at the free surface). Moreover, there are many more
techniques of fictitious domain and Chimera type which allow the highly accurate
tracking of the dynamic interfaces via overlapping surface meshes [26]. However,
such front tracking methods do not allow large deformations of the free interfaces
or even topological changes such as drop formation and bubble breakup or coales-
cence, which typically lead to highly distorted meshes. Moreover, the computational
costs regarding the implementation and also CPU timings are often very large for
complex 3D simulations.

In contrast to such Lagrangian methods, Eulerian front capturing methods are
much more robust and flexible. They are applicable even to free interface problems
with significant topology changes (breakup of bubbles, fragmentation, coalescence,
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etc.). Based on the early Marker-and-Cell method of Harlow and Welch [67], the
implicit reconstruction of the interface is based on an indicator function φ(x, t)
which contains the information about the corresponding subdomain for the point x
at time t . The distribution in the complete domain Ω can then be calculated via the
scalar transport equation

∂φ

∂t
+ u · ∇φ = 0 (4.4)

so that the exact position of the free interface Γ (φ) at any time can be reconstructed
from φ with the help of postprocessing techniques. One of the most well-known
methods is the Volume-of-Fluid (VOF) method [42, 54] in which case the indicator
function φ can be interpreted as volume fraction which should have the discrete
values 0 or 1 depending on the location of x:

φ(x, t)=
{

1, ∀x ∈Ω1(t),

0, ∀x ∈Ω2(t).
(4.5)

The numerical drawback of this approach is that artificial diffusion smears out
the (originally) discontinuous indicator function which arises from the solution of
the discretized advection problems resulting in a boundary layer with 0 < φ < 1.
Therefore, numerical schemes and locally adapted meshes have to be designed to
address this boundary layer as thin as possible so that the corresponding error for
reconstructing the free interface is reduced. Moreover, due to the steep gradients
and the discontinuity of the indicator function, standard Galerkin schemes lead to
unphysical oscillations which significantly deteriorate the accuracy or even lead to
unphysical over- and undershoots. As a conclusion, the development of correspond-
ing high-order monotone discretization schemes in combination with unstructured,
locally refined meshes still belongs to the numerical challenges one has to solve.

As a successful alternative, the Level Set approach [43, 44, 53] has been es-
tablished which represents the interface as zero isoline of a continuous indicator
function φ which should be close to the distance with respect to the free interface

φ(x, t)=
{

dist(x,Γ ), ∀x ∈Ω1(t),

−dist(x,Γ ), ∀x ∈Ω2(t)
(4.6)

so that Γ (t)= {x ∈Ω | φ(x, t)= 0} holds. In contrast to the VOF approach, φ as a
distance function is smooth and allows the calculation of a globally defined normal
vector n towards the interface Γ and of the corresponding curvature via

n= ∇φ
|∇φ| , κ =−∇ · n=−∇ ·

( ∇φ
|∇φ|

)
. (4.7)

Here, special FEM techniques for gradient recovery can be used which allow
highly accurate approximations of normals and curvature [56] which are necessary
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for the direct evaluation of the surface tension force fΓ = κσδ(φ)n, with δ(φ) de-
noting the corresponding Dirac Delta function. Hence, the development and im-
plementation of a typical Level Set approach consists of performing the following
sequence of tasks:

• Discretization of the Level Set transport problem (4.4).
• Reinitialisation, resp., redistancing of the Level Set function.
• Additional correction so that mass and volume are preserved (if necessary).
• Calculation of normal vector fields (and curvature if needed) based on φ.
• Evaluation of the discontinuous fluid parameters ρ(φ), μ(φ), and of fΓ , with or

without reconstruction of Γ .

The above sequence of tasks involves a myriad of different possibilities and
choices which inevitably lead to numerous differing solution approaches. This is
evident from the rich collection of publications on Level Set methods which also
demonstrates the high potential of these methods for a wide range of applications
(see for instance the books by Osher [43] and Sethian [53]). However, the resulting
quality of the solutions mainly depends on the underlying numerical and compu-
tational approaches, and one has to acknowledge the fact that most of the existing
Level Set codes are still based on finite differences on uniform Cartesian meshes
which are easy to implement. The drawback is that the computational cost typi-
cally is quite high since uniform mesh refinement has to be performed to resolve
the necessary scales, particularly near the fluidic interfaces, but also due to compli-
cated geometries with small-scale structures. Unstructured meshes are particularly
well suited for such approaches which leads us to finite volume and finite element
discretization methods which are the most prominent candidates for unstructured
simulation approaches. Examples for corresponding approaches in the framework
of VOF and Level Set methods can be found in [3, 7, 9, 16, 29, 38, 40, 49]. In many
approaches, for example in the Interface Proximity Adaption Method of Barth and
Sethian [3], the mesh is locally refined near the interface which also is quite easy to
find if φ is a distance function [38].

Although finite element methods together with locally refined grids seem to pos-
sess a very advantageous behaviour for simulation of multiphase flow problems with
free interfaces, most existing Level Set codes are still based on finite differences. It
is only during the last ten years that FEM codes have been successfully applied
for these special CFD problems ([46, 50, 57]; see also [15, 23, 40, 47, 56, 59]).
However, there is still a huge potential for improvement if ‘optimal’ modern dis-
cretization and solution techniques shall be adapted to the special characteristics
of FEM-Level Set methods. In constructing a modern Level Set solver it is impor-
tant to focus on unstructured meshes with local grid refinement strategies for highly
nonstationary multiphase flow simulations, and make detailed studies for higher nu-
merical stability. Additionally, stable and accurate discretization of the convective
terms (for instance, VOF and Phase-Field methods show very steep gradients near
the interface, similarly as Level Set approaches without redistancing), robust treat-
ment of large density differences, and the handling of large surface tension σ also
require special attention.
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Summarizing the properties of FEM-Level Set techniques for multiphase flow
problems, we can conclude the following (potentially) advantageous behaviour in
comparison to interface tracking methods as well as VOF and Phase-Field ap-
proaches which motivates our recent and future work for the combination of FEM
and Level Set methods:

• If the Level Set function satisfies the distance property, it is smooth so that even
on highly uniform meshes qualitatively good results can be obtained. Local re-
finement around the interface will help to improve the accuracy, but in contrast
to VOF and Phase-Field methods, which may lead to smeared interfaces due to
numerical diffusion or to unphysical oscillations due to steep gradients, adaptive
meshes are not necessary.

• Accurate FEM discretizations of a higher order can be adapted to the special
characteristics of Level Set functions, that means higher smoothness because of
the distance function properties.

• Accurate representations of the interface are provided, without explicit descrip-
tion, but even for complex geometrical changes, which is important for handling
the surface tension term.

• Auxiliary quantities like normal vectors and curvature are provided, even glob-
ally, which is particularly advantageous for the Continuous Surface Force (CSF)
[6] approach.

On the other hand, there are still several problems with Level Set approaches (and
some of them are also valid for VOF and Phase-Field methods) which are numeri-
cally challenging and which are in the focus of our recent and also planned research
activities:

• The standard Level Set formulation is not conservative which may lead to mass
loss.

• Since reinitialisation is necessary to preserve the distance property, often highly
expensive computational operations might be necessary, for instance via solv-
ing globally the Eikonal equation, or redistancing is based on ‘cheaper’ methods
which however change the position and shape of the interface, again leading to
mass loss.

• Due to the standard explicit treatment of surface tension, the time step size is
restricted by the capillary time step restriction, that means the necessary time
steps depend by purely numerical reasons on the size of surface tension and on
the local mesh size.

In the following sections, we first of all describe the overall solution technique
which is based on a discrete projection method which is followed by a discussion
of the FEM discretization details, particularly regarding the Discontinuous Galerkin
approach for treating the Level Set equation.
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4.3 Discrete Projection Methods for Navier–Stokes Equations

In this section, we briefly review the ‘Discrete Projection Method’ as a special vari-
ant of Multilevel Pressure Schur Complement (MPSC) approaches for the solution
of incompressible flow problems, and we combine it with FEM discretization tech-
niques. We will explain some characteristics of high-resolution FEM schemes as
applied to incompressible flow problems and discuss the computational details re-
garding the efficient numerical solution of the resulting nonlinear and linear alge-
braic systems. Furthermore, we will discuss the coupling mechanisms between the
‘basic’ flow model (standard Navier–Stokes equations for velocity and pressure) and
the scalar transport equations for the Level Set indicator function in our multiphase
flow solver.

4.3.1 Discretization Techniques

For a better illustration, we consider first of all numerical solution techniques for
the (single phase) incompressible Navier–Stokes equations,

ut − ν�u+ u · ∇u+∇pρ = f,

∇ · u= 0, in Ω × (0, T ] with pρ = p

ρ
and ν = μ

ρ
,

(4.8)

for the given force f which might contain the surface tension. Moreover, boundary
values are prescribed on the boundary ∂Ω as well as an initial condition at t = 0.
Solving this problem numerically is still a considerable task in the case of long-time
calculations and high Reynolds numbers, particularly in 3D and also in 2D if the
time dynamics is complex. The common solution approach is a separate discretiza-
tion in space and time. We first (semi-) discretize in time by one of the usual methods
known from the treatment of ordinary differential equations, such as the Forward or
Backward Euler-, the Crank–Nicolson- or Fractional-Step-θ–scheme, or others, and
obtain a sequence of generalized stationary Navier-Stokes problems.

Basic θ -scheme Given un and �t = tn+1− tn, then solve for u= un+1 and pρ =
pn+1
ρ

u− un

�t
+ θ [−ν�u+ u · ∇u] + ∇pρ = gn+1, ∇ · u= 0, in Ω (4.9)

with the right-hand side gn+1 := θ fn+1+ (1− θ)fn− (1− θ)[−ν�un+ un · ∇un].
In the following simulations, the parameter θ is chosen as θ = 1/2, representing

the Crank-Nicolson-scheme which is of second order. Alternatively, the Fractional-
Step-θ -scheme [63], which uses three different values for θ and for the time step
�t at each time level, is another excellent candidate with slightly better robustness
properties.
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For the spatial discretization, we choose a finite element approach based on a
suitable variational formulation. On the finite mesh Th (3D hexahedral elements in
our case) covering the domain Ω with the local mesh size h, one defines polynomial
trial functions for velocity and pressure. These spaces Hh and Lh should lead to
numerically stable approximations as h→ 0, i.e., they should satisfy the so-called
inf-sup (LBB) condition [20]

min
qh∈Lh

max
vh∈Hh

(qh,∇ · vh)
‖qh‖0 ‖∇vh‖0

≥ γ > 0 (4.10)

with a mesh-independent constant γ . While the original FEATFLOW solvers are
based on rotated multilinear nonconforming finite element functions for the velocity
and piecewise constant pressure approximations, we recently extended the complete
solver package to higher-order Stokes elements, namely conforming triquadratic
ansatz functions for the velocity and linear pressure approximations (Q2/P1), which
belong to the ‘best’ finite element pairs for laminar incompressible flow due to their
accuracy and robustness. Since so far most of our numerical simulations have been
performed for small up to moderate Reynolds numbers, the (nonlinear) convective
operator was discretized using standard stabilization techniques only. Currently, we
use edge-, resp., face-oriented FEM stabilization techniques [62] which can be eas-
ily realized for higher-order ansatz functions, too. Here, special jump terms of the
gradient of the solution as well as of the test function have to be included into the
weak formulation which leads to a consistent stabilization, for stationary as well
as nonstationary configurations. It is planned to apply this technique in the case of
higher Reynolds number flows, too, which will be a subject of our further studies
for such multiphase flow problems. For an overview regarding such special FEM
stabilization techniques, we refer to [45, 62] and particularly to [10] which contains
corresponding results for the Q2/P1 approach, too.

4.3.2 Solution Techniques

Using the same notation u and pρ also for the coefficient vectors in the represen-
tation of the approximate solution, the discretized Navier-Stokes equations may be
written as a coupled (nonlinear) algebraic system of the form: Given un and f, com-
pute u= un+1 and pρ = pn+1

ρ by solving

Au+�tBpρ = g, BT u= 0, (4.11)

where

g= [
M − θ1�tN

(
un
)]

un + θ2�tfn+1 + θ3�tfn. (4.12)

Here and in the following, we use the more compact form for the diffusive and
advective part

N(v)u := −ν�u+ v · ∇u, (4.13)
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while M is the (lumped) mass matrix [66], B is the discrete gradient operator, and
−BT is the associated divergence operator. Furthermore,

Au= [
M − θ�tN(u)

]
u, N(u)=K(u)+ νL, (4.14)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator in-
corporating a certain amount of artificial diffusion due to some appropriate FEM
stabilization as described before. The solution of nonlinear algebraic systems like
(4.11) is a rather difficult task and many aspects, namely the treatment of the nonlin-
earity and of the incompressibility as well as the outer control of the couplings, need
to be taken into account. Consequently, this leads to a great variety of incompress-
ible flow solvers which are closely related to one another but exhibit considerable
differences in terms of their stability, convergence, and efficiency. The Multilevel
Pressure Schur Complement (MPSC) approach outlined below makes it possible to
put many existing solution techniques into a common framework and to combine
their advantages so as to obtain better run-time characteristics.

The fully discretized Navier-Stokes equations (4.11) as well as the linear sub-
problems to be solved within the outer iteration loop for a fixed-point defect cor-
rection or, with a similar structure, for a Newton-like method admit the following
representation: [

A �tB

BT 0

][
u
pρ

]
=
[

g
0

]
. (4.15)

In general, we have A=M + βN(u), with β =−θ�t for time-dependent prob-
lems. If the operator A is nonsingular, the velocity can be formally expressed as

u=A−1(g−�tBpρ) (4.16)

and plugged into the discretized continuity equation

BT u= 0 (4.17)

which gives a scalar Schur complement equation for the pressure only

BT A−1Bpρ = 1

�t
BT A−1g. (4.18)

Thus, the coupled system (4.15) can be handled as follows:

1. Solve the Pressure Schur Complement (PSC) equation (4.18) for pρ .
2. Substitute pρ into the relation (4.16) and compute the velocity u.

It is worth mentioning that the matrix A−1 is full and should not be assembled
explicitly. Instead, an auxiliary problem is to be solved by a direct method or by
inner iterations. For instance, the velocity update (4.16) is equivalent to the solu-
tion of the discretized momentum equation Au= g−�tBpρ . Likewise, the matrix
S := BT A−1B is never generated in practice. Doing so would be prohibitively ex-
pensive in terms of CPU time and memory requirements. It is instructive to consider
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a preconditioned Richardson method which yields the following basic iteration for
the PSC equation:

p(l+1)
ρ = p(l)

ρ −C−1
[
Sp(l)

ρ − 1

�t
BT A−1g

]
, l = 0, . . . ,L− 1. (4.19)

Here, C has to be chosen as a suitable preconditioner to S but being easier to ‘invert’
in an iterative way. The number of PSC cycles L can be fixed or chosen adaptively
so as to achieve a prescribed tolerance for the residual. The basic idea behind the
family of global MPSC schemes is the construction of globally defined additive
preconditioners for the Schur complement operator S = BT A−1B . Recall that the
matrix A has the structure

A :=M + βK(u)+ γL, (4.20)

where β =−θ�t and γ = νβ . Unfortunately, even today it is still a very challeng-
ing task to construct a matrix Ã and a preconditioner C = BT Ã−1B that would be
a sufficiently good approximation to all three components of A and S, respectively;
particularly for the convective part with K(u). Therefore, one may start with devel-
oping individual preconditioners for the reactive (M) and diffusive (L) part, while
the convective (K) part is neglected by applying this special kind of operator split-
ting. In our case, the Reynolds numbers in the considered flow configurations are so
far quite small, so that this approach can be justified, particularly if small time steps
are used to resolve the complex dynamical behaviour. Therefore, the (lumped) mass
matrix M proves to be a reasonable approximation to the complete operator A, so
that our basic iteration (4.19) for the pressure Schur complement equation

p(l+1)
ρ = p(l)

ρ + [
BTM−1B

]−1 1

�t
BT A−1[g−�tBp(l)

ρ

]
(4.21)

can be interpreted and implemented as a discrete projection scheme, if L= 1, such
as those proposed in [12, 22]. Here, the important step is that for the chosen Stokes
element pair, Q2/P1, the matrix P := BTM−1B can be explicitly built up relatively
easily even in a domain decomposition framework due to the chosen discontinuous
pressure. Then, the main algorithmic steps are as follows [60]:

Step 1. Solve the ‘viscous Burgers’ equation for ũ

Aũ= g−�tBp(l)
ρ .

Step 2. Solve the discrete ‘Pressure-Poisson’ problem

Pqρ = 1

�t
BT ũ.

Step 3. Correct the pressure and the velocity

p(l+1)
ρ = p(l)

ρ + qρ, u= ũ−�tM−1Bqρ.
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In essence, the right-hand side of the momentum equation is assembled using the
old pressure iterate, and the intermediate velocity ũ is projected onto the subspace
of solenoidal functions so as to satisfy the constraint BT u= 0. Moreover, the matrix
P corresponds to a mixed discretization of the Laplacian operator [22] so that this
method is a discrete analogue of the classical projection schemes derived by Chorin
(p(0)

ρ = 0) and Van Kan (p(0)
ρ = pρ(tn)) via operator splitting for the continuous

problem.
Next, we apply this special operator-splitting approach to the full multiphase

flow system with a discontinuous density ρ(φ) and viscosity μ(φ) distribution, that
means

ρ(φ)

[
∂u
∂t
+ u · ∇u

]
−∇ · (μ(φ)[∇u+ (∇u)T

])+∇p = ρ(φ)g+ fΓ,σ (φ),

(4.22)

∂φ

∂t
+ u · ∇φ = 0, ∇ · u= 0. (4.23)

After discretization in space and time, we obtain again a system of nonlinear alge-
braic equations which can be written in a matrix form as follows:

Au

(
un+1, φn+1)un+1 +�tF

(
φn+1)+�tBpn+1 = gu, (4.24)

Aφ

(
un+1)φn+1 = gφ, BT un+1 = 0. (4.25)

Note that Eq. (4.24) in contrast to (4.11) and (4.14) is multiplied with ρ(φ), which
gives rise to the modified operators Mρ , Kρ(u), and Lμ. Here and below the super-
script n+ 1 refers to the time level, while subscripts identify the origin of discrete
operators (u for the momentum equation and φ for the Level Set equation); more-
over, ρ and μ are evaluated w.r.t. the old time level tn which makes this formulation
semi-implicit. Note that we have the freedom of using different finite element ap-
proximations and discretization schemes for the velocity u and the indicator func-
tion φ, and the discrete problem (4.24)–(4.25) can be solved again in the framework
of the discrete projection method. For relatively small time steps, this strategy works
very well, and simulation software can be developed in a modular way making use
of optimized multigrid solvers. Consequently, in the simplest case (just one outer
iteration per time step), the sequence of algorithmic steps to be performed is as
follows:

Step 1. Compute ũ from the momentum equation

Au

(
ũ, φn

)
ũ= gu −�tF

(
φn

)−�tBpn.

Step 2. Solve the discrete Pressure-Poisson problem

Pρq = 1

�t
BT ũ with Pρ := BTM−1

ρ B.
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Step 3. Correct the pressure and the velocity

pn+1 = pn + q, un+1 = ũ−�tM−1
ρ Bq.

Step 4. Solve the Level Set equation for φ

Aφ

(
un+1)φn+1 = gφ.

Due to the nonlinearity of the discretized convective terms, resp., of the reinitial-
isation step, iterative defect correction or Newton-like methods, resp., corrections
via redistancing, must be invoked in Steps 1 and 4. However, due to the assumed
relatively small time steps, such nonlinear iteration methods are not critical for the
complete flow simulation.

4.4 The FEM-Level Set-dG(1) Approach

Our chosen Level Set approach is based on a first-order Discontinuous Galerkin
discretization in space, dG(1)-FEM, that means on piecewise linear polynomials. In
the following, we will discuss the corresponding techniques for the discretization
of the advection equation, for the treatment of the surface tension force, and for the
reinitialisation procedure.

4.4.1 Discontinuous Galerkin Upwinding for the Level Set
Approach

There are several ways to approximate and solve Discontinuous Galerkin approxi-
mations for the Level Set function φ [11, 15, 36, 41]. The general form of the Level
Set transport equation involving the normal front velocity can for instance be solved
directly by using a Runge–Kutta dG-formulation for the Hamilton–Jacobi equations
[27, 35]. The starting point to introduce our discretization of the Level Set transport
equation is

∂φ

∂t
+ u · ∇φ = 0 (4.26)

with a given velocity field u. In our case u is taken as the convective velocity from
the Navier–Stokes solver and must accordingly be updated in each time step. We
have u · n = un, where n is the unit normal to the interface Γ according to (4.7).
The Level Set equation (4.26) can thus be rewritten as

∂φ

∂t
+∇ · (uφ)= φ∇ · u. (4.27)

The reformulated Level Set equation above is simply a linear convection or ad-
vection equation in conservative formulation with a source term on the right hand
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side. We continue to rewriting it in weak form by introducing a triangulation, Mh,
of the domain Ω where E is an element E ∈M h. We are thus seeking an approxi-
mated solution in the following space

Vh =
{
vh ∈ L∞(Ω) : vh|E ∈ Vh(E ),∀E ∈M h

}
.

Here, Vh(E ) denotes the local discrete test and trial spaces. The corresponding
derivation follows by multiplying the equation (4.26) by a suitably chosen test func-
tion after which partial integration over each element E is performed. If the trial
solution space is accordingly discretized as φh ∈ Vh(E ), this results in

∫
E
vh

∂φh

∂t
dx =

∫
E
φhu · ∇vhdx −

∫
∂E

vhφhu · nE ds +
∫
E
vhφh∇ · udx,

∀vh ∈ Vh(E ), (4.28)

where nE is the outward pointing unit normal belonging to the element E . The
fluxes on the internal boundaries are twofold defined since the underlying test and
trial spaces are discontinuous. This is handled by replacing the outer flux in the last
term of the right-hand side of Eq. (4.28) with a numerically upwinded flux, that is

∫
E
vh

∂φh

∂t
dx =

∫
E
φh∇ · (uvh)dx −

∫
∂E

vhφ
up
h u · nE ds, ∀vh ∈ Vh(E ). (4.29)

The upwinding flux is calculated as

φup =
{
φ−, if u · nE ≥ 0,

φ+, otherwise,

where φ− and φ+ are defined as

φ− = lim
ε→0−

φ(x+ εnε, t),

φ+ = lim
ε→0+

φ(x+ εnε, t).

In other words this means that φup is the value of φ taken from an upwind element
at an element interface.

In our approach, Eq. (4.29) is discretized in space by firstly constructing the tri-
angulation Mh by subdivision in the hexahedral elements E . Furthermore, both the
test and trial function spaces, vh and φh, are constructed by employing linear first-
order polynomial basis functions on each element E , the so-called dG(1) approach.
These basis functions are completely determined by interior nodes of the element
and are thus discontinuous at inter-element edges. Moreover, the discretization in
time utilizes as before the standard second-order Crank–Nicolson scheme as de-
scribed for instance in [61].
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4.4.2 Treatment of Surface Tension Effects

Surface tension effects are taken into account through the following force balance
at the interface Γ :

[u]|Γ = 0,
[−pI+μ

(∇u+ (∇u)T
)]∣∣

Γ
·n= σκn.

Here n is the unit normal at the interface pointing into Ω1, [A]|Γ = A|Ω1∩Γ −
A|Ω2∩Γ denotes the jump of a quantity A across the interface, σ is the surface tension
coefficient, and κ is the curvature of the interface Γ . The first condition implies con-
tinuity of the velocity across the interface, whereas the second describes the force
balance on Γ . Two strategies are often used to handle the curvature term, either to
rewrite it as a volume force, that means

fst = σκnδ(Γ,x),

where δ(Γ,x) is the Dirac delta function localizing the surface tension forces to the
interface, or to introduce the Laplace–Beltrami operator �Γ on the interface, that
means

κn=�Γ id

and integrating the corresponding term in the weak formulation of the problem by
parts [1, 17]. In the case of our current explicit treatment we get

(fst ,v)=
∫
Γ n

σκnnn · vdΓ, (4.30)

where the superscript n denotes the previous time level. The extension of the surface
integrals into volumetric ones can be obtained by the indicated incorporation of the
Dirac Delta function δ = δ(Γ,x), which has the value ∞ at the location of the
interface, φ = 0, and zero elsewhere, that means

(fst ,v)=
∫
Ω

σκnnn · vδ(Γ n
)
dx. (4.31)

According to the applied CSF approach we approximate the Dirac Delta function
δ by a continuous regularized one, which is a smooth function in the vicinity ε of
the interface:

δ(φ)=
⎧⎨
⎩
φ < 0, max(0, 1

ε
+ 1

ε2 φ),

φ ≥ 0, max(0, 1
ε
− 1

ε2 φ).
(4.32)

Since the interface normal nn and curvature κn are higher order derivatives of the
Level Set function φn, their distributions can be obtained by a combination of ap-
propriate projection and gradient recovery techniques. Accordingly, the continuous
(piecewise trilinear) interface normal nn

Q1
is obtained by L2-projection (and normal-

ization) from the piecewise discontinuous P1 space into the continuous Q1 space.
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Finally, the continuous approximation κn
Q1

of the curvature κn is reconstructed via
L2-projection, too, ∫

Ω

κn
Q1

wdx =−
∫
Ω

w∇ · nn
Q1

dx, (4.33)

where w denotes the test functions from the conforming trilinear Q1 space.
One of the remaining challenging problems is the capillary time step restric-

tion which couples the time step size with the (local) mesh size h and 1/σ leading
to very high computational cost due to such strict stability constraints. Beside the
classical work by Bänsch, who developed a semi-implicit approach for front track-
ing, the FEM-Level Set approach by Hysing [28] is one of the very few attempts
for interface capturing methods, which is in the focus of our future research on 3D
multiphase flow problems. Very recently, an alternative method containing a survey
on this problem and existing solution strategies was published by Sussmann [58].
However, it still has to be stated that the combination of adaptive Level Set or VOF
methods on locally adapted meshes shows severe numerical problems if configura-
tions with large surface tension shall be simulated in an accurate, robust, and effi-
cient way. Moreover, the challenges further increase for non-Newtonian multiphase
fluids, for instance for Power Law models (‘shear thinning’ [13]) or for viscoelastic
fluids [68] which even for single-phase flows lead to huge problems for large Weis-
senberg numbers. Nevertheless, we are convinced that the described FEM-Level Set
techniques have the potential to solve these challenging problems in future.

As a final comment, in the framework of variational formulations, the corre-
sponding volume integral can be reduced to a boundary integral which serves as
a natural boundary condition at the free interface [48, 56]. Moreover, if partial in-
tegration of the Laplace-Beltrami operator is applied in tangential direction of the
interface [1, 2, 14, 18, 24, 37] then the calculation of the second derivatives of φ for
the curvature can be omitted which can be used for very efficient evaluations of the
surface tension force in combination with Level Set functions satisfying the distance
property. This is in contrast to the usual finite difference approaches which require a
less accurate Continuum Surface Force (CSF) approximation of the (singular) Delta
function [6]. The above-mentioned alternative treatment of the surface tension force
term is in the scope of our forthcoming studies.

4.4.3 Reinitialization Procedure for LS-dG(1)

For the accurate calculation of the normal vector and curvature, as defined in (4.7),
and hence for the accurate position and shape of the dynamic interface, one has
to take care that φ satisfies—at least near the interface Γ —the distance property
which typically is achieved via appropriate postprocessing of a given numerical
approximation φ̃. Since the direct reinitialisation φi := sign(φ̃i)dist(xi , Γ ) is very
expensive, one way to do the corresponding corrections is to solve the so-called
Eikonal equation |∇φ| = 1 [30, 33] with boundary conditions φ = 0 on Γ = {x ∈
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Ω | φ̃(x) = 0}. Typical methods are based on fast marching [53] or fast sweeping
[69], while another approach is based on pseudo-timestepping for this nonlinear
equation which leads to a Hamilton–Jacobi PDE:

∂φ

∂τ
= sign(φ̃)

(
1− |∇φ|), φ|τ=0 = φ̃. (4.34)

Corresponding numerical approaches exploit that this problem can be written as a
(nonlinear) transport equation

∂φ

∂τ
+w · ∇φ = sign(φ̃), with w= sign(φ̃)

∇φ
|∇φ| . (4.35)

By stability reasons, the (discontinuous) sign function is typically replaced by a
smoothed approximation which may lead to loss of accuracy and shift of the free
interface. In the framework of FEM, the interface local projection of Parolini [47]
helps, particularly for piecewise linear functions leading to a constant gradient vec-
tor, which combines the advantages of direct and PDE-based reinitialisation. Then,
the correction of φ̃ mostly consists of three steps:

1. In mesh cells which contain the free boundary Γ , an exact reconstruction via
(piecewise constant) gradient is applied.

2. Use a L2 projection to obtain the best approximation of φ near Γ .
3. Outside of the ‘surface domain’ Ωint, solve the equation (4.35) using the already

calculated values of φ at the boundary of Ωint as Dirichlet boundary conditions.

According to our implementation, the reinitialization of the Level Set distribution
is based on the advantages offered by the Discontinuous Galerkin Finite Element
Method dG(1). This particularly means that we perform segregated reinitialization
procedures on different groups of elements. The identified groups are as follows:

• Elements intersected by the interface, we denote them by E ⊂M 0.
• A few layers of elements in the positive direction (φ > 0) from the interface,

E ⊂M+.
• A few layers of elements in the negative direction (φ < 0) from the interface,

E ⊂M−.
• The rest of the domain, these are the elements E ⊂M∞.

Such a segregated approach enables us to get rid of the discontinuity that the sign
function S(φ) exhibits at elements intersected by the interface. Moreover, it reduces
the computational overhead since the PDEs are computed in a reduced computa-
tional domain only. Summarizing, the developed algorithm for the reinitialization is
as follows:

Step 1. Direct reinitialization for E ⊂M 0:

φn |∇φ|=1−→ φn+1.
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Step 2. PDE-based solution for E ⊂M+ with

∂φ

∂τ
+ n · ∇φ =+1.

Step 3. PDE-based solution for E ⊂M− with

∂φ

∂τ
− n · ∇φ =−1.

Step 4. Prescription of far field values for E ⊂M∞: φn+1
RI = φ∞.

Here

n := nn = ∇φn

|∇φn| .
The coupling between the individual groups of elements is achieved by imposing
of boundary conditions from E ⊂M 0 for the PDE-based reinitialization which is
treated via the Fictitious Boundary Method approach [39]. One has to keep in mind
that the discontinuous sign function does not cause a problem in Steps 2 and 3 since
the discontinuity has been treated already in Step 1. Additionally, the Level Set
function can be corrected due to mass loss which typically is performed by adding
an appropriate constant cφ so that the total volume of both phases remains constant
[56]. Moreover, further improvements can be obtained via high-order discretization
and grid adaptivity [11] which is a subject of ongoing research.

4.5 Numerical Simulations

This section contains several numerical studies for validating and evaluating the
methodology described in the previous sections.

4.5.1 Single-Phase Flow Around a Cylinder

The first incompressible flow problem to be dealt with, particularly to demonstrate
the accuracy of the high-order Q2/P1 approach, is the well-known benchmark Flow
around cylinder developed in 1995 for the priority research program “Flow simu-
lation on high-performance computers” under the auspices of DFG, the German
Research Association [64]. This project was intended to facilitate the evaluation of
various numerical algorithms for the incompressible Navier-Stokes equations in the
laminar flow regime. A quantitative comparison of simulation results is possible on
the basis of relevant flow characteristics such as pressure values as well as drag and
lift coefficients, for which sufficiently accurate reference values are available (see
also: www.featflow.de/en/benchmarks/ff_benchmarks.html).

http://www.featflow.de/en/benchmarks/ff_benchmarks.html
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Fig. 4.2 Geometry and a coarse mesh for the ‘Flow around cylinder’ benchmark

Table 4.1 Mesh convergence results (levels 2 to 6) in terms of drag, lift, and pressure difference
for the ‘DFG Flow around cylinder problem’ at Re= 20. Comparison of our results with reference
results [5, 32]. �P refers to the pressure difference (front/back) on the cylinder and CD and CL

are the normalized ( 1
2ρU

2
meanLcylDcyl) drag and lift coefficients

Level �P CD CL NEL NDOF(u,p)

2 0.171956 6.01954 0.012316 768 21,560

3 0.171553 6.13973 0.009569 6,144 199,200

4 0.171156 6.17433 0.009381 49,152 1,482,816

5 0.171031 6.18261 0.009387 393,216 11,432,064

6 0.171022 6.18465 0.009397 3,145,728 89,760,016

Authors Reference values

Braack [5] 0.171007 6.18533 0.009401 1,000,000 40,000,000

John [32] 0.170779 6.18533 0.009401 2,000,000 55,000,000

Here, we consider the steady incompressible flow around a cylinder with circular
cross-section (see Fig. 4.2). An in-depth description of the geometrical details and
boundary conditions can be found in [4, 64] which contain all relevant information
regarding this benchmark configuration. The flow at Re= 20 is actually dominated
by diffusion and could be simulated by the standard Galerkin method without any
extra stabilization. The corresponding results are shown in Table 4.1 and demon-
strate the high quality of the Q2/P1 approach compared to quasi-reference values
from the literature [5, 32].

4.5.2 Two-Phase Flow of a Rising Bubble

The rising bubble configurations described in this section were chosen as the ones
established by the numerical studies of van Sint Annaland et al. [54] in order to
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Table 4.2 Resulting the Reynolds numbers obtained for the different configurations. The sub-
scripts E and S stand for empirical and simulational reference values from Grace [8] and van Sint
Annaland [54], respectively. The last four values refer to our simulation results obtained on the
meshes A and B and on the refinement levels 2, 3, and 4

Case Shape Mo Eo ReE ReS RemAl2 RemAl3 RemBl3 RemBl4

B Ellipsoidal 0.100 9.71 4.6 4.3 5.50 5.50 5.60 5.60

C Skirted 0.971 97.1 20.0 18.0 17.7 18.0 18.0 18.0

D Dimpled 1000 97.1 1.5 1.7 2.00 2.03 2.03 2.03

validate the implementation of our Level Set approach. According to the mentioned
studies, the cases B, C, and D were analysed which results in a considerable defor-
mation of the initial bubble. The ratios of physical properties (ρg : ρl and μg : μl) of
the present phases were set to (1 : 100). The ratios of the bubble diameter, db, with
respect to the domain sizes, ax , ay , az, were (db : ax : ay : az) = (3 : 10 : 10 : 20).
The values of the interfacial tension coefficient σgl and gravitational acceleration gz
for the simulations were set based on the characteristic Eötvös and Morton numbers
defined as in [8]:

Mo= gzμ
4
l �ρgl

ρ2
l σ

3
gl

, Eo= gz�ρgld
2
b

σgl
. (4.36)

As a result of the given settings the bubbles deform to a final shape and they reach
an equilibrium rising velocity, v∞, characterized by the Reynolds number defined
as in [8]:

Re= ρlv∞db

μl

. (4.37)

Since the Level Set approach by its nature does not preserve the mass of the
individual phases, certain mass correction techniques were incorporated to prevent
artificial ‘mass transformation’ from one phase to another. To this end we adopted a
simple but efficient method proposed by Smolianski [56] which elevates the level set
function at every time step with a limited constant min(dε,max(−dε, cφ)), where dε
is related to the characteristic element size and cφ is a value enforcing absolute mass
conservation. According to our experience setting dε to 3 % of the characteristic
element size already prevents the occurrence of permanent mass loss.

In order to achieve mesh-independent simulation results in terms of bubble shape
and terminal rising velocity, we performed the simulations on two sets of meshes of
two consequent levels of refinements (mesh A with refinement level 2, 3 and mesh
B refinement level 3, 4). As it can be seen from Fig. 4.3, which displays the equilib-
rium bubble shapes centered with respect to their center of mass, the bubble shapes
converge fairly well with increasing mesh resolution, especially in cases B and D.
The terminal rise velocities compared with the empirical predictions of Grace [8]
and numerical predictions of van Sint Annaland [54] are given in Table 4.2. De-
spite the mesh-independent properties of the obtained results, the comparison of the
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Fig. 4.3 Left: Cutplanes of continuous reconstructions of the interphase for the equilibrium bub-
ble shapes. Right: Time evolution of the bubble shapes (from bottom to top). The cases are orga-
nized as: Top—case B—Eo = 9.71, Mo = 0.1; Middle—case C—Eo = 97.1, Mo = 0.971; Bot-
tom—case D—Eo= 97.1, Mo= 1000
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terminal rise velocities shows a weaker correlation of our results with the empiri-
cal predictions of Grace than it was the case in van Sint Annaland’s computational
studies. This contradiction leaves behind the challenges for further numerical anal-
ysis, possibly leading to a benchmark problem to which other researchers will also
be welcome to contribute, as was the case with the well-known 2D rising bubble
problem [31].

4.5.3 Droplet Dripping Simulation

The corresponding experimental setup involves a two-phase problem consisting of a
glucose-water mixture (as a continuous phase) and silicon oil (as a dispersed phase).
The measurements are restricted to the so-called dripping mode. This mode is char-
acterized by relatively low volumetric flow rates and by the fact that the droplets
are generated in the near vicinity of the capillary so that the stream length is com-
parable with the size of the generated droplets. Since the temperature is kept at a
constant value during the whole experiment, all physical properties of the present
phases are constant. The experimental measurements were realized (by the group of
Prof. Walzel, BCI, TU Dortmund) to obtain statistically averaged quantities such as
droplet size, droplet generation frequency and stream length. These experimentally
measured quantities are compared with our subsequent simulation results.

The basic units used to define the derived quantities are the following ones:

[length] = dm, [time] = s, [mass] = kg.

The list of physical quantities is as follows (Fig. 4.4):

gz =−9.81 m s−2 =−98.1 dm s−2,

σ = 0.034 N m−1 = 0.034 kg s−2,

ρC = 1340 kg m−3 = 1.34 kg dm−3,

ρD = 970 kg m−3 = 0.97 kg dm−3,

μ= μC = μD = 500 mPa s= 0.050 kg dm s−1.

The list of geometrical parameters reads:

[domain size]= [−0.15 : 0.15] × [−0.15 : 0.15] × [0.0 : 1.2] dm3,
[inner capillary radius]=R1 = 0.015 dm,
[outer capillary radius]=R2 = 0.030 dm,
[primary phase inflow radius]=R3 = 0.15 dm.
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Fig. 4.4 A sketch of the
benchmark domain

The boundary conditions imposed on the inflow velocity are the following:

w =

⎧⎪⎨
⎪⎩
a2(R1 − r)(R1 + r) if 0 < r < R1 (a dispersed phase),

a1(R3 − r)(r −R2) if R2 < r < R3 (a continuous phase),

0 otherwise.

The parameters a1 and a2 are defined to achieve the required volumetric flow rates:

V̇C =
∫ R3

R2

(
2πra1(R3 − r)(r −R2)

)
dr

=−2πa1

[
r4

4
− (R2 +R3)

r3

3
+R2R3

r2

2

]R3

R2

= πa1

6
(R2 +R3)(R3 −R2)

3.

V̇D =
∫ R1

0

(
2πra2(R1 − r)(R1 + r)

)
dr = 2πa2

[
R2

1r
2

2
− r4

4

]R1

0
= πa2

2
R4

1 .

The volumetric flow rates for the simulations are set to:

V̇C = 99.04 ml min−1 = 99.04 cm3 min−1 = 99.04
10−3 dm3

60 s

= 1.65× 10−3 dm3 s−1,

V̇D = 3.64 ml min−1 = 3.64 cm3 min−1 = 3.64
10−3 dm3

60 s

= 6.07× 10−5 dm3 s−1,

which is guaranteed by setting a1 = 10.14 dm−1 s−1 and a2 = 763.7 dm−1 s−1.
The resulting process leads to a pseudo-steady state, where the droplet separation

happens according to the so-called dripping mode. The frequency of the given mode
is f = 0.60 Hz (cca 0.58 Hzexp), which produces droplets of size d = 0.058 dm (cca
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Fig. 4.5 A sequence of one droplet separation compared with experimental measurements

Fig. 4.6 Evolution of the volume of the secondary phase. Theoretical lines are characterized by
the slope q = 6.07× 10−5 dm3 s−1

0.062 dmexp). The maximum stream length during the process is L= 0.102 dm (cca
0.122 dmexp). The snapshots of one full droplet generation compared with experi-
mental measurements are given in Fig. 4.5. The time evolution of the volume of the
secondary phase is given in Fig. 4.6. As it can be seen, the increase of the volume of
the dispersed phase follows the theoretically expected trend in a reasonable way de-
spite the fact that the mass correction technique (previously described in Sect. 4.5.2)
was not activated.



88 S. Turek et al.

4.6 Summary

In this contribution, we have shown that the realization of a new FEM-Level Set
approach in the framework of Discontinuous Galerkin Finite Elements together
with special PDE-based reinitialization techniques leads to very efficient simula-
tion tools for modelling multiphase flow problems. The implemented parallel 3D
multiphase flow solver has been validated in the case of the rising bubble and for
the droplet dripping problem. A detailed description of these problems together with
the obtained results—which are accurate and in fairly good agreement with the cor-
responding empirical data—are left in the form of a benchmark proposal for the
engineering community.
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Chapter 5
GAs and Nash GAs Using a Fast Meshless
Method for CFD Design

Hong Wang, Hong-Quan Chen, and Jacques Periaux

Abstract Solving CFD inverse problems dealing with complex aerodynamic con-
figurations like multi-element airfoils remains a difficult and expensive procedure,
which requires seamless interfacing between several softwares like computer-aided
design (CAD) system, mesh generator, flow analyzer, and an optimizer. It is essen-
tial to ensure the mesh quality during the optimization procedure for maintaining
an accurate design. A fast meshless method using second and fourth order artificial
dissipations and dynamic clouds of points based on the Delaunay graph mapping
strategy is introduced to solve inverse computational fluid dynamics problems. The
purpose of this paper is to use genetic algorithms and Nash genetic algorithms for
position reconstructions of oscillating airfoils. The main feature of this paper is a
detailed investigation on inverse problems in aerodynamics using both flexibility
and efficiency of the fast meshless method. Comparisons of prescribed and com-
puted aerodynamics parameters are presented for position reconstruction problems
in aerodynamic design using both the fast meshless method coupled with artificial
dissipation and a finite volume method. Numerical results are presented to illustrate
the potential of the fast meshless method coupled with artificial dissipation and evo-
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lutionary algorithms, to solve more complex optimization problems of industrial
interest occurring in multidisciplinary design.

5.1 Introduction

Compared to direct computational fluid dynamics (CFD) problems, inverse prob-
lems [15] have been of ongoing interest to aerodynamic researchers. The position
reconstruction is one of the important problems in high lift devices using multi el-
ement airfoils configurations. The goal of our present study is to implement effi-
ciently on the computer a simple reconstruction problem with Genetic Algorithms
(GAs) [10] and/or Nash GAs [11, 15] to reconstruct the target position of oscillating
airfoils based on prescribed conditions.

Meshless methods (see, e.g., [2–9]) do not use the concept of mesh topology and
provide more geometrical flexibility for computing flow fields. In addition, they are
also useful in design optimization problems around complex configurations without
constraints required by mesh quality and topology. A fast meshless method coupled
with artificial dissipation (AD) using second and fourth order derivatives is em-
ployed for solving two-dimensional (2D) Euler equations. Spatial derivatives of the
governing equations are approximated by a weighted least square (WLS) method
discretizing the computational domain into clouds of points (see, e.g., [1–4]). An
explicit five-stage Runge-Kutta scheme is utilized to reach the steady-state solution.
A local time-stepping method and a residual averaging [3] are employed to acceler-
ate the rate of convergence. Dynamic clouds of points based on the Delaunay graph
mapping [8] are selected to ensure the flow field points following the movements of
body boundaries.

The proposed approach is validated by comparing our numerical results against
a finite volume method presented in [6] for a single oscillating NACA0012 airfoil.
In this paper, we have tested the position reconstructions of oscillating airfoils op-
erating in transonic regimes for aerodynamic design. Position reconstruction of a
single airfoil has been tested using GAs optimizer. Position reconstruction of two
airfoils has been tested with Nash GAs using both the fast meshless method coupled
with AD and the finite volume method on the same computational nodes. Compar-
isons of prescribed and computed parameters are presented to show the efficacy of
the fast meshless method coupled with AD and Nash game strategy in the position
reconstruction problems in aerodynamic design.

The rest of the paper is organized as follows. Section 2 describes the methodol-
ogy of the dynamic cloud method based on the Delaunay graph mapping strategy
and the meshless method coupled with AD. Section 3 shows the validation of the
proposed meshless method. Section 4 conducts two practical optimization applica-
tions and conclusions are presented in Sect. 5.
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Fig. 5.1 Global and close-up views of a Delaunay graph in the case of NACA0012 airfoils

5.2 Methodology

5.2.1 Dynamic Cloud Method Based on the Delaunay Graph
Mapping Strategy

In order to simulate the relative movement of boundaries in the position reconstruc-
tion, it is required that a cloud of points has the ability to move with the rigid body
boundaries. Hence, a fast and efficient dynamic cloud method based on the Delau-
nay graph mapping strategy [8] is introduced here.

Firstly, as shown in Fig. 5.1, a Delaunay triangulation of the computational field
is set up by using the given points located on the boundaries for BI-NACA0012
airfoils. Then, the triangulation is contained for every point P(x, y) in the computa-
tional field. Notate the points of every element E(x1, y1), E(x2, y2) and E(x3, y3),
then the coordinates of the point can be expressed as

{
x = a1x1 + a2x2 + a3x3,

y = a1y1 + a2y2 + a3y3,
(5.1)

where a1 = S1/S, a2 = S2/S, a3 = S3/S; S, S1, S2, S3 are the relevant triangle’s
areas [8]. Then, all the background points by the movement of the boundary’s points
are adjusted. The coordinates of the relevant triangle become E(x′1, y′1), E(x′2, y′2)
and E(x′3, y′3), and the new coordinates of point can be denoted as

{
x′ = a1x

′
1 + a2x

′
2 + a3x

′
3,

y′ = a1y
′
1 + a2y

′
2 + a3y

′
3.

(5.2)

In [14] it is shown that better results can be obtained by using the Delaunay
graph mapping strategy to ensure the flow field points following the movements
of the body boundaries without any iteration. And compared to the spring analogy
method described in [5].
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5.2.2 Governing Equations

The so-called Euler equations represent the conservation principle for mass, mo-
mentum, and energy for inviscid fluids. In a 2D Cartesian coordinate system, Euler
equations are expressed in the following form:

∂W
∂t
+ ∂E

∂x
+ ∂F

∂y
= 0, (5.3)

where t denotes time and (x, y) the Cartesian coordinates. The expressions of con-
servative variables W and convective fluxes E, F are introduced as

W=

⎡
⎢⎢⎣

ρ

ρu

ρv

e

⎤
⎥⎥⎦ , E=

⎡
⎢⎢⎣

ρu

ρu2 + p

ρuv

(e+ p)u

⎤
⎥⎥⎦ , F=

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p

(e+ p)v

⎤
⎥⎥⎦ , (5.4)

where ρ denotes the density, u is the x-velocity component, v is the y-velocity
component, p is the pressure, and e is the total energy per unit volume. For an ideal
gas, e can be written as

e= p

γ − 1
+ 1

2
ρ
(
u2 + v2),

where γ is the ratio of specific heat. Additionally, the equation of state is given by

p = ρR̄T ,

where T is the static temperature and R̄ is the ideal gas constant.

5.2.3 Spatial Discretization

The WLS method [4] is used to approximate the spatial first-order derivatives, and
in the cloud C(i) as shown in Fig. 5.2, (5.3) becomes

∂W
∂t

∣∣∣∣
i

+
(
∂E
∂x
+ ∂F

∂y

)
i

= 0. (5.5)

For the convective fluxes, let

Qi =
(
∂E
∂x
+ ∂F

∂y

)
i

. (5.6)

According to the WLS method [4], (5.6) could be written as

Qi =
∑

αikEik +
∑

βikFik. (5.7)
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Fig. 5.2 A typical structure
of the cloud C(i)

Then the governing equation can be written as

dWi

dt
=−

(
Qi −

N∑
k=1

dik

)
, (5.8)

where [3]

dik = ε
(2)
ik (Wk −Wi )− ε

(4)
ik

(∇2Wk −∇2Wi

)
,

ε
(2)
ik =K(2)λik max(υi, υk),

ε
(4)
ik = λik max

[
0,K(4) − ε

(2)
ik

]
,

υi = |∇2Pi |∑N
k=1(Pi + Pk)

,

∇2Wi =
N∑
k=1

Wk −NWi ,

λik = |αiku+ βikv| + c

√
α2
ik + β2

ik.

Here c=√γp/ρ is the local speed of sound.

5.2.4 Temporal Discretization

Within the cloud C(i), the semi-discretisation Euler equations are rewritten as

∂W
∂t

∣∣∣∣
i

=Ri , (5.9)
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where Ri means the residual value. An explicit scheme is used for time discretisa-
tion in (5.9), and we get

Wn+1
i −Wn

i

�t
=Ri . (5.10)

The superscripts n and (n+ 1) denote the time levels. Hence, Wn means the flow
solution at the present time t , and Wn+1 represents the solution at the time (t+�t).
An explicit five-stage Runge-Kutta time integration scheme is used

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(0)
i =Wn

i ,

W(1)
i =W(0)

i + α1�tiR
(0)
i ,

W(2)
i =W(0)

i + α2�tiR
(1)
i ,

W(3)
i =W(0)

i + α3�tiR
(2)
i ,

W(4)
i =W(0)

i + α4�tiR
(3)
i ,

W(5)
i =W(0)

i + α5�tiR
(4)
i ,

Wn+1
i =W(5)

i ,

(5.11)

where αk , k = 1,2,3,4,5, represents the stage coefficients, and we have α1 = 1
4 ,

α2 = 1
6 , α3 = 3

8 , α4 = 1
2 , α5 = 1.

The major disadvantage of the explicit scheme is that the time step is restricted
by the Courant-Friedrichs-Lewy (CFL) stability condition [3].

5.2.5 Acceleration Techniques

In order to accelerate the convergence, a local time stepping method and an implicit
residual averaging method are employed in our present work. The local time step
�ti of a discrete point is given by the equation [3, 12, 13]

�t = CCFL∑N
k=1 |αiku+ βikv| + c

√
α2
ik + β2

ik

, (5.12)

where CCFL denotes the coefficient of CFL.
In the meshless method for the time marching equation, let Ri represent the resid-

ual at node i. The new residual [3] can be given as

R′i =
Ri + ε

∑M
k=1 R′k

1+ εM
, (5.13)

where ε = [0.2,0.5] and it can be obtained by performing two Jacobi iterations. The
above technique allows the CFL number to be increased twofold or threefold when
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compared to the unsmoothed value, and consequently the CFL number is increased
from 2

√
2 to 5 in the present study.

5.3 Validation of the Fast Meshless Method Implemented with
Artificial Dissipation (AD)

In order to validate the proposed fast meshless method coupled with AD, a single
NACA0012 airfoil operating with flow conditions at a 3.0° angle of attack and a
Mach number 0.5 is tested. Figure 5.3 provides both the global view and the close-
up view of the cloud of points distributed around one single NACA0012 airfoil, and
Fig. 5.4 shows both the global view and the close-up view of the mesh distributed
for the same airfoil. There are 5047 nodes in the whole computational domain in
the meshless method and 9762 elements in the mesh method. Figure 5.5 shows the
comparison of surface pressure coefficients for this test case using the fast meshless
method coupled with AD and the finite volume method in [6].

Fig. 5.3 Global and close-up views of the cloud of points for the NACA0012 airfoil

Fig. 5.4 Global and close-up views of the mesh for the NACA0012 airfoil
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Fig. 5.5 Comparisons of
surface pressure coefficients
for the NACA0012 airfoil

Fig. 5.6 Comparisons of the
convergence history for the
NACA0012 airfoil

Figure 5.6 shows the comparison of the convergence history for this case using
the fast meshless method coupled with AD and the referenced mesh method [6]. As
shown in the histogram in Figs. 5.7 and 5.8, the meshless method coupled with AD
in this test case saves 71.5 % in the iteration costs compared to the finite volume
method described in [6]. In terms of the CPU time needed in this test case, the
meshless method coupled with AD saves 65.7 % compared to the finite volume
method in [6]. The computer hardware used in this paper is an Intel(R) Core(TM)
with 2 Quad CPU Q9650 with frequency 2.00 GHz/2.99 GHz and 3.00 GB of RAM.
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Fig. 5.7 Comparisons of the convergence history in terms of the number of iterations for the
NACA0012 airfoil

Fig. 5.8 Comparisons of the convergence history in terms of the CPU cost for the NACA0012
airfoil

5.4 Practical Optimization Applications

In this section, both the fast meshless method coupled with AD and the finite vol-
ume method referenced in [6] are used to test two inverse position reconstruction
problems: a single pitching NACA0012 airfoil and BI-NACA0012 airfoils.
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Fig. 5.9 Comparisons of the
convergence history in terms
of fitness value for a single
NACA0012 airfoil

5.4.1 A Single Pitching NACA0012 Airfoil

Let one airfoil oscillate in pitch about its quarter chord, and the rotating angle α is
selected as the design parameter. The objective function is defined according to the
surface pressure coefficients as

minf (α)=
M∑
i=1

∣∣Cp(α)−Cp

(
α∗
)∣∣2

i
, (5.14)

where M is the total number of points distributed on the surface of an airfoil, the
search space is α ∈ [−10.0◦,10.0◦], and α∗ is the prescribed design variable. Param-
eters of the GAs optimizer are chosen as: the size of population is 20, the probability
of crossover is 0.85, and the probability of mutation is 0.01.

The flow conditions of the reconstruction test case are as follows: the Mach num-
ber is 0.8 and the target angle of attack is 0.0°. Figure 5.9 shows the convergence
history of fitness value during the reconstruction process using the fast meshless
method coupled with AD and the finite volume method in [6] separately. As shown
on the histogram of Fig. 5.10, the meshless method coupled with AD saves 69.7 %
compared to the finite volume method referenced in [6] in terms of the CPU time
cost.

5.4.2 BI-NACA0012 Airfoil’s Configuration

Let two airfoils oscillate in pitch about their quarter chords, and rotating angles
α1, α2 are selected as design parameters. The two objective functions defined in a
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Fig. 5.10 Comparisons of the convergence history in terms of the CPU cost for the NACA0012
airfoil

reconstruction problem solved by the Nash-GAs optimizer are

minf1
(
α1, α

∗∗
2

)=
M1∑
i=1

∣∣Cp(α1)−Cp

(
α∗1
)∣∣2

i
+

M2∑
i=1

∣∣Cp

(
α∗∗2

)−Cp

(
α∗2
)∣∣2

i
, (5.15)

minf2
(
α∗∗1 , α2

)=
M1∑
i=1

∣∣Cp

(
α∗∗1

)−Cp

(
α∗1
)∣∣2

i
+

M2∑
i=1

∣∣Cp(α2)−Cp

(
α∗2
)∣∣2

i
, (5.16)

where M1 is the total number of points distributed on the surface of the upper airfoil
while M2 is the total number of points distributed on the surface of the lower airfoil,
the search spaces are α1 ∈ [−10.0◦,10.0◦], α2 ∈ [−10.0◦,10.0◦], and α∗1 , α∗2 are
prescribed parameters. The parameters in Nash GAs are chosen as follows: the size
of the population is 10, the probability of crossover is 0.85, and the probability of
mutation is 0.02.

The Euler flow conditions around the BINACA0012 configuration are the fol-
lowing: the Mach number is 0.5 and the prescribed parameters are 0.0° and 0.0°.
Figure 5.11 shows the convergence history of the objective function during the re-
construction process using Nash GAs based on the meshless method coupled with
AD and the finite volume method in [6]. As shown in the histogram in Fig. 5.12,
the meshless method coupled with AD saves 75.8 % compared to the finite volume
method in [6] in terms of the CPU time cost.
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Fig. 5.11 Comparisons of
the convergence history for
BINACA0012 airfoils in
terms of the objective
function using the fast
meshless method coupled
with AD and the standard
mesh method

Fig. 5.12 Comparisons of the convergence history in terms of the CPU cost for the BI-NACA0012
airfoils

5.5 Conclusions and Future

A fast Euler meshless method using artificial dissipations is used in this paper. Dy-
namic clouds of points based on a Delaunay graph mapping strategy have been
introduced to ensure that flow field points can easily follow the movements of solid
body boundaries. Position reconstructions of oscillating airfoils operating in tran-
sonic regimes have been tested for future aerodynamic design like high lift devices.
First a single airfoil position reconstruction has been tested successfully with a sim-
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ple GAs optimizer. Then, position reconstruction of two airfoils has been tested
with Nash GAs using both the fast meshless method coupled with AD and the finite
volume method referenced in [6] using the same number of computational nodes.
Comparisons of target geometries and computed parameters are presented to prove
the superiority of the meshless Euler flow analyzer methods implemented with AD
coupled with the Nash evolutionary optimizer for position reconstruction inverse
problems in aerodynamic design. This study is a roadmap to more complex design
optimization problems which can benefit of game coalitions [7] in terms of accuracy
and efficiency.
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Chapter 6
Balancing Discretization and Iteration Error
in Finite Element A Posteriori Error Analysis

Rolf Rannacher and Jevgeni Vihharev

Abstract This article surveys recent developments in a combined a posteriori anal-
ysis for the discretization and iteration errors in the finite element approximation
of elliptic PDE systems. The underlying theoretical framework is that of the Dual
Weighted Residual (DWR) method for goal-oriented error control. Based on com-
putable a posteriori error estimates the algebraic iteration can be adjusted to the
discretization in a successive mesh adaptation process. The performance of the pro-
posed method is demonstrated for several model situations including the simple
Poisson equation, the Stokes equations in fluid mechanics and the KKT system of
a linear-quadratic elliptic optimal control problem. Furthermore, extensions are dis-
cussed for certain classes of nonlinear problems including eigenvalue problems and
nonlinear reaction-diffusion equations.

6.1 Introduction

The use of adaptive techniques based on a posteriori estimates for the discretization
error is well accepted in the context of finite element discretization of partial differ-
ential equations (see, e.g., [1, 8, 25]). Although the convergence properties of linear
as well as nonlinear iterative methods such as the multigrid method or the Newton
method are discussed in many publications (see, e.g., [3, 10–12, 14]), there are only
few results on a posteriori error estimation of the iteration error. In the case of solv-
ing the Poisson equation, work has been done in [6] and was extended to the Stokes
equations in [4]. There, the automatic control of the discretization and multigrid er-
rors has been developed with respect to L2- and energy norms. The reliability of the
proposed adaptive algorithm has been verified on uniformly refined meshes.

However, in many applications, the error measured in global norms does not pro-
vide useful bounds for the error in terms of a given functional, a so-called quantity
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of interest. In this work, we propose the simultaneous control of both discretization
and iteration errors with respect to a prescribed output functional. This approach is
based on a posteriori error estimation by dual weighted residuals as presented in [8]
as the Dual Weighted Residual (DWR) method. We incorporate the adaptive itera-
tion method into the solution process of a given problem. It seems natural to stop the
linear or nonlinear iteration when the error due to the approximate solution of the
discrete equations is comparable to the error due to the finite element discretization
itself. To this purpose, we derive an a posteriori error estimator which simultane-
ously assesses the influences of the discretization and the inexact solution of the
arising algebraic equations. This allows us to balance both sources of errors.

For illustration, we consider the model problem

Au= f in Ω, u= 0 on Γ, (6.1)

with a linear elliptic operator A and a right-hand side f ∈ L2(Ω) where Ω is as-
sumed to be a bounded domain in R

d , d ∈ {2,3}, with polygonal respectively poly-
hedral boundary Γ . For simplicity, we impose homogeneous Dirichlet boundary
conditions. However, the techniques developed in this paper can also be applied to
problems with other types of boundary conditions. For the variational formulation
of the problem (6.1), we introduce the Hilbert space V :=H 1

0 (Ω) and the L2-scalar
product (v,w) := (v,w)L2(Ω). With the bilinear form a(·, ·) : V × V → R associ-
ated to the linear operator A, the weak formulation of the problem (6.1) reads as
follows: Find u ∈ V such that

a(u,φ)= (f,φ) ∀φ ∈ V. (6.2)

We discretize this problem by a standard finite element method (see [13]) in finite
dimensional spaces Vh ⊂ V resulting in “discrete” problems

a(uh,φh)= (f,φh) ∀φh ∈ Vh, (6.3)

which are equivalent to linear systems of algebraic equations. Usually the a pos-
teriori error estimators for the discretization error u− uh are derived under the as-
sumption that the discrete problems (6.3) are solved exactly. This ensures the crucial
property of the Galerkin orthogonality,

a(u− uh,φh)= 0, φh ∈ Vh. (6.4)

In contrast, here, we assume that the discrete problems are solved only approxi-
mately and denote the obtained approximate solution in Vh by ũh in contrast to the
notation uh for the “exact” discrete solution. Let the quantity of interest J (u) of the
computation be given in terms of a linear functional J : V → R. Our goal is the
derivation of an a posteriori error estimate of the form

∣∣J (u)− J (ũh)
∣∣≤ ηh + ηit. (6.5)

Here, ηh and ηit denote error estimators which can be evaluated from the com-
puted discrete solution ũh, where ηh assesses the error due to the finite element
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discretization and ηit the error due to the inexact solution of the discrete equa-
tions. The adaptation strategy then aims at equilibrating these two error components,
ηit ≈ ηh ≈ 1

2 TOL, according to the prescribed error tolerance TOL. This results in a
practical stopping criterion for the linear or nonlinear algebraic iteration.

This article is based on the results of the articles [6, 17, 20, 21]. The outline is
as follows: In Sect. 6.2, we describe the finite element discretization of the problem
(6.1) and develop the principles of the DWR method for goal-oriented a posteriori
error estimation of the discretization as well as the iteration errors. Section 6.2.1
discusses the practical evaluation of these error estimators and the implementation
of the resulting adaptation strategies. The numerical results presented in Sect. 6.2.2
demonstrate the efficiency and reliability of the proposed method for a prototypi-
cal scalar model problem. In Sect. 6.3 this approach is developed for the associated
symmetric eigenvalue problem. Then, Sect. 6.4 is devoted to the treatment of dif-
ferent types of saddle point problems, the Stokes system in fluid mechanics, and
the Karush-Kuhn-Tucker (KKT) system in linear-quadratic optimization. Finally, in
Sect. 6.5, we consider the extension of our theory to the Newton iteration for nonlin-
ear elliptic problems. The article concludes with Sect. 6.6, which addresses current
work and open problems.

6.2 Goal-Oriented Mesh Adaptation: The DWR Method

We briefly sketch the essentials of “goal-oriented” a posteriori error estimation and
mesh adaptation underlying the Dual Weighted Residual (DWR) method [2, 7, 8].

Let the goal of the computation be the approximation of a scalar quantity J (u)

with maximal accuracy TOL on a mesh Th from models

A (u)= 0, Ah(uh)= 0.

In this process the goal of adaptivity is the optimization of the mesh Th guided by
an a posteriori error estimate of the form

J (u)− J (uh)≈ η(uh) :=
∑
K∈Th

ρK(uh)ωK

with local cell residuals ρK(uh) and weights ωK (sensitivity factors). Then, the
mesh adaptation is driven by the local error indicators ηK := ρK(uh)ωK . The inher-
ent problem in this approach is that usually only an approximation ũh of the exact
discrete solution uh is available obtained by a nonlinear or linear iteration process.

For illustration, we consider the following model situation. For the solution of
the boundary value problem

−�u= f in Ω ⊂R
2, u|∂Ω = 0, (6.6)

the quantity J (u) is to be determined, where J (·) is a linear functional defined on
the natural solution space of this problem. The variational formulation of (6.6) reads

u ∈ V : a(u,ψ) := (∇u,∇ψ)= (f,ψ) ∀ψ ∈ V, (6.7)
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Fig. 6.1 Mesh refinement
and coarsening using
“hanging nodes”

where V :=H 1
0 (Ω) is the usual first-order Sobolev Hilbert space. For approximat-

ing this variational problem, we consider a Galerkin finite element method using
subspaces Vh ⊂ V (P1 or Q1 elements):

uh ∈ Vh: a(uh,ψh)= (f,ψh) ∀ψh ∈ Vh. (6.8)

The spaces Vh are defined on form-regular decompositions Th = {K} of Ω con-
sisting of closed cells K (triangular/quadrilateral in 2D and tetrahedral/hexahedral
in 3D) with diameter hK (see [13]). The global mesh size is h :=maxK∈Th

hK . To
ease local mesh adaptation, we allow “hanging nodes” (at most one per face or edge)
where the corresponding “irregular” nodal values are eliminated from the system by
linear interpolation of neighboring regular nodal values (see Fig. 6.1).

The error e := u− uh satisfies the Galerkin orthogonality relation

a(e,ψh)= 0, ψh ∈ Vh. (6.9)

We introduce the associated continuous and discrete “dual” problems

z ∈ V : a(φ, z)= J (φ) ∀φ ∈ V, (6.10)

zh ∈ Vh: a(φh, zh)= J (φh) ∀φh ∈ Vh. (6.11)

Taking the test function φ = e in (6.10) yields the error identity

J (e)= a(e, z)= a(e, z−ψh)= (f, z−ψh)− a(uh, z−ψh)=: ρ(uh)(z−ψh)

with an arbitrary ψh ∈ Vh. By cell-wise integration by parts, we obtain

J (e)=
∑
K∈Th

{(
R(uh), z−ψh

)
K
+ (

r(uh), z−ψh

)
∂K

}
,

with the cell and edge residuals R(uh) and r(uh) defined by

R(uh)|K := f +�uh, r(uh)|Γ :=
{
− 1

2n · [∇uh], if Γ ⊂ ∂K \ ∂Ω,

0, if Γ ⊂ ∂Ω,
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Fig. 6.2 Local post-processing by higher-order patchwise interpolation: “biquadratic” interpola-
tion of computed “bilinear” nodal values

where [∇uh] denotes the jump of the normal derivative across interelement edges.
Then, using the refinement indicators

ηK :=
∣∣(R(uh), z−ψh

)
K
+ (

r(uh), z−ψh

)
∂K

∣∣,
the mesh adaptation aims at “error balancing”, i.e.,

η :=
∑
K∈Th

ηK, N := #{K ∈ Th}, ηK ≈ TOL/N,

which at the end results in η≈ TOL.
The unknown dual solution z occurring in the error indicators ηK is approximated

by local higher-order post-processing from the computed dual solution zh,

z− I
(1)
h z ≈ I

(2)
2h zh − zh,

where I
(1)
h and I

(2)
2h denote the operators of cell-wise bilinear and patch-wise bi-

quadratic interpolation, respectively (see Fig. 6.2). This results in the approximate
error estimator

∣∣J (e)∣∣≈ ∑
K∈Th

η̃K,

η̃K :=
∣∣(R(uh), I

(2)
2h zh − zh

)
K
+ (

r(uh), I
(2)
2h zh − zh

)
∂K

∣∣.
(6.12)

This is to be compared with the traditional global “energy-norm” error estimator

∥∥∇(u− uh)
∥∥≤ ηE := cI cS

( ∑
K∈Th

h2
KρK(uh)

2
)1/2

(6.13)

with the cell residuals

ρK(uh) :=
(∥∥R(uh)

∥∥2
K
+ 1

2

∥∥r(uh)∥∥2
∂K

)1/2

and certain interpolation and stability constants cI ≈ 1 and cS ≈ 1.
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6.2.1 Balancing of Iteration and Discretization Error

In practice, the “exact” discrete solution uh ∈ Vh on the current mesh Th is
not known but rather an approximation ũh ∈ Vh obtained by an iterative process
ukh → uh (k→∞), such as a simple fixed point method (Gauß-Seidel), a Krylov
space method (PCG), or a multigrid method (MG). Hence, in the a posteriori error
representation

J (e)= η := ρ(uh)(z−ψh),

we have to use this approximation ũh := ukh,

J (ẽ)≈ η̃ := ρ(ũh)(z−ψh)+?

We need to balance the “iteration error” and the “discretization error” in order to
have a useful stopping criterion (or fine tuning) for the iteration. Suppose that the
adaptation process has generated a successively refined sequence of meshes Tl :=
Thl , l = 0, . . . ,L, and corresponding approximate discrete solutions ul ∈ Vl := Vhl .

Algorithm 6.1 Multigrid iteration MG(l, γ,uk
l , fl)

1: if l = 0 then
2: Solve A0u

k+1
0 = f0 exactly.

3: else
4: Pre-smoothing: ūkl := Sν

l (u
k
l )

5: Residual: dk
l := fl −Alū

k
l

6: Restriction: d̃k
l−1 := rl−1

l dk
l (L2 projection)

7: for r = 1 to γ do
8: Starting with v0

l−1 := 0 iterate vrl−1 :=MG(l − 1, γ, vr−1
l−1 , d̃

k
l−1)

9: end for
10: Correction: ¯̄ukl := ūkl + pl

l−1ṽ
γ

l−1 (natural embedding)

11: Post-smoothing: uk+1
l := S

μ
l (
¯̄ukl )

12: end if

Theorem 6.1 Let ũL, z̃L ∈ VL be any approximations to the exact primal and dual
discrete solutions uL, zL ∈ VL, respectively, on the finest mesh TL. Then, there holds
the error representation

J (u− ũL)= ρ(ũL)(z− ẑL)+ ρ(ũL)(ẑL). (6.14)

If a MG method has been used with canonical components, the following refined
representation holds:

ρ(ũL)(ẑL)=
L∑
l=1

(
Rl(ṽl), ẑl − ẑl−1

)
. (6.15)

Here, ẑl ∈ Vl , l = 0, . . . ,L, can be chosen arbitrarily and Rl(ṽl) are the iteration
residuals on the mesh levels l = 0, . . . ,L.
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Proof [17] For the error ẽL := u− ũL there holds

J (ẽL)= a(ẽL, z)= a(ẽL, z− ẑL)+ a(ẽL, ẑL)

= (f, z− ẑL)− a(ũL, z− ẑL)+ (f, ẑL)− a(ũL, ẑL)

= ρ(ũL)(z− ẑL)+ ρ(ũL)(ẑL).

If the multigrid method has been used, then the second term corresponding to the
iteration error can be rewritten in the form

ρ(ũL)(ẑL)=
L∑
l=1

{
(f, ẑl − ẑl−1)− a(ũL, ẑl − ẑl−1)

}+ {
(f, ẑ0)− a(ũL, ẑ0)

}
.

Since Vl ⊂ VL for l ≤ L, we observe by the definitions of Ql (Ritz projection), Pl

(L2 projection), and Al (discrete Laplacian) that for φl ∈ Vl there holds

(f,φl)− a(ũL,φl)= (Plf,φl)− (AlQlũL,φl).

Further, by the identity AlQl = PlAL for l ≤ L, we have

(Plf,φl)− (AlQlũL,φl)=
(
Pl(f −ALũL),φl

)= (
Rl(ũL),φl

)
.

Using the particular structure of the multigrid method, there holds

Rl(ũL)= Pl(fL −ALũL)

= PlfL − PlALS
ν
L

(
ũ
(0)
L

)− PlALp
L
L−1ṽL−1

= Pl(dL −AL−1ṽL−1)

= PldL − PlAL−1S
ν
L−1

(
ṽ
(0)
L−1

)− PlAL−1p
L−1
L−2 ṽL−2

...

= Pl(dl+2 −Alṽl+1)

= Pldl+2 − PlAl+1S
ν
l+1

(
ṽ
(0)
l+1

)− PlAl+1p
l+1
l ṽl

= Pl(dl+1 −Alṽl)=Rl(ṽl).

Using this for φl = ẑl − ẑl−1 and φ0 = ẑ0 completes the proof. �

On the basis of the error representation (6.14), we use the following error bal-
ancing criterion: ∣∣ρ(ũL)(ẑL)∣∣
 ∣∣ρ(ũL)(z− ẑL)

∣∣. (6.16)

Since ρ(uL)(ẑL)= 0 the term on the left tends to zero for proceeding iteration while
the term on the right approaches the (generally) non-zero discretization error. There-
fore, the left-hand term can be interpreted as measuring deviation from Galerkin
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orthogonality of ũL and the right-hand term is used for estimating the discretization
error, however evaluated at the approximative solution ũL, i.e.,

∣∣J (u− uL)
∣∣≈ ρ(ũL)(z− ẑL),

∣∣J (uL − ũL)
∣∣≈ ρ(ũL)(ẑL). (6.17)

This heuristic concept is supported by the results of the test calculations presented
below. It seems to be valid even on coarser meshes provided that the algebraic it-
eration is organized in a nested fashion, i.e., the approximate solution on the mesh
Tl−1 is used as the starting value for the iteration on the next refined mesh Tl .

Remark 6.1 It is worth noting that:

1. The proof of the analogue of Theorem 6.1 for “energy-norm” and L2-norm error
control is due to [6].

2. The first error representation,

J (ẽL)= ρ(ũL)(z− ẑL)+ ρ(ũL)(ẑL),

can be used for approximative solutions ũL obtained by any solution process in
VL, such as simple fixed point iterations, Krylov space methods, or multigrid
methods as well as perturbations caused by numerical quadrature or other “vari-
ational crimes”.

3. The second error representation holds for V -, W -, or F -cycles and for any type
of smoothing. It allows not only balancing the iteration against the discretization
error but also tuning the smoothing iteration separately on the different mesh
levels,

J (ẽL)= ρ(ũL)(z− ẑL)+
L∑
l=1

(
Rl(ṽl), ẑl − ẑl−1

)
.

The corresponding adaptive algorithm is formulated below.

Algorithm 6.2 Adaptive algorithm

1: Choose an initial discretization Th0 and set l = 0.
2: loop
3: Set k = 1
4: repeat
5: if k = 1 then
6: for j = 0 to l do
7: Set νj = 1, μj = 1.
8: end for
9: end if

10: Apply one multigrid cycle to the problem Alul = fl .
11: Set k = k + 1.
12: Evaluate the estimators ηml

and ηhl .
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13: According to the error indicators on the different levels, (Rj (ṽj ), z̃j −
p
j

j−1z̃j−1) determine the subset of levels I = {i1, . . . , in} with the biggest
contribution to the error estimator and increase the number of smoothing
steps by

14: if k > 1 then
15: for j = 1 to n do
16: Set νij = 4, μij = 4.
17: end for
18: end if
19: until |ηml

| ≤ c|ηhl |
20: if |ηhl + ηml

| ≤ TOL then
21: stop
22: end if
23: Refine the mesh Thl → Thl+1 accordingly to size of ηhl,i .
24: Interpolate the previous solution ũl on the mesh Thl+1 .
25: Increment l.
26: end loop

6.2.2 Numerical Tests

We consider a model Poisson problem (6.6) on a L-shaped domain Ω ⊂ R
2. The

target value is the function value J (u) := u(a) where a = (0.2,0.2). This irregular
functional is regularized by

Jε(u) :=
∣∣Bε(a)

∣∣−1
∫
Bε(a)

u(x) dx = u(a)+O
(
ε2).

The discrete problems are solved by an MG method using a V -cycle and 4 + 4
ILU-smoothing steps. The tolerance is TOL = 5× 10−7. By “MG I”, we indicate
iteration towards a round-off error level, while “MG II” refers to the use of an adap-
tive stopping criterion. The computational results are shown in Figs. 6.3, 6.4, and 6.5
as well as Tables 6.1 and 6.2. The “effectivity indices” for measuring the quality of
the a posteriori error estimators are defined by

I tot
eff :=

|J (e)|
ηh + ηit

, I heff :=
|J (eh)|

ηh
, I it

eff :=
|J (eit)|

ηit
.

Next, we consider the computation of the approximate solution uh on a fixed
locally refined, but still rather coarse, mesh by the Gauß-Seidel and the conjugate
gradient (CG) method. The computational results are shown in Tables 6.3 and 6.4.
In all cases the adaptive strategies proposed lead to significant work savings. Fur-
thermore, the effectivity indices are close to one on finer meshes, which confirms
the quality of the error estimators.
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Fig. 6.3 Configuration and locally refined meshes

Fig. 6.4 Comparison of the
CPU time used by the
different MG methods MG I
and MG II

Fig. 6.5 Gain in efficiency of
the multigrid algorithm by the
adaptive choice of smoothing
type and number of steps on
the different mesh levels:
1+ 1 ILU steps or 4+ 4 ILU
steps
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Table 6.1 Iteration with MG I (iteration towards a round-off error level)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

225 5 4.06e-03 1.57e-03 1.57e-03 6.01e-14 2.56

721 6 1.16e-03 9.57e-04 9.57e-04 3.95e-14 1.21

1 625 7 4.35e-04 2.26e-04 2.26e-04 4.70e-14 1.92

4 573 8 1.43e-04 9.95e-05 9.95e-05 7.71e-13 1.43

11 565 8 5.50e-05 2.98e-05 2.98e-05 1.67e-12 1.85

31 077 10 1.85e-05 1.28e-05 1.28e-05 6.33e-13 1.43

67 669 9 5.94e-06 4.89e-06 4.89e-06 2.67e-12 1.22

174 585 10 8.47e-07 2.00e-06 2.00e-06 1.79e-12 2.38

427 185 10 4.94e-07 7.63e-07 7.63e-07 1.37e-12 0.64

Table 6.2 Iteration with MG II (an adaptive stopping criterion)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

225 1 4.06e-03 1.67e-03 1.58e-03 9.42e-05 2.44

721 2 1.16e-03 9.58e-04 9.57e-04 1.35e-06 1.21

1 625 1 4.35e-04 2.44e-04 2.26e-04 1.89e-05 1.19

4 573 2 1.43e-04 1.01e-04 9.95e-05 1.28e-06 1.43

11 565 2 5.50e-05 3.04e-05 2.98e-05 6.43e-07 1.82

31 077 2 1.85e-05 1.40e-05 1.28e-05 1.23e-06 1.32

67 669 2 5.94e-06 5.36e-06 4.89e-06 4.71e-07 1.11

174 585 3 8.47e-07 2.05e-06 2.00e-06 5.04e-08 0.41

427 185 3 4.94e-07 8.04e-07 7.63e-07 4.07e-08 0.64

Table 6.3 Gauss-Seidel iteration on a locally refined mesh with 721 knots (starting value taken
from the preceding mesh)

Iter J (eh) ηh Iheff J (eit) ηit I it
eff ‖u(k)L − uL‖∞

10 1.16e-3 9.42e-4 1.24 1.68e-3 1.65e-3 1.02 4.21e-2

20 1.16e-3 9.48e-4 1.22 1.21e-3 1.20e-3 1.01 3.66e-2

30 1.16e-3 9.51e-4 1.22 9.10e-4 9.01e-4 1.01 3.20e-2

40 1.16e-3 9.53e-4 1.22 6.86e-4 6.81e-4 1.01 2.78e-2

50 1.16e-3 9.54e-4 1.22 5.18e-4 5.15e-4 1.01 2.42e-2

60 1.16e-3 9.55e-4 1.22 3.90e-4 3.88e-4 1.00 2.10e-2

70 1.16e-3 9.55e-4 1.22 2.94e-4 2.93e-4 1.00 1.83e-2

80 1.16e-3 9.56e-4 1.22 2.21e-4 2.21e-4 1.00 1.59e-2

90 1.16e-3 9.56e-4 1.22 1.67e-4 1.66e-4 1.00 1.38e-2

100 1.16e-3 9.56e-4 1.22 1.25e-4 1.25e-4 1.00 1.19e-2
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Table 6.4 CG iteration on a locally refined mesh with 721 knots (the starting value taken from the
preceding mesh)

Iter J (eh) ηh Iheff J (eit) ηit I it
eff ‖b−Ax(k)‖A−1

5 1.16e-3 9.50e-4 1.24 1.85e-03 1.80e-03 1.03 7.57e-3

10 1.16e-3 9.54e-4 1.22 4.60e-04 4.50e-04 1.03 6.34e-3

15 1.16e-3 9.50e-4 1.24 3.10e-05 2.99e-05 1.04 1.17e-3

20 1.16e-3 9.55e-4 1.22 2.17e-05 2.17e-05 1.01 3.08e-4

25 1.16e-3 9.57e-4 1.22 4.12e-06 4.12e-06 1.01 1.01e-4

30 1.16e-3 9.57e-4 1.22 1.09e-06 1.09e-06 1.00 1.32e-5

35 1.16e-3 9.57e-4 1.22 2.72e-07 2.72e-07 1.01 2.02e-6

40 1.16e-3 9.57e-4 1.22 8.22e-09 8.22e-09 1.00 2.31e-7

45 1.16e-03 9.57e-4 1.22 2.05e-09 2.05e-09 1.00 2.46e-08

50 1.16e-03 9.57e-4 1.22 1.93e-10 1.93e-10 1.00 1.94e-09

6.3 Eigenvalue Problems

Next, we consider the eigenvalue problem associated with the boundary value prob-
lem (6.6) of the Laplacian,

−�u= λu in Ω, u|∂Ω = 0. (6.18)

The corresponding variational formulation reads

a(u,φ)= λ(u,φ) ∀φ ∈ V =H 1
0 (Ω), (6.19)

with the normalization ‖u‖ = 1. The corresponding Galerkin finite element approx-
imation in Vh ⊂ V reads

a(uh,φh)= λh(uh,φh) ∀φh ∈ Vh (6.20)

with the normalization ‖uh‖ = 1. The corresponding residual is given by

ρ(uh,λh)(ψ) := λh(uh,ψ)− a(uh,ψ)

=
∑
K∈Th

{(
R(uh,λh),ψ

)
K
+ (

r(uh),ψ
)
∂K\∂Ω

}
,

with the cell and edge residuals R(uh,λh) and r(uh) defined by

R(uh)|K := λhuh +�uh, r(uh)|Γ :=
{
− 1

2n · [∇uh], if Γ ⊂ ∂K \ ∂Ω,

0, if Γ ⊂ ∂Ω.

Theorem 6.2 Let {ũh, λ̃h} ∈ Vh×R, ‖ũh‖ = 1, be any approximation to the discrete
eigenpair {uh,λh} ∈ Vh ×R on the current mesh Th. Then, there holds

(λ̃h − λ)(1− σh)= ρ(ũh, λ̃h)(u− φh)+ ρ(ũh, λ̃h)(φh) (6.21)
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for an arbitrary φh ∈ Vh. Here σh := 1
2‖ũh − u‖2.

Proof [21] Observing ‖ũh‖ = ‖u‖ = 1, there holds

ρ(ũh, λ̃h)(u− φh)+ ρ(ũh, λ̃h)(φh)

= λ̃h(ũh, u)− a(ũh, u)

= (λ̃h − λ)(ũh, u)+ λ(ũh, u)− a(ũh, u)

= (λ̃h − λ)(ũh, u)

= (λ̃h − λ)
( 1

2‖ũh‖2 + 1
2‖u‖2 − 1

2‖ũh − u‖2)
= (λ̃h − λ)(1− σh). �

Remark 6.2 It is worth noting that:

1. The error representation has to be evaluated for a convergent sequence of ap-
proximate eigenfunctions: ‖ũh − u‖2 → 0.

2. The evaluation of the error representation requires higher-order approximations
ûh ≈ u and σ̂h ≈ σh obtained, for example, from ũh by post-processing as de-
scribed above:

λ̃h − λ≈ 1

1− σ̂h

{
ρ(ũh, λ̃h)(ûh − ũh)+ ρ(ũh, λ̃h)(ũh)

}
. (6.22)

3. The second term on the right-hand side represents the deviation from Galerkin
orthogonality and can be evaluated without any approximation.

4. The error representation (6.21) has a natural extension to non-symmetric eigen-
value problems (non-deficient eigenvalues):

(λ̃h − λ) ≈ 1

1− σ̂h

{ 1
2ρ(ũh, λ̃h)

(
û∗h − ũ∗h

)+ 1
2ρ
∗(ũ∗h, λ̃h)(ûh − ũh)

+ 1
2ρ(ũh, λ̃h)

(
ũ∗h
)+ 1

2ρ
∗(ũ∗h, λ̃h)(ũh)}, (6.23)

where σ̂h := 1
2 (ũh − ûh, ũ

∗
h − û∗h), and ũ∗h is an approximation to the adjoint

eigenfunction u∗ corresponding to the eigenvalue λ. In the non-degenerate case,
we can use the normalization (uh,u

∗
h)= 1 (see [15, 21]).

The results of various test computations reported in [21] demonstrate that our
general approach to balancing discretization and iteration error also works well for
symmetric as well as nonsymmetric eigenvalue problems. Based on the a posteri-
ori error representations (6.21) or (6.23), we obtain effective stopping criteria for
Krylov-space methods such as, for example, the Arnoldi method (see [22, 24]),
which result in significant work savings.
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6.4 Saddle Point Problems

The approach for simultaneous estimation of discretization and iteration errors in-
troduced above can also be used for indefinite (linear) systems such as saddle point
problems. We illustrate this for two different kinds of saddle point problems, the
Stokes equation for modeling incompressible creeping viscous flow and the Karush-
Kuhn-Tucker (KKT) system occurring as a first-order optimality condition of linear-
quadratic optimal control problems.

6.4.1 Stokes Equations

The Stokes equation of fluid mechanics describes the behavior of a creeping incom-
pressible fluid occupying a domain Ω ⊂R

d , d = 2,3,

−ν�v+∇p = 0, ∇ · v = 0 in Ω,

v = 0 on Γrigid, v = vin on Γin, ν∂nv− pn= 0 on Γout.
(6.24)

The boundary is split like ∂Ω = Γrigid ∪ Γin ∪ Γout, where Γrigid is the rigid part,
Γin the inflow part, and Γout the usually artificial outflow part. For the meaning
and properties of the Neumann-type outflow boundary condition (so-called “do-
nothing” condition), we refer to [16]. Here, we consider the two-dimensional bench-
mark problem “channel flow around an obstacle” introduced in [23] (see Fig. 6.6).
The quantity of interest is the drag coefficient

J (u) := 2

Ū2D

∫
S

nT
(
2ντ(v)− pI

)
e1 ds,

where u= {v,p}, τ(v) := 1
2 (∇v +∇vT ) the strain tensor, n the outer normal unit

vector along S, D the diameter of the obstacle, Ū the maximum inflow velocity,
and e1 the unit vector in the main flow direction. The variational formulation of the

Fig. 6.6 Configuration of the flow example
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Table 6.5 Iteration with MG I (iteration towards a round-off error level)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

708 12 5.69e-05 9.19e-05 9.19e-05 2.03e-18 0.62

1 754 9 3.12e-05 2.81e-05 2.81e-05 1.05e-16 1.11

4 898 9 1.83e-05 1.21e-05 1.21e-05 2.20e-15 1.52

11 156 9 1.05e-05 7.01e-06 7.01e-06 9.49e-15 1.49

22 526 10 5.34e-06 3.77e-06 3.77e-06 8.36e-17 1.41

44 874 10 2.75e-06 2.12e-06 2.12e-06 3.39e-16 1.30

82 162 10 1.26e-06 1.09e-06 1.09e-06 4.29e-17 1.16

159 268 11 5.76e-07 6.11e-07 6.11e-07 1.26e-17 1.06

306 308 12 1.85e-07 2.98e-07 2.98e-07 8.74e-19 1.61

Table 6.6 Iteration with MG II (an adaptive stopping criterion)

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

708 2 5.69e-05 9.74e-05 9.17e-05 5.62e-06 0.59

1 754 2 3.12e-05 2.82e-05 2.81e-05 6.81e-08 1.11

4 898 2 1.83e-05 1.21e-05 1.21e-05 1.60e-08 1.52

11 156 2 1.05e-05 7.05e-06 7.01e-06 3.42e-08 1.49

22 526 2 5.34e-06 3.82e-06 3.77e-06 5.48e-08 1.39

44 874 2 2.75e-06 2.16e-06 2.12e-06 4.04e-08 1.28

82 162 2 1.27e-06 1.11e-06 1.09e-06 2.63e-08 1.14

159 268 2 5.76e-07 6.41e-07 6.10e-07 3.07e-08 0.90

306 308 2 1.86e-07 3.10e-07 2.97e-07 1.31e-08 0.60

problem (6.24) reads: Find {v,p} ∈ (v̂in +H)×L satisfying

ν(∇v,∇φ)− (p,∇ · φ)= (f,φ) ∀φ ∈H,

(χ,∇ · v)= 0 ∀χ ∈ L,

where H := H 1
0 (Γrigid ∪ Γin;Ω)2, L := L2(Ω), and v̂in is a suitable (solenoidal)

extension of the boundary data.
The discretization uses equal-order (bilinear) Q1 elements for velocity and pres-

sure with additional pressure stabilization for circumventing the usual “inf-sup” sta-
bility condition,

ν(∇vh,∇φh)− (ph,∇ · φh) = (f,φh) ∀φh ∈Hh,

(χh,∇ · vh)+ sh(χh,ph) = 0 ∀χh ∈ Lh,
(6.25)

where Vh ⊂ V and Lh ⊂ L are the finite element subspaces and sh(χh,ph) is a stabi-
lizing form. For more details on pressure stabilization, we refer to the survey articles
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Fig. 6.7 A refined mesh with 4 898 knots in the flow example

Fig. 6.8 Comparison of the
CPU time used by the two
MG variants MG I and MG II

[18, 19]. The discrete saddle point problem (6.25) is solved by an MG method us-
ing the canonical mesh transfer operations and “block ILU” smoothing (with 4+ 4
smoothing steps). The computational results are shown in Tables 6.5 and 6.6 as well
as Figs. 6.7 and 6.8.

6.4.2 The KKT System of Linear-Quadratic Optimization Problems

We consider the linear-quadratic optimization problem

J (u, q) := 1
2‖u− ū‖2 + 1

2α‖q‖2 −→min,

−�u = f + q in Ω, u= 0 on ∂Ω,
(6.26)

on Ω := (0,1)2 ⊂ R
2 with the force term f , prescribed target distribution ū, and

distributed control q . The regularization parameter is taken as α = 10−3. This prob-
lem is solved by the Euler-Lagrange approach, which uses the Lagrangian functional

L (u, q,λ) := J (u, q)+ (f + q,λ)− (∇u,∇λ),
with the adjoint variable λ ∈ V :=H 1

0 (Ω). Then, for any optimal solution {u,q} ∈
V × Q := H 1

0 (Ω) × L2(Ω) there exists an adjoint solution λ ∈ V such that the
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triplet {u,q,λ} ∈ V ×Q× V is a stationary point of the Lagrangian, i.e., it solves
the following (linear) saddle point system:

(∇φ,∇λ)− (u,φ) =−(ū, φ) ∀φ ∈ V,

(χ,λ)+ α(χ,q) = 0 ∀χ ∈Q,

(∇u,∇ψ)− (q,ψ) = (f,ψ) ∀ψ ∈ V.

(6.27)

This first-order necessary optimality condition is the so-called Karush-Kuhn-Tucker
(KKT) system of the optimization problem.

For solving the KKT system (6.27), we use conforming bilinear Q1 elements for
all three variables {u,q,λ}. Denoting the corresponding finite element subspaces by
Vh ⊂ V and Qh ⊂Q, we obtain the discrete saddle point problem

(∇φh,∇λh)− (uh,φh) =−(ū, φh) ∀φh ∈ Vh,

(χh,λh)+ α(χh, qh) = 0 ∀χh ∈Qh,

(∇uh,∇ψh)− (qh,ψh) = (f,ψh) ∀ψh ∈ Vh.

(6.28)

This reads in a strong form as

−�λ− u =−ū, in Ω, λ|∂Ω = 0,

λ+ αq = 0, in Ω,

−�u− q = f, in Ω, u|∂Ω = 0.

(6.29)

This linear algebraic saddle point problem is again solved by a MG method using a
block ILU iteration as a smoother.

Theorem 6.3 Let {u,q,λ} ∈ V ×Q × V be the solution of the KKT system and
{ũh, q̃h, λ̃h} ∈ Vh×Qh×Vh the approximative finite element solution of the discrete
KKT system on the current mesh Th. Then, we have the error representation

J (u, q)− J (ũh, q̃h) = 1
2ρ
∗(ũh, λ̃h)(u− ũh)+ 1

2ρ
q(q̃h, λ̃h)(q − q̃h)

+ 1
2ρ(ũh, q̃h)(λ− λ̃h)+ ρ(ũh, q̃h)(λ̃h), (6.30)

with the residuals

ρ∗(ũh, λ̃h)(φ) := (ũh − ū, φ)− (∇φ,∇λ̃h),
ρq(q̃h, λ̃h)(φ) := α(φ, q̃h)+ (φ, λ̃h),

ρ(ũh, q̃h)(φ) := (f + q̃h, φ)− (∇ũh,∇φ).

Proof For the proof, we refer to [17]. �

Remark 6.3 The choice of the cost functional J (·, ·) for error control may not be
considered appropriate in the present case of a tracking problem where the particular
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Table 6.7 MG II with block ILU smoothing, α = 10−3

N Etot # Iter Eh ηh Iheff Eit ηit I it
eff

25 9.35e-4 2 9.35e-4 1.83e-3 0.51 1.14e-07 1.97e-07 0.58

81 1.64e-4 2 1.78e-4 2.19e-4 0.82 1.42e-05 1.68e-05 0.85

289 3.75e-5 2 4.16e-5 4.39e-5 0.95 4.13e-06 4.33e-06 0.96

1 089 1.05e-5 2 1.02e-5 1.03e-5 0.99 3.48e-07 3.52e-07 0.99

3 985 2.67e-6 2 2.54e-6 2.55e-6 1.00 1.28e-07 1.28e-07 1.00

13 321 6.65e-7 2 6.48e-7 6.49e-7 1.00 1.63e-08 1.63e-08 1.00

47 201 1.76e-7 2 1.70e-7 1.69e-7 1.01 6.76e-09 6.77e-09 1.00

163 361 4.89e-8 2 4.69e-8 4.68e-8 1.01 1.97e-09 1.97e-09 1.00

627 697 1.23e-8 2 1.21e-8 1.21e-8 1.01 2.13e-10 2.13e-10 1.00

least-squares form of the functional is somewhat arbitrary. Instead, one may want
to measure the solution accuracy rather in terms of some more relevant quantity
depending on control and state, such as for example the norm ‖q − q̃h‖Q of the
error in the control. This can be accomplished by utilizing an additional “outer”
dual problem such as described in [5, 9].

We consider the example with the target distribution

ū= 2π2−1
2π2 sin(πx) sin(πy)

and the exact solution

u=− 1

2π2
sin(πx) sin(πy), q = 1

2απ2
sin(πx) sin(πy),

λ=− 1

2π2
sin(πx) sin(πy).

The forcing term f is accordingly adjusted. For simplicity, the discrete state and
control spaces are chosen the same, Vh = Qh, using isoparametric bilinear shape
functions. For this test, we use the MG II algorithm with the stopping criterion

ηit ≤ 1

10
ηh.

First, we solve the discretized KKT system by the adaptive multigrid method using
the V -cycle and again 4 + 4-block-ILU smoothing steps on each level. Then, we
use the multigrid method with only one undamped block-Jacobi smoothing step.
The results are shown in Tables 6.7 and 6.8, where we use the abbreviations

Etot :=
∣∣J (u, q)− J (ũh, q̃h)

∣∣, Eh :=
∣∣J (u, q)− J (uh, qh)

∣∣,
Eit :=

∣∣J (uh, qh)− J (ũh, q̃h)
∣∣.
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Table 6.8 MG II with block Jacobi smoothing, α = 10−3

N Etot # Iter Eh ηh Iheff Eit ηit I it
eff

25 9.44e-4 4 1.83e-3 9.35e-4 1.96 1.55e-5 8.99e-6 1.73

81 1.84e-4 5 2.20e-4 1.78e-4 1.23 7.59e-6 6.44e-6 1.18

289 4.36e-5 5 4.40e-5 4.16e-5 1.05 2.04e-6 1.96e-6 1.04

1 089 1.10e-5 4 1.03e-5 1.02e-5 1.01 8.53e-7 8.44e-7 1.01

3 985 2.69e-6 4 2.55e-6 2.56e-6 0.99 1.31e-7 1.30e-7 1.00

13 321 6.94e-7 4 6.47e-7 6.69e-7 0.96 2.51e-8 2.51e-8 1.00

47 201 1.95e-7 4 1.69e-7 1.90e-7 0.88 4.39e-9 4.40e-9 1.00

171 969 7.24e-8 3 4.42e-8 6.93e-8 0.63 3.07e-9 3.10e-9 0.99

We observe again a significant work saving by using the adaptive stopping criterion
of the iteration.

6.5 The Nonlinear Case

Finally, we describe how our approach to the simultaneous estimation of the dis-
cretization and iteration errors extends to nonlinear variational problems of the form

A(u)(ψ)= F(ψ) ∀ψ ∈ V, J (u)= ? (6.31)

with a semi-linear “energy form” A(·)(·) and a nonlinear output functional J (·)
defined on the solution space V (both assumed to be sufficiently often differ-
entiable). The starting point is the observation that any solution of the “primal”
problem (6.31) corresponds to a stationary point of the Lagrangian functional
L (u, z) := J (u)+ F(z)−A(u)(z) with the dual variable z ∈ V (Lagrangian mul-
tiplier). This results in the system

A(u)(ψ) = F(ψ) ∀ψ ∈ V,

A′(u)(φ, z) = J ′(u)(φ) ∀φ ∈ V.
(6.32)

The finite element discretization of this system in spaces Vh ⊂ V seeks primal and
dual approximation {uh, zh} ∈ Vh × Vh satisfying

A(uh)(ψh) = F(ψh) ∀ψh ∈ Vh,

A′(uh)(φh, zh) = J ′(uh)(φh) ∀φh ∈ Vh.
(6.33)

The corresponding primal and dual residuals are defined by

ρ(uh)(·) := F(·)−A(uh)(·), ρ∗(uh, zh)(·) := J ′(uh)(·)−A′(uh)(·, zh).
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Theorem 6.4 Let ũh, z̃h ∈ Vh be any approximations to the primal and dual discrete
solutions uh, zh ∈ Vh on the current mesh Th. Then, there holds

J (u)−J (ũh)= 1
2ρ(ũh)(z− z̃h)+ 1

2ρ
∗(ũh, z̃h)(u− ũh)+ρ(ũh)(z̃h)+ R̃

(3)
h (6.34)

with a remainder R̃(3)
h cubic in the errors u− ũh and z− z̃h.

Proof [20] For pairs x = {u, z}, we set L(x) :=L (u, z). Then, with the abbrevia-
tion ẽz := u− ũh, ẽz := z− z̃h, and ẽ := {ẽu, ẽz}, there holds

J (u)− J (ũh)= L(x)−F(z)+A(u)(z)︸ ︷︷ ︸
=0

−L(x̃h)+ F(z̃h)−A(ũh)(z̃h)︸ ︷︷ ︸
�=0

=
∫ 1

0
L′(x̃h + sẽ)(ẽ) ds + F(z̃h)−A(ũh)(z̃h).

For the integral, we use the trapezoidal rule with integral remainder as follows:

J (u)− J (ũh)= 1
2

{
L′(x)(ẽ)︸ ︷︷ ︸
= 0

+L ′(x̃h)(ẽ)
}

+ 1
2

∫ 1

0
L′′′(x̃h + sẽ)(ẽ, ẽ, ẽ)s(s − 1) ds

︸ ︷︷ ︸
=: R̃(3)

h

+ F(z̃h)−A(ũh)(z̃h)︸ ︷︷ ︸
= ρ(ũh)(z̃h)

= 1
2L
′(x̃h)(ẽ)+ R̃

(3)
h + ρ(ũh)(z̃h)

= 1
2

{
F
(
ẽz
)−A(ũh)

(
ẽz
)+ J ′(ũh)

(
ẽu
)−A′(ũh)

(
ẽu, z̃h

)}
+ R̃

(3)
h + ρ(ũh)(z̃h)

= 1
2ρ(ũh)(z− z̃h)+ 1

2ρ
∗(ũh, z̃h)(u− ũh)+ R̃

(3)
h + ρ(ũh)(z̃h). �

Remark 6.4 We make the following remarks:

1. The cubic remainder term R̃
(3)
h is neglected or monitored by replacing u− ukh ≈

uk+1
h − ukh and z− zkh ≈ zk+1

h − zkh.
2. For non-unique solutions the following a priori assumption {uh, zh}→ {u, z} for

h→ 0 is needed.
3. We have to solve the linear discrete dual problem

A′(uh)(φh, zh)= J ′(uh)(φh) ∀φh ∈ Vh. (6.35)

4. The weights in the error representation are again approximated by patch-wise
higher-order interpolation: (z− z̃h)|K ≈ (Ĩ

(2)
2h z̃h − z̃h)|K . The steps 1–4 are the

essence of the Dual Weighted Residual (DWR) method applied to the Galerkin
finite element approximation of nonlinear problems.
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5. The error representation (6.34) can be used to control the accuracy in the Newton
iteration or in any other simple fixed point iteration for solving the algebraic
problem (6.32).

6. If the approximative discrete solution ũh is obtained by the Newton method,
also an adaptive stopping criterion is needed for the inner linear solver of the
single Newton steps. Such a strategy for simultaneous control of a discretization
error, an outer nonlinear iteration error, and an inner linear iteration error can
be developed on the basis of an a posteriori error representation by exploiting
the structure of the Newton methods. For details, we refer to the forthcoming
paper [20].

6.5.1 Numerical Example

We consider the following simple test problem: Compute J (u) := u1(a) for the
solution u ∈ V :=H 1

0 (Ω)2 of the nonlinear system

−�u1 + 2u2
2 = 1, u1|∂Ω = 0,

−�u2 + u1u2 = 0, u2|∂Ω = 0.
(6.36)

The configuration is shown in Fig. 6.9.
In this case the corresponding variational formulation reads

A(u)(φ) := (∇u1,∇φ1)+ 2
(
u2

1, φ1
)+ (∇u2,∇φ2)+ (u1u2, φ2)

= F(φ) := (f,φ) ∀φ ∈ V. (6.37)

For the discretization of the problem (6.37), we use again a standard finite element
method with continuous Q1 elements. The resulting nonlinear algebraic problems
are solved by a damped Newton method with damping a factor θ = 0.5,

A′
(
uth
)(
ut+1
h ,φh

)=A′
(
uth
)(
uth,φh

)− θ
{
F(φh)−A

(
uth
)
(φh)

}
, ∀φh ∈ Vh.

(6.38)
We consider the following two different stopping criteria:

• Newton I: Reduction of initial Newton residual by factor 10−11;
• Newton II: Iteration error ≈ 10−1× discretization error.

Fig. 6.9 Configuration of the
nonlinear test problem: slit
domain and point value
evaluation
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Table 6.9 Newton I: Iteration towards a “round-off error level” 10−11

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

85 31 3.31e-03 1.49e-03 1.49e-03 1.69e-11 2.22

297 29 1.24e-03 5.78e-04 5.78e-04 7.14e-11 2.13

897 29 5.46e-04 2.30e-04 2.30e-04 7.26e-11 2.38

2063 29 2.43e-04 9.59e-05 9.59e-05 7.32e-11 2.56

4537 27 1.14e-04 4.34e-05 4.34e-05 2.94e-10 2.63

9969 27 5.28e-05 2.15e-05 2.15e-05 2.94e-10 2.44

21389 27 2.23e-05 1.03e-05 1.03e-05 2.94e-10 2.17

39549 27 7.58e-06 5.36e-06 5.36e-06 2.94e-10 1.41

Table 6.10 Newton II: An adaptive stopping criterion

N # Iter J (e) ηh + ηit ηh ηit I tot
eff

85 8 3.31e-03 1.63e-03 1.49e-03 1.41e-04 2.13

297 10 1.24e-03 6.15e-04 5.77e-04 3.74e-05 2.08

897 11 5.46e-04 2.49e-04 2.30e-04 1.90e-05 2.27

2063 13 2.43e-04 1.01e-04 9.59e-05 4.79e-06 2.44

4537 14 1.14e-04 4.58e-05 4.34e-05 2.40e-06 2.56

9969 15 5.28e-05 2.27e-05 2.15e-05 1.20e-06 2.38

21389 16 2.23e-05 1.09e-05 1.03e-05 6.03e-07 2.08

39549 17 7.58e-06 5.66e-06 5.36e-06 3.01e-07 1.39

The linear subproblems are solved by an MG iteration with

• Smoother: Jacobi with damping factor 0.5;
• Stopping criterion: Reduction of the initial multigrid residual by factor 10−11.

The obtained results are shown in Tables 6.9 and 6.10. Again, we observe significant
work savings through the adaptive stopping criterion. The effectivity indices are
relatively close to one, even on coarser meshes, which demonstrates the sharpness
of our error indicators. However, we observe slight underestimation on all meshes.

6.6 Conclusion and Outlook

Goal-oriented adaptivity by the DWR method is in principle possible for all prob-
lems formulated within a variational setting. Though largely of heuristic nature the
DWR method provides a general guideline for treating even most complex non-
linear systems. However, its theoretical justification in any particular case requires
additional assumptions and hard work. In this way the discretization error and the al-
gebraic iteration error, linear as well as nonlinear, can be simultaneously controlled
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leading to effective stopping criteria and significant work savings. Current devel-
opments into the same direction are a posteriori control of the following additional
“variational crimes”:

• Quadrature error,
• Boundary approximation,
• Stabilization error (“inf-sup” and “transport” stabilization),
• Domain approximation (truncation of unbounded domains),
• Various modeling errors.

This will be the subject of forthcoming papers.
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Chapter 7
On Quantitative Analysis of an Ill-Posed Elliptic
Problem with Cauchy Boundary Conditions

Sergey Repin and Tuomo Rossi

Abstract In this paper, we consider an ill-posed boundary value problem for the
equation divA∇u + f = 0, which is closely connected with a problem of recon-
struction of an unknown boundary condition. This problem can be reformulated as
an unconstrained minimization problem for a convex nonnegative functional de-
pending on the pair of variables (v, q), which approximate the desired solution and
its flux, respectively. The functional vanishes if and only if v and q coincide with the
exact solution of the problem (if the latter solution exists) and its flux, respectively.
Moreover, we prove that if the functional is lesser than a small positive number ε,
then ε-neighborhood of (v, q) contains the exact solution of the direct boundary
value problem with mixed boundary conditions, which are traces on the boundary
ε-close to the Cauchy conditions imposed. Advanced forms of the functional con-
venient for numerical computations are discussed.

Keywords Cauchy boundary conditions · Ill-posed problems · Inverse boundary
value problems · Guaranteed error bounds

7.1 Introduction

Problems with overdetermined boundary conditions arise in technical applications
related to identification of model parameters, scattering, reconstruction of images
(see, e.g., [1–3, 6, 9] and the references therein), and also in fundamental prob-
lems in natural sciences (e.g., in astronomy). They are closely related to the theory
of inverse problems, which mathematical foundations are well developed and pre-
sented in numerous publications (e.g., in the monographes [5, 13]). An overview of
numerical methods can be found in, e.g., [4, 6]. The goal of this paper is to show
(with the paradigm of a relatively simple elliptic problem) that new type a posteriori
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Fig. 7.1 Domain Ω with
internal and external
boundaries Γ1 and Γ2

error estimates derived in the last decade for direct boundary value problems can
also be applied to inverse and ill-posed problems. More precisely, we select a model
problem in 2-connected domain and show that the problem with overdetermined
boundary conditions on one part of the boundary can be reformulated as a certain
unconstrained minimization problem for a quadratic type functional. The latter func-
tional attains minimal value (which is equal to zero provided that the problem data
are compatible) only on the exact solution. Moreover, if the value of the functional
is small for a pair of functions presenting an approximate solution and its flux, then
we guarantee that a small neighborhood of this pair contains the exact solution of a
direct problem with close boundary conditions.

We consider the elliptic operator

L v =−divA∇v,
where A= {aij } is a symmetric matrix such that

aij ∈ L∞(Ω), i, j = 1,2, . . . , d, (7.1)

c1|ξ |2 ≤Aξ · ξ ≤ c2|ξ |2, c2 ≥ c1 > 0. (7.2)

Here, Ω is an open bounded set in R
d with boundary Γ consisting of two disjoint

parts Γ1 and Γ2 (see Fig. 7.1). We are concerned with the following problem asso-
ciated with the operator L (see, e.g., [7]): find u ∈H 1(Ω) and p ∈H(Ω,div) such
that

−divu= f ∈ L2(Ω), in Ω, (7.3)

p =A∇u, in Ω, (7.4)

u= u0, on Γ1, (7.5)

p · n= g0, on Γ1. (7.6)

We assume that

measd−1 Γi > 0, i = 1,2 (7.7)

and the Cauchy boundary conditions on Γ1 are defined by the functions u0 ∈
H 1/2(Γ1) and g0 ∈ L2(Ω).

This mathematical statement may arise in the theory of inverse problems if the
data on Γ1 are fully observable but the data on Γ2 are unknown. In these problems,
the goal is to reconstruct these unknown data using known boundary conditions



7 Quantitative Analysis of an Ill-Posed Problem 135

(7.5)–(7.6) and the fact that inside Ω the process is governed by the diffusion equa-
tion. More precisely, we wish to reconstruct u and p ·n on Γ2, what amounts solving
the corresponding inverse problem.

It is known that problems like (7.3)–(7.6) are, in general, ill-posed (see, e.g.,
[5, 7]) and may have no solution if u0 and g0 are not coordinated. This fact may
imply serious difficulties in numerical analysis of inverse problems. One way to
minimize these difficulties is to reformulate (7.3)–(7.6) as an optimal control prob-
lem with differential constrains.

Problem P† Find (u†,p†) ∈W such that

J
(
u†,p†)= infJ (v, q) :=

∫
Γ1

(|v − u0|2 + |q − g0|2
)
dx→min,

where infimum is seeking on the functions

(v, q) ∈W :=H 1(Ω)×H(Ω), H(Ω) := {
q ∈H(Ω,div), q · n ∈ L2(Γ1)

}
satisfying the relations

divq + f = 0, in Ω, (7.8)

q =A∇v, in Ω. (7.9)

Numerical methods based on Problem P† generate sequences u†
h and p

†
h, which

can be used as approximations of u and p. Indeed, if J (u†,p†) = 0, then the re-
quired solution is found. However, in practical computations such a situation is un-
likely and instead we obtain a pair of functions providing a small value of the cost
functional J and satisfying (7.8)–(7.9) only approximately.

In this paper, we suggest other variational statements that can be used in nu-
merical analysis of inverse problems. They are also defined on pairs of functions
(v, q) and, in fact, mimic convex nonnegative functionals arising in the theory of
functional a posteriori estimates (see [10, 12]). Using this theory, we prove two
important properties of new variational statements. First, we show that infimum of
the variational functional equals zero and it is attained only on the exact solution
of (7.3)–(7.6). If this problem has no solution, then the functional remains positive
for all admissible functions. Another useful property of the functional is that if the
functional is smaller than ε, then small neighborhood of the respective pair (v, q)

(which size is controllable and proportional to ε) contains exact solution of a certain
direct boundary value problem with mixed boundary conditions that approximates
the desired solution.

7.2 Error Measure for a Class of Boundary Value Problems

Together with the inverse problem P†, we consider two direct boundary value prob-
lems P1 and P2.
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Problem P1 Find u ∈H 1(Ω) and p ∈H(Ω,div) such that

L u1 = f ∈ L2(Ω), in Ω, (7.10)

p1 =A∇u1, in Ω, (7.11)

u1 = ũ, on Γ1, (7.12)

p1 · n= ĝ, on Γ2, (7.13)

where ũ ∈H 1(Ω) and ĝ ∈H(Ω,div). The boundary conditions are understood in
the generalized sense.

Problem P2 Find u ∈H 1(Ω) and p ∈H(Ω,div) such that

L u2 = f ∈ L2(Ω), in Ω, (7.14)

p2 =A∇u2, in Ω, (7.15)

u2 = û, on Γ2, (7.16)

p2 · n= g̃, on Γ1, (7.17)

where û ∈H 1(Ω) and g̃ ∈H(Ω,div).

Generalized solutions of these problems exists and belong to the sets V 1
0 + ũ and

V 2
0 + û (respectively), where

V 1
0 :=

{
v ∈H 1(Ω) | v = 0 on Γ1

}

and

V 2
0 :=

{
v ∈H 1(Ω) | v = 0 on Γ2

}
.

They satisfy the integral identities

∫
Ω

A∇u1 · ∇wdx =
∫
Ω

fwdx +
∫
Γ2

ĝw ds, ∀w ∈ V 1
0 , (7.18)

∫
Ω

A∇u2 · ∇wdx =
∫
Ω

fwdx +
∫
Γ2

g̃w ds, ∀w ∈ V 2
0 . (7.19)

Below we will derive computable estimates of the difference between u1 (u2) and
any arbitrary function from the set V 1

0 + ũ (V 2
0 + û). For this purpose we apply the

method developed in [12] with some changes necessary to adapt the corresponding
estimates to the analysis of our inverse problem.
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7.2.1 Estimates for Problem P1

Let

(v, q) ∈ (V 1
0 + ũ

)×H(Ω,div)

be an approximation of (u1,p1). In view of (7.18), we have∫
Ω

A∇(u1 − v) · ∇wdx =
∫
Ω

(fw−A∇v · ∇w)dx +
∫
Γ2

ĝw ds. (7.20)

Let q ∈H(Ω,div) by such that q · n ∈ L2(Γ2). Then,∫
Ω

A∇(u1 − v) · ∇wdx

=
∫
Ω

(f + divq)w dx +
∫
Ω

(q −A∇v) · ∇wdx +
∫
Γ2

(q · n− ĝ)w ds. (7.21)

Let

‖φ‖−1/2,Γ2 := sup
w∈V 1

0

∫
Γ2

φwds

‖∇w‖ ,

where ‖ · ‖ denotes the L2 norm in Ω .

Remark 7.1 If φ ∈ L2(Γ2), then ‖φ‖−1/2,Γ2 ≤ Ctr(Ω,Γ2)‖φ‖Γ2 , where Ctr(Ω,Γ2)

is the trace embedding constant for the functions in V 1
0 .

We set w = u1 − v in (7.21) and obtain
∣∣∣∣∣∣∇(u1 − v)

∣∣∣∣∣∣ ≤ |||q −A∇v|||∗ +CΩΓ1‖divq + f ‖ + ‖q · n− ĝ‖−1/2,Γ2

:=M1(v, q), (7.22)

where

CΩΓ1 := sup
w∈V 1

0

∫
Ω
|w|2dx∫

Ω
|∇w|2dx .

In accordance with Remark 7.1, we estimate the last term of the majorant by a
boundary integral provided that q · n ∈ L2(Γ2). Then, we obtain
∣∣∣∣∣∣∇(u− v)

∣∣∣∣∣∣ ≤ |||q −A∇v|||∗ +CΩΓ1‖divq + f ‖ +Ctr(Ω,Γ2)‖q · n− ĝ‖Γ2

:=M1(v, q).

It is natural to measure the difference between (v, q) and (u1,p1) in terms of com-
bined (primal-dual) norms

∥∥(v, q)∥∥
W
:= ‖∇v‖ + ‖q‖div = ‖∇v‖ + ‖q‖ + ‖divq‖
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and ∥∥(v, q)∥∥(1)
W
:= |||∇v||| + |||q|||∗ +CΩΓ1‖divq‖,

which are obviously equivalent and define natural topology in W .
We have

∥∥(u1 − v,p1 − q)
∥∥(1)
W
= ∣∣∣∣∣∣∇(u1 − v)

∣∣∣∣∣∣+ |||p1 − q|||∗ +CΩΓ1‖divq + f ‖
≤ 2

∣∣∣∣∣∣∇(u1 − v)
∣∣∣∣∣∣+ |||q −A∇v|||∗ +CΩΓ1‖divq + f ‖

≤ 3M1(v, q). (7.23)

It is easy to see that M1(v, q)= 0 if and only if v = u1 and q = p1.

7.2.2 Estimates for Problem P2

Let

(v, q) ∈ (V 2
0 + û

)×H(Ω,div)

be an approximation of (u2,p2). In view of (7.18), we have

∫
Ω

A∇(u2 − v) · ∇wdx =
∫
Ω

(fw−A∇v · ∇w)dx +
∫
Γ1

g̃w ds. (7.24)

Let q ∈H(Ω,div) by such that q · n ∈ L2(Γ1). Then

∫
Ω

A∇(u2 − v) · ∇wdx

=
∫
Ω

(f + divq)w dx +
∫
Ω

(q −A∇v) · ∇wdx +
∫
Γ1

(q · n− g̃)w ds. (7.25)

We set w = u1 − v in (7.21) and obtain

∣∣∣∣∣∣∇(u2−v)
∣∣∣∣∣∣≤ |||q−A∇v|||∗+CΩΓ2‖divq+f ‖+‖q ·n− g̃‖−1/2,Γ1 :=M2(v, q),

(7.26)
where

CΩΓ2 := sup
w∈V 2

0

∫
Ω
|w|2dx∫

Ω
|∇w|2dx .

Now our goal is to estimate the error in terms of the combined norm

∥∥(v, q)∥∥(2)
W
:= ‖∇v‖ + ‖q‖ +CΩΓ2‖divq‖.
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Analogously to the previous case, we have

∥∥(u2 − v,p2 − q)
∥∥(2)
W
= ∣∣∣∣∣∣∇(u2 − v)

∣∣∣∣∣∣+ |||p2 − q|||∗ +CΩΓ2‖divq + f ‖
≤ 2

∣∣∣∣∣∣∇(u2 − v)
∣∣∣∣∣∣+ |||q −A∇v|||∗ +CΩΓ2‖divq + f ‖

≤ 3M2(v, q). (7.27)

It is easy to see that M2(v, q)= 0 if and only if v = u2 and q = p2.
If q · n ∈ L2(Γ1), then we obtain
∣∣∣∣∣∣∇(u2 − v)

∣∣∣∣∣∣ ≤ |||q −A∇v|||∗ +CΩΓ2‖divq + f ‖ +Ctr(Ω,Γ1)‖q · n− g̃‖Γ1

:=M2(v, q).

Remark 7.2 We note that

γ1
∥∥(v, q)∥∥

W
≤ ∥∥(v, q)∥∥(1,2)

W
≤ γ2

∥∥(v, q)∥∥
W
, (7.28)

where γ1 and γ2 depend on CΩ,Γ1 and CΩ,Γ2 . Therefore, (7.20) and (7.27) imply
error bounds in terms of ‖ · ‖W .

7.3 New Statements of the Basic Problem

Now we use the majorants derived in Sect. 2 in order to reformulate (7.3)–(7.6)
as an unconstrained minimization problem. We prove that is the basic problem is
solvable, then the new problem has the same solution.

7.3.1 Variational Statement 1

Let I1 :W →R be defined by the relation

I1(v, q) := ‖A∇v− q‖∗ +CΩΓ1‖divq + f ‖. (7.29)

We consider the following variational problem generated by this convex and non-
negative functional.

Problem P‡1 Find (u‡,p‡) ∈WΓ1 such that

I1
(
u‡,p‡)= inf

(v,q)∈WΓ1

I (v, q), (7.30)

where

WΓ1 :=
{
(v, q) ∈W | v = u0, q · n= g0 on Γ1

}
.
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Our goal is to show that this problem can be viewed as a generalized formulation of
(7.3)–(7.6). Unlike P† it does not involve any differential constrains and, therefore,
can be solved by direct minimization methods.

Theorem 7.1

(i) The problem (7.30) has a solution.
(ii) If I1(u

‡,p‡)= 0, then this pair of functions solves (7.3)–(7.6).
(iii) Let (vε, qε) ∈W be such that

I1(vε, qε)≤ ε. (7.31)

Then, Problem P1 with ũ= u0 and ĝ = qε · n has the solution (u1,p1) ∈W such
that ∥∥(u1 − vε,p1 − qε)

∥∥(1)
W
≤ 3ε := δ. (7.32)

Proof Existence of the pair (u‡,p‡) is guaranteed by general results of convex anal-
ysis (indeed W is a reflexive space and I is a nonnegative, convex, and coercive
functional).

If I (u‡,p‡) = 0, then all the relations (7.3)–(7.6) are satisfied, so that u‡ = u

and p‡ = p. On the other hand, if there exists (u,p) satisfying (7.3)–(7.6), then
I (u,p)= 0 and, consequently, these functions minimize the functional I (we recall
that (u,p) belong to the set WΓ1 ).

We can view vε and qε as approximate solutions of Problem P1 with ũ= u0 and
ĝ = qε · n. Then

M1(vε, qε)= ‖A∇vε − qε‖∗ +CΩΓ1‖divqε + f ‖ + ‖qε · n− ĝ‖−1/2,Γ2

= ‖A∇vε − qε‖∗ +CΩΓ1‖divqε + f ‖ ≤ ε.

By (7.27), we obtain (7.32). �

Theorem 7.1 states that ε-neighborhood of (vε, qε) contains exact solution of
Problem P1 (which is a well posed boundary value problem with mixed Dirichlet-
Neumann boundary conditions). It has the same Dirichlet boundary condition as the
original problem (7.3)–(7.6). From (7.32) it follows that

‖p1 · n− g0‖−1/2,Γ1 =
∥∥(p1 − qε) · n

∥∥−1/2,Γ1

= sup
w∈V 2

0

∫
Ω
((p1 − qε) · ∇w+ div(p1 − qε)w)dx

‖∇w‖

≤
√

1+C2
ΩΓ1
‖p1 − qε‖div ≤ μ=

√
1+C2

ΩΓ1
ε. (7.33)

Thus, we can consider Problem P1 as a μ-approximation of the original problem
(7.3)–(7.6) and use the boundary flux p1 · n as an approximation of p · n on Γ2.
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Certainly, the trace p1 · n on Γ2 is unknown, but we can efficiently approximate it
by qε · n. Indeed,∥∥(p1 − qε) · n

∥∥−1/2,Γ2

= sup
w∈V 1

0

∫
Ω
((p1 − qε) · ∇w+ div(p1 − qε)w)dx

‖∇w‖ ≤
√

1+C2
ΩΓ2

ε. (7.34)

Thus, the trace qε · n represents a good approximation of the normal flux p1 · n
on Γ2.

In other words, if (7.31) holds, then on the external boundary Γ2, the computable
function qε · n represents p1 · n associated with the direct boundary value problem,
which satisfies (7.5) exactly and (7.6) with the accuracy μ. We note that in many
cases sharp values of the boundary conditions on Γ1 are not known because in real
life problems all measurements are performed with some accuracy. Therefore, find-
ing a pair (u1,p1) satisfying the boundary conditions with a certain accuracy may
give a practically relevant answer.

Remark 7.3 Assume that the problem (7.3)–(7.6) has the solution (u,p). We have

μ≥ ‖p1 · n− g0‖−1/2,Γ1 =
∥∥(p1 − p) · n∥∥−1/2,Γ1

= sup
w∈V 2

0

∫
Ω
((p1 − p) · ∇w+ (divp1 + f )w)dx

‖∇w‖ . (7.35)

From (7.35) we find the estimate

sup
w∈V 2

0 ,

‖∇w‖=1

∫
Ω

A∇(u1 − u) · ∇wdx ≤ μ, (7.36)

which shows that u1 approximates u at least in a weak sense.

7.3.2 Variational Statement 2

Let I2 :W →R be defined by the relation

I2(v, q) := ‖A∇v− q‖∗ +CΩΓ2‖divq + f ‖+Ctr(Ω,Γ1)‖q · n− g0‖Γ1 . (7.37)

We consider the following variational problem generated by this convex and non-
negative functional.

Problem P‡2 Find (u‡,p‡) ∈WΓ1 such that

I2
(
u‡,p‡)= inf

v∈V 1
0 +u0

q∈H(Ω)

I2(v, q). (7.38)
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Theorem 7.2

(i) The problem (7.38) has a solution.
(ii) If I2(u

‡,p‡)= 0, then the pair (u‡,p‡) solves (7.3)–(7.6).
(iii) Let (vε, qε) ∈W be such that

I2(vε, qε)≤ ε. (7.39)

Then, Problem P2 with û = vε on Γ2 and g̃ = qε · n on Γ1 has the solution
(u2,p2) ∈W such that

∥∥(u2 − vε,p2 − qε)
∥∥(2)
W
≤ δ. (7.40)

Proof Existence of a minimizer follows from the same arguments that we have used
in Theorem 7.1.

If v = v0 on Γ1 and, in addition, there exists q ∈H(Ω,div) such that

A∇v = q and divq + f = 0 in Ω

and

q · n= g0 on Γ1,

then (v, q) is the solution.
Let us view vε and qε as approximate solutions of Problem P2 with û= vε and

g̃ = g0. We see that

M2(vε, qε) := ‖A∇vε − qε‖∗ +CΩΓ2‖divqε + f ‖ +Ctr(Ω,Γ1)‖qε · n− g0‖Γ1

≤ ε (7.41)

and, therefore, (7.40) holds. �

Since |||u2 − vε||| ≤ δ, we conclude that

‖u2 − u0‖1/2,Γ1 = ‖u2 − vε‖1/2,Γ1 ≤ Ctr(Ω,Γ1)‖u2 − vε‖H 1(Ω) ≤C2ε, (7.42)

where C2 = 3
√

1+C(ΩΓ2)
c1

Ctr(Ω,Γ1). Hence, if (7.39) holds, then we guarantee that
ε-neighborhood of (vε, qε) contains exact solution of Problem P2, which satisfies
(7.6) exactly and (7.5) approximately (with the accuracy C2ε).

7.4 Computational Aspects

For computations, it is more convenient to use squared forms of the functionals I1
and I2. For example, instead of I1, we can minimize

Î1(v, q;β) := (1+ β)‖A∇v− q‖2∗ +CΩΓ1

1+ β

β
‖divq + f ‖2, (7.43)
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where β is an arbitrary positive number. It is easy to see that for any β > 0

(
I1(v, q)

)2 ≤ Î1(v, q;β) (7.44)

so that small values of Î1 imply small values of I1. Moreover, Î1 vanishes only on
the exact solution (as I1). At the same time minimization of a quadratic functional
is a simpler task. (In particular, it can be reduced to solving systems of linear simul-
taneous equations with the help of efficient methods of numerical linear algebra.)

However, using this procedure requires the constant CΩΓ1 (or a good upper
bound of it). If Ω is a domain with complex boundaries, then finding CΩΓ1 may
be a difficult problem. Below we show a way to bypass this difficulty and obtain
a computable upper bound of I1, which preserves the main properties of this func-
tional and does not involve unknown constants. For this purpose, we use advanced
forms of the functional error majorants (see [12]).

Assume that Ω̄ =⋃N
i=1 Ω̄i , where Ωi are nonintersecting domains with Lips-

chitz continuous boundaries. We impose additional requirements on q , namely
∫
Ωi

(divq + f )dx = 0, i = 1,2, . . . ,N. (7.45)

In this case, instead of I1, we have another functional that contains constants CPΩi
,

i = 1,2, . . . ,N instead of CΩΓ1 , which are the constants in the Poincaré inequality
for Ωi . This functional is generated by the estimate

∣∣∣∣∣∣∇(u1 − v)
∣∣∣∣∣∣2 ≤ |||A∇v − q|||∗ +

√√√√ N∑
i=1

C2
PΩi
‖divq + f ‖2

Ωi
. (7.46)

If Ωi is a convex domain, then (see [11])

CPΩi
≤ diamΩi

π
.

In this case, the right hand side of (7.46) is fully computable and we can reformulate
Problem P‡

1 as follows: find (u‡,p‡) ∈WΓ1 such that

Ī1
(
u‡,p‡)= inf

(v,q)∈WΓ1

I (v, q), (7.47)

where

Ī1(v, q) := |||A∇v − q|||∗ +
√√√√ N∑

i=1

(
diamΩi

π

)2

‖divq + f ‖2
Ωi

.

It is not difficult to prove that this problem possesses the same properties as Prob-
lem P‡

1 , so that if (vε, qε) is a pair such that Ī1(v, q) ≤ ε, then exact solution
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(u1,p1) of a direct boundary value problem with mixed boundary conditions lies
in ε-neighborhood of (vε, qε).

For practical minimization, it is convenient to operate with the squared func-
tional, which in this case has the form

ˆ̄I1(v, q;β)= (1+ β)|||A∇v − q|||∗ + 1+ β

β

N∑
i=1

C2
PΩi
‖divq + f ‖2

Ωi
. (7.48)

Finally, we note that physically motivated statements of inverse problems as-
sociated with diffusion models typically operate with not fully defined data (e.g.,

coefficients of A and/or source term f ). The functionals I1, I2, and ˆ̄I1 have the
structure that allows us to account data indeterminacy in the process of finding ap-
proximate solutions of inverse problems by means of the same techniques that has
been developed in [8] for direct boundary value problems.
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Chapter 8
On the Advantages and Drawbacks
of A Posteriori Error Estimation
for Fourth-Order Elliptic Problems

Karel Segeth

Abstract In this survey contribution, we present and compare, from the viewpoint
of adaptive computation, several recently published error estimation procedures for
the numerical solution of biharmonic and some further fourth order elliptic problems
mostly in 2D. In the hp-adaptive finite element method, there are two possibilities
to assess the error of the computed solution a posteriori: to construct a classical
analytical error estimate or to obtain a more accurate reference solution by the same
procedure as the approximate solution and, from it, the computational error estimate.
For the lack of space, we sometimes only refer to the notation introduced in the
papers quoted. The complete hypotheses and statements of the theorems presented
should also be looked for there.

8.1 Introduction

Numerical computation has always been connected with some control procedures.
It means that the approximate result is of primary importance, but also the error
of this computed result, i.e. some norm of the difference between the exact and
approximate solution brings important information. The exact solution is usually
not known. This means that we can get only some estimates of the error.

The development of numerical procedures has been accompanied with a priori
error estimates that are very useful in theory but usually include constants that are
completely unknown, in better cases can be estimated. In particular, the development
of the finite element method, and its h-version and hp-version required reliable and
computable estimates of the error that depend only on the approximate solution
just computed, if possible. This is the means for the local mesh refinement in the
h-version and, moreover, also for the increase of the polynomial degree in the p-
version.
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We employ a quantity called the a posteriori error indicator ηT for all triangles
T of the triangulation Th and, if not defined otherwise, the error estimator

ε =
√ ∑

T ∈Th

η2
T ,

see [5], in each of the estimation strategies that follow to assess the error of the
approximate solution. The quality of an a posteriori error estimator is often mea-
sured by its effectivity index, i.e. the ratio of some norm of the error estimate and the
true error. An error estimator is called effective if both its effectivity index and the
inverse of the index remain bounded for all meshsizes of triangulations. It is called
asymptotically exact if its effectivity index converges to 1 as the meshsize tends to 0.

Undoubtedly, obtaining efficient and computable a posteriori error estimates is
not easy. (Note that computable means, among others, that the degree of piece-
wise polynomials approximating the solution is high enough.) The papers [2, 3] by
Babuška and Rheinboldt represent the pioneering work in this field. The books [1, 4]
are surveys of the state of the art some time ago while [17] is an attempt to compare
some a posteriori error estimators.

There are several classes of a posteriori error indicators and estimators based
on different approaches and their names slightly vary in the literature. We consider
residual or recovery a posteriori error indicators for the solution of the biharmonic
equation in the classical weak formulation [19, 20] and in the Ciarlet-Raviart for-
mulation [8, 12] in Sect. 8.3. We further present recovery or residual a posteriori
error indicators for the solution of a more general 4th order equation [6, 14] and, in
particular, functional error estimators [11, 13, 16] in Sect. 8.4. Section 8.5 is devoted
to a brief conclusion.

8.2 Notation and Preliminaries

A common notation is introduced in this section. We write C(S) for the space of
all functions continuous on the set S, Cm(S) for that of all functions continuous
together with their m derivatives.

Let Ω ⊂ Rn, n ≥ 1, be a bounded domain (i.e. a bounded connected open set)
with the boundary Γ . We use the obvious notation for the L2(Ω), L∞(Ω), H 1(Ω)

and H 2(Ω) norms, and for the Hk(Ω) seminorm. Let Φ = [ϕik] and Ψ = [ψik]
be n × n matrices, Φ,Ψ ∈ Rn×n. We introduce their elementwise matrix product
Φ �Ψ ∈R and the Frobenius or Schur norm of the matrix Φ as ‖Φ‖F =

√
Φ �Φ .

The norm or seminorm may be restricted to any open set ω ⊂Ω with the Lips-
chitz boundary γ . We thus write, e.g., ‖ · ‖0;ω for the L2(ω) norm. We also employ
the spaces H 1

0 (Ω), H 2
0 (Ω), etc. and the adjoint spaces H−k(Ω), k > 0, of linear

functionals. We often omit the symbol Ω if Ω is the domain concerned.
Let V be a real Hilbert space and a : V ×V →R a bounded symmetric coercive

bilinear form. The energy norm induced by this bilinear form is denoted by

|||v||| =√
a(v, v). (8.1)
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We use the notation

divA=∇ ·A=
n∑

s=1

∂as

∂xs
∈R

for the divergence of a differentiable vector-valued function A = [a1, . . . , an]. We
put ∇A = ∇ ⊗ A ∈ Rn×n, where ⊗ is the tensor product, for the vector-valued
function A and ∇b = gradb ∈ Rn for the gradient of a differentiable scalar-valued
function b. Furthermore, for a differentiable matrix-valued function Θ = [ϑij ]ni,j=1
we introduce its divergence as a vector-valued function

DivΘ =∇ ·Θ =
n∑

j=1

∂ϑij

∂xj
∈Rn.

Let Rn×n
s be the space of real symmetric n× n matrices. We consider also the

space H(div,Ω)= {Y ∈ L2(Ω,Rn) | divY ∈ L2(Ω)} of vector-valued functions Y

and the space H(Div,Ω)= {Θ ∈ L2(Ω,Rn×n
s ) | DivΘ ∈ L2(Ω,Rn)} of symmet-

ric matrix-valued functions Θ .
For a matrix-valued function Φ :Ω→Rn×n, Φ = [ϕik], we put

div2 Φ =
n∑

i=1

n∑
k=1

∂2ϕik

∂xi∂xk
∈R

provided these derivatives exist.
Finally, let

H
(
div2,Ω

)= {
Φ ∈ L2

(
Ω,Rn×n) | div2 Φ ∈ L2(Ω)

}
,

H(div Div,Ω)= {
Φ ∈ L2

(
Ω,Rn×n

s

) | div DivΦ ∈ L2(Ω)
}

be the spaces of matrix-valued and symmetric matrix-valued functions, respectively.
Symbols c, c1, . . . are generic. They may represent different quantities (depend-

ing possibly on other different quantities) at different occurrences.

8.2.1 Finite Element Mesh Notation

Let F = {Th | h > 0} be a family of triangulations Th of Ω . For any triangle
T ∈ Th we denote by hT its diameter, while h indicates the maximum size of all
the triangles in the mesh. We further denote by $T the diameter of the largest ball
inscribed into T . Let E (T ) be the set of all edges and N (T ) the set of all nodes
of T . We set

Eh =
⋃

T ∈Th

E (T ), Nh =
⋃

T ∈Th

N (T ).
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We split Eh in the form Eh = Eh,Ω ∪ Eh,Γ with

Eh,Ω = {E ∈ Eh |E ⊂Ω}, Eh,Γ = {E ∈ Eh |E ⊂ Γ }.
For T ∈Th we define

ωT =
⋃

E (T )∩E (T ′)�=∅
T ′.

The length of E ∈ Eh is denoted by hE . Finally, with every edge E ∈ Eh we
associate a unit normal vector nE . The choice of the outer direction of nE is arbitrary
but fixed.

Let T+ and T− be any two triangles with a common edge E ∈ Eh,Ω , the sub-
scripts + and − being chosen in such a way that the unit outer normal to T− at E
corresponds to nE . Given a piecewise continuous scalar-valued function w on Ω ,
call w+ or w− its trace w|T+ or w|T− on E. The jump of w across E in the direction
of nE is given by

[w]E =w+ −w−.

The jump across an edge from Eh,Γ is simply given by the trace of the function w on
the edge (i.e., the value of w outside Ω is assumed to be zero). For a vector-valued
function, the jump is defined componentwise.

We further write Pl(T ) for the space of polynomials of degree at most l on T ,
l ≥ 0 fixed. In the sequel, πl,T denotes the L2 orthogonal projection of L1(T ) onto
Pl(T ).

Finally, let fh be an approximation of a function f ∈ L2(Ω) on a triangle T ∈
Th. We then put

eT = ‖f − fh‖0;T . (8.2)

8.3 Dirichlet and Second Problems for Biharmonic Equation

8.3.1 Dirichlet Problem for Biharmonic Equation

Let the domain Ω ⊂R2 have a polygonal boundary Γ . We consider the two dimen-
sional biharmonic problem

�2u= f in Ω, (8.3)

u= ∂u

∂n
= 0 on Γ (8.4)

with f ∈ L2(Ω) that models, e.g., the vertical displacement of the mid-surface of a
clamped plate subject to bending.

Let X and Y be two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y . Let L (X,Y )

denote the Banach space of continuous linear maps of X on Y and Isom(X,Y ) ⊂
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L (X,Y ) an open subset of linear homeomorphisms of X onto Y . Let Y ∗ =
L (Y,R) be the dual space of Y and 〈·, ·〉 the corresponding duality pairing.

Let us put, in particular,

X = Y =H 2
0 (Ω), ‖ · ‖X = ‖ · ‖Y = ‖ · ‖2,

(8.5)〈
F(u), v

〉=
∫
Ω

�u�v−
∫
Ω

f v.

We then say that u ∈X is the weak solution of the problem (8.3), (8.4) if

〈
F(u), v

〉= 0 (8.6)

for all v ∈ Y .
Since the bilinear form

{u,v}→
∫
Ω

�u�v

is continuous and coercive on X (cf. [9]), we have dF(u) ∈ Isom(X,Y ∗) for all
u ∈X, where dF is the derivative.

Let F = {Th | h > 0} be a regular family of triangulations Th of Ω (see, e.g.,
[9]). For the discretization of the problem (8.3), (8.4) we assume that Xh ⊂ X and
Yh ⊂ Y are finite element spaces corresponding to Th and consisting of piecewise
polynomials. These conditions imply in particular that the functions in Xh and Yh
are of class C1. Denote by k, k ≥ 1, the maximum polynomial degree of the func-
tions in Xh. Further, put fh = πl,T f on T for a fixed l ≥ 0.

Replacing f in the definition (8.5) by fh to get the functional Fh, we say that
uh ∈Xh is the approximate solution of the problem (8.3), (8.4) if

〈
Fh(uh), vh

〉= 0 (8.7)

for all vh ∈ Yh.
Using the notation (8.2) for eT and defining the local residual a posteriori error

indicator

ηV,T =
(
h4
T

∥∥�2uh − fh
∥∥2

0;T

+
∑

E∈E (T )∩Eh,Ω

(
hE

∥∥[�uh]E
∥∥2

0;E + h3
E

∥∥[nE · ∇�uh]E
∥∥2

0;E
))1/2

for all T ∈Th, we have the following theorem [19].

Theorem 8.1 Let u ∈X be the unique weak solution of the problem (8.3), (8.4), i.e.
of (8.6), and let uh ∈Xh be an approximate solution of the corresponding discrete
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problem (8.7). Then we have the a posteriori estimates

‖u−uh‖2 ≤ c1εV+ c2

( ∑
T ∈Th

h4
T e

2
T

)1/2

+ c3
∥∥F(uh)−Fh(uh)

∥∥
Y ∗h
+ c4

∥∥Fh(uh)
∥∥
Y ∗h

and

ηV,T ≤ c5‖u− uh‖2;ωT
+ c6

( ∑
T ′⊂ωT

h4
T ′ε

2
T ′

)1/2

for all T ∈ Th. The quantities ‖F(uh)− Fh(uh)‖Y ∗h and ‖Fh(uh)‖Y ∗h represent the
consistency error of the discretization and the residual of the discrete problem, and
the quantities c1, . . . , c6 may depend only on hT /$T , and the integers k and l.

The proof is given in [19]. It seems that this is the first a posteriori error estimate
for 4th order problems published.

Let us now consider a nonconforming approximate solution. We say that the
family F = {Th | h > 0} of triangulations Th is shape regular if there are posi-
tive constants r1 and r2 such that for each triangle T ∈Th we may inscribe a ball of
radius r1hT in T and inscribe T in a ball of radius r2hT . Thus, let F be a shape reg-
ular family of triangulations Th of Ω . Letting Tx be an arbitrary triangle containing
the point x, we denote by h(x) the diameter of the triangle Tx .

Let (T ,PT ,ΦT ) be the Zienkiewicz element with the triangle T ∈Th, the shape
function space PT , and the set of nodal parameters ΦT consisting of the function
values and two values of first-order derivatives at the three vertices of T [9]. This
element is sometimes called the TQC9 element and the corresponding finite element
approximation of the fourth-order problem (8.3), (8.4) is nonconforming.

Corresponding to Th, denote by Vh and Vh0 the above introduced Zienkiewicz
element spaces with respect to H 2 and H 2

0 , respectively. For uh ∈ Vh and T ∈ Th,
we define the local residual a posteriori error indicators ηW,T and η̃W,T like in [20].
The corresponding statement proven there yields two a posteriori error estimates that
contain unknown positive constants C1 and C2.

8.3.2 Dirichlet and Second Problems for Biharmonic Equation
in Mixed Finite Element Formulation

Let Ω ⊂ R2 be a convex polygonal domain with the boundary Γ . We consider the
two-dimensional biharmonic problem

�2u= f in Ω, (8.8)

u= ∂u

∂n
= 0 on Γ (8.9)
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with f ∈H−1(Ω) that is used both for linear plate analysis and incompressible flow
simulation.

Put V =H 1
0 (Ω) and X =H 1(Ω) and define the continuous bilinear forms

a(w, z)=
∫
Ω

wz on X×X and b(z,u)=
∫
Ω

∇z · ∇u on X× V (8.10)

with scalar-valued functions u, w, and z.
The Ciarlet-Raviart weak formulation [10] of (8.8) and (8.9) then reads: Find

{w,u} ∈X× V such that

a(w, z)+ b(z,u)= 0 for all z ∈X, (8.11)

b(w,v)+
∫
Ω

f v = 0 for all v ∈ V. (8.12)

The existence and uniqueness of the solution {w = �u,u} of the problem (8.11)
and (8.12) are proven in [7].

We construct the conforming second order discretization according to [15]. Let
F = {Th | h > 0} be a regular family of triangulations Th of Ω . For the sake of
simplicity, we also assume that the family is uniformly regular [9] to guarantee that
the inequality (8.13) holds, even though it is not easy to satisfy this condition in the
presence of mesh refinements.

The finite element spaces Xh and Vh are then

Xh =
{
xh ∈X | xh|T ∈ P2(T ) for all T ∈Th

}
,

Vh =
{
vh ∈ V | vh|T ∈ P2(T ) for all T ∈Th

}
.

Our assumption of uniform regularity of the family F implies that there is a
positive constant c such that the inverse inequality

|xh|m;T ≤ chl−m|xh|l;T (8.13)

holds for all integers l and m, l ≤m, and all xh ∈Xh and T ∈Th.
The discrete formulation of the problem (8.11) and (8.12) now reads: Find

{wh,uh} ∈Xh × Vh such that

a(wh, zh)+ b(zh,uh)= 0 for all zh ∈Xh, (8.14)

b(wh, vh)+
∫
Ω

f vh = 0 for all vh ∈ Vh. (8.15)

We introduce the local residual a posteriori error indicators ηC,T and η̃C,T based
on local residuals like in [8]. Then the following theorem holds.

Theorem 8.2 Let {w,u} ∈X× V be the unique weak solution of the problem (8.8)
and (8.9), i.e. of (8.11) and (8.12), and let {wh,uh} ∈ Xh × Vh be an approximate
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solution of the corresponding discrete problem (8.14) and (8.15). Then we have the
a posteriori estimates

‖u− uh‖1 + h‖w−wh‖0 ≤ C1
(
εC + h2̃εC

)

with some positive constant C1 independent of h and

ηC,T + h2
T η̃C,T ≤ C2

(
|u− uh|1;ωT

+ hT ‖w−wh‖0;ωT
+ h3

T

∑
T ′⊂ωT

eT ′
)

for T ∈Th with some positive constant C2 independent of h and eT given by (8.2).

The proof is given in [8].
On the convex polygonal domain Ω ⊂R2 with the boundary Γ we now consider

the two dimensional second biharmonic problem

�2u= f in Ω, (8.16)

u=�u= 0 on Γ (8.17)

with f ∈ L2(Ω) that models the deformation of a simply supported thin elastic
plate. Putting w =�u, we can rewrite the problem (8.16), (8.17) as the system of
two Poisson equations, both with the homogeneous Dirichlet boundary condition.

Define the continuous bilinear forms a(w, z) and b(z,u) by (8.10) but with all
the scalar-valued functions u, w, and z from V =H 1

0 (Ω). The Ciarlet-Raviart weak
formulation [10] of (8.16) and (8.17) then reads: Find {w,u} ∈ V × V such that
(8.11) and (8.12) hold for all z, v ∈ V .

Let F = {Th | h > 0} be a quasiuniform family of triangular or rectangular par-
titions Th of Ω [1]. Put

Vh =
{
z ∈ C(Ω) | z|T ∈ Pk(T ), k ≥ 1, for all T ∈Th

}∩H 1
0 (Ω).

The discrete weak formulation of the problem (8.16) and (8.17) now reads: Find
{wh,uh} ∈ Vh × Vh such that (8.14) and (8.15) hold for all zh, vh ∈ Vh.

Let the basis function vh,N from Vh be associated with the node N ∈Nh,Ω =
Nh ∩Ω . Put ωN = suppvh,N . We introduce the gradient recovery operator Gvh :
Vh→ Vh × Vh in the following way [12]. Assume that

vh(x)=
∑

N∈Nh,Ω

βNvh,N (x), x ∈Ω,

with some coefficients βN and put

G̃vh,N =
∑

T∩ωN �=∅
αT
N(∇vh,N )|T , where

∑
T∩ωN �=∅

αT
N = 1
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and 0≤ αT
N ≤ 1 are chosen weights. Note that the vector ∇vh,N is constant on each

triangle. Finally, we set

Gvh(x)=
∑

N∈Nh,Ω

G̃vh,N vh,N(x), x ∈Ω.

For uh,wh ∈ Vh and T ∈Th, define a local recovery a posteriori error indicator
ηL,T like in [12]. The corresponding statement proven there yields a lower as well
as an upper a posteriori error estimate that both contain unknown positive constants
c, C, C1, and C2 independent of h. In the paper, the authors further claim that the
global error estimator εL is asymptotically exact if the mesh is uniform and the
solution is smooth enough.

8.4 Dirichlet Problem for Fourth Order Elliptic Equation

8.4.1 Some Recovery and Residual Error Indicators

Put Ω = (0,1)⊂ R1. Let all the functions concerned be scalar-valued functions of
a single variable. We consider the one dimensional boundary value problem for the
ordinary fourth-order elliptic equation

(
au′′

)′′ = f in Ω

with the boundary conditions

u(0)= u′(0)= 0, u(1)= u′(1)= 0.

The weak solution u ∈H 2
0 (Ω) and the approximate solution uh ∈ Vh are defined

in the usual way [14]. Vh is a finite element space consisting of piecewise Hermite
cubic polynomials.

We introduce a recovery operator Gvh for the second derivative of vh ∈ Vh and,
for uh ∈ Vh and T ∈ Th, define a local recovery a posteriori error indicator ηP,T

like in [14]. The corresponding statement proven there yields an upper estimate for
the difference of the global error estimator εP and the energy norm of the true error
[14]. The global error estimator is asymptotically exact.

Consider the bending problem of an isotropic linearly elastic plate. The bilinear
form for the problem is

a(u, v)= (
γ ε(∇u), ε(∇v))0, u, v ∈H 2

0 ,

where γ is the fourth-order positive definite elasticity tensor and ε the small strain
tensor [6]. We employ the discrete Morley space Wh that is nonconforming for the
finite element solution of the problem, see, e.g., [9].
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With the help of the bilinear form ah(uh, vh), vh ∈ Wh, defined in an obvious
way we introduce the approximate solution uh ∈Wh. The bilinear form ah is pos-
itive definite on the space Wh, therefore there is a unique solution uh ∈Wh to the
problem, cf. [6].

For uh ∈ Wh and T ∈ Th, define a local residual a posteriori error indicator
ηB,T like in [6]. The corresponding statement proven there yields lower as well as
upper a posteriori error estimates in a discrete norm introduced there. Both these
estimates contain an unknown positive constant C independent of h.

8.4.2 Dirichlet Problem for Fourth Order Partial Differential
Equation

Let Ω ∈Rn be a bounded connected domain and Γ its Lipschitz continuous bound-
ary. We consider the 4th order elliptic problem for a scalar-valued function u,

div Div(γ∇∇u)= f in Ω, (8.18)

u= ∂u

∂n
= 0 on Γ, (8.19)

where f ∈ L2(Ω), γ = [γijkl]ni,j,k,l=1 and γijkl = γjikl = γklij ∈ L∞(Ω).
We assume the existence of constants 0 <m≤M such that

m‖Φ‖2
F ≤ (γΦ)�Φ ≤M‖Φ‖2

F for all Φ ∈Rn×n
s . (8.20)

Then the inverse tensor γ−1 exists and we define for any matrix-valued function
Φ ∈ L2(Ω,Rn×n), analogically to (8.1), the norms

|||Φ|||2 =
∫
Ω

(γΦ)�Φ and |||Φ|||2∗ =
∫
Ω

(
γ−1Φ

)�Φ.

A function u ∈H 2
0 (Ω) is now said to be the weak solution of the problem (8.18),

(8.19) if it satisfies the identity
∫
Ω

(γ∇∇u)� (∇∇v)=
∫
Ω

f v

for all test functions v ∈H 2
0 (Ω).

Let ū be a function from H 2
0 (Ω) considered as an approximation of the weak

solution u. In [16], no specification of the way ū has been computed is required, it
is just an arbitrary function of the admissible class.

Define the global functional a posteriori error estimator

εR(β,Φ, ū)= (1+ β)|||γ∇∇ū−Φ|||2∗ +
(

1+ 1

β

)
C2

1Ω‖div DivΦ − f ‖2
0,
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where β is an arbitrary positive real number, Φ an arbitrary symmetric matrix-
valued function from H(div Div,Ω), and C1Ω the constant from the Friedrichs in-
equality

‖w‖0 ≤ C1Ω |||∇∇w||| (8.21)

valid for all w ∈H 2
0 (Ω). Then the following theorem holds [16].

Theorem 8.3 Let u ∈ H 2
0 (Ω) be the weak solution of the problem (8.18), (8.19)

and ū ∈H 2
0 (Ω) an arbitrary function. Then

∣∣∣∣∣∣∇∇(ū− u)
∣∣∣∣∣∣2 ≤ εR(β,Φ, ū) (8.22)

for any symmetric matrix-valued function Φ ∈H(div Div,Ω) and any positive num-
ber β .

The proof of the theorem is based on a more general statement proven in [16].
The estimate (8.22) corresponds to the decomposition div DivΘ = f , Θ = γ∇∇u
of Eq. (8.18). However, the condition div DivΘ ∈ L2(Ω) is rather demanding.

To avoid possible difficulties of this kind, we can derive another error estimate if
we introduce a further global functional error estimator,

ε̃R(β,Φ,Y, ū) = (1+ β)|||γ∇∇ū−Φ|||2∗
+ 1+ β

β
(C1Ω‖divY − f ‖0 +C2Ω‖DivΦ − Y‖0)

2,

where β is a positive real number, Φ an arbitrary symmetric matrix-valued function
from H(Div,Ω), C2Ω the constant from the Friedrichs inequality

‖∇w‖0 ≤ C2Ω |||γ∇∇w||| (8.23)

valid for all w ∈H 2
0 (Ω), and Y an arbitrary vector-valued function from H(div,Ω).

Then we get the same statement as in Theorem 8.3 but with ε̃R(β,Φ,Y, ū) on the
right-hand part of (8.22) (cf. [16], where the proof is given). The estimate corre-
sponds to the decomposition divY = f , DivΘ = Y , Θ = γ∇∇u of Eq. (8.18).

Theorem 8.3 is equivalent to the statements proven in [13, Sect. 6.6]. Moreover,
in [13] the authors use another global functional a posteriori error estimator to prove
a lower estimate for the error.

The constants C1Ω and C2Ω can be estimated from above by m−1C1� and
m−1C2�, where m is the constant from (8.20), and C1� and C2� appear in the
Friedrichs inequalities (8.21), (8.23) that hold for any w ∈H 2

0 (Ω) on a rectangular
domain � containing Ω [16].

A posteriori error estimates for Eq. (8.18) with other boundary conditions can be
derived, too. Instead of C1Ω and C2Ω they involve constants appearing in inequali-
ties analogous to (8.21) and (8.23).
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The biharmonic equation

�2u= f in Ω

is a particular case of Eq. (8.18). Considering it with the Dirichlet boundary con-
dition (8.19) and introducing a particular error estimator, we obtain a statement
analogous to Theorem 8.3, see [16].

Consider another Dirichlet problem. Let d2u denote the Hessian matrix of
a function u : Ω → R, u ∈ H 2(Ω). Let the matrix-valued function Λ = [λik],
Λ : Ω × Rn×n → Rn×n be measurable and bounded with respect to the variable
x ∈Ω and of class C2 with respect to the matrix variable Θ ∈Rn×n.

Let the domain Ω ⊂ Rn have a piecewise C1 boundary. We consider the fourth-
order elliptic problem

div2 Λ
(
x,d2u

)= f in Ω, (8.24)

u= ∂u

∂n
= 0 on Γ (8.25)

with f ∈ L2(Ω).
Making proper assumptions on the Jacobian arrays Λ′(x,Θ), we get the exis-

tence of Λ−1, the inverse of Λ with respect to Θ ∈Rn×n [11].
The problem (8.24), (8.25) has a unique weak solution u ∈H 2

0 (Ω) that satisfies

∫
Ω

Λ
(
x,d2u

)� d2v−
∫
Ω

f v = 0 for all v ∈H 2
0 (Ω).

Let ū be a function from H 2
0 (Ω) considered as an approximation of the weak

solution u. In [11], no specification of the way ū has been computed is required, it
is just an arbitrary function of the admissible class.

We measure the error of the approximate solution ū by a functional E(ū)

introduced in [11]. For ū ∈ H 2
0 (Ω), an arbitrary matrix-valued function Ψ ∈

H(div2,Ω) ∩ L∞(Ω,Rn×n) and an arbitrary scalar-valued function w ∈ H 2
0 (Ω),

define the global functional a posteriori error estimator εK(Ψ,w, ū) like in [11]. It
contains four generally unknown positive constants. The corresponding statement
proven there yields an upper a posteriori error estimate. To avoid the computation
of Λ−1 we can introduce another global functional a posteriori error estimator and
reformulate the above mentioned statement. Moreover, the authors prove in [11] that
the global estimator εK(Ψ,w, ū) is sharp for a sufficiently smooth weak solution.

8.5 Conclusion

The quantitative properties of the indicators and estimators cannot be easily assessed
and compared analytically. There are, however, analytical error estimators for some
classes of problems (see, e.g., [11, 13, 18]) that require as few unknown constants as
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possible. The a posteriori estimates with unknown constants, however, are not opti-
mal for the practical computation. They can be efficient if they are asymptotically
exact.

The computation of the reference solution is rather time-consuming. Neverthe-
less, we use reference solutions as robust error indicators with no unknown constants
to control the adaptive strategies in the most complex finite element computations.

Acknowledgements This research was supported by the Grant Agency of the Academy of Sci-
ences of the Czech Republic under Grant IAA100190803 and by the Academy of Sciences of the
Czech Republic under Research Plan AV0Z10190503 of the Institute of Mathematics.

References

1. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley,
New York

2. Babuška I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations.
SIAM J Numer Anal 15(4):736–754

3. Babuška I, Rheinboldt WC (1978) A posteriori error estimates for the finite element method.
Int J Numer Methods Eng 12(10):1597–1615

4. Babuška I, Strouboulis T (2001) The finite element method and its reliability. Clarendon Press,
New York

5. Babuška I, Whiteman JR, Strouboulis T (2011) Finite elements. An introduction to the method
and error estimation. Oxford University Press, Oxford

6. Beirão da Veiga L, Niiranen J, Stenberg R (2007) A posteriori error estimates for the Morley
plate bending element. Numer Math 106(2):165–179

7. Brezzi F, Raviart PA (1977) Mixed finite element methods for 4th order elliptic equations.
In: Miller JJH (ed) Topics in numerical analysis III: proceedings of the royal Irish academy
conference on numerical analysis. Academic Press, London, pp 33–56

8. Charbonneau A, Dossou K, Pierre R (1997) A residual-based a posteriori error estimator for
the Ciarlet-Raviart formulation of the first biharmonic problem. Numer Methods Partial Differ
Equ 13(1):93–111

9. Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amster-
dam

10. Ciarlet PG, Raviart P-A (1974) A mixed finite element method for the biharmonic equation.
In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations.
Proceedings of a symposium conducted by the mathematics research center, the university of
Wisconsin–Madison, April 1–3, 1974. Academic Press, New York, pp 125–145

11. Karátson J, Korotov S (2009) Sharp upper global a posteriori error estimates for nonlinear
elliptic variational problems. Appl Math 54(4):297–336

12. Liu K, Qin X (2007) A gradient recovery-based a posteriori error estimators for the Ciarlet-
Raviart formulation of the second biharmonic equations. Appl Math Sci 1(21–24):997–1007

13. Neittaanmäki P, Repin S (2004) Reliable methods for computer simulation: error control and
a posteriori estimates. Elsevier, Amsterdam

14. Pomeranz SB (1995) A posteriori finite element method error estimates for fourth-order prob-
lems. Commun Numer Methods Eng 11(3):213–226

15. Rannacher R (1979) On nonconforming and mixed finite element method for plate bending
problems. The linear case. RAIRO Anal Numér 13(4):369–387

16. Repin S (2008) A posteriori estimates for partial differential equations. Walter de Gruyter,
Berlin

17. Segeth K (2010) A review of some a posteriori error estimates for adaptive finite element
methods. Math Comput Simul 80(8):1589–1600



158 K. Segeth

18. Vejchodský T (2006) Guaranteed and locally computable a posteriori error estimate. IMA J
Numer Anal 26(3):525–540

19. Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement
techniques. Wiley-Teubner, Stuttgart

20. Wang M, Zhang W (2008) Local a priori and a posteriori error estimate of TQC9 element for
the biharmonic equation. J Comput Math 26(2):196–208



Chapter 9
Upper Bound for the Approximation Error
for the Kirchhoff-Love Arch Problem

Olli Mali

Abstract In this paper, a guaranteed and computable upper bound of approxima-
tion errors for the Kirchhoff-Love arch problem is derived. In general, it belongs
to the class of functional a posteriori error estimates. The derivation method uses
purely functional arguments and, therefore, the estimates are valid for any conform-
ing approximation within the energy space. The computational implementation of
the upper bound is discussed and demonstrated by a numerical example.

9.1 Introduction

We consider a plane arch that has a constant cross section which is small com-
pared to its length. Following [3], the arch and all related functions are presented
in the parametrized form. The ψ : [0,1] → R

2 is a smooth parametrized non-self-
intersecting curve of the curvilinear abscissa s that defines the shape of the arch.
The displacement vector u= (u1, u2) and the load vector f = (f1, f2) are given on
a local basis (a1, a2) that varies along the arch, where a1 is the tangential and a2 is
the normal direction. The angle between the horizontal axis and a1 is denoted as θ .
On both ends of the beam, there are known external loads, normal force N , shear
force F , and the bending moment M . The mentioned definitions with positive di-
rections of the external loads are depicted in Fig. 9.1. A more advanced formulation
of the arch problem based on the control theory can be found in [12, 23], where
regularity requirements for ψ are substantially relaxed.

The curvature of the arch is c : [0,1]→R,

c(s) := 1

R(s)
= ψ ′′2 (s)ψ ′1(s)−ψ ′′1 (s)ψ ′2(s)

(ψ ′21 +ψ2
2 )

3
2

. (9.1)
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Fig. 9.1 The Kirchhoff-Love
arch

The energy functional is

J (u) = 1

2

∫ 1

0

{
EA

(
u′1 − cu2

)2 +EI
(
cu1 + u′2

)′2}ds

−
∫ 1

0
f · uds− 1

/
0
Nu1 +

1
/
0
Fu2 −

1
/
0
Mu′2, (9.2)

where E is the material constant (Young’s modulus), A is the area of the cross
section, and I is the second moment of inertia of the cross section. All these values
are strictly positive. We apply the notation

∫ b

a

f ds= b

/
a
F = F(b)− F(a).

The minimizer of the energy functional u ∈ V0 satisfies the integral relation

a(u,w)= l(w), ∀w ∈ V0, (9.3)

where

a(u,w)=
∫ 1

0

[
EA(u′1 − cu2)

EI (cu1 + u′2)′
]
·
[

w′1 − cw2
(cw1 +w′2)′

]
ds (9.4)

and

l(w) :=
∫ 1

0
f ·w ds+ 1

/
0
Nw1 −

1
/
0
Fw2 +

1
/
0
Mw′2. (9.5)

If u is sufficiently regular, then (9.3) implies the classical equations
⎧⎨
⎩
−(EA

(
u′1 − cu2

))′ − c
(
EI

(
cu1 + u′2

)′)′ = f1,

−cEA
(
u′1 − cu2

)+ (
EI

(
cu1 + u′2

)′)′′ = f2.
(9.6)
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Table 9.1 Boundary
conditions of the
Kirchhoff-Love arch

Kinematic Natural

u1 (tangential disp.) N (tangential stress)

u2 (normal disp.) F (shear force)

u′2 (rotation) M (bending moment)

The boundary conditions are defined at the end points s = 0 and s = 1. They are
listed as pairs in Table 9.1. Kinematic boundary conditions restrict displacement
components or rotation and natural boundary conditions define tangential stress,
shear force or bending moment. At both ends of the beam, either a natural or a
corresponding kinematic boundary condition has to be defined.

We assume that kinematic boundary conditions are homogeneous. Together with
the regularity requirements, kinematic boundary conditions define the space of ad-
missible displacements

V0 := {v ∈ V | v satisfies homogeneous kinematic boundary conditions}, (9.7)

where we denote V := H 1(0,1) × H 2(0,1). The mentioned assumptions guaran-
tee that in (9.5) either N , V , or M is known or the condition w ∈ V0 implies the
vanishing of the corresponding term.

We note that (9.6) can be decomposed into

{
EA

(
u′1 − cu2

)= p1,

EI
(
cu1 + u′2

)′ = p2

(9.8)

and {−p′1 − cp′2 = f1,

−cp1 + p′′2 = f2.
(9.9)

Equations (9.8) are the constitutive relation that states the linear dependence be-
tween displacement u and tangential stress p1 and the bending moment p2. Hence-
forth, the vector p will be referred to as the stress vector. Equations (9.9) are the
equilibrium condition between the external load f and the stresses p of the beam.
At the end points of the beam, stresses must satisfy the natural boundary conditions,
namely

p1 + cp2 =N, p2 =M, and p′2 = F. (9.10)

The stresses satisfying these relations form the space of admissible stresses,

Q0 :=
{
y ∈H 1(0,1)×H 2(0,1) | y satisfies (9.10)

}
. (9.11)

The problem is called statically determined (or overdetermined) if for p = 0,
Eq. (9.8) imply u= 0. Then the respective boundary conditions are physically sen-
sible, i.e., the beam without any load “stays still”.
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We define the following operators:

Λu :=
[

u′1 − cu2
(cu1 + u′2)′

]
, Λ∗p :=

[−p′1 − cp′2−cp1 + p′′2

]
, and A p :=

[
EAp1
EI p2

]
.

(9.12)
Then (9.8) and (9.9) can be written as

A Λu= p (9.13)

and

Λ∗p = f, (9.14)

respectively. For the full exposition of the discussed beam theory, see, e.g., [24, 25].
The general existence theory for elliptic equations is well known (see, e.g., [4]).

For the existence of the solution of the Kirchhoff-Love arch problem we must show
the ellipticity of a : V0 × V0 →R, which is proved in [3, Theorem 8.1.2, p. 433],

Theorem 9.1 If the function c is continuously differentiable over the interval I , the
bilinear form

a(u, v)=
∫
I

{(
u′1 − cu2

)(
v′1 − cv2

)+ (
u′2 + cu1

)′
(v2 + cu1)

′}ds

is H 1
0 (I ) × (H 2(I ) ∩ H 1

0 (I ))-elliptic, and, thus, it is a fortiori H 1
0 (I ) × H 2

0 (I )-
elliptic.

Theorem 9.1 states that for a statically determinate or overdeterminate beam,
there exists a positive constant C such that

∫ 1

0

{
w2

1 +w2
2 +w′21 +w′22 +w′′22

}
ds≤ C

∫ 1

0

{(
w′1 − cw2

)2 + (
cw1 +w′2

)′2}ds

(9.15)
for all w ∈ V0.

9.2 Error Majorant

The following upper estimate of the deviation from the exact solution (error majo-
rant) for the Kirchhoff-Love arch model was first presented in [10], where also the
respective lower estimate is presented. However, in this paper, we discuss the guar-
anteed estimation of the approximation error, where the majorant is more relevant.
Estimates similar (or more complicated) to the one presented here have been derived
earlier (see, e.g., [9, 15–18, 20, 21]). Here we derive the majorant with the help of
integral identities. The more general variational method for deriving the functional
estimates is discussed in [11, 19].
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Theorem 9.2 Let u be a solution of (9.3) and v ∈ V0. Then

|||u− v|||2 ≤M⊕(v, y,β), y ∈Q0, β > 0,

where

M⊕(v, y,β) :=
(

1+ 1

β

)
C

α

∫ 1

0

{(
f1 +

(
y′1 + cy′2

))2 + (
f2 −

(
cy1 + y′′2

))2}ds

+ (1+ β)

∫ 1

0

{
1

EA

(
y1 −EA

(
v′1 − cv2

))2

+ 1

EI

(
y2 −EI

(
cv1 + v′2

))′2}ds. (9.16)

Here C is from (9.15), α :=min{EA,EI }, and

|||w|||2 := 1

2

∫ 1

0

{
EA

(
w′1 − cw2

)2 +EI
(
cw1 +w′2

)′2}ds.

Proof We note that

∫ 1

0

[
w′1 − cw2

(cw1 +w′2)′
]
·
[
y1
y2

]
ds

=
∫ 1

0

[−y′1 − cy′2−cy1 + y′′2

]
·
[
w1
w2

]
ds+ 1

/
0
w1y1 +

1
/
0

(
cw1 +w′2

)
y2 −

1
/
0
w2y

′
2 (9.17)

for any w ∈H 1(0,1)×H 2(0,1) and y ∈H 1(0,1)×H 2(0,1).
By (9.3) and (9.17) we obtain

a(u− v,w) =
∫ 1

0
f ·w ds+ 1

/
0
Nw1 −

1
/
0
Fw2 +

1
/
0
Mw′2

−
∫ 1

0

[
EA(v′1 − cv2)

EI (cv1 + v′2)′
]
·
[

w′1 − cw2
(cw1 +w′2)′

]
ds

+
∫ 1

0

[
w′1 − cw2

(cw1 +w′2)′
]
·
[
y1
y2

]
ds

−
∫ 1

0

[−y′1 − cy′2
cy1 + y′′2

]
·
[
w1
w2

]
ds− 1

/
0
w1y1

− 1
/
0

(
cw1 +w′2

)
y2 +

1
/
0
w2y

′
2. (9.18)

We rewrite (9.18) in the form

a(u− v,w)= I1 + I2 + I3, (9.19)
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where

I1 =
∫ 1

0

[
f1 + (y′1 + cy′2)
f2 − (cy1 + y′′2 )

]
·
[
w1
w2

]
ds,

I2 =
∫ 1

0

[
y1 −EA(v′1 − cv2)

y2 −EI (cv1 + v′2)′
]
·
[

w′1 − cw2
(cw1 +w′2)′

]
ds,

I3 =
1
/
0
(N − y1 − cy2)w1 +

1
/
0

(−F + y′2
)
w2 +

1
/
0
(M − y2)w

′
2.

After imposing the boundary conditions, w ∈ V0 and y ∈Q0, I3 vanishes.
By the Cauchy-Schwartz inequality, we have

I1 ≤
(∫ 1

0

(
f1 +

(
y′1 + cy′2

))2 + (
f2 −

(
cy1 + y′′2

))2 ds

) 1
2
(∫ 1

0
w2

1 +w2
2 ds

) 1
2

.

We can estimate the L2-norm of w from above by the Sobolev norm of H 1(0,1)×
H 2(0,1) and apply (9.15). Then

I1 ≤
(∫ 1

0

(
f1 +

(
y′1 + cy′2

))2 + (
f2 −

(
cy1 + y′′2

))2 ds

) 1
2

×
√
C√
α

(∫ 1

0
EA

(
w′1 − cw2

)2 +EI
(
cw1 +w′2

)′2 ds

) 1
2

, (9.20)

where α =min{EA,EI }. Now, we apply the Cauchy-Schwartz inequality again,

I2 =
∫ 1

0

[ 1√
EA

(y1 −EA(v′1 − cv2))

1√
EI

(y2 −EI (cv1 + v′2)′)

]
·
[√

EA(w′1 − cw2)√
EI(cw1 +w′2)′

]
ds

≤
(∫ 1

0

1

EA

(
y1 −EA

(
v′1 − cv2

))2 + 1

EI

(
y2 −EI

(
cv1 + v′2

)′2)
ds

) 1
2 |||w|||.

(9.21)

We apply (9.21) and (9.20) to (9.19) and set w = u− v, then we arrive at

|||u− v||| ≤
√
C√
α

(∫ 1

0

(
f1 +

(
y′1 + cy′2

))2 + (
f2 −

(
cy1 + y′′2

))2
ds

) 1
2

+
(∫ 1

0

1

EA

(
y1 −EA

(
v′1 − cv2

))2 + 1

EI

(
y2 −EI

(
cv1 + v′2

)′2)ds

) 1
2

.

(9.22)
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For computation purposes it is preferable to have quadratic expressions. Thus we
introduce arbitrary β ∈R+ and use the Young inequality to obtain

|||u− v|||2 ≤
(

1+ 1

β

)
C

α

∫ 1

0

{(
f1 +

(
y′1 + cy′2

))2 + (
f2 −

(
cy1 + y′′2

))2}ds

+ (1+ β)

∫ 1

0

{
1

EA

(
y1 −EA

(
v′1 − cv2

))2

+ 1

EI

(
y2 −EI

(
cv1 + v′2

)′2)}ds. (9.23)

We call the right-hand side the error majorant (or majorant) and denote it by
M⊕(v, y,β). �

Remark 9.1 Under the definitions (9.12) the majorant has the structure

M⊕(v, y,β) :=
(

1+ 1

β

)
C

α

∫ 1

0

∣∣f −Λ∗y
∣∣2 ds

+ (1+ β)

∫ 1

0
A −1(y −A Λv) · (y −A Λv)ds. (9.24)

Remark 9.2 Two terms of the error majorant are related to the decomposed form of
the classical equations. The first part is the error in the equilibrium condition (9.9).
We denote this part by

M
equi
⊕ :=

∫ 1

0

∣∣f −Λ∗y
∣∣2 ds. (9.25)

The second part is the violation of the duality relation (9.8),

M const⊕ :=
∫ 1

0
A −1(A y −Λv) · (y −A Λv)ds. (9.26)

If we substitute y := p to the majorant, the second part provides the exact error, and
the first part is zero.

9.2.1 Application of the Majorant

The difference between the exact solution u of (9.32) and any approximation v ∈ V0

can be estimated from above using the majorant as follows:

|||u− v|||2 ≤M⊕(v, y,β), ∀y ∈Q0, β > 0,
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where y and β are at our disposal. Often, they are members of some finite dimen-
sional subspaces, w ∈ V N

0 ⊂ V0 and y ∈ QN ⊂ Q. The exact selection of basis
functions generating V N

0 and QN depends on the problem type, computational re-
sources, and the desired accuracy of estimates. For example, they can be piecewise
polynomials with highly local support as in a traditional finite element approach.

There are numerous variants of how to select the auxiliary function y. Recall that
we would obtain the exact deviation if y is the exact stress y = p. In practice, p is
not at our disposal. There are two principal ways to select the auxiliary function y:

1. We postprocess the approximate solution (this procedure is denoted by G :Q→
Q) to obtain an approximation of the stress,

y :=G(A Λv)≈ p.

2. We minimize the majorant with respect to the auxiliary function y within some
subspace QN ∈Q, i.e., we solve the problem

min
y∈QN ,
β>0

M⊕(v, y,β).

The minimization procedure with respect to y and β can be done iteratively.

If it is necessary to obtain a reasonable upper bound with less computational
effort, then the method 1 is preferable. For a more accurate bound the method 2 is
recommended. Note that it not only provides an improved upper bound for the error,
it also produces a good approximation of the true flux.

We present the method 2 in more detail. The majorant is convex (quadratic) with
respect to y. The necessary condition for the minimizer y can be computed as fol-
lows:

M⊕(v, y + tμ) =
(

1+ 1

β

)
C

α

∫ 1

0

∣∣f −Λ∗y − tΛ∗μ
∣∣2 ds

+ (1+ β)

∫ 1

0
A −1(y + tμ−A Λv) · (y + tμ−A Λv)ds.

Therefore

dM⊕(v, y + tμ)

dt
=
(

1+ 1

β

)
C

α
2
∫ 1

0

(
f −Λ∗y − tΛ∗μ

) · (−Λ∗μ)ds

+ (1+ β)2
∫ 1

0
A −1(y + tμ−A Λv) ·μds

and the condition

dM⊕(v, y + tμ)

dt

∣∣∣∣
t=0
= 0
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reads
(

1+ 1

β

)
C

α

∫ 1

0
Λ∗y ·Λ∗μds+ (1+ β)

∫ 1

0
A −1y ·μds

=
(

1+ 1

β

)
C

α

∫ 1

0
f ·Λ∗μds+ (1+ β)

∫ 1

0
A Λv ·μds. (9.27)

Let y belong to a finite dimensional subspace of Q,

y ∈ span
{
φ1, φ2, . . . , φN

}=:QN ⊂Q,

i.e.,

y =
N∑
i=1

γiφ
i .

Then the condition (9.27) leads to a system of linear equations,

N∑
i=1

γi

((
1+ 1

β

)
C

α

∫ 1

0
Λ∗φi ·Λ∗φj ds+ (1+ β)

∫ 1

0
A −1φi · φj ds

)

=
(

1+ 1

β

)
C

α

∫ 1

0
f ·Λ∗φj ds+ (1+ β)

∫ 1

0
A Λv · φj ds, j = {1, . . . ,N}.

After introducing the matrices

{Sij }Ni,j=1 =
∫ 1

0
Λ∗φi ·Λ∗φj ds, {Kij }Ni,j=1 =

∫ 1

0
A −1φi · φj ds,

and the vectors

{zj }Nj=1 =
∫ 1

0
f ·Λ∗φj ds, {gj }Nj=1 =

∫ 1

0
A Λv · φj ds

the system can be written in the matrix form
((

1+ 1

β

)
C

α
S + (1+ β)K

)
γ =

(
1+ 1

β

)
C

α
z+ (1+ β)g, (9.28)

where γ is a vector consisting of the unknown coefficients. The evaluation of the
majorant for y ∈QN can be easily done using the predefined matrices and the coef-
ficient vector γ ,

M⊕(v, y,β) =
(

1+ 1

β

)
C

α

(
γ T Sγ − 2γ T z+ ‖f ‖2)

+ (1+ β)
(
γ T Kγ − 2γ T g + a(v, v)

)
.
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If the majorant is minimized with respect to a positive scalar β , the minimum value
is attained at

β :=
( C

α
M

equi
⊕

M const⊕

) 1
2

. (9.29)

These observations motivate Algorithm 9.1.

Algorithm 9.1 Minimization of the majorant

Require: Matrices S and K , and vectors z and g are assembled and constants ‖f ‖2

and a(v, v) are computed. Set initial β1.
for k = 1 to Imax do

Solve:((
1+ 1

βk

)
C

α
S + (1+ βk)K

)
γk+1 =

(
1+ 1

βk

)
C

α
z+ (1+ βk)g.

Compute parts of the majorant:

M
equi
⊕ = γ T

k+1Sγk+1 − 2yTk+1z+ ‖f ‖2,

M const⊕ = γ T
k+1Kγk+1 − 2yTk+1g + a(v, v).

Compute parameter β:

βk+1 =
( C

α
M

equi
⊕

M const⊕

) 1
2

end for

It is not obligatory to solve the equations (9.28) for y exactly. An efficient method
for approximating y is the so called multi-grid method proposed in [26]. In general,
iterative numerical methods for solving (9.28) are attractive alternatives, since at
every iteration step one can compute the value of the majorant and cease all compu-
tations after the desired error estimation accuracy is obtained. It is rarely of interest
to compute the value of the approximation error as accurately as possible; a reason-
able upper bound for it is usually satisfactory. The construction and implementation
of the error majorant has been studied for various problems in [2, 5–8].

For the computation of the majorant we need to estimate the constant CF in the
inequality (9.15). In practice, to compute the majorant, we only need to estimate
the magnitude of the constant roughly. For example, it can be estimated by solving
approximately a generalized eigenvalue problem using the Galerkin approximation:
Find eigenpairs (λi, vi), where vi ∈ V N

0 ⊂ V0, such that

(A Λvi,Λw)U = λi(vi,w)V , ∀w ∈ V N
0 . (9.30)

The value of the constant is CF = 1
λmin

, where λmin is the lowest eigenvalue.
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Besides the upper bound for the error, the majorant is the basis for various error
indicators. It is relevant to distinguish between error indicators and estimators. The
main goal of an error indicator is to form an adequate approximation of the error
distribution with the lowest possible computational cost. This knowledge is essen-
tial for adaptive methods that iteratively enrich the set of basis functions used to
compute the approximate solution. The theoretical basis dates back to [13]. In the
last decades, error indicators have been intensively studied in numerical analysis
and the amount of different methods and implementations is vast and beyond the
scope of this paper (see, e.g., [1, 14, 22, 27, 28]).

9.3 Example: Uniformly Curved Beam

We consider a half circular beam

ψ(t)=
[

cos(πt)
sin(πt)

]
, t ∈ [0,1],

where the curvature is c = 1. Let both ends of the beam be clamped, i.e., the dis-
placement satisfies the boundary conditions

u1(0)= u2(0)= u′2(0)= u1(1)= u2(1)= u′2(1)= 0.

We normalize EA=EI = 1.
First, we compute an approximation of the constant C in (9.15). The basis that

satisfies the boundary conditions can be easily constructed using Fourier-type basis
functions. Let

w ∈ V N
0 := span

{[
sin(kπt)

0

]
,

[
1− cos(2kπt)

0

]
,

[
0

1− cos(2kπt)

]}N

k=1
. (9.31)

Then, dim(V N
0 )= 3N . We approximate C by solving the general eigenvalue prob-

lem (9.30) using the Galerkin method. For N = 10, we have C ≈ 0.051. We estimate
from above and set C = 1.

We introduce a polynomial solution

u(t)=
[

t (t − 1)
t2(t − 1)2

]
, (9.32)

which satisfies the kinematic boundary conditions. From (9.8) and (9.9), we have

p(t)=
[
EA(−t4 + 2t3 − t2 + 2t − 1)

EI (12t2 − 10t + 1)

]

and

f (t)=
[
EA(4t3 − 6t2 + 2t − 2)+EI (−24t + 10)

EA(t4 − 2t3 + t2 − 2t + 1)+ 24EI

]
.
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Fig. 9.2 The exact solution u

and the “approximation” v

To study the application of a posteriori error estimates, we define an “approxi-
mate solution” v of the form

v := u+ εξ ∈ V0,

where ξ is a known “error” that satisfies the kinematic boundary conditions. We
selected

ξ :=
[

t (t − 1) cos(30πt)
t2(t − 1)2 cos(30πt)

]
.

We set ε := 0.02 ‖u‖‖ξ‖ to obtain the following relative error (in the L2-norm) of 2 %.

The “error” in the energy norm is |||u− v|||2 = 50.740. The exact solution and the
“approximation” are depicted in Fig. 9.2.

To measure the efficiency of the majorant, we introduce the efficiency index,

I⊕eff :=
M⊕

|||u− v|||2 . (9.33)

Since the majorant is guaranteed,

1≤ I⊕eff.

Let y in the majorant be defined on a Fourier basis, i.e.,

y ∈QN := span

{[
sin(kπt)

0

]
,

[
cos(kπt)

0

]
,

[
0

sin(kπt)

]
,

[
0

cos(kπt)

]}N

k=1
.

Note that dim(QN)= 4N . We minimize the majorant with respect to y ∈QN fol-
lowing Algorithm 9.1. Regardless of the dimension N , the iteration converged in six
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Fig. 9.3 The approximate y

obtained through Algorithm
9.1, where the dimension of y
varies, compared to the exact
stress p

Table 9.2 An efficiency index of the majorant with different values of N

N 4 6 8 9 10 11 12

I⊕eff 1.1853 1.1509 1.0204 1.0048 1.0011 1.0002 1. 0001

M⊕ 60.143 58.398 51.774 50.985 50.7949 50.752 50.742

M
equi
⊕ 0.01320 0.00229 0.00485 0.00029 0.00002 7.2× 10−7 3.3× 10−8

M const⊕ 58.374 57.658 50.776 50.742 50.740 50.740 50.740

Table 9.3 An efficiency index of the majorant with different values of N and the constant C

N 4 6 8 9 10 11 12

C = 1 I⊕eff 1.1853 1.1509 1.0204 1.0048 1.0011 1.0002 1. 0001

C = 10 I⊕eff 1.2587 1.1601 1.0601 1.0151 1.0034 1.0008 1.0002

C = 100 I⊕eff 1.4992 1.1747 1.1413 1.0453 1.0108 1.0024 1.0005

C = 1000 I⊕eff 2.3947 1.2026 1.1592 1.1187 1.0329 1.0075 1.0016

steps. In Fig. 9.3, we have depicted y and the exact stress p. Clearly, y approaches
p as N increases. For N = 12 the difference between the curves is no longer visible.

In Table 9.2, we can observe how the majorant improves as N increases. The
efficiency index tends to one as the majorant approaches the exact deviation, and
the equilibrium part of the majorant tends to zero as the constitutive part approaches
the exact deviation error.

Since the constant C in (9.15) multiplies M
equi
⊕ which tends to zero, even a sub-

stantial overestimation of C does not seriously affect the efficiency of the majorant.
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In Table 9.3, we show the efficiency index obtained by different values for the con-
stant C.
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Chapter 10
Guaranteed Error Bounds for a Class
of Picard-Lindelöf Iteration Methods

Svetlana Matculevich, Pekka Neittaanmäki, and Sergey Repin

Abstract We present a new version of the Picard-Lindelöf method for ordinary
differential equations (ODEs) supplied with guaranteed and explicitly computable
upper bounds of an approximation error. The upper bounds are based on the Os-
trowski estimates and the Banach fixed point theorem for contractive operators. The
estimates derived in the paper take into account interpolation and integration errors
and, therefore, provide objective information on the accuracy of computed approxi-
mations.

10.1 Introduction

In this paper, we discuss a new version of the Picard-Lindelöf method for solving
the Cauchy problem

du

dt
= ϕ

(
u(t), t

)
, u(t0)= u0, (10.1)

where the solution u(t) (which may be a scalar or vector function) must be found
on the interval [t0, tK ].

Existence and uniqueness of the solutions follow from the Picard-Lindelöf the-
orem and the Picard existence theorem or from the Cauchy-Lipschitz theorem (see
[1, pp. 1–15], [3]).
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The problem (10.1) can be numerically solved by various well-known methods
(e.g., the methods of Runge-Kutta and Adams). Typically, the methods are furnished
by a priori asymptotic estimates which show theoretical properties of the iteration
algorithm. However, these estimates may have mainly a qualitative meaning and do
not provide all necessary information about the exact error bounds for particular nu-
merical approximation. This is the goal of a posteriori error estimation methods. We
deduce such type of estimates and suggest a version of the Picard-Lindelöf method
as a tool for constructing a fully reliable approximation of (10.1).

The Picard-Lindelöf iteration is one of the well-known numerical methods for
ODEs. Furthermore, it can be used not only for ODEs but for t-dependent algebraic
and functional equations (see, e.g., [5, 6]). It was shown that the speed of conver-
gence is quite independent of the step sizes. Numerical methods based on Picard-
Lindelöf iterations for dynamical processes (the so-called waveform relaxation in
the context of electrical networks) are discussed in [2].

The approach discussed in this paper is based on two-sided a posteriori estimates
derived by Ostrowski [7] (see also systematic exposition presented in the books [4,
8]). The algorithm includes natural adaptation of the integration step and provides
guaranteed bounds for the accuracy on the time interval [t0, tK ].

In Sect. 10.2, we present the main idea of the Picard-Lindelöf method and obtain
the conditions which not only provide convergence of the method but also allow
applying a posteriori error estimates. However, these estimates cannot be directly
used. In practice computations based on the Picard-Lindelöf method we must take
into account interpolation and integration errors. This analysis is done in Sect. 10.3.
It leads to error bounds, derived in Sect. 10.4, which include the interpolation and
integration errors. The structure of the algorithm is exposed in Sect. 10.5, where
results of numerical tests are presented.

10.2 The Picard-Lindelöf Method

Assume that the function ϕ(ξ(t), t) (which is allowed to be a vector-valued function)
in (10.1) is continuous with respect to both variables in terms of the continuous norm

‖u‖C([tk,tk+1]) := max
t∈[tk,tk+1]

∣∣u(t)∣∣

and satisfies the Lipschitz condition in the form

∥∥ϕ(u2, t2)− ϕ(u1, t1)
∥∥
C([t1,t2]) ≤ L1‖u2 − u1‖C([t1,t2]) + L2|t2 − t1|,

∀(u1, t1), (u2, t2) ∈Q, (10.2)

where L1, L2 are Lipschitz constants, and

Q := {
(ξ, t) | ξ ∈U, t0 ≤ t ≤ tN

}
. (10.3)
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U is the set of possible values of u which comes from an a priori analysis of the
problem. (It is clear that u0 ∈U.)

In the Picard-Lindelöf method, we represent the differential equation in the inte-
gral form

u(t)=
∫ t

t0

ϕ
(
u(s), s

)
ds + u0. (10.4)

Now, the exact solution is a fixed point of (10.4), which can be found by the iteration
method

uj (t)=
∫ t

t0

ϕ
(
uj−1(s), s

)
ds + u0.

We write in the form uj =T uj−1+ u0, where T :X→X is the integral operator.
It is easy to show that the operator

T u :=
∫ t

tk

ϕ
(
u(τ), τ

)
dτ + u0,k

is q-contractive on Ik = [tk, tk+1], where Ik is a subinterval of the mesh FK =⋃K−1
k=0 [tk, tk+1] defined on the interval [t0, tK ], with respect to the norm ‖u‖C(Ik), if

the condition

q := L1(tk+1 − tk) < 1 (10.5)

is provided.
Therefore, if the interval [tk+1, tk] is small enough, then the solution can be found

by the iteration procedure. In the next sections, we call this method the Adaptive
Picard-Lindelöf (APL) method.

10.3 Application of the Ostrowski Estimates

For the considered problem, the Ostrowski estimate reads as follows:

Theorem 10.1 ([7]) Assume that (10.5) is satisfied on Ik := [tk, tk+1]. Then, the
following estimate holds:

M 
j :=

1

1+ q
‖uj − uj+1‖C(Ik) ≤ ‖u− uj‖C(Ik) ≤

q

1− q
‖uj − uj−1‖C(Ik) =:M⊕

j .

(10.6)

Remark 10.1 It is possible to derive more accurate error bounds for ‖u−uj‖C(Ik) by
using additional elements of the sequence {uj }∞j=1 that have indexes greater than j :

‖u− uj‖C(Ik) ≤M
⊕,p
j := 1

1− qp
‖uj − uj+p‖C(Ik).
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By the mathematical induction method it can be proved that the optimal form of the
majorant and minorant based on P correspondent elements of the sequence are as
follows:

M
 ,P
j := sup

p=1,...,P

{
1

1+ qp
‖uj − uj+p‖C(Ik)

}
,

M
⊕,P
j := inf

p=1,...,P

{
1

1− qp
‖uj − uj+p‖C(Ik)

}
.

However, the estimates (10.6) cannot be directly used because numerical ap-
proximations include interpolation and integration errors, which must be taken into
account by fully reliable schemes.

Let us discuss this issue within the paradigm of a single (e.g., the first) step of
the APL:

u1(t)=
∫ t

t0

ϕ
(
u0(τ ), τ

)
dτ, t ∈ [t0, t1],

where u0 is the initial approximation defined as a piecewise affine function on the
mesh ΩSk =

⋃Sk−1
s=0 [zs, zs+1] on the interval [t0, t1].

If q < 1 and u1 is computed exactly, then

∥∥u1(t)− u(t)
∥∥
C([t0,t1]) ≤

q

1− q

∥∥u1(t)− u0(t)
∥∥
C([t0,t1]). (10.7)

However, in general, u1 is approximated by a piecewise affine continuous function

ū1(t)= πu1 ∈ CP 1([zs, zs+1]
)
, s = 0, . . . , Sk − 1,

where π is the projection operator π : C → CP 1([t0, t1]) satisfying the relation
π u(zs)= ū(zs). Thus, on the right-hand side of (10.7) we can estimate as follows:

∥∥u1(t)− u0(t)
∥∥
C([t0,t1]) ≤

∥∥ū1(t)− u0(t)
∥∥
C([t0,t1]) +

∥∥ū1(t)− u1(t)
∥∥
C([t0,t1]).

(10.8)

Here ‖ū1(t)−u1(t)‖C([t0,t1]) = ‖ē1‖C([t0,t1]) is an interpolation error. In general, this
term is unknown, but we can estimate it using an interpolation error estimate.

Numerical integration generates other errors which must be taken into account.
Indeed, the values ū(zs), s = 0, . . . , Sk , cannot be found exactly. Hence, at every
node zs instead of ū1(zs) we have û1(zs). Now, (10.8) implies

∥∥u1(t)− u0(t)
∥∥
C([t0,t1]) ≤

∥∥û1(t)− u0(t)
∥∥
C([t0,t1]) +

∥∥û1(t)− ū1(t)
∥∥
C([t0,t1])

+ ∥∥ū1(t)− u1(t)
∥∥
C([t0,t1]), (10.9)

where ‖û1(t)− ū1(t)‖C([t0,t1]) = ‖̂e1‖C([t0,t1]) is the integration error.
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10.4 Estimates of Interpolation and Integration Errors

10.4.1 Interpolation Error

We study the difference between u1 and ū1, where ū1 is the linear interpolant of u1

defined at the points {zs}Sks=0:

u1(zs)= ū1(zs)=
∫ zs

0
ϕ
(
u0(t), t

)
dt.

For all z ∈ [zs, zs+1],

ū1(z)= u1(zs)+ u1(zs+1)− u1(zs)

Δs

(z− zs).

Then,

ē = ū1(z)− u1(z)

=
[∫ zs

0
ϕ
(
u0(t), t

)
dt +

∫ zs+1
zs

ϕ(u0(t), t)dt

Δs

(z− zs)

]
−
∫ z

0
ϕ
(
u0(t), t

)
dt

= z− zs

Δs

∫ zs+1

zs

ϕ
(
u0(t), t

)
dt −

∫ z

zs

ϕ
(
u0(t), t

)
dt. (10.10)

Taking into account that u0 is affinely interpolated, consider the last integral on the
right-hand side of (10.10)

∫ z

zs

ϕ
(
u0(t), t

)
dt =

∫ z

zs

ϕ

(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
dt. (10.11)

Define

λ= t − zs

Δs

= t − zs

zs+1 − zs
, (10.12)

where zs and zs+1 are nodes of the mesh defined in Sect. 10.3. Substitute t = zs +
(zs+1 − zs)λ to ϕ(u0(t), t)

ϕ

(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)

= ϕ
(
u0,s + (u0,s+1 − u0,s)λ, zs + λ(zs+1 − zs)

)
= ϕ

(
λu0,s+1 + (1− λ)u0,s , λzs+1 + (1− λ)zs

)
.

Let

ϕ̃[s,s+1] := ϕs + ϕs+1 − ϕs

Δs

(t − zs), (10.13)
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where ϕs = ϕ(u0,s , zs) and ϕs+1 = ϕ(u0,s+1, zs+1). Using (10.12), we rewrite
(10.13)

ϕ̃[s,s+1] = ϕs + (ϕs+1 − ϕs)λ= λϕs+1 + (1− λ)ϕs. (10.14)

Thus, we can derive the following estimate with the help of (10.14) and (10.2):

∣∣∣∣ϕ
(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

∣∣∣∣
≤ ∣∣ϕ(λu0,s+1 + (1− λ)u0,s , λzs+1 + (1− λ)zs

)− λϕs+1 + (1− λ)ϕs
∣∣

≤ (1− λ)
[
L1,s

∣∣λu0,s+1 + (1− λ)u0,s − u0,s
∣∣

+ L2,s
∣∣λzs+1 + (1− λ)zs − zs

∣∣]
+ λ

[
L1,s

∣∣λu0,s+1 + (1− λ)u0,s − u0,s+1
∣∣

+ L2,s
∣∣λzs+1 + (1− λ)zs − zs+1

∣∣]
≤ 2λ(1− λ)

[
L1,s |u0,s+1 − u0,s | + L2,s |zs+1 − zs |

]

≤ 2
(zs+1 − t)(t − zs)

Δ2
s

[
L1,s |u0,s+1 − u0,s | + L2,sΔs

]
. (10.15)

We decompose (10.11)

∫ z

zs

ϕ
(
u0(t), t

)
dt

=
∫ z

zs

ϕ̃[s,s+1](t)dt +
∫ z

zs

[
ϕ

(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

]
dt.

(10.16)

Let us denote the first integral on the right-hand side of (10.16) by ĩs (z). Then,

ĩs (z) :=
∫ z

zs

(
ϕs + ϕs+1 − ϕs

Δs

(t − zs)

)
dt = (z− zs)

[
ϕs + ϕs+1 − ϕs

2Δs

(z− zs)

]
.

(10.17)
The second integral on the right-hand side of (10.16) is estimated with the help of
(10.15):

∫ z

zs

∣∣∣∣ϕ
(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

∣∣∣∣dt

≤ 2[L1,s |u0,s+1 − u0,s | + L2,sΔs]
Δ2

s

∫ z

zs

(t − zs)(zs+1 − t)dt

= 2[L1,s |u0,s+1 − u0,s | + L2,sΔs]
Δ2

s

∫ z

zs

(t − zs)(zs +Δs − t)dt
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= 2[L1,s |u0,s+1 − u0,s | + L2,sΔs]
Δ2

s

(z− zs)
2
[
Δs

2
− z− zs

3

]

= [L1,s |u0,s+1 − u0,s | + L2,sΔs]
3Δ2

s

(z− zs)
2(2zs + 3Δs − 2z).

Since

max
z∈[zs ,zs+1]

(z− zs)
2(2zs + 3Δs − 2z)=Δ3

s ,

we find that ∫ z

zs

∣∣∣∣ϕ
(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

∣∣∣∣dt

≤ [L1,s |u0,s+1 − u0,s | + L2,sΔs]Δ3
s

3Δ2
s

= [L1,s |u0,s+1 − u0,s | + L2,sΔs]Δs

3
. (10.18)

We represent the interpolation error (10.10) using (10.17),

ū1(z)− u1(z) = z− zs

Δs

∫ zs+1

zs

ϕ
(
u0(t), t

)
dt −

∫ z

zs

ϕ
(
u0(t), t

)
dt

= z− zs

Δs

ĩs(zs+1)− ĩs (z)+ ε1(z)+ ε2(z),

where

ε1 =
∫ zs+1

zs

∣∣∣∣ϕ
(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

∣∣∣∣dt,

ε2 =
∫ z

zs

∣∣∣∣ϕ
(
u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)
− ϕ̃[s,s+1]

∣∣∣∣dt.
Thus, we estimate the interpolation error as follows:

ē = ∥∥ū1(z)− u1(z)
∥∥
C([zs ,zs+1])

≤ max
z∈[zs ,zs+1]

∣∣∣∣z− zs

Δs

ĩs(zs+1)− ĩs (z)

∣∣∣∣+ max
z∈[zs ,zs+1]

∣∣ε1(z)+ ε2(z)
∣∣. (10.19)

For the first term on the right hand side of (10.19) we have (see (10.17))

max
z∈[zs ,zs+1]

∣∣∣∣z− zs

Δs

ĩs(zs+1)− ĩs (z)

∣∣∣∣dt ≤ |ϕs+1 − ϕs |
2Δs

max
z∈[zs ,zs+1]

∣∣(z− zs)(zs+1 − z)
∣∣

≤ |ϕs+1 − ϕs |
2Δs

Δ2
s

4
= 1

8
|ϕs+1 − ϕs |Δs.
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For the second term, we have (see (10.18))

max
z∈[zs ,zs+1]

∣∣ε1(z)+ ε2(z)
∣∣≤ 2

Δs[L1,s |u0,s+1 − u0,s | + L2,sΔs]
3

.

Hence, the overall estimate of the interpolation error has the form

∥∥ū1(z)− u1(z)
∥∥
C([zs ,zs+1]) ≤

ϕs+1 − ϕs

8
Δs + 2

3
Δs

[
L1,s |u0,s+1 − u0,s | + L2,s Δs

]
.

(10.20)

10.4.2 Integration Error

The interpolation error estimate (10.20) does not account for the fact that computa-
tions of the integral are performed approximately. It is not difficult to evaluate the
integration errors by noting that for a Lipschitz function f (t) the error encompassed
in the simplest trapezoidal quadrature formula

∫ t1

t0

f (t)dt ! f (t0)+ f (t1)

2
(t1 − t0)

can be estimated as follows:

eint ≤ L

4
(t1 − t0)

2 − 1

4L

[
f (t1)− f (t0)

]2
.

Then, it is not difficult to show that the integration error can be estimated as

∥∥û1(t)− ū1(t)
∥∥
C([zs ,zs+1]) ≤

Ls

4
Δ2

s −
1

4Ls

[ϕs+1 − ϕs]2,

where Ls = L1,s ls + L2,s . (Here, ls is the slope of the piecewise function on every
interval [zs, zs+1], s = 0, . . . , Sk − 1.)

10.4.3 Guaranteed Error Bounds for Picard-Lindelöf Method

Thus, on every subinterval [zs, zs+1] the interpolation error can be estimated with
the help of (10.20). Then, for whole interval [t0, t1] :=⋃Sk−1

s=0 [zs, zs+1] the interpo-
lation error estimate is the following:

∥∥ū1(t)− u1(t)
∥∥
C([t0,t1])

≤
∑

s=0,...,Sk−1

ϕs+1 − ϕs

8
Δs + 2

3

[
L1,s |u0,s+1 − u0,s | + L2,sΔs

]
Δs.
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Analogously, for the integration error

∥∥ū1(t)− û1(t)
∥∥
C([t0,t1]) ≤

∑
s=0,...,Sk−1

Ls

2
Δ2

s −
1

2Ls

[ϕs+1 − ϕs]2.

Then, the inequality (10.9) implies the estimate
∥∥u1(t)− u0(t)

∥∥
C([t0,t1])

≤ ∥∥û1(t)− u0(t)
∥∥
C([t0,t1])

+
∑

s=0,...,Sk−1

(
ϕs+1 − ϕs

8
Δs + 2

3
Δs

[
L1,s |u0,s+1 − u0,s | + L2,sΔs

])

+
∑

s=0,...,Sk−1

(
Ls

2
Δ2

s −
1

2Ls
[ϕs+1 − ϕs]2

)
.

After j steps of the iterations we obtain

∥∥uj+1(t)− uj (t)
∥∥
C([t0,t1]) ≤ M⊕,1

j+1(̂uj )

:= ∥∥ûj+1(t)− ûj (t)
∥∥
C([t0,t1]) +E1

interp +E1
integr ,

(10.21)

where

E1
interp :=

∑
s=0,...,Sk−1

(
ϕ(̂uj, s+1, zs+1)− ϕ(̂uj, s , zs)

8
Δs

+ 2

3
Δs

[
L1,s |̂uj,s+1 − ûj,s | + L2,sΔs

])
(10.22)

and

E1
integr :=

∑
s=0,...,Sk−1

(
Ls

2
Δ2

s −
1

2Ls

[
ϕ(̂uj, s+1, zs+1)− ϕ(̂uj, s, zs)

]2
)
, (10.23)

where for j = 0 the function ûj is taken as a piecewise affine interpolation of u0,
and for j ≥ 1 it is taken from the previous iteration step.

The quantity M⊕,1
j is fully computable, and it shows the overall error associated

with the step number j on the first interval.

Remark 10.2 Estimate of the overall error related to the interval [t0, tK ] includes all
errors computed on the intervals. In other words the error associated with [t0, tk−1]
is appended to the error on [tk−1, tk] (which formally follows from the fact that the
initial condition on [tk−1, tk] includes errors on the previous intervals).
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Thus, we have shown that fully guaranteed and computable bounds can indeed be
derived for the problem (10.1) with the Lipschitz function ϕ, i.e. for every finite time
interval [t0, tK ] and for every a priori required accuracy ε an approximate solution
of the problem can be found by the APL method discussed above.

10.5 The APL Algorithm and Numerical Examples

Let ε be a required accuracy of an approximate solution. Then, practical computa-
tion can be performed by Algorithm 10.1.

Algorithm 10.1 The algorithm of the APL method

Input: ε {required accuracy on the interval} , u0 {input initial boundary condi-
tion}

FK =
K−1⋃
k=0
[tk, tk+1] { constructed by Mesh Generation Procedure}

εk = ε
K

{obtain accuracy of the approximate solution on interval [tk, tk+1]}
ΩSk =

Sk−1⋃
s=0
[zs, zs+1] {initial mesh for each subinterval}

for k = 1 to K do
j = 0
do

if k = 1
a = u0

else
a = vk−1(tk−1)

endif
vkj = Integration Procedure(ϕ, vkj−1, Sk)+ a

calculate Ek
interp and Ek

integr by using (10.22) and (10.23)

M
⊕,k
j = ‖vkj − vkj−1‖C([tk−1,tk]) +Ek

interp +Ek
integr

e⊕j = q
1−qM

⊕,k
j

if Ek
interp +Ek

integr > εk

Sk = 2 Sk {refine the mesh ΩSk }
endif
j = j + 1

whilee⊕j > εk

vk = vkj {the approximate solution on the interval [tk−1, tk]}
e⊕,k = e⊕j {error bound achieved for the interval [tk−1, tk]}

end for
Output: {vk}Kk=1 {the approximate solution}

{e⊕,k}Kk=1 {error bounds estimates on sub intervals}
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Fig. 10.1 The error and error
majorants

In general, the algorithm should start with the generation of a suitable mesh (i.e.,
select time intervals). Here, we do not discuss this question in detail, but only note
that the Mesh Guaranteed Procedure must adapt the mesh to the nature of ϕ(u(t), t),
which requires information about U (see (10.3)). In practise, such information can
be obtained by solving the problem (10.1) numerically with the help of some heuris-
tic (e.g., Runge-Kutta) method on a coarse mesh.

The APL algorithm is a cycle over all the intervals of the mesh FK =⋃K−1
k=0 [tk, tk+1]. On each subinterval, the algorithm is realized as a subcycle (whose

index is j ). In the subcycle, we apply the PL method and try to find an approxi-
mation that meets the accuracy requirements imposed (i.e., the accuracy must be
higher than εk). Initial data are taken from the previous step (for the first step, the
initial condition is defined by u0).

After computing an approximation on [tk, tk+1] we use our majorant and find a
guaranteed upper bound (which includes the interpolation and integration errors).
Iterations are continued unless the required accuracy εk has been achieved. After
that we save the results and proceed to the next interval.

Note that in Algorithm 10.1, we do not discuss in detail the process of integra-
tion on an interval, which is performed on a local mesh with a certain amount of
subintervals (whose size is Δs ). In principle, it may happen that the desired level of
accuracy, εk , is not achieved with the Δs selected. This fact will be easily detected
because interpolation and integration errors will dominate and do not allow the over-
all error to decrease below εk . In this case, Δs must be reduced, and computations
on the corresponding interval must be repeated.

Example 10.1 Consider the problem

du

dt
= 4ut sin(8t), t ∈ [0,3/2],

u(0)= u0 = 1

with the exact solution

u= e
1
16 sin(8t)− 1

2 t cos(8t).
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Fig. 10.2 (a) The exact and approximate solutions with guaranteed bounds of the deviation com-
puted by the Ostrowski estimate. (b) A zoomed interval of the exact and approximate solutions
with bounds of the deviation computed by the majorant

Fig. 10.3 (a) The exact and approximate solutions with guaranteed bounds of the deviation com-
puted by the advanced form of the estimate. (b) A zoomed interval of the exact and approximate
solutions with bounds of the deviation computed by the majorant

In Fig. 10.1, we depict the error (bold dots), error bounds computed by the Os-
trowski estimates (dotted line) and by the advanced form of the estimate (dashed
line). In order to make the results more transparent, we depict the approximate so-
lution together with the zone which contains the exact solution (see Figs. 10.2(a)
and 10.3(a)). The form of this (shaded) zone is determined by the a posteriori esti-
mates.

Thus, the APL method computes two-sided guaranteed bounds containing the
exact solution. It may happen that the desired level of accuracy has been exceeded
at some moment t ′ < tK and further Picard-Lindelöf iterations are unable to re-
duce the error. This situation may arise if the amount of internal points used for
numerical integration on each interval is too small. In this case, we must enlarge
the number of internal nodes (which will reduce integration and interpolation er-
rors) and repeat the computations. Numerical results illustrated in Figs. 10.2(b) and
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Table 10.1 Components of
the general estimate Estimate of ‖ej‖ Estimate of ‖ēj‖ Estimate of ‖êj‖

2.2658e-002 8.6160e-008 9.5725e-008

4.6095e-002 1.8847e-007 5.8148e-007

5.4949e-002 2.5299e-007 5.9301e-007

7.4818e-002 2.5768e-007 2.3618e-006

9.5993e-002 3.0190e-007 2.3699e-006

1.0302e-001 3.4216e-007 2.3807e-006

1.5427e-001 4.8963e-007 2.4320e-006

1.5647e-001 6.1877e-007 2.4999e-006

2.3495e-001 9.4891e-007 2.6183e-006

2.7145e-001 9.8935e-007 2.6328e-006

3.0533e-001 9.9923e-007 2.6373e-006

3.2838e-001 1.0158e-006 2.6404e-006

4.4629e-001 1.0182e-006 2.6517e-006

10.3(b) show that the advanced majorant provides much sharper bounds of the de-
viation.

Values of the components of the estimate (the first term, the estimate of ‖ē‖
and the estimate of ‖̂e‖ from (10.21)) are presented in Table 10.1. We see
that in this example the values of Sk were selected properly, so that interpo-
lation and integration error estimates are insignificant with respect to the first
term.

Example 10.2 The APL method works with stiff problems as well. Consider the
classical stiff equation

du

dt
= 50 cos(t)− 50u, t = [0,1],

u(0)= u0 = 1

with the exact solution

u= 1

2501
e−50t + 2500

2501
cos(t)+ 50

2501
sin(t).

Analogously to the previous example, in Fig. 10.4(a) the general error (lines with
dots on the top) estimated by the Ostrowski estimate (dotted line) and the advanced
form of the estimate (dashed line) are illustrated. Another way to depict obtained
results is shown in Fig. 10.4(b).
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Fig. 10.4 (a) The error and error majorants. (b) The exact and approximate solutions with the
guaranteed deviation bound

Fig. 10.5 The exact and approximate solutions of the system and the guaranteed error bounds
computed by the Ostrowski method

Example 10.3 The APL method can also be applied to stiff systems of ODEs. As
an example, we consider the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= 998u1 + 1998u2,

du2

dt
=−999u1 − 1999u2,

u1(t0)= 1, u2(t0)= 1,

t ∈ [0,5× 10−3]

with the exact solutions u1 = 4e−t − 3e−1000t and u2 = −2e−t + 3e−1000t . In
Figs. 10.5(a), 10.5(b), 10.6(a), and 10.6(b), we present the same type of informa-
tion (behavior of the solution and guaranteed bounds) as in the previous examples.
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Fig. 10.6 The error and error majorants for the solutions u1, u2 of the system

We note that for stiff equations getting an approximate solution with the guar-
anteed and sharp error bounds requires much larger expenditures than in relatively
simple Examples 10.1 and 10.2. This result is not surprising because (as it is quite
natural to expect) for such type of problems fully reliable computations will be much
more expensive.
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Part III
Analysis of Noised and Uncertain Data



Chapter 11
Hermitian Interpolation Subject to Uncertainties

Jean-Antoine Désidéri, Manuel Bompard, and Jacques Peter

Abstract This contribution is a sequel of the report (Bompard et al. in http://hal.
inria.fr/inria-00526558/en/, 2010). In PDE-constrained global optimization (e.g.,
Jones (in J. Global Optim. 21(4):345–383, 2001)), iterative algorithms are com-
monly efficiently accelerated by techniques relying on approximate evaluations of
the functional to be minimized by an economical but lower-fidelity model (“meta-
model”), in a so-called “Design of Experiment” (DoE) (Sacks et al. in Stat. Sci.
4(4):409–435, 1989). Various types of meta-models exist (interpolation polynomi-
als, neural networks, Kriging models, etc.). Such meta-models are constructed by
pre-calculation of a database of functional values by the costly high-fidelity model.
In adjoint-based numerical methods, derivatives of the functional are also available
at the same cost, although usually with poorer accuracy. Thus, a question arises:
should the derivative information, available but known to be less accurate, be used
to construct the meta-model or be ignored? As the first step to investigate this issue,
we consider the case of the Hermitian interpolation of a function of a single variable,
when the function values are known exactly, and the derivatives only approximately,
assuming a uniform upper bound ε on this approximation is known. The classical
notion of best approximation is revisited in this context, and a criterion is intro-
duced to define the best set of interpolation points. This set is identified by either
analytical or numerical means. If n+ 1 is the number of interpolation points, it is
advantageous to account for the derivative information when ε ≤ ε0, where ε0 de-
creases with n, and this is in favor of piecewise, low-degree Hermitian interpolants.
In all our numerical tests, we have found that the distribution of Chebyshev points
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is always close to optimal, and provides bounded approximants with close-to-least
sensitivity to the uncertainties.

11.1 Introduction: The Classical Notion of Best Approximation

In this section, we review certain classical notions on polynomial interpolation, in
particular the concept of “best approximation” or “Chebyshev economization”. The
literature contains numerous elementary and advanced texts on this fundamental
issue, and we refer to [2, 4, 5].

Let n be an integer and x0, x1, . . . , xn be n+ 1 distinct points of the normalized
interval [−1,1]. Let π(x) be the following polynomial of degree n+ 1:

π(x)=
n∏

i=0

(x − xi)

and consider the following n+ 1 polynomials of degree n:

Li (x)=
n∏

j=0
j �=i

x − xj

xi − xj
(i = 0,1, . . . , n).

Clearly

∀i, j ∈ {0,1, . . . , n} : Li (xj )= δi,j ,

where δ stands for Krönecker’s symbol. Application of L’Hospital’s rule yields the
following compact formula:

Li (x)= π(x)

π ′(xi)(x − xi)
. (11.1)

Let f : [−1,1]→R be a smooth function of the real variable x. The polynomial

Pn(x)=
n∑

i=0

f (xi)Li (x)

is of degree at most equal to n, and it clearly satisfies the following interpolation
conditions:

∀i ∈ {0,1, . . . , n} : Pn(xi)= f (xi).

One such interpolant is unique among all polynomials of degree ≤ n. Thus, Pn(x)

is the Lagrange interpolation polynomial of f at the points {xi}0≤i≤n.
It is well known that if f ∈ Cn+1([−1,1]), for any given x ∈ [a, b], the interpo-

lation error is given by

en(x)= f (x)− Pn(x)= f (n+1)(ξ)

(n+ 1)! π(x)
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for some ξ ∈ [−1,1].

Proof Let x ∈ [−1,1] be given. If x = xi for some i, the result is trivially satisfied.
Otherwise, π(x) �= 0; then let

λ= en(x)

π(x)

so that

f (x)= Pn(x)+ λπ(x)

and define the function

φ(t)= f (t)− Pn(t)− λπ(t) t ∈ [−1,1].
The function φ(t) is of class Cn+1([−1,1]) and it admits a nonempty set of roots
in the interval [−1,1] that includes X = {x0, x1, . . . , xn, x}. The n+ 2 elements of
X are distinct and can be arranged as the elements of a strictly increasing sequence
{x0

i }0≤i≤n+1 whose precise definition depends on the position of x w.r.t. the inter-
polation points {xi}0≤i≤n. By application of Rolle’s theorem to φ(t)= φ(0)(t) over
the subinterval [x0

i , x
0
i+1], i = 0,1, . . . , n, it follows that φ′(t) admits a root x1

i in
the open interval ]x0

i , x
0
i+1[, and this, for each i. In this way we identify a strictly-

increasing sequence of n+1 roots of φ′(t), {x1
i }0≤i≤n. Then Rolle’s theorem can be

applied in a similar way, this time to φ′(t), and so on to the successive derivatives of
φ(t). We conclude that in general φ(k)(t) admits at least n+ 2− k distinct roots in
[−1,1], {xki }0≤i≤n+1−k , 0≤ k ≤ n+1. In particular, for k = n+1, φ(n+1)(t) admits

at least one root, xn+1
0 , hereafter denoted ξ for simplicity. But since P

(n+1)
n (ξ)= 0

and π(n+1)(ξ)= (n+ 1)!, one gets

λ= f (n+1)(ξ)

(n+ 1)!
and the conclusion follows. �

Hence, if

K = 1

(n+ 1)! max
x∈[−1,1]

∣∣f (n+1)(x)
∣∣

we have

∀x ∈ [−1,1] : ∣∣en(x)∣∣≤K
∣∣π(x)∣∣.

Therefore, a natural way to optimize the choice of interpolation points a priori, that
is, independently of f , is to solve the following classical min-max problem:

min{xi }0≤i≤n
xi∈[−1,1], ∀i

max
x∈[−1,1]

∣∣π(x)∣∣. (11.2)
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In view of this, the problem is to find among all polynomials π(x) whose highest-
degree term is precisely xn+1, and that admit n + 1 distinct roots in the interval
[−1,1], an element, unique or not, that minimizes the sup-norm over [−1,1].

The solution of this problem is given by the n+1 roots of the Chebyshev polyno-
mial of degree n+ 1. Before recalling the proof of this, let us establish some useful
auxiliary results. Let k be an arbitrary integer and Tk(x) denote the Chebyshev poly-
nomial of degree k. Recall that for x ∈ [−1,1]

Tk(x)= cos
(
k cos−1 x

)
, k ∈N,

so that, for k ≥ 1 and x ∈ [−1,1],
Tk+1(x)+ Tk−1(x)= cos(k + 1θ)+ cos(k − 1θ)= 2 cos(kθ) cos θ = 2xTk(x),

where one has let

x = cos θ, 0≤ θ ≤ π.

Thus, if the leading term in Tk(x) is say akx
k , the following recursion applies:

ak+1 = 2ak, k ≥ 1,

and, since a0 = a1 = 1, it follows that

ak = 2k−1, k ≥ 1.

Therefore, an admissible candidate solution for the min-max problem, (11.2), is the
polynomial

π&(x)= 1

2n
Tn+1(x).

It remains to establish that π&(x) is the best choice among all admissible polyno-
mials, and its roots the best possible interpolation points. To arrive at this, we claim
the following lemma:

Lemma 11.1 For all admissible polynomial q(x) one has

∥∥π&
∥∥≤ ‖q‖,

where ‖ ‖ is the sup-norm over [−1,1].

Proof Assume otherwise that an admissible polynomial q(x) of a strictly smaller
sup-norm over [−1,1] exists:

‖q‖< ∥∥π&
∥∥.

Let r(x) = π&(x)− q(x). Since the admissible polynomials π&(x) and q(x) have
the same leading term, xn+1, the polynomial r(x) is of degree at most n. Let us
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examine the sign of this polynomial at the n+ 2 points

ηi = cos
iπ

n+ 1
, i = 0,1, . . . , n+ 1,

at which π&(x) as well as Tn+1(x) achieve a local extremum. At such a point,

∣∣π&(ηi)
∣∣= 1

2n
= ∥∥π&

∥∥> ‖q‖ = max
x∈[−1,1]

∣∣q(x)∣∣≥ ∣∣q(ηi)∣∣
and r(ηi) is nonzero and has the sign of the strictly dominant term π&(ηi) =
1
2n Tn+1(ηi)= (−1)i

2n . Therefore, r(x) admits at least n+ 1 sign alternations and as
many distinct roots. But this is in contradiction with the degree of this polynomial.
The contradiction is removed by rejecting the assumption made on ‖q‖. �

Consequently, in (11.2), the min-max is achieved by the roots of Tn+1(x):

x&i = cos
(2i + 1)π

2(n+ 1)
, i = 0,1, . . . , n, (11.3)

and the value of the min-max is 1
2n .

11.2 Best Hermitian Approximation

Now assume that the points {xi}0≤i≤n are used as a support to interpolate the func-
tion values {yi = f (xi)}0≤i≤n, but also the derivatives {y′i = f ′(xi)}0≤i≤n, that is a
set of 2(n+ 1) data. Thus, we anticipate that the polynomial of least degree com-
plying with these interpolation conditions, say H2n+1(x), is of degree at most equal
to 2n+ 1. One such polynomial is necessarily of the form

H2n+1(x)= Pn(x)+ π(x) ·Q(x), (11.4)

where the quotient Q(x) should be adjusted to comply with the interpolation condi-
tions on the derivatives. These conditions are

y′i =H ′
2n+1(xi)= P ′n(xi)+ π ′i ·Q(xi), i = 0,1, . . . , n, (11.5)

where

π ′i = π ′(xi)=
∏
j=0
j �=i

(xi − xj ) �= 0, (11.6)

and since π(xi)= 0. Thus Q(x) is solely constrained by the following n+ 1 inter-
polation conditions:

Qi =Q(xi)= y′i − P ′n(xi)
π ′i

, i = 0,1, . . . , n. (11.7)
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Therefore, the solution of least degree is obtained when Q(x) is the Lagrange inter-
polation polynomial associated with the above function values:

Q(x)=
n∑

i=0

QiLi (x).

The corresponding solution is thus unique, and we will refer to it as the global
Hermitian interpolant.

The interpolation error associated with the above global Hermitian interpolant
H2n+1(x) is given by the following result valid when f ∈ C2n+2([−1,1]):

∀x ∈ [−1,1], ∃η ∈ [−1,1] : f (x)=H2n+1(x)+ f (2n+2)(η)

(2n+ 2)! π2(x). (11.8)

Proof Let x ∈ [−1,1] be given. If x = xi for some i, the result is trivially satisfied.
Otherwise, π(x) �= 0; then let

μ= f (x)−H2n+1(x)

π2(x)

so that

f (x)=H2n+1(x)+μπ2(x).

Let

ψ(t)= f (t)−H2n+1(t)−μπ2(t), t ∈ [−1,1].
The function ψ(t) is of class C2n+2([−1,1]), and similarly to the former function
φ(t), it admits a nonempty set of roots in the interval [−1,1] that includes X =
{x0, x1, . . . , xn, x} = {x0

i }0≤i≤n+1. Hence, Rolle’s theorem implies that in the open
interval ]xi, xi+1[, 0≤ i ≤ n, a root x′i of ψ ′(t) exists. But the interpolation points, at
which the derivative also is fitted, are themselves n+ 1 other distinct roots of ψ ′(t).
Thus we get a total of at least 2n+ 2 roots for ψ ′(t), and by induction, 2n+ 1 for
ψ ′′(t), and so on, and finally one, say η, for ψ(2n+2)(t). Now, since H

(2n+2)
2n+1 (η)= 0

because the interpolant is of degree 2n + 1 at most, and since (π2(t))(2n+2)(t) =
(2n+ 2)!, one gets

0= f (2n+2)(η)− 0−μ(2n+ 2)!
which yields the final result. �

As a consequence of (11.8), the formulation of the best approximation problem
for the global Hermitian interpolant is as follows:

min{xi }0≤i≤n
xi∈[−1,1], ∀i

max
x∈[−1,1]

π2(x). (11.9)
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But, if we define the following functions of Rn+1 →R:
⎧⎪⎨
⎪⎩
P(x0, x1, . . . , xn)= max

x∈[−1,1]
π2(x),

p(x0, x1, . . . , xn)= max
x∈[−1,1]

∣∣π(x)∣∣,
it is obvious that

∀x0, x1, . . . , xn : P(x0, x1, . . . , xn)= p2(x0, x1, . . . , xn).

Hence the functions P and p achieve their minimums for the same sequence of
interpolation points, and

min{xi }0≤i≤n
xi∈[−1,1], ∀i

P (x0, x1, . . . , xn)=
(

min{xi }0≤i≤n
xi∈[−1,1], ∀i

p(x0, x1, . . . , xn)
)2 = 1

4n
.

Therefore the best Hermitian interpolation is achieved for the same set of interpo-
lation points as the best Lagrangian interpolation, that is, the roots, {x&i }0≤i≤n of
(11.3), of the Chebyshev polynomial Tn+1(x).

11.3 Best Inexact Hermitian Approximation

In PDE-constrained global optimization [3], it is often useful to model the functional
criterion to be optimized by a function f (x) of the design variable x ∈ R

n, whose
values are computed through the discrete numerical integration of a PDE, and the
derivative f ′(x), or gradient vector, by means of an adjoint equation. A database of
function values and derivatives is compiled by Design of Experiment, and the sur-
rogate model, or meta-model is constructed from it. This meta-model is then used
in some way in the numerical optimization algorithm with the objective of improv-
ing computational efficiency (see, for example, [3]). The success of such a strategy
depends on the accuracy of the meta-model f (x) to represent the dependency on x

of the actual functional criterion. If all the data were exact, and properly used, the
accuracy would undoubtedly improve by the addition of the derivative information.
However, in practice, since the PDE is solved discretely, the derivatives are almost
inevitably computed with inferior accuracy. Therefore it is not clear that accounting
for the derivatives is definitely advantageous if the corresponding accuracy of the
data is poor. Should special precautions be taken to guarantee it?

In order to initiate a preliminary analysis of this problem, we examine the simple
one-dimensional situation of a function f (x), when x is scalar (x ∈ R), and con-
sider the case of a Hermitian interpolation meta-model based on inexact informa-
tion. Specifically, we assume that the function values {yi}0≤i≤n are known, whereas
only approximations {ȳ′i}0≤i≤n of the derivatives {y′i}0≤i≤n are available, and we let:

δy′i = ȳ′i − y′i := εi, i = 0,1, . . . , n.
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Hence the computed interpolant is H 2n+1(x) instead of H2n+1(x), and in view of
the definitions (11.4)–(11.7), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δH2n+1(x)=H 2n+1(x)−H2n+1(x)= π(x) δQ(x),

δQ(x)=
n∑

i=0

δQiLi (x),

δQi = δy′i
π ′i
= εi

π ′i
.

(11.10)

Now, suppose an upper bound ε on the errors εi ’s is known:

|εi | ≤ ε, 0≤ i ≤ n. (11.11)

The following questions arise:

1. What is the corresponding upper bound on maxx∈[−1,1] |δH2n+1(x)|?
2. Can we choose the sequence of interpolation points {xi}0≤i≤n to minimize this

upper bound?
3. Is the known sequence of the Chebyshev points a good approximation of the

optimum sequence for this new problem?

This article attempts to bring some answers to these questions. Presently, we try to
identify how the interpolation points should be defined to minimize or reduce the
effect on the meta-model accuracy of uncertainties on the derivatives only. It follows
from (11.10) that

δH2n+1(x)= π(x)

n∑
i=0

εi

π ′i
Li (x)

which by virtue of (11.1) simplifies as follows:

δH2n+1(x)= π2(x)

n∑
i=0

εi

π ′i
2
(x − xi)

.

Thus if (11.11) holds, we have
∣∣δH2n+1(x)

∣∣≤ εΔ(x)

where

Δ(x)= π2(x)

n∑
i=0

1

π ′i
2 |x − xi |

.

These considerations have led us to analyze the min-max problem applied to the
new criterion Δ(x) in place of π2(x). In summary, the solution of the min-max
problem associated with the criterion Δ(x) minimizes the effect of uncertainties in
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the derivatives on the identification of the global Hermitian interpolant. In the sub-
sequent sections, this solution is identified formally, or numerically, and compared
with the Chebyshev distribution of points, which is optimal w.r.t. the interpolation
error. Lastly, the corresponding interpolants are compared by numerical experiment.

11.4 Formal or Numerical Treatment of the Min-Max-Δ
Problem

We wish to compare three particular relevant distributions of interpolation points in
terms of performance w.r.t. the criterion Δ(x). These three distributions are sym-
metrical w.r.t. 0, and recall that the total number of interpolation points is n + 1.
Thus, we let

n+ 1= 2m+ α

and when n is odd (α = 0; n= 2m− 1≥ 1),

{xi}0≤i≤n = {±ξ1,±ξ2, . . . ,±ξm},
where

0 < ξ1 < ξ2 < · · ·< ξm

and m ≥ 1. Otherwise, when n is even (α = 1; n = 2m ≥ 0), we adjoin to the list
ξ0 = 0 (once). We consider specifically:

1. The uniform distribution:

n= 2m: ξu0 = 0 associated with the interpolation point x0 = ξ0 = 0, and ξuk =
k
m

, 1≤ k ≤m, associated with 2 interpolation points ±ξuk .
n= 2m− 1: ξuk = 2k−1

n
, 1≤ k ≤m.

2. The Chebyshev distribution:

ξ&k = x&m−k = cos

(
2(m− k)+ 1

n+ 1

π

2

)
, 1≤ k ≤m.

3. The optimal distribution:

ξ̄ = arg minξ max
x∈[0,1]

Δ(x; ξ),

where ξ = (ξ1, ξ2, . . . , ξm) denotes the vector of adjustable parameters defining,
along with ξ0 = 0 if n is even, the distribution of interpolation points, and the de-
pendence of the criterion Δ on ξ is here indicated explicitly for clarity. (Note that
due to symmetry, the interval for x has been reduced to [0,1] without incidence
on the result.)
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To these three distributions are associated the corresponding values of the max-
imum of Δ(x; ξ) over x ∈ [0,1]; these maximums are denoted Δu, Δ& and Δ̄, re-
spectively.

As a result of these definitions, the polynomial π(x) is expressed as follows:

π(x)= xα
m∏

k=1

(
x2 − ξ2

k

)
, n+ 1= 2m+ α; α = 0 or 1,

and for x > 0, the criterion Δ(x) becomes

Δ(x)= π2(x)

n∑
i=0

1

π ′i
2 |x − xi |

= π2(x)

[
α

π ′0
2

1

x
+

m∑
k=1

1

π ′k
2

(
1

x + ξk
+ 1

|x − ξk|
)]

.

Then, given x, let j be the index for which

ξj−1 ≤ x < ξj

so that

x − ξk ≥ 0⇐⇒ k ≤ j − 1.

As a result,

Δ(x)= π2(x)

[
α

π ′0
2

1

x
+

j−1∑
k=1

1

π ′k
2

2x

x2 − ξ2
k

+
m∑

k=j

1

π ′k
2

2ξk
ξ2
k − x2

]
. (11.12)

Calculation of the derivatives π ′
k First, for α = 0, π(x) is an even polynomial,

and π ′0 = 0. Otherwise, for α = 1,

π ′0 = lim
x→0

π(x)

x
=

m∏
k=1

(−ξ2
k

)
, α = 1; n= 2m.

Regardless α, for k ≥ 1

π(x)= xα(x − ξk)(x + ξk)
∏
i=1
i �=k

(
x2 − ξ2

i

)

so that:

π ′k = lim
x→ξk

π(x)

x − ξk
= 2ξα+1

k

∏
i=1
i �=k

(
ξ2
k − ξ2

i

)
.
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11.4.1 Expression of δ0 Applicable Whenever n + 1 is Even
(α = 0; n + 1 = 2m)

Suppose that 0 < x < ξ1. Then j = 1 and (11.12) reduces to

Δ(x)= π2(x)

m∑
k=1

1

π ′k
2

2ξk
ξ2
k − x2

.

But,

π2(x)=
m∏
i=1

(
x2 − ξ2

i

)2

so that

Δ(x)=
m∑

k=1

2ξk

π ′k
2
×

m∏
i=1
i �=k

(
ξ2
i − x2)2 × (

ξ2
k − x2).

All the terms in this sum are composed of three factors: a positive constant and two
positive factors that are monotone decreasing as x varies from 0 to ξ1. Hence Δ(x)

is monotone decreasing and

δ0 = max
x∈[0,ξ1]

Δ(x)=Δ(0)

=
m∑

k=1

2ξ3
k

π ′k
2

m∏
i=1
i �=k

ξ4
i = 2

(
m∏
i=1

ξ4
i

)
m∑

k=1

1

ξkπ
′
k

2
, α = 0; n+ 1= 2m. (11.13)

11.4.2 Expression of δ1 Applicable Whenever ξm < 1

Suppose that ξm < x < 1. Then j =m+ 1 and (11.12) reduces to

Δ(x)= π2(x)

[
α

π ′0
2

1

x
+

m∑
k=1

1

π ′k
2

2x

x2 − ξ2
k

]

= α

π ′0
2
x

m∏
i=1

(
x2 − ξ2

i

)2 +
m∑

k=1

2

π ′k
2
x2α+1(x2 − ξ2

k

) m∏
i=1
i �=k

(
x2 − ξ2

i

)2
. (11.14)
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Fig. 11.1 Contour plot of function z(ξ, η) of (11.16) for n+ 1= 4: the plot is symmetrical w.r.t.
the bisecting line η= ξ , and one location of the minimum is ξ = 0.351, η= 0.926

All the terms in Δ(x) are products of positive factors that are monotone-increasing
with x. Consequently, the maximum is achieved at x = 1. But

Δ(1)= α

π ′0
2

m∏
i=1

(
1− ξ2

i

)2 +
m∑

k=1

2

π ′k
2

(
1− ξ2

k

) m∏
i=1
i �=k

(
1− ξ2

i

)2
.

This gives

δ1 = max
x∈[ξm,1]

Δ(x)=Δ(1)=
m∏
i=1

(
1− ξ2

i

)2

[
α

π ′0
2
+ 2

m∑
k=1

1

π ′k
2
(1− ξ2

k )

]
. (11.15)

11.4.3 Special Cases

For n= 0,1,2, the formal treatment is given in [1].
For n= 3, the four interpolation points form a symmetrical set {±ξ,±η}. Hence

the optimization is made over two parameters ξ and η. Thus, the function

z(η, η)= max
x∈[0,1]

Δ(x) (11.16)

is defined discretely. The iso-value contours of this function are indicated in
Fig. 11.1, which permits after refinement to identify the optimum ξ ≈ 0.351 and
η≈ 0.926.
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Fig. 11.2 Contour plot of function z(ξ, η) of (11.16) for n+ 1= 5: the plot is symmetrical w.r.t.
the bisecting line η= ξ , and one location of the minimum is ξ = 0.571, η= 0.948

For n = 4, the five interpolation points form a symmetrical set 0, {±ξ,±η}.
Hence the optimization is again made over two parameters ξ and η. Thus, the func-
tion z(η, η) is again defined by (11.16) and evaluated discretely. The iso-value con-
tours of this function are indicated in Fig. 11.2, which permits after refinement to
identify the optimum ξ ≈ 0.571 and η≈ 0.948.

11.4.4 General Results (n > 4)

The min-max-Δ problem has been solved by either analytical or numerical means
for values of n in the range from 0 to 40. The results are collected in Table 11.1
in which the first column indicates the number of interpolation points n + 1, the
second gives the definition of the Chebyshev points ξ& (n≤ 4), the third provides the
definition of the optimal distribution ξ̄ , and the fourth a comparison of performance
by giving, when available, the values of

1. Δ̄=maxx Δ(x, ξ̄ ), the upper bound on Δ(x) corresponding to the optimal dis-
tribution ξ = ξ̄ of interpolation points;

2. Δ& = maxx Δ(x, ξ&), the upper bound on Δ(x) corresponding to the approxi-
mately optimal distribution ξ = ξ& of interpolation points (the Chebyshev distri-
bution);

3. Δu = maxx Δ(x, ξu), the upper bound on Δ(x) corresponding to the uniform
distribution ξ = ξu of interpolation points.

The analytical results are related to the cases for which n ≤ 4, and have been
outlined in a previous subsection.
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Table 11.1 Variation of the criterion maxx Δ(x, ξ), related to Hermitian interpolation with un-
certain derivatives, for different choices of the set ξ = {ξi}, i = 1, . . . , n, of interpolation points
in [−1,1], and different degrees, 2n + 1; Δ̄ = maxx Δ(x, ξ̄ ), Δ& = maxx Δ(x, ξ&) and Δu =
maxx Δ(x, ξu), where ξui =−1+ 2

n−1 (i − 1), i = 1, . . . , n

Chebyshev points: ξ& ξ̄ =
arg minξ maxx Δ

Performance

Number interpol. pts.: n+ 1 Δ̄ Δ&

Degree of interpol.: 2n+ 1 Δu

1 0 0 1 1

1 1

2 ± 1√
2

.=±0.7071 ±0.7549 0.3774 0.5

3 0.5

3 0 0 0.3258 0.3333

5 ±
√

3
2

.=±0.8660 ±0.8677 0.3755

4 ±
√

1
2 − 1√

8

.=±0.3827 ±0.351 0.282 0.299

7 ±
√

1
2 + 1√

8

.=±0.9239 ±0.926 0.439

5 0

±
√

5−√5
8

.=±0.5878

±
√

5+√5
8

.=±0.9511

0

±0.571

±0.948

0.249 0.262

9 0.652

10 0.164 0.179

19 39.

11 0.154 0.167

21 111.

20 0.103 0.112

39 3.9× 106

21 0.100 0.108

41 1.3× 107

For n+1≥ 10, the distribution ξ̄ (not given here) has been identified by a numer-
ical minimization realized by a particle-swarm (PSO) algorithm. The table indicates
the corresponding values of Δ̄.

From these results, one observes that the upper bound Δ̄ achieved when the dis-
tribution of interpolation points is optimized, is not only bounded, but it even di-
minishes with increasing n. The Chebyshev distribution has an almost equivalent
performance. Inversely, the uniform distribution yields a value of the upper bound
Δu that is unbounded with n. In conclusion, using the Chebyshev distribution, which
is known explicitly, is highly recommended in practice.
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11.5 Generalized Hermitian Interpolation

In this section, we generalize the notions introduced in the first three to the situation
where one wishes to construct a(the) low(est)-degree polynomial interpolant of the
values, as well as the derivatives up to order, say p (p ∈ N), of a given smooth
function f (x) over [−1,1]. The interpolation points are again denoted {xi}i=0,1,...,n,
and we use the notation

y
(k)
i = f (k)(xi), k = 0,1, . . . , p; i = 0,1, . . . , n.

The interpolation polynomial is denoted Hn,p(x) and it is now constrained to the
following (p+ 1)(n+ 1) interpolation conditions:

∀k ∈ {0,1, . . . , p}, ∀i ∈ {0,1, . . . , n} : H(k)
n,p(xi)= y

(k)
i . (11.17)

We associate such kind of interpolation with the expression “generalized Hermitian
interpolation”.

11.5.1 Existence and Uniqueness

We first establish existence and uniqueness by the following:

Theorem 11.1 There exists a unique polynomial Hn,p(x) of degree at most equal
to (p+ 1)(n+ 1)− 1 satisfying the generalized interpolation conditions (11.17).

Proof By recurrence on p. For p = 0, the generalized Hermitian interpolation
reduces to the classical Lagrange interpolation, whose solution is indeed unique
among polynomials of degree at most equal to (p+ 1)(n+ 1)− 1= n:

Hn,0(x)= Pn(x).

For p ≥ 1, assume Hn,p−1(x) exists and is unique among polynomials of degree at
most equal to p(n+ 1)− 1. This polynomial, by assumption, satisfies the following
interpolation conditions:

∀k ∈ {0,1, . . . , p− 1}, ∀i ∈ {0,1, . . . , n} : H(k)
n,p−1(xi)= y

(k)
i . (11.18)

Hence, by seeking Hn,p(x) in the form

Hn,p(x)= Hn,p−1(x)+R(x),

one finds that R(x) should be of degree at most equal to (p + 1)(n + 1) − 1 and
satisfy

∀k ∈ {0,1, . . . , p− 1}, ∀i ∈ {0,1, . . . , n} : R(k)(xi)= 0 (11.19)
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and

∀i ∈ {0,1, . . . , n} : R(p)(xi)= y
(p)
i −H

(p)

n,p−1(xi). (11.20)

Now, (11.19) is equivalent to saying that R(x) is of the form

R(x)=
n∏

i=0

(x − xi)
p ·Q(x)= π(x)pQ(x)

for some quotient Q(x). Then, the derivative of order p of R(x) at x = xi is calcu-
lated by the Leibniz formula applied to the product u(x)v(x) where

u(x)= (x − xi)
p, v(x)=

n∏
j=0
j �=i

(x − xj )
p ·Q(x).

This gives

R(p)(xi)=
p∑

k=0

(
p

k

)
u(k)(xi) v

(p−k)(xi).

But, u(k)(xi)= 0 for all k except k = p yielding

R(p)(xi)= p!v(xi)= p!
n∏

j=0
j �=i

(xi − xj )
p Q(xi)= p!π ′(xi)p Q(xi).

Thus, all the interpolation conditions are satisfied iff the polynomial Q(x) fits the
following interpolation conditions:

∀i ∈ {0,1, . . . , n} : Q(xi)=Qi = R(p)(xi)

p!π ′(xi)p =
y
(p)
i −H

(p)

n,p−1(xi)

p!π ′(xi)p .

Therefore, solutions exist, and the lowest-degree solution is uniquely obtained when
Q(x) is the Lagrange interpolation polynomial associated with the above function
values. This polynomial is of degree at most equal to n. Hence, R(x) and Hn,p(x)

are of degree at most equal to p(n+ 1)+ n= (p+ 1)(n+ 1)− 1. �

11.5.2 Interpolation Error and Best Approximation

We have the following:
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Theorem 11.2 (Interpolation Error Associated with the Generalized Hermitian In-
terpolant) Assuming that f ∈ C(p+1)(n+1)([−1,1]), we have

∀x ∈ [−1,1], ∃ξ ∈ [−1,1] : f (x)= Hn,p(x)+ π(x)p+1 f
([(p+1)(n+1)])(ξ)
[(p+ 1)(n+ 1)]! .

Proof Let x ∈ [−1,1] be fixed. If x = xi for some i ∈ {0,1, . . . , n}, f (x)= Hn,p(x)

and π(x)= 0, and the statement is trivial. Hence, assume now otherwise that x �= xi
for any i ∈ {0,1, . . . , n}. Then, define the constant

γ = f (x)−Hn,p(x)

π(x)p+1

so that

f (x)= Hn,p(x)+ γπ(x)p+1.

Now using the symbol t for the independent variable, one considers the function

θ(t)= f (t)−Hn,p(t)− γπ(t)p+1.

By virtue of the interpolation conditions satisfied by the polynomial Hn,p(t),

∀k ∈ {0,1, . . . , p}, ∀i ∈ {0,1, . . . , n} : θ(k)(xi)= 0 (11.21)

but, additionally, by the choice of the constant γ , we also have

θ(x)= 0.

This makes n+2 distinct zeroes for θ(x) : x0, x1, . . . , xn and x. Thus, by application
of Rolle’s theorem in each of the n+ 1 consecutive intervals that these n+ 2 points
once arranged in an increasing order define, a zero of θ ′(t) exists, yielding n + 1
distinct zeroes for θ ′(t), to which (11.21) adds n+ 1 distinct and different ones, for
a total of 2(n+ 1)= 2n+ 2 zeroes. Strictly between these, one finds 2(n+ 1)− 1
zeroes of θ ′′(t) to which (11.21) adds n+ 1 distinct and different ones, for a total of
3(n+ 1)− 1= 3n+ 2 zeroes. Thus, for every new derivative, we find one less zero
in every subinterval, but n+ 1 more by virtue of (11.21), for a total of n more, and
this as long as (11.21) applies. Hence we get that θ(p)(t) admits at least (p+1)n+2
distinct zeroes. For derivatives of higher order, the number of zeroes is one less for
every new one; hence, (p + 1)n + 1 for θ(p+1)(t), and so on. We finally get that
θ([p+(p+1)n+1])(t)= θ([(p+1)(n+1)])(t) admits at least one zero ξ , that is

0= f ([(p+1)(n+1)])(ξ)− γ
[
(p+ 1)(n+ 1)

]!
because H([(p+1)(n+1)])(ξ)= 0 since the degree of Hn,p(t) is at most equal to (p +
1)(n+ 1)− 1, and the conclusion follows. �

As a consequence of this result, it is clear that the best generalized Hermitian ap-
proximation is achieved by the Chebyshev distribution of interpolation points again.
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11.5.3 Best Inexact Generalized Hermitian Interpolation

Now suppose that all the data on f and its successive derivatives are exact, ex-
cept for the derivatives of the highest order, {y(p)i } that are subject to uncertainties
{εi}i=0,1,...,n. Then, the uncertainties on the values {Qi}i=0,1,...,n of the quotient
Q(x) are the following:

δQi = εi

p!π ′(xi)p ;

on the quotient itself the following:

δQ(x)=
n∑

i=0

εi

p!π ′(xi)p Li (x)= π(x)

n∑
i=0

εi

p!π ′(xi)p+1(x − xi)
;

and, finally, the uncertainty on the generalized Hermitian interpolant Hn,p(x) the
following:

δHn,p(x)= π(x)p+1
n∑

i=0

εi

p!π ′(xi)p+1(x − xi)
.

In conclusion, for situations in which the uncertainties {εi}i=0,1,...,n are bounded
by the same number ε, the criterion that one should consider to conduct the min-
max optimization of the interpolation points {xi}i=0,1,...,n is now the following one
to replace the former Δ(x):

Δ(p)(x)= ∣∣π(x)∣∣p+1
n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | (11.22)

or, equivalently,

p+1
√
Δ(p)(x)= ∣∣π(x)∣∣ p+1

√√√√ n∑
i=0

1

p!|π ′(xi)|p+1|x − xi | .

We note that this expression is a homogeneous function of π(x) of degree 0.
We conjecture that the variations of the above criterion, as p→∞, are domi-

nated by those of the factor |π(x)|. Hence, in this limit, the optimal distribution of
interpolation points should approach the Chebyshev distribution.

11.5.4 Overall Bound on the Approximation Error

The quantity εΔ(p)(x) is an absolute bound on the error committed in the com-
putation of the generalized Hermitian interpolant based on function and derivative
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values in presence of uncertainties on the derivatives of the highest order, p, only,
when these are uniformly bounded by ε:

∀x ∈ [−1,1] : ∣∣δHn,p(x)
∣∣= ∣∣H̄n,p(x)−Hn,p(x)

∣∣≤ εΔ(p)(x),

where H̄n,p(x) represents the actually computed approximation.
On the other hand, the interpolation error is the difference between the actual

function value, f (x), and the “true” interpolant, Hn,p(x), that could be computed if
all function and derivative information was known. The interpolation error satisfies

∀x ∈ [−1,1] : ∣∣f (x)−Hn,p(x)
∣∣=

∣∣∣∣π(x)p+1 f
([(p+1)(n+1)])(ξ)
[(p+ 1)(n+ 1)]!

∣∣∣∣≤ μn,p

∣∣π(x)∣∣p+1
,

where one has let

μn,p = max
x∈[−1,1]

∣∣∣∣f
([(p+1)(n+1)])(x)
[(p+ 1)(n+ 1)]!

∣∣∣∣.
Consequently, we have

∀x ∈ [−1,1] : ∣∣f (x)− H̄n,p(x)
∣∣≤ μn,p

∣∣π(x)∣∣p+1 + εΔ(p)(x). (11.23)

Now, examining the precise expression for Δ(p)(x), that is (11.22), we see that
the ratio of the second term to the first on the right of the above inequality is equal
to

ε

μn,p

n∑
i=0

1

p!|π ′(xi)|p+1|x − xi | .

For given n and p, this expression is unbounded in x. Thus, (the bound on) the error
is inevitably degraded in the order of magnitude due to presence of uncertainties.

However, the actual dilemma of interest is somewhat different. It is the follow-
ing: given the values {yi, y′i , . . . , y(p−1)

i }, 0≤ i ≤ n, and correspondingly, approxi-

mations of the higher derivative {y(p)i }, which of the following two interpolants is
(guaranteed to be) more accurate:

1. the Hermitian interpolant of the sole exact values: {yi, y′i , . . . , y(p−1)
i }, 0≤ i ≤ n,

or
2. the Hermitian interpolant of the entire data set?

The first interpolant differs from f (x) by the sole interpolation error, μn,p−1|π(x)|p .
The second interpolant is associated with the higher-order interpolation error,
μn,p|π(x)|p+1, but is subject to the uncertainty term εΔ(p)(x), which is domi-
nant, as we have just seen. Thus, the decision of whether to include derivatives or
not should be guided by the ratio of the uncertainty term, εΔ(p)(x), to the lower
interpolation error, μn,p−1|π(x)|p . This ratio is equal to

ε

μn,p−1

∣∣π(x)∣∣
n∑

i=0

1

p!|π ′(xi)|p+1|x − xi |
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Fig. 11.3 Coefficient Bn,p as a function of n for p = 1,2 and 3

and it admits the bound
εBn,p

μn,p−1
, (11.24)

where the bound

Bn,p = max
x∈[−1,1]

∣∣π(x)∣∣
n∑

i=0

1

p!|π ′(xi)|p+1|x − xi | (11.25)

exists since, in the above, the function over which the max applies is piecewise
polynomial for fixed n and p.

Hermitian interpolation is definitely preferable whenever the expression in
(11.24) is less than 1. This criterion permits us to identify trends as ε, n and p

vary, but is not very practical in general since the factors ε and μn,p−1 are problem-
dependent and out of control. The variation with n of the bound Bn,p has been
plotted in Fig. 11.3 for p = 1, 2 and 3. Visibly, the bound Bn,p can be large unless p
and n are small. Therefore, unsurprisingly, unless n and p, as well as the uncertainty
level ε, are small enough, the criterion in (11.24) is larger than 1, and the interpolant
of the sole exactly known values is likely to be the more accurate one.

To appreciate this in a practical case, we have considered the case of the interpo-
lation of the function

f (x)= fλ(x)= 1

1+ λx2

over the interval [−1,1] for p = 0 (Lagrange interpolation) and p = 1 (Hermitian
interpolation). This smooth function is bounded by 1, and its maximum derivative



11 Hermitian Interpolation Subject to Uncertainties 213

Fig. 11.4 Case λ= 64/27 (maxx |fλ(x)| =maxx |f ′λ(x)| = 1); function fλ(x) and various inter-
polation polynomials (n= 5)

Fig. 11.5 Case λ= 64/27 (maxx |fλ(x)| =maxx |f ′λ(x)| = 1); error distribution associated with
the various interpolation polynomials (n= 5)

increases with λ. For λ= 64/27, this maximum is equal to 1. For λ= 256/27, this
maximum is equal to 2.

In the first experiment (Figs. 11.4 and 11.5), λ= 64/27 and n= 5. The Lagrange
interpolant is fairly inaccurate, mostly near the endpoints. Thus the error distribution
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Fig. 11.6 Case λ= 64/27 (maxx |fλ(x)| =maxx |f ′λ(x)| = 1); function fλ(x) and various inter-
polation polynomials (n= 10)

Fig. 11.7 Case λ= 64/27 (maxx |fλ(x)| =maxx |f ′λ(x)| = 1); error distribution associated with
the various interpolation polynomials (n= 10)

indicates that the approximate Hermitian interpolant is preferable even for a fairly
high level of uncertainty on the derivatives (20 % is acceptable).

In the second experiment (Figs. 11.6 and 11.7), the interpolated function is the
same, but the number n is doubled (n= 10). Consequently, the Lagrange interpolant
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Fig. 11.8 Case λ = 256/27 (maxx |fλ(x)| = 1; maxx |f ′λ(x)| = 2); function fλ(x) and various
interpolation polynomials (n= 10)

Fig. 11.9 Case λ = 256/27 (maxx |fλ(x)| = 1; maxx |f ′λ(x)| = 2); error distribution associated
with the various interpolation polynomials (n= 10)

of the sole exact function values is very accurate. The approximate Hermitian inter-
polant can only surpass it if the level of uncertainty on the derivatives is small (less
than 5 %).
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Lastly, with the same number of interpolation points (n= 10), we have consid-
ered the case of a function with larger derivatives (λ = 256/27). As a result (see
Figs. 11.8 and 11.9), the accuracy of the Lagrange interpolation has been severely
degraded. Then again, the approximate Hermitian interpolation is found superior
for higher levels of uncertainty in the derivatives (the switch is between 20 %
and 50 %).

11.6 Conclusions

Recalling that the Chebyshev distribution of interpolation points is optimal w.r.t. the
minimization of the (known bound on the) interpolation error, we have proposed an
alternate criterion to be subject to the min-max optimization. The new criterion to
be minimized aims at reducing the sensitivity of the Hermitian interpolant of func-
tion values and derivatives, to uncertainties assumed to be present in the derivatives
only. We have found by analytical developments and numerical experiments that
the Chebyshev distribution is close to be optimum w.r.t. this new criterion also, thus
giving the stability of the corresponding approximation a somewhat larger sense.

We have also considered the generalized Hermitian interpolation problem in
which the derivatives up to some order p (p > 1) are fitted. For this problem we
have derived the existence and uniqueness result, as well as the expression of the
interpolation error, and also the definition that one could use for the criterion to be
subject to the min-max optimization to reduce the sensitivity of the interpolant to
uncertainties in the derivatives of the highest order. We conjectured from the de-
rived expression that the corresponding optimal distribution of interpolation points
converges to the Chebyshev distribution as p→∞.

Lastly, we have made actual interpolation experiments in cases of a function
bounded by 1, whose derivative is either bounded by 1 or 2. These experiments have
confirmed that the approximate Hermitian interpolant was superior to the Lagrange
interpolant of the sole exact function values, when the uncertainty on the derivatives
is below a certain critical value which decreases when n is increased.

In perspective, we intend to examine a much more complicated case in which the
meta-model depends nonlinearly on the adjustable parameters, by means of semi-
formal or numerical analysis tools.
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Chapter 12
Inversion of the Heat Equation by a Block Based
Algorithm Using Spline Wavelet Packets

Amir Averbuch, Pekka Neittaanmäki, and Valery Zheludev

Abstract We present a robust algorithm starting from 1D or 2D discrete noised
data to approximately invert the heat equation, which is an ill-conditioned problem.
Relative contributions of the coherent structure and the noise in different frequency
bands of the available data are different. We propose to solve the inversion problem
separately in different frequency bands by methods similar to the Tikhonov regular-
ization. This separation is achieved by using spline wavelet packets. The solutions
are derived as linear combinations of those wavelet packets.

12.1 Introduction

The problems are formulated as follows: Let the functions f (x) ∈ C2(R1) and
f (x, y) ∈ C2(R2) be compactly supported. Denote by U1

t and by U2
t the linear op-

erators such that U1
t f (x) = g(x, t) and U2

t f (x, y) = g(x, y, t) where g(x, t) and
g(x, y, t) are the solutions of the heat equations with the initial conditions f (x) and
f (x, y), respectively:

∂g(x, t)

∂t
= g′′x (x, t), g(x,0)= f (x),

∂g(x, y, t)

∂t
= g′′x (x, y, t)+ g′′y (x, y, t), g(x, y,0)= f (x, y).

(12.1)
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Problem 12.1 Let t be a fixed time parameter. Given g(x, t)=U1
t f (x), find f (x).

Problem 12.2 Let t be a fixed time parameter. Given g(x, y, t)= U2
t f (x, y), find

f (x, y).

For brevity, we concentrate on Problem 12.1. Extension to the 2D case is
straightforward. The problem has explicit theoretical solutions [6]. We assume that
the initial temperature distribution f (x) is a T -periodic function. Consequently,
g(x, t) = U1

t f (x) is T -periodic as well. These functions can be expanded into the
following Fourier series:

f (x)= 1

T

∑
n∈Z

fne
2πinx/T , g(x, t)= 1

T

∑
n∈Z

gn(t)e
2πinx/T , gn(0)= fn.

If we know the function g(x, t) at some fixed t then

fn = gn(t)e
t (2πn/T )2 =⇒ f (x)= 1

T

∑
n∈Z

gn(t)e
t (2πn/T )2

e2πinx/T . (12.2)

In real life, the function g(x, t) is known up to some errors, modeled as g̃(x, t) =
g(x, t)+e(x). Generally, there is no reason to assume that the Fourier coefficients of
the error tend to zero faster than e−n2t (if they tend to zero at all). Therefore, accord-
ing to (12.2), application of the direct inversion to the available data g̃(x, t) results
in an unstable solution. However, as the magnitude of the error function |e(x)| be-
comes smaller, the function f̃ (x) can comprise strong high-frequency components,
which do not exist in the original function f (x). Therefore, a regularization, which
provides a stability to the solution at the expense of deviation from the available
data g̃(x, t), is needed.

Typically, the data function g(x, t) is sampled on a grid {x[k]} and the samples
are corrupted by a random noise, while the sought-after initial temperature distribu-
tion f (x) is continuous. Therefore, it is reasonable to design approximated solutions
as splines. Splines bridge the gap between the discrete input data and the continu-
ous solution. To take into account different relative shares of the coherent signal and
the noise in different frequency components of the available data, we propose to
solve the inversion problem separately in different frequency bands. This approach
significantly extends the adaptation abilities and the robustness of the method. Prac-
tically, this scheme is implemented via the application of the orthonormal spline
wavelet packets, which are constructed by using the Spline Harmonic Analysis
(SHA) framework. The wavelet packet transform splits the frequency domain of
a signal into a set of bands whose overlap is minimal.

12.2 Elements of SHA

We briefly outline the basics of the SHA techniques. A detailed description is given,
for example, in [2, 3].
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We assume that N = 2j , j ∈ N and p = 2r > 0 is an even integer. The space
of N -periodic splines of even order p = 2r , which have nodes on the grid {k}, is
denoted by pS . A basis in pS is formed by translations of the centered periodic
B-spline Bp(x):

Sp(x)=
N−1∑
k=0

q[k]Bp(x − k) ∈ pS .

The B-spline Bp(x) belongs to the space Cp−2. The circular convolution Bp &

Br(x) = Bp+r (x) =⇒ S
p

1 & Sr
2(x) = S

p+r
3 (x) ∈ p+rS . Thus, the circular convo-

lution of two periodic splines is a spline. Therefore, splines are a proper tool for
dealing with convolution-type problems where inversion of the heat equation be-
longs to.

There exist orthogonal bases in pS which resemble the Fourier basis. Denote

ω
def= e2πi/N . The orthogonal basis of the space pS is constituted by exponential

splines

βp[n](x) def=
N∑
k=0

ω−nkBp(x + k), n= 0, . . . ,N − 1.

The following representation holds:

Sp(x)=
N−1∑
k=0

q[k]Bp(x − k)= 1

N

N−1∑
n=0

q̂[n]βp[n](x).

Here q̂[n] =∑N
k=0 ω

−nkq[k] is the discrete Fourier transform (DFT) of the coeffi-
cients {q[k]}. For further use, we single out the sequence

up[n] def= βp[n](0)=
N−1∑
k=0

ω−nkBp(k), (12.3)

which is the DFT of the sampled B-spline. The sequences up[n] are N -periodic and
strictly positive. The norms of the exponential splines are ‖βp[n]‖ =

√
Nu2p[n].

Thus, the splines,

γ p[n](x) def= βp[n](x)
‖βp[n]‖ =

βp[n](x)√
Nu2p[n] , n= 0, . . . ,N − 1,

form an orthonormal basis of S p . The spline Sp(x) ∈ pS is represented by

Sp(x)=
√

1

N

N−1∑
n=0

σ [n]γ p[n](x), σ [n] =
√
u[n]2pq̂[n]. (12.4)

This expansion imposes a specific form of the SHA methodology onto the spline
space, where the splines {γ p[n](x)}N−1

n=0 act as harmonics and the coordinates
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{σ [n]}, n= 0, . . . ,N − 1, which we refer to as to the SHA spectrum of the spline
Sp(x). They act as the Fourier coefficients. Many operations on splines are sig-
nificantly simplified [2, 3]. Denote by δ2 the second central difference: δ2f (x) =
f (x + 1)− 2f (x)+ f (x − 1) and

w[n] def= 4 sin2 πn

M
, W [n] def=

√
u2(p−2)[n]
u2p[n] w[n], V [n] def= up[n]√

u2p[n] .
(12.5)

Then

δ2Sp(x)=−
√

1

N

N−1∑
n=0

w[n]σ [n]γ p[n](x), Sp(k)= 1

N

N−1∑
n=0

ωknV [n]σ [n],
(12.6)

S′′(x)=−
√

1

N

N−1∑
n=0

W [n]σ [n]γ p−2[n](x), ∥∥S′′∥∥2 = 1

N

N−1∑
n=0

∣∣W [n]σ [n]∣∣2.
(12.7)

It follows from (12.6) that, if a spline Sp(x) interpolates a sequence y = {y[k]} at
grid points Sp(k)= y[k], then its SHA spectrum is

σ [n] = ŷ[n]
V [n] , ŷ[n] =

N−1∑
k=0

ω−kny[k]. (12.8)

12.3 Global Regularized Spline Solution

We briefly outline the scheme for global solution, which is a realization of the
Tikhonov regularization algorithm [7] in the space of periodic splines. A full pre-
sentation of the scheme is given in [1].

To immerse Problem 12.1 into the spline setting, Vt denotes the linear operator
defined on the spline space pS such that Vt S(x) = s(x, t), where s(x, t) is the
spline solution to the difference approximation of the heat equation

∂s(x, t)

∂t
= δ2

xs(x, t), s(x,0)= S(x) (12.9)

from pS (with respect to x).
Assume the spline Sp(x) is represented by (12.4). The spline s(x, t) ∈S p can

be represented as

s(x, t)=N−1/2
N−1∑
n=0

σ [n](t)γ p[n](x).
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Using (12.6), we get

σ [n](t)= η[n](t)σ [n], (12.10)

where η[n](t) = e−w[n]t . If we know the spline s(x, t) by a fixed t then the spline
S(x) becomes

S(x)=
√

1

N

N−1∑
n=0

ew[n]t σ [n](t)γ p[n](x).

However, typically only the data vector z = {z[k]}, k = 0, . . . ,N − 1, is known,
where z[k] = g(k, t)+ ek , e = {ek} are the measurement errors, which we assume
to be white noise.

The approximated solution to Problem 12.1 is derived as a spline

Sρ(x)= arg min
S∈S p

(
ρI (S)+E(S)

)
,

where

I (S)
def= ∥∥S′′∥∥2 = 1

N

N−1∑
n=0

∣∣W [n]σ [n]∣∣2,

E(S)
def=

∑
k

(
Vt S(k)− z[k])2 = 1

N

N−1∑
n=0

∣∣V [n]σ [n]η[n](t)− ẑ[n]∣∣2.

A spline solution to the minimization problem is

Sρ(x)=
√

1

N

N−1∑
n=0

σ [n](ρ)γ p[n](x), σ [n](ρ)= η[n](t)ẑ[n]V [n]
A[n](ρ) ,

where η[n](t) is the complex conjugate of η[n](t), A[n](ρ) def= ρW [n] +
(η[n](t)V [n])2.

Assume we are able to estimate the variance var(e)= ε2 of the error vector. The
regularization parameter ρ is derived from the solution of the equation

e(ρ)
def= E(Sρ)/N = 1

N2

N−1∑
n=0

(
ρW [n]|ẑ[n]|
A[n](ρ)

)2

= ε2. (12.11)

The function e(ρ) grows strictly monotonically as ρ →∞ and limρ→∞ e(ρ) =
N−2‖z‖2. If N−1‖z‖> ε, then (12.11) has a unique solution.

The parameter ρ, which provides a trade-off between approximation and reg-
ularization, depends on the relative shares of the coherent signal and the noise in
the available data. These shares are different in different frequency components of
the data. We propose to solve the problems separately in different frequency bands,
while the regularization parameters are to be found according to the signal-to-noise
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ratio in each band. It is achieved by the application of the orthonormal spline wavelet
packet transform, which splits the frequency domain of a signal into a set of bands
whose overlap is minimal. The SHA framework provides tools for the design of
wavelet packets and for the efficient implementation of the algorithm.

12.4 Wavelet Packets

Denote by pSr,0, r ∈ N, the space of N -periodic splines of even order p on the

grid {2rk}. In the rest of the paper Nr
def= N/2r , nr

def= n+Nr/2. The space pSr,0
is an Nr -dimensional space, where a basis consists of 2r -sample shifts of the B-
splines Bp

r constructed on the grid {2rk}. The inclusion relations between the spaces
pSr,0 ⊂ pS r−1,0 ⊂ · · · ⊂ pS 0,0 ≡S p hold. Similarly to the space S p , the or-
thogonal and orthonormal bases of pSr,0 are formed by the exponential splines

β
p

r,0[n](x) def=
Nr∑
k=0

ω−2r nkBp
(
x + 2rk

)
, u

p
r [n] def= β

p

r,0[n](0),

γ
p

r,0[n](x) def= β
p

r,0[n](x)√
Nru

2p
r [n]

.

For the initial scale, we retain the notations γ p[n] ≡ γ
p

0,0[n](x), up[n] ≡ u
p

0 [n].
When it will not produce a confusion, we drop the order index ·p .
The two-scale relation between basis splines from adjacent spaces holds to be

γr,0[n](x)= br−1[n]γr−1,0[n](x)+ br−1[nr ]γr−1,0[nr ](x), (12.12)

where

br−1[n] def=
√√√√u

2p
r−1[n]

2u2p
r [n]

cosp
(

2r−1πn

N

)
, nr

def= n+ Nr

2
.

Denote by pSr,1 the orthogonal complement to pSr,0 in the space pS r−1,0. An
orthonormal basis in pSr,1 contains the splines

γr,1[n](x)= b̃r−1[n]γr−1,0[n](x)+ω2r−1n
r−1 [nr ]γr−1,0[nr ](x), (12.13)

where b̃r−1[n] def= ω2r−1nbr−1[nr ]. If r > 1, we can apply a similar procedure to the
space pSr−1,1. As a result, we get the decomposition pSr−1,1 = pSr,2 ⊕ pSr,3.
By applying the same procedure to all the derived subspaces, we decompose the
spline space pS into a series of orthogonal sums

pS = pS1,0 ⊕ pS1,1 = pS2,0 ⊕ pS2,1 ⊕ pS2,2 ⊕ pS2,3 = · · · =
2r−1⊕
l=0

pSr,l .
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The orthonormal bases {γr,l[n](x)}[n] of the subspaces pSr,l are derived iteratively
by the two-scale relations using the coefficients br−1[n] and b̃r−1[n].

Similarly to the Fourier exponentials, the exponential basis splines γr,l[n](x) are
complex-valued and are not localized in the space domain. However, their real-
valued and well-localized counterparts satisfy

ψr,l(x)
def=

√
1

N

Nr−1∑
n=0

γr,l[n](x) ∈ pSr,l ⊂ pS . (12.14)

These splines are called the spline wavelet packets. The shifts {ψr,l(x − 2rk)}, k =
0, . . . ,Nr − 1, form an orthonormal basis for the space pSr,l . Consequently, the
union

⊎2r−1
l=0 {ψr,l(x − 2rk)} forms an orthonormal basis for the entire space pS .

At the initial scale, the one-sample shifts of the splines

ϕp(x)
def= ψ

p

0,0(x)=N−1/2
N−1∑
n=0

γ p[n](x)

form an orthonormal basis.
All the spaces pSr,l belong to pS , thus, the wavelet packet ψr,l(x) forms a

subspace pSr,l and can be expanded over the orthonormal basis {γ p[n](x)} of S p:

ψr,l(x)=
√

1

N

N−1∑
n=0

νr,l[n]γ p[n](x). (12.15)

The SHA spectra {νr,l[n]}N−1
n=0 of the wavelet can be explicitly calculated using

the two-scale relations.

Example 12.1 (The first decomposition scale r = 1) The SHA spectra are

ν1,0[n] =
√

2b0[n] =
√

u2p[n]
u

2p
1 [n]

cosp
πn

N
,

ν1,1[n] =
√

2b̃0[n] = ω−n
√

u2p[nr ]
u
p

1 [n]
sinp

πn

N
.

Example 12.2 (The second decomposition scale r = 2) The SHA spectra are

ν2,0[n] = 2b0[n]b1[n], ν2,1[n] = 2b0[n]b̃1[n],
ν2,2[n] = 2b̃0[n]b̃1[n], ν2,3[n] = 2b̃0[n]b1[n].

Figure 12.1 displays the wavelet packets from the first and the second decompo-
sition scales with their SHA spectra.
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Fig. 12.1 Wavelet packets of order 8 from the 1st (top) the 2nd decomposition scales with their
SHA spectra (bottom half-band)

The wavelet packets are well localized in space. Their SHA spectra have a near
rectangular shape (the higher the spline order is the closer the shape is to rectangu-
lar) and produce a sequence of partitions of the frequency band. The SHA spectrum
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of the wavelet packet ψr,l(x) is effectively confined within the band

Λr,l
def=

[
− (l + 1)N

2r+1
,− (l)N

2r+1

]
∪
[
(l)N

2r+1
,
(l + 1)N

2r+1

]
, l = 0, . . . ,2r − 1. (12.16)

Since a spline from pSr,l is the linear combination of the wavelet packets

Sr,l(x)=
Nr−1∑
k=0

qr,l[k]ψp
r,l

(
x − 2rk

)
, (12.17)

then its SHA spectrum is effectively confined within the band Λr,l . This provides
opportunities to approximate the heat inversion separately in different frequency
bands.

12.5 Spline Wavelet Packet Transforms

Let a spline S(x) ∈ pS be represented by the orthonormal basis splines

S(x)=
√

1

N

N/2−1∑
n=−N/2

σ [n]γ p[n](x). (12.18)

The sequence {σ [n]}, n=−N/2, . . . ,N/2− 1, is the SHA spectrum of the spline
S(x). The space pS is the orthogonal sum of the subspaces pS1,0 and pS1,1

whose orthonormal bases are {γ p

1,0[n](x)} and {γ p

1,1[n](x)}, respectively, where
n= 0, . . . ,N1 − 1 and N1 = N/2. Thus, S(x) can be represented as the sum of its
orthogonal projections onto the subspaces pS1,i , i = 0,1: S(x)= S1,0(x)⊕S1,1(x),
where

S1,i (x)
def=

√
2

N

N/2−1∑
n=0

σ1[n]γ p

1,i[n](x), i = 0,1. (12.19)

The orthonormality of the spline basis implies

σ [n] =√N
〈
S,γ p[n]〉, σ1,i[n] =

√
N/2

〈
S,γ

p

1,i[n]
〉
, i = 0,1. (12.20)

By using the two-scale relations given by (12.12) and (12.13), we derive for n =
0, . . . ,N/2− 1

σ1,0[n] =
√
N/2

〈
S,γ

p

1,0[n]
〉=

√
1

2

(
b0[n]σ [n] + b0[n1]σ [n1]

)
, (12.21)

σ1,1[n] =
√

1

2

(
b̃0[n]σ [n] + b̃0[n1]σ [n1]

)
, n1 = n+N/2. (12.22)
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We can present (12.21) and (12.22) in a matrix form

(
σ1,0[n]
σ1,1[n]

)
=
√

1

2
A0[n] ·

(
σ [n]
σ [n1]

)
, Am[n] def=

(
bm[n] bm[nm+1]
b̃m[n] b̃m[nm+1]

)
. (12.23)

The coordinates of the projections of S(x) onto the subspaces pSr,l are derived
iteratively:

(
σm,2l[n]

σm,2l+1[n]
)
=
√

1

2
Am−1[n] ·

(
σm−1,l[n]

σm−1,1[n+Nr ]
)

if l is even,
(
σm,2l+1[n]
σm,2l[n]

)
=
√

1

2
Am−1[n] ·

(
σm−1,l[n]

σm−1,1[n+Nr ]
)

if l is odd.

(12.24)

12.6 Wavelet Packet Bases

Assume that the spline S(x) ∈ pS is expanded over the orthonormal bases

S(x)= 1√
N

N−1∑
n=0

σ [n]γ p[n](x)=
N−1∑
k=0

q[k]ϕp(x − k),

σ [n] =
N−1∑
k=0

ω−nkq[k] = q̂[n], q[k] = 1

N

N−1∑
n=0

ωnkσ [n].

For example, if the samples S(k) = y[k], k = 0, . . . ,N − 1, are available then
(12.8) claims that σ [n] = ŷ[n]/V [n]. Iterative application of the transform given
by (12.24) expands the projections splines Sr,l(x) ∈ pSr,l over the orthonor-
mal bases {γr,l[n](x)}. Then, the coordinates {qr,l[k]} of the alternative expan-
sion (12.17) over the orthonormal wavelet packet bases {ψp

r,l(x − 2rk)} are de-

rived by the application of the IDFT: qr,l[k] = N−1
r

∑Nr−1
n=0 ω2r nkσr,l[n]. The sub-

space pSr−1,l = pSr,2l ⊕ pSr,2l+1. The spline Sr−1,l(x) can be expanded either

over the basis {ψp

r−1,l(x − 2r−1k)}Nr−1−1
k=0 or over the combined orthonormal basis

{ψp

r,2l(x − 2rk)}⊎{ψp

r,2l (x − 2rk)}Nr−1
k=0 . The decision of which basis is preferable

is made once a cost function is defined.
Consequently, once the wavelet packet transform of the spline S(x) is imple-

mented, a wide variety of orthonormal wavelet packet bases becomes available.
A basis, which is optimal for a given spline with respect to a certain purpose, can be
designed by the Best Basis algorithm [4], which compares the cost function of the
“parent” spline Sr−1,l(x) with the cost of the “offsprings” Sr,2l (x) and Sr,2l+1(x).
Entropy us a typical cost function.
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12.7 Parameterized Spline Solution in the Subspace pSr,l

12.7.1 Splines from the Subspaces pSr,l

The spline Sr,l(x), which is the orthogonal projection of the spline S(x) onto the
subspace pSr,l , is expanded over the orthonormal wavelet packet basis as in (12.17).
On the other hand, the spline Sr,l(x) belongs to the initial space pS and can be
expanded over the orthonormal basis of pS

Sr,l(x)=
√

1

N

N−1∑
n=0

ζr,l[n]γ p[n](x), ζr,l[n] = νr,l[n]q̂r,l[n]. (12.25)

The coefficients νr,l[n] are the SHA spectrum of the wavelet packet ψp
r,l . We em-

phasize that the DFT sequence q̂r,l[n] is Nr -periodic, where Nr =N/2r .
The projection coordinates ζr,l[n] can be expressed via the coordinates σ [n] of

the spline S(x).

Proposition 12.1 The following representation of the projection coordinates holds:

ζr,l[n] = νr,l[n]
2r

2r /2−1∑
λ=−2r /2

σ [n+ λNr ]νr,l[n+ λNr ] ≈ 1

2r
σ [n]∣∣νr,l[n]∣∣2. (12.26)

Remark 12.1 The higher the order p is, the closer ζr,l[n] is to 2−rσ [n]|νr,l[n]|2.

Equation (12.9) implies that the application of the operator Vt to Sr,l(x) results
in

Sr,l(x, t)=Vt Sr,l(x)= 1√
N

N−1∑
n=0

η[n](t)ζr,l[n]γ p[n](x). (12.27)

From (12.6), sampling of the spline S(x, t)=Vt S(x) becomes

y[k] def= S(k, t)= 1

N

N−1∑
n=0

η[n](t)σ [n]V [n]ωkn, V [n] def= up[n]√
u2p[n] ,

while sampling of Sr,l(x, t)=Vt Sr,l(x)

yr,l[k] def= Sr,l(k, t)= 1

N

N−1∑
n=0

η[n](t)ζr,l[n]V [n]ωkn. (12.28)

Equation (12.26) implies the approximated relation

ŷr,l[n] ≈ 1

2r
η[n](t)σ [n]V [n]∣∣νr,l[n]∣∣2 = 1

2r
ŷ[n]∣∣νr,l[n]∣∣2. (12.29)
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Remark 12.2 Equation (12.29) can be interpreted in a sense that confinement of
the operator’s Vt domain from the whole spline space pS to the subspace pSr,l

effectively results in multiplication of the DFT ŷ[n] of the sampled output y[k] =
Vt S(k) with the factor 2−r |νr,l[n]|2.

12.7.2 Parameterized Spline Solution

The scheme for a partial solution of Problem 12.1 in the subspace pSr,l is very
similar to the scheme of a global solution presented in Sect. 12.3. By assumption,
t is a known time parameter and the vector z = {z[k] = g(k, t) + ek} = g + e is
available, where g(x, t) = Ut f (x). Then, a partial approximated inversion of the
heat equation (12.1) is derived as a spline

Sr,l(x)=
Nr−1∑
k=0

qr,l[k]ψp
r,l

(
x − 2rk

)=
√

1

N

N−1∑
n=0

ζr,l[n]γ p[n](x) (12.30)

such that the spline Sr,l(x, t) = Vt Sr,l(x) approximates, in some sense, the avail-
able discrete data z. To be specific, Remark 12.2 suggests that the sampled spline
Sr,l(k, t) should approximate the “filtered”

z̃r,l[k] def= 1

N

N−1∑
n=0

ωkn ˆ̃zr,l[n], where ˆ̃zr,l[n] def= ẑ[n] |νr,l[n]|
2

2r
, (12.31)

rather than the entire data z. Similarly to Sect. 12.3, we find a spline S(ρ, x) ∈ pSr,l ,
which minimizes the functional ρI (S)+Er,l(S), where

I (S)
def= ∥∥(S)′′∥∥2

, Er,l(S)
def=

∑
k

(
S(k, t)− z̃r,l[k]

)2
, S(x, t)

def= Vt S(x),

(12.32)
and ρ is a numerical parameter.

Let a spline s(x) ∈ pSr,l be represented as in (12.30)

s(x)=
√

1

N

N−1∑
n=0

ζr,l[n]γ p[n](x).

Then,

I (s)= 1

N

N−1∑
n=0

W [n]∣∣ζr,l[n]∣∣2, Er,l(s)= 1

N

N−1∑
n=0

∣∣η[n](t)ζr,l[n]V [n] − ˆ̃zr,l[n]∣∣2.

The sequences W [n] and V [n] are defined in (12.5).
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A solution to the minimization problem is the spline from pSr,l

Sr,l(ρ, x)=
√

1

N

N−1∑
n=0

ζr,l(ρ)[n]γ p[n](x), ζr,l(ρ)[n] = η[n](t)V [n]ˆ̃zr,l(n)
A[n](ρ) ,

A[n](ρ) def= ρW [n] + ∣∣η[n](t)V [n]∣∣2.
Its samples on the grid points

Sr,l(ρ, k)= 1

N

N−1∑
n=0

ωknζr,l(ρ)[n]V [n] = 1

N

N−1∑
n=0

ωkn η[n](t)V 2[n]ˆ̃zr,l(n)
A[n](ρ) . (12.33)

12.7.3 Selection of the Regularization Parameter

Assume that we are able to evaluate the errors vector e = {ek}N−1
k=0 , ek = N−1 ×∑N−1

n=0 ωknê[n], whose variance var(e) = ε2 ≈ N−1 ∑N−1
k=0 (ek)

2. Keeping (12.31)
in mind, denote

er,l[k] def= 1

N

N−1∑
n=0

ωknêr,l[n], where êr,l[n] def= ê[n] |νr,l[n]|
2

2r
,

(εr,l)
2 def=

N−1∑
k=0

(
er,l[k]

)2 = 1

N

N−1∑
n=0

∣∣êr,l[n]∣∣2.

The function

er,l(ρ)
def= Er,l

(
Sr,l(ρ, ·)

)= 1

N

N−1∑
n=0

(
ρW [n]|ˆ̃zr,l[n]|

A[n](ρ))
)2

grows monotonically from zero to N−1 ∑N−1
n=0 | ˆ̃zr,l[n]|2 =

∑N−1
k=0 (z̃r,l[k])2 as ρ

grows from zero to infinity. Therefore, we derive ρr,l from the equation er,l(ρ) =
(εr,l)

2.

12.7.4 Modeling the Noise

We assume that the error vector e is a zero mean Gaussian white noise. It is
seen from (12.2) that the Fourier coefficients of the function g(x, t) = Ut f (x):
gn(t) = fne

−t (2πn/N)2
are fast decaying when n is growing. Thus, the function

g(x, t) is efficiently bandlimited. Its significant Fourier coefficients gn(t) occupy
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a relatively narrow band around zero, −K(t) < n < K(t), K(t) < N/2, K(t)→ 0
as t→∞. Hence, the DFT coefficients of the data vector z: {ẑ[n]} ≈ {ê[n]} as n ∈
[K(t),N/2− 1] ∪ [−N/2,−K(t)]. By relying on the fact that the power spectrum
{|ê[n]|2} of the white noise e is close to a constant for all n=−N/2, . . . ,N/2− 1,
it is possible to evaluate the variance

σ 2 ≈ 1

(N −K(t))2

∑
n∈[K(t),N/2−1]∪[−N/2,−K(t)]

∣∣ẑ[n]∣∣2. (12.34)

Then, the noise vector e is modeled as a zero mean Gaussian random process ẽ =
{ẽi}N−1

i=0 , whose variance is σ 2. Let {̂ẽ[n]}N/2−1
n=−N/2 be the DFT spectrum of the model

vector ẽ. Then, the values (εr,l)
2, which are needed for the parameter ρ selection,

are estimated as

(εr,l)
2 ≈ 1

2rN

N−1∑
n=0

∣∣(νr,l[n])2̂
ẽ[n]∣∣2. (12.35)

Another option for the noise evaluation is to use the scheme in [5].

12.8 Spline Wavelet Packet Solution to Problem 12.1

The partial spline solution Sm,l(ρ, x) of the inversion problem in the subspace pSr,l

is derived from the filtered data such that the DFT is ˆ̃zm,l[n] def= ẑ[n]|νm,l[n]|22−m.
To determine an optimal set of the subspaces pSr,l , which reveal the internal

structure of the data vector z, we construct the spline Z(x)=∑N−1
n=0 ξ [n]γ p[n](x),

ξ [n] = ẑ[n]/V [n], which interpolates the data z. Then, we apply the Best Basis
algorithm to obtain the list PL = {(p̄, l̄)} such that the shifts of the wavelet pack-
ets ψm̄,l̄ form an optimal basis for the spline Z(x). The list PL determines the

subspaces pS m̄,l̄ , where the partial solutions for the inversion problem are to be
derived. Due to the effective bandlimitedness of the function g(x, t) = U1

t f (x),

some subspaces pS m̄,l̄ , which correspond to higher frequency bands are “empty”
in a sense that they, actually, do not contain a contribution from the initial function
f (x). Such subspaces are discarded from the list PL.

A scheme for the approximated inversion of the heat equation

1. Calculate the coefficients η[n](t) defined in (12.10).
2. Construct the data interpolating spline Z(x).
3. Implement the wavelet packet transform of order p of the spline Z(x).
4. Apply the Best Basis algorithm to the transform coefficients to collect the list PL

of relevant subspaces.
5. Reduce the list PL to PL by discarding the “empty” subspaces.
6. Evaluate the error vector to estimate the partial variances (εp,l)2, (p, l) ∈ PL, of

noise (see (12.35)).
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7. Determine the optimal values ρm̄,l̄ of the regularization parameter for each pair

(m̄, l̄) ∈ PL.
8. Find the partial solutions Sm̄,l̄(ρm̄,l̄ , x) ∈ pSm̄,l̄ for each pair (m̄, l̄) ∈ PL (see

(12.33)).

The approximated solution to the inversion Problem 12.1 is

f (x)≈ S(x)=
∑

(m̄,l̄)∈PL

Sm̄,l̄(ρm̄,l̄ , x) ∈ pS̃ .

Extension of the algorithm to the 2D case is straightforward once the tensor products
of the basis splines are utilized:

γ p(x, y)
def= γ p(x)γ p(y), ϕp(x, y)

def= ϕp(x)ϕp(y),

ψ
p

r,l,l̃
(x, y)

def= ψ
p
r,l(x)ψ

p

r,l̃
(y).

Figure 12.2 displays the SHA spectra of two wavelet packets of order 10 from the
second scale. We observe that the spectra have near-parallelepiped shape. The de-
scribed algorithm can be utilized for signal and image denoising when the time
parameter t = 0. In this case, the general scheme remains unchanged.

12.9 Numerical Examples

The following are examples, derived from three groups of experiments, on using the
block-based methods for 2D images’ restoration:

Denoising: Restoration of objects corrupted by Gaussian noise (the time parameter
t = 0).

Pure blurred input: Restoration of blurred objects when the time parameter t > 0
and noise is not known. The advantage of the block based method over the global
one materialized in the accurate tuning of the subspaces where the looked for
solution is in the effective frequency domain of the blurred image.

Noised blurred input: Restoration of objects from blurred inputs, which were cor-
rupted by Gaussian noise.

These examples illustrate the difference between the performance of the global
Tikhonov algorithm (GTA) presented in Sect. 12.3 and of the Best Basis Algorithm
(BBA). Visual perception is compared and the peak-signal-to-noise-ratio (PSNR).
Three benchmark images each of which is presented by a 512×512 array of samples
are used as the initial temperature distributions. The source images for the experi-
ments are shown in Fig. 12.3.

Example 12.3 (Barbara Denoising) The “Barbara” image was corrupted by Gaus-
sian zero-mean noise with standard deviations STD = 25. The time parameter is
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Fig. 12.2 The SHA spectra of wavelet packets of order 10 from the second resolution scale. Top:
ψ10

2,2,3(x, y). Bottom: ψ10
2,3,1(x, y)

t = 0. Figure 12.4 displays fragments of the noised input image and of the image
that was restored by the applications of GTA and BBA. We observe that BBA pro-
duces high PSNR values. The noise was suppressed almost completely. The GTA
method did not succeed in noise suppression, although the texture is resolved a little
bit better in comparison to BBA.
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Fig. 12.3 Left: “Barbara”. Center: “Lena”. Right: Fingerprint

Fig. 12.4 “Barbara”. Left: A noised image, STD= 25, PSNR= 20.17. Center: An image restored
by GTA, PSNR= 24.12. Right: An image restored by BBA, PSNR= 25.77, spline wavelet packets
of the fourth order from 4 levels were used

Fig. 12.5 “Fingerprint”. Left: A blurred image, t = 46, PSNR= 15.71. Center: An image restored
by GTA, PSNR= 17.57. Right: An image restored by BBA, PSNR= 20.22, spline wavelet packets
of the fourth order from 3 levels were used

Example 12.4 (Restoration of a Strongly Blurred Fingerprint) In this example, the
“Fingerprint” image was used as the initial temperature distribution. The input
presents the temperature distribution when the time parameter was t = 46. The BBA
restored the texture of the fingerprint, which was completely smeared in the input.
The result produced by GTA was much worse. The results are illustrated in Fig. 12.5.

Example 12.5 (Restoration of Blurred and Noised “Lena”) The “Lena” image was
used as the initial temperature distribution. The input is the distribution when the
time parameter was t = 2.5 corrupted by Gaussian noise whose STD = 10. The
BBA-restored image is sharper compared to the GTA and its PSNR is higher. See
Fig. 12.6 for the results.
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Fig. 12.6 “Lena”. Left: A blurred noised image, t = 2.5, noise STD= 10, PSNR= 24.79. Center:
An image restored by GTA, PSNR = 28.22. Right: An image restored by BBA, PSNR = 28.47,
spline wavelet packets of the fourth order from 4 levels were used
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Chapter 13
Comparison Between Two Multi-Objective
Optimization Algorithms: PAES and MGDA.
Testing MGDA on Kriging Metamodels

Adrien Zerbinati, Jean-Antoine Désidéri, and Régis Duvigneau

Abstract In multi-objective optimization, the knowledge of the Pareto set provides
valuable information on the reachable optimal performance. A number of evolution-
ary strategies (PAES (Knowles and Corne in Evol. Comput. 8(2):149–172, 2000),
NSGA-II (Deb et al. in IEEE Trans. Evol. Comput. 6(2):182–197, 2002), etc.), have
been proposed in the literature and proved to be successful in identifying the Pareto
set. However, these derivative-free algorithms are very demanding in computational
time. Today, in many areas of computational sciences, codes are developed that in-
clude the calculation of the gradient, cautiously validated and calibrated. Thus, an
alternate method applicable when the gradients are known is introduced presently.
Using a clever combination of the gradients, a descent direction common to all cri-
teria is identified. As a natural outcome, the Multiple Gradient Descent Algorithm
(MGDA) is defined as a generalization of the steepest descent method and compared
with the PAES by numerical experiments. Using the MGDA on a multi-objective op-
timization problem requires the evaluation of a large number of points with regard
to criteria and their gradients. In the particular case of CFD problems, each point
evaluation is very costly. Thus here we also propose to construct metamodels and to
calculate approximate gradients by local finite differences.

13.1 Introduction

The numerical treatment of a multi-objective minimization is usually aimed at iden-
tifying the Pareto set or a convenient subset of it. In the literature, several authors
have proposed to achieve this goal by various algorithms, each one adapting a par-
ticular Evolution Strategy (ES). Such approaches are compared in the book of Deb
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[1]. Using a sufficiently diverse initial sample, these methods produce a discrete set
of 2 by 2 non-dominated points. However, the most commonly used methods are
very demanding in terms of computational time, as ESs are in general.

In the particular case in which the gradients of the objective functions are at
reach, at the current design point, faster algorithms can be developed. In the convex
hull of the gradients of the objective functions, a direction exists along which all
criteria diminish [2]. The MGDA results in utilizing this direction as search direction
and optimizing the step size appropriately. In this way, the classical steepest descent
method is generalized to multi-objective optimization. Applying the MGDA thus
corresponds to a phase of cooperative optimization.

In Sect. 13.2, theoretical aspects leading to the MGDA are briefly recalled.
A complete presentation is available in [2]. In Sect. 13.3, the results of a numer-
ical experimentation on a classical test case are presented and commented.

13.2 Theoretical Aspects

13.2.1 Cooperative-Optimization Phase: Multiple-Gradient
Descent Algorithm (MGDA)

Here, to be complete, we review briefly the notions developed in [2]. The general
context is the simultaneous minimization of n (n ∈ N) smooth criteria (or disci-
plines) Ji(Y ) (Y is a design vector, Y ∈ R

N ). Starting from an initial design point
that is not Pareto optimal, a cooperative optimization phase is defined that is bene-
ficial to all criteria.

13.2.1.1 Pareto Concepts

Following [2], we introduce the notion of Pareto stationarity: a design point Y 0 is
said to be Pareto stationary if there exists a convex combination of the gradients of
the smooth criteria Ji that is equal to 0 at this point. Thus:

Definition 13.1 The smooth criteria Ji(Y ) (1 ≤ n ≤ N ) are said to be Pareto sta-
tionary at the design point Y 0 if:

∀i = 1, . . . , n, u0
i =∇Ji

(
Y 0),

∃(αi)i=1,..,n, αi ≥ 0,
n∑

i=0

αi = 1,
n∑

i=0

αiu
0
i = 0.

Inversely, if the smooth criteria Ji(Y ) (1≤ i ≤ n) are not Pareto stationary at the
given design point Y 0, a descent direction common to all criteria exists.
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Fig. 13.1 Various possible configurations of the two gradient vectors u= u1 and v = u2 and the
minimal norm element ω

13.2.1.2 Existence and Uniqueness of the Minimal Norm Element

Consider a family of vectors, denoted (ui)i∈I ,1 ≤ i ≤ n. The following lemma
holds:

Lemma 13.1 (Existence and uniqueness of the minimal norm element) Assume

(i) {ui}, 1≤ i ≤ n, a family of n vectors in R
N ;

(ii) U be the set of strict convex combinations of these vectors:

U =
{
w ∈R

n
∣∣w =

n∑
i=0

αiu
0
i ; αi > 0, ∀i;

n∑
i=0

αi = 1

}

and U its closure, or convex hull.

Then,

∃!ω ∈U , ∀ū ∈U : (ū,ω)≥ (ω,ω)= ‖ω‖2.

(The element ω exists since U is closed, and it is unique since U is convex; as a
result, for all ū ∈U , and for all ε ∈ [0,1], ω+ε(u−ω) ∈U , and ‖ω+ε(u−ω)‖ ≥
‖ω‖, and this yields the conclusion [2].)

In the case of two criteria, three configurations of the two gradients can be con-
sidered, as illustrated in Fig. 13.1. This result applies, in particular, to ui for all i.
But, (ui,ω) is the Frechet derivative of Ji in the direction ω. Hence, if ω �= 0, the
Frechet derivatives of all the criteria are bounded from below by the strictly posi-
tive number ‖ω‖2. The direction −ω is therefore a descent direction common to all
criteria. These considerations yield the following:

Theorem 13.1 Let Ji(Y ), 1 ≤ i ≤ n ≤ N , N ∈ N, be n smooth functions of the
vector Y ∈R

N . Assume Y 0 is an admissible design point. We denote u0
i =∇Ji(Y 0)

and

U =
{
w ∈R

N
∣∣w =

n∑
i=1

αiu
0
i ; ∀i, αi > 0;

n∑
i=1

αi = 1

}
. (13.1)

Let ω be the minimal norm element of the convex hull U , closure of U . Then

(i) Either ω= 0, and the criteria Ji(Y ), 1≤ i ≤ n, are Pareto stationary;
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(ii) Or ω �= 0 and−ω is a descent direction common to all the criteria; additionally,
if ω ∈U , the inner product (ū,ω) is equal to ‖ω‖2 for all ū ∈U .

Based on these results, when the gradients of all the criteria can be computed, the
following algorithm (MGDA) proceeds by successive steps that are beneficial to all
the criteria. In the practical implementation, one specifies a tolerance εTOL on ‖ω‖
below which the line search is not performed.

13.2.2 Convergence of the MGDA

Provided that the criteria are formulated to be smooth, positive and infinite at in-
finity, the sequence of iterates produced by the MGDA has been proved to admit
a subsequence converging to a Pareto optimal point [2]. One main purpose of this
report is to illustrate this convergence by numerical experiments using test cases of
variable complexity.

13.2.3 Practical Determination of the Vector ω

In the general case (n > 2), ω can be calculated by numerical minimization of the
quadratic form that expresses ‖ω‖2 in terms of the coefficients {αi} of the convex
combination, subject to the inequality constraints αi ≥ 0, for all i, and the linear
equality constraint

∑
i αi = 1. Many routines are effective in performing this opti-

mization, for instance, certain evolution strategies. However, the problem may be-
come ill-conditioned for large dimensions.

In the particular case of two objectives, ω can be expressed explicitly. Recall
Fig. 13.1, for which u = u1 = ∇J1 and v = u2 = ∇J2. In this figure, the gradient
vectors, elements of RN are represented as vectors of R2 with the same origin O.
This results in no loss of generality since only the norms of the two vectors and
the angle between them do matter. Eliminating the trivial case in which u= v (for
which ω= u= v), the convex hull is then represented by the segment uv connecting
the extremities of these representative vectors. Let ω⊥ be the vector whose origin
is O, and the extremity is the orthogonal projection of O onto the line that supports
the segment uv (convex hull). If the vector ω⊥ is in the convex hull, that is, if its
representative points are situated on the segment uv, it is ω; otherwise, ω is the
vector of the smallest norm between u and v. Thus let

ω= (1− α)u+ αv (13.2)

and compute α⊥ for which the above convex combination is orthogonal to u− v,
that is,

α⊥ = (u,u− v)

(u− v,u− v)
.
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Fig. 13.2 Variation of the
normalized cost functions
with the step size ρ in the −ω
direction

If α⊥ ∈ [0,1], α = α⊥; otherwise, α = 0 or 1, that is, ω = u or v, depending on
whether α⊥ < 0 or > 1.

13.2.4 Line Search

This part deals with the determination of the step length (line search). In multi-
criteria optimization, it is not easy to compute a satisfactory step with respect to all
the criteria producing a significant evolution. An adaptative method to compute a
satisfactory step for each multi-objective problem would be convenient.

At the current design point, the Frechet derivatives of all the criteria are strictly
negative (and equal if ω ∈ U ). For each criterion, a surrogate quadratic model is
constructed after computing three function values, and a related optimum step size
ρi is calculated corresponding to the location of the ith surrogate model’s minimum
(see Fig. 13.2).

Now, we choose the global step ρ as the smallest ρi

ρ = min
i,1≤i≤nρi.

The vector ω is such that, for all i, ρi ≥ 0 and ρ ≥ 0. Whenever ρ = 0, the MGDA
is interrupted.

13.3 Numerical Experimentation

In this section, we conduct numerical experiments to demonstrate the convergence
of the MGDA to Pareto optimal solutions, and to compare this algorithm with the
PAES [4].

13.3.1 Fonseca Test Case

This test case corresponds to the two-objective unconstrained minimization of the
functions
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Fig. 13.3 Convergence of the MGDA to the Pareto front, for several initial design points in the
design space (x, y, z) (top) and in the function space (f1, f2) (bottom)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x)= 1− exp

(
−

3∑
i=1

(
xi − 1√

3

)2
)
,

f2(x)= 1− exp

(
−

3∑
i=1

(
xi + 1√

3

)2
)
.

The design variable is x = (x1, x2, x3) ∈R
3. This test case is known to yield a con-

tinuous but concave Pareto set in the function space. Here, the Pareto set is not
known analytically, but has been well identified by Deb using the well-known ge-
netic algorithm NSGA-II [1]. To obtain an accurate discrete representation of the
Pareto set by the MGDA, we have applied the method starting from a set of some
50 initial design points located on a sphere in the design-space (Fig. 13.3). In all
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Fig. 13.4 (The Fonseca test
case) Convergence of the
MGDA to the Pareto front,
for several initial design
points

cases, the MGDA converges and provides an accurately defined point on the Pareto
set (Fig. 13.4).

In the next experiment, we have first applied the PAES twice, each time starting
from a different design point and generating 50 others. Then the remaining domi-
nated design points have been discarded. Thus less than one hundred design points
have been archived. This set is compared in Fig. 13.5 with the result of applying the
MGDA starting from 12 well-distributed initial design points, so that the number
of function evaluations is the same in the two cases. The MGDA again produces
design points closer to the Pareto set (improved accuracy), but here in fewer num-
bers.

However, at an identical computational cost, generally, the PAES introduces
more diversity in the final result. Thus it appears interesting to combine the ac-
curacy of the MGDA with the robustness of the PAES in a hybrid method. To check
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Fig. 13.5 (The Fonseca test
case) A Pareto set
approximated discretely by
the PAES and the MGDA

this, we have used the two methods sequentially: the PAES first to generate 15 de-
sign points, retaining eight nondominated design points, then used as initial points
for MGDA. In each case about three to four iterations are sufficient to converge and
produce the accurate result indicated in Fig. 13.6.

13.4 Applying MGDA on a Kriging Metamodel

In this section, we conduct numerical experiments to demonstrate the convergence
of the MGDA to Pareto optimal solutions in conjunction with Kriging metamod-
els. The first Kriging metamodel is constructed with an initial database. From each
initial point, the MGDA yields a better point used subsequently to update the meta-
model.
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Fig. 13.6 (The Fonseca test
case) The first step with a
large PAES followed by the
MGDA iterates on each
non-dominated point found.
The design space (top) and
the functional space (bottom)

13.4.1 Kur Test Case

This test case corresponds to the two-objective unconstrained minimization of the
functions

g1(x)=−
2∑

i=1

−10 exp
(
−0.2

√
x2
i + x2

i+1

)
, g2(x)=

3∑
i=1

(|xi |0.8+0.5 sin
(
x3
i

))
.

The design variable is x = (x1, x2, x3) ∈ R
3. This testcase is known to yield a non-

convex discontinuous Pareto set in the function space. Two generations of non dom-
inated points applying the PAES from different initial configurations gives a good
discrete approximation of the Pareto front obtained by Deb [1]. Figure 13.7 shows
that the Pareto set here is discontinuous, especially in the design space, where three
distinct groups of points are evident.
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Fig. 13.7 (The Kur test case)
A discrete Pareto front
produced by two generations
of PAES optimization

In the next experiment, we have first applied the PAES once from one initial
design point to generate 100 new points. The PAES sorts out 11 non-dominated
points from these 100. For each point obtained, the MGDA produces a new one
closer to the Pareto front, as illustrated by Fig. 13.8.

Because of the sine in the second function, this test case is a multi modal problem.
Thus optimization algorithms based on gradient descent methods have experienced
difficulties. To assess the MGDA, a clever strategy must be adopted to generate a
sufficiently diverse set of initial points. Presently we use an initial small and diverse
set of design points forming a sample of a latin hypercube. This set gives a Kriging
metamodel on which the MGDA drives each initial point to a better one in terms of
function values. If the MGDA points are sufficiently widespread, a new metamodel
is constructed with the initial set augmented. Whenever a new point is found too
close to another one in the database, it is not considered to update the metamodel.
In a few iterations of this method, the best points obtained are close to the Pareto
front.
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Fig. 13.8 (The Kur test case)
Applying the MGDA to each
non-dominated point from
one PAES generation of 100
points (sort 11
non-dominated)

The following experiment (Fig. 13.9) is based on a set of 10 initial design points
from [−5,5]3 evaluated with respect to g1 and g2, after 10 iterations of the pro-
cess described above. The computational cost corresponds to 43 point evaluations,
including the database but not the metamodel construction.

13.4.2 CFD Test Case

The last experiment is an optimum-shape design in compressible aerodynamics. The
transonic flow (M∞ = 0.83, α = AoA= 2o) about a generic aircraft wing is simu-
lated by the solution of the 3D Euler equations by an upwind finite volume method
over an unstructured mesh of some 200,000 points generated by the software GMSH
[3]. The cross sections of the wing are made homothetic with a linear variation in the
spanwise direction. Thus only the shape of these sections, an airfoil, is optimized.
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Fig. 13.9 (The Kur test case)
Evolution of points given by
the MGDA on an evoluting
Kriging metamodel. 10 initial
design points lead to 43
points

This airfoil is represented by seven B-spline functions for the upper surface, and
seven other ones for the lower surface. The leading and trailing edges are fixed, and
this permits us to introduce a total of 10 geometrical design variables. Initially, these
variables are set to define a cross section close to the classical NACA0012 airfoil.

The MGDA is used here to solve the two-criteria optimization problem consist-
ing of maximizing the lift coefficient and minimizing the drag coefficient simulta-
neously, starting from the specified initial geometry.

An initial set of 40 design points forming a sample of a latin hypercube in R
10 has

been considered. This first set of data points is employed for two purposes. Firstly, it
is used to construct initial Kriging metamodels of both functions (lift and drag). Sec-
ondly, it is used throughout the following cycle to provide starting points to initiate
the MGDA iteration in different conditions. This iteration is conducted until conver-
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Fig. 13.10 (The Eulerian
flow test case) An example of
the convergence of the
MGDA from an initial
database point on the
metamodel and the
corresponding simulation
result point

Fig. 13.11 (The Eulerian
flow test case) Evolution of
data points by the MGDA
applied to Kriging
metamodels of lift and drag;
the dataset is made of 40
design points initially, and 95
ultimately. All points are the
result of Eulerian simulation

gence using at every iteration gradients that are calculated by local finite-differences
of the metamodels. Each converged point belongs to the Pareto set associated with
the two-criteria problem related to the metamodels. It is then re-evaluated by a flow
computation and added to the database unless it is found too close to an existing
point. At the completion of this database enrichment process, the metamodels are
updated, and this completes the cycle. In practice, in what follows, only two cycles
were performed.

Figure 13.10 represents the convergence of the MGDA from a particular initial
database point. The figure indicates the converged point and the point obtained by
the same design re-evaluated by an Euler flow computation (actual lift and drag).

Figure 13.11 represents the initial database of 40 points and the ultimate
database. With only 95 calls to the CFD solver, a significant improvement of both
criteria is achieved and, visibly, an approximate Pareto front begins to form.
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Fig. 13.12 A pressure field
associated with design
points 1, 2, and 3 of
Fig. 13.11

Figure 13.12 represents pressure fields on the wing and the symmetry plane,
corresponding to three particular non-dominated points of the ultimate database
(points 1 and 3 of Fig. 13.11 on top and bottom respectively). Point 1 corresponds to
the flow with the shock wave of the strongest intensity of the three; it produces the
largest values of both lift and drag. Inversely, point 3 is associated with the smallest
values, and point 2 with intermediate.

13.5 Conclusion

In this article, we have tested by numerical experiment a recently proposed gradient-
based algorithm for multi-objective optimization, the MGDA [2].
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Firstly, the convergence to Pareto optimal solutions has been demonstrated in
an analytical test case corresponding to a continuous but concave Pareto front (the
Fonseca test case). Additional information on this comparison can be found in [5].

Secondly, the MGDA has been compared with the well-known PAES algorithm.
Both the Fonseca and Kur test cases have been considered in this comparison. We
found that the two algorithms have particular merits of their own. The PAES is
very effective in converging to a very diverse dataset, whereas the MGDA achieves
this only if the initial set of design points is itself diverse. However, the iterative
convergence of the MGDA which makes use of (approximate) gradients is much
faster. Thus both algorithms are complementary.

Thirdly, a hybrid method has been proposed and tested over the above mathemat-
ical test cases, demonstrating promising potentials.

Lastly, in the context of a two-objective aerodynamic wing shape optimization
in which the 3D Euler equations have been solved, the MGDA has been used to
define a strategy to progressively enrich the database associated with metamodels
of drag and lift. With less than 100 calls to the flow solver, both lift and drag have
been improved significantly from an initial design of a wing whose cross section
was close to the classical NACA0012 airfoil.
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Chapter 14
Polar Classification of Nominal Data

Guy Wolf, Shachar Harussi, Yaniv Shmueli, and Amir Averbuch

Abstract Many modern systems record various types of parameter values. Numer-
ical values are relatively convenient for data analysis tools because there are many
methods to measure distances and similarities between them. The application of
dimensionality reduction techniques for data sets with such values is also a well
known practice. Nominal (i.e., categorical) values, on the other hand, encompass
some problems for current methods. Most of all, there is no meaningful distance
between possible nominal values, which are either equal or unequal to each other.
Since many dimensionality reduction methods rely on preserving some form of sim-
ilarity or distance measure, their application to such data sets is not straightforward.
We propose a method to achieve clustering of such data sets by applying the diffu-
sion maps methodology to it. Our method is based on a distance metric that utilizes
the effect of the boolean nature of similarities between nominal values (i.e., equal or
unequal) on the diffusion kernel and, in turn, on the embedded space resulting from
its principal components. We use a multi-view approach by analyzing small, closely
related, sets of parameters at a time instead of the whole data set. This way, we
achieve a comprehensive understanding of the data set from many points of view.
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14.1 Introduction

One of the most sought after tasks nowadays is that of finding patterns and struc-
tures in large volumes of high dimensional data. As storage becomes cheaper, net-
work bandwidth increases and sampling technologies become more advanced, the
amounts of data collected from various systems increase exponentially. A common
trend in many applications is to log and record every action of the system for fu-
ture analysis. In particular, errors and exceptions are common types of massively
recorded items.

The task of unsupervised learning of high-dimensional data has been studied
extensively in statistical and machine learning literature. Usually, an assumption
concerning the underlying structure of the data is made. One common assumption
is that the data consist of classes that represent some form of similarity between data
points from the same class. Detecting the classes and classifying the data points is
often done by clustering algorithms applied to a data representation, which preserves
some desired properties (i.e., similarities) of the data set.

Classical clustering algorithms are loosely divided into two major categories.
Partitional algorithms aim at finding an optimal partition of the data set into the de-
sired clusters. Hierarchical algorithms, on the other hand, aim at constructing a hier-
archy of clusters from the data. This is usually done in several iterations, each refin-
ing the previous one while providing the hierarchy with an additional level. Classic
partitioned algorithms are k-Means [27] and its variants (e.g., Fuzzy c-Means [3]
and k-Prototypes [22], which adapts k-Means to handle categorical values). Typ-
ical hierarchical algorithms are BIRCH [42], CURE [18], and Chameleon [25].
Modern algorithms also use additional approaches. Density-based clustering algo-
rithms, such as DBSCAN [16], DENCLUE [20], and OPTICS [2], define clusters as
dense areas separated by sparse ones. Grid-based clustering algorithms analyze cells
rather than single samples, thus being more efficient computationally. Some typi-
cal examples of such algorithms are STING [37], STING+ [38], WaveCluster [32],
CLIQUE [1], GDILC [43], and Localized Diffusion Folders [12].

The data types handled by a clustering algorithm can be divided into three ma-
jor categories [36]: numerical, nominal, and transactional. Most of the study of
clustering algorithms deals with numerical data sets, in which there is a relatively
simple notion of proximity or similarity between samples. Most of the algorithms
mentioned above deal with numerical data; additional examples can be found in
[4, 17, 24].

While there are significantly less clustering algorithms designed for handling
nominal data, some classic examples do exist. Notable examples of such clustering
algorithms are k-Modes [21] and ROCK [19], both of which deal directly with nom-
inal data, and OPOSSUM [34], which deals with ordinal data (i.e., discrete values
with order). A different approach is to transform the categories in the data to numer-
ical values. This can be done either by using some order between them or by using
binary encoding (1 means a category that appeared for a sample while 0 means the
opposite), which would result in a large but very sparse data set. Some examples of
this approach can be found in [31, 33].
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The last category (i.e., transactional data) is poorly structured in the sense that
each sample, also called transaction, contains a variable set of values describing
it. Since there is no constant order to the properties of an entry, and their amount
may change from sample to sample, comparing samples in such data sets becomes
a fairly complicated task. Such data sets may, in some cases, be flattened and refor-
matted into a nominal format (e.g., by setting an absolute order to the properties and
using a special value to express N/A values), in which case the previously mentioned
algorithms can be applied. Some examples of algorithms that directly analyze trans-
actional data are LargeItem [35], SLR [41] and CLOPE [39]. Some recent methods
for analyzing both nominal and transactional data can be found in [36].

In recent years, dimensionality reduction techniques were used to obtain low-
dimensional representations that amplify the similarities between data points.
A popular and successful dimensionality reduction method for this purpose is Diffu-
sion Maps (DM) [8, 26]. This method is based on defining the similarities between
data points by using a diffusion kernel, which describes a diffusion process (i.e.,
random walks) on the data set. The first few eigenvectors of this kernel can be used
to obtain a low-dimensional representation of the data set, in which the Euclidean
distances between data points correspond to random-walk distances, also called dif-
fusion distances, between their original (high-dimensional) counterparts.

Usually, classes of similar data points appear, in the resulting low-dimensional
space, as dense clusters separated by sparse areas [10]. By using a density function
one can detect these clusters and the data points within them and thus achieve the
desired analysis. This methodology was applied for classification and anomaly de-
tection tasks [10]. In the case of anomaly detection, the classes were considered to
represent normal behavior while data points that did not belong to any class were
considered to be anomalous.

The DM methodology is based on similarities defined by a suitable distance
metric. A Gaussian kernel is then used to give the notion of neighborhoods and,
with proper normalization over each neighborhood, the diffusion kernel is obtained.
When the data contains numeric measurements, there is a wide variety of distance
metrics that can be used. Common metrics are the l1 and l2 metrics, which give
good results in many practices. When, on the other hand, the data contains nominal
values, finding a suitable distance metric is less obvious, as nominal values can be
either equal or unequal with no notion of distance or proximity between different
values.

One recent approach for handling nominal-valued data sets uses the Hamming
distance as the metric that the diffusion kernel is based on. A method, which is
based on it, to analyze mixed data sets containing both numeric- and nominal-valued
parameters is presented in [13]. This approach can prove useful when there is a one-
to-one correspondence between the rows in the data set and the analyzed items, and
no bias is created by the dependencies between the parameters of the data set.

In this paper, we deal with a more general nominal-valued data set. We allow
several data rows to be related to the same analyzed item. Also, we do not assume
that the parameters of the data set are unrelated and we take into account possible
bias due to dependencies between them. We define two possible distance metrics
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that can be seen as an extension of the Hamming distance. We apply the DM method
using these metrics to analyze items, each of which is represented by several rows
from the data set.

The structure of the embedded space, which is achieved by the described method,
is uniquely different from the ones that appear in many other studies. Instead of
similar items being concentrated in dense clusters, these items form rays emanat-
ing from a common center near the origin. This unique geometry is a result of the
discrete nature of the used distance metric and the resulting diffusion kernel. The
clusters are thus identified as having common directions. The rays are not dense
when represented by Cartesian coordinates. In polar coordinates, or at least those
that correspond to angles, the data points on the same ray are very similar. This ob-
servation provides a clustering method to be applied to the embedded space and the
method thus called polar clustering.

In addition to the new distance metric used in this paper, we also use a multi-
view approach for analyzing the data in an unbiased manner. Multi-view techniques
have been applied to many data analysis problems. In these problems, the studied
samples consist of different subsets of parameters that, in some cases, even come
from different sources. Each of these subsets contributes partial knowledge for the
clustering process. Fusing them together can lead to an improved solution. This is
done by utilizing the agreements among different views, each representing a single
subset. The challenge in these techniques is to find the right parameter partition into
subsets, and to understand the weight of each subset and its potential contribution to
the learning process. Then, one needs to apply proper normalization and blending
methods between the subsets while overcoming problems like cross-dependencies,
normalization, repetition, and over- or under-weighting of parameters and subsets.

One common method for dealing with multiple sources (or subsets) of data pa-
rameters is to simply ignore the distinctions and concatenate parameters from all
the sources into one vector. This represents an implicit assumption that all the pa-
rameters, from all the sources, are directly comparable, which is usually not true.
Multi-view methods, on the other hand, consider the differences between the sub-
sets and use them to better train the classifier that will be used to analyze the data.
One method for applying such a technique is to design a special graph that is based
on multiple sources and to use the kernel induced by the graph as the input for a
kernel based clustering algorithm [15].

Other multi-view algorithms train two independent classifiers that bootstrap by
providing each other with labels for the unlabeled data. The training algorithms tend
to maximize the agreement between the two independent classifiers [6, 40]. It has
also been shown that the disagreement between two independent classifiers is an
upper bound for the error rate of a classifier achieved by uniting them together [9].
This could explain the recent success of multi-view learning in motivating clustering
methods that are based on a multi-view approach.

Multi-view classification methods are sometimes called, in the literature, co-
training or co-clustering. Under these names, they have been studied thoroughly
in [5], where multi-view versions were presented for familiar partitioning meth-
ods, such as k-Means, k-Medoids, and EM. Another method that can be used is to
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construct a specific kernel (similarity) matrix for each view, and then to blend the
matrices into a single kernel matrix. This combined kernel can be used to apply fur-
ther analysis to the data as a whole, e.g., by training a support vector machine that
is based on it [14].

The application of multi-view approaches in conjunction with the DM method-
ology can be seen in [10, 12, 28]. These works use a hierarchy of views to provide a
complete analysis of the data. Construction of each level in the hierarchy by pruning
clusters in the previous level and determining the affinities between the pruned clus-
ters is given in [10, 12] whose theoretical justification is given in [11]. This affinity
is based on the relations revealed by examining small views, each of which contains
samples in the two clusters compared by the view.

The other mentioned paper [28] is based on organizing the parameters in a hi-
erarchical structure according to what they measure. Then, it works in a bottom-up
fashion, each time executing the DM algorithm on a single view (i.e., a node in the
hierarchy). The densities around the points in the embedded spaces of the children
of a certain node are used as an input for the DM algorithm applied to that node.

The paper has the following structure. Section 14.2 describes the problem setup.
Section 14.3 defines the distance metrics, describes the geometry of the resulting
embedded space and explains the clustering and classification method. Section 14.4
demonstrates two applications to real-life data sets of the classification method.

14.2 Problem Setup

Assume that the data set X contains m observations where each observation details
the values of l nominal parameters. Thus, X can be seen as a m × l matrix that
contains nominal (i.e., categorical) values. The observations in the data set are not
necessarily unrelated and several observations may refer to a single studied item or
subject in the analysis. One example for such data sets is exception (i.e., software
errors) analysis where several exceptions may relate to a single malfunction, which
can be identified by the machine and time of these exceptions.

We begin to examine the data set X by defining the subjects of the analysis and
relating each observation to the subject to which it refers. This can be done either by
external labeling or by grouping the observation according to the values of (some
of) their parameters. We denote the set of all subjects by S and its size by n= |S|.
For each subject s ∈ S, the set of observations in X that refer to it is denoted by Xs .

We assume there is some relation between the parameter sets. Viewing them as
a whole might be biased by the number of parameters relating to each perspective.
For example, if there are five parameters describing the software components (e.g.,
process, class, thread) and two describing the thrown exception (e.g., error type),
an analysis based on all these parameters would be biased towards the software
perspective. To cope with these situations, we use a multi-view approach to analyze
the behavior of the subjects. We divide the parameters of the data set to several
perspectives, or views, and analyze each of them separately. This way, we provide a
complete, unbiased analysis of the data set from several points of view.
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The main goal of the analysis in this paper is to find structures and patterns in the
data set. We do this by clustering the subjects to a set of classes in each perspective.
An examination of the common categories (i.e., nominal values of the parameters) in
each class, from each perspective, provides an understanding of the structure of the
data set and the types of subjects in it. Also, one can deduce the relations between
the subjects based on these understandings.

14.3 Classification Method

In this section, we present the classification method that is applied to each view
(i.e., perspective) separately. We start by constructing the view, as a new data set,
according to the subjects in S and the parameters selected for the view. Then, we
describe the application of DM using a new distance metric. Finally, the structure of
the embedded space and the clustering method applied to it are described.

14.3.1 Construction of a View

The analysis begins with selecting the parameters, from the original data set, to
be used in the current view. Each observation in X combines nominal values of
these parameters. Each subject s ∈ S is related to some observations in X and so
it is described by several combinations of values of the selected parameters. We
will denote the set of these combinations for a subject s ∈ S by Vs . We denote the
set of all such combinations in the data set by V = ∪s∈SVs and their number by
d = |V |. From this point on, when we refer to combinations of parameter values, or
just combinations, we mean the described combinations in V (or Vs for a subject s),
unless specifically stated otherwise.

A single view is described by the subjects in S, the combinations in V , and the
relations between them. We suggest two approaches to describe and handle this
information: the boolean approach and the counter approach. We will describe them
side by side in this paper. The boolean approach describes the relation between
a subject s ∈ S and a combination v ∈ V by a boolean value stating whether or
not v was reported for s in the data set, i.e. v ∈ Vs . The counter approach adds
the information of how many times this combination reported for s. This describes
the relation by a number that counts the observations related to s that contain the
combination v.

Formally, each approach constructs an n×d matrix that describes the view. Each
row in this matrix corresponds to a subject in s ∈ S and each column corresponds
to a combination v ∈ V . The boolean approach constructs the matrix B where each
cell is defined as

[B]sv = b(s, v) �
{

1, v ∈ Vs,

0, v /∈ Vs,
s ∈ S, v ∈ V. (14.1)
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The counter approach constructs the matrix C where each cell is defined as

[C]sv = c(s, v) �
{
|{x ∈Xs |x ∼ v}|, v ∈ Vs,

0, v /∈ Vs,
s ∈ S, v ∈ V, (14.2)

where an observation x ∈ X is similar to a combination v ∈ V only if this combi-
nation of parameter values appears in x. For a subject s ∈ S, we denote its row in
B by bs = b(s, ·) and its row in C by cs = c(s, ·). The constructed matrices provide
a suitable presentation of the subjects for the analysis from the desired perspective,
and whichever of the two described approaches we choose, we will refer to the con-
structed matrix for that approach as the current view’s data set or simply the current
view.

Finally, since the methodology we use for analyzing the current view is based
upon the distances between data points, we must define a suitable distance metric
between subjects for each approach. For the boolean approach, we define the fol-
lowing distance metric between the rows that represents two subjects s, t ∈ S in the
matrix B:

‖bs − bt‖b �
∑

v∈V [b(s, v)⊕ b(t, v)]∑
v∈V [b(s, v)∨ b(t, v)] , (14.3)

where the logical operators treat 1 and 0 as true and false, respectively, and the
summation (and division) treat them as numbers. The counter approach defines the
following distance metric between the rows that represent two subjects s, t ∈ S in
the matrix C:

‖cs − ct‖c �
∑

v∈V |c(s, v)− c(t, v)|∑
v∈V |c(s, v)+ c(t, v)| . (14.4)

Both metrics measure the difference between the combinations related to the sub-
jects s and t relative to the total number of combinations reported for any of them.
They are similar to the Jaccard Similarity Coefficient [23] and the Tanimoto dis-
tance [29], which are used to compute the similarity and diversity between two data
sets.

The rest of the analysis, which is presented in the next sections, does not depend
on which approach we use and so we define general notations that will refer to
the selected approach. B and C denote the constructed boolean and binary matrix,
respectively, denoted by U . We denote by us the row of this matrix that represents
the subject s ∈ S (i.e., us is bs or cs depending on the selected approach). The
distance between the rows of U , which represents two subjects s, t ∈ S, according
to the selected approach metric, is denoted by ‖us − ut‖u. With these notations and
the represented constructed view, we are ready to apply the DM to this view and to
analyze the lower dimensional representation provided by it.
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14.3.2 Application of DM

The DM method analyzes the view’s data set by exploring its geometry [8]. It is
based on defining the isotropic kernel

kε(s, t) � e−
‖us−ut ‖u

ε , (14.5)

where s, t ∈ S are two subjects and ε is a meta-parameter of the algorithm. This
kernel represents the affinities between the two subjects from the perspective of the
current view.

The kernel may be viewed as a construction of a weighted graph over the view.
The subjects are used as vertices and the weights of the edges are defined by the
kernel kε . The degree of each subject (i.e., vertex) s ∈ S in this graph is

qε(s) �
∑

kε(s, t). (14.6)

Normalizing the kernel with this degree produces an n× n row stochastic transition
matrix M whose cells are [P ]st = p(s, t)= kε(s, t)/qε(s), s, t ∈ S, which defines a
Markov process (i.e., a diffusion process) over the subjects.

The dimensionality reduction achieved by this diffusion process is a result of
spectral analysis of the diffusion kernel. Thus, it is preferable to work with a sym-
metric conjugate to P that we denote by A and its cells are

[A]st = a(s, t)= kε(s, t)√
qε(s)

√
qε(t)

=√
qε(s)p(s, t)

1√
qε(t)

, s, t ∈ S. (14.7)

The eigenvalues 1 = λ0 ≥ λ1 ≥ . . . of A and their corresponding eigenvectors φi ,
i = 0,1, . . ., are used to obtain the desired dimensionality reduction by mapping
each subject s onto the point Φ(s)= (λiφi(s))

δ
i=0 for a sufficiently small δ, which

depends on the decay of the spectrum of A [8, 26]. This construction is also known
as the Laplacian of the graph constructed by the kernel [7]. We denote the resulting
low-dimensional vector representing a subject s by ũs =Φ(s), and the set of all such
vectors by Ũ . We also use the notations b̃s (and B̃) or c̃s (and C̃), when referring
specifically to the boolean approach or the counter approach, respectively.

14.3.3 Construction of the Classes

In practice, for most data sets of the form dealt in this paper (see Sect. 14.2), the vec-
tors in Ũ will have a unique geometry. They form rays emanating from a common
center near the origin. This property is due to the discrete nature of the distance met-
ric we used (14.3) or (14.4) and, in turn, the Gaussian kernel (14.5) and the diffusion
kernel (14.7) constructed by it. Indeed, the inner product of two vectors ũs , ũt ∈ Ũ
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in the embedded space is

〈ũs , ũt 〉 =
〈
Φ(s),Φ(t)

〉=
δ∑

i=0

λ2
i φi(s)φi(t). (14.8)

We recall that the eigenvalues of A2 are λ2
0, λ

2
1, λ

2
2, . . . [8, 26]. Thus, according to

the spectral theorem and the fast decay of the eigenvalues of A, we get

〈ũs , ũt 〉 =
δ∑

i=0

λ2
i φi(s)φi(t)≈ a2(s, t)= [

A2]
st
. (14.9)

Therefore, a small discrete set of values taken by the diffusion kernel leads to a
small discrete set of inner products, which determines the angles between the vectors
in the embedded space. Since there is a small variety of angles in the embedded
space, similar vectors have approximately the same directions (from the origin) and
unrelated ones have relatively wide angles between them. This approach is related to
cosine similarity, which uses the cosine of the angle between two vectors to define
the similarity between them, in the embedded space. The cosine similarity is used
to compare documents in text mining [30] and to measure the similarity between
clusters.

An examination of the used distance metrics presents a possible explanation for
the described structure of the kernel. In both approaches (14.3) and (14.4), totally
unrelated subjects have a distance of 1 between them while completely correlated
ones have a 0 distance. The range of possible values between 0 and 1 (for two com-
pared subjects) depends on the number of combinations reported for the compared
subjects. As more combinations are reported for them, it leads to more possible val-
ues. In many cases, however, the maximal number of combinations reported for a
single subject is no more than a few dozen combinations while the common number
of them for a single subject is less than a dozen. Therefore, the range of possible
values for the distance between two subjects is, in practice, fairly limited.

The geometry of the embedded space suggests a new clustering method to be
applied to it. Instead of measuring density in Cartesian coordinates, we measure it
in polar coordinates. Specifically, the vectors are clustered in this space according
to their angle coordinates. First, we find the dominant directions of the rays where
large concentrations of vectors lie. Then, we associate each vector with the closest
ray. This method yields a set of classes, each of which contains vectors representing
similar (i.e. correlated) subjects in the original data set of the currently analyzed
view.

One issue that should be pointed out is the concentration of some points near
the origin. The embedding process preserves only the principal components of the
data. There are many cases in which some of the subjects are completely unrelated
to any other subject in the view. Such data points should have a negligible affinity
to every other data point; therefore they have an inner product of approximately 0
with all other vectors in Ũ . If the dimensionality of the embedded space was large
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enough we would see such vectors as almost orthogonal to all the other vectors, but
since we deliberately use a low-dimensional embedded space, only their projection
on this space is seen. The projections of such data points are thus seen as very close
to the origin as they are almost orthogonal to the observed space. Therefore, before
applying our analysis we clear a dense area around the origin, which contains all the
unrelated vectors to the observed space.

The vectors in the dense central area can be further explored in the same way
as the original view. A second iteration might reveal some correlations between the
subject corresponding to the vectors in the central area, which were masked by the
rest of the vectors in the first one. This would specially be the case if the dimension
of the embedded space in the first iteration was too low to encompass the nature
of the examined view. If, on the other hand, it was sufficient to represent the view,
the next iteration would show a clutter of uncorrelated vectors with no apparent
relations between them.

14.4 Empirical Results

In this section, we present two applications of the polar classification method for an-
alyzing real-life data sets. The first example demonstrates the usage of this method
to classify malfunctions from an error monitoring log. The second example shows
tools for supporting management decisions during the testing phases (i.e., QA cy-
cles) of a software development process that is based on the polar classification
method.

14.4.1 Error Monitoring

We applied the polar classification method to a data set that contains a log of errors
that were recorded by a wide-scale distributed system. Each entry in the log records
information about the malfunctioning server, the time of the error and the details of
the error. We used the polar clustering and classification method to classify distinct
events, which are identified by a server name and the time of the event according to
the components that reported the malfunctions.

In order to achieve the desired clustering and classification we used the boolean
approach to construct a 4018 × 719 flag matrix, which indicates the components
that were malfunctioning in each event (i.e., specific server and time). Each row in
this matrix corresponds to a single event and each column corresponds to a single
component. Thus, there were 4018 distinct events and 719 distinct components in
the analyzed log. Next, we constructed the boolean distance metric (14.3) between
rows of this flag matrix and applied the DM method according to the calculated dis-
tances. We used the first 20 eigenvectors of the diffusion kernel (defined by (14.7)).
Thus, our embedded space was 20-dimensional. This space is illustrated in Fig. 14.1.
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Fig. 14.1 An illustration of the 20-dimensional embedded space. The points correspond to the
examined events, and they are colored according to the detected clusters (i.e., rays). The vectors
display the detected rays on which the points are concentrated

The events in the embedded space form distinct rays emanating from a mutual
central point. These rays were detected and the events were classified according to
the ray on which they lie. Next, we examined the events in each of the resulting
classes. Every class had a few components that were reported in almost all of the
events in the class. We refer to such components as the dominant components of
the examined class. The bar plot in Fig. 14.2(a) demonstrates a class with a single
dominant component and the one in Fig. 14.2(b) shows an example of a class with
two dominant components. Each bar in these plots represents a single component.
The height of the bar indicates how many of the events, in the examined class,
reported it.
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Fig. 14.2 Examples of classes with one and two dominant components. The bar plot shows for
each component how many of the events in this class reported it (e.g., 0 means none and 1 means
all)

The embedded space in this case also had a dense central area, which contains
1539 events (out of the original 4018) that were unrelated to the detected classes.
We examined this central area by applying the same analysis to the events in it.
The classes that resulted from this analysis showed more subtle patterns than these
from the first iteration. An example of such a pattern is shown in Figs. 14.3, 14.4,
and 14.5, which presents three sections of a single class (i.e., ray).1 When all the
events in the class are considered (Fig. 14.3(a)), the dominant components of the
class are not apparent (Fig. 14.3(b)). If, on the other hand, we only consider events,
which are very far away from the central area (Fig. 14.4(a)), then only five compo-
nents, which are reported for all of these events, are left as dominant (Fig. 14.4(b)).
Finally, by filtering out only the events that are very close to the central area and

1The dominant components are clear when points that are too close to the central area are not
considered. The dominant components in this case have various interrelated functions specific to
the analyzed system.



14 Polar Classification of Nominal Data 265

Fig. 14.3 A class with a few dominant components in the second iteration: An entire class

considering the remaining events (Fig. 14.5(a)), we get the bar plot in Fig. 14.5(b),
which still indicates about three dominant components of this class and two less
dominant ones.

We used 25 dominant classes from each of the conducted iterations. For each
class we identified its dominant components. Therefore, the original 4018 events
were clustered into 50 different classes that covered 3292 events. The remaining
726 events lied in the central area of the embedded space of the second iteration and
did not show any special correlations. These results provide vital information about
the common combinations of malfunctioning components, which cover over 75 %
of the events in the log. This information can be used both for root-cause analysis in
order to find the programmatic defects that cause these problems and as a guidance
tool for the development of future versions of the system.

14.4.2 Quality Assurance

The term quality assurance (QA) in software development refers to a phase in the
development life cycle, in which the developed product is tested for inherent oper-
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Fig. 14.4 A class with a few dominant components in the second iteration: The farthest points
from the central area

ational errors. Usually, several testing cycles are applied and the defects found in
each cycle are fixed before the next cycle begins. In most development teams, a de-
fect management tool is used to log all the detected bugs and prioritize them based
on their impact and severity. When developing and maintaining multiple configura-
tions and several different versions of the software, it is not trivial to determine the
priority of a given bug. In order to do so, potential benefits across all configurations
and versions have to be considered. For example, a small set of defects can, in fact,
be the root cause of a possible instability in several configurations.

We applied the polar classification method to the analyzing software defects
tasks, then classifying the configurations and the versions of a project based on
the detected defects. We used a data set that contains information about defects that
were detected in several configurations and in several versions. This information
was recorded during several testing cycles of a software project. The detail that
were recorded for each defect are the defected features, the defect type, its detec-
tion, the configuration on which it occurred and the software version in which it
occurred.
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Fig. 14.5 A class with a few dominant components in the second iteration: Points not too close to
the central area

We defined the subjects of the analysis, in this case, as pairs of the version (i.e.,
cycle) and configuration of the software. They are clustered by the defected fea-
tures detected in each of these pairs. We used the counter approach to construct a
counter matrix, where each row corresponds to a unique pair of version and con-
figuration and each column corresponds to a single software feature. The data set
contained 1426 distinct version-configuration pairs and 2275 different defected fea-
tures (i.e., the counter matrix was a 1426×2275 matrix). Then, we used the counter
distance metric (14.4) to compute the distances between rows of the counter matrix
where the DM method is applied based on the computed distances. The resulting
20-dimensional embedded space is illustrated in Fig. 14.6.

The embedded space in this example is similar in shape to the one in the pre-
vious example. Again, the embedded data points, which correspond to version-
configuration pairs, are organized on rays emanating from a mutual center. The
version-configuration pairs are clustered according to the rays on which they lie
in the embedded space. We performed a second iteration of the analysis, similar to
the one explained in the previous example, on those that lie in the central area (i.e.,
the points that are unrelated to any cluster). In the first iteration, 981 of the 1426
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Fig. 14.6 An illustration of
the 20-dimensional embedded
space. The points correspond
to the software versions. They
are colored according to the
detected clusters (i.e., rays)

data points were clustered into 86 different clusters. The second iteration, which
was performed using the remaining 535 data points, detected 30 additional clusters
that encompassed 219 data points (out of the 535 analyzed). Overall, 1207 version-
configuration pairs were clustered into 116 classes, leaving 219 unclassified pairs,
which were not correlated with the rest of the pairs.

The detected classes show a situation similar to the one in the previous example;
i.e., each class has a small set of dominant defected features that occur in almost
every version-configuration pair in the class. Figure 14.7 demonstrates this result by
showing a single class with one dominant defected feature reported by most of the
data points in it. The achieved versions and configuration clustering by using the
polar classification method, can be used to find similar behaviors between differ-
ent setting in the system. Defects (specifically defected features) can be prioritized
according to the classes in which they are detected. There are classes that contain
many configuration and many versions should indicate wide and long standing prob-
lems.
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Fig. 14.7 An example of a
class with one dominant
component. The bar plot
shows the sum of reports
made by all software versions
in this class for each
component

14.5 Conclusions

We presented a distance metric that utilizes the DM methodology for analyzing
nominal data sets. We used a multi-view approach to analyze a data set from several
perspectives instead of examining it as a whole. From each perspective, a diffusion
kernel was constructed and the analyzed items of the perspective were mapped to
Euclidean space using spectral analysis of this kernel. The embedded items formed
rays in the embedded space that were emanating from a common central area, which
is the new origin. These rays indicate a dominant pattern in the data set, and can be
used to cluster and classify the analyzed items. The results of this clustering can
also be used as a basis for further analysis of the data, e.g., by further analyzing the
similarities between the clusters and rating each of them according to its impact on
the other clusters.
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Chapter 15
Subgradient and Bundle Methods
for Nonsmooth Optimization

Marko M. Mäkelä, Napsu Karmitsa, and Adil Bagirov

Abstract The nonsmooth optimization methods can mainly be divided into two
groups: subgradient and bundle methods. Usually, when developing new algorithms
and testing them, the comparison is made between similar kinds of methods. The
goal of this work is to test and compare different bundle and subgradient methods
as well as some hybrids of these two and/or some others. The test set included a large
amount of different unconstrained nonsmooth minimization problems, e.g., convex
and nonconvex problems, piecewise linear and quadratic problems, and problems
with different sizes. Rather than foreground some method over the others, our aim
is to get some insight on which method is suitable for certain types of problems.

15.1 Introduction

We consider unconstrained nonsmooth optimization (NSO) problems of the form

min
x∈Rn

f (x), (15.1)

where the objective function f : Rn→ R is supposed to be locally Lipschitz con-
tinuous. Note that no differentiability or convexity assumptions are made.

NSO problems of type (15.1) arise in many application areas: in economics [38],
mechanics [37], engineering [36], control theory [11], optimal shape design [17],
data mining [1, 7] and in particular cluster analysis [12], and machine learning [20].
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Most of the methods for solving problems of type (15.1) can be divided into
two main groups: subgradient (see, e.g., [4, 5, 42, 43]) and bundle methods (see,
e.g., [14, 18, 23, 32, 35, 40, 41]). Both of these method groups have their own
supporters. Usually, when developing new methods, researchers compare them with
similar methods. Moreover, it is quite common that the test set used is rather concise.

In this work, we compare different subgradient and bundle methods, as well as
some of the methods that lie between these two. The main criteria in numerical
comparison are the efficiency and the reliability of the methods. Moreover, we use a
broad test setting including different classes of nonsmooth problems. All the solvers
tested are so-called general black box methods and, naturally, cannot beat the codes
designed specially for a particular class of problems (say, e.g., for piecewise linear,
min-max, or partially separable problems). However, rather than seeing this gener-
ality as a weakness, it should be seen as a strength due to the minimal information of
the objective function required for the calculations. Namely, the value of the objec-
tive function and, possibly, one arbitrary subgradient (the generalized gradient [10])
at each point.

The aim of our research is not to foreground some method over the others—it is
a well-known fact that different methods work well for different types of problems
and none of them is good for all types of problems—but to get some kind of insight
on which kind of method to select for certain types of problems.

This work is organized as follows. Section 15.2 introduces the NSO methods
tested and compared. The results of the numerical experiments are presented and
discussed in Sects. 15.3 and 15.4 concludes the work and gives our credentials for
well-performing algorithms for different problem classes.

In what follows, we denote by ‖ · ‖ the Euclidean norm in R
n and by aT b the

inner product of the vectors a and b. The subdifferential ∂f (x) [10] of a locally
Lipschitz continuous function f :Rn→R at any point x ∈R

n is given by

∂f (x)= conv
{

lim
i→∞∇f (xi ) | xi → x and ∇f (xi ) exists

}
,

where “conv” denotes the convex hull of a set. Each vector ξ ∈ ∂f (x) is called a
subgradient.

15.2 Methods

In this section, we give short descriptions of the methods to be compared. For more
details we refer to [22] and to the original references. In what follows (if not stated
otherwise), we assume that at every point x we can evaluate the value of the objec-
tive function f (x) and an arbitrary subgradient ξ from the subdifferential ∂f (x).
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15.2.1 Standard Subgradient Method

The first method to be considered here is the cornerstone of NSO: the standard
subgradient method [42]. The idea behind subgradient methods (Kiev methods) is
to generalize smooth methods (e.g., the steepest descent method) by replacing the
gradient with an arbitrary subgradient. Therefore, the iteration formula for these
methods is

xk+1 = xk − tk
ξ k
‖ξ k‖

,

where ξ k ∈ ∂f (xk) is any subgradient and tk > 0 is a predetermined step size.
Due to this simple structure and low storage requirements, subgradient methods

are widely used methods in NSO. However, basic subgradient methods suffer from
some serious disadvantages: a nondescent search direction may occur and thus, the
selection of step size is difficult; there exists no implementable subgradient-based
stopping criterion; and the convergence speed is poor (not even linear) (see, e.g.,
[26]).

The standard subgradient method is proved to be globally convergent if the ob-
jective function is convex and the step sizes satisfy

lim
k→∞ tk = 0 and

∞∑
j=1

tj =∞.

15.2.2 Shor’s r-Algorithm (Space Dilation Method)

Next we shortly describe the ideas of a more sophisticated subgradient method, the
well-known Shor’s r-algorithm with space dilations along the difference of two suc-
cessive subgradients. The basic idea of Shor’s r-algorithm is to interpolate between
the steepest descent and conjugate gradient method.

The iteration formula for Shor’s r-algorithm is

xk+1 = xk − tkBk+1B
T
k+1ξ k,

where ξ k ∈ ∂f (xk) and tk > 0. The space dilation matrix Bk+1 is initialized with
B1 = I and it is updated by

Bk+1 = Bk

(
I + (β − 1)sksTk

)
,

where β ∈ (0,1), sk = rk/‖rk‖ and rk = BT
k (ξ k − ξ k−1).

In order to turn the above r-algorithm into an efficient optimization routine, one
has to find a solution to the following problems: how to choose the step sizes tk
(including the initial step size t1) and how to design a stopping criterion which does
not need information on subgradients.
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If the objective function is convex and twice continuously differentiable, its Hes-
sian is Lipschitz, and the starting point is chosen from some neighborhood of the
optimal solution, then the n-step quadratic rate convergence can be proved for the
r-algorithm. If the objective function is nonconvex and coercive under some addi-
tional assumptions, then the r-algorithm is convergent to isolated local minimiz-
ers [42].

15.2.3 Proximal Bundle Method (PBM)

In this subsection, we describe the ideas of the proximal bundle method (PBM) for
nonsmooth and nonconvex minimization (see, e.g., [24, 35, 41]).

The basic idea of bundle methods is to approximate the whole subdifferential of
the objective function instead of using only one arbitrary subgradient at each point.
In practice, this is done by gathering subgradients from the previous iterations into
a bundle. Suppose that at the k-th iteration of the algorithm we have the current iter-
ation point xk and some trial points yj ∈R

n (from past iterations) and subgradients
ξ j ∈ ∂f (yj ) for j ∈ Jk , where the index set Jk �= ∅ and Jk ⊂ {1, . . . , k}.

The idea behind the PBM is to approximate the objective function f below by a
piecewise linear function, that is, f is replaced by the so-called cutting-plane model

f̂k(x)=max
j∈Jk

{
f (yj )+ ξTj (x− yj )

}
. (15.2)

This model can be written in an equivalent form

f̂k(x)=max
j∈Jk

{
f (xk)+ ξTj (x− xk)− αk

j

}
,

where

αk
j = f (xk)− f (yj )− ξTj (xk − yj ) for all j ∈ Jk

is a so-called linearization error. If f is convex, then f̂k is an underestimate for f
and αk

j ≥ 0 for all j ∈ Jk . In the nonconvex case, these facts are not valid anymore

and thus the linearization error αk
j can be replaced by the so-called subgradient

locality measure (cf. [23])

βk
j =max

{∣∣αk
j

∣∣, γ ‖xk − yj‖2}, (15.3)

where γ ≥ 0 is the distance measure parameter (γ = 0 if f is convex). Then obvi-
ously βk

j ≥ 0 for all j ∈ Jk and minx∈K f̂k(x)≤ f (xk).
The descent direction is calculated by

dk = arg min
d∈Rn

{
f̂k(xk + d)+ 1

2
ukdT d

}
, (15.4)
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where the stabilizing term 1
2ukdT d guarantees the existence of the solution dk and

keeps the approximation local enough. The weighting parameter uk > 0 improves
the convergence rate and accumulates some second order information about the cur-
vature of f around xk (see, e.g., [24, 35, 41]).

In order to determine the step size into the search direction dk , the PBM uses the
following line search procedure: Assume that mL ∈ (0, 1

2 ), mR ∈ (mL,1) and t̄ ∈
(0,1] are some fixed line search parameters. We first search for the largest number
tkL ∈ [0,1] such that tkL ≥ t̄ and

f
(
xk + tkLdk

)≤ f (xk)+mLt
k
Lvk, (15.5)

where vk is the predicted amount of descent

vk = f̂k(xk + dk)− f (xk) < 0.

If such a parameter exists, we take a long serious step

xk+1 = xk + tkLdk and yk+1 = xk+1. (15.6)

Otherwise, if (15.5) holds but 0 < tkL < t̄ , we take a short serious step

xk+1 = xk + tkLdk and yk+1 = xk + tkRdk

and, if tkL = 0, we take a null step

xk+1 = xk and yk+1 = xk + tkRdk, (15.7)

where tkR > tkL is such that

−βk+1
k+1 + ξTk+1dk ≥mRvk. (15.8)

In short serious steps and null steps there exists discontinuity in the gradient of f .
Then the requirement (15.8) ensures that xk and yk+1 lie on the opposite sides of
this discontinuity and the new subgradient ξ k+1 ∈ ∂f (yk+1) will force a remarkable
modification of the next search direction finding problem. The iteration is terminated
if vk ≥−εs , where εs > 0 is a final accuracy tolerance supplied by the user.

Under the upper semi-smoothness assumption [6] the PBM can be proved to be
globally convergent for locally Lipschitz continuous functions (see, e.g., [24, 35]).
In addition, in order to implement the above algorithm one has to bound somehow
the number of stored subgradient and trial points, that is, the cardinality of the index
set Jk . The global convergence of bundle methods with a limited number of stored
subgradients can be guaranteed by using a subgradient aggregation strategy [23],
which accumulates information from the previous iterations. The convergence rate
of the PBM is linear for convex functions [39] and for piecewise linear problems the
PBM achieves a finite convergence [41].
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15.2.4 Bundle Newton Method (BNEW)

Next we describe the main ideas of the second-order bundle-Newton method
(BNEW) [29]. We suppose that at each x ∈ R

n we can evaluate, in addition to the
function value and an arbitrary subgradient ξ ∈ ∂f (x), also an n× n symmetric ma-
trix G(x) approximating the Hessian matrix ∇2f (x). Now, instead of the piecewise
linear cutting-pane model (15.2) we introduce a piecewise quadratic model of the
form

f̃k(x)=max
j∈Jk

{
f (yj )+ ξTj (x− yj )+ 1

2
$j (x− yj )T Gj (x− yj )

}
, (15.9)

where Gj = G(yj ) and $j ∈ [0,1] is some damping parameter. The model (15.9)
can be written equivalently as

f̃k(x)=max
j∈Jk

{
f (xk)+ ξTj (x− xk)+ 1

2
$j (x− xk)T Gj (x− xk)− αk

j

}

and for all j ∈ Jk the linearization error takes the form

αk
j = f (xk)− f (yj )− ξTj (xk − yj )− 1

2
$j (xk − yj )T Gj (xk − yj ). (15.10)

Note that now, even in the convex case, αk
j might be negative. Therefore we replace

the linearization error (15.10) by the subgradient locality measure (15.3) and we
remain the property minx∈Rn f̃k(x)≤ f (xk) (see [29]).

The search direction dk ∈R
n is now calculated as the solution of

dk = arg min
d∈Rn

{
f̃k(xk + d)

}
. (15.11)

The line search procedure of the BNEW follows the same principles than in the
PBM (see Sect. 15.2.3). The only remarkable difference occurs in the termination
condition for short and null steps. In other words, (15.8) is replaced by two condi-
tions

−βk+1
k+1 +

(
ξ k+1
k+1

)T
dk ≥mRvk

and

‖xk+1 − yk+1‖ ≤ CS,

where CS > 0 is a parameter supplied by the user.
Under the upper semi-smoothness assumption [6] the BNEW can be proved to

be globally convergent for locally Lipschitz continuous objective functions. For
strongly convex functions, the convergence rate of the BNEW is superlinear [29].
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15.2.5 Limited Memory Bundle Method (LMBM)

In this subsection, we very shortly describe the limited memory bundle algorithm
(LMBM) [15, 16] for solving general, possibly nonconvex, large-scale NSO prob-
lems. The method is a hybrid of the variable metric bundle methods [44] and the
limited memory variable metric methods (see, e.g., [9]), where the first ones have
been developed for small- and medium-scale nonsmooth optimization and the latter
ones, on the contrary, for smooth large-scale optimization.

LMBM exploits the ideas of the variable metric bundle methods, namely the
utilization of null steps, simple aggregation of subgradients, and the subgradient
locality measures, but the search direction dk is calculated using a limited memory
approach. That is,

dk =−Dk ξ̃ k,

where ξ̃ k is an (aggregate) subgradient and Dk is the limited memory variable metric
update that, in the smooth case, represents the approximation of the inverse of the
Hessian matrix. Note that the matrix Dk is not formed explicitly but the search
direction dk is calculated using the limited memory approach.

The LMBM uses the original subgradient ξ k after the serious step (cf. (15.6)) and
the aggregate subgradient ξ̃ k after the null step (cf. (15.7)) for direction finding (i.e.
we set ξ̃ k = ξ k if the previous step was a serious step). The aggregation procedure is
carried out by determining multipliers λki satisfying λki ≥ 0 for all i ∈ {1,2,3}, and∑3

i=1 λ
k
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξ k+1 + λ3ξ̃ k]T Dk[λ1ξm + λ2ξ k+1 + λ3ξ̃ k]
+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f (xk) is the current subgradient (m denotes the index of the iteration
after the latest serious step, i.e. xk = xm), ξ k+1 ∈ ∂f (yk+1) is the auxiliary sub-
gradient, and ξ̃ k is the current aggregate subgradient from the previous iteration
(ξ̃1 = ξ1). In addition, βk+1 is the current subgradient locality measure (cf. (15.3))
and β̃k is the current aggregate subgradient locality measure (β̃1 = 0). The resulting
aggregate subgradient ξ̃ k+1 and the aggregate subgradient locality measure β̃k+1 are
computed from the formulae

ξ̃ k+1 = λk1ξm + λk2ξ k+1 + λk3ξ̃ k and β̃k+1 = λk2βk+1 + λk3β̃k.

The line search procedure used in the LMBM is rather similar to that used
in the PBM (see Sect. 15.2.3). However, due to the simple aggregation proce-
dure above only one trial point yk+1 = xk + tkRdk and a corresponding subgradient
ξ k+1 ∈ ∂f (yk+1) need to be stored.

As a stopping parameter, we use the value wk = −ξ̃
T

k dk + 2β̃k and we stop if
wk ≤ εs for some user specified εs > 0. The parameter wk is also used during the
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line search procedure to represent the desirable amount of descent (cf. vk in the
PBM).

In the LMBM both the limited memory BFGS (L-BFGS) and the limited memory
SR1 (L-SR1) update formulae [9] are used in calculations of the search direction and
the aggregate values. The idea of limited memory matrix updating is that instead of
storing large n × n matrices Dk , one stores a certain (usually small) number of
vectors obtained at the previous iterations of the algorithm, and uses these vectors
to implicitly define the variable metric matrices. In the case of a null step, we use the
L-SR1 update, since this update formula allows us to preserve the boundedness and
some other properties of generated matrices which guarantee the global convergence
of the method. Otherwise, since these properties are not required after a serious step,
the more efficient L-BFGS update is employed (for more details, see [15, 16]).

Under the upper semi-smoothness assumption [6] the LMBM can be proved to
be globally convergent for locally Lipschitz continuous objective functions [16].

15.2.6 Discrete Gradient Method (DGM)

Next we briefly describe the discrete gradient method (DGM) [3]. The idea of the
DGM is to hybridize derivative free methods with bundle methods. That is, the
DGM approximates subgradients by discrete gradients using function values only.
Similarly to bundle methods, the previous values of discrete gradients are gathered
into a bundle and the null step is used if the current search direction is not good
enough.

We start with the definition of the discrete gradient. Let us denote by

S1 =
{
g ∈R

n | ‖g‖ = 1
}

the sphere of the unit ball and by

P = {
z | z :R+ →R+, λ > 0, λ−1z(λ)→ 0, λ→ 0

}
the set of univariate positive infinitesimal functions. In addition, let

G= {
e ∈R

n | e= (e1, . . . , en), |ej | = 1, j = 1, . . . , n
}

be a set of all vertices of the unit hypercube in R
n. We take any g ∈ S1, e ∈G, z ∈ P ,

a positive number α ∈ (0,1], and we compute i = arg max{|gj |, j = 1, . . . , n}. For
e ∈G we define the sequence of n vectors ej (α)= (αe1, α

2e2, . . . , α
j ej ,0, . . . ,0)

j = 1, . . . , n and for x ∈R
n and λ > 0, we consider the points

x0 = x+ λg, xj = x0 + z(λ)ej (α), j = 1, . . . , n.

Definition 15.1 The discrete gradient of the function f at the point x ∈ R
n is the

vector Γ i(x,g, e, z, λ,α)= (Γ i
1 , . . . ,Γ

i
n ) ∈R

n with the following coordinates:

Γ i
j =

[
z(λ)αj ej )

]−1[
f (xj )− f (xj−1)

]
, j = 1, . . . , n, j �= i,
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Γ i
i = (λgi)

−1

[
f (x+ λg)− f (x)− λ

n∑
j=1,j �=i

Γ i
j gj

]
.

It has been proved in [3] that the closed convex set of discrete gradients

D0(x, λ) = cl conv
{
v ∈R

n | ∃g ∈ S1, e ∈G, z ∈ P

such that v= Γ i(x,g, e, z, λ,α)
}

is an approximation to the subdifferential ∂f (x) for sufficiently small λ > 0. Thus,
it can be used to compute the descent direction for the objective. However, the com-
putation of the whole set D0(x, λ) is not easy, and therefore, in the DGM we use
only a few discrete gradients from the set to calculate the descent direction.

Let us denote by l the index of the subiteration in the direction-finding procedure,
by k the index of the outer iteration, and by s the index of the inner iteration. In what
follows we use only the iteration counter l whenever possible without confusion. At
every iteration ks we first compute the discrete gradient v1 = Γ i(x,g1, e, z, λ,α)
with respect to any initial direction g1 ∈ S1 and we set the initial bundle of discrete
gradients D̄1(x)= {v1}. Then we compute the vector

wl = arg min
w∈D̄l(x)

‖w‖2,

that is the distance between the convex hull D̄l(x) of all computed discrete gradi-
ents and the origin. If this distance is less than a given tolerance δ > 0, we accept
the point x as an approximate stationary point and go to the next outer iteration.
Otherwise, we compute another search direction

gl+1 =− wl

‖wl‖
and we check whether this direction is descent. If it is, we have

f (x+ λgl+1)− f (x)≤−c1λ‖wl‖,
with the given numbers c1 ∈ (0,1) and λ > 0. Then we set dks = gl+1, vks = wl

and stop the direction finding procedure. Otherwise, we compute another discrete
gradient vl+1 = Γ i(x,gl+1, e, z, λ,α) into the direction gl+1, update the bundle of
discrete gradients

D̄l+1(x)= conv
{
D̄l(x)∪ {vl+1}

}
and continue the direction finding procedure with l = l+1. Note that at each subiter-
ation the approximation of the subdifferential ∂f (x) is improved. It has been proved
in [3] that the direction finding procedure is terminating.

In [3], it is proved that the DGM is globally convergent for locally Lipschitz con-
tinuous functions under the assumption that the set of discrete gradients uniformly
approximates the subdifferential.
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15.2.7 Quasisecant Method (QSM)

In this subsection, we briefly describe the quasisecant method (QSM) [2]. Here, it
is again assumed that one can compute both the function value and one subgradient
at any point.

The QSM can be considered as a hybrid of bundle methods and the gradient
sampling method [8]. The method builds up information about the approximation of
the subdifferential using a bundling idea, which makes it similar to bundle methods,
while subgradients are computed from a given neighborhood of a current iteration
point, which makes the method similar to the gradient sampling method.

We start this subsection with the definition of a quasisecant for locally Lipschitz
continuous functions.

Definition 15.2 A vector v ∈ R
n is called a quasisecant of the function f at the

point x ∈R
n in the direction g ∈ S1 with the length h > 0 if

f (x+ hg)− f (x)≤ hvT g.

We will denote this quasisecant by v(x,g, h).
For a given h > 0 let us consider the set of quasisecants at a point x

QSec(x, h)= {
w ∈R

n | ∃g ∈ S1 s.t. w= v(x,g, h)
}

and the set of limit points of quasisecants as h↘ 0:

QSL(x) =
{

w ∈R
n | ∃g ∈ S1, hk > 0, hk↘ 0 when k→∞

s.t. w= lim
k→∞v(x,g, hk)

}
.

A mapping x *→QSec(x, h) is called a subgradient-related (SR)-quasisecant map-
ping if the corresponding set QSL(x) ⊆ ∂f (x) for all x ∈ R

n. In this case, the el-
ements of QSec(x, h) are called SR-quasisecants. In the sequel, we will consider
sets QSec(x, h) which contain only SR-quasisecants.

It has been shown in [2] that the closed convex set of quasisecants

W0(x, h)= cl convQSec(x, h)

can be used to find a descent direction for the objective with any h > 0. However,
it is not easy to compute the entire set W0(x, h), and therefore we use only a few
quasisecants from the set to calculate the descent direction in the QSM.

The procedures used in the QSM are pretty similar to those in the DGM but
instead of the discrete gradient vl = Γ i(x,gl , e, z, λ,α) we use here the quasisecant
vl(x,gl , h). Thus, at every iteration ks we compute the vector

wl = arg min
w∈V̄l (x)

‖w‖2,
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Table 15.1 Tested pieces of software

Software Author(s) Method Reference

SUBG Karmitsa Subgradient [42]

SolvOpt Kuntsevich & Kappel Shor’s r-algorithm [19, 25, 42]

PBNCGC Mäkelä Proximal bundle [33, 35]

PNEW Lukšan & Vlček Bundle-Newton [29]

LMBM Karmitsa Limited memory bundle [15, 16]

DGM Bagirov et al. Discrete Gradient [3]

QSM Bagirov & Ganjehlou QuasiSecant [2]

where V̄l(x) is a set of all quasisecants computed so far. If ‖wl‖ < δ with a given
tolerance δ > 0, we accept the point x as an approximate stationary point, a so-
called (h, δ)-stationary point [2], and we go to the next outer iteration. Otherwise,
we compute another search direction gl+1 =−wl/‖wl‖ and we check whether this
direction is descent or not. If it is, we set dks = gl+1, vks =wl and stop the direction-
finding procedure. Otherwise, we compute another quasisecant vl+1(x,gl+1, h), up-
date the bundle of quasisecants V̄l+1(x)= conv{V̄l(x)∪{vl+1(x,gl+1, h)}} and con-
tinue the direction-finding procedure with l = l + 1. It has been proved in [2] that
the direction-finding procedure is terminating. When the descent direction dks has
been found, we need to compute the next (inner) iteration point similarly to that in
the DGM.

The QSM is globally convergent for locally Lipschitz continuous functions un-
der the assumption that the set QSec(x, h) is a SR-quasisecant mapping, that is,
quasisecants can be computed using subgradients [2].

15.3 Numerical Experiments

In what follows, we compare the implementations of the methods described above.
The more detailed description about the test results can be found in [21].

15.3.1 Solvers

The tested optimization codes are presented in Table 15.1. The codes or links for
downloading the codes are available from http://napsu.karmitsa.fi/nsosoftware/. The
experiments were performed on an Intel® Core™ 2 CPU 1.80 GHz.
SUBG is a crude implementation of the basic subgradient algorithm. The step

length is chosen to be to some extent constant. We use the following three criteria
as a stopping rule for SUBG: the number of function evaluations (and iterations) is
restricted by a parameter and also the algorithm stops if either it cannot decrease the

http://napsu.karmitsa.fi/nsosoftware/
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value of the objective function within some successive iterations, or it cannot find a
descent direction within some successive iterations. Since a subgradient method is
not a descent method, we store the best value fbest of the objective function and the
corresponding point xbest and return them as a solution if any of the stopping rules
above is met.
SolvOpt (a solver for local nonlinear optimization problems) is an implemen-

tation of Shor’s r-algorithm. The approaches used to handle the difficulties with
step size selection and termination criteria in Shor’s r-algorithm are heuristic (for
details see [19]). In SolvOpt one can select to use either original subgradients
or their difference approximations (i.e. the user does not have to code difference
approximations but to select one parameter to do this automatically). In our exper-
iments we have used both analytically and numerically calculated subgradients. In
what follows, we denote SolvOptA and SolvOptN, respectively, the correspond-
ing solvers. There exist MatLab, C, and Fortran source codes for SolvOpt. In our
experiments we used SolvOpt v.1.1 HP-UX FORTRAN-90 sources. To compile
the code, we used gfortran, the GNU Fortran 95 compiler.
PBNCGC is an implementation of the most frequently used bundle method in

NSO, that is, the proximal bundle method. The code includes the constraint han-
dling (bound constraints, linear constraints, and nonlinear/nonsmooth constraints).
The quadratic direction-finding problem (15.4) is solved by the subroutine PLQDF1
implementing dual projected gradient method proposed in [27].
PNEW is a bundle-Newton solver for unconstrained and linearly constrained

NSO. We used the numerical calculation of the Hessian matrix in our experiments
(this can be done automatically). The quadratic direction-finding problem (15.11) is
solved by the same subroutine PLQDF1 [27] like in PBNCGC.
LMBM is an implementation of a limited memory bundle method specifically de-

veloped for large-scale nonsmooth problems. In our experiments we used the adap-
tive version of the code with the initial number of stored correction pairs (used to
form the variable metric update) equal to 7 and the maximum number of stored cor-
rection pairs equal to 15. These values have been chosen according to the numerical
experiments.
DGM is a discrete gradient solver for derivative free optimization. To apply DGM,

one only needs to be able to compute at every point x the value of the objective
function and the subgradient will be approximated.
QSM is a quasisecant solver for nonsmooth, possibly nonconvex minimization.

We have used both analytically calculated subgradients and approximated subgra-
dients in our experiments (this can be done automatically by selecting one param-
eter). In what follows, we denote QSMA and QSMN, respectively, the corresponding
solvers.

All the algorithms but SolvOpt were implemented in Fortran77 with double-
precision arithmetic. To compile the codes, we used g77, the GNU Fortran 77 com-
piler.
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15.3.2 Problems

We consider ten types of problems:

XSC: Extra-small convex problems, n ≤ 20 ([31, Problems 2.1–2.7, 2.9, 2.22 and
2.23, and 3.4–3.8, 3.10, 3.12, 3.16, 3.19 and 3.20]);

XSNC: Extra-small nonconvex problems ([31, Problems 2.8, 2.10–2.12, 2.14–2.16,
2.18–2.21, 2.24 and 2.25, and 3.1, 3.2, 3.15, 3.17, 3.18 and 3.25]);

SC: Small-scale convex problems, n = 50 ([15, Problems 1–5], Problems 2 and 5
in TEST29 [28], and six maximum of quadratic functions [21]);

SNC: Small-scale nonconvex problems ([15, Problems 6–10], and Problems 13, 17
and 22 in TEST29 [28], and six maximum of quadratic functions);

MC and MNC: Medium-scale convex and nonconvex problems, n = 200 (see SC
and SNC problems);

LC and LNC: Large-scale convex and nonconvex problems, n= 1000 (see MC and
MNC problems);

XLC and XLNC: Extra-large-scale convex and nonconvex problems, n = 4000
(see MC and MNC problems but only two maximum of quadratics with a diag-
onal matrix);

Problems 2, 5, 13, 17, and 22 in TEST29 are from the software package UFO
(Universal Functional Optimization) [28]. The problems were selected so that in all
cases all the solvers converged to the same local minimum. However, it is worth
mentioning that, in the case of different local minima (i.e. in some nonconvex prob-
lems omitted from the test set), solvers LMBM, SolvOpt, and SUBG usually con-
verged to the same local minimum, while PBNCGC, DGM, and QSM converged to
a different local minimum. The solver PNEW converged sometimes with the first
group and some other times with the second. Moreover, DGM and QSM seem to have
an aptitude for finding global or at least smaller local minima than the other solvers.
For example, in Problems 3.13 and 3.14 in [31] all the other solvers converged to
the minimum reported in [31] but DGM and QSM “converged” to minus infinity.

15.3.3 Termination, Parameters, and Acceptance of the Results

The determination of stopping criteria for different solvers, such that the comparison
of different methods is fair, is not a trivial task.

We say that a solver finds the solution with respect to a tolerance ε > 0 if

fbest − fopt

1+ |fopt | ≤ ε,

where fbest is a solution obtained with the solver and fopt is the best-known (or
optimal) solution.
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We fixed the stopping criteria and parameters for the solvers using three different
problems from three different problem classes: Problem 2.4 in [31] (XSC), Prob-
lem 3.15 in [31] (XSNC), and Problem 3 in [15] with n = 50 (SC). With all the
solvers we sought the loosest termination parameters such that the results for all the
three test problems were still acceptable with respect to the tolerance ε = 10−4. In
addition to the usual stopping criteria of the solvers, we terminated the experiments
if the elapsed CPU time exceeded half an hour.

We have accepted the results for XS and S problems (n ≤ 50) with respect to
the tolerance ε = 5 × 10−4. With larger problems (n ≥ 200), we have accepted
the results with the tolerance ε = 10−3. In what follows, we report also the results
for all problem classes with respect to the relaxed tolerance ε = 10−2 to have an
insight into the reliability of the solvers (i.e. is a failure a real failure or is it just
an inaccurate result which could possible be prevented with a more tight stopping
parameter).

With all the bundle-based solvers the distance measure parameter value γ = 0.5
was used with nonconvex problems. With PBNCGC and LMBM the value γ = 0 was
used with convex problems and, since with PNEW γ has to be positive, γ = 10−10

was used with PNEW. For those solvers storing subgradients (or approximations of
subgradients)—that is, PBNCGC, PNEW, LMBM, DGM, and QSM—the maximum size
of the bundle was set to min{n+3,100}. For all other parameters we used the default
settings of the codes.

15.3.4 Results

The results are summarized in Figs. 15.1–15.8 and in Table 15.2. The results are
analyzed using the performance profiles introduced in [13]. We compare the effi-
ciency of the solvers both in terms of computational times and numbers of function
and subgradient evaluations (evaluations for short). In the performance profiles, the
value of ρs(τ ) at τ = 0 gives the percentage of test problems for which the corre-
sponding solver is the best (it uses least computational time or evaluations) and the
value of ρs(τ ) at the rightmost abscissa gives the percentage of test problems that
the corresponding solver can solve, that is, the reliability of the solver (this does
not depend on the measured performance). Moreover, the relative efficiency of each
solver can be directly seen from the performance profiles: the higher the particular
curve, the better the corresponding solver. For more information on performance
profiles, see [13].

15.3.4.1 Extra-Small Problems

There was not a big difference in the computational times of the different solvers
when solving the XS problems. Thus, only the numbers of function and subgradient
evaluations are reported in Fig. 15.1.
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Fig. 15.1 Evaluations for XS
problems (20 problems with
n≤ 20, ε = 5× 10−4)

PBNCGC was usually the most efficient solver when comparing the numbers of
evaluations. This is, in fact, true for all sizes of problems. Thus, PBNCGC should be
a good choice as a solver in case the objective function value and/or the subgradient
are expensive to compute. However, PBNCGC failed to achieve the desired accuracy
in 25 % of the extra-small problems (both XSC and XSNC) which means that it had
almost the worst degree of success in solving these problems.
SUBG is highly unsuitable for nonconvex problems: it failed in 60 % of the prob-

lems (ε = 5 × 10−4, see Fig. 15.1(b)). On the other hand, SolvOpt was one of
the most reliable solvers together with QSM in both convex and nonconvex set-
tings although, theoretically, Shor’s r-algorithm is not supposed to solve noncon-
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vex problems. SolvOptA was also the most efficient method except for PBNCGC
(especially in the nonconvex case).

Except for SUBG, the solvers did not have big differences in the numbers of
success in solving XSC or XSNC problems. However, it is noteworthy that the QSM
computed nonconvex problems more reliably than convex ones.

Most of the failures reported here are, in fact, inaccurate results: all the solvers
but PNEW succeed in solving equal or more than 95 % of XSC problems with re-
spect to the relaxed tolerance ε = 10−2. The corresponding percentage for XSNC
problems was 85 %, although here also SUBG failed to solve so many problems.

In XSC problems PNEW was the second most efficient solver (see Fig. 15.1(a)).
However, it failed to solve 30 % of the convex problems and 35 % of the nonconvex
problems. The reason for this relatively large number of failures with PNEW is in its
sensitivity to the internal parameter XMAX (RPAR(9) in the code) which is noted
also in [30]. If we, instead of only one (default) value, used a selected value for this
parameter, also the solver PNEW solved 85 % of XSNC problems.

The derivative-free solvers DGM and QSMN performed similarly in these small-
scale problems but QSMN was clearly more reliable in the nonconvex case.
SolvOptN usually used less evaluations than the derivative-free solvers both in
XSC and XSNC problems. However, in the nonconvex case, also SolvOptN lost
out to QSMN in reliability.

15.3.4.2 Small-Scale Problems

Already with small-scale problems, there was a wide diversity on the computational
times of different codes. Moreover, the numbers of evaluations used with solvers
were no longer directly comparable with the elapsed computational times. For in-
stance, PBNCGCwas clearly the winner when comparing the numbers of evaluations
(see Figs. 15.2(b) and 15.3(b)). However, when comparing computational times,
SolvOptA was equally efficient with PBNCGC in SC problems (see Fig. 15.2(a))
and LMBM was the most efficient solver in SNC problems (see Fig. 15.3(a)).
SUBG was clearly the worst solver with respect to both computational times and

evaluations in both SC and SNC problems. It was also the most unreliable solver. It
solved only about 30 % of the convex and 20 % of the nonconvex problems and it
failed in all the quadratic problems.

Also the other subgradient solver SolvOpt had some difficulties with the accu-
racy, especially in the nonconvex case. SolvOptN solved about 77 % of the con-
vex problems with respect to tolerance ε = 5× 10−4 and 92 % with ε = 10−2. For
SolvOptA the corresponding values were 85 % and 92 %. In the nonconvex case,
the values were 64 % vs. 92 % for SolvOptN and 71 % vs. 86 % for SolvOptA.
In other words, SolvOpt would have benefited most if we instead of tolerance
ε = 5× 10−4 had used the relaxed tolerance ε = 10−2 to accept the results. Note,
however, that with small-scale problems SolvOpt was one of the most reliable
solvers.

With the other solvers there were no big differences in solving convex or non-
convex problems apart from PNEW: PNEW solved about 79 % of the nonconvex
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Fig. 15.2 CPU-time and
evaluations for SC problems
(13 problems with n= 50,
ε = 5× 10−4)

problems and only 46 % of the convex problems. Also LMBM succeeded in solving
a little bit more nonconvex than convex problems. In the convex case, PBNCGC,
QSMA, and QSMN succeeded in solving all the problems with the desired accuracy.
With the relaxed tolerance ε = 10−2 also DGM managed to solve all the problems
and all the solvers but PNEW and SUBG succeeded in solving more than 90 % of the
problems. In the nonconvex case, PBNCGC and DGM solved all the problems suc-
cessfully. With a relaxed parameter QSMA and QSMN succeeded as well and all the
solvers except PNEW and SUBG managed to solve more than 85 % of the problems.

The solvers DGM and QSMN behaved rather similarly but QSMN was a little bit
more efficient both with respect to computational times and evaluations. SolvOptN
outperformed these two methods in efficiency but lost clearly in reliability.
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Fig. 15.3 CPU-time and
evaluations for SNC
problems (14 problems with
n= 50, ε = 5× 10−4)

PNEW failed to solve all but one of the convex quadratic problems and succeeded
in solving all but one non-quadratic problems. In the nonconvex case PNEW suc-
ceeded in solving all the quadratic problems but then it had some difficulties with
the other problems. Again, the reason for these failures is in its sensitivity to the
internal parameter XMAX.

In [34], PNEW is reported to be very efficient in quadratic problems. Also in our
experiments, PNEWwas clearly more efficient with the quadratic problems than with
the non-quadratic. However, except for some small problems, it was not the most
efficient method in any of the cases.
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Fig. 15.4 CPU-time and
evaluations for LNC
problems (14 problems with
n= 1000, ε = 10−3)

15.3.4.3 Medium and Large-Scale Problems

The results for medium and large-scale problems reveal similar trends. Thus, we
show here only the results for large problems in Figs. 15.4 and 15.5. More illustrated
results also for medium-scale problems can be found in [21].

When solving medium and large-scale problems, the solvers are divided into two
groups: the first group consists of more efficient solvers: LMBM, PBNCGC, QSMA,
and SolvOptA. The second group consists of solvers using some kind of ap-
proximation for subgradients or Hessian, and SUBG. In the nonconvex case (see
Fig. 15.4), the inaccuracy of SolvOptA made it slide to the group of less efficient
solvers. In Fig. 15.5 illustrating the results with the relaxed tolerance, SolvOptA
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Fig. 15.5 CPU-time and
evaluations for LNC
problems, low accuracy
(14 problems with n= 1000,
ε = 10−2)

is among the more efficient solvers. Nevertheless, its accuracy is not as good as that
of the others. At the same time, the successfully solved quadratic problems almost
lifted PNEW to the group of more efficient solvers in large-scale nonconvex settings
(especially when comparing the numbers of evaluations, see [21]). The similar trend
cannot have been seen here, since in LNC problems the time limit was exceeded in
all the maximum of quadratic problems with PNEW.

Although PBNCGC was usually (on 70 % of medium-sized and 60 % of large
problems) the most efficient solver tested in the convex case, it was also the one that
needed the longest time to compute Problem 3 in [15] (both in medium and large-
scale settings). Indeed, an average time used to solve an MC (LC) problem with
PBNCGC was 15.7 (266.0) seconds while with SolvOptA, LMBM, and QSMA they
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were 1.3 (22.0), 1.6 (54.5), and 4.9 (98.6) seconds, respectively (the average times
are calculated using 9 (7) problems that all the solvers above managed to solve).

In the MNC case, LMBM and PBNCGC were the most efficient solvers. However,
also here with PBNCGC there was notable variation in the computational times for
different problems while with LMBM all the problems were solved equally efficiently.
In LNC settings also the solver QSMA solved the problems quite efficiently (see
Figs. 15.4 and 15.5).

The efficiency of PBNCGC is mostly due to its efficiency in quadratic problems:
it was the most efficient solver in almost all quadratic problems when comparing
the computational times, and superior when comparing the numbers of evaluations.
As before, PNEW failed in all but one of the convex quadratic problems.

Besides usually being the most efficient solver, PBNCGC was also the most
reliable solver tested in medium-scale settings. In the MC case it was the only
solver that succeeded in solving all the problems with the desired accuracy. In the
MNC case QSMA was successful as well. With the relaxed tolerance ε = 10−2 also
SolvOptA, QSMA, QSMN, and DGM managed to solve all the MC problems, while
LMBM and SolvOptN succeeded in solving more than 84 % of the problems. In the
MNC case, LMBM, PBNCGC QSMA, QSMN, and DGM solved all the problems with
the relaxed tolerance.
SolvOptN had some serious difficulties with the accuracy, especially in non-

convex cases. For instance, with the relaxed tolerance SolvOptN solved almost
80 % of the MNC problems while with the tolerance ε = 10−3 less than 30 %.
A similar effect could be seen with SolvOptA, although not as pronounced. Nat-
urally, with the LNC problems the difficulties with the accuracy degenerated (see
Figs. 15.4 and 15.5).

Also LMBM and QSMA had some difficulties with the accuracy in the LNC case
(see Fig. 15.4). With the relaxed tolerance, they solved all LNC problems (see
Fig. 15.5). With this tolerance LMBM was clearly the most efficient solver in non-
quadratic problems and the computational times of both LMBM and QSMAwere com-
parable with those of PBNCGC in the whole test set.

The solvers PBNCGC, DGM, and QSM were the only solvers which solved two LC
problems in which there is only one nonzero element in the subgradient vector (i.e.
Problem 1 in [15] and Problem 2 in TEST29 [28]). With the other methods, there
were some difficulties already with n = 50 and some more with n = 200. (Note
that for small, medium and large-scale settings, the problems are the same, only the
number of variables is changing.) In the case of LMBM these difficulties are easy to
explain: the approximation of the Hessian formed during the calculations is dense
and, naturally, not even close to the real Hessian in sparse problems. It has been
reported [15] that LMBM is best suited for the problems with a dense subgradient
vector whose components depend on the current iteration point. This result is in line
with the noted result that LMBM solves nonconvex problems very efficiently.

In the LC case PNEW solved all but the above mentioned two problems and the
maximum of quadratics problems. The solvers DGM, LMBM, SUBG, and QSMN failed
to solve (possible in addition to the two above-mentioned problems) two piecewise
linear problems (Problem 2 in [15] and Problem 5 in TEST29 [28]) and QSMA also
failed to solve one of them.
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Naturally, for the solvers using difference approximation or some other approx-
imation based on the calculation of the function or subgradient values, the number
of evaluations (and thus also the computational time) grows enormously when the
number of variables increases. Particularly, in large-scale problems the time limit
was exceeded with all these solvers in all the maximum of quadratic problems.
Thus, the number of failures with these solvers is probably larger than it should
be. Nevertheless, if you need to solve a problem where the subgradient is not avail-
able, the best solver would probably be SolvOptN (only in the convex case) due
to its efficiency or QSMN due to its reliability.

15.3.4.4 Extra-Large Problems

Finally, we tested the most efficient solvers so far, that is LMBM, PBNCGC, QSMA
and SolvOptA, using the problems with n= 4000. In the convex case, the solver
QSMA, which has kept a rather low profile until now, was clearly the most efficient
method although PBNCGC still used the least evaluations. QSMA was also the most
reliable of the solvers tested (see Fig. 15.6(a)).

In the nonconvex case, LMBM and QSMA were approximately equally good in
computational times, evaluations, and reliability (see Fig. 15.6(b)). Here PBNCGC
was the most reliable solver, although with the tolerance ε = 10−2 QSMA was the
only solver that solved all the nonconvex problems. LMBM and PBNCGC failed in
one and SolvOpt in two problems.

As before, LMBM solved all the problems it could solve in a relatively short time
while with all the other solvers there was notable variation in the computational
times elapsed for different problems. However, in the convex case, the efficiency of
LMBM was again ruined by its unreliability.

15.3.4.5 Convergence Speed and Number of Success

In this subsection, we first study (experimentally) the convergence speed of the al-
gorithms using one small-scale convex problem (Problem 3 in [15]). The exact min-
imum value for this function (with n= 50) is −49× 21/2 ≈−69.296.

For the limited memory bundle method the rate of convergence has not been
studied theoretically. However, at least in this particular problem, the solvers LMBM
and PBNCGC converged at approximately the same rate. Moreover, if we study the
number of evaluations, PBNCGC and LMBM seem to have the fastest converge speed
of the solvers tested (see Fig. 15.7(b)) although, theoretically, the proximal bundle
method is only linearly convergent.
SUBG converged linearly but extremely slowly and PNEW, although it finally

found the minimum, did not decrease the value of the function in the first 200 eval-
uations. Naturally, with PNEW a large amount of subgradient evaluations are needed
to compute the approximative Hessian. The solvers SolvOptA, SolvOptN, DGM,
QSMA, and QSMN took a very big step downwards already in iteration two (see
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Fig. 15.6 CPU-times for
convex (9 pc.) and nonconvex
(10 ps.) XL problems
(n= 4000, ε = 10−3)

Fig. 15.7(a)). However, they took quite many function evaluations per iteration.
In Fig. 15.7 it is easy to see that Shor’s r-algorithm (i.e. solvers SolvOptA and
SolvOptN) is not a descent method.

In order to see how quickly the solvers reach some specific level, we studied the
value of the function equal to −69. With PBNCGC it took only 8 iterations to go
below that level. The corresponding values for other solvers were 17 with QSMA
and QSMN, 20 with LMBM and PNEW, and more than 20 with all the other solvers. In
terms of function and subgradient evaluations, the values were 18 with PBNCGC, 64
with LMBM, and 133 with SolvOptA. Other solvers needed more than 200 evalua-
tions to go below −69.
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Fig. 15.7 Function values
versus iterations (a), and
function values versus the
number of function and
subgradient evaluations (b)

The worst of the solvers were SUBG which took 7382 iterations and 14764 evalu-
ations to reach the desired accuracy and stop, and SolvOptN which never reached
the desired accuracy (the final value obtained after 42 iterations and 2342 evalua-
tions was −68.915).

Finally, in Fig. 15.8 we give the proportions of the successfully terminated runs
obtained with each solver within the different problem classes. Although we have
already said something about the reliability of the solvers, we study the figure to see
if the convexity or the number of variables have any significant effect on the success
rate of the solvers.

In Fig. 15.8, we see that with both variants of SolvOpt the degree of success
decreases clearly when the number of variables increases or the problem is noncon-
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Fig. 15.8 Proportions of
successfully terminated runs
within different problem
classes: convex problems (a)
and nonconvex problems (b)

vex. In addition, with the solvers that use approximations to subgradient or Hessian
there is a clear drop-out when moving from 200 variables to 1000 variables. At
least one reason for this is that with n= 1000 the solvers terminated because of the
maximum time limit (thus failing to reach the desired accuracy).
DGM and QSMNwere reliable methods both with convex and nonconvex problems

up to 200 variables, while LMBM and PNEW solved the nonconvex problems more
reliably than the convex ones. With PNEW the maximum time limit was exceeded
in many cases with n = 1000, thus the exception. With PNEW the result could be
different if the tuned parameter XMAX was used. With LMBM the result is in harmony
with the earlier claims [15] that LMBM works better for more nonlinear functions.
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PBNCGC solved small-scale and larger problems in a very reliable way but it was
almost the worst solver in extra-small problems. This result has probably nothing to
do with the problem’s size but more with the different problem classes used.

15.4 Conclusions

We have tested the performance of different nonsmooth optimization solvers in the
solution of different nonsmooth problems. The results are summarized in Table 15.2,
where we give our recommendations for the “best” solver for different problem
classes. Since it is not always unambiguous what the best option is, we give cre-
dentials both in the cases where the most efficient (in terms of used computer time)
and the most reliable solver are sought out. If there is more than one solver recom-
mended in Table 15.2, the solvers are given in alphabetical order. The parenthesis in
the table mean that the solver is not exactly as good as the first one but still a solver
to be reckoned with the problem class.

Although in our experiments we got extremely good results with the proximal
bundle solver PBNCGC, we cannot say that it is clearly the best method tested. The
inaccuracy in extra-small problems, great variations in the computational times oc-
curred in larger problems, and the earlier results obtained make us believe that our
test set favored this solver over the others a little bit. Even so, we can say that
PBNCGC was one of the best solvers tested and it is especially efficient for the max-
imum of quadratic and piecewise linear problems.

On the other hand, the limited memory bundle solver LMBM suffered from ill-
conditioned test problems in convex small, medium, large and extra-large cases.
In the test set there were four problems (out of 13) in which LMBM was known
to have difficulties. In addition, LMBM did not beat PBNCGC in any maximum
of quadratics problems but in one with n = 4000. This, however, is not the in-
feriority of LMBM but rather the superiority of PBNCGC in these kinds of prob-
lems. LMBM was quite reliable in the nonconvex case in all numbers of variables
tested and it solved all the problems—even the largest ones—a in relatively short
time while, for example, with PBNCGC there was great variation on the computa-
tional times of different problems. LMBM works best for (highly) nonlinear func-
tions while for piecewise linear functions it might be a good idea to find another
solver.

In convex extra-small problems, the bundle-Newton solver PNEW was the second
most efficient solver tested. However, PNEW suffers greatly from the fact that it is
very sensitive to the internal parameter XMAX. Already using two values for this
parameter (e.g., default value 1000 and the smallest recommended value 2), the
results would have been much better and especially the degree of success would
have been much higher. The solver has been reported to be best suited for quadratic
problems [34] and, indeed, it solved (nonconvex) quadratic problems faster that non-
quadratic. However, with n≥ 50 it did not beat the other solvers in these problems
due to the large approximation of the Hessian matrix required.
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Table 15.2 Summation of the results

Problem’s type Problem’s size Seeking for efficiency Seeking for reliability

Convex XS PBNCGC, PNEW(1),
(SolvOpt(A+N))

DGM, SolvOpt(A+N)

S, M, L LMBM(2), PBNCGC,
(QSMA, SolvOptA)

PBNCGC, QSMA

XL LMBM(2), QSMA QSMA, (PBNCGC)

Nonconvex XS PBNCGC,
SolvOptA, (QSMA)

QSM(A+N), (SolvOptA)

S, M, L LMBM, PBNCGC, (QSMA) DGM, LMBM, PBNCGC

XL LMBM, QSMA PBNCGC, (LMBM, QSMA)

Piecewise linear
or sparse

XS, S PBNCGC, SolvOptA PBNCGC, SolvOptA

M, L, XL PBNCGC, QSMA(3) DGM, PBNCGC, QSMA

Piecewise quadratic XS PBNCGC, PNEW(1),
(LMBM, SolvOptA)

LMBM, PBNCGC,
PNEW(1), SolvOptA

S, M, L, XL LMBM, PBNCGC,
(SolvOptA)

DGM, LMBM, PBNCGC, QSMA

Highly nonlinear XS LMBM, PBNCGC,
SolvOptA

LMBM, QSMA, SolvOptA

S LMBM, PBNCGC LMBM, PBNCGC, QSMA

M, L, XL LMBM LMBM, QSMA

Function evaluations
are expensive

XS PBNCGC, (PNEW(1),
SolvOptA)

QSMA, SolvOptA

S, M, L, XL PBNCGC, (LMBM(4),
SolvOptA)

PBNCGC, (LMBM(4), QSMA)

Subgradients are
not available

XS SolvOptN QSMN, SolvOptN(5), (DGM)

S, M SolvOptN, QSMN DGM, QSMN

L QSMN, (DGM) DGM, QSMN

The standard subgradient solver SUBG is usable only for extra-small convex
problems: the degree of success was 80 % in XSC, otherwise it was less than 40 %.
In addition, the implementations of Shor’s r-algorithm SolvOptA and SolvOptN
did their best in extra-small problems (also in the nonconvex case!). Neverthe-
less, SolvOptA solved also medium, large and even extra-large problems (con-
vex) rather efficiently. In larger nonconvex problems these methods suffered from
inaccuracy.

Thus, when comparing the reliability in medium-scale settings, it seems that one
should select PBNCGC for convex problems while LMBM is good for nonconvex
problems. On the other hand, the quasi-secant solver QSMA was reliable and effi-
cient both in convex and nonconvex medium-sized problems. However, with QSMA
there was some variation on the computational times of different problems (not as
much as PBNCGC, though) while LMBM solved all the problems in a relatively short
time.
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The solvers using discrete gradients, that is, the discrete gradient solver DGM and
the quasisecant solver with discrete gradients, QSMN, usually lost out in efficiency
to the solvers using analytical subgradients. However, in extra-small and small-scale
problems the differences were not significant and the reliability of DGM and QSMN
seems to be very good both with convex and nonconvex problems. Moreover in the
case of highly nonconvex functions (supposing that you seek for global optimum)
DGM or QSM (either with or without subgradients) would be a good choice, since
these methods tend to jump over the narrow local minima.
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28. Lukšan L, Tu̇ma M, Šiška M, Vlček J, Ramešová N (2002) Ufo 2002: Interactive system for
universal functional optimization. Technical report V-883, Academy of Sciences of the Czech
Republic, Prague
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Chapter 16
Shape Optimization via Control of a Shape
Function on a Fixed Domain: Theory and
Numerical Results

Peter Philip and Dan Tiba

Abstract We present a fixed-domain approach for the solution of shape optimiza-
tion problems governed by linear or nonlinear elliptic partial differential state equa-
tions with Dirichlet boundary conditions, where shape optimization is facilitated
via optimal control of a shape function. The method involves extending the state
equation to a larger domain using regularization. Results regarding the convergence
to the original problem are provided as well as differentiability properties of the
control-to-state mappings. An algorithm for the numerical implementation of the
method is stated and, in a series of numerical shape optimization experiments, the
algorithm’s behavior is studied with regard to varying the regularization parameter
and initial conditions.

16.1 Formulation of the Shape Optimization Problems

We discuss shape optimization problems governed by linear or nonlinear elliptic
partial differential equations via a fixed domain approach.

Let E ⊆ D ⊆ R
d , d ∈ N, be some given bounded domains with a Lipschitzian

boundary. Let Ω ⊆D be some (unknown) domain and y ∈H 1
0 (Ω) be the solution

of the following equation defined in Ω :

∫
Ω

[
d∑

i,j=1

aij
∂y

∂xi

∂v

∂xj
+ a0yv

]
dx =

∫
Ω

f vdx, ∀v ∈H 1
0 (Ω). (16.1)
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Here aij , a0 ∈ L∞(D), {aij }i,j=1,d elliptic and f ∈ L2(D).
Alternatively, in Ω , the stationary Navier-Stokes system may be considered:

∫
Ω

[
η

d∑
i,j=1

∂yi

∂xi

∂vj

∂xi
+

d∑
i,j=1

yi
∂yj

∂xi
vj

]
dx =

∫
Ω

d∑
j=1

fjvjdx,

∀v ∈ V (Ω), y ∈ V (Ω). (16.2)

Above, η > 0 is the viscosity, fi ∈ L2(D), and

V (Ω) := clH 1
0 (Ω)

{
y ∈ C∞0 (Ω)d : divy = 0

}
, (16.3)

where clH 1
0 (Ω) denotes the closure in H 1

0 (Ω).

If Ω is Lipschitzian, then V (Ω)= {y ∈H 1
0 (Ω)d : divy = 0} [27], but this is not

valid in general since Lions’ lemma may fail [7]. See [28] for recent progress in this
respect. It is to be noted that the uniqueness is not valid in (16.2).

A general shape optimization problem associated to (16.1) (or to (16.2), (16.3))
consists in the minimization of a cost functional of the form

F(y,Ω)=
∫
Λ

j
(
x, y(x), ∇y(x))dx, (16.4)

where Λ may be E, Ω , or D and y is the solution of the corresponding state system
(extended by 0 to the whole D when Λ=D). The integrand j :D ×R×R

d →R

(respectively j :D×R
d ×R

d×d →R) satisfies measurability, continuity, differen-
tiability, and/or convexity assumptions [17, Thm. A3.15].

A special case of (16.4), frequently used in applications, is

F(y,Ω)=
∫
Λ

j
(
x, y(x)

)
dx, (16.5)

with similar notation as above. An important example is the quadratic functional

J (Ω)= α

∫
Λ

|y − yd |2dx + β

∫
Λ

|∇y −∇yd |2dx,

where α,β ∈ R
+
0 , α + β > 0, yd ∈H 1(D) is given and | · | denotes the modulus or

the Euclidean norm in a finite-dimensional space.
Various constraints may be imposed as well. For instance, if Λ = E, then we

impose

Ω ⊇E (16.6)

for any admissible domain Ω and consequently (16.4), (16.5) make sense. State
constraints may be added as well. In an abstract form, they are written as y ∈K ⊆
H 1

0 (Ω) (respectively K ⊆ V (Ω)), and are usually penalized in the cost functional
by adding (IK)ε(y), the Yosida regularization of the indicator function IK .
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As basic references for this paper, we quote [9, 10, 16, 17]. From the point of
view of the existence of optimal domains, compactness hypotheses have to be re-
quired for the family of admissible domains Uad. In this respect, we mention the uni-
form class C assumptions, studied in detail in [17, Chap. 2]. A special case is that of
uniformly Lipschitzian domains [3], as in (16.2), (16.3). We exemplify with an ex-
istence result from [9], valid even if the state equation (16.2), (16.3) has nonunique
solution.

Theorem 16.1 Under the above conditions on j (·, ·, ·), if Uad is compact with
respect to the complementary Hausdorff-Pompeiu metric for open sets, and if
there is Ω̂ ∈ Uad that together with some solution ŷ ∈ V (Ω̂) of (16.2) satisfies
F(ŷ, Ω̂) <∞, then the shape optimization problem (16.2), (16.3), (16.4), (16.6)
has at least one optimal pair (y∗,Ω∗) ∈ V (Ω∗)×Uad.

In this case, the shape optimization problem (16.2), (16.3), (16.4), (16.6) should
be understood in the sense of singular control problems [12].

In the next section, we describe our method and several properties. The second
part of the paper is devoted to the algorithm and to a numerical study of its behavior.

16.2 The Fixed Domain Method: Main Results

We introduce the family of admissible domains via a shape function g ∈ X(D),
X(D) being a subspace of piecewise continuous mappings defined in D:

Ω =Ωg = int
{
x ∈D : g(x)≥ 0

}
. (16.7)

More precisely, this means that there exists l ∈ N and Ωi ⊆D, i ∈ {1, . . . , l}, open
subsets such that Ωi ∩ Ωj = ∅, i �= j , D =⋃l

i=1 Ωi , and gi ∈ C(D) such that
g|Ωi

= gi for each i ∈ {1, . . . , l}.
If the constraint (16.6) is imposed, then we require

g ≥ 0 in E. (16.8)

Functions g ∈ X(D) are generally called level functions. However, we use the
name shape functions since our approach is different from the well-known method
of Osher and Sethian [18, 24] (see [2, 13, 29] and references therein for recent
advances).

In our approach, the unknown geometry is not considered as “moving” together
with a time-like variable and g ∈X(D) depends just on the spatial variables. More-
over, no Hamilton-Jacobi equation is needed in our approach. It enters the class of
fictitious or embedding methods and it is based on tools from the optimal control
theory. One may compare it with the work of Belytschko et al. [1] and Santosa [21]
(the second method discussed in that paper), but the first reference in this respect
seems to be [14].
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An important approximation property, specific to partial differential equations
with Dirichlet boundary conditions, is at the base of this method. We denote by
Hε :R→R a regularization of the Yosida approximation of the maximal monotone
extension in R×R of the Heaviside function H . For instance

Hε(r) :=

⎧⎪⎪⎨
⎪⎪⎩

1 for r ≥ 0,

ε(r+ε)2−2r(r+ε)2

ε3 for −ε < r < 0,

0 for r ≤−ε.
(16.9)

Other variants are also possible, see [14].
We approximate (16.1) (respectively (16.2)) by

∫
D

[
d∑

i,j=1

aij
∂yε

∂xi

∂v

∂xj
+ a0yεv+ 1

ε

(
1−Hε(g)

)
yεv

]
dx

=
∫
D

f v dx, ∀v ∈H 1
0 (D), yε ∈H 1

0 (D), (16.10)

∫
D

[
η

d∑
i,j=1

∂yεj

∂xi

∂vj

∂xi
+

d∑
i,j=1

yεi

∂yεj

∂xi
vj + 1

ε

(
1−Hε(g)

)
yε · v

]
dx

=
∫
D

f · v dx, ∀v ∈ V (D), yε ∈ V (D). (16.11)

In (16.11), we denote by “·” the inner product in R
d . Notice that Hε(g(x))= 1 for

g(x) ≥ 0 and Hε(g(x)) = 0 for g(x) ≤ −ε. Therefore, Hε(g) defined by (16.9) is
an approximation of the characteristic function of Ωg defined by (16.7). The basic
idea of the approximations (16.10), (16.11) is to penalize yε , respectively yε , outside
Ωg . A similar idea was used for the first time by Kawarada and Natori [15].

In the remainder of this section, we fix d = 3.

Theorem 16.2

(i) If Ω =Ωg is of class C, then yε|Ωg → yg weakly in H 1(Ωg).
(ii) If η > 0 is big with respect to |f |V (D)∗ , then the solution of (16.2) is unique. If

Ω =Ωg is Lipschitzian, then yε|Ωg → yg weakly in H 1(Ωg)
3.

For proofs and more details, we quote [9, 16]. The hypothesis η ≥ c|f |V (D)∗ with
c > 0 “big”, ensures the uniqueness of the solution in (16.2), respectively (16.11).

This approximation allows studying the optimization problems (16.10), (16.4),
(16.6), respectively (16.11), (16.4), (16.6). The following differentiability properties
play an outstanding role:
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Theorem 16.3

(i) The mapping g *→ yε = yε(g) defined by (16.10) is Gâteaux differentiable be-
tween X(D) and H 1

0 (D) and z=∇yε(g)w satisfies the equation in variations:

∫
D

[
3∑

i,j=1

aij
∂z

∂xi

∂v

∂xj
+ a0zv + 1

ε

(
1−Hε(g)

)
zv

]
dx

= 1

ε

∫
D

(
Hε

)′
(g)wyεvdx, ∀v ∈H 1

0 (D), z ∈H 1
0 (D). (16.12)

(ii) The mapping g *→ yε = yε(g) defined by (16.11) is Gâteaux differentiable be-
tween X(D) and V (D) and the derivative in the direction w ∈X(D), denoted
by z= (z1, z2, z3) ∈ V (D), satisfies the equation in variations:

∫
D

[
η

3∑
i,j=1

∂zj

∂xi

∂vj

∂xj
+

3∑
i,j=1

yεi
∂zj

∂xi
vj +

3∑
i,j=1

zi
∂yεj

∂xi
vj

]
dx

+ 1

ε

∫
D

(
1−Hε(g)

)
z · vdx

= 1

ε

∫
D

[(
Hε

)′
(g)w

]
yε · vdx, ∀v ∈ V (D), z ∈ V (D). (16.13)

Starting from (16.12), (16.13) we can introduce the corresponding adjoint equa-
tions that are used in the computation of the gradient of the cost functional with
respect to g ∈ X(D), [9, 16]. Examples of this type are detailed in the second part
of this article. We underline that similar approximation procedures are very useful
in free boundary problems as well [8].

Remark 16.1 The variations used to prove Theorem 16.3 are of the form g + λw,
λ ∈ R, g,w ∈ X(D). They are called functional variations in [16] and allow for
simultaneous changes of the boundary and of the topological characteristic of the
searched domain.

16.3 Numerical Experiments

16.3.1 Setting and Numerical Methods

For all the numerical experiments presented below, we used the square fixed domain
D := ]−1,1[ × ]−1,1[ ⊆ R

2 with the fixed subdomain E := ]− 1
2 ,

1
2 [ × ]− 1

2 ,
1
2 [ ⊆

D, where the shape function constraint (16.8), restated as

g ∈U(D) := {
g ∈X(D) : g ≥ 0 on E

}
, (16.14)
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is used in the numerical examples below, where indicated.
In each experiment, the state equation for yε ∈H 1

0 (D) is a special case of (16.10),
having the form

∫
D

[
∂yε

∂x1

∂v

∂x1
+ ∂yε

∂x2

∂v

∂x2
+ 1

ε

(
1−Hε(g)

)
yεv

]
dx =

∫
D

f v dx, ∀v ∈H 1
0 (D),

(16.15)
with a fixed right-hand side f ≡ 1 (except in Example 16.3), and where the in-
fluence of the regularization parameter ε > 0 is among the aspects subsequently
investigated.

The cost functionals considered for the shape optimization have the general form

J :X(D)→R, g *→ J (g)= F
(
S(g), g

)
, (16.16)

where F : H 1
0 (D) × X(D)→ R and S : X(D)→ H 1

0 (D), S(g) = yε(g), is the
control-to-state operator corresponding to (16.15).

The shape optimization algorithm used here is structurally the same that was pre-
viously described in [16, Sect. 5]. The algorithm is restated for the convenience of
the reader, which also provides us with the opportunity to elaborate on the individual
steps of the algorithm, where appropriate.

Algorithm 16.1 Shape optimization

Step 1 Set n := 0 and choose an admissible initial shape function g0 ∈X(D).
Step 2 Compute the solution to the state equation yn = yε = S(gn) (note that ε > 0

is fixed throughout the algorithm).
Step 3 Compute the solution to the corresponding adjoint equation pn = pε .
Step 4 Compute a descent direction wd,n =wd,n(yn,pn).
Step 5 Set g̃n := gn+ λn wd,n, where λn ≥ 0 is determined via line search, i.e. as a

solution to the minimization problem

λ *→ J (gn + λwd,n)→min. (16.17)

We have implemented a golden section search [20, Sect. 10.2] to numeri-
cally carry out the minimization (16.17). Note that the minimization (16.17)
is typically nonconvex and the golden section search will, in general, only
provide a local min λn. As usual, this can be alleviated by stochastically
varying the initial guess for the line search (no such stochastic variation has
been used for the computational results presented below).

Step 6 Set gn+1 := πU(D)(g̃n), where πU(D) denotes the projection

πU(D) :X(D)→U(D), πU(D)(g)(x) :=
{

max{0, g(x)} for x ∈E,

g(x) for x ∈D \E
(16.18)

(and U(D)=X(D), πU(D)(g)= g if no constraints are imposed).
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Step 7 RETURN gfin := gn+1 if the change of g and/or the change of J (g) are
below some prescribed tolerance parameter. Otherwise: Increment n, i.e.
n := n + 1 and GO TO Step 2. Clearly, one can think of several reason-
able quantities for measuring the change of g and/or the change of J (g).
For all the numerical examples discussed subsequently, we stopped the it-
eration and returned gfin := gn+1 if ‖gn − gn+1‖2 < 10−8 OR |J (gn) −
J (gn+1)| < 10−8, where ‖gn − gn+1‖2/‖gn+1‖2 is used instead of ‖gn −
gn+1‖2 if ‖gn+1‖2 > 1 and |J (gn)− J (gn+1)|/|J (gn+1)| is used instead of
|J (gn)− J (gn+1)| if |J (gn+1)|> 1.

The state equations as well as the adjoint equations that need to be solved numer-
ically during Algorithm 16.1 are linear elliptic PDEs with homogeneous Dirich-
let boundary conditions. The numerical solution is obtained via a finite volume
discretization [19, Sect. 4], [4, Chap. III]. More precisely, the software WIAS-
HiTNIHS,1 originally designed for the solution of more general PDEs occur-
ring when modeling conductive-radiative heat transfer and electromagnetic heating
[6, 11], has been adapted for use in the present context. WIAS-HiTNIHS is based on
the program package pdelib [5], it employs the grid generator Triangle [25, 26] to
produce constrained Delaunay triangulations of the domains, and it uses the sparse
matrix solver PARDISO [22, 23] to solve the linear system arising from the finite
volume scheme.

Except where indicated otherwise, we use a fixed triangular grid provided by
Triangle, consisting of 31168 triangles.

The numerical scheme yields discrete approximations of yn and pn (cf. Steps 2
and 3 of Algorithm 16.1), defined at each vertex of the triangular discrete grid,
interpolated piecewise affinely, i.e. affinely to each triangle of the discrete grid. In
consequence, the (approximate) shape functions gn are piecewise affine as well.
Where integrals of these piecewise affine functions need to be computed (e.g., in
Step 7 of Algorithm 16.1), they are computed exactly.

16.3.2 Examples of Numerical Shape Optimizations

Example 16.1 As explained above, in the present paper, we use a numerical solver
different from the one used in [16]. Thus, for verification purposes, we begin by
applying the solver to the situation of [16, Example 1], i.e. the cost functional J is
as in (16.16) with

F(y,g) := 1

2

∫
E

(y − yd)
2 dx, (16.19a)

yd(x1, x2) := −
(
x1 − 1

2

)2

−
(
x2 − 1

2

)2

+ 1

16
, (16.19b)

1High Temperature Numerical Induction Heating Simulator; pronunciation: ∼hit-nice.
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Fig. 16.1 Shapes Ωg0 (on the left) and Ωgfin (on the right) for the shape optimization of Exam-
ple 16.1 with g0 according to (16.21)

the adjoint equation for the adjoint state pε ∈H 1
0 (D) is

∫
D

[
∂pε

∂x1

∂v

∂x1
+ ∂pε

∂x2

∂v

∂x2
+ 1

ε

(
1−Hε(g)

)
pεv

]
dx

=
∫
E

(yε − yd)v dx, ∀v ∈H 1
0 (D), (16.20)

the descent direction used in Step 4 is wd(y,p)=− 1
ε
yp, ε = 10−5, g ≥ 0 on E is

imposed, and the initial shape function is

g0(x1, x2) := 3

4
− x2

1 − x2
2 . (16.21)

The resulting initial cost is J (g0)= 0.370026 and the final cost J (gfin)= 0.294218.
Using a refined grid with 124593 triangles yields J (g0)= 0.369105 and J (gfin)=
0.292884. These values are, respectively, some 2 % and 9 % larger than the cor-
responding values in [16, Example 1], most likely due to different methods used
for numerically computing the integrals for the cost functional. For the initial guess
for the line search of Step 5, we use λ = 1. As it turns out, during the very first
line search, this already yields g̃1 < 0 on all of D, and the corresponding cost is
J (g̃1)= 0.271456. The projection g1 then already corresponds to the square as de-
picted in Fig. 16.1, and the cost is almost identical to the final cost. After the second
line search, the relative change in the L2-norm of g is 2.1 × 10−6 and the abso-
lute change in the corresponding costs is 1.7× 10−16, i.e. the iteration is stopped
according to the criterion in Step 7.
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Fig. 16.2 Shapes Ωg0 (on the left) and Ωgfin (on the right) for the shape optimization of Exam-
ple 16.1 with g0 according to (16.22)

Next, we assess the stability of Algorithm 16.1 with regard to different initial
shape functions g0. If we use the function g0 from [16, Example 2], i.e.

g0(x1, x2) :=min

{
x2

1 + x2
2 −

1

16
,

(
x1− 1

2

)2

+ x2
2 −

1

64
, 1− x2

1 − x2
2

}
, (16.22)

then J (g0)= 0.301027 and J (gfin)= 0.294218, and Algorithm 16.1 performs pre-
cisely as before (see Fig. 16.2). If we use

g0(x1, x2) := 1, (16.23)

then, J (g0) = 0.454657 and J (gfin) = 0.294218, and the only difference now lies
in g remaining positive throughout in a small neighborhood of the outer boundary.
Even though the convergence criterion of Step 7 is, again, satisfied after the second
line search, gfin still has this property, as can be seen near the corners in the right-
hand picture of Fig. 16.3. Actually, it is clear that g can never change its sign on
the outer boundary ∂D, since the descent direction is wd(yn,pn)=− 1

ε
ynpn and yn

and pn are fixed to 0 on ∂D via the Dirichlet boundary condition.
We now, once again, use g0 from (16.21), but now we vary the regularization pa-

rameter ε. We observe a stable performance over many orders of magnitude. Values
for the initial and final costs depending on ε are compiled in Table 16.1, where, in
every case, the picture is as in Fig. 16.1, and convergence is always obtained after the
second line search. Of course, Theorem 16.2 provides yε|Ωg → yg for ε→ 0. The
expected convergence of J (gfin) for ε→ 0 can, indeed, be observed in the values
provided in Table 16.1.
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Fig. 16.3 Shapes Ωg0 (on the left) and Ωgfin (on the right) for the shape optimization of Exam-
ple 16.1 with g0 according to (16.23)

Table 16.1 Dependence of
the initial and final cost on ε

in Example 16.1 with g0 from
(16.21)

ε J (g0) J (gfin)

10−13 0.369777 0.294085

10−9 0.369777 0.294085

10−5 0.370026 0.294218

10−2 0.404680 0.316894

Example 16.2 For this example, we fix ε = 10−5. We now use a different cost func-
tional. As before, J has the form (16.16), but now with

F(y,g) :=
∫
D

Hε(g)(y − yd)dx, (16.24a)

yd(x1, x2) := −
(
x1 − 1

2

)2

−
(
x2 − 1

2

)2

+ 1

8
, (16.24b)

and the adjoint equation is

∫
D

[
∂pε

∂x1

∂v

∂x1
+ ∂pε

∂x2

∂v

∂x2
+ 1

ε

(
1−Hε(g)

)
pεv

]
dx

=
∫
D

Hε(g)v dx, ∀v ∈H 1
0 (D). (16.25)

Note that (16.24a) is an approximation for
∫
Ω
(y − yd)dx, cf. [16, Eqs. (26), (27)].

Also note that, in contrast to the F from (16.19a), (16.19b), the current F can be-
come negative (as, indeed, it does in the computational examples below). For the
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Fig. 16.4 Shape optimization of Example 16.2 with g0 according to (16.23): Ωg0 (on the left,
J (g0) = 4.72921), an intermediate shape during line search #1 (middle, cost 0.00287023), Ωgfin

(on the right, J (gfin)=−0.0187939)

Fig. 16.5 Shape optimization of Example 16.2 with g0 according to (16.21): Ωg0 (on
the left, J (g0) = 1.99556), Ωg1 (middle, J (g1) = −0.0191348), Ωgfin (on the right,
J (gfin)=−0.0191523)

Fig. 16.6 Shape optimization of Example 16.2 with g0 according to (16.22): Ωg0 (on
the left, J (g0) = 2.78662), Ωg1 (middle, J (g1) = −0.0189457), Ωgfin (on the right,
J (gfin)=−0.0189734)

descent direction of Step 4, we use (cf. [16, Remark 6]):

wd(y,p)=−
(
Hε(g)(y − yd)+ 1

ε
yp

)
. (16.26)
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In the last experiment of Example 16.1, depicted in Fig. 16.3, we found a notice-
able dependence of Ωgfin on the initial shape function g0. In the present situation, we
once again find that the final shape Ωgfin depends slightly but noticeably on g0: We
ran computations with g0 according to (16.23), (16.21), and (16.22), respectively,
and the results are illustrated in Figs. 16.4–16.6. In each case, convergence accord-
ing to the Step 7 criterion occurred after three line searches. Even though similar,
the final shapes differ slightly in the three situations, as can be seen by comparing
the pictures on the right in Figs. 16.4–16.6. The corresponding values of the cost
functional are provided in the respective figure captions.

In Example 16.1, we noted that the sign of g was always fixed on ∂D. How-
ever, in the present situation, the sign of g on ∂D can and does change due to the
additional term in (16.26).

We also note that (16.24a), (16.24b), (16.25), and (16.26) are all symmetric with
respect to exchanging x1 and x2. As expected, this symmetry can be observed in the
shapes in Figs. 16.4 and 16.5, where the initial condition satisfies the same symme-
try. The symmetry is slightly broken in Fig. 16.6 due to the initial condition.

Example 16.3 For this example, we once again fix ε = 10−5. In contrast to all the
previous examples, we use a nonconstant right-hand side, namely

f :D→R, f (x1, x2) := −x2
1x

2
2 + 1. (16.27)

The cost functional is similar to, but different from, the one used in Example 16.1:
Now J has the form (16.16) with

F(y,g) := 1

2

∫
D

(y − yd)
2 dx, (16.28a)

yd(x1, x2) := x2
1x

2
2 . (16.28b)

Note that yd is different from the yd in (16.19b) and, in contrast to (16.19a), in
integration in (16.28a) is over all of D. The adjoint equation is

∫
D

[
∂pε

∂x1

∂v

∂x1
+ ∂pε

∂x2

∂v

∂x2
+ 1

ε

(
1−Hε(g)

)
pεv

]
dx

=
∫
D

(yε − yd)v dx, ∀v ∈H 1
0 (D). (16.29)

As in Example 16.1, for Step 4, we use the descent direction wd(y,p)=− 1
ε
yp.

In the present situation, the nonconvexity of the problem is much more visible
in the numerical results than during previous examples. We observe a considerable
dependence of the final shape not only on the initial shape function g0 but also on the
initial guess for λ during the line searches. As for the previous examples, we used the
convergence criterion of Step 7. In Figs. 16.7 and 16.8, we show the results for shape
optimizations using g0 according to (16.23) and (16.22), respectively, using λ = 1
for the initial guess. We have also independently tested λ= 1000 for g0 according
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Fig. 16.7 Shape optimization of Example 16.3 with g0 according to (16.23) and an initial guess for
the line search λ= 1: Ωg0 (on the left, J (g0)= 0.0795982), the shape after line search #1 (middle,
J (g1)= 0.0721385), Ωgfin =Ωg5 (on the right, J (gfin)= J (g5)= 0.0720632, ‖gfin‖2 = 5.71677)

Fig. 16.8 Shape optimization of Example 16.3 with g0 according to (16.22) and an initial guess
for the line search λ = 1: Ωg0 (on the left, J (g0) = 0.0791799), the shape after line search
#1 (middle, J (g1) = 0.0781853), Ωgfin = Ωg13 (on the right, J (gfin) = J (g13) = 0.0781504,
‖gfin‖2 = 4.04025)

to (16.22) and we have found another local minimum, see Fig. 16.9. As noted in the
respective figure captions, the number of line searches needed varied between 2 and
17, and the L2-norm of the final shape function varied between 4 (sic) and 108.

As in Example 16.1, the sign of g on ∂D cannot change during the algorithm,
and it actually does not. Figure 16.9 is deceiving in this regard, due to the fact that
the color of each triangle of the discretization is determined by the average of g on
the respective triangle.

In the present situation, we have x1-x2-symmetry as well as symmetry with re-
spect to the signs of x1 and x2, respectively, provided that the initial shape function
satisfies the same symmetry. These symmetries are visible in Fig. 16.7, slightly bro-
ken in the final shape due to the discrete grid.

Remark 16.2 In Examples 16.1 and 16.3, it seems advisable to use our descent
direction wd(y,p)=− 1

ε
yp, rather than the wd(y,p)=− 1

ε
(Hε)′(g)yp mentioned

in [16, (26)]—for example, for g0 = 1, (Hε)′(g0) = 0 everywhere on D, and one
is stuck at the initial shape function. Numerically, the same remained true for all
other g0 we tested. To make use of the wd from [16, (26)], one would need to
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Fig. 16.9 Shape optimization of Example 16.3 with g0 according to (16.22) and an initial guess
for the line search λ = 1000: Ωg0 (on the left, J (g0) = 0.0791799), the shape after line search
#1 (middle, J (g1) = 0.0781853), Ωgfin = Ωg17 (on the right, J (gfin) = J (g17) = 0.0726054,
‖gfin‖2 = 1.04× 108)

tremendously refine the grid in the typically small set {x ∈ D : −ε < g(x) < 0},
where (Hε)′(g) is nonzero. Respectively, the same remark applies with respect to
the descent direction used in Example 16.2, cf. [16, Remark 6].

16.4 Conclusions

The fixed-domain method described in the paper allows one to make use of optimal
control techniques in the context of shape optimization problems governed by el-
liptic partial differential state equations. The control is given in the form of a shape
function encoding the unknown optimal domain, where the shape function is intro-
duced into the state equations by composing it with a regularized Heaviside function
and penalization, such that the state is penalized outside the domain encoded by the
shape function. The approach is supported by rigorous results showing the conver-
gence of the regularized problem, given the regularization parameter tends to 0. The
established Gâteaux differentiability of the control-to-state map and the availability
of the adjoint equation provide the foundation for the presented numerical algo-
rithm. In a series of numerical experiments, the algorithm proves to be effective in
solving shape optimization problems. We underline that the observed convergence
was rapid, with just one required line search in several examples, and at most 17 re-
quired line searches in the most complicated example. The setup of the formulation
is such that topology changes can occur naturally during the optimization process.
In some of the numerical computations, we find that small differences in the val-
ues of the objective functional can correspond to significant shape and topology
changes. The experiments suggest that nonconvexity and local minima can be an is-
sue, which we intend to address by adding a stochastic component to the algorithm
in future work.
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Chapter 17
Multi-Objective Actuator Placement
Optimization for Local Sound Control
Evaluated in a Stochastic Domain

Tuomas Airaksinen and Timo Aittokoski

Abstract A method to find optimal locations and properties of anti-noise actuators
in a local noise control system is considered. The local noise control performance
is approximated by an approach based on a finite element method, attempting to
estimate the average performance of an optimal active noise control (ANC) system.
Local noise control uses a fixed number of circular actuators that are located on the
boundary of a three-dimensional enclosed acoustic space. Actuator signals are used
to minimize the known harmonic noise at specified locations. The average noise
reduction is maximized at two frequency ranges by adjusting the anti-noise actu-
ator configuration, which is a non-linear multi-objective optimization problem. To
solve the optimization problem, an unsorted population size evolutionary optimiza-
tion algorithm (UPS-EMOA) is considered, and its performance is compared to the
widely-known NSGA-II method. As a numerical example problem, the ANC in a
passenger car cabin is considered. Significantly better noise control is obtained with
the optimized actuator locations than only by a engineer’s sophisticated guess.

17.1 Introduction

Noise generated by different machines is an increasing problem in modern working
environments. Wheels, engines, and cooler fans are typical noise sources. There is
an obvious need for noise control applications in factory environments, engineering
vehicles, and passenger cars, for example. Sometimes it is possible to remove or
reduce important noise source mechanisms by suitable design choices, which makes
particular noise control approaches unnecessary. In many cases, however, this is not
possible or the design is limited by other more important factors than noise.

Passive noise control techniques such as absorbing and insulating acoustic ele-
ments are effective methods in reducing high frequency sound, whereas active noise
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control (ANC) methods [11] are good at reducing low-frequency noise. The ANC
is based on generating anti-sound with actuators. So the original noise is attenuated.
In order to cancel the noise perfectly, the anti-sound must have the same amplitude
as the noise, but an opposite phase so that destructive interference occurs. Local
noise control employs ANC methods so that noise is reduced locally in a desired
subdomain.

The most important frequencies originating in the passenger car engine are below
500 Hz [14]. As there are significant low-frequency noise sources, the local sound
control can provide a significant noise reduction to the car cabin environment. Ad-
vanced methods designing and assessing such systems employ numerical simulation
and optimization. Approaches using finite element modeling are presented in the ar-
ticles [1, 5, 13, 15] of which [5, 13] consider also optimizing locations for anti-noise
actuators.

In [1], a numerical evaluation method is developed for optimal local noise con-
trol, based on finite element modeling. The method determines the optimal perfor-
mance of a local sound control by including the stochasticity of the cavity domain
in the model. The anti-noise is optimized by minimizing the expected value of the
noise computed using the finite element method. In this paper, this method is used
to develop a technique to find optimal locations for anti-noise actuators. The op-
timization of actuator configuration is formulated as a multi-objective optimization
problem such that optimal noise reduction at appropriate frequency ranges forms ob-
jective functions. By solving a multi-objective optimization problem, a whole family
of Pareto-optimal solutions is obtained. An unrestricted population-size evolution-
ary multi-objective algorithm (UPS-EMOA, [3]) is used to solve the multi-objective
optimization problem, and its performance is also compared to a well-known elitist
non-dominated sorting genetic algorithm (NSGA-II, [8]).

This article is organized as follows. In Sect. 17.2, a mathematical model of sound
propagation, the Helmholtz partial differential equation, and a numerical method to
solve it are briefly presented. In Sect. 17.3, the local noise control in a stochas-
tic domain is formulated as a quadratic optimization problem and an example of
local noise control in a car driver’s ears is described. The objective functions are
also derived to evaluate actual anti-noise configurations. In Sect. 17.4, the multi-
objective optimization methods used in actuator configuration optimization are de-
scribed briefly and the used parameters are given. In Sect. 17.5, the numerical results
of actuator configuration optimization in a three-dimensional car cabin problem are
studied and analyzed. Finally, in Sect. 17.6, conclusions are given.

17.2 An Acoustic Model

The time harmonic sound propagation is modeled by the Helmholtz equation

−∇ · 1

ρ
∇p− ω2

c2ρ
p = 0 in Ω, (17.1)
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where ρ(x) is the density of the material at the location x, and c(x) is the speed of
sound in the material. The complex pressure p(x) defines the amplitude and phase
of the pressure. The sound pressure at time t is obtained by Re(e−iωtp), where ω

is the angular frequency of sound and i =√−1. A sound source f acting on a part
S of the boundary ∂Ω is modeled via a boundary condition. A partially absorbing
wall material is described by the impedance boundary conditions

∂p

∂n
= iηω

c
p+ f on S,

∂p

∂n
= iηω

c
p on ∂Ω \ S,

(17.2)

where η(x) is the absorption coefficient depending on the properties of the surface
material. The value η= 1 approximates a perfectly absorbing material and the value
η= 0 approximates a sound-hard material (the Neumann boundary condition).

An approximate solution for the partial differential equation (PDE) (17.1) can
be obtained using a finite element method [16]. The finite element discretization
transforms (17.1) into a system of linear equations Ax = b, where the matrix A is
generally symmetric, large, and sparse. Due to the large size and structure of A,
direct solution methods are computationally too expensive. Instead, an iterative so-
lution method like GMRES needs to be used. Solving the system with a reasonable
number of iterations is, however, challenging as the matrix A is badly conditioned
and especially so when the calculation domain is large and the frequency is high. In
the numerical example in Sect. 17.5, the solutions are computed after the systems
are preconditioned by a damped Helmholtz preconditioner [2].

17.3 The Noise Control Problem

17.3.1 Anti-noise Actuator Signal Optimization

The noise control problem is next presented briefly. A more detailed description is
given in an earlier paper [1]. The problem is considered in the frequency domain, i.e.
noise control is considered for one frequency at once; it should, however, be noted
that the noise is not restricted to a single-frequency sound. The acoustic model is
considered in an enclosed stochastic domain Ω(r), where r is a random vector that
conforms to a known probability distribution F(r). The sound pressure p(ω,x, r,γ )
at an angular frequency ω is the sum of the sound pressures caused by noise and n

anti-noise sources

p(ω,x, r,γ )= p0(ω,x, r)+
n∑

j=1

γjpj (ω,x, r), (17.3)

where the pressure amplitude p0 is due to the noise source, pj is due to the j th
anti-noise source, and γj is a complex coefficient defining the amplitude and phase
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of the j th anti-noise source. The noise and anti-noise sources are located on the
boundaries of Ω . The anti-noise defined by the coefficients γj is optimized so that
the noise is minimized in a subdomain denoted by Ξ(r) ⊂Ω(r). For this, a noise
measure is defined as

N(ω, r,γ ) =
∫
Ξ(r)

∣∣p(ω,x, r,γ )
∣∣2g(x)dx

=
∫
Ξ(r)

p(ω,x, r,γ )p̄(ω,x, r,γ )g(x)dx, (17.4)

where g(x) is a weighting function and p̄ is the complex conjugate of p. The ex-
pected value of the noise measure in the stochastic domain Ω is given by

E
(
N(ω, r,γ )

)=
∫

N(ω, r,γ )F (r)dr, (17.5)

where F(r) is the probability distribution of r.
The objective function J for optimization of the noise control problem for the

single frequency ω is chosen to be an approximation of the integral (17.5) and it is
given by the numerical quadrature

J (ω,γ )=
m∑

j=1

wjN(ω, rj ,γ )F (rj ), (17.6)

where the pairs (rj ,wj ) give the quadrature points and weights. The optimization
problem is defined as

min
γ∈Γ

J (ω,γ ), (17.7)

where Γ is the set of feasible controls, which, for simplicity, is here Γ = C
n. The

optimal complex coefficients γi that give phases and amplitudes for anti-noise actu-
ators are now given by the optimality condition ∇γ J = 0, which leads to a system
of linear equations.

17.3.2 Anti-noise Actuator Configuration Quality Measure

The actual configuration of anti-noise actuators, i.e. their number, locations and
other properties such as size, determine the performance that can be obtained for
a local noise control system.

Let us first define another noise measure function

Ñ(ω,a, r,γ )=
∫
Ξ(r)

∣∣p(ω,a,x, r,γ )
∣∣g(x) dx, (17.8)
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where a= (x1, y1, r1, . . . , xn, yn, rn) is the anti-noise actuator configuration vector
with (xi, yi) determining the location and ri the radius of the ith anti-noise actuator.
Noise reduction for the frequency ω in dB is now

R(ω)= 10 log10

E(Ñ(ω, r,γ opt ))

E(Ñ(ω, r,0))
= 10 log10

∫
Ñ(ω, r,γ opt )F (r) dr∫
Ñ(ω, r,0)F (r) dr

, (17.9)

for γ opt which is optimized according to (17.7). The quality measure of anti-noise
actuator configuration at the frequency ω is obtained by replacing integrals in (17.9)
with trapezoidal quadratures

Q(a,ω)= 10 log10

∑
j w

r
j Ñ(ω,a, rj ,γ opt )F (rj )∑

j w
r
j Ñ(ω, rj ,a,0)F (rj )

, (17.10)

where wr
j is quadrature weight from the trapezoidal rule for the integral of the prob-

ability distribution function F , and rj is the co-ordinate triplet of the j th quadrature
point.

17.3.3 Numerical Integration over Actuator

Circle-shaped anti-noise actuators are placed on a subdomain of a boundary sur-
face, which is denoted by A⊂ ∂Ω . The subdomain A is composed of subdomains
Ai such that A=⋃

i Ai . In order to allow convenient implementation of anti-noise
actuator configuration optimization, a geometrical linear mapping is defined from
the two-dimensional rectangular plane-domain Ã=⋃

i Ãi to A, such that the sub-
domains Ãi are mapped to Ai , respectively. Integrals are approximated by using a fi-
nite element solution on a triangular mesh. In order to improve integration accuracy
of the boundary line, the triangles that reside on the anti-noise actuator boundary
are divided into smaller triangles.

17.3.4 Noise Control in a Car Interior

As an example application of the method, noise control in a BMW 330i car interior
is considered, see Fig. 17.1(a). The interior of the car excluding the driver is the
domain Ω(r). The objective of the noise control is to minimize the noise in the
driver’s ears. Thus, Ξ is defined as a set

Ξ(r)= {el , er} ⊂Ω(r), (17.11)

where el(r) and er (r) are the co-ordinates of the left and right ear, respectively. The
noise measures (17.4) and (17.8) have now expressions
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Fig. 17.1 (a) A three-dimensional model of a BMW 330i car interior. The subdomains A1 and
A2 are marked with red and green colors, respectively. The subdomain A3 is located on the right
front door, which is not visible. (b) The driver’s posture parameters from left to right: r1 is the
driver’s sideways bending, r2 is the forward bending, r3 is head rotation. In the upper figures, the
parameter’s lowest value is shown and in the lower figures, the highest value is shown

N(ω, r,γ ) = ∣∣p(ω, el , r,γ )
∣∣2 + ∣∣p(ω, er , r,γ )

∣∣2,
(17.12)

Ñ(ω,a, r,γ ) = ∣∣p(ω,a, el , r,γ )
∣∣+ ∣∣p(ω,a, er , r,γ )

∣∣.
It is assumed that there is only the driver and no other passengers or significant
objects in the car that would influence the sound propagation. The driver’s variable
properties like shape and posture are taken into account by considering a stochastic
domain in the computation.

The driver is modeled by using the freely available Animorph library, based on
[4]. Three parameters to model the driver are considered: r1 is the driver’s side-
ways bending angle, r2 is the forward bending angle, and r3 is the head rotation
angle to left/right. These parameters are illustrated in Fig. 17.1(b) and their dis-
crete values are as follows: r1 ∈ {−20,−10,0,10,20}, r2 ∈ {−5,0,5,10,15}, and
r3 ∈ {−50,−25,0,25,50}. The random variable vector r = (r1, r2,r3) determines
the posture of the driver.

In the car cabin interior, the noise source is modeled as a uniformly vibrating
surface behind the leg room, which is a simplification of the real noise source. There
are three possible surfaces where actuators may be located: on the left front door
below window (A1), on the roof (A2) and on the right front door below window
(A3), see Fig. 17.1(a). The size of the door subdomains A1,3 is 0.35× 0.8 m2 and
the roof subdomain 1.0× 1.0 m2. These subdomains are placed and scaled beside
each other so that they form a unit square, which makes it possible to use generic
optimization formulation where optimization variables take values between [0,1].
If an actuator crosses the boundary of the subdomain that it belongs to, it is cut
so that only the part inside the subdomain is considered as an actuator. The anti-
noise actuators are let to overlap freely and it also appears that they overlap in many
optimized solutions. Overlapping could be avoided by penalizing such solutions
during the optimization process.

To solve the Helmholtz equation (17.1) with the finite element method, a col-
lection of meshes consisting of linear tetrahedra and triangles were generated with
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Ansys ICEM CFD. Each mesh corresponds to a different driver posture and they
were generated so that there are at least 10 nodes per wavelength at a 1000 Hz wave.
The total number of meshes is 53 = 125 which is the number of the parameter com-
binations (r1, r2, r3).

The study was done in the frequency range 50–500 Hz with 25 Hz steps. This
means that 18 frequencies were sampled. By employing the reciprocity principle,
a sound source was placed in an ear. The acoustic model was solved for all 125
sampled driver’s postures for both ears. Thus, discrete Helmholtz equations were
solved 125× 18× 2= 4500 times for the optimal anti-noise control.

17.4 Evolutionary Multi-objective Optimization

A general form of a multi-objective minimization problem is

minimize
{
f1(x), f2(x), . . . , fk(x)

}
subject to x ∈ S,

(17.13)

where f1,...,k : Rn → R are conflicting objective functions that are minimized by
altering values of the design variables forming a vector x ∈ R

n within a feasible
region S ⊂R

n. The solution A is said to dominate the solution B if all components
of f (A) are at least as good as those of components of f (B), with at least one
strictly better component. Furthermore, A is non-dominated if it is not dominated by
any feasible solution. Correspondingly, the solution A belongs to the Pareto optimal
set if it is not dominated by any other feasible solution.

The multi-objective optimization problem for the locations and sizes of anti-noise
actuators is defined to maximize the average expected attenuation obtained by local
noise control at two frequency ranges simultaneously. The frequency ranges are
given by the vectors ω = (ω1, . . . ,ωnω), ι = (ι1, . . . , ιnι ). The objective functions
are as follows:

f1(x)= 1

nω

∑
i

Q(x,ωi) and f2(x)= 1

nι

∑
i

Q(x, ιi), (17.14)

where Q is the quality measure (17.10) and x is the design vector containing the
location co-ordinates and radii of the anti-noise actuators.

Evolutionary multi-objective optimization algorithms (EMOA) (see, e.g., [6]) are
among the widely used approaches in solving demanding engineering problems with
multiple objectives. Different EMOAs employ various methods in the way they gen-
erate trial points and how they bring about the evolution of the population. Usually
fitness is based primarily on dominance (non-dominated solutions are preferred),
and secondarily on diversity (solutions on crowded regions are pruned).

Probably the most often referred and widely utilized algorithm in the above-
mentioned category is the elitist non-dominated sorting genetic algorithm (NSGA-
II) [8]. Yet, NSGA-II is claimed to have certain defects both in its performance
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and in its basic foundations, and for this reason both NSGA-II and one algorithm
that should overcome its defects, namely unrestricted population-size EMOA (UPS-
EMOA) [3], are considered. In the following subsections short descriptions of both
of these algorithms are given together with the corresponding parameters that are
used in the numerical examples.

17.4.1 NSGA-II

Functioning of the dominance and diversity preservation based NSGA-II algorithm
as it is implemented here is described briefly as follows:

Step 1. Create an initial (parent) population of nbeginpop = 10npop = 10000 popu-
lation members randomly.

Step 2. Evaluate objective function values for the initial population and choose the
npop = 1000 best ones based on non-domination.

Step 3. Generate npop trial points to create a child population by using the sim-
ulated binary cross-over operation (SBX, see [7]). The following parame-
ters have been used: cross-over probability pc = 0.9, mutation probability
pm = 1/nvars where nvars is the number of variables, SBX cross-over pa-
rameters for the crossover ηc = 10, and mutation ηm = 10, tournament size
ntour = 2.

Step 4. Evaluate objective function values for the child population.
Step 5. Combine the parent and the child populations. Identify non-dominated so-

lutions from the combined population. Create the next parent population by
taking solutions from the combined population to the new one:

a. If there is excess of non-dominated solutions to fit into the next popu-
lation, prune such excess solutions which are located in more crowded
areas (diversity preservation).

b. If there are not enough non-dominated solutions to fill the next popula-
tion, identify again non-dominated solutions remaining in the combined
population, and continue this cycle until the population is filled.

Step 6. If the number of allowed generations is not exceeded, or the budget for
objective function evaluations is not exhausted, go back to Step 3.

Unfortunately, it seems not to be widely fathomed that this type of algorithm suf-
fers from several theoretical drawbacks, such as oscillation [3] (lack of convergence
[10]), deterioration of the population, and lack of performance.

It is said that the method involves oscillation if a solution close to the Pareto opti-
mal set is replaced by another non-dominated solution which improves diversity but
is at the same time located much farther from the Pareto optimal set. If in the history
of all the evaluated solutions there exist solutions that dominate the solutions in the
current population, then the population is said to be deteriorated. If deterioration oc-
curs, it suggests that the algorithm has wasted some objective function evaluations,
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and could have actually performed better. This behaviour also contributes to general
lack of performance.

17.4.2 UPS-EMOA

The basic feature of the recently published UPS-EMOA [3] is the use of a population
which has no artificial size limit. Instead, the population always contains all the non-
dominated solutions found during the optimization process, and thus the population
expands. Theoretically, this may lead to a situation where storage requirements are
unbounded. In practice, we have not witnessed such behaviour, as the number of
evaluations is kept finite. By expanding population, the algorithm overcomes some
problems of the current EMO approaches, such as oscillation (lack of convergence),
deterioration of the population, and lack of performance. Steps of the UPS-EMOA
implementation used in this paper are presented as follows:

Step 1. Initialize the population within the given search space using nbeginpop =
10000 points covering the space as uniformly as possible. Points are created
using a space-filling Hammersley sequence [9].

Step 2. Evaluate the objective function values of the new points.
Step 3. Combine the current population with the new points. Identify non-dominated

solutions, and move all these to the next population. If the minimum size
of the population nmin = 50 is not reached, take non-dominated solutions
from the remaining points, and continue until the minimum size is reached.

Step 4. Select randomly nburst = 260 points from the current population to be used
as parents. Generate one new child point for every parent point using the
point generation mechanism of differential evolution (DE, see [12]), using
cross-over probability Cr = 0.5 and the scaling factor F = 1.0. In the cre-
ation of the new point, all points in the current population may participate.
Points which are not inside the given search space are truncated to the bor-
der, similarly as in NSGA-II.

Step 5. Evaluate the objective function values of the child population, and if the
budget for objective function evaluations is not exhausted, go back to Step 3.

17.4.3 Comparison of EMOAs by Hypervolume Measure

With multi-objective optimization algorithms that produce an approximation of the
Pareto-optimal set, measuring the performance of a given algorithm is far from triv-
ial. To characterize the goodness of the solution set, all solutions should be as close
as possible to the real Pareto optimal set (closeness) and the solutions should cover
the whole Pareto optimal set as well as possible (diversity), meaning that the distri-
bution of the solutions along the Pareto optimal set should be even, and the extent
of the solutions should be as high as possible.
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Recently, a hypervolume indicator [17] has gained popularity both as a perfor-
mance metric and as a selection criterion in EMOAs. The hypervolume defines the
volume of the objective space dominated by the given solution set, and as such it
can give information about both closeness and diversity at the same time.

In this study, hypervolume is used as a performance metric to make a rough
comparison between two selected algorithms.

17.5 Numerical Experiments

Four numerical optimization test cases are considered to demonstrate and analyze
the efficiency of the method. All test cases involve local noise control in a car interior
(see Fig. 17.1) as explained in Sect. 17.3.4. The test cases are as follows:

• Test case #1: 2 fixed-size actuators (4 design variables)
• Test case #2: 3 fixed-size actuators (6 design variables)
• Test case #3: 3 variable-size actuators (9 design variables)
• Test case #4: 8 variable-size actuators (24 design variables)

Equations (17.14) are considered as contradicting objective functions, with two
frequency ranges 50–275 Hz and 275–500 Hz corresponding to vectors ω =
[50,75, . . . ,250] and ι= [275,300, . . . ,500]. For the test case #1, the design vec-
tor x= (x1, x2, r, x3,x4, r), where r = 0.112 m, i.e. there are four design variables.
For the test case #2, similarly x = (x1, x2, r, x3,x4, r, x5, x6, r). For the test cases
#3 and #4, where the actuator radius r ∈ [0.05,0.175]m is also a design variable,
x = (x1, . . . , xn), with n = 9 and n = 24, respectively. The test cases #1–#3 were
run until the limit of 100000 objective function evaluations and the test case #4 was
run until the limit of 200000 objective function evaluations.

The first test case was chosen in order to present a simple case with a low num-
ber of design variables. The test cases #2–#4 present more difficult optimization
problems, where EMO approaches may not be able to find a global unambiguous
optimum, which is a well-known feature of the used methods when the search space
is large due to the number of design variables and when there are plenty of local
minima in the problem. Nevertheless, these methods are able to bring about a sig-
nificant improvement, when compared with a sophisticated engineer guess.

17.5.1 Convergence of Multi-objective Optimization Methods

To justify the choice of using UPS-EMOA as a preferred optimization algorithm for
the presented problem, the convergence was compared to the NSGA-II by evaluat-
ing hypervolumes of the solution fronts (see Sect. 17.4.3). The hypervolume as a
function of the number of objective function evaluations is plotted for all test cases
in Fig. 17.2.
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Fig. 17.2 Hypervolume as a function of the number of objective function evaluations with UPS-E-
MOA and NSGA-II. Six random number generator seed numbers for each test case and algorithm.
The resulting lines of different test cases should not be compared to each other, due to incompatible
scales

For the test case #1, UPS-EMOA converges notably faster to its maximum, al-
ready at 14000 evaluations, while NSGA-II reaches the same level at 20000 evalua-
tions. This is the only test case where robust convergence towards the identical solu-
tion front is obtained and it is due to the low number of design variables, nvars = 4.
For all test cases, it is clearly seen that UPS-EMOA convergence is notably faster
in the beginning of the optimization process. However, none of the test cases #2–#4
converge robustly towards a single solution front, which is due to the larger search
space with plenty of local minima.

For the test cases #2 and #3, NSGA-II eventually finds better solution fronts,
despite its slower convergence in the beginning. In Fig. 17.5 (on p. 333), the final
solution fronts after 99440 objective function evaluations are plotted, where it can
clearly be seen that while the right part of the front is identical, on the left part the
NSGA-II has progressed further. We suggest that this is due to concentrated point
density of the UPS-EMOA results on the right part of the front, leading to a situation
where points on the left have only diminishing probability to be selected as parents.
Thus the development of the front in that region suffers.

For the test case #4, where there are 24 design variables and for all runs, UPS-
EMOA converges faster and gives better solution fronts than NSGA-II. As a con-
clusion, UPS-EMOA is clearly a better choice, when the CPU time usage is limited
and/or when a larger number of design variables is involved.

17.5.2 Example Solutions

In Fig. 17.3, the solution fronts for all test cases are shown, obtained by UPS-
EMOA. These fronts can be compared to the objective function values obtained by
sophisticated engineer guesses (see Fig. 17.4) that are plotted as well. It is clearly
seen that optimization improves the noise control remarkably. The figure also il-
lustrates the big improvement obtained when the number of anti-noise actuators is
increased; compare the solution fronts for the test cases #1 to #2 where the number
of actuators increases from 2 to 3 (∼ 3–5 dB improvement in both objective func-
tion values), and the solution fronts for the test cases #3 to #4, where the number
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Fig. 17.3 The solution fronts for all test cases obtained by UPS-EMOA. Blue crosses correspond
to non-optimized engineer guesses, shown in Fig. 17.4. One solution from each front is selected
and shown in small subfigures, similarly as in Fig. 17.4

Fig. 17.4 Engineer guesses of good anti-noise actuator configurations. The figures show (1) the
anti-noise actuator configuration in the subdomains A1, A2, and A3 (see Fig. 17.1), and (2) the
expected value of attenuation in the left and right ear with standard deviation (the shaded region).
Corresponding objective function values of (17.10) are plotted in Fig. 17.3

of actuators increases from 3 to 8 (∼ 10 dB improvement in both objective function
values).

In Fig. 17.5, the solution fronts for the test cases #2 and #3 are given after 99440
objective function evaluations. Three solutions are selected for both test cases from
a single front obtained by UPS-EMOA. Both test cases have three anti-noise actu-
ators, but the difference between them is that while in the test case #2, the sizes
(radii) of each actuator are constant, in the test case #3 they may vary. It is seen
that this increase in the degree of freedom gives only a 0.2–0.5 dB enhancement in
objective function values. It is also seen that smaller anti-noise actuators seem to be
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Fig. 17.5 The solution fronts for the test problems #2 and #3 obtained by NSGA-II and UPS-E-
MOA, six random number generator seed numbers. Three solutions (cyan circles) from a single
UPS-EMO front are selected for both test cases and they are shown in small subfigures, similarly
as in Fig. 17.4

preferable in this case. Similar behavior in actuator placements is seen in both test
cases.

17.6 Conclusions

A novel technique was proposed to find optimal locations for anti-noise actuators by
using a finite element model based numerical evaluation method for optimal local
noise control. The optimization of anti-noise actuator configuration, i.e. the placing
and size of each actuator, was formulated as a multi-objective optimization problem
so that optimal noise reduction at two frequency ranges could be obtained.

As an example problem, local noise control in a car interior with a driver in vary-
ing postures was considered and numerical results were presented. Two evolutionary
multi-objective algorithms, UPS-EMOA and NSGA-II were used as optimization
methods and their performance was compared. It was found that in all test cases
UPS-EMOA was converging faster in the beginning of the optimization process, but
NSGA-II was able to give better final solution fronts in two test cases.

Numerical examples clearly demonstrated that, by employing optimization of
anti-noise actuator configuration, it is possible to obtain a significant improvement
in the objective function values over sophisticated engineer guesses.

Acknowledgements The research was funded by Academy of Finland, the grant #250979.
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Chapter 18
From the Idea of Bone Remodelling Simulation
to Parallel Structural Optimization

Michal Nowak

Abstract The paper provides an overview of the structural optimization system
development. The basis and also the primary idea for algorithm formulation was
the bone remodelling phenomenon leading to the optimization of the trabecular net
within the bone. The idea was completed with theorems concerning the surface con-
stant strain energy principle to form the biomimetic optimization system. The paper
describes the key element of the optimization procedure: our own mesh generator
called Cosmoprojector. It also presents the concept of Finite Element mesh parallel
generation as well as Finite Element Analysis in a parallel environment as a recent
enhancement of the presented method. Finally, it presents some results of computa-
tions obtained with the use of biomimetic structural optimization.

18.1 Introduction

The Wolff law, stated in the 19th century, says that bone is capable of adapting it-
self to mechanical stimulation. After carrying out many experiments, it is now clear
that the number and organization of beams in trabecular bone tend to a mechanical
optimum. There are many models of bone remodelling [2, 3, 7, 9] used for the adap-
tation simulations of bone, treated as a continuum material. The main idea behind
that is to prepare a model for bone adaptation as a material of specific properties.
These properties vary and depend on the load history. The progress in computer
hardware technology and parallel computations now enable modelling of the bone
adaptation process using the real topology of the trabecular bone with the use of a
linear model of the trabecula [3, 7]. The latter one is justified by experimental inves-
tigations stating that on the trabecular level bone can be treated as a linear material.
Such an approach can be considered as very useful, especially when the details of
mechanical stimuli are discussed. The trabecular bone mechanical adaptation pro-
cess is similar to all other structural optimization problems. In this context, the bone
remodelling could be also the model of the structural optimization procedure.
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The paper presents the main stages of the numerical implementation of this con-
cept, from the idea of bone remodelling simulation to parallel structural optimiza-
tion. Section 18.2 covers the basic assumptions of numerical simulation of the tra-
becular bone remodelling process. Section 18.3 recalls the theoretical background
for treating the biological process as a pattern for the structural optimization. Sec-
tion 18.4 presents the practical realisation of the structural optimization method
based on the bone remodelling model. Section 18.5 describes the recent enhance-
ment of the presented system—parallelisation of the Finite Element Method (FEM)
mesh generation. Section 18.6 presents the numerical example summarizing the
overview of the system.

18.2 Simulations of Trabecular Bone Adaptation to Mechanical
Loading

The healthy bone trabecular tissue has a very sophisticated structure. The tissue
forms a network of beams called trabeculae and this structure is capable of handling
a wide range of loads. The length of the trabecula amounts to one or two hundred
micrometers whereas its diameter is about 50 micrometers. This structure is contin-
ually rebuilt so that the whole bone tissue is replaced in the course of about three
years and the process is called the trabecular bone adaptation or remodelling. The
examined phenomenon is based on the balance between bone resorption and forma-
tion of the new tissue. Thus the trabecular bone is capable of repairing the fractures,
by simply replacing part of its structure with the new one.

The phenomenon of trabecular bone adaptation has two important attributes.
Firstly, the mechanical stimulation is needed to conserve the rebuilding balance.
Secondly, the process of resorption and formation occurs on the trabecular bone
surface only. The need of effective simulation of bone remodelling was the begin-
ning of the presented optimization system [4].

The developed generic three-dimensional system for bone remodeling simulation
employing the Finite Element Method (FEM) consists of the following three blocks:
FEM preprocessing, FEM solution, and optimization and modification procedures.
The system used in this study uses the algorithm of bone remodeling stimulated
by mechanical loading, based on the strain energy density (SED) distribution. The
beams of trabecular bone are assumed to be made of isotropic linear elastic material
where the marrow space is treated as voids. In contrast to other approaches used so
far, the system mimics the real bone geometry evolution where not only the volu-
metric FEM mesh but also the surface of the trabecular network is controlled during
the simulation. Because the remodelling process occurs only on the surface of the
trabecular bone, only the ‘surface’ layer of the structure is taken into considera-
tion during the simulation process. In contrast to other voxel models, the approach
adopted in this system does not relay on earlier voxel discretisations, but mimics the
natural evolution of the bone tissue as the biological process of bone formation and
resorption.
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Fig. 18.1 Remodelling simulation of the trabecular bone sample under compression with the use
of the presented system [4]

Adaptation to the mechanical stimulation results in adaptation of the surface po-
sition in the virtual space. The surface position adaptation is realized on the two-
dimensional input images in the graphical form, by adding or removing pixels.
Thus, both the consolidation and the separation of the tissue can be modeled easily.
Figure 18.1 shows the remodeling simulation of the trabecular bone sample under
compression with the use of the presented system [4].

18.3 Remodelling as a Structural Optimization Process

The two attributes of trabecular bone remodelling, mechanosensitivity and surface
adaptation, can be described from the point of view of mechanics. Bearing in mind
the design with optimal stiffness [6, 10], one can conclude that for the stiffest design
the strain energy density along the shape to be designed must be constant:

uεs = const. (18.1)

In the case of bone, the remodelling scenario described above, based on the phe-
nomenological model, seems to realize the postulate of the constant value of the
strain energy density. By balancing the SED value on the bone surface, the stiff-
ness of the entire structure is ensured. In ideal conditions when the bone structure
is only rebuilt, also the volume constraint is valid. In the real process, the bone vol-
ume undergoes continuous change. In this study the presented examples employ the
scenario of bone remodelling which assumes changes of the bone volume in the
successive iterations.

So, the fixed volume constraint, resulting from the minimum compliance dis-
cussion, is not a case in the bone remodelling. The optimization goal can also be
formulated as a minimum volume problem with assumed fixed strain energy. The
resulting condition concerning the strain energy density is the same as in the case of
the minimum compliance, so the value of the strain energy density on the designed
surface must be equal when the volume is minimal by the assumed value of the
strain energy in the structure.

In the model of bone remodelling, there is a special value of strain energy
density—the energy of homeostasis where the balance between resorption and for-
mation of the bone tissue is perfect. Figure 18.2 shows the computation scheme with
strain energy density as a remodelling criterion.
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Fig. 18.2 Computation
scheme with strain energy
density (surface remodelling)
as a remodelling criterion

Now, after the discussion of the stiffest design issues, the numerical implementa-
tion of the bone remodelling can be treated as a par excellence structural optimiza-
tion procedure.

A more detailed description of the assumptions and the arguments can be found
in [5, 6, 10].

18.4 Structural Optimization Method Based on the Bone
Remodelling Scheme

The developed numerical trabecular bone remodelling simulation environment was
dedicated to and tested for biomechanical purposes. To compare the optimization
procedure based on trabecular bone surface adaptation to the standard optimiza-
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Fig. 18.3 Optimization
results of the cantilever beam
using the presented system,
based on the trabecular bone
surface adaptation—an empty
domain [5]

tion method, a typical topology optimization method example, i.e. the bending can-
tilever beam, was chosen. To illustrate the special features of the proposed opti-
mization technique, the domain was reduced to a minimum, and the fixed part of
the structure was simply connected to the loaded part. As it was possible to add
material during the simulation, the result shown in Fig. 18.3 is very similar to the
three-dimensional solution given in the Topology Optimization book by Bendsøe
and Sigmund [1, p. 25]. The result is similar, but starting from such domain, it is not
possible to achieve the solution using the standard method of topology optimization.
This feature, which facilitates adaptation of the structure conserving functional con-
figurations, necessary in the case of biological structures, can also be valuable for
mechanical structures (in space or civil engineering) [5].

18.5 Parallellisation of the Mesh Generation Procedure

Due to necessity of surface control and the specific rules of structural adaptation,
the optimization procedure requires relatively big computational effort to produce
an appropriate and accurate mesh. The development of the structural optimization
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Fig. 18.4 Cosmoprojector—the detailed scheme of the mesh generation procedure

method was thus focused on the use of a parallel computational environment to
generate the structural mesh.

The presented method is based on structure evolution. Thus, a bottleneck of the
optimization process is finite element mesh generation for each step of structural
evolution. The finite element mesh generator, Cosmoprojector, was originally dedi-
cated to mesh creation for biological entities. Since the visualization for the biolog-
ical entities is based on the digital images, e.g., Computer Tomography, the input
to the system is also based on the collection of the two-dimensional images. After
some graphical operations the images of slices are directly used for the building of
the three-dimensional finite element mesh. The two-dimensional image is first trans-
lated into the bitmap where ‘0’ represents void and ‘1’ the tissue. On the bitmap the
initial step of discretisation is executed. The aim of this first step is to describe the
areas with tissue (or just the material in the case of optimization issues). The dis-
cretisation procedure produces a two-dimensional network of tetragonal elements,
according to the tissue image shape. The discretised two-dimensional image is pro-
jected to the subsequent one. If there are areas containing material on both images,
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Fig. 18.5 Cosmoprojector—the parallel mesh generation procedure

the boxes are created. Each box is in turn translated into six tetrahedral volume el-
ements. The information about nodes and elements is stored in a special database
and translated into an ABAQUS finite element system input file. The system has to
enable the surface control, so in the whole structure the elements on the structure
are distinguished. The detailed scheme of the mesh generation procedure is shown
in Fig. 18.4.

The strain energy density computations are carried out in a parallel environment,
which is a condition to solve bigger problems. But the same question concerns mesh
generation, especially if the mesh element’s number is of order 106.

To increase the capabilities of the optimization system the mesh generation tool
was parallelised. The scheme of the parallel mesh generation procedure is shown
in Fig. 18.5. In the natural way the mesh generation for the whole domain can be
divided into independent tasks. The only change is the modification of input data
necessary to define the overlapping areas. The aim of overlapping areas is to en-
sure that the slice-by-slice mesh creation procedure is independent of the number of
processors used in the computation. The parallel finite element mesh generator was
successfully tested up to 200 nodes and is able to create meshes of order of millions
tetrahedral elements.
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Fig. 18.6 The algorithm for aeroelastic analysis coupled with the biomimetic structural optimiza-
tion

18.6 The Multiphisics Example—Biomimetic Structural
Optimization Coupled with Aeroelastic Analysis

As an example of the biomimetic structural optimization method described here,
the problem of internal wing structure design is presented. To design an aircraft
structure, the coupled fluid-structure interactions (FSI) simulations are crucial. On
the other hand, for the structural design optimization techniques have to be used.

There are many examples of using optimization techniques to design the struc-
tural elements of an aircraft [8]. In the recent years, especially the topology opti-
mization method has been introduced to the designing processes. A good industrial
example is the structure of the Airbus A380 wing. The structural elements of the
wing were designed in two designing steps. First, the optimal material distribu-
tion was defined using the topology optimization—the SIMP method. Then, after
extraction of geometry from the topology optimization results, the model for size
and shape optimizations was derived. The size and shape optimizations were the
next step in the wing designing process. Splitting the topology and then the size and
shape optimizations is necessary because of completely different optimization meth-
ods used in each case. The biomimetic approach described here allows comprising
the optimizations of size, shape, and topology. Also the varying loads during the
aeroelastic analysis due to assumptions adapted directly from the trabecular bone
remodelling phenomenon do not interfere with the optimization process.

Figure 18.6 depicts the algorithm for coupling aeroelastic analysis with structural
optimization. The approach presented here is based on the assumption that differ-
ent codes will be used separately for each part of the simulation field. The starting
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Fig. 18.7 The results of
coupled aeroelastic and
optimization procedures.
From the top down: selected
coupled simulation steps and
the CAD model of the
optimised structure

domain was an empty domain in the internal area of the airfoil. The outer shape
of the wing retains its form during the whole simulation process. The optimization
procedure starts by computing the aerodynamic load resulting from the CFD com-
putations. Then, the pressure distribution on the outer wing surface is interpolated
on the structural mesh and the optimization loop is performed. The results of cou-
pled aeroelastic analysis and biomimetic optimization for the whole internal wing
structure is shown in Fig. 18.7.

18.7 Conclusions

The idea of bone remodelling simulation was the foundation of the studies which
resulted in the creation of the numerical system capable of mimicking a real bio-
logical phenomenon. This system was a numerical base for the structural optimiza-
tion method based directly on the principle of constant strain energy density on
the surface. The biomimetic structural optimization method has some unique prop-
erties. The domain independence, functional configurations during the process of
optimization, and a possible solution of multiple load problems are special features
which provide new possibilities in the area of structural optimization. Thus, using
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the approach presented above it is possible to comprise optimizations of size, shape,
and topology with no need to define parameters. The presented method is able to
produce results similar to the standard method of topology optimization and can be
useful in mechanical design, especially when functional structures are needed dur-
ing the optimization process, broadening the spectrum of possible applications. Due
to parallelisation of both the structural analysis of strain energy density distribution
and volume mesh generation, the presented method can be useful in real industrial
problems. The initial concept of the optimization system was dedicated to the bone
remodelling purposes. Over time, the concept has evolved, and today it can be a
useful tool for mechanical design.
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Chapter 19
Uncertainties in Contact Mechanics and Shape
Optimization Problems

Nikolay Banichuk and Svetlana Ivanova

Abstract Shape optimization problems with uncertainties are considered for a rigid
punch interacting with an elastic medium. Considered loads are supposed to be
given with incomplete data or described by random variables. Corresponding in-
vestigations are respectively performed in the framework of a minimax (worst case
scenario) approach or a stochastic approach. As a result of the proposed approaches
and applied analytical methods, the optimal designs of the punch are obtained and
presented in the paper for various definitions of uncertainties.

19.1 Introduction

In structural optimization problems the loading scenario is usually assumed to be
known. In particular, the regions of applications of the loads, the form of the distri-
bution of the forces and their value are assumed to be specified [1, 6, 7]. No changes
are permitted in the specification of the external loads and the optimum solutions de-
termined under these conditions are sensitive to a change in the problem parameters.
However, the situation is quite different in many applications: the regions where the
load act, the distribution of the applied forces and their limiting values are indeter-
minate and depend on a number of random quantities. To describe the uncertainties
that arise and to formulate optimization problems with incomplete information, dif-
ferent approaches can be employed [5], for example, a probability approach [4, 5]
based on a specification of the probability density function of the random loads. The
limited nature of this approach is the fact that in many applications this function is
unknown. There is another approach which does not use the probability density
function; this is a guaranteed approach based on a minimax (worst case scenario)
description and on a determination of the unknown parameters in a calculation of
the “worst” case. In this approach the applied “indeterminate” loads do not need to
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be described by a probability density distribution and pertain to a set of admissible
loads. This approach enables a deterministic specification of the uncertainties to be
used and enables modelling and optimization methods to be developed.

Below we present methods of optimizing the shape of a rigid punch under qua-
sistatic conditions using the worst case scenario approach and the probabilistic ap-
proach separately.

19.2 Basic Relations and Elements of the Formulated Structural
Optimization Problem

The interaction of a rigid punch with the elastic half-space z≥ 0 is considered in the
rectangular coordinate system 0xyz. The boundary of the elastic half-space Ω (z=
0) contains the contact domain Ωf representing the base of the punch, the region
Ω0 which is free of loading q and the regions Ωi

q , i = 1,2, . . . ,N , of application of
external forces q , i.e.

Ω =Ωf +Ω0 +Ωq,

Ωq =
i=N⋃
i=1

Ωi
q, Ωf ∩Ω0 = 0,

Ωf ∩Ωi
q = 0, Ωi

q ∩Ω0 = 0.

The surface of the punch penetrated into an elastic medium without friction is given
by the equation

z=
{
f (x, y), (x, y) ∈Ωf ,

0, (x, y) ∈ ∂Ωf ,

where f (x, y) a is positive, continuous, and smooth function. In what follows, this
function will be considered as an unknown design variable.

External forces q = {qx, qy, qz} applied to the domains Ωq are considered as
uncertainty functions depending on incomplete data or random variables, i.e.

q ∈Λq,

where Λq is a set described by some limits or random characteristics. Boundary
conditions at Ω have the form

w = f (x, y), σxz = 0, σyz = 0, (x, y) ∈Ωf , (19.1)

σzz = qz, σxz = qx, σyz = qy, (x, y) ∈Ωq, (19.2)

σzz = 0, σxz = 0, σyz = 0, (x, y) ∈Ω0. (19.3)
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Here σxz, σyz, and σzz are components of the stress tensor, w is the projection of
the displacement vector on the z-axis, and qx , qy , and qz are given load distribu-
tions. The contact pressure distribution p can be found as a solution of the theory
of the elasticity problem with the boundary conditions (19.1)–(19.3) for the normal
stresses σzz, i.e.

p =−(σzz)z=0, (x, y) ∈Ωf .

Then the resulting force P applied to the punch and the total applied moments Mx ,
My (with respect to the axes x and y) can be estimated as

P =
∫
Ωf

pdΩf , Mx =
∫
Ωf

ypdΩf , My =
∫
Ωf

xpdΩf . (19.4)

To estimate the values P , Mx , My , we will use the reciprocity theorem. For this
purpose we consider separately two punches with the same contact domain Ωf

penetrated without friction into an elastic half-space. The first standard punch has a
plane bottom

z= f 0(x, y)= α + βx + γy, (x, y) ∈Ωf , (19.5)

where α, β , and γ are some given constants. This punch is penetrated into an elastic
half-space when the external loads at the domain Ωq are absent, i.e.

q0
x = q0

y = q0
z = 0, (x, y) ∈Ωq. (19.6)

The determined pressure p0 in the contact domain ((x, y) ∈Ωf ) and the displace-
ment components u0, v0, w0 along the axes in the domain of the external force
applications (x, y) ∈Ωq can be respectively represented as

p0 = αp0
α + βp0

β + γp0
γ , (x, y) ∈Ωf (19.7)

and

u0 = αu0
α + βu0

β + γ u0
γ , (x, y) ∈Ωq,

v0 = αv0
α + βv0

β + γ v0
γ , (x, y) ∈Ωq,

w0 = αw0
α + βw0

β + γw0
γ , (x, y) ∈Ωq.

(19.8)

The functions p0
α(x, y), p

0
β(x, y), p

0
γ (x, y), (x, y) ∈Ωf , and u0

α(x, y), u
0
β(x, y), . . . ,

w0
γ (x, y), (x, y) ∈Ωq , do not depend on the constants α, β , γ .
The second punch with the desired shape f = f (x, y), (x, y) ∈Ωf , is penetrated

into an elastic half-space in accordance with the boundary conditions (19.1)–(19.3)
in the general case when

qj �= 0 (j = x, y, z), (x, y) ∈Ωq.
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Thus, we have two systems of variables: the first system

{
w0 = f 0, p0, (x, y) ∈Ωf ,

u0, v0, w0, (x, y) ∈Ωq,

that corresponds to the standard punch, and the second system

{
w = f, p, (x, y) ∈Ωf ,

qx, qy, qz, (x, y) ∈Ωq,

that corresponds to the optimized punch. In accordance with the Betti reciprocity
theorem [2, 3], we have

∫
Ωf

fp0dΩf =
∫
Ωf

f 0pdΩf +
∫
Ωq

(
u0qx + v0qy +w0qz

)
dΩq. (19.9)

Let us substitute the expressions (19.5)–(19.8) for f 0, p0, u0, v0, w0 into the rela-
tion (19.9) and perform elementary transformations taking into account the formulas
(19.4). We obtain

P =
∫
Ωf

fp0
αdΩf −

∫
Ωq

(
u0
αqx + v0

αqy +w0
αqz

)
dΩq, (19.10)

Mx =
∫
Ωf

fp0
γ dΩf −

∫
Ωq

(
u0
γ qx + v0

γ qy +w0
γ qz

)
dΩq, (19.11)

My =
∫
Ωf

fp0
βdΩf −

∫
Ωq

(
u0
βqx + v0

βqy +w0
βqz

)
dΩq. (19.12)

In what follows, we will use the following presentation for total force and moments
applied to the optimized punch:

P = Pf (f )− Pq(q), Mj =M
f
j (f )−M

q
j (q), j = x, y. (19.13)

Here Pf (f ), M
f
j (f ) are the linear functionals of the desired punch shape

Pf (f )=
∫
Ωf

fp0
αdΩf , M

f
x (f )=

∫
Ωf

fp0
γ dΩf , M

f
y (f )=

∫
Ωf

fp0
βdΩf

(19.14)
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and the linear functionals Pq(q), M
q
j (q) depending on the loads qx , qy , qz are ex-

pressed as

Pq(q)=
∫
Ωq

[
u0
αqx + v0

αqy +w0
αqz

]
dΩq,

M
q
x (q)=

∫
Ωq

[
u0
γ qx + v0

γ qy +w0
γ qz

]
dΩq,

M
q
y (q)=

∫
Ωq

[
u0
βqx + v0

βqy +w0
βqz

]
dΩq.

(19.15)

Using the presented expressions (19.10)–(19.15) for the total force and moments,
we will consider the problems of the punch mass minimization under constraints on
P , Mx , My . Thus, we will minimize the integral functional

J = ρ

∫
Ωf

√
1+ (∇f )2dΩf = ρSf + ρ

2

∫
Ωf

(∇f )2dΩf −→min
f

(19.16)

under the inequality constraints

P = Pf (f )− Pq(q)≥ P ∗,

My =M
f
y (f )−M

q
y (q)≥M∗

y ,

Mx =M
f
x (f )−M

q
x (q)≥M∗

x ,

where the values P ∗, M∗
y , M∗

x will be supposed as given.

19.3 Shape Optimization Based on the “Worst Case Scenario”

Suppose that all external loads q act in the domain Ωq and their values are unknown
beforehand, but their loads q = {qx, qy, qz} belong to some given set Λq , i.e.

q ∈Λq.

In what follows, we will consider the following continuous set:

Λq =
{
q : qj = qj (x, y)≥ 0, j = x, y, z, (x, y) ∈Ωq,

∫
Ωq

qj (x, y)dΩq ≤Q∗j
}
.

(19.17)
Here Q∗j ≥ 0 are specified positive constants. According to the inequalities in
(19.17), any unidirectional forces, the resultants of which do not exceed specified
values, can be applied to the region Ωq .

Another method of describing the set Λq consists of a discrete specification of
the set of possible forms of the forces, i.e.

Λq =
{
q = qk(x, y) : k = 1,2, . . . , n, (x, y) ∈Ωq

}
,
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Fig. 19.1 The contact
domain Ωf and the region of
application of the external
loads Ωq

where qk(x, y) are specified functions defining different cases of the loading of
the region Ωq . The “worst” force q = qworst is determined using the following
inequality:

max
q∈Λq

(
max

{
P ∗ − Pf + Pq, M∗

x −M
f
x +M

q
x , M∗

y −M
f
y +M

q
y

})≤ 0.

Let us consider the shape optimization problem where the constraints are imposed
on the total force P and the moment My as

P ≥ P ∗, My −M∗
y ≥ 0 (19.18)

and assume that the contact domain Ωf (the base of the optimized punch) has the
shape of a circle

Ωf =
{
(x, y) : x2 + y2 ≤ a2} (19.19)

and the region where the external load is applied has a rectangular shape (Fig. 19.1)

Ωq =
{
(x, y) : b ≤ x ≤ b+ d, −c ≤ y ≤ c

}
, (19.20)

the point of which (x = b, y = 0) nearest to Ωf is a distance b from the origin of
coordinates, i.e.

b= min
(x,y)∈Ωq

√
x2 + y2, Ωf ∩Ωq = 0. (19.21)

Here a, b, c, and d are positive parameters, where a < b. The external forces con-
sidered are generated by distributed loads qz(x, y), which act along the z-axis, the
resultant of which does not exceed the specified value Q∗z , i.e.

qz ∈Λq =
{
qz : qz ≥ 0,

∫
Ωq

qzdΩq ≤Q∗z
}
. (19.22)

In our analysis we will use the following expressions for p0
α(x, y), p0

β(x, y),

(x, y) ∈Ωf , and w0
α(x, y), w

0
β(x, y), (x, y) ∈Ωq , corresponding to the rigid punch
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with the circular contact domain (r =√
x2 + y2 ≤ a) and a plane bottom:

p0
α =

E

π(1− ν2)
√
a2 − r2

, (x, y) ∈Ωf ,

p0
β =

2Ex

π(1− ν2)
√
a2 − r2

, (x, y) ∈Ωf ,

w0
α =

2

π
arcsin

a

r
, (x, y) ∈Ωq,

w0
β =

2x

π

[
arcsin

a

r
− a

r2

√
r2 − a2

]
, (x, y) ∈Ωq.

(19.23)

Here E and ν are respectively the Young modulus and the Poisson ratio of the elastic
medium.

We will also use the expressions (19.19)–(19.23) and the following formulae:

qworst = arg maxq∈Ωq

(
max

{
P ∗ − Pf + Pq, M∗

y −M
f
y +M

q
y

})
, (19.24)

Pf =
∫
Ωf

fp0
αdΩf , Pq =

∫
Ωq

w0
αqzdΩq,

M
f
y =

∫
Ωf

fp0
βdΩf , M

q
y =

∫
Ωq

w0
βqzdΩq.

Using the guaranteed minimax approach (worst case scenario) employed in this
section, the external load qz(x, y) is chosen from the admissible set (19.22) in cal-
culating the worst case in accordance with (19.24). Taking also into account that
the quantity w0

α is the decreasing function of the distance r = √
x2 + y2 and the

monotonic decrease in the function

w0
β(r, θ)=

2

π
r

[
arcsin

a

r
− a

r2

√
r2 − a2

]
cos θ, r > a

as r increases for any θ in the interval −π/2 < θ < π/2 (θ is the angle measured in
the x0y plane anticlockwise from the x-axis), and the representations (19.24), it can
be shown that the “worst” load chosen from the admissible set of the loads (19.22)
has the form of the Dirac δ-function (denoted by δ):

(qz)worst =Q∗zδ(x − b, y).

Thus, the “worst” load is a pointed force applied to the region Ωq at the point (x = b,
y = 0) nearest to the contact domain Ωf .
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The total load P and the moment My will be estimated as

P =
∫
Ωf

f (x, y)p0
α(x, y)dΩf − 2Q∗z

π
arcsin

a

b
≥ P ∗,

My =
∫
Ωf

f (x, y)p0
β(x, y)dΩf − 2bQ∗z

π

(
arcsin

a

b
− a

b2

√
b2 − a2

)
≥M∗

y ,

(19.25)
when qz = (qz)worst .

In the case where both constraints in (19.18) are “active”, i.e. they are satisfied
with the equality sign for qz = (qz)worst , the finding of the optimal punch shape is
reduced to the search for the extremum of the Lagrange augmented functional

JL(f )= J (f )− λ

∫
Ωf

fp0
αdΩf −μ

∫
Ωf

fp0
βdΩf . (19.26)

Here λ and μ are Lagrange multipliers corresponding to the constraints (19.25)
taken with the rigorous equality sign.

The necessary condition for an extremum of the functional (19.26) and the corre-
sponding boundary condition and the additional condition that the desired function
f is limited as r→ 0 can be written in the form

∂2f

∂r2
+ 1

r

∂f

∂r
+ 1

r2

∂2f

∂θ2
=−λ

ρ
ϕ(r)− μ

ρ
ψ(r, θ), (19.27)

(f )r=a = 0, 0≤ θ ≤ 2π, (19.28)

limf <∞, r→ 0, (19.29)

where θ is the polar angle measured in x0y plane anticlockwise from the x-axis
while the functions ϕ(r) and ψ(r, θ) are given by the expressions

ϕ(r)= p0
α(r)=

E

π(1− ν2)
√
a2 − r2

,

ψ(r, θ)= p0
β(r, θ)=

2Er cos θ

π(1− ν2)
√
a2 − r2

= 2rϕ(r) cos θ.

(19.30)

The Poisson equation (19.27) together with the representations (19.30) and the con-
ditions (19.28), (19.29) constitute the boundary value problem for determining the
desired shape of the punch. Its bounded solution can be written in the form

f (r, θ)= λΦ(r)+μW(r, θ),

Φ(r)= E

ρπ(1− ν2)

{√
a2 − r2 − a ln

(
1+

√
1− r

a

)}
,

W(r, θ)= 2E cos θ

3ρπr(1− ν2)

{
a
(
a2 − r2)− (

a2 − r2)3/2}
.
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Fig. 19.2 The shape
characteristic f/λ0 against r
for different values of θ

The Lagrange multipliers λ and μ are found from the system of two linear algebraic
equations

λ

∫
Ωf

ϕΦdΩf +μ

∫
Ωf

ϕWdΩf = P ∗ + 2Q∗

π
arcsin

a

b
,

λ

∫
Ωf

ψΦdΩf +μ

∫
Ωf

ψWdΩf =M∗
y +

2bQ∗

π

(
arcsin

a

b
− a

b2

√
b2 − a2

)
.

In Fig. 19.2, we show graphs of f/λ0 against r (λ0 = λE/[πρ(1 − ν2)]) for
different values of θ for the case when μ= 0.8λ. Note that the curve for θ =±π/2
represents the shape of the punch in the case when the constraint on the moments is
not imposed (W(r, θ)= 0). In Fig. 19.3, we represent a corresponding 3-D shape of
the optimal punch.

19.4 Shape Optimization Based on Probabilistic Formulation

In this section, the external forces q = {qx, qy, qz} applied to the domain Ωq are
considered as functions depending on random variables ξ and η, i.e.

qj = qj (x, y, ξ, η), j = x, y, z, (x, y) ∈Ωq. (19.31)
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Fig. 19.3 The optimal punch shape

The random variables ξ , η are described by the joint probability density and the
corresponding joint probability distribution functions F(ξ, η), where

g(ξ, η)= ∂2F

∂ξ∂η
.

Consider the case when the random external pointed loads

qj (x, y, ξ, η)=Qjδ(x − ξ, y − η), j = x, y, z

are applied to the domain

Ωq = {x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}
and these loads are statistically independent, i.e.

g = g(ξ, η)= gξ (ξ)gη(η)

and uniformly distributed, i.e. the multipliers gξ (ξ), gη(η) of the joint probability
density have the form

gξ (ξ)=

⎧⎪⎨
⎪⎩

0, ξ < x1,

1/(x2 − x1), x1 < ξ < x2,

0, ξ > x2,

gη(η)=

⎧⎪⎨
⎪⎩

0, η < y1,

1/(y2 − y1), y1 < η < y2,

0, η > y2
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and the corresponding joint probability distribution functions Fξ (ξ), Fη(η) are writ-
ten as

Fξ (ξ)=

⎧⎪⎨
⎪⎩

0, ξ < x1,

(ξ − x1)/(x2 − x1), x1 < ξ < x2,

1, ξ > x2,

Fη(η)=

⎧⎪⎨
⎪⎩

0, η < y1,

(η− y1)/(y2 − y1), y1 < η < y2,

1, η > y2,

where Qj and x1, x2, y1, y2 are the given values (x1 < x2, y1 < y2).
Taking into account the boundary conditions (19.1)–(19.3) with the random

forces (19.31), we can find random stresses σxz, σyz, σzz and random contact pres-
sure distribution

p(x, y, ξ, η)=−σzz(x, y, ξ, η)
at the bottom of the punch ((x, y) ∈ Ωf ) that can be used for determination of
random resulting force P and moments Mx , My applied to the punch as

P(ξ, η)=
∫
Ωf

p(x, y, ξ, η)dΩf ,

Mx(ξ, η)=
∫
Ωf

yp(x, y, ξ, η)dΩf ,

My(ξ, η)=
∫
Ωf

xp(x, y, ξ, η)dΩf .

Using the Betti reciprocity theorem [2, 3] and the corresponding relations (19.13)–
(19.15), it is possible to estimate mathematical expressions of the total reaction force
P̂ = E (P ) and moments M̂j = E (Mj ), j = x, y, evaluated with the help of the
formulas

P̂ = E (P )= Pf (f )− E
(
Pq(q)

)
,

M̂j = E (Mj )=M
f
j (f )− E

(
M

q
j (q)

)
,

(19.32)

where the mathematical expectation of the random function e(ξ, η) is defined as

E
(
e(ξ, η)

)≡
∫
Ωq

g(ξ, η)e(ξ, η)dξdη.

Consider the probabilistic shape optimization problem for a rigid punch-shell con-
sists of minimization of the mass functional (19.16) under the constraints

P̂ = P ∗, M̂x =M∗
x , M̂y =M∗

y (19.33)
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imposed on the values of mathematical expectations of the total reaction force and
moments. Here P ∗, M∗

x , M∗
y are given problem parameters. In what follows in this

section, we suppose that the contact domain Ωf is circular with a given radius a,
i.e.

Ωf =
{
x2 + y2 ≤ a2}= {0≤ r ≤ a, 0≤ θ ≤ 2π},

where r is the radius and θ is the angle measured in the xy plane from the x-
direction.

To find the unknown punch shape, let us construct the Lagrange augmented func-
tional corresponding to the optimization problem (19.16), (19.33) taking into ac-
count only the terms Pf (f ) and M

f
j (f ) in (19.32) that depend explicitly (in the

form of the linear functional) on the shape f . We have

JL =
∫
Ωf

[
ρ

2
(∇f )2 − λαp

0
αf − λβp

0
βf − λγ p

0
γ f

]
dΩf , (19.34)

where r =√
x2 + y2,

p0
α(r)=

E

π(1− ν2)
√
a2 − r2

,

p0
β(r, θ)=

2Er cos θ

π(1− ν2)
√
a2 − r2

,

p0
γ (r, θ)=

2Er sin θ

π(1− ν2)
√
a2 − r2

.

(19.35)

To determine the Lagrange multipliers λα , λβ , λγ in the augmented functional
(19.34), we will use the conditions (19.33). The radius r and the angle θ belong
to the domain Ωf = {0≤ r ≤ a, 0≤ θ ≤ 2π}.

A necessary optimality condition and boundary condition for the desired function
f constitute the following boundary value problem:

�f ≡ ∂2f

∂r2
+ 1

r

∂f

∂r
+ 1

r2

∂2f

∂θ2
=

=−λα

ρ
p0
α(r)−

λβ

ρ
p0
β(r, θ)−

λγ

ρ
p0
γ (r, θ), (19.36)

(
f (r, θ)

)
r=a = 0, 0≤ θ ≤ 2π. (19.37)

Using decomposition and shape functions, it is convenient to represent the de-
sired bounded solution of the Poisson equation (19.36) with the Dirichlet condition
(19.37) in the following form:

f (r, θ) = fα(r)+ fβ(r, θ)+ fγ (r, θ),

fα(r) = λαχα(r),
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fβ(r, θ) = λβχβ(r, θ),

fγ (r, θ) = λγ χγ (r, θ).

Shape functions χi (i = α,β, γ ) must satisfy the boundary value problems

�χi =− 1

ρ
p0
i , i = α,β, γ, (19.38)

(χi)r=a = 0, (χi)r→0 <∞ (19.39)

and Lagrange multipliers λi (i = α,β, γ ) are determined with the help of the
isoperimetric conditions (19.33). Taking into account that in the case i = α the func-
tion p0

α = p0
α(r) is axisymmetric with respect to the z-axis, we solve the boundary

value problem (19.38), (19.39) and find a corresponding symmetric shape function

χα(r)=E

[√
a2 − r2 − a ln

(
a +√a2 − r2

a

)]/(
ρπ

(
1− ν2)). (19.40)

The optimal axisymmetric shape function (19.40) corresponds to the case where the
only constraint on the external load is taken into account.

In the case where i = β,γ the corresponding solutions of the boundary value
problems (19.38) and (19.39) can also be found in analytical forms as

χβ(r, θ)= 2E cos θ
{
a
(
a2 − r2)− (

a2 − r2)3/2}(3π(1− ν2)ρr),
χγ (r, θ)= 2E sin θ

{
a
(
a2 − r2)− (

a2 − r2)3/2}(3π(1− ν2)ρr).
The Lagrange multipliers λα , λβ , λγ are found from the system of linear algebraic
equations

λαδαα + λβδβα + λγ δγα = P ∗ +CP ,

λαδαγ + λβδβγ + λγ δγ γ =M∗
x +CMx ,

λαδαβ + λβδββ + λγ δγβ =M∗
y +CMy .

The coefficients δij (i = α,β, γ ; j = α,β, γ ) and the values CP , CMx , CMy are
defined as

δij =
∫
Ωf

χip
0
j dΩf ,

CP = E

{∫
Ωq

(
u0
αqx + v0

αqy +w0
αqz

)
dΩq

}
,

CMx = E

{∫
Ωq

(
u0
γ qx + v0

γ qy +w0
γ qz

)
dΩq

}
,

CMy = E

{∫
Ωq

(
u0
βqx + v0

βqy +w0
βqz

)
dΩq

}
,
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Fig. 19.4 The optimal punch shape

where p0j , j = α,β, γ , w0
α , w0

β are given by the formulas (19.35), (19.23) and the

functions u0
α , u0

β , u0
γ , v0

α , v0
β , v0

γ , w0
γ are defined as

u0
α =−

a(1− 2ν)x

π(1− ν)r2
,

u0
β =−

4a3(1− 2ν)(x2 − y2)

3π(1− ν)r4
,

u0
γ =−

8a3(1− 2ν)xy

3π(1− ν)r4
,

v0
α =−

a(1− 2ν)y

π(1− ν)r2
,

v0
β =−

8a3(1− 2ν)xy

3π(1− ν)r4
,

v0
γ =−

4a3(1− 2ν)(x2 − y2)

3π(1− ν)r4
,

w0
γ =

2y

π

(
arcsin

a

r
− a

r2

√
r2 − a2

)
.

The optimal punch shape in the case of uniform distribution of probability den-
sity is presented in Fig. 19.4 when all three constraints are taken into account and
P ∗ = 1, M∗

x =M∗
y = 0.25, a = 1.
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19.5 Some Notes and Conclusions

Described in this investigation, the approaches to solving shape optimization prob-
lems in contact mechanics with uncertainties are based on the worst case scenario
or on probabilistic formulation. Both the guaranteed approach and the probabilis-
tic approach use the reciprocity relations for effective estimation of such integral
characteristics as total forces and moments.

The procedure of the solution constructing consists of two parts. In the first part,
the exact integral expressions for the total reactions are derived in the form of the
linear functionals of the desired punch shape and the external loads given with in-
complete data and successive finding of the “worst load” (the worst case scenario) or
the mathematical expectations of the external actions (the probabilistic approach).
In the second part, necessary optimality conditions and derived reciprocity relations
are used for formulation of the boundary value problems for unknown shape func-
tions. The solution of the boundary value problems and finding the desired punch
shape are performed in an analytical manner.
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Chapter 20
PPPC—Peer-2-Peer Streaming and Algorithm
for Creating Spanning Trees for Peer-2-Peer
Networks

Amir Averbuch, Yehuda Roditi, and Nezer Jacob Zaidenberg

Abstract We describe a system that builds peer-2-peer multicast trees. The pro-
posed system has a unique algorithm that incorporates real-time and priority-based
scheduler into a graph theory with robust implementation that supports multiple
platforms. Special consideration was given to conditional access and trust comput-
ing. We also describe the system design as well as the computational aspects of
processing the graphs used by the system.

20.1 Introduction

The bandwidth cost of live streaming prevents cost-effective broadcasting of rich
multimedia content to Internet users.

For Internet streaming, the old-fashioned client-server model puts a considerable
cost burden on the broadcaster. In the client-server model, a client sends a request to
a server and the server sends a reply back to the client. This type of communication
is at the heart of the IP [11] and TCP [12] protocol, and most of UDP [10] traffic as
well. In fact, almost all upper layers of communication such as HTTP [5], FTP [1],
SMTP [13], etc., implement the client-server models. The client-server communi-
cation model is known as unicast where a one-to-one connection exists between the
client and the server. If ten clients ask for the same data at the same time, then ten
exact replicas of the same replies will come from the server to each of the clients (as
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Fig. 20.1 Unicast streaming

Fig. 20.2 CDN currently does not provide the solution

demonstrated in Fig. 20.1). This model remains the same regardless of the number
of concurrent requests from the same number of unique clients, placing additional
stress on the server with each additional user.

Furthermore, the problem exists to a much greater extent in live streaming sce-
narios with large crowds of listeners such as sport events, etc., as caching techniques
such as proxies do not work with live streaming.

These problems also arise even when Content Delivery Networks (CDNs) are
used for replicating static content to other servers at the edge of the Internet. Even
when CDNs are used, every client is still served by one stream from a server, re-
sulting in the consumption of a great amount of bandwidth (see Fig. 20.2). These
infrastructure and cost challenges place a significant hurdle in front of existing and
potential Web casters. While the media industry is seeking to bring streaming con-
tent with TV-like quality to the Internet, the bandwidth challenges often restrict a
feasible, profitable business model.

In order to reduce the dependence on costly bandwidth, a new method of Internet
communication called “multicast” was invented. Rather than using the one-to-one
model of unicast, multicast is a “one-to-selected-many” communication method.
However, multicast is not available on the current Internet infrastructure IPv4 and
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Fig. 20.3 Multicast streaming could provide a solution

may never be available outside private networks. An example of what multicast
streaming looks like is demonstrated in Fig. 20.3.

A solution commonly proposed is to deploy Internet users as “broadcasters” us-
ing peer-2-peer [4, 7, 15] connections as a type of CDN.1

In this paper we describe our system for peer-2-peer streaming and our algorithm
for handling network events.

20.2 System Design

The software industry has already anticipated the need for cost-effective, high-
quality streaming and has developed applications that support multicast. Our peer-
2-peer streaming system, called PPPC (Peer-2-Peer Packet Cascading) bypasses the
lack of multicast in IPv4 Internet by providing multicast-like capabilities via peer-
2-peer, and allows the use of the already available multicast software.

The concept of peer-2-peer streaming is a distributed architecture concept de-
signed to use the resource of a client’s (desktop computer) upstream in order to
alleviate congestion in the broadcaster streaming server. (Using the client upstream
does not affect its ability to surf or download files. The upstream resource is usually
idle for most clients not involved in peer-2-peer activity (such as bittorrent [3]).)

In a peer-2-peer streaming system, the server only serves a fraction of selected
simultaneous clients requesting the same stream and turns them into relay stations.

1Content delivery network.
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Fig. 20.4 Only peer-2-peer
streaming solves the
streaming problem on the
Internet

Hereafter, the other clients who are requesting the same data will be served from
one of the clients who received the stream first.

The clients shall only maintain a control connection to the server for receiving
control input and reporting information. Also, we shall use every client as a sensor,
to detect stream rate drops, to report the problem, and to complement the missing
packet from either the PPPC router or another client. It is vital to detect any stream-
ing issues in advance before the media player has started buffering or the viewer has
noticed anything. Therefore, by following the peer-2-peer streaming concept and
serving a fraction of the users, the server can serve a lot more users with the same
bandwidth available. This is shown in Fig. 20.4.

Peer-2-peer packet cascading, or PPPC, is an implementation of the peer-2-peer
concept to the streaming industry. PPPC provides a reliable multicasting protocol
working on and above the standard IP layer. A PPPC system consists of the PPPC
router and the PPPC protocol driver. The PPPC router stands between a generic me-
dia server, such as an MS Media server, a Real Media server or a QuickTime server,
and the Viewers (see Fig. 20.5). The PPPC driver is in charge of the distribution of
data and the coordination of the clients.

In a PPPC live stream, the PPPC router will receive a single stream from the me-
dia server and will route it directly to several “root clients”. These clients will then
forward the information to other clients and so on and so forth. Users connecting
to each other will be relatively close network-wise. In this method, the data is cas-
caded down the tree to all the users while the PPPC router only serves directly (and
pays bandwidth costs) for the root clients. As users that join and leave, the trees are
dynamically updated. Moreover, the more users join the event, the more the PPPC
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Fig. 20.5 PPPC data flow

router can build better trees saving even more, eliminating the financially undesir-
able linear connection between the cost of streaming and the number of users.

20.3 PPPC System Overview

Peer-2-peer packet cascading is a system designed to provide audio and video
streaming clients with the capability to receive data from other clients and relay
them to clients. The PPPC system is divided into a PPPC router and a PPPC driver.
The PPPC router contains two logical components: the Coordinating Server (also
called CServer) and the Distributing Server (also called DServer).

The PPPC driver installed on a client workstation (any standard PC) consists of
thin client software that handles the reception and relay of the packets, and also
“feeds” them to any media player. The client does not interact with a media player,
it only delivers packets to the media player.

The coordinating server (CServer) is a command and control system in charge of
all PPPC drivers listening to a single stream. The CServer is responsible for all the
decisions in the system: For example, for a given client, from which client should
it receive data and to which client should it transfer data, how should the tree be
rebuilt after a new client arrives, what to do if a client in the middle of the tree is
disconnected, and what happens when any given client reports on problems with
receiving stream from his parent.

The distributing server (DServer) is a data replication and relay system. The
DServer receives a multicast (data-only) stream and encapsulates the data in a PPPC
format (recognized by PPPC driver). The DServer delivers the encapsulated packets
to the roots of PPPC clients’ trees (root clients). The CServer decides who the root
clients are.
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20.3.1 Data Flow in the PPPC System

In a PPPC system, a PPPC router must receive a data-only stream (i.e. no meta-data)
from a generic media server and is responsible for delivering the stream to clients. In
some way, a PPPC router acts very much like a multicast router. (A data-only stream
is required because a stream with metadata will require the decoding of the stream
and the right metadata to be sent to each of the clients thus missing the system’s
goal of generality.)

Most standard media servers can provide data-only stream, either directly or via
a “multicast” option. The DServer in our system will receive the multicast stream or
other data-only stream and pass it forward to the root clients. The PPPC drivers run-
ning on root clients’ work stations pass the stream to other drivers on other clients.
Therefore, each client acts as a small server, reusing the DServer code for this pur-
pose.

When a PPPC driver, regardless of whether the PPPC driver also forwards the
stream to other clients or not, receives the stream, it will forward it to the media
player pretending to be the original media server using multicast or a fake IP if
necessary. This is not real network traffic, but local traffic on the local host blocked
in the kernel. Then, the media player will receive the stream and will act as if it
received the stream directly from the media server. The PPPC driver will send a
stream just like a media server.

Thus, the media server sends a standard (usually multicast) data stream, and the
media player receives a standard stream. This enables the system to work with any
media server, any media player and any codec, etc., without the need to have any
specific integration.

20.3.2 Detailed Description of the System Components

One instance of the server handles one media stream. Multiple instances of the
server are possible in order to handle more than one stream. Parts (entities) within
the server communicate with each other by TCP enabling them to run on several
computers.

20.3.2.1 Distributing Server (DServer)

The distributing server transfers the stream contents to root clients and serves as
a backup source for clients (the DServer is also a backup server). It contains two
physical components:

1. A single receiver, which gets the raw data from a media server via multicast or
UDP. The DServer Receiver then encapsulates the data arriving from the media
server in PPPC packets (recognized by PPPC clients).
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2. One or more distributors which receive the information directly from the receiver
and serve the root clients.

The distributors share packet relay and a connection code with the drivers, but
they are the only entities that receive the stream directly from the receiver. This divi-
sion is suggested in order to receive optimal scalability, and it allows the deployment
of the distributors across several CDN sites.

20.3.2.2 Coordinating Server (CServer)

The coordinating server maintains the control connection with every client. It de-
cides which clients connect between them, i.e., it constructs the PPPC tree. Our
algorithm is implemented within the CServer. The CServer updates dynamically the
PPPC tree on such events as connection/departure of clients, unexpected disconnec-
tions, etc.

The CServer, similar to the DServer, also contains two components:

1. A single centralized main module where all the users’ (of a single stream) data
is saved. The main module provides all the logic and decisions to the system.

2. One or more proxies who receive client connections and pass requests and re-
sponses to/from the CServer’s main module.

In a large-scale PPPC system, where several proxies can exist, each maintains
a connection to a large group of clients. The main module is the only place where
complete information and decision making regarding all clients is kept for decision
making regarding the clients’ tree. Reports on the clients’ connections and discon-
nections are handled by the main module.

20.3.2.3 The PPPC Driver

The PPPC driver is a very light client which consumes very little system resources
apart from the relatively free upstream. It is the only client side software and it
communicates with the CServer and DServer components and the PPPC drivers in
other clients.

20.3.3 Viewing a Stream with PPPC—Life Cycle

This life cycle assumes that the clients select the stream using WWW:

1. The user accesses a page on the WWW which provides him with stream infor-
mation.

2. The file is silently downloaded to the user’s computer.
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3. The PPPC driver parses the file which includes a standard media player activa-
tion file. The PPPC driver reads the CServer and DServer IP address as well as
other parameters and invokes the standard media player to handle the stream.

4. The client connects simultaneously to the CServer and DServer.
5. The DServer sends data to the client which is immediately displayed to the user.
6. In a certain event2 a CServer decides to rebuild the PPPC client trees.
7. The CServer sends the client messages with information about its new stream

source (another client or the DServer) and possibly the address of other clients
that should be served the stream.

8. A client connects to specified clients and starts to receive information from the
parent and relays it to its children. The arrival of data is viewed through the
media player to the user.

9. The CServer may decide during the operation to rebuild the tree and sends again
the corresponding messages to the client, which disconnects its older connec-
tions and creates newer ones.

10. When the user decides to stop viewing the stream, the PPPC client recognizes
it and sends the message “I’m going to disconnect” to the CServer and quits.
Meanwhile, the CServer updates the clients’ tree if necessary.

20.3.4 Maintaining a Certain Level of QoS

In order to maintain and guarantee a certain level of QoS, we will add a stream rate
detection unit to every client. The stream rate is published by the CServer when
clients join the stream. If a client detects that the stream rate has dropped below
a certain level, he will be connected to the DServer to complement the missing
packets or as an alternative stream source. Numerous reasons cause the packet rate
to be dropped: parent disconnection (the packet rate drops to zero), a sudden drop in
the packet rate when the parent uses his upstream to send an email, or a high CPU
load on the parent machine. He might also report that his previous parent was a “bad
parent”; then the CServer will not assign new children to a “bad parent”.

The switch between parents and going to the DServer should be done very fast
(within the streaming buffer time found in the client). If all packets arrive before the
buffer expires, the user will never notice the switch between the parents.

We will describe the exact method in which bad parents are detected in Sect. 20.5.

20.4 Avoiding Flat Trees, Distress, and Guaranteeing a Certain
Level of QoS

In this section we describe all the system engineering issues which are connected
to the appearance of what we call “flat trees”. Flat trees are trees that have a very

2For example, after some other new clients have arrived, or old clients have disconnected.
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large number of root clients compared to the total number of clients and a very
small number of peer-2-peer connections. We will also describe how these issues
are solved.

We encountered several reasons for having extremely flat trees, and most of them
were related to our goal to achieve a high level of QoS. This section describes our so-
lution, which provides high streaming quality to clients who can receive the stream.
This is done while we maintain a peer-2-peer connection with a high bandwidth
saving ratio. We realized that QoS and the flat trees problem are closely connected.
Several problems have been identified:

• Parents that could not serve clients constantly received new clients which caused
a decrease in QoS.

• Parents that were declared bad parents never received new clients and caused flat
trees.

• Clients that were unable to view the stream pass from parent to parent declared
them all to be bad parents (hereby bad clients). Such a client can easily mark all
clients in a tree as bad parents which will surely result in a flat tree.

• In case of a transmission problem in the upper layers of the tree, many clients in
the lower layers of the tree did not receive the stream and reported their parents
to be bad parents. This caused the multiplicity of bad parents.

• Clients that detected problems were generally not the direct children of the clients
that caused the problem. Thus, many of the clients were declared to be bad for no
apparent reason. (Same as above!)

• Due to the above conditions, the lower layers of the tree received poor-quality
stream.

As we can see from above, most of the problems occurred due to faulty behavior
when served by an unsatisfying packet rate. We shall hereby call this situation dis-
tress.

20.5 Bad Parents and Punishments

When a client reports to the CServer that his parent does not provide him with a
sufficient packet rate, the CServer will mark the parent as a bad parent. In this case
the bad parent’s maximum number of children is set to its current child number.

The client that reported the bad parent will also connect to the DServer either
to compliment the missing packets or to replace its current bad parent with the
DServer. Therefore, a bad parent cannot have any more children. We will not dis-
connect any of the other children he already had. We will allow new children to
replace one of the old ones if they were disconnected. If the previous client did not
have any children then he will not have children anymore.

We “punished” bad parents so harshly to prevent any connection of new clients
to them. Thus, we avoided a situation where a client connects to several “bad par-
ents” before receiving the stream. Thus, the QoS is degraded. We provide another
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punishment function that either produces no result, i.e. a client kept connecting to
bad parents regardless of the punishment or the same result. The goal was that the
client will never connect to bad parents.

The isolation of bad parents plays a very important role in guaranteeing a high
QoS. We realized that a stream is never disrupted in real-world scenarios by the
sudden disconnection of parents or fluctuations in their upstream. However, bad
parents were often one of the main reasons for having flat trees. The clients could
not find themselves a suitable parent because all possible parents were marked as
bad parents and could not accept any new children.

Therefore, we give a chance for a bad parent to recover. We set a punishment
time stamp where the punishment time is assigned to each of the bad parents. To
recover from this situation we introduce bad parents’ rehabilitation process (see
Sect. 20.5.1). There are many temporary situations such as sending and e-mail which
hogs the upstream, starting Microsoft Office, which causes a CPU surge for a cou-
ple of seconds, and many more. A “bad parent” can recover from the “temporary”
situations. This should not prevent him from future productive service to clients.

20.5.1 Bad Parent Rehabilitation

There are many reasons for punishing a client and turning it into a bad parent. Nev-
ertheless, we realized that the punishment mechanism on the PPPC network should
be temporary. We shall associate a time stamp with the punishment time when a
client is punished. After a period of time we will rehabilitate the parent and allow it
to receive new connections.

The rehabilitation thread is in charge of bad parents rehabilitation. The suggested
time period for rehabilitation is between 5 and 15 minutes.

20.5.2 Distress Logic: Marking of Bad Parents

A distress state is the state in which a client does not receive enough information
within a PACKET_RATE_CALCULATION_PERIOD. There are two variables that
dictate a distress state:

1. Parent distress is a boolean variable that indicates whether the parent sent any
indication of entering into a distress state.

2. Current distress is a variable that may be equal to either no-distress, light distress,
or major distress.

These variables introduce six different distress states:

No distress: The standard state. The packet rate is fine and the father has not in-
formed otherwise.
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Light distress: The state that occurs when a client receives less packets than DIS-
TRESS_MIN_PACKET_RATE and there is no notification from the parent that
he reached a similar state.

Parent distress: The parent indicates that he is in a light distress state but the infor-
mation still flows fine.

Parent and light distress: Indicates that both the current client and its father experi-
enced light distress.

Major distress: Indicates that the current packet rate is below MIN_PACKET_
RATE.

Major and parent distress: Indicates that the current packet rate is below MIN_
PACKET_RATE and the parent is also experiencing difficulties.

20.5.2.1 Entering into a Distress State

A packet rate threshold, DISTRESS_MIN_PACKET_RATE, is used to determine
the upper bound of entering into a “light distress” state. A client in “light distress”
does not complain about a bad parent, but opens a connection to the DServer to
complement missing packets from there. The client only sends a “Bad Parent” mes-
sage when the packet rate reaches MIN_PACKET_RATE, then it connects to the
DServer (hereby major distress).

When a client enters into a distress state it will inform its children about its state.
When a client enters into a major distress it will not report his parent as a bad parent
if his parent is also in a distress state.

20.5.3 Bad Client

Some clients, for whatever reasons may be, are simply unable to receive the stream.
Reasons may vary from insufficient downstream, congestion at the ISP or backbone,
busy CPU, poor network devices or others.

Those clients will reach a major distress state regardless of the parent they were
connected to. An “innocent” parent will be marked as a “bad” parent. In order to
prevent this from happening we add new logic to the PPPC driver.

The client should stop complaining about bad parents when the problem is prob-
ably in its own ability to receive the stream.

20.6 The Algorithm

20.6.1 The Structure of the Internet—from Peer-2-Peer Streamer
Perspective

Each of the Internet nodes viewing the stream comes from a location with an Internet
connection. Often such organization is the user’s home. The system we developed
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is capable of detecting multiple nodes in the same location (such as two users in the
same LAN or home) via multicast messages. The system ensure that at any location
only one user will stream in or out of the location. This way we eliminate congestion
and as a by-product guarantee that only one user in each location is visible to the
algorithm.

Connections between Internet nodes tend to be lossy (it is typical to have about
a 1 % packet loss) and add latency. Furthermore, not all connections are equal.
When connecting to a “nearby” user, we can expect significantly less latency and
packet loss then when connecting to a “far” user. Latency specifically is increased
and can differ from a few milliseconds to hundreds of milliseconds depending on
the distance.

We will now define nearby and far in Internet terms. Each Internet connection
belongs to an “autonomous system”. An autonomous system is usually an ISP3 and
sometimes a large company (such as HP or IBM) that is connected to at least two
other autonomous systems. Two users from the same autonomous systems will be
considered to be nearby each other.

We have created two additional levels of hierarchy. Below the autonomous sys-
tem we have created a “subnet” level. Each IP address belongs to a subnet that
defines a consistent range of IP addresses. Autonomous systems get their IP range
as a disjoint union of subnets. Often each subnet belongs to different location that
can be very far from each other (such as the east and west coast of the US). Thus,
when possible, we prefer to connect to a user from the same subnet.

Autonomous systems are interconnected. Some autonomous systems can be con-
sidered “hubs” connected to many other autonomous systems. We have created “au-
tonomous system families” centered on the hubs (containing all the autonomous
systems that connect to the hub). When a user from the same autonomous system
cannot be found, we will prefer a user from the same autonomous system family.

An autonomous system usually belongs to more than one autonomous sys-
tem family. Thus, when choosing clients to connect to each other, we prefer
clients that share a subnet. If none is found, we prefer clients that belong to the same
autonomous system. If none is found, we prefer clients that belong to the same au-
tonomous system family. Clients that have no shared container will be considered
far and will not connect to each other.

20.6.2 Minimum Spanning Trees of Clients

The algorithm uses containers that hold all clients in a certain level. Since we can
consider all clients that share a container and does not share any lower level con-
tainer to be of an identical distance from each other, we can store all clients in a
container in “heap-min” and only consider the best client in each heap to connect

3Internet service provider.
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to. The best client will be considered using the distance from the source and the best
available uplink (the best uplink considering other peers served by the client).

Algorithm 20.1 strives to maintain the graph as close to the MST as possible
while responding to each new request (vertex joining, vertex removal) in nanosec-
onds. Indeed, our solution often involves finding an immediate solution such as con-
necting directly to the source and improves the solution over time until it reaches the
optimal state. The proposed algorithm can handle very large broadcast trees (mil-
lions of listeners) in a nearly optimal state. As the server load increases (with more
users), we may be further away from the optimal solution but we will not be too far
and the stream quality for all users will be well tested.

Algorithm 20.1 Real time graph analysis
1: Read subnet to autonomous systems and autonomous systems to autonomous

systems family files. Store information in a map.
2: Create global data structure spawn interface and parents rehabilitation thread

and interface thread.
3: while Main thread is alive do
4: if There are new requests then
5: handle new request, touch at most 100 containers.
6: Inform interface thread when you are done.
7: else
8: if there are dirty containers then
9: clean at most 100 containers

10: inform interface thread when you are done
11: else
12: wait for new request
13: end if
14: end if
15: end while

Clean and dirty in the algorithm sense are containers that are optimal and containers
that are sub optimal for any reason.

For example, let us assume a client has disconnected. We will try to handle the
disconnection by touching no more than 100 containers, let’s say by connecting all
the “child” nodes directly to the source. We will mark all the containers containing
the nodes as dirty. At some point we will clean the container and fix any non-optimal
state.

20.7 Related Systems

The authors have been involved with peer-2-peer streaming company vTrails Ltd
that operated in peer-2-peer streaming scene in 1999–2002. (vTrails no longer op-
erates.) Many of the concepts and system design may have originated from the au-
thors’ period with vTrails though the system has been written from scratch.
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In recent years several peer-2-peer streaming systems have been proposed, some
with a similar design. Our main contribution in this work is the peer-2-peer algo-
rithm designed to calculate graph algorithms based on a real-time approach. Some
features of the system approach such as the handling of distress state are also inno-
vative.

ChunkySpeed [14] is a related system that also implements peer-2-peer multicast
in a robust way. Unlike PPPC, ChunkySpeed does not take Internet distances into
account.

ChunkCast [2] is another multicast over peer-2-peer system. ChunkCast deals
with download time which is a different problem altogether. In streaming, a guaran-
teed constant bitrate is required. This requirement does not exist in content down-
load which is not vulnerable to fluctuation in download speed and only the overall
download time matters.

Climber [9] is a peer-2-peer stream based on an initiative for the users to share.
It is our experience that user sharing is not the main problem but rather broadcasters
willing to multicast their content on peer-2-peer networks. Thus Climber does not
solve the real problem.

Microsoft [8] researched peer-2-peer streaming in a multicast environment and
network congestion but had a completely different approach which involved multi-
ple substreams for each stream based on the client abilities.

Liu et al. [6] recently researched peer-2-peer streaming servers’ handling of
bursts of crowds joining simultaneously which is handled by the algorithm easily
thanks to its real time capabilities.
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Chapter 21
Safety Analysis and Optimization of Travelling
Webs Subjected to Fracture and Instability

Nikolay Banichuk, Svetlana Ivanova, Matti Kurki, Tytti Saksa,
Maria Tirronen, and Tero Tuovinen

Abstract The problems of safety analysis and optimization of a moving elastic
web travelling between two rollers at a constant axial velocity are considered in this
study. A model of a thin elastic plate subjected to bending and in-plane tension (dis-
tributed membrane forces) is used. Transverse buckling of the web and its brittle and
fatigue fracture caused by fatigue crack growth under cyclic in-plane tension (load-
ing) are studied. Safe ranges of velocities of an axially moving web are investigated
analytically under the constraints of longevity and instability. The expressions for
critical buckling velocity and the number of cycles before the fracture (longevity of
the web) as a function of in-plane tension and other problem parameters are used
for formulation and investigation of the following optimization problem. Finding
the optimal in-plane tension to maximize the performance function of paper pro-
duction is required. This problem is solved analytically and the obtained results are
presented as formulae and numerical tables.
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21.1 Introduction

Good runnability (performance) of webs and other axially moving bands and belts
depends on the realized velocity and in-plane tension. Web breaks and instability are
the most serious threats to good runnability. Arisen fracture and instability modes
cause problems, e.g., for paper machines and printing presses. In practice, web insta-
bility in the form of buckling occurs when tension applied to the webs is less than
some critical value, and extension of a safe stability range is realized by increas-
ing the tension. However, a web break occurs when tension exceeds some critical
value. Thus, the increase of the in-plane tension has opposite influences on the web
stability and fracture. Both criteria are significant from the viewpoint of increased
productivity demands, which mean faster production speeds and a longer safe pro-
duction time interval (longevity).

Several studies related to the stable web movement exist in the literature. Vibra-
tions of travelling membranes and thin plates were first studied by Archibald and
Emslie [1], Miranker [11], Swope and Ames [18], Mote [12], Simpson [16], Cho-
nan [4], and Wickert and Mote [22], concentrating on various aspects of free and
forced vibrations. Stability of travelling rectangular membranes and plates was first
studied by Ulsoy and Mote [19], Lin and Mote [9, 10], and Lin [8]. Recently, the
behaviour of axially moving materials has been studied by, e.g., Shin et al. [15],
Wang et al. [20], and Banichuk et al. [2].

In [2], buckling of an axially moving elastic plate was studied. The critical ve-
locity and the corresponding buckling shapes were studied analytically as functions
of problem parameters.

The field of fracture mechanics was developed by Irwin [7], based on the early
papers of Inglis [6], Griffith [5], and Westergard [21]. Linear elastic fracture me-
chanics (LEFM), assuming a small plastic zone ahead of the crack tip, was first
applied to paper material by Seth and Page [14], who measured fracture toughness
of different paper materials. Swinehart and Broek [17] determined fracture tough-
ness of paper using both the stress intensity factor and the strain energy release rate.
They found that the measured crack length and fracture toughness were in a good
agreement with the LEFM theory.

In this study, the product of critical buckling velocity and a safe time (longevity)
will be taken as a maximized productivity function. We will evaluate analytically
the performance criterion as a function of the applied tension and other problem pa-
rameters, and will study the problem of finding the optimal tension that maximizes
the considered criterion.

21.2 Basic Relations and Formulation of the Optimization
Problem

Consider an elastic web travelling at a constant velocity V0 in the x direction
and being simply supported by a system of rollers located at x = 0, �,2�,3�, . . .
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Fig. 21.1 Top: A travelling web having an initial crack, and being supported by a system of rollers.
Bottom: A travelling web under cyclic tension, which is produced by the Earth’s gravity

(Fig. 21.1). A rectangular element Ωi , i = 1,2,3, . . . , of the web

Ωi =
{
(x, y) : i�≤ x ≤ (i + 1)�, −b ≤ y ≤ b

}
(21.1)

is considered in a Cartesian coordinate system, where � and b are prescribed geo-
metric parameters. Additionally, assume that the considered web is represented as
an elastic plate having constant thickness h, the Poisson ratio ν, the Young modu-
lus E, and bending rigidity D. The plate elements in (21.1) have small initial surface
cracks (Fig. 21.1) of the length a with a given upper bound a0, i.e.,

0 < a ≤ a0,

and are subjected to homogeneous tension T , acting in the x direction.
The sides of the plate element (i = 1,2,3, . . . )

Γ� = {x = 0, −b ≤ y ≤ b} and Γr = {x = �, −b ≤ y ≤ b}
are simply supported, and the sides

Γ− = {y =−b, 0≤ x ≤ �} and Γ+ = {y = b, 0≤ x ≤ �}
are free of traction.

Consider the following scenario where the web is moving under cyclic in-plane
tension and fatigue crack growth is realized. Suppose that the web is subjected to a
cyclic tension T that varies in the given limits

Tmin ≤ T ≤ Tmax,

where

Tmin = T0 −�T, Tmax = T0 +�T.
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Above �T > 0 is a given parameter such that

T0 −�T > 0 and
�T

T0

 1. (21.2)

For one cycle, the tension increases from T = Tmin up to T = Tmax (the loading
process) and then decreases from T = Tmax to T = Tmin (the unloading process).
The loading and unloading processes are supposed to be quasistatic: the dynamical
effects are excluded.

The cyclic tension T may be produced by different imperfections. One cause of
cyclic tension could be elastic vibrations of the rollers resulting in small changes
in the distance between the rollers. In this case, the number of tension cycles may
be very large. Another cause of cyclic tension could be the Earth’s gravity [3] (see
Fig. 21.1).

The product of the moving web velocity V0 and the process time tf can be con-
sidered a productivity criterion (performance function), i.e.,

J =m0V0tf, m0 = 2bm. (21.3)

Here, m is the mass per unit area of the middle surface of the band. In (21.3), the
velocity V0 is taken from the safe interval

0 <V0 <V cr
0 ,

where V cr
0 is the critical buckling speed.

A safe interval for the safe functioning time (the number of cycles) is written as

0 < tf < tcr
f or 0 < n< ncr,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture. For a small cycle time period τ and a big number of cycles
n, we assume that tf = nτ (approximately). Note that the critical buckling velocity
V cr

0 and the critical functioning time tcr
f (the critical number of cycles ncr) depend

on the parameters of the average in-plane tension T0, and the admissible variance
�T , i.e.

V cr
0 = V cr

0 (T0,�T ), tcr
f = tcr

f (T0,�T ), ncr = ncr(T0,�T ).

Consequently, the maximum value of the productivity criterion for the given values
T0 and �T is evaluated as

J (T0,�T )=m0V
cr
0 (T0,�T )tcr

f (T0,�T )=m0τV
cr
0 (T0,�T )ncr(T0,�T ).

The optimal average (mean) in-plane tension T0 is found from a solution of the
following optimization problem:

J ∗ =max
T0

J (T0,�T ). (21.4)
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To solve the formulated optimization problem (21.4), we will use the explicit ana-
lytical expressions for the values V cr

0 and ncr. The value of T0, giving the maximal
production J ∗, is denoted by T ∗0 .

21.3 Evaluation of the Web Longevity and the Critical Buckling
Velocity

To evaluate ncr, let us apply the fatigue crack growth theory. Suppose that the web
contains one initial crack of length a0. The process of fatigue crack growth under
cyclic tension (loading) can be described by the following equation [13] and the
initial condition:

da

dn
= C(�K)k, (a)n=0 = a0. (21.5)

Here the variance �K of the stress intensity factor K is determined with the help of
formulae

�K =Kmax −Kmin, Kmax = βσmax
√
πa,

Kmin = βσmin
√
πa, σmax = Tmax

h
, σmin = Tmin

h
.

(21.6)

In (21.5), C and k are material constants. In (21.6), h is the thickness of the web,
n is the number of cycles, and σmax, Kmax, σmin and Kmin are, respectively, the
maximum and minimum values of the stress σ and the stress intensity factor K in
any given loading cycle. For the considered case, the surface crack geometric factor
is β = 1.12.

Using (21.5) and (21.6), we write the crack growth equation in the following
form:

da

dn
= Cκk

0a
k/2, κ0 = 2β

√
π

h
�T . (21.7)

It follows from (21.7) and the initial condition in (21.5) that for considered values
of the parameter k �= 2, we will have

n=A

[
1

a
(k−2)/2
0

− 1

a(k−2)/2

]
, A= 2

(k − 2)Cκk
0

. (21.8)

Take into account that the unstable crack growth is obtained after n= ncr cycles
when the critical crack length acr satisfies the limiting relation

(Kmax)a=acr =KC,

or, in another form, we have

β
Tmax

h

√
πacr =KC. (21.9)
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Fig. 21.2 Dependence of the
(dimensionless) critical
number of cycles ñcr on the
(dimensionless) average
tension T̃0 for different values
of the Paris constant k

Note that σmax and Tmax (σmin and Tmin) are the maximum (minimum) stresses and
tensions in the uncracked web, where the crack is located. Using (21.9) and the
inequality �T/T0 
 1 in (21.2), we obtain

acr = 1

π

(
KCh

βTmax

)2

≈ 1

π

(
KCh

βT0

)2

and, by (21.8), we will have the following expression for the critical number of
cycles:

ncr = (n)a=acr =A

[
1

a
(k−2)/2
0

−
(√

πβT0

KCh

)k−2]
. (21.10)

From the condition of positiveness of the expression in (21.10), we find the maxi-
mum value of admissible tensions:

T0 ≤ 1√
πa0

KCh

β
≡ T M

0 . (21.11)

In the special case k = 2, we can find the critical number of cycles to be

ncr = B ln

[
1

πa0

(
KCh

βT0

)2]
, B = 1

Cκ2
0

, (21.12)

and the tension limit T M
0 is expressed by (21.11).

The dependence of the critical number of cycles ncr on the average tension T0

and the problem parameter k is shown in Fig. 21.2 using dimensionless quantities
(defined below in (21.18) and (21.21)).
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Stationary equations describing the behaviour of the web with the applied bound-
ary conditions form the following eigenvalue problem (a buckling problem):

(
mV 2

0 − T0
)∂2w

∂x2
+D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
= 0, in Ω,

w = 0,
∂2w

∂x2
= 0, on Γ� and Γr,

∂2w

∂y2
+ ν

∂2w

∂x2
= 0, on Γ− and Γ+,

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= 0, on Γ− and Γ+.

(21.13)
Here D =Eh3/(12(1− ν2)), and m is the mass per unit area of the middle surface
of the plate, and we denote the eigenvalue

λ= γ 2 = �2

π2D

(
mV 2

0 − T0
)
.

The critical instability (buckling mode) velocity of the travelling plate, as was
shown by [2], is given by

(
V cr

0

)2 = T0

m
+ γ 2∗

m

π2D

�2
, (21.14)

where γ 2∗ = λ∗ is the minimal eigenvalue of the problem (21.13). The parameter
γ = γ∗ is found as the root of the equation (see Fig. 21.3)

Φ(γ,μ)−Ψ (γ, ν)= 0, (21.15)

where

Φ(γ,μ)= tanh

(√
1− γ

μ

)
coth

(√
1+ γ

μ

)
,

Ψ (γ, ν)=
√

1+ γ√
1− γ

(γ + ν − 1)2

(γ − ν + 1)2
, μ= �

πb
.

(21.16)

As it is seen from (21.15) and (21.16), the root γ = γ∗ depends on ν and μ and
does not depend on the other problem parameters, including the value of tension T0.
Consequently, the critical instability velocity, defined in (21.14), is increased with
the increasing of tension T0. However, the increasing of T0 is limited due to initial
damages and other imperfections.
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Fig. 21.3 Behaviour of Φ
and Ψ as functions of γ

21.4 Optimization and Performance Function

The most important factor for runnability and stability of moving bands, containing
initial imperfections, is the applied tension. To find a safe and optimal T0 maximiz-
ing the performance function is our considered problem. To perform this task, let us
represent the optimized functional (21.3) as a function of the average tension T0. If
we take into account explicit expressions for ncr, in (21.10), and for V cr

0 , in (21.14),
use (21.3), and perform necessary algebraic transformations, assuming that k �= 2,
we will have

J (T0)=m0τV
cr
0 (T0)n

cr(T0)= J0

[
1+ 1

D

(
�

γ∗π

)2

T0

]1/2[
1−

(
β
√
πa0

hKC
T0

)k−2]
,

where

J0 = 4bτπa0γ∗
√
Dm

(k − 2)C�

(
h

2β�T
√
πa0

)k

. (21.17)

The performance function J is proportional to the multiplier J0 and, consequently,
the optimized tension T0 does not depend on this parameter.

For convenience of the following estimations and reduction of characteristic pa-
rameters, we introduce the dimensionless values

J̃ = J

J0
, T̃0 = T0

T M
0

= β
√
πa0

KCh
T0, g = KCh

βD
√
πa0

(
�

γ∗π

)2

, (21.18)

and represent the optimized functional and the interval of optimization as

J̃ (T̃0)= (1+ gT̃0)
1/2(1− T̃ k−2

0

)
, k > 2 (21.19)

with

0 < T̃0 < 1. (21.20)
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In other words,

J̃ (T̃0)= Ṽ cr
0 (T̃0) ñ

cr(T̃0)

with

Ṽ cr
0 (T̃0)= (1+ gT̃0)

1/2 and ñcr(T̃0)= 1− T̃ k−2
0 . (21.21)

In the special case k = 2, we will use the expressions (21.3), (21.12) and (21.14)
and perform algebraic transformations. We will have

J (T0)=m0τV
cr
0 (T0)n

cr(T0)= J1

[
1+ 1

D

(
�

γ∗π

)2

T0

]1/2

ln

(
hKC

β
√
πa0

1

T0

)

with

J1 = 4bτπγ∗
√
Dm

C�

(
h

2β�T
√
π

)2

.

Using the dimensionless values J̃ = J/J1 and T̃0, g from (21.18), we find

J̃ (T̃0)= ln

(
1

T̃0

)
(1+ gT̃0)

1/2, 0 < T̃0 < 1. (21.22)

It is seen from (21.22) that

0= (J̃ )
T̃0=1 ≤ J̃ (T̃0)≤ (J̃ )

T̃0=0 =∞, 0 < T̃0 < 1. (21.23)

Note that (21.23) also holds in the case k < 2, when

J̃ (T̃0)=−(1+ gT̃0)
1/2(1− T̃ k−2

0

)

and

J0 = 4bτπa0γ∗
√
Dm

(2− k)C�

(
h

2β�T
√
πa0

)k

.

Thus, in the case k ≤ 2, the optimum is T̃0 = 0, meaning that the model omits the
effect of the critical speed. However, for most materials k ≈ 3 or bigger.

21.5 Results and Discussion

The optimization problem (21.19)–(21.20) was solved numerically for different val-
ues of k: for k = 2.5, k = 3, and k = 3.5. The material parameters were chosen
to describe a paper material. Young’s modulus was E = 109 Pa, the Poisson ratio
was ν = 0.3, the mass per unit area was m= 0.08 kg/m2, and the strain energy rate
over density was GC/ρ = 10 J m/kg. The size of the rectangular element (Ωi ) was
�× 2b = 0.1 m× 10 m, and the surface crack geometric factor was β = 1.12. The
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Fig. 21.4 Performance (J̃ )
dependence on tension (T̃0)
(dimensionless quantities)

Table 21.1 Dependence of the optimum of J̃ (performance) on the parameters k (Paris constant)
and a0 (m, initial crack length)

J̃ ∗ a0 (m)

0.005 0.01 0.05 0.1

k 2.5 37.4023 31.4527 21.0369 17.6920

3 57.5834 48.4230 32.3862 27.2358

3.5 70.6836 59.4390 39.7532 33.4308

g

2.2379×104 1.5824×104 7.0768×103 5.0201×103

material constants in (21.5) were k = 2.5, 3, 3.5, and C = 10−14. Paper fracture
toughness KC was calculated from the relation GC = K2

C/E [7]. The variance in
tension was chosen to be small, �T = 0.1 N/m. The investigated values of initial
crack lengths were a0 = 0.005 m, 0.01 m,0.05 m, 0.1 m. As illustrated in Fig. 21.1,
the length of one cycle was assumed to be 2�. This value was used to approximate
the cycle time period τ by τ = 2�/V cr

0 after the value of V cr
0 was evaluated by the

optimization.
In Fig. 21.4, the dimensionless performance function (21.19) is plotted for k =

2.5, 3, 3.5. It is seen that the value of optimal tension T̃ ∗0 is increased with increasing
the value of k.

In Tables 21.1 and 21.2, the results of the non-dimensional optimization problem
(21.19)–(21.20) are shown for the considered values of the parameters k and a0. In
Table 21.1, the values of the productivity function J̃ at the optimum are shown. It
can be noted that an increase in the length of the initial crack a0 decreases produc-
tivity. The values of productivity seem to increase when k is increased. However,
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Table 21.2 Dependence of
the optimal tension T̃ ∗0 on the
parameters k (Paris constant)
and a0 (m, initial crack
length)

T̃ ∗0 a0 (m)

0.005 0.01 0.05 0.1

k 2.5 0.2500 0.2499 0.2499 0.2498

3 0.3333 0.3333 0.3332 0.3332

3.5 0.3968 0.3968 0.3968 0.3967

Table 21.3 Left: Dependence of the optimal tension T ∗0 (N/m) on the parameters k (Paris constant)
and a0 (m, initial crack length). Right: Critical velocity V cr

0 (m/s) at the optimum, depending on
the parameters k and a0

T ∗0
(N/m)

a0 (m)

0.005 0.01 0.05 0.1

k 2.5 504 356 159 113

3 672 475 212 150

3.5 800 565 253 179

V cr
0 (T ∗0 )

(m/s)
a0 (m)

0.005 0.01 0.05 0.1

k 2.5 79.352 66.727 44.623 37.523

3 91.628 77.051 51.529 43.332

3.5 99.979 84.073 56.226 47.282

Table 21.4 Left: Dependence of the optimum of J (kg, performance) on the parameters k (Paris
constant) and a0 (m, initial crack length). Right: The number of cycles ncr at the optimum, depend-
ing on the parameters k and a0

J ∗
(kg)

a0 (m)

0.005 0.01 0.05 0.1

k 2.5 121168 101894 68151 57315

3 4821 3409 1525 1078

3.5 216 128 38 23

ncr(T ∗0 ) a0 (m)

0.005 0.01 0.05 0.1

k 2.5 757300 636834 425943 358216

3 30130 21306 9529 6738

3.5 1348 801 239 142

one must take into account that also J0, in (21.17), depends on k, which affects the
actual productivity J = J0J̃ . In Table 21.2, the optimal values of the dimension-
less tension T̃ ∗0 are shown. It is seen that the dimensionless tension values slightly
decrease when the crack size is increased.

Since the actual optimal productivity, the actual tension, and the related critical
speed and the critical number of cycles are of interest, these values were found at
the optimum and are shown in Tables 21.3 and 21.4. Note that several assumptions
have been made. Firstly, the Paris constant C = 10−14 is assumed to be independent
of k, and both of the values are not measured for paper but were chosen to be close
to the typical values of some known materials. Secondly, the cycle time period τ

is approximated assuming that one cycle length is 2�, and using the relation, τ =
2�/V cr

0 .
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Fig. 21.5 A colorsheet
showing the dependence of
the optimal tension T ∗0 (N/m)
on the parameters k (Paris
constant) and a0 (m, initial
crack length). Note the
logarithmic scale of a0

The actual optimal tension T ∗0 is calculated from (21.18), that is T ∗0 = T M
0 T̃ ∗0 .

Since T M
0 only depends on fixed values, and the material parameters in T M

0 are
measured and known for paper material, the results for the actual optimal tension,
shown in Table 21.3 (left), are comparable and quite reliable. The results for the
optimal tension T ∗0 are also illustrated as a colorsheet in Fig. 21.5.

In Table 21.3 (right), the critical velocities corresponding to the optimal values of
tension V cr

0 (T ∗0 ) are shown. The values of velocities can be calculated directly from
(21.14) using the values in Table 21.3 (left). As expected, the velocities decrease as
a0 is increased.

The actual optimal number of cycles ncr(T ∗0 ) and the actual optimal productivity
J ∗ are more difficult to predict, since they depend on the Paris constant C, which
is not known for paper materials. As mentioned above, the same value of C, C =
10−14, is used for all investigated values of k, which may not be reasonable. Since
the value of κ0 defined in (21.7) is big (in this case �T > h), then κk

0 increases with
the increase in k. Keeping C constant, we see from (21.7) that the crack growth
rate may be bigger with a bigger value of k depending on the value of ak/2, which is
small. This means that the number of cycles may be the smaller the greater the value
of k is, which can also be seen from (21.8): the greater the value of k, the smaller
the value of A. In the results in Table 21.4 (right), it can be seen that the effect of
κ0 is big, and the number of cycles at the optimum decreases remarkably when k is
increased. This also results in a decrease in the optimal productivity J ∗, which is
shown in Table 21.4 (left).

Comparing the results in Tables 21.1 and 21.4 (left), we therefore make no con-
clusion about the effect of k on the actual performance J ∗. The qualitative result of
the decrease in the performance J ∗ when a0 is increased is, however, reported.
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21.6 Conclusion

In this study, the problems of safety analysis and optimization of a moving elastic
web travelling between two rollers at a constant axial velocity were investigated.
Instability of the web (transverse buckling) and its fatigue crack growth under a
cyclic in-plane tension were included in the study. The expressions for the critical
buckling velocity and the number of cycles before the fracture (longevity of the
web) as a function of in-plane tension and other problem parameters were used
to formulate analytically an optimization problem, in which the productivity was
maximized. The optimal tension maximizing the productivity function was found.

The optimal values of tension seemed to be very sensitive to the length of the
initial crack. It was found that the greater the initial crack, the smaller the optimal
tension and, consequently, the smaller the maximal productivity.

It should be noted that the critical velocity of the (paper) web was considered
in vacuum, and the effects of the surrounding fluid were excluded in this study,
and remain as topics for future research. Thus, the results are to be interpreted as
approximate.
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Chapter 22
Dynamic Behaviour of a Travelling Viscoelastic
Band in Contact with Rollers

Tytti Saksa, Nikolay Banichuk, Juha Jeronen, Matti Kurki, and Tero Tuovinen

Abstract The dynamic behaviour of an axially moving viscoelastic band, in contact
with supporting rollers, is studied. A model of a thin, viscoelastic beam (panel) sub-
jected to bending and centrifugal forces is used. An initial-boundary value problem
for a fifth-order partial differential equation describing the movement of the band is
formulated in detail. In this paper, five boundary conditions in total are used for the
first time within the present model. An external force describing the normal force
of the roller supports is included. Combining this viscoelastic model with the roller
contact simulation is a new approach among moving band behaviour studies. The
initial-boundary value problem is solved numerically using the fourth-order Runge-
Kutta method and the central finite differences, and the band behaviour is illustrated
for different band velocities and degrees of viscosity. It is found that the damping ef-
fect of viscoelasticity increases when the band velocity increases, and that the roller
contact has a greater effect on the elastic panel behaviour than on the viscoelastic
panel behaviour.
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22.1 Introduction

The behaviour of systems, in which some material travels axially at a fast speed
between two supports, has been studied widely. Interest in these studies arises from
the extensive amount of applications in industry, e.g., in paper making processes.

In paper machines, the radius of supporting rollers is usually large compared to
the length of an open draw, see Fig. 22.1. However, in the often studied models, the
effect of the rollers on the behaviour of the moving web has been neglected.

Vibrations of travelling strings, beams, and bands were first studied by Sack [28],
Archibald and Emslie [1], Miranker [22], Swope and Ames [30], Mote [24–26],
Simpson [29], Ulsoy and Mote [31], Chonan [9], and Wickert and Mote [33]. These
studies focused on one-dimensional free and forced vibrations including the na-
ture of wave propagation in moving media and the effects of axial motion on the
eigenfrequencies and eigenmodes. Stability of travelling two-dimensional rectan-
gular membranes and plates was studied, e.g., by Ulsoy and Mote [32], Lin and
Mote [19], Lin [18], and Banichuk et al. [2].

Archibald and Emslie [1] and Simpson [29] studied effects of the axial motion on
the eigenfrequencies and eigenfunctions. It was shown that the natural frequency of
each mode decreases when the transport speed increases, and that both the travelling
string and beam experience divergence instability at a sufficiently high speed.

Wet paper and many other materials have viscoelastic properties. The first study
on transverse vibrations of a travelling viscoelastic material was carried out by Fung
et al. [11], who used a string model. They investigated numerically the effects of
material parameters and transport velocity on the transient amplitudes. Extending
their work, they studied the material damping effect in their later research [12]. Fung
et al. used a standard linear solid model to describe the viscoelasticity of material.

String and beam models have been widely used models in the studies concerning
travelling viscoelastic materials. Oh et al. [27] and Lee and Oh [17] studied critical
speeds, eigenvalues, and natural modes of axially moving viscoelastic beams using
a spectral element model.

Fig. 22.1 An overview. (a) Paper machine cross-section. (b) A qualitative drawing of an open
draw
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Chen and Zhao [8] represented a modified finite difference method to simplify
a non-linear model of an axially moving string. They studied numerically the free
transverse vibrations of elastic and viscoelastic strings.

Yang and Chen [7, 34] studied vibrations and stability of axially moving vis-
coelastic beams with periodic parametric excitations. Yang and Chen [34] studied
dynamic stability of axially moving viscoelastic beams with a time-pulsating speed.
They found that the viscoelastic damping decreases the instability region of subhar-
monic resonance. Chen and Yang [7] studied free vibrations of a viscoelastic beam
travelling between simple supports with torsion strings. They studied the viscoelas-
tic effect by perturbing the similar elastic problem and using the method of multiple
scales.

Marynowski and Kapitaniak [20] studied the difference between the Kelvin-
Voigt model and the Bürgers model in internal damping and found out that both
models give accurate results with a small damping coefficient, but with a large
damping coefficient, the Bürgers model is more accurate. In 2007, they compared
the models with the Zener model studying the dynamic behavior of an axially mov-
ing viscoelastic beam [21]. They found out that the Bürgers and Zener models gave
similar results for the critical transport speed whereas the Kelvin-Voigt model gave
significantly greater transport speed compared to the other two models.

In all discussed studies above, a partial time derivative has been used instead
of a material derivative in the viscoelastic constitutive relations. Mockensturm and
Guo [23] suggested that the material derivative should be used. They studied nonlin-
ear vibrations and the dynamic response of axially moving viscoelastic strings, and
found significant discrepancy in the frequencies at which non-trivial limit cycles
exist comparing the models with the partial time derivative and the material time
derivative. In Chen et al. [4], Ding and Chen [10], Chen and Wang [6], and Chen
and Ding [5], the material derivative was also used in the viscoelastic constitutive
relations. Ding and Chen [10] studied stability of axially accelerating viscoelastic
beams using the method of multiple scales and parametric resonance. Chen and
Wang [6] studied the stability of axially accelerating viscoelastic beams using the
asymptotic perturbation analysis. In a recent research by Chen and Ding [5], the
steady-state response of transverse vibrations for axially moving viscoelastic beams
was studied. Kurki and Lehtinen [16] suggested, separately, that the material deriva-
tive in the constitutive relations should be used in their study concerning the in-plane
displacement field of a travelling viscoelastic plate.

Using the material derivative in the viscoelastic constitutive relations for a beam
model leads to a partial differential equation that is fifth-order with respect to the
space coordinate. In Ding and Chen [10], Chen and Wang [6], and Chen and Ding
[5], the fifth-order dynamic equation is attained but only four boundary conditions
(in space) are used. However, the amount of boundary (initial) conditions should
coincide with the order of the equation with respect to each variable.

We also mention studies by Guan (et al.) [13–15]. They used a different (from the
references mentioned above) kind of approach in modelling of viscoelastic effects in
moving web-handling systems applying the White–Metzner rheological equation. In
those studies, permanent web deformations and web tension behaviour as a function
of time were investigated.
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Fig. 22.2 An assumption
of cylindrical deformation

In this study, we investigate the transverse displacement of a viscoelastic panel
travelling between and in contact with two supports. Using a linear Kirchhoff plate
model and a Kelvin-Voigt viscoelasticity model, a fifth-order partial differential
equation for the transverse displacement of the panel is derived in detail. Simply
supported boundary conditions are used at both edges and, at the in-flow edge, an
additional boundary condition corresponding to the travelling angle is used. That is,
five boundary conditions in total are used. The contact with the supporting rollers is
modelled by a nonlinear spring force between the rollers and the panel. Numerical
simulations of the behaviour of the panel are presented. A comparison of the be-
haviour between the model including the contact effect and the classic model with
no contact is made.

22.2 Problem Setup

Consider a viscoelastic band travelling at a constant axial velocity V0 (in the x di-
rection) in a span. The domain of this study is the span between two rollers located
at x = 0 and x = �. We investigate the transverse displacement w of the band as a
dynamic problem taking into account the contact with the rollers. We assume that
the transverse displacements are small to make the linear theory justifiable. We also
assume that the displacement w is cylindrical, that is, the displacement does not
vary in the cross direction to the movement, see Fig. 22.2. The thickness of the band
is assumed to be constant, h. The tension at the edges is supposed to be constant, T0.
The plate is assumed to have a constant bending rigidity, D, and a constant viscous
bending rigidity Dv. The mass per area of the band is m.

The equation describing the transverse displacement w =w(x, t) of the panel (a
plate with cylindrical deformation) is derived using the Kirchhoff plate model and
the Kelvin-Voigt model for the viscoelasticity.

We first write the equilibrium equation for the bending forces affecting the panel,
which is

∂2M

∂x2
+ T0

∂2w

∂x2
+ q = 0, x ∈ (0, �), (22.1)

where T0 is the tension force in the x direction, M the bending moment, and q the
intensity of external load distributed over the upper surface of the panel.
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Let σ denote the flexural stress. This stress depends on a strain that is defined by

ε =−z ∂2w

∂x2
. (22.2)

The bending moment is related to the flexural stress by

M =
∫ h/2

−h/2
zσ dz. (22.3)

The stress depends on the strain by the relation

σ = Cε+ Γ
dε

dt
, (22.4)

where
d

dt
= ∂

∂t
+ V0

∂

∂x
,

and

C = E

1− ν2
, Γ = η

1− ϕ2
.

Here, E is the Young modulus, ν the Poisson ratio, and η and ϕ are the correspond-
ing viscous material constants.

For the balance equation (22.1), we calculate, first, the bending moment. By in-
serting (22.4) into (22.3) and (22.2) into (22.4), we obtain

M =
∫ h/2

−h/2
zσ dz=

∫ h/2

−h/2
z

(
Cε+ Γ

dε

dt

)
dz=−h3

12

(
C

∂2w

∂x2
+ Γ

d

dt

∂2w

∂x2

)
.

(22.5)
We calculate the second space derivative of the bending moment (22.5). We obtain

∂2M

∂x2
=−h3

12

(
C

∂4w

∂x4
+ Γ

d

dt

∂4w

∂x4

)
. (22.6)

Substituting (22.6) into (22.1), we obtain

−h3

12

(
C

∂4w

∂x4
+ Γ

d

dt

∂4w

∂x4

)
+ T0

∂2w

∂x2
+ q = 0. (22.7)

Introducing the parameters

D = h3

12
C, Dv = h3

12
Γ,

and adding dynamical components into (22.7), we obtain

−D ∂4w

∂x4
−Dv d

dt

∂4w

∂x4
+ T0

∂2w

∂x2
+ q =m

d2w

dt2
. (22.8)
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Fig. 22.3 A spring model in
the cross direction of the
plate. A detail near one end of
the span

Expanding the expressions in (22.8) and re-organizing the terms, the dynamic
equation for w =w(x, t) reads

∂2w

∂t2
+
(

2V0
∂

∂x
+ Dv

m

∂4

∂x4

)
∂w

∂t

+
[(

V 2
0 −

T0

m

)
∂2

∂x2
+ D

m

∂4

∂x4
+ V0

Dv

m

∂5

∂x5

]
w = q

m
, (22.9)

where x ∈ (0, �), t ∈ (0, tf), and tf is the end point of the time domain. We use
classical simply supported boundary conditions at both edges, and an additional
condition at the in-flow edge. The boundary conditions read

w(0, t)=w(�, t)= 0,
∂2w

∂x2
(0, t)= ∂2w

∂x2
(�, t)= 0, (22.10)

and

∂w

∂x
(0, t)= θ, (22.11)

where θ is a given constant describing the angle between the panel and the x axis
at the in-flow edge. The angle θ represents the feeding angle of the web, and in a
multi-span system it could be predicted (calculated) for one span from the behaviour
of the panel on the preceding span. However, in this study we concentrate only on
one isolated span and assume that the feeding angle is known. The initial conditions
for the dynamic problem are

w(x,0)= g1(x),
∂w

∂t
(x,0)= g2(x), (22.12)

where g1 and g2 are some given functions.
The contact force between the moving panel and the supporting rollers is now to

be included in the panel model. The transverse direction of the panel is modelled as
a non-linear spring such that the maximum compression of the panel is one half of
its thickness, see Figs. 22.3 and 22.4. The force function depending on the distance
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Fig. 22.4 Contact force as a
function of the distance
between the plate center and
the roller

d between the panel center and the roller surface is given by

q(d)= a

(
h

2d
− 1

)
, 0 < d ≤ h/2. (22.13)

The parameter a is a constant describing the strength of the force. Inside the rollers
(d ≤ 0) the force is not defined, and if there is no contact (d > h/2), then the force
q is zero.

22.3 Numerical Investigation

We use central difference formulae and the fourth-order Runge-Kutta for the space
and time discretisations, respectively. In the central differences, the higher order
derivatives need node values from a distance of three nodes of the node being com-
puted. We neglect the fifth-order derivatives at the boundary. The interval [0, �] is
divided to n+ 1 subintervals equal in length. The end points of the subintervals are
labeled as 0= x0, x1, . . . , xn, xn+1 = �. We need one virtual point from the bound-
ary conditions for both edges. From the boundary conditions, we get w(x0) = 0,
w(xn+1) = 0, w(x−1) = −w(x1) and w(xn+2) = −w(xn). In boundary condition
(22.11), we choose θ = 0, which leads to w(x−1)=w(x1) and finally w(x1)= 0.

In Fig. 22.5, it is illustrated how the rollers and computation nodes are connected
by simple geometry. It must be noticed that we are considering the transverse dis-
placements merely, and therefore, the contact force effects are considered in the z

direction only.
The parameters used are as follows:

� = 0.25 m, T0 = 500 N/m, h = 10−4 m, m = 0.08 kg/m2,

E = 109 Pa, ν = 0.3, hs = 0.5 · h, rs = 0.12 m.

(22.14)
Here, � is the length of the open draw, T0 is constant tension applied at the ends of
the panel, h is the thickness of the panel, m is mass per unit area, E is the Young
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Fig. 22.5 Nodes between the
rollers. A detail near one end
of the span

modulus, ν is the Poisson ratio, rs is the radius of the rollers, and hs is one half of
the distance between the pressing rollers, see Fig. 22.5. We define

Dv = αv D.

The multiplier αv is here called the relative viscosity, for which the values αv =
0.0008,0.08 were used. We studied the dynamic behaviour of the panel for the
first 0.05 seconds, for three different velocities V0 = 0, 30, 60 m/s. The strength
of the force (22.13) was a = 0.01. The used number of the computation nodes was
n= 150.

The used initial conditions were

w(x,0)= 0.01 sin

(
πx

�

)
,

∂w

∂t
(x,0)= 0.

The investigated cases include the behaviour of the midpoint of the panel
(Figs. 22.6 and 22.7), from which the frequency and amplitude of the vibrations
can be analysed, and the space-time behaviour of the panel (Figs. 22.8 and 22.10).
The results for the stationary panel are shown in Figs. 22.6a, 22.8 (almost elastic
material), and Figs. 22.7(a), 22.9 (viscoelastic material). The results for the mov-
ing panel are shown in Figs. 22.6(b), 22.6(c), 22.10 (almost elastic material), and
Figs. 22.7(b), 22.7(c), 22.11 (viscoelastic material).

In Figs. 22.6 and 22.7, the behaviour of the panel center is shown for a panel
travelling at different velocities for both viscoelastic and almost elastic materials.
From Figs. 22.6(a) and 22.7(a), it can be seen that the contact with the rollers is
decreasing the amplitude of the vibrations in the case of an almost elastic panel and
increasing the amplitude in the case of a viscoelastic panel compared to the case with
no roller contact. In both cases, the frequency of the vibrations is increased. Also,
when the panel is moving at a constant velocity (Figs. 22.6(b), 22.6(c), 22.7(b),
and 22.7(c)), the frequency of vibrations in the case with roller contact is greater
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Fig. 22.6 Behaviour of the midpoint of the panel during the first 0.05 seconds for an almost
elastic material. The solid line shows the case with roller contact, and the dashed line shows the
case without contact. V0 is the panel velocity and αv is the relative viscosity
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Fig. 22.7 Behaviour of the midpoint of the panel during the first 0.05 seconds for a viscoelastic
material. Solid line shows the case with roller contact, and the dashed line shows the case without
contact. V0 is the panel velocity and αv is the relative viscosity
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Fig. 22.8 Behaviour of the panel during the first 0.05 seconds, when the panel is not moving
(V0 = 0). Almost elastic material, αv = 0.0008

to the case with no roller contact. When the viscoelastic panel is moving fast (see
Fig. 22.7(c)), the viscous damping is so fast that the effect of contact cannot be
noticed.

In Figs. 22.8, 22.9, 22.10 and 22.11, coloursheets of the panel behaviour are
provided for different panel velocities (V0 = 0,30,60 m/s) for both almost elastic
and viscoelastic materials. For a stationary panel, also the cases with no contact are
drawn as reference cases (Figs. 22.8(b) and 22.9(b)). It can be seen that the viscous
damping depends on the panel velocity and the relative viscosity. For a stationary
panel (Figs. 22.8 and 22.9), the effect of the contact can be seen clearly for the
almost elastic panel but the effect is very slight for the viscoelastic panel.

For a moving panel (Figs. 22.10 and 22.11), it can be noted that the upper-x half
of the panel experiences its maximum or minimum amplitude before the lower-x
half does. Similar behaviour was reported in [3]. The effect of viscous damping
increases if the panel velocity is increased. Note that the viscoelastic panel (beam)
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Fig. 22.9 Behaviour of the panel during the first 0.05 seconds, when the panel is not moving
(V0 = 0). Viscoelastic material, αv = 0.08

is expected to experience divergence instability at a sufficiently high speed, and the
divergence velocity is expected to be close to the one of an elastic panel (beam) [17].
The critical velocity of a travelling elastic panel can be determined analytically by
(V0)cr =

√
T0/m+ (π/�)2 D/m≈ 79.0581 m/s [33].

22.4 Conclusions

In this study, the dynamical behaviour of an axially moving viscoelastic panel in
contact with supporting rollers was investigated. The combination of the contact
model with this kind of viscoelastic model was done for the first time. The dynam-
ical equation describing the panel vibrations was derived and an initial-boundary
value problem was formulated. The continuum equation was discretised via cen-
tral finite differences in space and by the fourth-order Runge-Kutta method in time,
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Fig. 22.10 Behaviour of the panel during the first 0.05 seconds, when the panel is moving at a
constant velocity. Almost elastic material, αv = 0.0008

and solved numerically. Dynamics of the panel was studied for different relative
viscosities and for different panel velocities, and the effect of roller contact was in-
vestigated by comparing the behaviour including contact with the behaviour with
no contact.

In this study, it was noted that in the partial differential equation, describing the
dynamics of an viscoelastic panel or beam and which is fifth-order in space, the
amount of boundary conditions must be five in total.

From numerical investigations, it was seen that the contact force may decrease
the amplitude of vibrations in the case of an almost elastic panel and increase the
amplitude in the case of a viscoelastic panel compared to the case with no roller
contact. The decrease in viscous damping introduced by the roller contact was sur-
prising. It was also noted that the viscous damping increases a lot when the panel
velocity is increased.
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Fig. 22.11 Behaviour of the panel during the first 0.05 seconds, when the panel is moving at a
constant velocity. Viscoelastic material, αv = 0.08

Note that, in this study concerning moving viscoelastic panels, the effects of
surrounding fluid were excluded to investigate solely the role of material viscoelas-
ticity in the panel dynamics. The presence of fluid is known to considerably affect
the panel behaviour [3], and thus the present study should primarily be seen as aca-
demic basic research. The behaviour of a moving viscoelastic panel submerged in
fluid remains a topic of future research.
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Chapter 23
Visual Contrast Preserving Representation
of High Dynamic Range Mathematical
Functions

Juha Jeronen

Abstract When Gaussian distributed inputs, representing model parameters with
some measurement error, are mapped through certain mechanical vibration models,
the corresponding output probability distribution exhibits an approximately loga-
rithmic data value distribution (in the histogram sense) with a high dynamic range
(HDR). We look at applying tone mapping techniques from HDR photography to
produce a low dynamic range, visual contrast preserving representation of such high
dynamic range mathematical functions—thus enabling HDR plotting. This makes it
possible to visualize HDR functions, displaying their structure in a clear manner
on standard low dynamic range media such as computer screens and print. The ad-
vantages over simple logarithmic scaling are the visual contrast preservation and
data adaptivity. Comparing to histogram equalization, the present approach has the
advantage of not exaggerating small contrasts. Three methods are suggested and
demonstrated on two mechanical vibration problems: transverse waves in a classi-
cal vibrating string, and the dynamic out-of-plane behaviour of an axially travelling
panel submerged in axial potential flow.

23.1 Introduction

What are high dynamic range mathematical functions, and where would one want to
visualize them? The motivation for this study comes from physics and engineering
problems where model input is never exact. To obtain reliable analysis results, it is
desirable to find out how stable the predictions of a given model are with respect
to small perturbations in model input, and how large the expected range of output
is. When input uncertainties are present, instead of a single solution, one obtains a
solution set corresponding to the admissible inputs.

Adopting a direct statistical approach to uncertainty analysis, it is possible, in
the case of computationally lightweight models, to approximate the solution set
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directly. This is done via sampling the multidimensional input probability distri-
bution (corresponding to the set of admissible parameter combinations when the
uncertainty is accounted for; Latin hypercube techniques can be used, see, e.g.,
[5, 23, 24, 33, 34, 46]), and mapping the samples through the model being ana-
lyzed. Different statistical quantities can then be computed based on the discrete
output sample. See, e.g., [25] for a general review of statistical uncertainty and sen-
sitivity analysis techniques.

In order to facilitate an intuitive understanding of the results, it is also possible
to visualize the output probability density directly.1 The density of the resulting
output probability distribution is estimated from the discrete output sample (using,
for example, kernel density estimation; see, e.g., [7, 8, 16, 43]), and the resulting
probability density field is then plotted. See Figs. 23.7–23.9 below for examples.

Applying this methodology to mechanical vibration problems, it was found that
the resulting probability field does not lend itself to traditional linear scaling for
visualization. The reason is that the histogram of the data is distributed, approx-
imately, in a logarithmic manner, and the dynamic range spanned by the data far
exceeds the representable range of a computer display: it is a high dynamic range
mathematical function.

Traditionally, logarithmically distributed data with a high dynamic range occurs
in contexts such as audio and high dynamic range (HDR) photography. Thus, con-
sidering the task of visualizing a HDR function, it is natural to seek methods for
representation of HDR data that have been developed in these fields.

The need for methods to represent HDR data in both of these classical fields is
clear. The human eye has a range of five orders of magnitude in light intensity (e.g.,
[12]), while computer displays (in terms of photometric light intensity) are limited
to two. Similarly, standard digital audio is sampled at 16 bits per sample, which
gives a range of about four orders of magnitude (logarithmically, 90 dB).

In audio processing, the standard solution is to work on the decibel scale, which
is logarithmic, allowing an at-a-glance representation of the HDR data. However, in
HDR photography literature, it is well known that simple logarithmic scaling has a
tendency to eliminate contrast (e.g., [28]).

For the purposes of HDR photography, special tone mapping algorithms have
been developed for the purpose of representing, in a visually accurate manner, high
dynamic range scenes on low dynamic range media such as regular computer dis-
plays and print. The basic idea behind tone mapping is that the human visual system
is sensitive to differences in light intensity, but not to absolute intensities [28]. In
terms of signal processing, tone mapping can be seen as data-adaptive dynamic
range compression. As tone mapping algorithms are important for the focus of our
study, we will review the related literature in the next section.

The application of tone mapping techniques for plotting HDR mathematical
functions can be seen as a natural extension of the ideas of Park and Montag [35],

1SAVU, Sample-based Analysis and Visualization of Uncertainty: https://yousource.it.jyu.fi/savu/
codes/ Link cited 13 Jan 2012.

https://yousource.it.jyu.fi/savu/codes/
https://yousource.it.jyu.fi/savu/codes/


23 Visual Contrast Preserving Representation of HDR Mathematical Functions 411

who investigated the use of tone mapping for representation of data from astronom-
ical and medical imaging, captured at wavelengths other than those of visible light.

There is a large body of research in HDR signal processing, which is not lim-
ited to tone mapping only. Some examples follow. Display adaptation in different
ambient lighting conditions is discussed in [30], and feature classification in areas
obscured by shadows in [9]. Adapting HDR images to target devices with drastically
different dynamic ranges is considered in [50].

The study [11] concentrates on the problem of obtaining HDR radiance maps
by stitching together multiple LDR (i.e. the usual kind of) photographs taken with
different exposure parameters; this is similar to stitching together a panorama, but
along the light intensity axis. The same problem has been discussed in [29] earlier,
and [1] is a recent technical report on the subject. Integration of computer-generated
(3D rendered) objects into HDR photographs has been investigated in [10].

23.2 Tone Reproduction Operators and HDR Plotting

Considering visual contrast preserving representation of high dynamic range math-
ematical functions, it seems that the task has received very little attention. Some
partly relevant studies exist; for example, [51] discusses volumetric visualization
of HDR data. The study [36] talks about the potentially deceptive appearance of
logarithmic scaling for data obtained from cytometry, and suggests a new scaling
method for that particular application.

Most interestingly, in [35] a psychophysical study was carried out on applying
different tone reproduction operators (TROs, see below) on HDR data from, e.g.,
medical, astronomical, and radar sources. The authors conclude that aside from
some general trends, the appropriate tone reproduction operator ultimately depends
on the kind of data, and on expert opinion in the specific field of application. The
study concentrates mainly on qualitative aspects of the user experience, and does
not consider extension into visualization of mathematical functions.

Tone reproduction operators (TROs) are used in the conversion of HDR images
for display on standard dynamic range (low dynamic range; LDR) devices and me-
dia, which include regular computer displays and print. The conversion is known as
tone mapping. TROs scale the data in an adaptive manner to maintain visibility of
detail, and sometimes also simulate aspects of the human visual system.

The methods can be broadly divided into two categories. There are global meth-
ods (such as [14, 15, 28]; see also [12, 39, 42] for more references), which apply
the same mapping function to each pixel in the image, and local methods (e.g.,
[2, 17, 18, 22]), which may vary the mapping across the image. Global methods
operate on the histogram of the image, often on a logarithmic intensity scale, while
local methods operate directly on the image data.

The problems with classical scalings, motivating the creation of TROs, are as fol-
lows. If a simplistic linear scaling and quantization procedure is used, often a large
portion of the light intensity data falls into the first few bins (e.g., [35, 39] note this,
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providing examples; see also Fig. 23.2 below). Scaling the logarithm of the inten-
sity linearly and quantizing the result (i.e. plotting on a logarithmic scale), on the
other hand, eliminates contrast [28]. Finally, the technique of histogram equalization
makes the density histogram constant, which not only compresses large contrasts,
but also exaggerates contrast in sparsely populated parts of the histogram ([28]; see
also our example in Fig. 23.2 below). Histogram equalization may serve better in
preprocessing input for pattern recognition in machine vision, as suggested in [19].

In the paper [39], a large number of different local and global TROs are reviewed
and tested, and a new one is proposed. The authors suggest that most TROs, regard-
less of whether they are global or local, can be approximated to a satisfying degree
by simple, fast image processing operations; this observation is also made in [50].
In the paper [31], the observation is tested quantitatively by approximating a num-
ber of different operators via a simplified model and parameter fitting. The authors
suggest their model as an approach for validation and comparison of TROs.

Regardless of whether a global or a local tone mapping method is used, several
authors caution against gradient reversal, i.e. flips of the local gradient direction in
the dynamics compressed LDR image when compared to the original HDR data.
Care must be taken because gradient reversal may create dark halos around bright
objects. It can be avoided by careful design of the TRO. See, e.g., [18, 28, 47].

The study [41] discusses both global and local methods for tone mapping, and
notes the globally order-preserving property of some global TROs; mathematically,
it is obvious that the required property is the monotonicity of the mapping function.
Specifically for photographs, [41] notes that, due to the well-known perceptual illu-
sion that may make the same intensity look different when surrounded by brighter
or darker shades, local tone-mapping techniques are preferable.

For the purposes of HDR plotting, it is clear that a global method is more ap-
propriate. This is because then (right until quantization into pixel values) there is a
one-to-one mapping between the original data value and the dynamics compressed
function value.2 Hence, a global colour bar (or, e.g., a global vertical scale, if the
y axis is compressed instead of pixel intensity) can be made; this would be impos-
sible for a local method.

In the study [47], it is cautioned that even though by using global techniques one
can easily avoid gradient reversals, they may cause reversals in gradient magnitudes.
An originally small difference between two pixels falling into a densely populated
part of the histogram may look larger in the resulting LDR image than an origi-
nally large difference between two pixels that fall into a sparsely populated part.
This is because the TRO may attenuate more aggressively in the sparsely populated
parts of the histogram, in order to make more room on the output intensity scale
for the densely populated parts. This may happen even if the method prevents con-
trast expansion, since what matters here is the ratio of contrast attenuation factors

2Strictly speaking, in the case of data-adaptive histogram remappers, if some of the histogram bins
are empty, there may be a flat region in the mapping function. In this case the mapping is not
globally one-to-one. However, since such regions contain no samples in the data, for the existing
data it is one-to-one.
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in different parts of the histogram. Local methods can work around the problem by
locally adapting the mapping; however, as was noted above, this is of little use for
HDR plotting. In the present study, we have chosen to ignore this problem.

It should be noted that in HDR-to-LDR conversion of photographic images in
particular, various kinds of perception models of the human visual system are com-
monly used. Perceptual models account for factors such as gradual loss of colour
sensitivity at low intensities [27, 28], loss of visual acuity at low intensities [27, 28],
veiling glare [27, 28, 32, 45], global adaptation of vision to the intensity at the foveal
point (e.g., [47]), and time-dependent adaptation [14, 21, 37], [48, Refs. 15–21]. See
also, e.g., [13, 20, 44]. In the present study, we will not consider perceptual mod-
elling.

The review [12] presents a comprehensive and quickly readable overview and
classification of different kinds of TROs up to the year 2002. In 2010, global TROs
specifically were reviewed in [42]. A psychophysical study comparing user prefer-
ences for different TROs in the photographic context was carried out in [49]. The
2007 paper [40] reviews TROs, and raises an important point about the input and
output domains of the operators. The authors argue that operators based on percep-
tual models (unlike ones based on engineering principles such as histogram remap-
pers) require both forward (light intensity to luminance) and backward (luminance
to light intensity) passes to produce valid results. In the present study, we will con-
centrate on histogram remappers only; hence a single pass is sufficient.

23.3 The Dynamic Range

For grayscale (scalar) data, the representable dynamic range of a given medium is
defined as (e.g., [41])

B ′ = |dmax|
|dmin| , (23.1)

where B ′ denotes the dynamic range, and |dmax| and |dmin| refer to the largest and
smallest nonzero representable data values (in terms of absolute value), respectively.

It is convenient to use a logarithmic representation. On the decibel scale, we have
the equivalent definition

B = 20 · log10
|dmax|
|dmin| , (23.2)

where B is the dynamic range in decibels.
With the standard eight bits per colour channel, we have for a regular computer

display dmax = 255 and dmin = 1, which leads to a dynamic range of B ′ = 255, or
equivalently, B ≈ 48.1 dB.

Below, when we speak of the dynamic range of a set of scalar data, we also refer
to (23.2). In this case, we take |dmax| and |dmin| as the maximal and minimal nonzero
data values (in terms of absolute value), respectively.
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It is possible to extend the representable range by using a trick mentioned in,
e.g., [35]. Because the colour channels are independent, one can define a colour
palette utilizing the range of all three channels independently. However, this comes
with the cost of nontrivial interpretation, and losing grayscale representability. Be-
cause grayscale print is still an important medium for scientific publishing, tech-
niques which allow for easy grayscale conversion are preferable in the context of
the present study.

Another classical engineering trick, which is not applicable to print media, is
the use of pulse width modulation (PWM) to represent fractional pixel values [48].
The physical dynamic range of the display stays the same, but because fractional
values are represented, less information is lost in quantization. The dynamic range
extension comes from making the effective smallest representable pixel value deff

min ∈
(0,1). When the refresh rate of the display device is high enough, the illusion can
be convincing; otherwise the picture may flicker.

23.4 Tone Mapping Methods Used in the Present Study

In this study, we chose two tone reproduction operators from literature, and tested
one of our own (specifically for HDR plotting). Minor changes (documented in this
section) were made to the operators from literature, in order to adapt them into
the HDR plotting context. For the full technical details, a GNU Octave compatible
MATLAB implementation is available.3

All three methods are order-preserving; gradient reversal cannot occur. In all
the methods, the data is first histogrammed, taking the logarithm and then binning
linearly. This creates a logarithmic binning of the data. The methods then operate
on the obtained (discrete) logarithmic density histogram.

Due to the logarithmic processing, positive-valued data, such as light intensity or
probability density, is the easiest to handle. In practice, zeroes require some extra
care. If the data to be displayed contains also negative values (such as PCM audio
waveforms), there are two options. Taking the absolute value of the data, and han-
dling it all at once, produces a scale that is symmetric with respect to the origin.
Another option is to handle the positive and negative parts of the data separately,
producing an independent scale for each. For the sake of simplicity, in this text we
concentrate on positive data only.

All three methods are histogram remappers. The resulting remapped histogram
is used the same way as in histogram equalization. For a quick review, let p(x) :
(0,+∞) *→ [0,+∞) be a density histogram (hence, piecewise constant) and
C(x) = ∫ x

0 p(ξ)dξ : (0,+∞) *→ [0,1] the corresponding cumulative histogram.
The normalization is limx→+∞C(x) = 1; in fact, this maximum will be reached
at the end of the last histogram bin that contains a nonzero value.

3Files hdr*.m in https://yousource.it.jyu.fi/savu/codes/. Link cited 13 Jan 2012.

https://yousource.it.jyu.fi/savu/codes/
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Given such a function p(x), histogram equalization works by mapping H(D) :=
C(D). In the mapped data, each element (pixel) belongs to the interval [0,1]. This
can then be scaled linearly to the range appropriate for the display device (and quan-
tized to available pixel intensities). If the given function p(x) is the actual density
histogram of D, then the cumulative histogram of H(D) will be a straight line from
0 to 1; the data will be histogram-equalized. The idea of the general histogram
remapper is to first modify p(x) in some appropriate way, before computing H(D).
See Figs. 23.4–23.5 below for an illustration of some mapping curves in a test ex-
ample.

The first chosen method (below Method A) was based on [28]. The perceptual
modelling was not included; only the contrast expansion limiting histogram remap-
ping algorithm was used. To this, no modifications were needed. In this method,
the growth in display intensity is limited from above to at most the growth in world
intensity; i.e., contrast in the image is never expanded.4 Contrast expansion is pre-
vented by capping and renormalizing the histogram. This acts as a slope limiter for
the cumulative histogram. By [28], the maximum allowed data value in one bin is

ceiling= T
�B

Bdisplay
, (23.3)

where T is the current sum of the histogram data (values from all bins summed
together), �B is the width of one histogram bin in decibels, and Bdisplay is the dy-
namic range of the display device, as per (23.2). The quantity �B can be computed
as �B = Bdata/N , where N is the number of histogram bins used and Bdata is com-
puted by (23.2). The bins are looped over, and any bin which has a higher data value
than (23.3) is clipped to the ceiling. The excess is summed to a total removed. The
whole histogram is then iterated over several times. Once the total removed dur-
ing one iteration of the outer loop falls below a prescribed tolerance (in the present
study, we chose 0.5 % of the largest value in the original, unmodified histogram
data), the algorithm terminates. The updated histogram is then normalized so that it
becomes a density histogram. For details, see the original paper.

The second method (Method B) was based on [18]. The original method is a lo-
cal one, working directly on the 2D image data. A corresponding global method,
applicable for HDR plotting, was created by simply applying the method in one
dimension to the logarithmically binned histogram. This method is a gradient at-
tenuator. First, a Gaussian pyramid is constructed, and finite differences are used
at each level of the pyramid for gradient approximation. Then the gradient field at
each level is updated adaptively, compressing large values of the gradient while (op-
tionally) amplifying small ones. Finally, an auxiliary Poisson problem is solved in
order to reconstruct scalar potentials that match the updated gradient fields as well
as possible, and the solutions are assembled to form the output. The authors use a
full multigrid (FMG) solver to obtain the solution in linear time. Our case is simpler;

4Similar ideas were explored ten years earlier in a medical imaging context by [38]; however, we
use [28] since it explicitly provides an algorithm.
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in one dimension, the Poisson problem can be skipped. The function corresponding
to a given derivative field can obviously be found directly by numerical integration.
The constant of integration and final scaling are then fixed by requiring that the
resulting function is a density histogram.

The third method (Method C), for comparison, was based on a simple obser-
vation. The aim of the other two methods is to remove the highest peaks in the
histogram, while retaining the overall shape approximately. Thus, it should be pos-
sible to retain the overall location of the most massive peaks, while smoothing out
the histogram, by applying linear diffusion to the logarithmic histogram. The one-
dimensional time-dependent heat equation was set up, with zero right-hand side,
zero Neumann boundary conditions at both ends, and the original histogram as the
initial condition. The diffusion simulation was run until the highest peak in the his-
togram (i.e. the L∞ norm of the solution) fell under the ceiling (23.3).

It should be noted that Methods A and C will fail if Bdata ≤ Bdisplay (i.e. if the data
is LDR); this is because (23.3) will then produce a ceiling that cannot be satisfied.
This case must be detected at the outset before applying the methods.

For LDR data, Method C simplifies to logarithmic scaling. To see this, let
t →+∞ in the linear diffusion simulation; the end result is a constant function
in logarithmic histogram space. Thus, if Bdata ≤ Bdisplay, we can skip the tone map-
ping and use logarithmic scaling instead. When this occurs, the display device has
enough dynamic range to display the data without losing contrasts.

23.5 Results

The results from the tone mapping algorithms are shown in Fig. 23.1. After pre-
clipping out anything smaller than 10−3, the data has a dynamic range of B ≈
94.8 dB (B ′ ≈ 54750). Recall that a display with 8-bit colour channels, without
tone mapping, can display B ≈ 48.1 dB (B ′ = 255). How the displayed HDR data
was produced will be explained in the next section; for now, the item of interest is
the relative performance of the different methods. The colour scale runs from white
at zero to the data maximum at black. Note that the scale is neither linear nor log-
arithmic; as was discussed earlier, tone mapping methods produce a data-adaptive
scaling.

We have also provided, as a baseline for comparison, corresponding plots using
six naïve scalings in Figs. 23.2–23.3. These methods are, respectively, linear scaling
(full range), linear scaling with 0.1 % of the top end (in terms of histogram mass)
clipped out, logarithmic scaling (full range), logarithmic scaling showing the highest
48 dB only, the 10th root of the data,5 and classical histogram equalization.

The updated histograms and corresponding cumulative histograms are provided
in Figs. 23.4–23.5. The histograms are given for the histogram remapping methods
only, plotted on a log-log scale (with zeroes deleted from data). However, since

5According to [18], root-taking is a popular naïve approach.
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Fig. 23.1 HDR plotting,
using tone mapping methods.
Top to bottom: Method A
[28], Method B [18], and
Method C (linear diffusion).
Note data-adaptive
(non-linear, non-logarithmic)
colour scale
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Fig. 23.2 HDR plotting,
baseline (naïve) methods (set
1 of 2). Top to bottom: linear
(full scale), logarithmic (full
scale), histogram equalization
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Fig. 23.3 HDR plotting,
baseline (naïve) methods (set
2 of 2). Top to bottom: linear
(showing only bottom 99.9 %
of data), logarithmic
(showing top 48 dB only),
10th root of data (showing all
data)
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Fig. 23.4 Processed histograms of the methods used, corresponding to the images in Fig. 23.1.
Note the log – log scale

the cumulative histogram is effectively the tone mapping function (as explained
above), these are provided for the baseline methods, too. Here the scaling is log-
lin; logarithmic in input data value (x axis) and linear in remapped output (y axis).
Note that in the cumulative plot, the slope of the Ward-Larson mapping (Method A)
never exceeds that of the logarithmic mapping of the last 48 dB; this is because the
method prevents contrast expansion.

Method A gives excellent results; the detail in the HDR function can be seen very
clearly. The results from Method B are similar, but consistently darker than those
from Method A. It seems that Method B allocates a relatively larger portion of the
available bins to the low end (small data values), leaving less bins for the high end
(large data values). With the chosen colour scale, this makes the image darker. Also
Method C produces acceptable results. Surprisingly, the differences in the results
between the three different methods are relatively minor.

Since Method A gives, subjectively, slightly better results than the other two, and
is also very simple to implement, our recommendation is to use Method A.
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Fig. 23.5 Cumulative histograms (tone mapping functions) of the methods used, corresponding
to the images in Figs. 23.1–23.3. Note the log–lin scale

It should be noted that all three methods can easily compress a dynamic range of
over B = 100 dB (B ′ = 105) onto a regular display. This is not surprising, since the
first two methods have been designed for use with HDR photography, where this is
a requirement.

The methods were tested up to approximately B = 300 dB (B ′ = 1015). While
the end result in that case does not look as nice, it still gives some idea of the overall
structure, see Fig. 23.6. (This is the same data as above, this time with the pre-
clipping disabled. The extremely small numbers are ringing artifacts of the Fourier-
based density estimator that produced the data.)

23.6 Application to Probability Densities in Mechanical
Problems

As illustration of the use of HDR plotting in mechanics, we consider two vibration
problems with uncertain data: transverse waves in a classical vibrating string, and
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Fig. 23.6 A high dynamic
range function tone mapped
using Method A. Top:
Pre-cutoff at 10−3; dynamic
range B ≈ 94.8 dB. Bottom:
No pre-cutoff; dynamic range
B ≈ 294.0 dB

the dynamic out-of-plane behaviour of an axially travelling panel submerged in axial
potential flow.

For these problems, the behaviour of the displacement itself is of course not
very interesting, because for a non-damped oscillator, any small disturbance in the
frequency will cause two initially close trajectories to eventually diverge. Basically
all that is needed for analysis are the eigenfrequencies, which behave in a stable
manner. However, for the purposes of illustrating HDR plotting, we will consider
displacements only, because this generates HDR data that is ideal for demonstration
of the methods. From the modelling viewpoint, in the plotted time evolutions, we
can visually observe the divergence of the solution set.

First, consider travelling transverse waves in a finite ideal string, with the end-
points fixed to zero level. As is well known, this situation is described by the one-
dimensional wave equation wtt + cwxx = 0 for the displacement w ≡w(x, t). The
boundary conditions are zero Dirichlet, w(−1, t) = w(1, t) = 0. As initial condi-
tions, we choose an initial shape w(x,0) ≡ w0(x) (fulfilling the boundary condi-
tions), and zero transverse velocity, wt(x,0) ≡ 0. An analytical solution for this
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case can be easily constructed by repeated reflection of the free-space d’Alembert
solution; hence, we only need to plot a known function.

Now, let the wave propagation speed c be uncertain. We take c= c0 +X, where
X is a random variable with a zero-mean Gaussian distribution truncated at ±3σ .
The parameter c0 = 0.05 and σ is taken as 1 % of c0. We then use SAVU to compute
and plot the resulting probability density. See Figs. 23.7–23.8 for a time evolution
simulation. (The last frame of this simulation is the example used in the previous
section.)

The second problem comes from our research. We consider an axially travelling
panel submerged in ideal fluid (potential flow), with an optional axial free-stream
component. Details can be found in [3, 4, 26]. Panel is understood as a plate in the
limit of cylindrical deformation (the flat panel of aeroelasticity; see, e.g., [6]).

We take as the uncertain parameters the axial panel velocity V0, applied axial ten-
sion T , the Young modulus of the panel E, and the mass per unit area of the panel m.
A Gaussian distribution truncated at ±3σ is used for each parameter, representing
a typical measurement error. The input is thus a four-dimensional hypercube. We
choose σ (arbitrarily) as 1 % of the reference value for each parameter. The gov-
erning equation and reference values for the parameters can be found in [26, p. 100
and 155]. The initial conditions for w and wt are taken as zero, and an external
disturbance (force) is applied for a finite time at the beginning.

In Fig. 23.9 we have snapshots of the time behaviour of the displacement, with
the four simultaneously uncertain parameters.

23.7 Conclusion

In this study, we presented and tested three methods for data-adaptive dynamic range
compression of high dynamic range (HDR) mathematical functions, achieving a vi-
sual contrast preserving representation on low dynamic range media such as regular
computer displays and print. This produced a scaling that is neither linear nor log-
arithmic, but instead data-adaptive. It is also global across the picture, allowing a
colour bar to be created in the usual manner. One of the methods was seen to per-
form slightly better than the other two. As it was also the simplest to implement, it
was recommended.

High dynamic range functions occur, for example, as probability densities in
some uncertain data problems in mechanics. When such data is encountered, in our
opinion it is natural to look for a visualization that shows the structure clearly. Com-
pared to logarithmic scaling, the described methods have the advantage of visual
contrast preservation, making the structure of the function more clearly visible.

Finally, it should be especially emphasized that what the presented methods do
is dynamic range compression, and dynamic range compression only. For data that
already fits into the dynamic range of the display (LDR data), classical methods are
sufficient. In that case, these methods will either do nothing or, in the worst case,
possibly harm the visualization. But if the data to be visualized is HDR, then these
methods are very useful and can significantly improve the visualization.
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Fig. 23.7 Probability density of travelling transverse waves in a string with uncertain wave prop-
agation speed. Snapshots taken at regular intervals; time increases as top left, top right, middle left
and so on. Top left: initial pulse
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Fig. 23.8 Probability density of travelling transverse waves in a string with uncertain wave prop-
agation speed. Snapshots taken at regular intervals; continued from Fig. 23.7
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Fig. 23.9 Probability density of transverse displacement of an axially travelling panel submerged
in ideal fluid, with four simultaneously uncertain parameters. After cutting the low end at 10−1,
the dynamic range is approximately B ≈ 147.6 dB (B ′ ≈ 2.4 · 107). Snapshots taken at different
times. Left to right by row: t = 5,10; 15,20; 50,100; 150 and 200 s
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Hence, the presented methods are not intended to replace classical scalings, but
to provide an extension where needed. By utilizing dynamic range compression, it
is possible to extend the range of mathematical functions that can be represented on
regular computer displays and print in a visual contrast preserving manner.
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Chapter 24
Failure Simulations with a Strain Rate
Dependent Ductile-to-Brittle Transition Model

Juha Hartikainen, Kari Kolari, and Reijo Kouhia

Abstract In this paper, simulations with a phenomenological model to describe
the ductile-to-brittle transition of rate-dependent solids are presented. The model is
based on consistent thermodynamic formulation using proper expressions for the
Helmholtz free energy and the dissipation potential. In the model, the dissipation
potential is additively split into damage and visco-plastic parts and the transition
behaviour is obtained using a stress dependent damage potential. The damage is
described by using a vectorial variable.

Keywords Constitutive model · Continuum damage mechanics · Viscoplasticity ·
Dissipation potential · Ductile-to-brittle transition

24.1 Introduction

Most materials exhibit rate-dependent inelastic behaviour. An increasing strain rate
usually increases the yield stress thus enlarging the elastic range. However, the duc-
tility is gradually lost and for some materials there exists a rather sharp transition
strain rate zone after which the material behaviour is completely brittle.

In this paper, a phenomenological approach to model the ductile-to-brittle transi-
tion of rate-dependent solids is presented. It is an extension to the model presented
in [1, 5] using a vectorial damage variable [8]. The model is based on consistent
thermodynamic formulation using proper expressions for the Helmholtz free energy
and dissipation potential. The dissipation potential is additively split into damage
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and visco-plastic parts and the transition behaviour is obtained using a stress depen-
dent damage potential. The basic features of the model are discussed.

24.2 Thermodynamic Formulation

The constitutive model is derived using a thermodynamic formulation, in which
the material behaviour is described completely through the Helmholz free energy
and the dissipation potential in terms of the variables of state and dissipation and
considering that the Clausius-Duhem inequality is satisfied [6].

The Helmholtz free energy

ψ =ψ(εe,D)

is assumed to be a function of the elastic strains, εe, and the damage vector D.
Assuming small strains, the total strain can be additively decomposed into elastic
and inelastic strains εi as ε = εe + εi.

The Clausius-Duhem inequality, in the absence of thermal effects, is formulated
as

γ ≥ 0, γ =−ρψ̇ + σ : ε̇, (24.1)

where ρ is the material density. As usual in the solid mechanics, the dissipation
potential

ϕ = ϕ(σ ,Y)

is expressed in terms of the thermodynamic forces σ and Y dual to the fluxes ε̇i and
Ḋ, respectively. The dissipation potential is associated with the power of dissipation,
γ , such that

γ = ∂ϕ

∂σ
: σ + ∂ϕ

∂Y
·Y. (24.2)

Using the definition (24.2), Eq. (24.1)2, and defining that ρ∂ψ/∂D=−Y, results in
the equation

(
σ − ρ

∂ψ

∂εe

)
: ε̇e +

(
ε̇i − ∂ϕ

∂σ

)
: σ +

(
Ḋ− ∂ϕ

∂Y

)
·Y= 0. (24.3)

Then, if (24.3) holds for any evolution of ε̇e, σ and Y , the inequality (24.1) is satis-
fied and the following relevant constitutive relations are obtained:

σ = ρ
∂ψ

∂εe
, ε̇i = ∂ϕ

∂σ
, Ḋ= ∂ϕ

∂Y
. (24.4)
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24.3 Particular Model

In the present formulation, the Helmholtz free energy, ψ , is a function depending on
the symmetric second-order strain tensor εe and the damage vector D. The integrity
basis thus consists of the following six invariants:

I1 = trεe, I2 = 1

2
trε2

e, I3 = 1

3
trε3

e, I4 = ‖D‖,
(24.5)

I5 = D · εe ·D, I6 =D · ε2
e ·D.

A particular expression for the free energy, describing the elastic material behaviour
with the directional reduction effect due to damage, is given by [8]

ρψ = (1− I4)

(
1

2
λI 2

1 + 2μI2

)
+H

(
σ⊥

) λμ

λ+ 2μ

(
I4I

2
1 − 2I1I5I

−1
4 + I 2

5 I
−3
4

)

+ (
1−H

(
σ⊥

))(1

2
λI4I

2
1 +μI 2

5 I
−3
4

)
+μ

(
2I4I2 + I 2

5 I
−3
4 − 2I6I

−1
4

)
,

(24.6)

where λ and μ are the Lamé parameters, H is the Heaviside step function and

σ⊥ = λI1 + 2μD̂ · εe · D̂, and D̂=D/I4. (24.7)

To model the ductile-to-brittle transition due to an increasing strain rate, the dis-
sipation potential is decomposed into the brittle damage part, ϕd, and the ductile
viscoplastic part, ϕvp, as

ϕ(σ ,Y)= ϕd(Y)ϕtr(σ )+ ϕvp(σ ), (24.8)

where the transition function, ϕtr, deals with the change in the mode of deformation
when the strain rate ε̇i increases. Applying an overstress type of viscoplasticity [2,
13, 14] and the principle of strain equivalence [11, 12], the following choices are
made to characterize the inelastic material behaviour:

ϕd = 1

2r + 2

Y 2
r

τd(1− I4)
H(ε1 − εtresh)

(
(Y−Y0) ·M · (Y−Y0)

Y 2
r

)r+1

, (24.9)

ϕtr = 1− I4

pn

[
1

τvpη

(
σ̄

(1− I4)σr

)p]n
, (24.10)

ϕvp = 1

p+ 1

(1− I4)σr

τvp

(
σ̄

(1− I4)σr

)p+1

, (24.11)

where the parameters τd, r and n are associated with the damage evolution, and the
parameters τvp and p with the visco-plastic flow. In addition, η denotes the inelastic
transition strain rate and Y0 = βYrn, where β is a small number, acts as a seed for the
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damage evolution, and n is the eigenvector of the elastic strain tensor corresponding
to the largest principal strain ε1. The damage threshold strain is εtresh. The direction
of the damage vector is defined through the tensor M= n⊗ n where ⊗ denotes the
tensor product. The relaxation times τd and τvp have the dimension of time and the
exponents r,p ≥ 0 and n≥ 1 are dimensionless. σ̄ is a scalar function of stress, e.g.
the effective stress σeff =√3J2, where J2 is the second invariant of the deviatoric
stress. The reference values Yr and σr can be chosen arbitrarily, and they are used
to make the expressions dimensionally reasonable. Since only isotropic elasticity is
considered, the reference value Yr has been chosen as

Yr = σ 2
r /E, (24.12)

where E is the Young modulus.
Making use of (24.4), the choices (24.6)–(24.11) yield the desired constitutive

equations.

24.4 On the Integration Algorithms

There are many different algorithms for the integration of inelastic constitutive mod-
els. However, the fully implicit backward Euler scheme seems to be the most popu-
lar, although it is only first-order accurate [15–17]. In practical problems, especially
in those of creep and viscoplasticity, the time steps are often large, several magni-
tudes larger than the critical time step of some explicit methods, e.g. the forward
Euler method. Therefore, the integrator should be unconditionally stable and suffi-
ciently accurate for large time steps.

As shown in [10], the asymptotic convergence rate does not necessarily reflect
high accuracy outside the asymptotic range, which usually means step sizes smaller
than the critical time step of the explicit Euler method. For large time steps, the first-
order accurate backward Euler method seems to be more accurate than many higher-
order schemes. Therefore, an integrator for inelastic constitutive models should be
at least [9, 10]:

• L-stable
• and for σ̇ + λσ = 0, λ= constant, the stability function should be

– strictly positive, and
– monotonous with respect to time step.

It is obvious that the standard backward Euler scheme fulfils these requirements.
When damage is included in the constitutive model, behaviour of the solution of

the governing evolution equations is completely different from that of viscous and
plastic solutions. Solutions of problems in creep, plasticity, and viscoplasticity are
diffusive and decay exponentially with time whereas damage produces a reactive
type of solutions growing exponentially with time [3].
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24.4.1 Standard Backward Euler Scheme

For rate-dependent solids implicit time integrators are preferable. In this study, the
backward Euler scheme is used to integrate the constitutive model at the integration
point level. Although the backward Euler scheme is asymptotically only first-order
accurate, it has good accuracy properties for large, practically relevant time steps
[10].

Using matrix notation, the constitutive model (24.4) is rewritten in the form

σ̇ = fσ (σ ,D), (24.13)

Ḋ= fD(σ ,D) (24.14)

such that

fσ (σ ,D)=C(ε̇− ε̇i)+ ∂C
∂D

C−1σ , (24.15)

fD(σ ,D)=−ϕtrH(ε1 − εtresh)

τd(1− I4)

(
(Y−Y0) ·M · (Y−Y0)

Y 2
r

)r

, (24.16)

where the elastic stress is σ e = C : εe, and the elastic constitutive matrix C of a
damaged solid can be most conveniently written using the tensor component repre-
sentation

Cijkl = λ
(
1− λ̃I4H

(
σ⊥

))
δij δkl + 2μ

[
δikδjl − λ̃I4H

(
σ⊥

)
(δij D̂iD̂j + D̂iD̂j δkl)

]
+ 2μ

[
2+ (λ̃− 1)H

(
σ⊥

)]
I4D̂iD̂j D̂kD̂l

− 2μI4(δilD̂j D̂k + δjkD̂iD̂l), (24.17)

where λ̃= λ/(λ+ 2μ).
Applying the backward Euler scheme and the Newton linearisation method to the

evolution equations (24.13) and (24.14) results in the linear system of equations1

[
H11 H12
H21 H22

]{
δσ

δD

}
=�t

{
fσ
fD

}
−
{
�σ

�D

}
, (24.18)

where

H11 = I−�t
∂fσ
∂σ

, H12 =−�t
∂fσ
∂D

,

H21 =−�t
∂fD
∂σ

, H22 = 1−�t
∂fD
∂D

.

1The symbols � and δ refer to incremental and iterative values, σ i+1
n = σ i

n + δσ i
n, �σ i

n = σ i
n −

σ n−1, where the sub- and superscripts refer to step and iteration numbers, respectively.
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Fig. 24.1 The discontinuous
Galerkin method, dG(1);
notation

The algorithmic tangent matrix, i.e. the Jacobian of the algorithmic stress-strain
relation has the simple form

CATS = H̃−1
11 C, (24.19)

where

H̃11 =H11 −H12H−1
22 H21.

As it can be seen, the Jacobian matrix is in general nonsymmetric due to the dam-
age. The algorithmic tangent matrix is a necessity for the Newton method to obtain
asymptotically quadratic convergence of the global equilibrium iterations.

24.4.2 The Discontinuous Galerkin Method

Rewrite the evolution equations (24.13) in the form

ẏ= f(y), (24.20)

where y = [σ T ,DT ]T and f = [fTσ , fTD]T . The discontinuous Galerkin method of
degree q can be stated as follows [4]. For a given time interval In = (tn, tn+1] find y
(polynomial of degree q) such that

∫
In

(
ẏ− f(y)

)T ŷdt + �yn�T ŷ+n = 0. (24.21)

For the test functions ŷ, polynomials of degree q are used. The notations y+n and
y−n are the limits y±n = limε→0 y(tn ± |ε|), �yn� = y+n − y−n . These notations are
illustrated in Fig. 24.1.

After the Newton linearisation step, the following system of linear equations is
obtained:

[
A11I−M11 A12I−M12
A21I−M21 (1+A22)I−M22

]i {
δy−
δy+

}

=
{

r1
r2

}i

−
[
A11I A12I
A21I A22I

]{
y−
y+

}i

−
{

0
y+in − y−n

}
, (24.22)
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where

Aij =
∫
In

NiṄjdt, Mij =
∫
In

Ni

∂f
∂y

Njdt, ri =
∫
In

Nifdt,

and Ni ’s are the linear interpolation functions N1 = (t − tn)/�t , N2 = 1 − (t −
tn)/�t , which can be collected into a row vector N= [N1,N2]. When the Newton
iteration is converged after the k-th iteration, then y−n+1 = (y−)k .

Partitioning the unknowns in the vector y as y = [(σ−)T , (σ+)T , D̃T ]T , where
D̃= [D−T

,D+T ]T , the coefficient matrix on the right-hand side of (24.22) can be
written as

JdG(1) =
⎡
⎣B11 B12 G1D

B21 I+B22 G2D
GD1 GD2 GDD

⎤
⎦ ,

where

Bij =Aij I−Mσ ij , Mσ ij =
∫
In

Ni

∂fσ
∂σ

Njdt,

GiD =−
∫
In

Ni

∂fσ
∂D̃

Ndt, GDi =−
∫
In

NT ∂fD
∂σ

Nidt,

GDD = Ã−
∫
In

NT ∂fD
∂D̃

Ndt, Ã=
[
A11I A12I
A21I (1+A22)I

]
.

The Jacobian of the algorithmic stress-strain relation for the dG(1) method has the
form

CATS = (
B̃11 − B̃12B̃−1

22 B̃21
)−1(I− B̃12B̃−1

22

)
C,

where

B̃ij = Bij −GiDG−1
DDGDj .

From the results of the subsequent section, it seems that the dG(1) method per-
forms well in computing inelastic material behaviour with damage. The only draw-
back is that the method is twice as laborious as the backward Euler scheme. How-
ever, numerical experiments show that the dG(1) scheme allows larger time steps to
get a converged solution, such that the overall computing time can be even shorter
than with the backward Euler method in strongly non-linear cases.

24.5 Numerical Example

24.5.1 Uniaxial Straining

Performance of the integrators is tested for the coupled viscous-damage model de-
scribed in Sect. 24.3. For simplicity, the transition function is assumed to be unity
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Fig. 24.2 The stress-strain
relation for uniaxial constant
strain-rate loading, from [3]

in this example, i.e. ϕtr ≡ 1. The accuracy properties, when sufficiently large time
steps are used, is of primary interest. The following material parameters are used:
the Young modulus E = 40 GPa, reference stress σr = 20 MPa, the viscosity param-
eters τvp = 1000 s, τd = 0.2 s, and the exponents p = 4 and r = 1.5. The reference
value Yr is chosen as in (24.12).

The stress-strain curves for an uniaxial constant strain rate ε̇c = 5× 10−4 s−1 are
shown in Fig. 24.2, where the true dG(1) solution, i.e. a discontinuous, piecewise
linear approximation is depicted. To keep the figure readable, the end point solution
values for the dG(1) methods are connected in Fig. 24.3, where the damage and
inelastic strain are shown as a function of strain. Ten equal time steps are used
for strain up to 4εr, thus �t = 0.4 s. Inability of the backward Euler scheme to
capture the damage evolution well is clearly visible in these figures. The “exact”
solution shown in Figs. 24.2 and 24.3 is obtained by using the dG(1) method with the
time step �t = 8× 10−4 s, resulting in 5000 steps in the range shown in Fig. 24.3.
The estimated relative error for this solution is less than 10−5.

24.6 Finite Element Simulations

24.6.1 Compression Test with the Scalar Damage Model

A compressed specimen ((x, y, z) ∈ Ω = (0,L) × (0,B) × (0,H), L = 200 mm,
B = 100 mm, H = 1 mm) is analysed under a plane strain condition, as shown in
Fig. 24.4. A‘strain localisation into a shear band is expected to take place due to
damage-induced strain softening. The horizontal displacement at the left-hand side
edge is prescribed at a constant rate u̇prescibed and constrained to remain straight.
A von-Mises type viscoplastic solid is used, i.e. σ̄ = σeff. The constitutive pa-
rameters have the following values: the Young modulus E = 40 GPa, the Pois-
son ratio ν = 0.3, reference stress σr = 20 MPa, the viscoplastic relaxation time
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Fig. 24.3 Uniaxial constant
strain-rate loading. For the
dG(1) schemes, only the end
points are connected [3]

Fig. 24.4 The problem
description

τvp = 1000 s, and the transition strain rate η = 10−3 s−1. The exponents have the
values: p = n= 4, and r = 1.5.2

2This corresponds to the same case as in [5], where the damage potential (24.9) was in the scalar
case was defined in a slightly different way.
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Fig. 24.5 Load-displacement
curves with the mesh of 12×6
elements

Eight-node-trilinear elements with the mean dilatation formulation [7] were used
in the computations, which were carried out for two different meshes, a coarse mesh
of 12×6 elements and a finer mesh of 48×24 elements. To trigger the unstable lo-
calisation, an imperfection via a small patch of elements was introduced by reducing
the reference stress by 5 %.

Figure 24.5 shows the load-displacement curves calculated for three different
loading rates (on the upper left) and four different damage relaxation times (on
the upper right) using the coarse mesh, and for both meshes considering that
τdη = 10−3 and ε̇0/η = 10 (at the bottom). The average strain rate is defined as
ε̇0 = u̇prescribed/L. In comparison to the results of pure material behaviour (Fig. 24.3,
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Fig. 24.6 Damage D distribution for ε̇ = 10η and τdη = 10−3 at the end of the computation
(F = 0.618BHσr). A mesh of 48×24 elements. Displacements magnified 50 times

upper), the softening behaviour of the structure is much more rapid due to the local-
isation band.

As explained in the preceding section, a large number of time step reductions,
due to diminished convergence of local iterations, had to be done during the com-
putations, especially in the computations for the highest loading rate.

Damage distribution is shown in Fig. 24.6. It can be observed that damage bands
are approximately at±45◦ angles as in the classical strain-softening von-Mises type
elastoplasticity. Therefore it could be concluded that the scalar damage model is
unable to capture the correct failure mode characteristic to brittle materials. It should
be noted that the failure mode in tension is identical to the mode in compression
with the scalar damage model. As it can be seen from the next section, to be able
to predict the failure mode correctly, at least the vectorial damage model should be
used.

24.6.2 Compression/Tensile Tests with the Vectorial Damage
Model

The model with the vector description of damage has been implemented in the com-
mercial finite element code ABAQUS as a user subroutine. A simple tensile test
of the same specimen as in the previous example has been simulated using differ-
ent loading rates, see Fig. 24.7. The same material parameters are used as with the
scalar damage model simulation. The seed parameter for the damage initialisation
has been β = 0.025. In Fig. 24.7(a) the load-displacement curves are shown with
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Fig. 24.7 The tensile test:
stress-displacement curves
with different loading rates
and localisation of damage in
the brittle case ε̇ > 0.001 s−1

different loading rates and the failure mode is shown in Fig. 24.7(b). It can be seen
that the damage is localising in an area which has a width larger than one element
layer.

For the compressive loading case, the damage vectors are shown in Fig. 24.8. As
it can be seen, the splitting failure mode starts to develop from the weaker elements
in the mesh.

24.7 Concluding Remarks

A phenomenological constitutive model for modelling the ductile-to-brittle transi-
tion due to an increased strain rate is presented. In the present model, the dissipa-
tion potential is additively split into damage and visco-plastic parts and the transi-
tion behaviour is obtained using a stress-dependent damage potential. In this study,



24 Strain Rate Dependent Ductile-to-Brittle Transition Model 443

Fig. 24.8 The compression test: damage vectors D at the integration points on the softening regime

isotropic and vectorial damage coupled with von-Mises type viscoplastic flow are
considered. However, the chosen approach allows easily an extension to more ad-
vanced damage models applicable also for realistic simulations of pressure depen-
dent materials. To predict the correct failure mode for brittle solids, the damage
cannot be described by a scalar variable. If the vectorial damage model is used, the
tensile failure and splitting failure in compression can be simulated. Further inves-
tigations will be focused on the study of a material length scale.

The numerical implementation is also discussed. Due to the unstable nature of
damage, the conventional backward Euler method does not perform well. Oscilla-
tions in the damage variable can result in convergence problems in the local Newton
iteration at the integration point level. The discontinuous Galerkin approach seems
to result in accurate results also for large time steps, and in addition, it seems to
improve the convergence of the global equilibrium equations. Further studies will
be directed to develop a robust integration scheme for inelastic constitutive models
coupled with damage.
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