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     Foreword   

 The successful conclusion of the Human Genome Sequencing project, along with 
rapid progress in the development of analytical methods and high-performance 
computing solutions, has given rise to numerous biological databases of ever 
increasing volumes. Huge datasets, which nevertheless remain publicly accessible 
and affordable, are a crucial element of modern science. On the one hand, the ease 
with which research can be conducted is a great boon; on the other hand, however, 
one may feel somewhat overwhelmed by the immense quantity of available data. 
Such data is usually quite precise and detailed in nature, to the extent that modern 
scienti fi c equipment and measuring devices allow. Information systems which 
assist in processing such data appear adequate, and their storage and processing 
capabilities – suf fi cient to meet the needs of modern researchers. Even so, further 
scienti fi c breakthroughs are hindered by the relative lack of analysis methods 
targeted at large-scale datasets. This problem is particularly acute in analytical 
science, where it manifests itself as a general dearth of broad-scope methods with 
which to derive information (in the form of generalized models) approximating 
natural phenomena. 

 The above issue is the principal challenge in systems biology – a discipline which 
aims to develop comprehensive methods for simulating living organisms, so as to 
enable  in silico  experimentation on such organisms. A suitable system, properly 
re fl ecting the interactions and interdependencies observed in biological constructs, 
would support further research on speci fi c anomalies, pathologies and diseases, 
well known to any clinician. 

 Before such a system can be designed and implemented, a fundamental bio-
logical axiom has to be addressed – namely, the relation between genetic information 
(genome) and the broad spectrum of active proteins, each of which facilitates 
a biological process, which, together, combine to form the extremely complex 
structure known as the organism. 

 Achieving this goal requires modeling three-dimensional structures of active 
proteins on the basis of their aminoacid sequences. The challenge lies not so 
much in predicting the structure itself, but rather in proposing a mechanism which 
leads to the generation of such structures. Another important issue, still waiting to 
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be addressed, is the challenge of determining the biological function of a given 
protein. We would expect numerical methods (capable of predicting ligand binding 
sites or catalytic centers, where reaction substrates are processed) to also suggest 
the means by which such “active” sites are generated. 

 This handbook presents a review of numerical techniques used to identify 
ligand binding and protein complexation sites. It should be noted that there are 
many other theoretical studies devoted to predicting the activity of speci fi c proteins 
and that useful protein data can be found in numerous databases. The aim of 
advanced computational techniques is to identify the active sites in speci fi c proteins 
and moreover to suggest a generalized mechanism by which such protein-ligand 
(or protein-protein) interaction can be effected. 

 The project EFI similar to CASP and CAPRI has been initiated in regard to 
enzymatic active site recognition (http://enzymefunction.org). 

 Developing such tools is not an easy task – it requires extensive expertise in 
the area of molecular biology as well as a  fi rm grasp of numerical modeling 
methods. Thus, it is often viewed as a prime candidate for interdisciplinary research. 
Gatenby R.A. and Maini P.K. (2003) postulate the creation of an entirely new 
branch of science called “mathematical ontology” (see “Cancer summed up”, 
 Nature , 421, p. 321), which would bring together representatives of both – seemingly 
unconnected – disciplines. It is hoped that such close collaboration would lead to 
new systems enabling scientists to better simulate the properties and functioning of 
living organisms. 

 Cracow, 2012 Irena Roterman-Konieczna         

Foreword
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        Abstract   The prediction of important residues for binding/recognition sites in 
protein 3D structures is still a matter of challenge. Indeed, binding sites recognition 
is generally based on geometry often combined with physico-chemical properties 
of the site since the conformation, size and chemical composition of the protein 
surface are all relevant for the interaction with a speci fi c ligand. In our group, we 
designed an innovative bioinformatics method called SuMo in order to detect similar 
3-dimensional (3D) sites in proteins (Jambon et al. Protein-Struct Funct Genet 
52:137–145, 2003). This approach allowed the comparison of protein structures or 
substructures, and detected local spatial similarities: the main advantage of the 
method is its independence for both amino acid sequences and backbone structures. 
In contrast to already existing tools, the basis for this method is a representation of 
the protein structure by a set of stereo chemical groups that are de fi ned indepen-
dently from the notion of amino acid. An ef fi cient heuristics for  fi nding similarities 
has been developed which uses graphs of triangles of chemical groups to represent 
the protein structures. The SuMo (Sur fi ng the Molecules) program allows the dynamic 
de fi nition of chemical groups, the selection of sites in the proteins, and the man-
agement and screening of databases. The basic principle of SuMo has been used in 
several recent studies (Sperandio et al. J Cheml Inf Model 47:1097–1110, 2007) 
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    Chapter 1   
 SuMo: A Tool for Protein Function Inference 
Based on 3D Structures Comparisons       

       Julie-Anne   Chemelle   ,    Emmmanuel   Bettler   ,    Christophe   Combet   ,
   Raphaël   Terreux   ,    Christophe   Geourjon   , and    Gilbert   Deléage     
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(Doppelt-Azeroual et al. Protein Sci 19:847–867, 2010). In order to give access to 
the SuMo tool, we proposed a web server (Jambon et al. Bioinformatics 21:3929–
3930, 2005) reachable at   http://sumo-pbil.ibcp.fr    . This chapter will describe the 
main rationale we initially took for designing the  fi rst release of SuMo. In addition, 
we propose a completely new set of parameters best suitable for proteins and  fi nally, 
we illustrate its power with several biological examples. Two of them dealing with 
serine proteases and lectins are given for a comparison purpose. The  fi rst two 
examples illustrate the capability of SuMo to deal with completely opposite modes 
of evolution i.e. convergence and divergence. A new biological application dealing 
with betalactame binding protein PBB molecules is also presented.  

  Keywords   Proteins  •  Structural bioinformatics  •  3D structure  •  Physico-chemical 
groups  •  3D sites  •  Annotation  •  Triangle form  •  Delta-plus  •  Delta-minus  •  Glycine 
polar  •  Hydrophobic aliphatic  •  Carbon alpha  •  Hydrophobic aromatic  •  Target structure  
•  Objects  •  Proteases  •  Isomerases  •  Lectins  •  Betalactam  •  Penicillin drug  •  Cephalosporin 
drug  •  Ceftazidime  •  Serine proteases  •  Protein-protein interaction  •  SuMo      

    1.1   Introduction 

 Understanding and predicting the function of proteins using bioinformatics traditionally 
falls into three levels of knowledge: amino acid sequence, backbone structure (also 
called fold comparison/recognition) and local arrangement of atoms (sites detection). 
At the sequence level, similarity based methods such as FASTA (Pearson  1991  )  or 
BLAST (Altschul et al.  1997  )  are commonly used by molecular biologists for 
the retrieval of similar (or homologous) sequences. These methods are suitable for 
 fi nding homologous proteins that share similar folds. Still at the sequence level, 
other tools exist that used the recognition of given patterns into protein sequences 
(Hulo et al.  2008 ; Sigrist et al.  2010  ) . These methods can be used in non-homologous 
proteins as their sequences can share common similar sub sequences exhibiting 
common functions without the necessity to be homologues. However, receptor-ligand 
interaction can be conserved in functionally equivalent proteins even in the absence 
of sequence homology. If the 3D structure is available, the backbone level based 
comparison methods mainly rely on RMSD calculation after structure superimposition 
(   Holm and Sander  1997  ) . Alternatively, other methods rely on surface alignment 
(Guerra et al.  2010  )  or surface matching (Via et al.  2000  )  algorithms. Although very 
useful for a global fold comparison, this superimposition strategy is not suitable for 
sites detection in arbitrary 3D protein structures (Jambon et al.  2003  ) . Although of 
large interest in drug design or in deciphering function from 3D structures, methods 
based on 3D sites prediction have been lately developed. Most of them have been 
designed for the recognition of protein-ligand binding sites and the comparison of 
protein-protein interfaces or protein pockets (Reisen et al.  2010  ) . They include hashing 
techniques (Wallace et al.  1997 ; Shulman-Peleg et al.  2004  ) , evolutionary trace 

http://sumo-pbil.ibcp.fr
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(Capra and Singh  2007 ; Kristensen et al.  2008 ; Capra et al.  2009 ; Ward et al.  2009 ; 
Erdin et al.  2010  ) , graph theory (Jambon et al.  2003 ; Weskamp et al.  2004  ) , several 
kinds of descriptors (Ballester and Richards  2007 ; Sael et al.  2008 ; Schalon et al.  2008 ; 
Venkatraman et al.  2009  )  or support vectors machines (Sonavane and Chakrabarti 
 2010  ) . In 2003, we proposed the SuMo method (Jambon et al.  2003  )  that has been 
recently used or improved in several studies by other groups for ligand-based screen-
ing for ef fi cient scaffold hopping (Sperandio et al.  2007  ) , analyzing protein-ligand 
interactions exposed at the surface of a protein (Doppelt-Azeroual et al.  2010  )  or 
Fragments-Based Drug Design (Moriaud et al.  2009  ) . A similar approach using 
clouds of atoms has been recently described (Hoffmann et al.  2010  )  and today a 
database of protein complexes suitable for a critical assessment of predicted interac-
tion is available to check blind predictions (Janin et al.  2003 ; Janin  2010  ) . From the 
biologist point of view, the methods should be either usable from a software or 
reachable from a web server (Jambon et al.  2005  ) . This server offers the possibility 
to match a query structure against a database of active site templates.  

    1.2   Methods 

    1.2.1   SuMo General Methodology 

 The rationale behind the SuMO program is the comparison of 3D local structures, in 
order to identify possible common functions or to explain unexpected functional 
results within a protein family. The methodology is divided into two major steps. First, 
the PDB  fi le containing the atomic coordinates for a protein structure is converted into 
a data structure suitable for fast comparison. This representation may be stored into a 
database dedicated to comparison. The 3D structures of the proteins have to be prefor-
matted, i.e. converted into a representation that will be used by the comparison 
heuristics. Since this operation takes usually longer than the comparison itself, the 
preformatted data may be stored in a database. Four successive levels will be consid-
ered: (1) atoms, (2) groups of atoms, (3) triangles formed by chemical groups and (4) 
vertices in the  fi nal graph representing the molecule. Then SuMo performs the 
comparison itself by using preformatted data of this database. Proteins are described 
in terms of amino acids chemical functions. Thus, all amino acids are converted to 
local functions in space according to a dictionary of physico-chemical functions or 
“SuMo objects”. Then, chemical groups are used to build triangles of chemical neigh-
bours groups (cut-off 8 Å). The choice of triangles allows the description of surface 
patches rather than isolated points. The burial of each chemical group is estimated 
using a local atomic density function. The orientation of the triangle towards the rest 
of the molecule is also estimated. The  fi nal representation of the molecule is a set of 
connected adjacent triangles, i.e. triangles that share exactly two chemical groups, to 
make a graph in which each triangle forms a vertex. Details about algorithms and 
parameters can be found in the original paper (Jambon et al.  2003  ) .  
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    1.2.2   New De fi nition of SuMo Objects 

 The set of object was not modi fi ed since the  fi rst version of the software (Jambon 
et al.  2003  )  and since the original release, we have improved this set to increase the 
ef fi cacy and the accuracy of the SuMo software. The strategy is to use a minimal 
number of different types of object and to have also fewer objects that the previous 
set to compare a complete surface versus a large database like the PDB. This calcula-
tion requires large computer resources and may take a long time to compute or 
requires the use of a super computer. That is why, we have tried to reduce the number 
of object and thus drastically decreasing the combinatorial number of superposition 
to score. The new set has 10 different types of objects versus 15 for the  fi rst one. 

 The  fi rst set (Jambon et al.  2003  )  described hydrogen bonds with an object called 
“delta plus” and this object is placed on the position of the receptor atom of the hydro-
gen bond. This position is computed by extension in the direction of the bond hetero 
atom – hydrogen of 1.8 Å. This description induces two problems, the  fi rst one is 
about the  fl exibility of the side chain, a small variation of the direction of the hydrogen 
can displaced the object to 5 Å and cannot match for calculation. Side chain of amino 
acid could generate a large number of hydrogen bonds and all bonds cannot be treated. 
We decided to not describe hydrogen bond, by this way, on the new set. 

 We decide to focus on the chemical function of amino acid and to homogenously 
treat all residues. The backbone is described by a new object called “carbon alpha” 
centered on the carbon alpha of each amino acid, instead of a “delta plus” extended 
from the N–H bond, one “delta minus” centred on the oxygen of the hydroxyl and 
just for glycine residue a object called “glycine polar” on the nitrogen of the backbone. 
For hydrophobic moiety, we put one object “hydrophobic aliphatic” in the centred 
of bond C–C of the side chain (carbon alpha is not included in this calculation). 
One exception is made for the alanine residue, one “hydrophobic aliphatic” is centred 
on the methyl. We de fi ne ten types of objects centered on chemical function like 
hydroxyl, carboxylic acid, amine. For hydrophobic or amine function we de fi ne the 
aliphatic or the aromatic object type, except for hydroxyl because the capacity for 
this function to make hydrogen bond is roughly the same for the two types. We also 
create the following objects : amide, thiol and carboxylic acid. The guanidinium 
moiety could be described with aromatic amine and hydrophobic, but we prefer to 
create a speci fi c object for this function due to the particularity of the reactivity of 
the residue. The group of residue composed with aromatic cyclic was described 
with “hydrophobic aromatic” and “amine aromatic” objects. The hydrophobic object 
was positioned at the barycentre of the cycle. In the case of tryptophan residue 
one object was positioned was each cycle. Each nitrogen atoms of aromatic cycle 
were described by an aromatic amine object and centred on it. For the tyrosine resi-
due the hydroxyl object was added centred on the oxygen atom. Figure  1.1  lists the 
nature and the position of object for each residue. The SuMo software has weighting 
value of the different object. All objects have the same weight (1) instead of “carbon 
alpha” with the value of (0.1). This choice was made in order to avoid to give to the 
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backbone a too much high importance weight. The new set was tested on the two 
different protein families previously used for SuMo (Jambon et al.  2003  )  and a 
comparative analysis result of the two versions is given hereafter. The de fi nition of 
the chemical groups that are de fi ned for each amino acid is shown in Fig.  1.1 .   
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  Fig. 1.1    New set of “objects” in SuMo. Correspondence between amino acids and chemical 
groups as de fi ned in the new set       
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    1.2.3   Web Interface 

 From the user point of view, the use of SuMo involves several steps: 

    1.2.3.1   Choice of a Target Structure 

 First step, the user has to specify a 3D protein structure as target. This target can be 
either a  fi le to upload or a PDB id. A selection within this structure can be performed. 
The user can select either the whole protein or only some chains or some sites bound 
to ligands. From this selection, SuMo will give the list of retained chemical groups. 
A non-interactive interface using a simple query language (SuMoQ) is also proposed 
to advanced users to allow more  fl exibility in the queries.  

    1.2.3.2   Choice of SuMo Database 

 The second step is to select the database to scan. A  fi rst database available consists 
of all the PDB structures in which only redundant chains (sharing 100% sequence 
identity) have been removed. The second database consists of the ligand binding 
sites that are found in the PDB database. In order to keep a large panel of conforma-
tional variants of the proteins, the variety of structures of proteins of identical or 
very close sequences is preserved. Selection can contain either the full list of struc-
tures in the database or just a subset.  

    1.2.3.3   Presentation of Results 

 After comparing the selected target against the previously chosen database, results 
are displayed in a table as a list of potentially interesting similarities (Fig.  1.2 ).  

 Results can be sorted according to different criteria, such as the volume of the 
matched sites, the number of matched pairs of chemical groups, the number of 
amino acids involved or the SuMo score. The query speci fi cation and the results can 
be saved or exported as text for further analysis. 

 In the case of scanning the database of ligand binding sites, results are also sum-
marized as a mapping of the potential ligand binding chemical groups in the query 
structure and as a list of potential ligands sorted by maximal score (volume of the site). 
Links to the PDBSum web site are also available for complementary informations.  

    1.2.3.4   Detailed Results 

 For each pair of matched 3D sites, detailed information is given (Fig.  1.3 ): description 
of the chemical groups that matched, parallel view of both sites in the same orientation, 
direct view in RasMol, links to other resources. Also, various numerical parameters 
are given as a support for extended analyses of the results.     
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    1.3   Results 

 A comparison of the results obtained with the original de fi nition of objects and the 
new one described herein is provided on two extreme examples in which the structure-
function relationship in these proteins is well-known. First the classical case of 
convergent evolution of serine proteases illustrates the independence of the SuMo 
method from fold and sequence similarities. 

 The second example illustrates over a larger test set the possible discrimination of 
functional sites from non-functional sites in the legume lectins family, despite high 
sequence similarity and good overall superimposition as indicated by low RMSD. 

    1.3.1   Test of New Set on Proteases 

 To perform this test a special set of models was made. From the PDB, 61 proteases 
and 970 isomerases were downloaded. For the isomerase (EC 3.1.3) a second set was 
made to be sure that there is no protease function in these isomerase. The  fi rst 970 

  Fig. 1.2    List of detected ligands binding sites       
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entres from the PDB were downloaded and added to the database. For protease, 
61 models were chosen and dispatched in several sub families: 16 serine proteases 
(EC 3.4.21); 8 metallopeptidases (EC 3.4.24); 8 cysteine peptidases (3.4.22); 9 aspartic 
peptidases (3.4.23); 4 aminopeptidases (EC 3.4.11); 6 metallocarboxypeptidase 
(EC 3.4.17); 5 serine carboxypeptidases (EC 3.4.16); 1 cysteine carboxypeptidases 
(EC 3.4.18) and 4 threonine peptidases (EC 3.4.25). The list of serine proteases was: 
1A5H, 1BF9, 1BML, 1CEA, 1D3P, 1DDJ, 1EZX, 1FAX, 1FLE, 1FQ3, 1GI7, 1H4W, 
1IAU, 1LTO, 1SBC and 1AFQ. The query was de fi ned on the active site of the 
1AFQ serine protease model (Kashima et al.  1998  ) . SuMo objects were chosen 
within three spheres of selection with 10 Å radius and centered on W212, F302 and 
S218 residues. The selected set of objects to form the query is about 138 different 
objects located on 58 residues. 

 The result of the run was analysed, the job takes less than 3 min of running time 
on a quad cpu Xeon core. The  fi rst 13 hits were all serine proteases and the 1SBC 
entry was found on rank 79, the 2 other last entres were not recovered. The result is 
presented on Table  1.1 . Hits number 34, 37 and 39 were cysteine endo peptidases 
with PDB code 1 AU0, 1MEM and 1KFU, respectively. 16 proteases among 61 were 

  Fig. 1.3    Superimposition of hits in SuMo       
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      Table 1.1    Comparison of new (left panel) and original (right panel) objects on 61 proteases and 
970 isomerases   

 New    object data set  Original object data set 

 pdb code  Sumo score  Objects  pdb code  Sumo score  Objects 

 1AFQ  69.98  233  SP  1H4W  16.76  39  SP 
 1H4W  52.97  131  SP  1FAX  10.98  25  SP 
 1A5H  47.16  109  SP  1A5H  8.87  22  SP 
 1GI7  46.68  106  SP  1GI7  4.9  10  SP 
 1FAX  45.51  106  SP  1Q6H  4.34  8  iso 
 1FLE  43.02  96  SP  1XYH  4.12  9  iso 
 1LTO  39.51  93  SP  3REQ  4.08  7  iso 
 1BML  38.76  92  SP  1IAU  4.07  8  SP 
 1D3P  37.35  85  SP  1EZX  4  9  SP 
 1EZX  36.63  81  SP  1PJH  3.99  8  iso 
 1FQ3  35.87  94  SP  2GZM  3.95  7  iso 
 1IAU  35.19  80  SP  1B6C  3.94  7  iso 
 1DDJ  30.2  65  SP  1N23  3.9  7  iso 
 1NSS  11.45  33  iso  1GXD  3.9  8  MEP 
 1JC4  11.05  28  iso  1P5Q  3.9  8  iso 
 1UPI  10.59  30  iso  2IAM  3.8  6  iso 
 1ZVC  10.56  24  iso  2OJU  3.78  8  iso 
 1B6C  10.41  33  iso  1D3P  3.75  9  SP 
 2VEP  10.38  37  iso  1EQ2  3.75  8  iso 
 1VGA  10.33  34  iso  1Q6I  3.75  8  iso 
 2NR0  10.26  23  iso  2CIR  3.69  7  iso 
 1WDM  10.14  37  iso  2CIS  3.69  7  iso 
 1Z8K  9.99  22  iso  1TTJ  3.69  7  iso 
 1R2T  9.89  20  iso  2BI8  3.67  7  iso 
 2F6Q  9.8  31  iso  1HOT  3.65  6  iso 
 1RCQ  9.78  35  iso  1FS5  3.65  6  iso 
 1LZO  9.75  23  iso  1TCO  3.64  7  iso 
 1O5X  9.75  22  iso  1GR0  3.64  7  iso 
 1WOB  9.75  22  iso  1ZLI  3.64  7  MCP 
 1M7O  9.75  22  iso  1JOF  3.64  8  iso 
 1M7P  9.74  22  iso  1UWY  3.63  6  MCP 
 1IV8  9.66  24  iso  2P5Y  3.62  7  iso 
 2BTM  9.61  25  iso  1SEU  3.6  6  iso 
 1 AU0  9.6  20  CEP  1WLT  3.6  6  iso 
 1P5G  9.57  26  iso  2IFY  3.6  8  iso 
 1HG3  9.56  23  iso  1TTJ  3.6  7  iso 
 1MEM  9.51  18  CEP  1BML  3.6  8  SP 
 2OK3  9.4  22  iso  2GYI  3.56  7  iso 
 1KFU  9.37  20  CEP  1PCJ  3.55  7  iso 
 1IIP  9.37  29  iso  1CY8  3.5  6  iso 
 2BRJ  9.33  20  iso  2C5E  3.49  7  iso 

(continued)
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recovered on the  fi rst 50 hits which gives a percentage of 26.2%, but 13 on 16 serine 
protease were recovered with a percentage of 81.3%. The new set gives better results 
that the previous one with a percentage of recovery about 22.9% of protease and 
only 8 on 16 serine proteases recovered on the 50  fi rst hits. Difference between the 
two SuMo object sets is clearly establish on this run because the  fi rst 13 lines 
contain serine proteases for the new set and only 4 entries at the top of the list for 
the old set. In fact, deeper analyses of the result from the new set of SuMo objects 
give a better answer. Only 3 serine proteases were not recovered on the  fi rst 50 hits: 
1SBC (79 hits), 1CEA and 1BF9 are not present. The 1CEA (Mathews et al.  1996  )  
structure is the non covalent complex of the recombinant kringle 1 domain of human 
plasminogen. This structure has 7 domains, one PAN, 5 kringle and one peptidase 
domain, the resolved structure have only the end on the PAN and the kringle 1 
domain. Even the structure is displayed on the PDB with serine protease EC code; 
the protease domain is not present in the PDB  fi le. For the second entry “no present” 
with the PDB code 1BF9, the same conclusion can be made. The structure is the N 
terminal EGF like domain from human factor VII and can be divided in three 
domains, Gla EGF1, EGF2 and Serine protease. The PDB structure resolved by 
NMR gives the EGF1 domain whereas the other domains are absent. Therefore, the 
new SuMo objects allow to recovered 13 of the 14 true serine proteases thus giving 
a recovery percentage of 92.9%.  

 The analysis of the common object or signature is displayed for all serine protease 
on Table  1.2 . The signature was compiled by residue and the number of common 
objects with the query structure (1AFQ) is given in the table. A value number of 1 
means that all objects of a residue were recovered. The serine protease made the 
peptidase reaction with three catalytic residues: H57, D103 and S195. The H57 and 
the D102 were found in the 14 “true” serine proteases, only the S195 was not recov-
ered in the 1EZX structure. One of the advantage of the method is the capability to 
analyse common residues in discontinuous sequence and not only in 2D like classi-
cal approach. The 1SBC model has quite nothing in common but the three catalytic 
residues, it is possible to make a pattern of recognition only based on this three resi-
dues to determine if it is a serine protease. In this case, SuMo software can be used 

 New    object data set  Original object data set 

 pdb code  Sumo score  Objects  pdb code  Sumo score  Objects 

 2HXG  9.28  20  iso  2JFO  3.49  7  iso 
 1AW2  9.28  19  iso  2H4L  3.49  7  iso 
 1SUX  9.27  19  iso  1YA7  3.48  7  TEP 
 1JX1  9.26  22  iso  1YAU  3.48  7  TEP 
 1R2R  9.25  19  iso  1D6M  3.45  6  iso 
 2VEN  9.24  19  iso  2VA6  3.45  6  AEP 

 16/61 Protease : 26,2%  14/61 Protease : 22,9% 
 13/16 serine protease: 81,3%  8/16 Serine protease: 50% 

Table 1.1 (continued)
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to detect secondary site or “moon lighting” sites of proteins. The global analysis the 
14 serine proteases shows conserved area and empty band showing that in there area 
there are no common objects with 1AFQ (Kashima et al.  1998  ) .   

    1.3.2   Test of New Set on Lectins 

 Lectin proteins have a speci fi c binding capability for oligosaccharide and particularly 
glycoprotein. To make a comparison with the previous SuMo work, the same lectin 
set was chosen. We choose a set of 90 3D models of lectin extracted from the Protein 
Data Bank (PDB). In this set 18 lectins are not able to bind oligosaccharide (designed 
hereafter as false lectin). The 2PEL (Banerjee et al.  1996  )  structure is the peanut 
lectin whose structure was solved by X-ray crystallography at 2.25 Å resolution. 
The LAT ligand is a lactose molecule and the structure has been co-crystallized with 
two lactose molecules bound in two different sites LAT and LBT. The reference set 
of objet was de fi ned as all objects around 6.5 Å of the LAT ligand site. This distance 
selects 16 objects on 2PEL model, which are distributed on the 12 residues: D80, 
A82, D83, G103, G104, Y125, N127, E129, S211, L212, G213 and G214. 

 The comparison was performed on a double cpu Xeon type dual core and the run 
took less than 1 min of CPU time. The 6 best  fi rst hits were peanut lectins with different 
ligands under reference: 1QF3, 1CR7, 2PEL, 2TEP, 1BZW, 1CIW. The number of 
matching objects ranges from 16 to 12, the L212 and the carbon alpha of the S211 
were not recovered for 1BZW and 1CIW structures. The next hits give concanavilin 
structure (PDB code: 1NLS) with 9 objects. Most hits have 5 or 6 objects in common 
with the query and belong to the concanavilin family. The program classi fi ed 93 hits 
with 16 to 3 objects. The analysis reveals that only 2UU8 with 7 common objects is 
present and the rest of the 17 false lectins are not present in the listing. This result 
compared favorably with the same query on the same server from the previous set 
of object reveal better hits. Indeed, by using the previous set 14 of the 18 false lectins 
were present in hits, 7 has more than 5 common objects and 7 have less 4 common, 
only 4 models are not in the list (Table  1.3 ). The false lectins not recovered are: 
1IOA, 1DQ2, 1ENQ and 1QFD. It is interesting to notice than 2UU8 have 5 objects 
on the previous set and 7 with the new one. 2UU8 have common object dispatched 
on 6 residues. Here is the list of matching pairs of residue on 2PEL vs. 2UU8: A82/
A207, D83/D208, G103/G227, G104/R228 (carbon alpha), Y125/Y12 and N127/
N14. It is interesting to notice than the carbon alpha of the G104 of the 2PEL lectin 
is matching with the R228 of the false lectin 2UU8. The weight of “carbon alpha” 
object is minimal in order to not favor proteins with the same fold, so the score 
2UU8 is about 4.44 versus 8.05 for 2PEL and are hits number 20 / 93. Among the 
12 residues, 6 has been paired explaining the “good” hit, but the mutation on gly-
cine 104 in arginine on the binding has probably disabled the capability of this 
protein to bind with an oligosaccharide.   
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   Table 1.3    Result obtained with lectin 2PEL as query. On the table only false lectins are displayed. 
If number of SuMo objects is higher than 5, the entry is in dark gray. Otherwise, it is in light gray   

 PDB    code  New object set  Previous object set 

 SuMo score  Object Number  SuMo score  Object Number 

 1IOA  Non present  Non present  Non present  Non present 
 1HSS  Non present  Non present  3.49  7 
 3AIT  Non present  Non present  2.45  4 
 1AVB  Non present  Non present  3  6 
 4AIT  Non present  Non present  3.65  6 
 1CLV  Non present  Non present  2.45  4 
 1HOE  Non present  Non present  2.45  4 
 1HTX  Non present  Non present  2.15  3 
 1CN1  Non present  Non present  2.44  5 
 1APN  Non present  Non present  2.44  5 
 1DQ2  Non present  Non present  Non present  Non present 
 1ENQ  Non present  Non present  Non present  Non present 
 1OK0  Non present  Non present  2.45  4 
 1QFD  Non present  Non present  Non present  Non present 
 2AIT  Non present  Non present  2.45  4 
 1CES  Non present  Non present  2.44  5 
 2UU8  4.44  7  2.29  5 
 1ENS  Non present  Non present  2.4  4 

    1.3.3   New Biological Application on the Search 
for a Common Site in Betalactam Molecule 

 A betalactam class molecule is the most prescribed antibiotic drug (Cars et al.  2001 ; 
Coenen et al.  2006 ; Ferech et al.  2006  ) . Betalactam makes a covalent bond on a 
speci fi c site on the Penicillin Binding Protein (PBP) between one lysine and the 
betalactam cycle. Several complexes of the PBP and betalactam molecule were 
solved and deposited into the PDB. For this study, we took a PBP-2X protein solved 
with a cefuroxime molecule (Gordon et al.  2000  ) . The structure is deposited under 
the reference 1QMF and its structure was solved by X ray diffraction at a 2.8 Å reso-
lution. The whole protein was converted to a list of objects thanks to our dictionary 
of new objects and we used the CES site with a selection of SuMo objects around 
the molecule with a range of 6 Å. This selection involves 36 objects and 255 triplets. 
The run was carried out with the complete surface of all proteins of the Complete 
Protein Data Bank. The calculation was made on a quad core Linux computer and 
took roughly 15 h. The  fi rst 45 entries were listed in Table  1.4 .  

 The  fi rst 17 entries correspond to different PBP (PDB-2B and PDB-1A) stored in 
the databank. The sequence identities computed after alignment by using ClustalW 
is 89/705(12.63%) for PBP-2X and PBB-2B and 81/704 (11.51%) for PBP-1A and 
PBP-2X. After the reference site, SuMo identi fi ed 8 PBP-2X which have very similar 
sequences. A second set of entries after PBP-2X is composed  fi rst by 3 PBP-2B and 
3 PBP-1A and at least 3 other PBP’s. SuMo program computed its search based on 
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   Table 1.4    Result of SuMo run using the CES binding site of the Penicillin Binding Protein 
(1QMF) as reference against all the proteins of the Protein Data Bank ( PDB ). Only the  fi rst 45 
entries are displayed. The white to light grays entries are all penicillin binding proteins ( PBP ). 
The dark grays entries are beta-lactamase proteins   

 Hit    Id  PDB Id  SCF Count  Sumo Score  Header line of the PDB structure 

 1  1QMF  67  33.02  Penicillin-binding protein 2X 
(PBP-2X) 

 2  2ZC3  51  28.15  Penicillin-binding protein 2X 
(PBP 2X) 

 3  2ZC4  50  27.16  Penicillin-binding protein 2X 
(PBP 2X) 

 4  1QME  50  27.01  Penicillin-binding protein 2X 
(PBP-2X) 

 5  2Z2L  48  26.95  Penicillin-binding protein 2X 
(PBP2X) 

 6  2Z2M  43  24.96  Cefditoren-acylated penicillin-
binding protein 2X 

 7  1RP5  48  23.615  PBP2X from  Streptococcus 
pneumoniae  strain 5259 
WITH REDUCED suscepti-
bility to beta-lactam 
antibiotics 

 8  1PYY  43  22.89  Double mutant PBP2X T338A/
M339F from  Streptococcus 
pneumoniae  strain R6 AT 2.4 
A resolution 

 9  2WAF  34  19.23  Penicillin-binding protein 2B 
(PBP-2B) 

 10  2WAD  30  16.61  Penicillin-binding protein 2B 
(PBP-2B) 

 11  2WAE  31  16.57  Penicillin-binding protein 2B 
(PBP-2B) 

 12  2ZC5  27  14.09  Penicillin-binding protein 1A 
(PBP 1A) acyl-enzyme 
complex (Biapenem) 

 13  2C5W  25  13.91  Penicillin-binding protein 1A 
(PBP-1A) acyl-enzyme 
complex (Cefotaxime) 

 14  2ZC6  25  13.30  Penicillin-binding protein 1A 
(PBP 1A) acyl-enzyme 
complex (Tebipenem) 

 15  2JE5  24  13.25  Structural and mechanistic basis 
of penicillin binding protein 
inhibition by lactivicins 

 16  2JCH  22  12.71  Structural and mechanistic basis 
of penicillin binding protein 
inhibition by lactivicins 

(continued)
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Table 1.4 (continued)

 Hit    Id  PDB Id  SCF Count  Sumo Score  Header line of the PDB structure 

 17  3EQU  21  12.66  Crystal structure of penicillin-
binding protein 2 from 
 Neisseria gonorrhoeae  

 18  1YLZ  24  12.49  X-ray crystallographic structure 
of CTX-M14 beta-lactamase 
complexed with ceftazidime-
like boronic acid 

 19  1MWR  21  12.18  Structure of semet penicillin 
binding protein 2a from 
methicillin resistant 
 Staphylococcus aureus  

 20  2V2F  21  12.15  Crystal structure of PBP1A 
from drug-resistant strain 
5204 FROM  Streptococcus 
pneumoniae  

 21  1IYP  21  11.86  TOHO-1 beta-lactamase in 
complex with cephalothin 

 22  1IYO  21  11.75  TOHO-1 beta-lactamase in 
complex with cefotaxime 

 23  2JCI  20  11.40  Structural insights into the 
catalytic mechanism and 
the role of  Streptococcus 
pneumoniae  PBP1B 

 24  1YLW  21  11.37  X-ray structure of CTX-M-16 
beta-lactamase 

 25  2ZQA  19  11.33  Cefotaxime acyl-intermediate 
structure of class a beta-lacta 
TOHO-1 E166A/R274N/
R276N triple mutant 

 26  1YLY  22  11.31  X-RAY CRYSTALLOGRAPHIC 
STRUCTURE OF CTX-M-9 
BETA-LACTAMASE 
COMPLEXED WITH 
CEFTAZIDIME-LIKE 
BORONIC ACID 

 27  2ZQC  18  10.94  Aztreonam acyl-intermediate 
structure of class a beta-
lactam TOHO-1 E166A/
R274N/R276N triple mutant 

 28  2ZQ9  19  10.83  Cephalothin acyl-intermediate 
structure of class a beta- 
lactamase TOHO-1 triple 
mutant 

 29  2FFF  19  10.80  Open form of a class a transpep-
tidase domain (PBP) 

(continued)
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 Hit    Id  PDB Id  SCF Count  Sumo Score  Header line of the PDB structure 

 30  2Q9M  19  10.76  4-substituted trinems as broad 
spectrum-lactamase 
inhibitors: structure-based 
design, synthesis and 
biological activity 

 31  1TEM  19  10.52  6 alpha hydroxymethyl 
penicilloic acid acylated on 
the TEM- 1 BETA-lactamase 
from  Escherichia coli  

 32  2A49  18  10.45  Crystal structure of clavulanic 
acid bound TO E166A 
VARIANT OF SHV-1 beta-
lactamase 

 33  2C6W  19  10.32  Penicillin-binding protein 1a 
(PBP-1A) from 
 Streptococcus pneumoniae  

 34  3DWK  19  10.27  Identi fi cation of dynamic 
structural motifs involved 
in peptidoglycan 
glycosyltransfer 

 35  1FQG  18  10.15  Molecular structure of the 
acyl-enzyme intermediate 
in tem- 1 beta-lactamase 

 36  3BFC  21  9.98  Class a beta-lactamase sed-
G238C complexed with 
imipenem 

 37  1YMS  16  9.93  X-ray crystallographic structure 
of CTX-M-9 beta-lactamase 
complexed with nafcinin-like 
boronic acid inhibitor 

 38  1XKZ  17  9.87  Crystal structure of the acylated 
beta-lactam sensor domain 
of BLAR1 from  S. aureus  

 39  1BLS  17  9.86  Crystallographic structure of a 
phosphonate derivative of the 
enterobacter cloacae p99 
cephalosporinase: mechanis-
tic interpretation of a 
beta-lactamase transition 
state analog 

 40  1VQQ  17  9.80  Structure of penicillin binding 
protein 2a from methicillin 
resistant  Staphylococcus 
aureus.  

 41  2ZQD  16  9.80  Ceftazidime acyl-intermediate 
structure of class a beta-lact 
toho-1 E166A/R274N/
R276N TRIPLE MUTANT 

Table 1.4 (continued)

(continued)
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 Hit    Id  PDB Id  SCF Count  Sumo Score  Header line of the PDB structure 

 42  1IYQ  17  9.79  TOHO-1 beta-lactamase 
in complex with 
benzylpenicillin 

 43  2ZD8  20  9.67  SHV-1 class a beta-lactamase 
complexed with meropenem 

 44  1PIO  16  9.42  An engineered  Staphylococcus 
aureus  PC1 beta-lactamase 
that hydrolyses third 
generation cephalosporins 

 45  1CK3  15  9.41  N276D mutant of  Escherichia coli  
TEM-1 beta-lactamase 

Table 1.4 (continued)

triplet of objects, protein with same fold and very similar site as PBP protein, are 
highly ranked even if the percentage of identity of sequence is very low. After PBP, 
the analysis of hits reveals another set composed by betalactamase. Betalactam mol-
ecule binds on this protein and its cycle is opened by the enzyme. When the betalac-
tam cycle is open the drug loses its antibiotic effect. The protein is involved in the 
mechanism of antibiotic resistance in bacteria. After line 17, entries 21 (among the 
last 28) are betalactamase proteins and 7 other PBP different fromPBP-2X. The 
sequence identity between the  fi rst betalactamase (code 1YLZ) (Chen et al.  2005  )  
and reference PBP-2X (1QMF) is only 50/702: 7.19%. The analysis of the  fi rst beta 
lactamase revealed that this protein is involved in the resistance because this enzyme 
of this strain binds on penicillin drug and also third generation cephalosporin drug. 
This PBP was crystallized with ceftazidime which is third generation cephalosporin. 
A BLAST run was used to  fi nd proteins with similar sequence of the PBP-2X on the 
sequence database of PDB model, we found all PBP-2X but no other PBP and no 
betalactamase structure. The two PDB structures were superimposed by using the 
Sybyl X software (Tripos  2010  ) , the RMSD found was as high as 20 Å and the two 
binding sites are located at the opposite directions in the  fi tted molecules. On the 
contrary, the analysis of the superposition provided by SuMo software reveals that 
mostly all objects of the sites are commonly shared by the two structures. The three 
residues which could play a catalytic role have a equivalent object on the two struc-
tures, the K340 of the PBP-2X is replaced by the K73 on the betalactamase, the 
S337 by S70 and S395 by S130. The superposition of the both sites resulting from 
the SuMo analysis is displayed on the Fig.  1.4 .    

    1.4   Discussion 

 Since the development of the original SuMO method in 2003 (Jambon et al.  2003  ) , 
several improvements have been performed either in our team (Jambon et al.  2005  )  
or by others (Sperandio et al.  2007  ) , including protein-ligand interactions exposed 
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  Fig. 1.4    Superimposition, obtained by SuMo software, of the Penicillin Binding Protein (1QMF) 
in blue with the beta – lactamase (1YLZ) protein in green. Sites are well superimposed 
(RMSD = 2.17 Å)       

at the surface of a protein (Doppelt-Azeroual et al.  2010  )  or Fragments-Based Drug 
Design (Moriaud et al.  2009  ) . A similar approach using clouds of atoms has been 
recently described (Hoffmann et al.  2010  )  and today a database of protein com-
plexes suitable for a critical assessment of predicted interaction is available is avail-
able to check blind predictions (Janin et al.  2003 ; Janin  2010  ) . In this chapter, we 
describe a revised strategy to de fi ne standardized “SuMo objects” in order to 
improve the quality of the results and to decrease the CPU time. Since the number 
of objects has been decreased in this new set, this contributes to a simpler descrip-
tion of the molecules to be compared. This lead to better response time even if the 
size of the PDB has dramatically increased (21339 protein structures in 2003 versus 
68353 in June 2011). The results obtained by SuMo by using the new set of object 
favorably compare with those obtained with the classical set. This is con fi rmed in 
the comparative study that used the 2 standards protein test sets of the original study. 
For example, 2 additional proteases were identi fi ed and 13 instead of 8 among 16 
have been correctly assigned as serine proteases. Even more spectacular are the 
results obtained with the Penicillin Binding Protein (PBP) and beta lactamases. The 
two proteins families are well separated at the function level giving rise to two well 
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separated blocks in the list. However, starting with a particular protein of a given 
family (1QMF), the SuMo program was able to catch proteins that all share the 
capability to bind betalactam molecules. The SuMo approach is a tentative towards 
automatic functional annotations of protein of unkown functions based solely on 
their 3D structures. In the future, efforts will be made to go towards protein-protein 
interactions capabilities as SuMo can be seen as the foundation of the vocabulary 
used in a grammar still to be discovered about the rules that govern the molecular 
language of interaction.      

  Acknowledgements   Thanks are due to Martin Jambon as the main author of the original SuMo 
program written in OCAML.  
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phology   •   Q-SiteFinder   •   Inside protein   •   Near surface   •   In solvent   •   Cubic 
diagonals      

     2.1   Introduction 

 Proteins perform their biological functions in different cell processes mainly by 
interacting with other molecules such as other proteins, ligands, DNAs and RNAs 
etc. Not all but only parts of residues in proteins are involved in such interactions. 
Therefore, identi fi cation of these interacting residues on a protein is of great impor-
tance to understanding of protein functions. In the variety of interactions, the inter-
actions between proteins and ligands have been widely studied in protein-ligand 
docking, in virtual screening and structure-based drug design etc. There exist a 
number of cavities or pocket sites on protein surface where small molecules might 
bind. Therefore, identi fi cation of such pocket sites is often the  fi rst step in protein 
ligand-binding site prediction. Many computational algorithms and tools have been 
developed in recent decades to predict protein-ligand binding site from identi fi -
cation of pockets on protein structures, such as POCKET (Levitt and Banaszak 
 1992  ) , LIGSITE (Hendlich et al.  1997  ) , CAST (Dundas et al.  2006 ; Binkowski et al. 
 2003  ) , LIGSITE CS/C  (Huang and Schroeder  2006  ) , PASS (Brady and Stouten  2000  ) , 
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Q-SiteFinder (Laurie and Jackson  2005  ) , SURFNET (Laskowski  1995  ) , Fpocket 
(Le Guilloux et al.  2009  ) , GHECOM (Kawabata  2010  ) , ConCavity (Capra et al. 
 2009  ) , POCASA (Yu et al.  2010  ) , PocketPicker (Weisel et al.  2007  ) , SiteHound 
(Ghersi and Sanchez  2009 ;    Hernandez et al.  2009  )  and so on. Some of these methods 
have been described in details in other chapters. Most of the existing methods for 
protein-ligand binding site prediction can be classi fi ed into two types: geometry-
based and energy-based. The geometry-based methods can be further classi fi ed into 
grid-based, sphere-based and  a -shape-based (Kawabata  2010 ; Yu et al.  2010  ) . 
In the grid based methods, the protein structure is projected into a 3D grid and the 
grid points are categorized into different types such as “outside protein”, “inside 
protein” and “near protein surface” according to their positions related to the protein. 
Then those grid points not inside protein are clustered using some geometry attributes 
and those grids points at the pocket sites can be recognized in the end. LIGSITE CS , 
GHECOM, PocketPicker and ConCavity are the representatives of such type. 
In LIGSITE cs , the grid points are categorized into three types: inside protein, near 
surface and in the solvent. For all the solvent points, a seven-direction scanning is 
applied. Every grid point will be evaluated by the number of SSS (surface-solvent-
surface) event it has, and if the grid point has more or equal than  fi ve such events, 
it normally locates at a pocket site point. LIGSITE cs  will be explained in details 
in the next section. GHECOM also  fi rstly projects the protein into a 3D grid, and 
the geometry attribute used in this method is mathematical morphology. It uses the 
theory of mathematical morphology to de fi ne the pocket region on protein surface. 
In mathematical morphology (Masuya and Doi  1995  ) , there are four basic opera-
tions of dilation, erosion, opening and closing for a probe to de fi ne a pocket site. In 
ConCavity, a 3D grid is constructed to include the protein as well. Each grid point 
is evaluated and scored by the structural information and the evolutional informa-
tion. In the end, the regions with many high-scoring grid points are considered to be 
pocket sites. In the sphere-based approaches, the common strategy is to ful fi ll the 
spheres on protein surface layer by layer and a cutting method is applied when 
ful fi lling. The  fi nal pocket sites are that those regions which are in rich of such 
spheres. This kind of methods include SURFNET, PASS, PHECOM (Kawabata and 
Go  2007  )  and POCASA (Yu et al.  2010  ) . Approaches based on  a -shape include 
CAST and Fpocket. CAST computes the triangulations of the protein’s surface 
atoms and these triangulations are grouped by letting small sized ones  fl ow towards 
the neighboring larger one. The pocket sites are the collection of empty triangles. 
Different from CAST, Fpocket uses the idea of  a - sphere which is a sphere contacting 
four atoms on its boundary and containing no inside atom. The next step is to iden-
tify clusters of spheres close together and those clusters are potential pocket sites. 
In contrast to geometry-based methods, Q-SiteFinder (Laurie and Jackson  2005  )  
aims to  fi nd pocket sites by computing the interaction energy between protein atoms 
and a small molecule probe. In Q-SiteFinder, layers of methyl (―CH3) probes are 
initialized on protein surface to calculate the van der Waals interaction energy 
between the protein atoms and the probes. Then the probes are clustered into many 
groups and are ranked by the total energy of probes. Those clusters with high energy 
will be the potential ligand binding sites. SiteHound (Ghersi and Sanchez  2009 ; 
Hernandez et al.  2009  )  is similar to Q-SiteFinder but it includes Lennard-Jones and 
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electrostatics energy terms and uses different types of probes to calculate interaction 
energy. Table  2.1  brie fl y summarizes the category of these existing computational 
methods.  

 In this chapter, we will focus on the grid-based method LIGSITE csc  and a consensus 
method metaPocket (Huang  2009 ;    Zhang et al.  2011  ) , which were developed in our 
group. In the next sections, we will explain the detailed algorithm of LIGSITE csc  and 
metaPocket, then the performance of these methods with other methods will be 
compared on the same test data-sets using the same evaluation criteria.  

    2.2   LIGSITE csc  Approach 

 In our LIGSITE csc  approach, we introduced two extensions based on LIGSITE: 
First, instead of capturing protein-solvent-protein events, we capture the more 
accurate surface-solvent-surface events using the protein’s Connolly surface 
(Connolly  1983  ) , and not the protein’s atoms. We call this extension LIGSITE cs  
(cs = Connolly surface). Second, we re-rank the pockets identi fi ed by the surface-
solvent-surface events by the degree of conservation of the involved surface residues. 
We call this extension LIGSITE csc  (csc = Connolly surface and conservation). 

 The LIGSITE csc  algorithm proceeds as follows. First, the protein is projected 
onto a 3D grid (Fig.  2.1 ). In order to minimize the necessary grid size, we apply 
principal component analysis so that the principal axis of the protein aligns with the 
x-axis, the second principal axis with the y-axis, and the third with the z-axis. Such 
rotation does not affect the quality of the results and it only minimizes the necessary 
grid size. For each grid, we use a step size of 1.0 Å (grid space). Different grid spaces 
have been tested as well. Second, grid points are classi fi ed into three categories: 
“inside protein”, “near surface”, or “in solvent” using the following rules: a grid 

   Table 2.1    Summary of existing methods for protein-ligands binding site 
prediction   

 Name 

 Strategy 

 Geometry 

 Energy  Grid  Sphere   a -shape 

 LIGSITE cs   √ 
 SURFNET  √ 
 PASS  √ 
 Q-SiteFinder    √ 
 Fpocket  √ 
 POCASA  √  √ 
 GHECOM  √ 
 ConCavity  √ 
 PocketPicker  √ 
 CAST  √ 
 SiteHund  √ 

  The  fi rst eight methods are included in metaPocket  
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point is marked as “inside protein” if there is at least one protein atom within 1.6 Å. 
Next, the solvent excluded surface is calculated using the Connolly algorithm 
(Connolly  1983  )  and the surface vertices’ coordinates are stored. In the Connolly 
algorithm, a hypothetical probe sphere (usual radius 1.4 Å) rolls over the protein. 
The Connolly surface is a combination of the van der Waals surface of the protein 
and the probe spheres surface, if the probe is in contact with more than one atom. 
A grid point is marked as “near surface” if a surface vertex is within 1.0 Å. All the 
other grid points are marked as “in solvent”. A sequence of grid points, which starts 
and ends with “near surface” grid points and which has “in solvent” grid points in 
between, is called a surface-solvent-surface (SSS) event. LIGSITE csc  scans seven 
directions, the x, y, z directions and four cubic diagonals, for such SSS events. If the 
number of surface-solvent-surface events of a solvent grid exceeds a minimal 
threshold (MINSSS, 5 in this work), then this grid is marked as pocket. Finally, all 
pocket grid points are clustered according to their spatial proximity. I.e. if a pocket 
grid point is within 3 Å to a pocket grid point cluster, it is added to this cluster. 
Otherwise, it becomes a new cluster. Next, the clusters are ranked by the number of 
grid points in the cluster. The top three clusters are retained and their centres of 
mass are used to represent the predicted pocket sites. This  fi rst extension to the basic 
LIGSITE algorithm is called LIGSITE cs . For LIGSITE csc , the top three pocket sites 
are re-ranked according to the degree of conservation of the involved surface residues 
around the pocket sites. To be precise, the conservation score is the average conservation 
of all residues within a sphere of certain radius (8 Å here) of the centre of mass of 
the cluster. The conservation score for each residue in a given PDB ID is obtained 
from the ConSurf-HSSP database (Glaser et al.  2005  ) , ranging from 1 (less conserved) 

Protein atom

Grid point

Pocket site

Scan direction

  Fig. 2.1    The detailed algorithm of LIGSITE csc . The protein is projected into a 3D grid (here 2D) 
and the grid points located at the pocket sites are identi fi ed by scanning seven directions (four 
directions for 2D) for solvent-surface-solvent (SSS) events       
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to 9 (more conserved). This ConSurf-HSSP database pre-calculates the conservation 
score for all the PDB  fi les in the PDB. However, if the users submit a new protein 
structure without any PDB ID, it is impossible to retrieve the conservation score 
from ConSurf-HSSP and thus the last re-ranking step LIGSITE csc  could not be 
applied. In such cases, geometric ranking LIGSITE cs  will be applied and the pocket 
sites are thus ranked by the pocket sizes rather than conservation score in the end. 
The whole process of LIGSITE csc  is illustrated in Fig.  2.2  in details.    

Project structure into a 3D grid 

Classify grid points to “inside protein”, 
“near surface” and “solvent”

The grid point is located in a pocket 

Cluster such grid points according to 
spatial similarity  

Scan 7 directions for each solvent grid 
point; calculate the number of SSS event

Given protein structure

Rank the clusters (pocket sites) by  
their sizes

Input

Output  Identified pocket sites 

 Potential ligand binding residues for each pocket site 

NSSS >= 5 

Re-rank the pocket sites by the 
conservation score of around residues

Identify potential ligand-binding residues 
(Residue mapping)

Yes 

LIGSITEcs

LIGSITEcsc

  Fig. 2.2    The detailed work fl ow of LIGSITE cs/c . The identi fi ed pocket sites in LIGSITE cs  are 
ranked by the pocket size and then re-ranked by residue conservation scores in LIGSITE csc        
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    2.3   MetaPocket Approach 

 There are two versions of metaPocket approach, MetaPocket1.0 and MetaPocket 2.0. 
MetPocket1.0 was developed in 2009 and it only contained four methods and the web-
server is at   http://metapocket.eml.org     ( Huang  2009  ) . MetaPocket2.0 is an extension 
of metaPocket1.0 and contained four more methods developed between 2009 and 
2010, recently published in the Bioinformatics journal (Zhang et al.  2011  ) . Here we 
only mainly describe it as metaPocket since there is no big difference between version 
1.0 and 2.0, except that four more methods are included in version 2.0. 

 In this section we will describe the algorithm and work fl ow for MetaPocket in 
details. In a word, MetaPocket is a comprehensive method in which the predicted 
sites from eight methods: LIGSITE cs , PASS, Q-SiteFinder, SURFNET, Fpocket, 
GHECOM, ConCavity and POCASA are combined together to improve the protein-
ligand binding prediction success rate. These eight methods are chosen because 
their developers provide source codes or executable binary and web-server available 
freely. MetaPocket proceeds in three steps to work: calling all single methods, meta-
pockets generation and potential ligand-binding residue mapping. MetaPocket takes 
a standard PDB  fi le as input, and outputs the prediction pockets and also the predic-
tion pockets of all the successfully running single methods, and the potential ligand-
binding residues around each meta-pocket. The whole work fl ow of metaPocket is 
illustrated in Fig.  2.3  and each step is explained in details as below.  

  Calling all single methods.  In this step, the input protein structure is sent 
to all the single methods in parallel and separately to save total running time. For 
LIGSITEcs, PASS, SURFNET, GHECOM, Fpocket and ConCavity, their executable 
binary programs are run locally to do the prediction. For Q-SiteFinder and POCASA, 
python scripts are implemented to submit the protein structure to their web servers 
and the results are retrieved from the remote servers automatically. Thus these two 
methods depend on internet connection or the status of their web-servers and could 
fail sometimes due to bad connection and showdown of web-servers. As results, 
LIGSITE cs , PASS and SURFNET output different clusters of grid points and the 
mass center of these clusters is used to represent the pocket site. For the other  fi ve 
methods, pocket sites are indicated by clustered probes. Thus, the mass center of 
each cluster is calculated and then is used as the representative point of the identi fi ed 
pocket sites. As we note that, each identi fi ed pocket site from every method is 
ranked by different scoring functions, either by the number of grid points or by the 
size of cluster. Thus, we can not directly compare the rankings among each pocket 
from different methods. To make them comparable, the z-score is calculated 
separately for each site in different methods according to Formula 2.1. This z-score 
will be used later as  fi nal scoring function in metaPocket method.

     
−

− = i
i

X X
Z score

s    (2.1)   

http://metapocket.eml.org
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  Generating meta-pocket sites . After calling each method, metaPocket only 
takes the  fi rst three pocket sites from each method into account. Thus, totally there 
are 24 pocket sites and these pocket sites are somehow overlapped spatially. To 
identify those overlapped pocket sites (we call them as “meta-pocket” sites), we use 

P1 P2 PN

Verify results from each predictor 

Calculate the z-score value for each pocket 
site in different predictors 

Clustering those 3 × N pockets according to
their spatial similarity

Calculate the total z-score for each final
cluster 

Rank the final clusters by their total z-score

Calculate the mass center for each cluster

Get the top 3 pocket sites from each
predictor 

Given protein structure

Identify potential binding residues
(Residue mapping) 

Pi

A

B

C

Input

Output
Prediction pocket sites (single point and clusters) 

Prediction pocket sites from single methods 
Potential ligand-binding residues for each pocket 

  Fig. 2.3    The illustration of the work fl ow in metaPocket. Step A: calling each single method. 
Step B: generating meta-pocket sites. Step C: mapping potential ligand-binding residues       
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hierarchical clustering approach (single-linkage clustering) to cluster these 24 single 
pocket sites according to their spatial similarity. The distance cut-off threshold is set 
to 8 Å here. That is, two single pocket sites will be clustered into one meta-pocket site 
if they are within 8 Å. After clustering, the total z-score for each cluster is calculated 
and serve as the  fi nal scoring function to re-rank the  fi nal meta-pocket sites. In the 
end, the mass center for each  fi nal cluster is calculated and is represented as the  fi nal 
meta-pocket site in the output of MetaPocket. 

  Mapping ligand-binding residues around the pocket site . The purpose of this 
step is to identify the functional residues around the identi fi ed meta-pocket site 
which could be the potential ligand binding sites on protein surface. As illustrated 
in Fig.  2.4 , metaPocket uses a synthetically way to identify those residues which 
might contribute to protein-ligand interaction. As we mentioned above, each method 
outputs a cluster of probe points for each pocket site. In this step, the probe points 
from each single method are merged in the same meta-pocket site. Then a big cluster 
of probe points is obtained for each meta-pocket site. Those surface residues, whose 
any atoms are within a certain distance (5 Å used here) to the probe points in the 

DMIN<= Cutoff

Potential ligand-binding residues

Protein

  Fig. 2.4    The illustration of residue mapping step in metaPocket. The smaller spheres indicate 
the pocket sites from single methods and the bigger sphere indicates the meta-pocket site of 
metaPocket. The regions surrounded by thin dotted lines out of protein are the original clusters 
of each single method. The region surrounded by the thicker solid line is the cluster of the 
meta-pocket generated by metaPocket after merging all the clusters of single methods. The dotted 
line in the protein indicates the potential ligand-binding residues within a certain distance 
(threshold: D 

MIN
 ) to the cluster of meta-pocket sites       
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cluster, are the potential ligand binding residues. The surface residues are de fi ned 
using the NACCESS program whose relative solvent accessible surface area is more 
than 20%.   

    2.4   Evaluations of LIGSITE csc , MetaPocket 
and Other Approaches 

 To evaluate and compare metaPocket with other single methods fairly, the same 
performance measurement and data-set should be used. It is noted that for some 
proteins in the data-sets we used here, more than one ligand is bound. These ligands 
might be separated in different pocket sites but sometimes occupy the same region 
on protein surface, for example, those co-factors and substrates. As illustrated in 
Fig.  2.5 ,  fi rst, we de fi ne the real ligand binding sites (RBS), which are those regions 
on protein surface where one or more ligands are bound. If two ligands are closed 

DMIN

Protein

RBS1

RBS23

2 1

     Fig. 2.5    The success de fi nition of metaPocket. Ligands are illustrated as dotted lines and marked 
by 1, 2 and 3. First all the ligands bound on protein surface are clustered by their spatial distance 
using cutoff value DMIN. Here two real ligand binding sites are shown in circle and marked 
as RBS1 and RBS2 with three ligands. In RBS2, the solid spheres in different size are shown. 
The smaller spheres indicate the pocket sites from single methods and the bigger sphere indicates 
the meta-pocket site of metaPocket. If these sites are within 4 Å to any atom of the ligand, then this 
real ligand-binding site is successfully detected       
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to each other (distance threshold 5 Å), they are de fi ned to share the same RBS. 
Here we de fi ne that one RBS is predicted correctly if it is located at the identi fi ed 
pocket sites, i.e. any atom of the ligand is within 4 Å to the mass center of this 
pocket. We also de fi ne that a prediction is a hit if at least one RBS in the given 
protein is detected correctly in a certain number of top predictions. The top 1 to top 
3 identi fi ed pocket sites from metaPocket and other methods are evaluated separately 
in this work. Thus, to compare the performance of different approaches quantitatively, 
the Success Rate (SR) is calculated according to the following formula: 

     
_ = HIT

P

N
Success Rate

N    (2.2)   

 Where N
P
 is the total number of proteins in the dataset; N

HIT
 is the total number 

of hit prediction. The success rate is calculated for all the methods for the top 1, top 
2 and top 3 predictions, respectively. 

    2.4.1   Test Datasets 

 In the evaluation step, different datasets are being used, including 48 bound/unbound 
protein-ligand complexes, 210 bound protein-ligand complexes and 198 drug-target 
complexes. These datasets are described in details in the relevant publications (Huang 
 2009 ; Zhang et al.  2011 ; Huang and Schroeder  2006  ) . For the bound protein-ligand 
complexes,  fi rst the ligands are removed and only the protein structures are input for 
pocket identi fi cation. Then the ligands are put back for success rate calculation. For 
the unbound prediction, the unbound protein structures are input for pocket 
identi fi cation and then aligned to bound protein structures. The ligands bound in the 
bound proteins are then used to calculate the success rate. The detailed description 
and the PDB structures of these three data-sets can be freely downloaded from 
metaPocket web-server   http://projects.biotec.tu-dresden.de/metapocket    .   

    2.5   Results 

 In this section, we will describe the prediction results of metaPocket, as well as the 
results for those eight single individual methods. 

 Table  2.2  shows the success rates for metaPocket and the eight single methods for 
these three datasets. Overall, metaPocket archived better result than each of the eight 
single methods. In the top1 and top2 prediction for drug-target data-set, LIGSITE cs  
performed best among the eight single methods and metaPocket increased the 
success rate by 13%. In the top3 predictions, Q-SiteFinder is the best method and 
metaPocket also has 12% improvements. The reason why metaPocket improves 
the success rate is that it takes the overlapping prediction results from different 

http://projects.biotec.tu-dresden.de/metapocket
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approaches. In general, one pocket site has higher probability to be a real ligand 
binding site when it is picked out by multiple methods as top predictions. This is not 
surprising because different pocket detection methods use different scoring func-
tions to rank these cavities and metaPocket clusters all the identi fi ed pocket sites 
according to their spatial distance and re-ranks them by summing up the z-scores of 
different methods.  

 In the combining procedure of metaPocket, only the top 3 pocket sites from each 
of 8 single methods are taken into account and these 24 pocket sites are clustered 
into different clusters (so called meta-pocket site) according to their spatial similarity. 
In the evaluation of metaPocket on the drug-target dataset, the number of  fi nal clusters 
for each protein and the prediction success rates of metaPocket on those proteins 
are quite diverse. Figure  2.6  shows the distribution of the number of proteins with 
different number of clusters on the drug-target dataset, and the success rates for 
those proteins having the same number of clusters. Overall, the number of clusters 
ranges from 4 to 14, which means there are 4–14 cavities (meta-pocket sites) on 
protein surfaces generally. It is note that there are 5 cases, in which those 24 pockets 
are clustered into 4 clusters, meaning that those 5 proteins only have 4 big cavities 
on their surfaces and all the 8 methods correctly picked them up at their top 3 predic-
tions. In these  fi ve cases, metaPocket all predicted the ligand-binding sites correctly. 
In contrast, there is only one case that the number of  fi nal clusters is 14, which indicates 
that this protein has 14 cavities on its surface and each of 8 methods picked up 
different pockets at their top 3 predictions. The real ligand binds to one of those 14 
cavities and metaPocket failed to recognize it correctly at the top 3 predictions. 
As shown in Fig.  2.6 , most of the proteins have 7 (43 cases) or 8 (56 cases) cavities 

5

16
20

43

56

27

19

6 5
1

100
94

75
72

77

67

79

33

60

0
0

20

40

60

80

100

120

4 5 6 7 8 9 10 11 12 14

Number of clusters

Number of proteins Success rate (%)

  Fig. 2.6    The metaPocket prediction success rates on the drug-target data-set at the top 3 versus the 
number of clusters (meta-pocket sites). The number of proteins is also indicated       
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on surface generally and obviously there is no strong correlation between the number 
of cavities and the prediction success rate of metaPocket.  

 It is believed that ligands trend to binds to the large pocket site on protein 
surface. In order to check whether ligands bind to large pockets on protein surface, 
we conducted a statistical analysis to assess the possibility that a real ligand-binding 
site locates at the top 3 identi fi ed pockets. Here the identi fi ed pocket sites are 
classi fi ed into four different classes: the actual ligand binding site locates at the  fi rst, 
the second, the third pocket, or at none of these top 3 pockets (Table  2.3 ). In the top 
3 predictions of metaPocket, there were 121 (61%) cases that the top-1 predicted 
pocket is the real ligand-binding site. There were 17 and 9 cases that the second, 
the third prediction pocket is the real ligand-binding site, respectively. However, 
there were 51 cases for which the metaPocket failed to detect the real ligand-binding 
site (RBS) among the top 3 predictions. Among the 121 cases that ligands were 
predicted to bind to the  fi rst pocket site in metaPocket, in 94 (78%) cases, the 
predictions overlap with one of the top 3 identi fi ed pockets identi fi ed by all of the 8 
single methods and in 17 (14%) cases the predictions overlap with one of the top 3 
identi fi ed pockets identi fi ed by 7 out of the 8 single methods. Only in 12 of the 121 
cases, the real-ligand binding sites were predicted by all 8 single methods at the 
top-1 prediction.   

    2.6   Conclusion 

 To make LIGSITE csc  and metaPocket available to the community, we built easy-
to-use web-servers and make them online at   http://projects.biotec.tu-dresden.de/
pocket/     and   http://projects.biotec.tu-dresden.de/metapocket    . Generally it only takes 
several seconds for LIGSITE csc  to  fi nish pocket identi fi cation, depending on the size 
of protein. In metaPocket, eight single methods are called in parallel to reduce 
computational time. Each of eight single methods is treated as a plug-in and thus it 
is very easy to add other new methods into metaPocket, to further improve ligand 

   Table 2.3    Number of hit proteins in each pocket prediction class on the drug-target dataset 
for each method   

 Method  1st pocket  2nd pocket  3rd pocket  None 

 MetaPocket  121  17  9  51 
 LIGSITE CS   95  18  7  78 
 PASS  69  30  11  88 
 Q-SiteFinder  79  28  16  75 
 SURFNET  46  11  8  133 
 GHECOM  78  22  10  88 
 ConCavity  93  12  6  87 
 Fpocket  61  34  17  86 
 POCASA  83  23  4  88 

http://projects.biotec.tu-dresden.de/pocket/
http://projects.biotec.tu-dresden.de/pocket/
http://projects.biotec.tu-dresden.de/metapocket
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binding site prediction success rate. Please note that some of these 8 methods might 
fail to return any prediction results due to some reasons. This plug-in pattern makes 
metaPocket automatically detect the failed methods and the metaPocket algorithm 
is only applied to those results from successful methods. The users can provide a 
PDB ID and a chain ID or upload their own structures. The metaPocket server will 
output the prediction results from eight single methods and the meta-pocket sites of 
metaPocket based on those results. The predicted pocket sites and those surround-
ing residues can be downloaded as standard PDB  fi les to be investigated locally by 
the users in PyMOL (Delano  2002  )  or directly be visualized on the server based 
on JMOL (  http://www.jmol.org    ) plug-in. Normally it only takes about 10 seconds 
to a few minutes for metaPocket to  fi nish pocket identi fi cation depending on the size 
of protein. We envisage that our metaPocket web-server will become an all-in-one 
tool for protein ligand binding site prediction to the community and provide useful 
guide to structure-based functional annotation, site-directed mutagenesis experiments, 
protein-ligand docking and large scale virtual screening. 

 With more and more efforts being made in this  fi eld, many free computational 
software and web-servers are available for pocket identi fi cation and protein-ligand 
binding site prediction. The goal of our metaPocket approach is to combine all these 
free tools together and improve the ligand-binding site prediction success rate. 
We believe that our web-server will provide the users a comprehensive web tool in 
protein-ligand binding site prediction. In the future, we will continue working on it 
and hope to include more and more algorithms and tools into our metaPocket server.      
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     3.1  Introduction 

 Stabilization of the tertiary protein structure is most often attributed to hydropho-
bic interactions, although this type of interaction is not speci fi cally re fl ected in 
protein force  fi elds. Initial attempts to extend the analysis of traditional nonbinding 
interactions with factors representing hydrophobic interactions (Levitt  1976  )  were 
not particularly successful, even though the in fl uence of the aqueous environment 
on molecular dynamics cannot be underestimated in respect to experimental 
observations. 
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 Simulating dynamic processes in an environment where the presence of water 
is modeled as a large quantity of individual water molecules (each of which 
comprises either a single effective atom or three separate atoms arranged into a 
geometric shape and associated with a speci fi c charge) is computationally dif fi cult 
due to the large number of atoms involved. More speci fi cally, the number of 
interacting atoms (in the protein’s neighborhood as well as in the protein itself) 
may reach several dozen or even several hundred (Zobnina and Roterman  2009  ) . 
Compounding this problem is the fact that interactions between individual water 
molecules and speci fi c atoms belonging to the protein body are highly local – thus, 
modeling them individually does not re fl ect the holistic in fl uence of water on 
the protein (which, as discussed in (Zobnina and Roterman  2009  ) , drives the 
structural arrangement and optimization of the entire molecule rather than its 
constituent parts). 

 Stabilization mediated by hydrophobic interactions (expressing the in fl uence of 
water on the protein as a whole) can be explained on the basis of the “oil drop” 
model (Kauzmann  1959  ) . The model introduces the notion of a “hydrophobic core”. 
It claims that the eventual distribution of hydrophobic and hydrophilic residues in 
the protein body is determined by the aqueous environment. Hydrophilic residues 
tend to migrate to the surface of the protein while hydrophobic residues are internal-
ized (Kauzmann  1959  ) . 

 Structural stabilization of the protein is also associated with optimization of 
nonbinding interactions (electrostatic and van der Waals potentials), although the 
optimization processes involved differ from those covered by the “fuzzy oil drop” 
model (discussed in this chapter). The distribution of hydrophobic interactions may 
indicate active sites, responsible for binding ligands and protein complexation.  

    3.2   Description of the Model 

    3.2.1   Theoretical (Idealized) Hydrophobicity Distribution 

 Our model assumes the existence of an idealized hydrophobicity distribution which 
is treated as the “target”. This distribution involves a hydrophobic core (where the 
concentration of hydrophobicity reaches its highest value) located at the geometric 
center of the molecule. As we move away from the center, hydrophobicity decreases 
stochastically, reaching a value close to 0 on the molecule surface. 

 In order to accurately model such a structure, a 3D Gauss function can be applied 
(Konieczny et al.  2006  ) . Traditionally, Gauss functions are used to model stochastic 
distribution, whereas in our model they re fl ect the distribution of hydrophobicity. 
For the sake of interpretational consistency, we can state that the values of this func-
tion correspond to the probability that hydrophobic conditions will be encountered 
at speci fi c locations within the protein body. 
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 The corresponding Gauss function is given by the following equation:
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where     � t
iH   denotes the hydrophobicity density at coordinates     , ,i i ix y z   (the position of 

the effective atom for the  i-th  residue), while parameters     , ,x y z   denote the coordi-
nates of the central point of the ellipsoid (treated as the geometric center of the 
entire molecule) whose size is determined by values     , ,σ σ σx y z   (calculated as 1/3 of 
the greatest distance along each axis). The calculation of     , ,σ σ σx y z   follows a prede-
termined orientation of the molecule, with its geometric center located at the origin 
of the coordinate system. Inter-atomic pairwise distances are calculated for the 
whole molecule. The greatest distance determines the orientation of the molecule 
along the X axis, while the greatest distance between two projections of atom positions 
on the YZ plane determines its orientation along the Y axis. Values     , ,σ σ σx y z   can be 
calculated for the orientation described above. Their sum is used as a normalizing 
factor for the distribution. 

 The value of the presented function at coordinates  x, y, z  is interpreted as the 
corresponding hydrophobicity density. 

 In order to ensure uniformity of the presented model we need to determine the 
preferred spatial orientation of the protein molecule. The corresponding procedure 
is as follows:

   1.    Calculate the coordinates of the geometric center of the molecule;  
    2.    Shift the molecule in such way that its geometric center coincides with the origin 

of the coordinate system;  
    3.    Following the transformation applied in step 2, calculate the greatest pairwise 

distance between two atoms belonging to the molecule;  
    4.    The atoms identi fi ed in step 3 determine the spatial orientation of the molecule – 

the line which connects them should be parallel to (or coincide with) the X axis 
of the coordinate system;  

    5.    Given the new orientation of the protein molecule, project the positions of its 
atoms onto the YZ plane and locate two atoms for which the pair-wise distance 
between the corresponding projections is greatest;  

    6.    The line connecting the two atoms identi fi ed in step 5 should run parallel to (or 
coincide with) the Y axis of the coordinate system. In order to achieve this, rotate 
the molecule about the X axis, as required.  

    7.    Given the new orientation of the molecule, locate atoms which are separated by 
the greatest distance from the center of the coordinate system along each axis 
(two atoms for each axis);  

    8.    Increase the distances determined in step 7 by 9 Å (the cutoff distance for hydro-
phobic interactions) in each direction;  

    9.    Divide the distances calculated in step 8 by 6, thereby deriving values for 
    , ,σ σ σx y z   (in accordance with the three-sigma rule).     
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 The     t
sumH   coef fi cient (aggregate Gauss function value for all N points) is applied 

to normalize the distribution.  

    3.2.2   Observed (Empirical) Hydrophobicity Distribution 

 The probabilistic distribution of hydrophobicity can be understood as a reference 
structure, determining the “idealized” shape of the protein’s hydrophobic core. 
It should be noted that the actual structure of the core may not fully correspond to 
this idealized model. In an actual protein the observed hydrophobicity distribution 
can be established on the basis of the locations of hydrophobic and hydrophilic resi-
dues, according to the function proposed by Levitt  (  1976  ) . Levitt’s function enables 
us to calculate the potency of hydrophobic interactions between speci fi c residues 
relative to their mutual distance and their own hydrophobicity. It is given as:

     

( ) ij ij ij ijr r
i j ije

i e
sum
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r r r r
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H j
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where     � e
iH   denotes the experimentally observed hydrophobicity density at a certain 

point (speci fi cally, at the position of the effective atom of the  i-th  residue). 
Hydrophobic interactions can be aggregated in a distance-dependent form (as given 
in the formula) with cutoff distance  c  equal to 9 Å (as proposed by Levitt). This 
aggregate value acts as a normalizing factor for the distribution. Values    ,r r

i jH H
  express the hydrophobicity of the  i-th  and  j-th  residues respectively (following the 
scale presented in Brylinski et al.  (  2007a  ) ). 

 Good agreement between both distributions is observed in globular proteins 
which possess a highly regular hydrophobic core localized centrally in the protein 
body with hydrophilic residues exposed on the surface. Hydrophobicity density 
decreases in accordance with the Gauss function, reaching values close to zero on 
the protein surface, which is why the molecule remains soluble. 

  H  r  coef fi cients are used to express the hydrophobicity of each amino acid (any 
scale can be applied here). The  r  values determine distances between pairs of inter-
acting residues (speci fi cally, between their effective atoms whose positions are 
derived by averaging out the locations of all atoms belonging to side chains).  c  is the 
cutoff distance for hydrophobic interactions, which – following (Levitt  1976  )  – was 
taken as 9 Å. Introducing this value into the idealized hydrophobicity distribution 
broadens the area in which the molecule “perceives” hydrophobic interactions. 

 The normalization coef fi cient enables us to interpret values of the presented func-
tion as the likelihood that hydrophobic conditions will be encountered at speci fi c 
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points in the protein body. Following normalization both distributions may be used 
to calculate differences between the theoretical and observed hydrophobicity (or its 
likelihood) at any coordinates. 

 Since both distributions are normalized (via a coef fi cient which appears in both 
equations) the irregularity of the hydrophobicity distribution in actual proteins may 
be measured by comparing idealized and observed values, applying the following 
expression:

     Δ = −� � �t e
i i iH H H     

 Local hydrophobicity de fi ciencies (expressed by large positive values of     Δ � iH   ) 
are thought to correspond to cavities capable of binding ligands. On the other hand, 
it is assumed that excess hydrophobicity (expressed by low negative values of     Δ � iH   ), 
particularly when observed on the protein surface, may trigger protein-protein 
complexation. 

 Thus, the positions of local minima and maxima in the     Δ �H   pro fi le may indicate 
residues involved in protein-protein interactions, ligand complexation or other types 
of interaction. 

 The validity of the presented model may be veri fi ed by analyzing actual proteins, 
both accordant with and divergent from theoretical assumptions. Identifying a 
protein as structurally accordant can be treated as an argument in support of the 
model, re fl ecting the in fl uence of the aqueous environment on the protein body. 
On the other hand, when serious discrepancies between actual and predicted struc-
tures are observed, a thorough analysis of their underlying causes may lead to useful 
conclusions. Determining the reasons behind irregularities in the structure of the 
hydrophobic core may yield fresh insight into the mechanisms of protein folding. 

 A sample differential pro fi le (highlighting the discrepancies between the expected 
and observed hydrophobicity distributions) is shown in Figs.  3.1  and  3.2 . Figure  3.1  
depicts a protein whose structure is highly accordant with theoretical predictions 
(1BDD) (Gouda et al.  1992  ) , while Fig.  3.2  represents a case of poor agreement 
between the model and observed properties (1 G58) (Ramoni et al.  2001  ) .   

 1BDD (60 aa) is a recombinant B domain (FB) of the staphylococcal protein A, 
which speci fi cally binds to the Fc portion of immunoglobulin G. Its     Δ � iH   pro fi le is 
shown in Fig.  3.1a  1 G58 (159 aa) is an odorant-binding protein in form of homodi-
mer which complexes its ligand (1-octen-3-ol). Figure  3.2a  presents the     Δ � iH   pro fi le 
for this protein. Residues involved in ligand complexation and monomeric unit 
binding have been highlighted. 

 Figure  3.1b  depicts the theoretical (T) and observed (O) distributions of hydro-
phobicity for the 1BDD protein while Fig.  3.2b  presents the corresponding distributions 
for 1 G85. While the theoretical and observed distributions are in good agreement 
for 1BDD (as can be seen in Fig.  3.1b ) they remain substantially divergent in the 
case of 1 G85 (Fig.  3.2b ) 
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  Fig. 3.1    Hydrophobicity distribution pro fi les for protein 1BDD whose hydrophobic core is structur-
ally accordant with the assumed model: ( a ) differences between expected and observed hydrophobic-
ity; ( b ) theoretical ( T ) and observed ( O ) and random ( R ) hydrophobicity distributions; ( c ) relation 
between theoretical ( T ) and observed ( O ) hydrophobicity values.  Pink squares  represent residues 
involved in protein complexation;  yellow triangles  represent residues involved in ligand binding       

  Fig. 3.2    Hydrophobicity distribution pro fi les for protein 1 G85 whose hydrophobic core is structur-
ally discordant with the assumed model: ( a ) differences between expected and observed hydropho-
bicity; ( b ) theoretical ( T ), observed ( O ) and random ( R ) hydrophobicity distributions; ( c ) relation 
between theoretical ( T ) and observed ( O ) hydrophobicity values;  Pink squares  represent residues 
involved in protein complexation;  yellow triangles  represent residues involved in ligand binding       

 Of note is the arrangement of points representing the relation between expected 
(T) and observed (O) hydrophobicity distributions: for 1BDD they follow a linear 
pattern and exhibit little variance, while for 1 G85 their relative spread is much 
greater. This phenomenon is most likely caused by residues responsible for molecular 
interactions, present in 1 G85.  
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    3.2.3   Theoretical Versus Experimental Hydrophobicity 

 Standardization also enables quantitative comparison of both distributions. This 
analysis can be based on the following de fi nition of distance entropy proposed by 
Kulback and Leibler (Nalewajski  2006  ) :

     
= ∑ 2

( )
( || ) ( ) log

( )KL
i

P i
D P Q P i

Q i    

where  P(i)  denotes the observed probability (hydrophobicity density) as applied to 
the  i -th residue, while  Q(i)  denotes the expected (target distribution) hydrophobicity 
for the same residue. 

 Two target (reference) distributions are considered when interpreting  D  
 KL 

  values. 
It should be noted that since  D  

 KL 
  expresses entropy, only a relative comparison between 

pairs of distributions can be meaningful in this scope. Hence, one  D  
 KL 

  value re fl ects 
the distance between observed (O) and theoretical (T) distributions, while another 
value is derived as the distance between observed (O) and random (R) distributions. 
Random distribution can be obtained by assigning equal hydrophobicity to each resi-
due (thus, R 

i
  = 1/N, where N is the number of residues in the polypeptide chain). 

 To simplify the notation, the following comparison between observed and theo-
retically expected distributions is introduced (Banach and Roterman  2009  ) :

     =

= ∑ 2
1
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 Consequently, the distance between observed and random distributions is given as:

     =

= ∑ 2
1

/ log
N

i
i

i i

O
O R O

R     

 The relation between O/T and O/R is taken as a classi fi cation criterion when 
determining whether a given protein is structurally accordant with the theoretical 
model. If O/T is greater than O/R, the protein does not conform to the model. We 
are currently developing computational tools which will enable us to objectively 
quantify (cluster analysis) the degree of accordance based on cluster analysis. 

 1 G85 exhibits far greater discordance between O and T than the protein presented 
in Fig.  3.1c . This discordance appears to result from distortions caused by the presence 
of an external molecule (Table  3.1 ). 

 An important question arises: why do some proteins exhibit signi fi cant struc-
tural discordance between theoretical expectations and observed properties of their 
hydrophobic cores? 
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 Analysis of residues for which     Δ � iH   reaches local maxima suggests that these 
residues are associated with localized hydrophobicity de fi ciencies. By the same 
token, residues for which     Δ � iH   reaches local minima point to areas of excess 
hydrophobicity. 

 Hydrophobicity de fi ciencies may be caused by the proximity of ligand-binding 
pockets while residues with excess hydrophobicity (local minima in the     Δ � iH   pro fi le) 
permit protein-protein interactions and can therefore be responsible for protein 
complexation (if they are located on the surface of the protein). 

 Another question may be asked at this point: how can the locations of such 
anomalous residues in the protein’s volumetric structure be determined? In order to 
better illustrate this issue we can depict the distribution of hydrophobicity in a 
folded protein using a color gradient (Fig.  3.3 ). Red areas indicate high     Δ � iH   values 
while blue areas correspond to     Δ � iH   minima. Green residues are consistent with 
theoretical predictions with respect to hydrophobicity.  

 Figure  3.3  also suggests that at least in some proteins the structure of the hydro-
phobic core is accordant with the theoretical model and that the factor which likely 
triggers distortions in the core structure is the presence of the ligand. 

 The following questions should now be posed:

    1.    Has the ligand attached to the protein molecule by compensating for its hydro-
phobicity de fi ciencies?  

    2.    Can the ligand be responsible for irregularities which emerge in the protein structure 
during folding and which ensure high speci fi city of the resulting binding pocket?     

 If the former assumption holds then     Δ � iH   maxima in the hydrophobicity pro fi le 
should point to the binding sites of hydrophobic ligands. Moreover, by binding to the 
protein molecule the ligand should compensate for its hydrophobicity de fi ciencies, 
resulting in a perfect “oil drop” structure (as predicted by the 3D Gauss function). 

  Fig. 3.3        Δ � iH   pro fi le and volumetric hydrophobicity distribution in 3DRC. ( a )     Δ � iH   pro fi le, with 
ligand-binding residues tagged in  pink ; ( b ) 3D representation of 3DRC with attached ligand ( dark 
blue ).  Red  areas indicate residues with high     Δ � iH   values – their placement in close proximity to the 
ligand suggests that such residues are involved in generating binding pockets       
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 If, in turn, the latter assumption is true then it follows that the ligand affects the 
polypeptide chain during the folding process. As the ligand tries to  fi nd an optimal 
place to adhere to the emerging protein, the polypeptide chain “acknowledges” its 
presence and folds in a manner consistent with the presence of the ligand. This phe-
nomenon can explain the highly selective nature of certain proteins (in terms of 
binding ligands) and enables us to search for potential binding sites based on the 
distribution of local maxima in the     Δ � iH   pro fi le. 

 The 3DRC protein is an enzyme (dihydrofolate reductase - EC#:1.5.1.3) (3 C 
Warren et al.  1991  )  which forms a complex with methotrexate. The structure of its 
hydrophobic core roughly corresponds to the theoretical model, although eliminating 
residues responsible for ligand complexation signi fi cantly improves this alignment. 
Elimination of residues involved in ion binding (Cl − ) does not affect the remainder 
of the protein as far as the structure of its hydrophobic core is concerned. Similarly, 
cleaving catalytic residues has negligible impact on the core. There are, however, 
molecules in which the act of eliminating residues responsible for enzymatic catalysis 
(based on O/T and O/R values) greatly improves the agreement between the theoretical 
and observed hydrophobicity distributions in the remainder of the protein body. 

 Calculation of O/T and O/R for molecules stripped of interacting residues 
requires repeated normalization of O and T values (for polypeptide chains in which 
the corresponding residues were eliminated). The data given in Table  3.1  presents 
the protein 1BDD – the protein representing the hydrophobicity core structure 
accordant with the idealized form expressed by 3-D Gauss function.  

 Protein 1 G85 in its complete form represents the hydrophobic core not accordant 
with idealized structure. The elimination of residues (# residues engaged in ligand 
complexation) engaged in ligand binding (NO LIGAND) reveals the structure of the 
rest of protein molecule as representing hydrophobicity core structure accordant 
with the idealized form. It means that the deformation of hydrophobic core structure 
is introduced by residues engaged in ligand binding – and in consequence – presence 
of ligand in fl uences the core structure. The elimination of residues engaged in 
protein-protein interaction (NO P-P) reveals the structure of the hydrophobic core 
accordant with assumed model. 

 Protein 3DRC represents the structure of hydrophobic core as accordant with 
idealized structure. Elimination of residues engaged in ligand binding (NO LIGAND) 
either ion complexation (NO ION) or residues engaged in catalytic activity (NO 
CATALYTIC) does not change the status of the hydrophobic core status which is 
accordant with the assumed one in all these cases. 

 Before we analyze the role of the ligand in protein folding we should  fi rst deter-
mine to what extent the presented “idealized” hydrophobic core model is realized in 
actual proteins. To achieve this goal a study has been conducted, where a variety of 
small proteins (ca. 60 amino acids) was checked for structural accordance with 
theoretical predictions. The analyzed proteins exhibited a broad range of properties 
and biological activity pro fi les. They included enzymes, chaperonins, metal-
complexing proteins, scaffold proteins, protein-ligand complexes etc. (Prymula 
et al.  2009,   2010 ;    Prymula and Roterman  2009 ; Minervini et al.  2008  ) . Our analysis 
points to two groups of proteins whose structure is highly accordant with the 
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presented model: “antifreeze” proteins (   DeVries and Wohlschlag  1969 ; Jarov et al. 
 2004  )  and “downhill” (fast-folding) proteins (Fisher and DeLisa  2008 ; Dyer  2007 ; 
Ozkan et al.  2002 ; Zhu et al.  2003  ) . Both groups con fi rm the predictions of the 
model (Banach et al.  2012 ; Roterman et al.  2011  ) . 

 Fast-folding (or “downhill”) proteins have been experimentally proven to possess 
the ability to undergo rapid and reversible folding  in vitro . This property suggests 
high spontaneity of the folding process, with little reliance on external conditions. 
Conformance with theoretical predictions was assessed on the basis of distance 
entropy values (O/T and O/R) (Banach et al.  2011  ) . 

 Analyzing examples of structurally accordant proteins validates our model by 
con fi rming that such proteins do indeed exist. The physiochemical properties of 
these proteins (“fast-folding” group) suggest that their structure is only affected by 
the aqueous environment. Thus, a model acknowledging the relationship between the 
polypeptide chain and the aqueous environment seems suf fi cient to determine the 
structural ordering of protein molecules. 

 When discussing antifreeze proteins, the in fl uence of mutations should be taken 
into account (Banach et al.  2012  ) . The PDB database usually lists several mutations 
per protein. Analysis of the hydrophobic core of 1MSI (Jia et al.  1996  )  indicates that 
while most mutations do not signi fi cantly alter the structure of this protein, speci fi c 
mutations at position 16 (A16M, A16T, A16M, A16C, A16R, A16Y) result in reor-
ganization of the hydrophobic core in a way which breaks conformance with our 
model. This can have far-reaching implications for the shape of the entire protein 
molecule and for its biological properties (Banach et al.  2011  ) . 

 Having presented a selection of proteins whose structure follows the presented 
model we should devote our attention to the observed discrepancies. Among 
enzymes with well-de fi ned active sites hydrolases appear to exhibit particularly 
good agreement with the “fuzzy oil drop” model. Studying their     Δ � iH   pro fi les points 
to speci fi c areas where selected amino acids diverge from the model in terms of 
hydrophobicity. These amino acids correspond to sites of enzymatic activity, i.e. the 
binding pockets (which translate into     Δ � iH   pro fi le maxima). 

 From among many classes of enzymes, our model is particularly ef fi cient in 
predicting the active sites of hydrolases (Brylinski et al.  2007b,   c  )  – this is why 
hydrolases have been singled out for in-depth analysis, which is presented in 
(Prymula et al.  2011  ) .   

    3.3   Summary 

 In summarizing the presented work we should state that irregularities in the structure 
of the protein’s hydrophobic core, triggered e.g. by the presence of a ligand, provide 
a good starting point for identi fi cation of active sites (ligand-binding and protein 
complexation areas). These irregularities correspond to minima or maxima of the 
    Δ � iH   hydrophobicity pro fi le, which, in turn, indicates which residues are in direct 
contact with a ligand or with another protein molecule. Measuring deformations of 
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the hydrophobic core yields valuable insight into the organization and structuring of 
the molecule as a whole. The distribution of electrostatic charges appears close to 
random (Marchewka et al.  2011  ) , which suggests local optimization of electrostatic 
 fi elds. Contrary to electrostatic forces, hydrophobic interactions cannot be meaning-
fully optimized in a pair-wise fashion – instead, hydrophobicity optimization should 
take into account the protein’s     Δ � iH   pro fi le. Low     Δ � iH   values (close to 0) indicate that 
the structure of the protein’s hydrophobic core approximates the theoretical ideal. 
The key aspect of our work is relating deviations from theoretical predictions to the 
presence of ligands or other factors which may affect the distribution of hydropho-
bicity in the protein molecule. The “fuzzy oil drop” model was applied to simulate 
the environment for folding process (Brylinski et al.  2006a,   b  ) . Particularly the 
presence of external force  fi eld of hydrophobic character (fuzzy oil drop model) 
accompanying the protein folding process in the presence of ligands revealed the 
role of ligand directing the folding process toward the speci fi c cavity binding the 
speci fi c ligand as it was done for ribonuclease (Brylinski et al.  2006c  )  and hemoglobin 
(Brylinski et al.  2007a  ) . 

 The reports supporting our assumption about the necessary participation of 
ligand in folding process can be found in    Choi et al.  (  2008  ) , Wittung-Stafshede 
 (  2002  ) , Kopecká et al.  (  2011  ) , Bushmarina et al.  (  2006  ) ,    Kayatekin et al.  (  2008  ) , 
Curnow and Booth  (  2010  )  although the opposite interpretation is also reported 
(Sakamoto et al.  2011 ; Bushmarina et al.  2006  )       
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    4.1   Introduction 

 This chapter presents an analysis of the various models implemented by software 
packages which enable computerized identi fi cation of ligand binding sites. 

 In general, two distinct classes of models can be de fi ned: those which rely on 
geometric analysis of binding pockets (CASTp, Q-Site-Finder, Pocket-Finder) and 
those based on knowledge mining (SuMo, ConSurf and the “fuzzy oil drop” model). 
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 The authors of the ConSurf package assumed that biologically active residues 
(including residues responsible for ligand binding) are conservative in character – 
thus, their tool searches for such conservative residues and analyzes their ability 
to bind ligands. 

 The FOD method (“fuzzy oil drop”) as described in preceding chapter exploits 
observable differences in hydrophobicity as a useful criterion for identi fi cation of 
binding pockets. 

 The SuMo package starts with a protein-ligand complex and derives similarity met-
rics to determine which site is most likely responsible for binding the speci fi c ligand. 

 Although each of these packages applies different methods, results are usually 
presented in the form of a ranked list, suggesting the most probable solutions to 
each problem. In our analysis we will always focus on the topmost (i.e. highest 
ranked) and bottommost (i. e. lowest ranked) solution from each list. The technique 
based on “fuzzy oil drop” model identi fi es only one binding area due to the form of 
the criterion used for recognition.  

    4.2   The Object of Comparative Analysis 

    4.2.1   Ligands – The Recognition of Their Binding 
Cavity in Proteins 

 For our comparative study we have selected proteins which form complexes with 
NAD +  and FMN. When choosing ligands we considered their size (preferring large 
molecules) as well as the relative differences in stability of protein-ligand com-
plexes. Both selected ligands are classi fi ed as nucleotide-like. FMN yields a stable 
complex, while NAD +  is only transiently associated with the given protein (enzyme) 
as its complexation is rather weak (Kamburov et al.  2011 ; Tsai et al.  2009  ) . 

 Analysis of selected proteins (enzymes) results in a comparative assessment of 
the accuracy of various software packages. Moreover, it also enables us to conclude 
of the relation between the stability of each protein-ligand complex and its biological 
role, as well as the properties of the binding pocket itself. 

  Flavin mononucleotide  (FMN), or  ribo fl avin-5 ¢ -phosphate  (produced from 
ribo fl avin (vitamin B2) by the enzyme ribo fl avin kinase) acts as prosthetic group of 
various oxidoreductases (including NADH dehydrogenase). In NADH dehydroge-
nase FMN plays the role of electron carrier by being alternately oxidized (FMN) 
and reduced (FMNH2). FMN is a stronger oxidizing agent than NAD +  due to its 
participation in both one- and two-electron transfers. It also acts as a cofactor in 
optical receptors sensitive to blue light (Joosten and van Berkel  2007  ) . 

  NAD   +    is a dinucleotide consisting of adenosine monophosphate and nicotin-
amide linked by an anhydrous bridge . NAD +  binds one proton and two electrons 
which act upon the amide moiety of nicotinamide (Pollak et al.  2007  ) . A second 
proton is expelled into the reaction environment. Following reduction, NAD +  
(NADH) is oxidized by complex I of the respiratory chain. As a result of electron 
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transfer (triggered by later stages of the respiratory chain), an electrochemical 
gradient emerges. ATP synthase can then exploit this gradient to synthesize universal 
energy carriers (ATP molecules) (Pollak et al.  2007  ) .  

    4.2.2   Protein Data Set 

 The list of proteins taken for analysis was determined from PDB based on a keyword 
search (with FMN and NAD +  as the keywords). Proteins complexed to more than 
the selected ligands were excluded from analysis (Rose et al.  2011  ) . 

 In order to limit the redundancy of the protein test set we selected targets with pair-
wise sequence identity below 30 %, as reported by ClustalW (Chenna et al.  2003  ) .   

    4.3   Comparison Methodology 

 Comparative analysis focused on the following criteria of correctness:

    1.    F-measure  
    2.    MCC  
    3.    ROC curves     

 These parameters were calculated to validate the end results from each of the 
presented programs. All of them are based on the following metrics: TP ( true 
positive ) – the number of residues correctly identi fi ed as involved in binding ligands; 
FP ( false positive ) – the number of residues falsely suspected of involvement 
in binding ligands (contrary to experimental data); TN ( true negative ) – the number 
of residues correctly identi fi ed as not involved in binding ligands, and FN ( false 
negative ) – the number of residues which are experimentally known to be involved 
in binding ligands but were not identi fi ed as such by the tested software. 

 TP and TN calculations were based upon the “gold standard” provided by the 
PDBSum database (Laskowski  2009  ) . 

    4.3.1   F-Measure 

 F-measure speci fi es the so-called precision and recall properties, which are often 
referred to when determining the correctness of pattern recognition algorithms. 
They give a formal meaning to the notion of accuracy, expressing the number of 
cases (instances) in which a correct solution has been reached (Olson and Delen 
 2008 ; van Rijsbergen  1979  ) . 

 The measure of exactness (or  fi delity) is assumed to express precision, while 
completeness is measured by recall. Recall is computed as the fraction of correct 
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cases among all cases that  actually  belong to the relevant subset, while precision is 
the fraction of correct cases among those that the algorithm  believes  to belong to 
the relevant subset. 

 High recall is understood as not missing anything (however, it may involve 
returning a lot of useless results, i.e. low precision). In contrast, high precision 
describes a situation where all of the returned results are relevant, although not all 
relevant results may have been returned (low recall). 

 F-measure is given by the following formula:

     
− =

+ + +
TP

F measure
TP FP TP FN     

 It effectively integrates both contributory measures (precision and recall), 
acknowledging the effect of TP, FP and FN:

     
=

+
TP

precision
TP FP    

     
=

+
TP

recall
TP FN     

 Higher F-measure values indicate better (more accurate) solutions.  

    4.3.2   MCC 

 Another correctness measure sometimes applied in research is called MCC – the 
Matthews Correlation Coef fi cient (Altman and Bland  1994 ; Baldi et al.  2000 ; 
Matthews  1975 ; Carugo  2007  ) . It is derived directly from the so-called confusion 
matrix and given by the following formula:

     

−=
+ + + +

( * ) ( * )

( )* ( )* ( )* ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN     

 Sensitivity (also called recall rate) measures the proportion of actual positives 
which are correctly identi fi ed as such (number of residues correctly recognized as 
involved in ligand binding). In contrast, speci fi city is the fraction of correctly 
identi fi ed negatives (number of residues correctly recognized as not involved in 
ligand binding). It is worth noting that these coef fi cients closely correspond to the 
concept of type I and type II errors.  

    4.3.3   ROC Curve – Receiver Operating Characteristic 

 Our comparative study is further augmented by ROC curve analysis (   Fawcett  2006  ) . 
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 The receiver operating characteristic (or ROC curve for short) is a graphical 
representation of the relation between sensitivity (expressed as TPR, i.e. true positive 
rate) and speci fi city (determined by FPR – false positive rate) for a binary classi fi cation 
which bases upon some measurable quantity. 

 ROC constitutes the graphical equivalent of the so-called contingency table (or 
confusion matrix):  

 Actual value 

 Prediction  True Positive (TP)  False Positive (FP) 
 False Negative (FN)  True Negative (TN) 

 TPR (equivalent to sensitivity) is expressed as:

     
=

+
TP

TPR
TP FN    Y-axis   

 FPR (equivalent to 1-speci fi city) is expressed as:

     
=

+
FP

FPR
TN FP    X-axis   

 As the ROC curve is meant to visualize the dependence of TPR on FPR, FPR 
values are typically plotted along the X axis, while the Y axis represents TPR 
values. 

 The “fuzzy oil drop” model focuses on     Δ �H   – the difference between the 
expected and observed potency of hydrophobic interactions at speci fi c points in 
the protein molecule. We assume that signi fi cant discrepancies between these two 
values point to the presence of a ligand which distorts the protein’s own structural 
form. In this sense, the binary classi fi cation mentioned above determines which 
amino acids, representing local maxima (or minima) on the     Δ �H   scale are actually 
involved in binding ligands. This comparative method of determining the accu-
racy of theoretical predictions is only applicable to the “fuzzy oil drop” model due 
to variations in the     Δ �H   cutoff values for TPR and FPR parameters respectively. 
Since classi fi cation can focus either on local maxima (hydrophobicity de fi ciency) 
or minima (hydrophobicity excess), ROC curves are plotted for each criterion 
separately. The goal is to determine whether the ligand binds to a cavity repre-
senting a local hydrophobicity de fi ciency, or is attracted to residues characterized 
by excess hydrophobicity where its presence can shield such areas from direct 
contact with water. 

 The ROC analysis is applicable solely for “fuzzy oil drop” model since this 
model only bases on the quantitative measurements of the identi fi cation criterion 
which is the value (cutoff level) for     Δ �H   values. The other models deliver only binary 
solutions expressed as YES – residue engaged in complexation and NO – residue 
not engaged in complexation. This is why the ROC curve analysis is presented only 
to interpret the results based on “fuzzy oil drop” model.   
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    4.4   Tools Under Consideration 

    4.4.1   Geometry-Based Techniques 

    4.4.1.1   CASTp – Computed Atlas of Surface Topography 
of Proteins (  http://sts.bioengr.uic.edu/castp    ) 

 CASTp identi fi es ligand binding sites by studying the geometric properties of 
protein pockets under the assumption that ligands are naturally attracted to depressions 
in the protein body. Thus, its core algorithm searches the 3D representation of the 
protein for pockets capable of housing a solvent molecule with a diameter of 1.4 Ǻ. 
The authors refer to such pockets as “mouths”. In contrast, a cavity is a depression 
which remains inaccessible to the solvent molecule and therefore does not have the 
properties of a “mouth”. Identi fi cation of binding sites bases on a computational 
geometry model capable of locating “pockets” and “cavities”. Cavity determination 
parameters are not dependent on the rotation of the molecule. Moreover, CASTp 
does not employ grid coordinate analysis (Liang et al.  1998a  ) . Cavities are identi fi ed 
by way of weighted Delaunay triangulation and applying the alpha complex for 
shape measurements (Edelsbrunner and Mucke  1994 ; Edelsbrunner  1995 ; Facello 
 1995 ; Edelsbrunner and Shah  1996 ; Edelsbrunner et al.  1998   ,  1995 ). These 
methods return the surface of the accessible pockets as well as of internal (inacces-
sible) cavities. For each cavity the program calculates its area, volume and sol-
vent-accessible surface (with respect to molecular surface). 

 In our analysis from among the  fi les listing atoms representing all detected pockets 
and cavities, the extracted amino acids corresponding to a single, speci fi c protein 
chain were selected and then compared with the reference database (PDBSum – used 
as the golden standard). 

 A detailed discussion of CASTp algorithms can be found in Liang et al.  (  1998a,   b  );  
Binkowski et al.  (  2003  )  and Dundas et al. ( 2006 ).  

    4.4.1.2   Pocket-Finder (  http://www.modelling.leeds.ac.uk/pocket fi nder/    ) 

 Pocket-Finder is an extension of an existing software package called Ligsite, developed 
by Hendlich et al.  (  1997  ) . It uses a grid system with a resolution of 0.9 Ǻ, centered 
upon the target protein. A scanning probe with a radius of 1.6 Ǻ along each axis is 
used. This probe also enables testing cubic diagonals. Identifying a pocket requires 
locating an area where a grid point which belongs to the protein molecule is adja-
cent to a grid point which represents empty space, which is itself adjacent to another 
protein-bound point. Identi fi cation of the status of each grid point is performed in 
seven directions, resulting in seven separate results for each point. If  fi ve of these 
results are positive, the empty space is treated as a cavity. 

 PDB-derived proteins are scanned for ligands. If the contact between molecule 
and protein is possible, this molecule is treated as possible ligand. 

http://sts.bioengr.uic.edu/castp
http://www.modelling.leeds.ac.uk/pocketfinder/
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 The Pocket-Finder tool applies geometric criteria to locate potential binding 
sites and the residues which attach to them. These areas are then listed in the order 
of diminishing probability that a given pocket actually represents a binding site. 
We have conducted calculations for a set of PDB proteins by applying default 
criteria, i.e. stripping ligand atoms prior to scanning the structure of the protein for 
potential binding pockets. 

 From among the listed atoms identi fi ed as belonging to the  fi rst detected pocket 
we have extracted amino acids corresponding to a single, speci fi c protein chain and 
then compared these results with the reference database (PDBSum – treated as 
golden standard). 

 If no atoms could be identi fi ed/displayed for the  fi rst detected site (“Residues” 
box) we selected the  fi rst nonempty site.  

    4.4.1.3   Q-Site-Finder (  http://bmbpcu36.leeds.ac.uk/qsite fi nder/help.html    ) 

 Q-Site-Finder probes the surface of the protein by using the hydrophobic -CH3 
moiety as a tester which attempts to bind to the protein body. The tool analyzes the 
energy of interactions and optimizes the resulting complex. Energy values are then 
subjected to clustering and a ranking list is produced, presenting the most optimal 
arrangements. Such optimized structures are treated as potential complexation sites 
(Laurie and Jackson  2005  ) .   

    4.4.2   Knowledge-Based Tools 

    4.4.2.1   ConSurf – Conservative Residues (  http://consurf.tau.ac.il/    ) 

 The ConSurf-DB program attempts to  fi nd evolutionary conservative pro fi les for 
proteins stored in the PDB database (Landau et al.  2005  ) . Amino acid sequences 
similar to the one being analyzed are aggregated and subjected to multiple align-
ment passes using PSI-BLAST and MUSCLE tools. The Rate4Site algorithm based 
on empirical Bayesian inference is implemented in ConSurf to measure the degree 
of evolutionary conservativeness for each amino acid in the polypeptide chain. 
Phylogenetic relations are taken into account when identifying relations between 
the aligned proteins and the stochastic nature of the evolutionary process. A particu-
larly helpful feature is the ability to assess the pattern visually, using a 3D represen-
tation of the protein body to determine which residues are important from the point 
of view of the protein’s biological properties (Goldenberg et al.  2009 ). 

 Input data is given as a .pdb  fi le containing the structure of a protein. Upon 
parsing the  fi le, the program automatically performs a search for homologous 
proteins with a well-known 3D structure, using the PSI-BLAST tool (Altschul et al. 
 1997  ) . Default sequence alignment is obtained by using the MUSCLE algorithm 
(   Edgar  2004  ) , although this can be replaced with CLUSTALW (Thompson et al.  1994  ) . 

http://bmbpcu36.leeds.ac.uk/qsitefinder/help.html
http://consurf.tau.ac.il/
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In our calculations we have applied MUSCLE, as the authors claim that it is both 
more ef fi cient and more accurate than the alternative solution. Subsequently, 
the tool constructs a phylogenetic tree by applying the neighbour joining (NJ) 
algorithm (Pupko et al.  2002  ) . The resulting tree consists of homologues singled out 
in the previous stage. Finally, a sequence of “conservation scores” is calculated 
using empirical Bayesian (Mayrose et al.  2004  )  or Maximum Likelihood (Pupko 
et al.  2002  )  algorithms. In our research we applied the default “Evolutionary 
Substitution” settings. 

 The end result is a three-dimensional representation of the protein structure, 
which can be visualized using FirstGlance (Ashkenazy et al.  2010  ) . The surface 
of the protein is tagged with “conservativeness scores” using various colors. ConSurf 
also generates output pdb  fi les, containing the structure of the protein along 
with the identi fi ed amino acids for which “conservativeness scores” have been 
determined.  

    4.4.2.2   Fuzzy Oil Drop Model 

 This model relies on identifying irregularities in the distribution of hydrophobicity 
within the protein molecule. These irregularities are then compared with an ideal-
ized, theoretical distribution obtained by using a 3D Gauss function (Konieczny 
et al.  2006 ; Banach et al.  2012  )  as representing the highest hydropgobicity at the 
central part of ellipsoid (or sphere if the size of drop is equal along each direction) 
with hydrophobicity decrease according to the increase of distance versus the center 
of the protein molecule reaching the level close to zero at the surface of protein 
body. Such idealized hydrophobicity distribution is expected to be identi fi ed in a 
special group of proteins (like downhill proteins). It is assumed that the irregularity 
of hydrophobicity distribution in protein body represents the intentional character 
what means it is function related. Thus comparison of expected and theoretical     �H
  pro fi les is performed. Plotting the distribution of    Δ �H   (differences between expected 
and observed hydrophobicity) along the polypeptide chain reveals residues for 
which     Δ �H   reaches high values on the positive or negative scale. According to 
the theoretical model, the former are suspected of involvement in binding ligands 
(usually of the hydrophobic or emphiphilic variety) while the latter – if exposed on 
the surface of the protein – may participate in protein complexation, resulting in 
multi-protein aggregates. 

 Ligand binding sites are thus determined by searching for residues with either 
very high or very low     Δ �H   values (local minima or maxima). Proper identi fi cation 
relies on selecting a cutoff threshold, starting with the     Δ �H   pro fi le maximum. 
Performing calculations for consecutive cutoff thresholds yields a ROC curve which 
represents the given protein. Accuracy of predictions may then be determined 
by calculating the surface area bounded by two curves – a diagonal and the TPR-
vs-FPR curve. The greater the area, the more accurate the results.  
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    4.4.2.3   SuMo (Sur fi ng the Molecules) 

 (  http://sumo-pbil.ibcp.fr/cgi-bin/sumo-help?topic=prediction    ) 
 The model implemented by this program is based on the analysis of 20,000 

proteins with known 3D structures. 11,000 categories of ligand binding sites have 
been recognized by the authors (Jambon et al.  2003,   2005  ) . The protein under con-
sideration is compared against all categories. The geometry of the binding site is 
represented as a simpli fi ed graph, based on chemical group triplets. The positions of 
groups with respect to one another (edge lengths) determine each functional trian-
gle. Graph similarity is taken as an identi fi cation criterion, where the resulting graph 
is compared with the 11,000 previously mentioned categories. Potential protein-
ligand interaction sites (as well as the recognized ligand molecules) are produced as 
output, along with a ranking list of all possible solutions. 

 The analysis described in this work bases on the following user-de fi ned options:

   single selected chain;   –
  single, speci fi c ligand (FMN or NAD  – + );  
  amino acid numbers extracted from a text-based output  fi le written by the soft- –
ware tool;  
  TP, FP, FN and TN values calculated by relying on PDBSum data (Laskowski   – 2009  ) .       

    4.5   Ligand Binding Site Recognition – Comparable Analysis 

 Results obtained with CASTp, Pocket-Finder, QSite-Finder, ConSurf, Sumo and 
the Fuzzy Oil Drop (FOD) model were subjected to validation, as described above. 
Rankings obtained by applying the MCC criterion diverge from corresponding 
F-measure rankings – in particular, the top and bottom parts of each list tend to 
contain the same proteins, but in a different order. Proteins for which MCC and 
F-measure values could not be calculated, or for which the programs did not arrive 
at any solutions, were omitted. We also skipped proteins which could not be correctly 
processed by a given program due to size restrictions – thus, a different number of 
solution is listed for each software package. 

 Results are presented separately for NAD +  and FMN ligands and subdivided into 
geometry- and knowledge-based models. Within each group software packages 
are discussed alphabetically. 

    4.5.1   NAD +  Complexing Proteins 

    4.5.1.1   Geometry-Based Packages 

 Figure  4.1  presents the results of geometry-based analysis of NAD +  binding pockets, 
as performed by the CASTp tool. The MCC measure exhibited the lowest variance 
of binding site identi fi cation validity (compared to other software packages), 

http://sumo-pbil.ibcp.fr/cgi-bin/sumo-help?topic=prediction
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ranging from approximately 0.8 to a little over 0.2. Both measures (MCC and 
F-measure) remained in fairly good agreement with each other – thus, we can 
conclude that the results of NAD +  binding site identi fi cation as returned by CASTp 
are relatively trustworthy.  

 Of note are the quantitative differences between MCC and F-measure rankings, 
which affect the ordering of each list (although they are usually restricted to close 
neighbors). 

 MCC values reported by PocketFinder indicate relative uniformity of results, 
with approximately half of the tested proteins accorded values between 0.4 and 0.5 
(Fig.  4.2 ). Only two proteins scored negative values on the MCC scale. In contrast, 
F-measure values are signi fi cantly more varied (a characteristic shared with other 
software packages), with most results falling in the 0.1–0.3 range.  

  Fig. 4.1    Comparison of NAD + -complexing proteins as reported by CASTp.  Top : MCC;  bottom : 
F-measure       
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 High MCC values reported by Q-SiteFinder indicate accurate solutions, although 
results were more varied than those obtained by CASTp. For several proteins MCC 
values turned out negative, which suggests the majority of FN and FP (Fig.  4.3 ).   

    4.5.1.2   Knowledge-Based Tools 

 The validity of results derived by tracking evolutionary relationships falls in the 
0.15–0.55 range, with only a single negative MCC result. Comparing MCC and 
F-measure values indicates that both methods yield relatively similar results for a 
broad range of proteins. We can conclude that the evolutionary approach is a useful 
method for studying the properties of various proteins. On a more general level, it 
seems that the generation of binding pockets in NAD + -complexing proteins is 
signi fi cantly determined by evolutionary factors (Fig.  4.4 ).  

  Fig. 4.2    Comparison of MCC and F-measure results for NAD + -complexing proteins as reported 
by PocketFinder       
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 The assessment of F-measure values produced by the FOD model points to 
several proteins where such values are particularly high. In each case we  fi nd that 
the ligand is anchored in a very deep pocket – it seems that the presence of such a 
deep void distorts the structure of the protein’s hydrophobic core (Fig.  4.5 ).  

 The FOD method is the only one of the presented techniques where results 
depend on an assumed cutoff threshold, establishing a discrete transformation over 
the     Δ �H   function (i.e. the difference between the assumed and observed hydropho-
bicity distribution). All results discussed in this chapter are based on an 80% thresh-
old, where only those residues for which the     Δ �H   function value is above 80% of 
its peak are suspected of involvement in binding ligands. 

 MCC values fell in the 0.1–0.5 range for most proteins, with approximately 10 
cases of negative values being reported. 

 The SuMo package returns fairly consistent results for MCC and F-measure, 
singling out several proteins where the values are particularly high and producing 

  Fig. 4.3    Comparison of MCC and F-measure results for NAD + -complexing proteins as reported 
by Q-SiteFinder       
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comparable results for most other proteins. In approximately 10 cases MCC values 
were below 0 (Fig.  4.6 ).    

    4.5.2   FMN Binding Site Identi fi cation 

    4.5.2.1   Geometry-Based Packages 

 The results produced by the CASTp tool for FMN-binding proteins are presented 
in Fig.  4.7 . The  fi gure omits cases in which the returned values were below 0. 
Three proteins approach 1 on the MCC scale, while F-measure values indicate high 
reliability of most of the obtained results (values between 0.2 and 0.5).  

  Fig. 4.4    Comparison of MCC and F-measure results for NAD + -complexing proteins as reported 
by ConSurf       
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 The PocketFinder tool also produced high MCC values for most of the tested 
proteins, with only two molecules ranked below 0 (Fig.  4.8 ). As with most other 
software packages, F-measure scores are somewhat more diverse than MCC results, 
although they remain comparable (falling between 0.2 and 0.3 in most cases).  

 The QSiteFinder tool identi fi ed a relatively numerous group of proteins with 
high MCC and F-measure scores – notably a set of molecules for which MCC values 
are in the 0.4–1.0 range (Fig.  4.9 ). These results are supported by the corresponding 
F-measure scores.   

    4.5.2.2   Knowledge-Based Packages 

 Consistent F-measure results were obtained by applying the ConSurf package. 
Good agreement between MCC and F-measure scores indicates high reliability 
of evolutionary methods in the context of FMN-complexing proteins (Fig.  4.10 ). 

  Fig. 4.5    Comparison of MCC and F-measure results for NAD + -complexing proteins as reported 
by the FOD model. The cutoff threshold was established at 80 %, meaning that only values beyond 
80 % of the maximum were considered valid       
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We can conclude that the pocket to which this ligand binds (and hence the biological 
function performed by the protein) remain fairly conservative from an evolutionary 
viewpoint.  

 The FOD model yielded signi fi cantly lower scores for FMN binding sites com-
pared with NAD +  (Fig.  4.11 ). Of particular note are the low values of the F-measure 
metric. This suggests that the mechanism responsible for FMN complexation affects 
the structure of the protein’s hydrophobic core to a far lesser degree than in the case 
of NAD + . Indeed, FMN complexation is relatively static, i.e. the ligand remains 
securely lodged in a speci fi c binding pocket, whereas NAD +  binding is more 
dynamic and the complex exists only for a brief while, limiting the likelihood of 
errors. This is why it may be easier to distinguish NAD +  complexation sites.  

 Similarly to other tools (except the FOD model), SuMo reports higher values of 
MCC and F-measure metrics for FMN as compared to NAD +  (Fig.  4.12 ). It appears 
that FMN binding sites are more accurately determined by the geometry of the binding 
pocket than NAD +  binding sites. MCC scores seem fairly consistent, while F-measure 
values are more varied.    

  Fig. 4.6    Comparison of MCC and F-measure results for NAD + -complexing proteins as reported 
by Sumo       

 



70 P. Alejster et al.

    4.5.3   Properties of Target Proteins 

 Further analysis of the presented results suggests that proteins can be divided into 
“easy” and “dif fi cult” from the point of view of identifying binding pockets. In order 
to visualize the aggregate scores, we have compared 10 proteins for which each program 
reported (respectively) best- and worst-case results. This comparison is presented in 
Table  4.1  and in Figs  4.13  and  4.14 . Unique matches, i.e. proteins for which binding 
pockets were correctly identi fi ed only by a single program (corresponding to place-
ment in the top 10 results on a given list), have been highlighted.    

 Comparing Figs.  4.13  and  4.14  reveals differences with respect to the protein 
being considered as well as the applied computational model. Even though all of the 
proteins on each list belong to the “top 10” group, their corresponding MCC and 
F-measure scores are quite varied. 

  Fig. 4.7    Comparison of MCC and F-measure results for FMN-complexing proteins as reported by 
CASTp       
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 Differences in the validity of binding site identi fi cation for NAD + - and FMN-
complexing proteins are depicted in Figs.  4.15  and  4.16  respectively. We have 
selected proteins which obtained a score of 0.8–1.0 on the MCC scale and a score 
of 0.4–0.5 on the F-measure scale for FMN, as well as those with MCC values of 
approximately 0.8 and F-measure values of approximately 0.4 for NAD + . The pre-
sented tables compare the scores obtained for each of those proteins using various 
theoretical models. As can be seen, different tools exhibit varying degrees of accu-
racy in identifying speci fi c binding pockets.   

 An interesting conclusion arises with respect to FMN complexation sites: in this 
scope all of the analyzed software packages seem to have arrived at an identical set 
of “dif fi cult” proteins, while also producing consistent results for “easy” ones. 
Result sets obtained from ConSurf and CASTp contained no unique matches. Thus, 
both packages can be described as relatively trustworthy but also largely incapable 
of handling unusual situations. 

  Fig. 4.8    Comparison of MCC and F-measure results for FMN-complexing proteins as reported by 
PocketFinder       
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 NAD +  identi fi cation results were far more varied, with some programs (particularly 
CASTp and SuMo) producing correct results for proteins which could not be cor-
rectly processed by most other packages. We should also note that the phenomenon 
of polypeptide chain complexation (in the form of dimers, tetramers and – 
occassionally – decamers) presents signi fi cant problems for the FOD model as it 
distorts each chain’s hydrophobic core, producing many false positives. 

 Top row (left to right): 2BYC, 1B1C, 2IYG (binding site easy to identify for all 
programs except FOD model) 

 Bottom row (left to right): 3H4O, 3CB0, 3A3B. 
 In most cases, accurate identi fi cation of binding sites was possible for the following 

proteins: 
 The structural and biological characteristics of the “easy” proteins does not allow 

to de fi ne the common criteria for the successful prediction. Neither monomeric/

  Fig. 4.9    Comparison of MCC and F-measure results for FMN-complexing proteins as reported by 
QSiteFinder       
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complex form nor biological activity has been recognized as common for this group 
of proteins (Table  4.2 ). Only the visual analysis of the 3-D structure presentation 
suggest the well de fi ned cavity in “easy” proteins.  

 The same must be concluded in respect to “hard” proteins. No criteria for this 
group of proteins can be de fi ned to characterize their speci fi city in respect to their 
predictability (Table  4.3 ).  

 FMN binding site identi fi cation proved dif fi cult for the following proteins shown 
in Table  4.3 . 

 Top row (left to right): 2JHF, 1SBY, 3ABI (binding site easy to identify for most 
programs) 

 Bottom row (left to right): 3P2O, 1EE9, 1 AD3 (binding site dif fi cult to identify 
for most programs) 

  Fig. 4.10    Comparison of MCC and F-measure results for FMN-complexing proteins as reported 
by ConSurf       
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 The group of “easy” proteins complexing NAD +  (shown in Table  4.4 ) reveals 
more common characteristics suggesting that probably the dimeric proteins of the 
class EC.1.1.1.1 (oxydoreductase) represent the structures with well de fi ned ligand 
binding cavity.  

 The “hard” proteins (in respect to NAD + binding side identi fi cation) appeared 
to be all enzymes of bacterial origin (except one protein which is mammalian). 
No common characteristics can be given in this point to make predictable the 
success or failure in identi fi cation (Table  4.5 ). The characteristics of cavities for 
“easy” and “hard” proteins is given in Table  4.6 .   

 Table  4.6  reveals the general difference in NAD + and FMN binding cavity which 
is much larger for NAD + although the other parameters seem to be quite comparable 
for these two ligands. The comparison between “easy” and “hard” reveals differences 
of vertices, buried vertices and average depth which are lower for FMN binding 
cavities in proteins recognized as “hard”.  

  Fig. 4.11    Comparison of MCC and F-measure results for FMN-complexing proteins as reported 
by the FOD model       
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    4.5.4   Analysis of Individual Cases 

 Table  4.1  lists proteins for which identi fi cation proved easy, as well as those for 
which the programs produced poor results. Most proteins were correctly processed 
by various tools although there are also cases where only a single program was able 
to produce correct results. This section presents such proteins in more detail. 

 Correct NAD +  binding site identi fi cation was most frequently obtained for 2JHF 
(alcohol dehydrogenase EC 1.1.1.1.) Of all the tested tools only ConSurf was unable 
to correctly process this protein, which suggests that the relevant binding site is 
speci fi c and non-conservative in character. 

 The numbers of unique NAD +  binding pocket matches returned by each program 
are as follows: CASTp – 7, PocketFinder – 3, QSiteFinder – 5, FOD – 6, SuMo – 8. 
Corresponding values for FMN are: QSiteFinder – 2, PocketFinder – 3, FOD – 4, 
SuMo – 5. All these results refer to the top 10 places on each ranking list. 

  Fig. 4.12    Comparison of MCC and F-measure results for FMN-complexing proteins as reported 
by SuMo       
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   Table 4.1    Comparison of worst- (LOW) and best-case (HIGH) results for each ligand obtained by 
various software packages   

 NAD+  FMN 

 Ligand 

 Low  High  Low  High 

 MCC  F-m  MCC  F-m  MCC  F-m  MCC  F-m 

 Geometry based models 

 CASTp  3CIN  1BMDA 
 2Q1U 
 1EE9 
 1XAH 
 1NHG 
 1SBY 
 1 AD3 
 1EJ2 
 1Y3I 
 3Q3C 

 1GIQB 
 3ABI 
  3P2OB  
  1EBF  
  3JSA  
  3LN3  
  2PH5  
  1 H94  
 1GIQA 
 1UWK 

 2NAD 
 1SBY 
 1EJ2 
 1KOL 
 1NHG 
 1Y3I 
  3P2OB  
 1ZJZ 
 1VM6 
  2JHFA  

 2VZJ 
 3B9O 
 1SBZ 
 1DNL 
 2WQF 
 2Z6I 
 2H0U 
 3RHF 
 3F2V 
 3H4O 

 2VZJ 
 1SBZ 
 2WQF 
 3B9O 
 1DNL 
 2H0U 
 3H4O 
 2Z6I 
 3F2V 
 3RH7 

 1YKG 
 2BYC 
 1B1C 
 2IYG 
 2BYC 
 2HFN 
 2 KB2 
 1F4P 
 3BW2 
 2XOD 

 1OBO 
 1B1C 
 2IYG 
 1RLJ 
 2D5M 
 2PR5 
 2BYCA 
 1YKG 
 3A3B 
 2NZL 

 3MGI 
 2PH5 
 1LJ8 
 1BMDA 
 1BMDB 
 1EE9 
 1OBB 
 3LN3 
 1TOX 

 PocketFinder  1GIQA  1EE9  1EJ2  1NHG  3A3B  3F2V  2Z6D  2Z6D 
 3LN3  1U8X  1ZJZ  1EJ2  3B9O  3A3B  1OBO  1OBO 
 2WN7  1Y3I  1NHG   1OMO   1SBZ  2Z6I  2PR5  1RLJ 
 1DHS  2WN7   1OMO   2NAD  2Z6I  2WQF  1RLJ  2PR5 
 1EE9  3KET  1SBY  1ZJZ  2WQF  1SBZ   3CB0B   1USC 
 1U8X  1KYQ  2NAD   1SBY   1MVL  1NOX   1USC   1B1C 
 1Y3I  1TOXA   1FDVA   1UWK  1NOX  1MVL  1B1C  2R6V 
 1TOXA  2JHFB  3ABI   1FDVA   3H4O  2H0U  1I0R  2IYG 
 3KET  3P2OB  1HDR  3ABI  2H0U  3H4O  1EJE  2D5M 
 1KYQ  1EVJ  1UWK  1JQ5  1QZU  1QZU   2R6V   3CB0B 

 Q SiteFinder  3HL0 
 2GWL 
 1BMDB 
 1BMDA 
 1U8X 
 1XAH 
 3JSA 
 1DHS 
 1KYQ 
 1EBF 

 3MGIB 
 1EJ2 
 1 AD3 
 2G5C 
 3P2OA 
 3P2OB 
 1 H94 
 1LJ8 
 2I2F 
  1EE9  

 1UWK 
  2Q1U  
  2JHFB  
 1SBY 
  2JHFA  
 3ABI 
  3CIN  
  1GR0  
 2PLA 
 1VM6 

 1UWK 
  2Q1U  
 1SBY 
  2JHFB  
  2JHFA  
  3CIN  
  1GR0  
 3ABI 
 1VM6 
 2PLA 

 1I0R 
 1SBZ 
 2WQF 
 1NOX 
 3CB0B 
 3H4O 
 2Z6I 
 1USC 
 1VYR 
 2 KB2 

 1VYR 
 3B9O 
 3F2V 
 2VZJ 
 2 KB2 
 2H0U 
 1DNL 
 1MVL 
 1QZU 
 1YKG 

 2IYG 
 3A3B 
 2PR5 
 1RLJ 
 1B1C 
  1KBJ  
 1OBO 
 2BYCA 
 2Z6D 
  3P7NB  

 2IYG 
 3A3B 
 1RLJ 
 2PR5 
 1B1C 
 1OBO 
  1KBJ  
 2Z6D 
 2BYCA 
  3P7NB  

 Knowledge-based models 

 ConSurf  1V9L  1V9L   1EVZ    1EVZ   1V9L  2PH5  1YKG  1YKG 
 1K6X  1K6X  1HDR  1HDR  1K6X  1SBY  2BYC  2BYC 
 2JHFA  2JHFA  1K4MA   1XAH   2JHFA  2JHFA  1B1C  1B1C 
 3KET  3KET   1ZBQ    1ZBQ   3KET  1 H94  2IYG  2IYG 
 2PH5  2PH5   1XAH   1EVJ  2PH5  1FDVA  2BYC  2BYC 
 1 H94  1 H94  1EVJ  1K4MA  1 H94  1 AD3  2HFN  2HFN 
 1 AD3  1 AD3  1Y3I  1Y3I  1 AD3  3KET  2 KB2  2 KB2 
 1KYQ  1KYQ  1EJ2 

 2 G76 
 1KOL 

 2 G76  1KYQ  1KYQ  1F4P  1F4P 
 1OG3 
 2GR9 

 1OG3  2I2F 
  1P1H  

 1OG3 
 2GR9 

 2GR9 
 1OG3 

 3BW2 
 2XOD 

 3BW2 
 2XOD  2GR9 

 FOD  2GR9  1UWK  1KQN  2GWL  1N9L  2D5M  1EJE  1VYR 

(continued)
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 NAD+  FMN 

 Ligand 

 Low  High  Low  High 

 MCC  F-m  MCC  F-m  MCC  F-m  MCC  F-m 

 Cutoff 80 %  1KYQ  1GIQ  2GWL  1KQN  2NZL  1YKG  2Z98  3CB0 
 1TOX  1KYQ  1HDR  1HDR  3CB0  1SBZ  1OBO  1N9L 
 3JYO  1P1H  1N2S  1N2S  1I0R  1RLJ  2VZJ  3B9O 
 3M6I  1TOX  1FDV  1OBB  3B9O  1OBO  2D5M  2NZL 
 1TOX  2GR9  2I2F  2Q1U  2Z6I  1NOX  1MVL  1I0R 
 3JSA  3JSA  1KQN  1FDV  1VP8  1MVL  1B1C  1QZU 
 3M6I  3JYO  1OBB  2I2F  2BYC  1F4P  2XOD  2R6V 
 1KYQ  3KET  2Q1U  1KQN  2BYC  1EJE  1RLJ  2Z6I 
 3KET  3M6I  1FDV  3OX4  2Z6D  1B1C  1YKG  1VP8 

 SuMo  3CIN  3OX4   2GR9    2GR9   2Z6I  3CB0  1EJE  1EJE 
 1DHS  1TOX   1BMD    1BMD   3RH7  2 KB2  1F4P  1F4P 
 1GR0  1V9L   1OG3    1OG3   2ZRU  2 KB2   1VP8    1VP8  
 1SC6  2PH5   2JHF    2WN7   2 KB2  1NOX   1MVL    1MVL  
 1TOX  1SC6   1 AD3    1 AD3   3P7N  1VYR   1SBZ    1SBZ  
 1V9L  1DHS   1KYQ    2JHF   3A3B  3P7N  1DNL  2WQF 
 1ZBQ  3P2O   2WN7   1GIQ  3CB0  3BW2  1I0R  1VYR 
 2PH5  1GR0   3JYO   2PLA  2PR5  3A3B  2WQF  1DNL 
 3KET  1ZBQ  1GIQ   1EVJ   3BW2  2Z6D  1VYR   2Z98  
 3P2O  3KET  1EVJ  1JQ5  2Z6D  2PR5   2Z98   2NZL 

  PDB codes printed in boldface indicate unique matches (i.e. matches found only by a single software 
package). Underlined codes indicate proteins with the highest frequency of matches for a given 
classi fi cation  

Table 4.1 (continued)

 For FMN, the most correctly identi fi ed binding site appeared to be in 2BYC 
protein (CASTp, QsiteFinder, ConSurf). 

 The biological properties of the analyzed proteins are very diverse and do not 
seem to correspond to binding pocket prediction accuracy. The study group includes 
enzymes and transport proteins, monomers as well as complexes consisting of indi-
vidual subunits. It would be dif fi cult to attribute identi fi cation accuracy to any common 
property putatively shared by all of the presented proteins. 

 The 2Z6I protein was very accurately analyzed by the FOD model but posed 
signi fi cant problems for QSiteFinder, CASTp, SuMo and PocketFinder. FOD 
also yielded accurate results for 1N9L, contrary to SuMo and PocketFinder. This 
suggests that the geometry of the binding pocket in these proteins is rather generic 
and that the interaction between the ligand and the hydrophobic core plays a deci-
sive role. 

 An entirely different situation occurs in 2BYC which was accurately processed 
by all models except FOD. It seems that in 2BYC the presence of a ligand does not 
distort the protein’s own hydrophobic core to an appreciable degree. 

 Determining the factors responsible for binding pocket prediction accuracy is a 
complicated problem. Proteins which could be easily identi fi ed by geometry-based 
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tools are likely to contain well-ordered pockets whose geometry closely corresponds 
to the requirements of a speci fi c ligand. This hypothesis is supported by the high 
consistency of results returned by various geometry-based packages. A selection of 
best- and worst-case identi fi cation scenarios is presented in Figs.  4.15  and  4.16 . 

 An interesting case is the 2Z6I protein (oxidoreductase E.C. 1.3.1.9 in complex 
with the FMN ligand). It was accurately recognized by the FOD model, as well as 
by QSiteFinder, CASTp, SuMo and PocketFinder. 2Z6I is a globular molecule with 
a deeply embedded ligand which affects the structure of the hydrophobic core and 
suggests signi fi cant distortion (hydrophobicitiy de fi ciency) caused by the binding 
pocket depth (Fig.  4.17 ).  

 Similarly, accurate FOD results were obtained for the 1N9L protein (electron 
transport – putative blue light receptor). These results are presented in Fig.  4.17 . 
Again, we are dealing with a globular molecule with a deeply embedded FMN 
ligand. Plotting ROC curves for both proteins (and particularly for 2Z6I) reveals 
that the area bounded by each curve and the corresponding diagonal is quite large. 
Residues responsible for binding ligands are highlighted on     Δ �H   pro fi le plots. 
Results for a cutoff threshold of 0.004 are presented in Table  4.6 . 

 Table  4.6  compares proteins which yielded correct and incorrect results when 
applying the ROC curve method (based on the FOD model). The criterion of cor-
rectness is the area bounded by the ROC curve and the corresponding diagonal. 

  Fig. 4.13    MCC and F-measure scores for NAD + -complexing proteins correctly processed by most 
of the analyzed tools. Only the top four scores have been taken into account for each program       
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 Top row – FMN-binding proteins 
 Left column – Example protein (3F2V) for which FOD incorrectly identi fi es 

ligand binding residues (Table  4.6 ) The catalytic residue represents the global minimum 
of the     Δ �H   pro fi le, i.e. excess hydrophobicity on the protein surface. This residue 
has been correctly identi fi ed as involved in catalytic activity. 

 Right column – Example protein (2NZL) for which FMN binding residues have 
been correctly identi fi ed. The distribution of catalytic residues suggests correct 
identi fi cation of the enzymatic active site, consisting of amino acids to which the 
FOD model attributes hydrophobicity de fi ciencies. 

 Bottom row – NAD + -binding proteins 
 Left column – Example protein (1BMD) for which FOD incorrectly identi fi es 

ligand binding residues. Enzymatically-active residues represent local maxima of 
the    Δ �H   pro fi le, which could be useful in identifying the corresponding catalytic 
active site. 

 Right column – Example protein (1 AD3) for which FOD incorrectly identi fi es 
ligand binding residues. The distribution of catalytic residues suggests correct 
identi fi cation of the enzymatic active site, consisting of amino acids with peak     Δ �H
  values. 

  Fig. 4.14    MCC and F-measure scores for FMN-complexing proteins correctly processed by most 
of the analyzed tools. Only the top four scores have been taken into account for each program       
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  Fig. 4.15    “Easy” ( top row ) and “dif fi cult” ( bottom row ) proteins, with FMN binding site 
identi fi cation accuracy taken as the criterion of dif fi culty       

  Fig. 4.16    “Easy” ( top row ) and “dif fi cult” ( bottom row ) proteins, with NAD +  binding site 
identi fi cation accuracy taken as the criterion of dif fi culty       
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 Studying the graphical representation of FOD results (Fig.  4.18 ) reveals the 
reasons behind the incorrect recognition of residues involved in ligand binding. 
Poor results for FMN-binding residues seem to be associated with the fact that this 
ligand is bound on the surface of the protein, without the need for a deep pocket. 
Hydrogen bonds between the phosphate moiety and polar residues exposed on the 
protein surface (responsible for stabilization of the resulting complex) do not 
signi fi cantly distort the shape of the protein’s hydrophobic core.  

   Table 4.2    The short presentation of “easy” proteins to visualize their different characteristics   

 PDB-ID  Enzyme  Biological activity  Name  Complex  Source organism 

 2BYC  Blue light receptor 
from the BLUF 
family 

 Signaling 
protein 

 Dimer   Rhodobacter 
sphaeroides  

 1B1C  E.C.1.6.2.4  FMN-binding domain 
of human 
cytochrome p450 
reductase 

 Redox  Monomer  HS monomer 

 2IYG  Dark-state structure of 
the bluf domain of 
the rhodobacterial 
protein APPA 

 Signal 
transduc-
tion 

 Dimer   Rhodobacter 
sphaeroides  

   Table 4.3    The short presentation of “hard” proteins to visualize their different characteristics   

 PDB-ID  Enzyme  Biological activity  Name  Complex 
 Source 
organism 

 3H4O  Nitroreductase 
family protein 

 Oxydoreductase
 family 

 Monomer   Clostridium 
dif fi cile  
630 

 3CB0  E.C.1.14.13.3  4-Hydroxyphe-nylacetate 
3-monooxygenase 

 Oxidoreductase  Tetramer   Brucella 
melitensis  

 3A3B  Lumazine protein  Luminescent 
protein 

 Dimer   Photobac-
terium 
kishitanii  

   Table 4.4    Proteins (and their short characteristics) for which NAD +  binding sites could be accu-
rately identi fi ed   

 PDB-ID  Enzyme  Biological activity  Name  Complex  Source organism 

 2JHF  E.C.1.1.1.1  Alcohol dehydroge-
nase E chain 

 Oxydoreductase  Dimer   Equus Caballus  
horse liver 

 1SBY  E.C.1.1.1.1  Alcohol dehydroge-
nase from 
 Drosophila 
Lebanonensis  

 Oxydoreductase  Dimer   Scaptodrosophila 
Lebanonensis  

 3ABI  Putative uncharacter-
ized protein 
ph1688 

 Unknown  Dimer   Pyrococcus 
Horikoshi  
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 In the case of proteins depicted in Fig.  4.18 , NAD +  binding occurs in close prox-
imity to catalytic residues (marked by red circles). The presented examples indicate 
that local maxima (or the global minimum, in the case of 3F2V) point to residues 
with catalytic properties. This is likely why the identi fi cation of catalytic residues, 
as presented in Prymula et al.  (  2011  ) , appears to be signi fi cantly more accurate 
than identi fi cation of NAD +  and FMN binding sites, which is the subject of this 
discussion.  

    4.5.5   Summary 

 It should be noted that the programs presented in this chapter apply diverse tech-
niques to identify ligand binding sites. Low consistency of results (with the excep-
tion of the universally poor identi fi cation of FMN sites which appears to be restricted 

      Table 4.5    Characteristics of easy and hard predictable binding cavity. The values given are as 
follows: volume, accessible vertices, buried vertices, average depth for cavities binding particular 
ligand. Values given are calculated according to PDBSum data   

 FMN  NAD +  

 Easy  1055.27  3376.99 
 72.36  74.21 
 11.48  12.90 
 10.15  12.89 

 Hard  1141.74  3423.98 
 41.35  69.78 
 6.43  13.00 
 8.10  13.00 

   Table 4.6    Best- and worst-case results for the FOD model with the    Δ �H   cutoff threshold set at 
80%–this means that calculated     Δ �H   value (i.e. the difference between expected and observed 
hydrophobicity) for particular residue is in excess of 80% of the peak value computed for the entire 
protein. Such residue is suspected of involvement in binding pocket generation   

 NAD +   FMN 

 Best  Worst  Best  Worst 

 FOD  3HL0  2PH5  3P7N   3BW2  
 2GWL  2WN7  3A3B  3CB0 

 Cutoff 80%   1BMD   1 H94  1QZU   1VYR  
 1U8X   2GR9   1F4P   2WQF  
 1XAH   1 AD3   1OBO  2Z6I 
 3JSA   1GIQ   2Z98  1N9L 
 1DHS   1TOX   2VZJ   2Z6D  
  1KYQ    1KYQ   3F2V  3B9O 
 1EBF   3KET   1MVL   1DNL  
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  Fig. 4.17    Examples of proteins for which the FOD model correctly identi fi ed binding sites. The 
top row presents 2Z6I – its 3D structure (with a clearly visible deep binding pocket) as well as the 
ROC curve indicating the relation between TPR and FPR. The area marked in red represents posi-
tive     Δ �H   results while the area marked in blue indicates TPR and FPR coef fi cients for negative 
    Δ �H   values. The attached plots represent     Δ �H   pro fi les for both proteins ( top  – 2Z6I;  bottom  – 
1N9L), with highlighted ligand binding sites, as well as ion binding sites in the case of 1N9L 
(which, however, is out of scope of this discussion). 3D images have been derived from PDBSum 
(for 2Z6I) and PDB (1N9L)       
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to a speci fi c group of proteins) indicates that binding pockets emerge through many 
different mechanisms. This phenomenon could be related to the diverse biological 
activity attributed to proteins with FMN and NAD +  cofactors. 

 The structural similarity of binding pockets – as indicated by geometry-bases 
tools – is clearly discernible, although limited in scope. 

 In the FOD method, the most important factor affecting the identi fi cation of 
binding pockets (by searching for residues which represent local distortions in the 
structure of the protein’s hydrophobic core) appears to be the presence of additional 
polypeptide chains determining the protein’s quarternary structure. Of nearly equal 
importance is the size of polypeptide chains: large single-core proteins can be sub-
divided into domains where the hydrophobic core structure exhibits better ordering 
than in the case of a multi-domain multi-core molecule. The phenomenon of ligands 
being bound in the inter-chain space (between adjacent subunits) also affects the 
accuracy of predictions returned by the FOD model. 

 Given the presented results, it seems valid to conclude that binding pockets are 
generated through many different mechanisms and that the applicability of each 
theoretical model is typically limited to a speci fi c subset of proteins, yielding poor 
results for proteins which do not share the preferred structural properties – even if 
their general structure (or purpose) is similar. 

 The set of programs discussed in this chapter was also tested in the context of 
active site identi fi cation in hydrolases (Prymula et al.  2011  ) . In that study, knowledge-
based tools proved more reliable than geometry-based packages. In contrast, geometry-
based software appears to return better results for FMN and NAD +  binding site 
identi fi cation, as described above. We can therefore conclude that the binding geom-
etry of these ligands is highly deterministic and speci fi c, whereas evolutionary 
factors play a more pronounced role in shaping enzymatic active sites. Distortions 
of the protein’s hydrophobic core are more closely related to ligand binding sites 
(Fig.  4.18 ). It appears that the structure of FMN and NAD +  pockets is local in character 
and does not affect the shape of molecule as a whole – contrary to active centers in 
hydrolases. 

 The comparison presented in Fig.  4.18  explains some of the dif fi culties involved 
in identifying ligand binding residues by way of the FOD model. The     Δ �H   pro fi le indi-
cates that the hydrophobicity attributed to such residues remains in agreement with 
statistical predictions and therefore does not trigger distortions in the protein’s core. 
This is especially evident in the case of 3F2V (Fig.  4.18 ), where the placement of 
the active site (and thus of the substrate) is tied to a speci fi c deformation and can 
therefore be accurately identi fi ed. 

 The presented examples also point to the role of the environment surrounding the 
ligand binding and catalytic residues. Enzymatic active sites need to be shielded 
from water and are usually located in deep pockets, where their hydrophobicity 
de fi ciency can be clearly discerned on the     Δ �H   plot (see protein 2Z6I in Fig.  4.17 ). 
Binding ligands involves compensating the protein’s own hydropbhobicity 
de fi ciencies with the ligand’s own excess hydrophobicity, resulting in a droplike 
core structure. In some cases, however (as depicted in Fig.  4.18 , protein 1BMD), the 
ligand may bind at locations with variable hydrophobicity conditions. Since certain 



854 Comparative Analysis of Techniques Oriented on the Recognition of Ligand…

ligands play a part in proton or electron transport they need to be present at various 
points along the transport pathways. This implies that they must be able to bind at 
many different locations: from the surface of the molecule (where hydrophobic 
bonds may form between the protein’s surface residues and the ligand’s phosphate 
moiety, particularly in the case of FMN) all the way to deep within binding pockets 
(where they can be traced by the FOD model, as is the case with all of the presented 
proteins to which this model has been successfully applied). 

 An interesting observation can be made with respect to the ligand binding site/
enzymatic active site relationship. The FOD model seems to suggest the need for 
close proximity between the transport unit (responsible for moving electrons or 
protons) and the catalytic site, while still retaining functional separation (different 
residues responsible for each function, with different deviations from the idealized 
hydrophobicity model as indicated by corresponding    Δ �H   pro fi le values, suggesting 
different placement in the protein body and dedicated operating environments for 
transport ligands and catalytic active sites).       
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    Abstract   Protein-protein docking was born in the 1970s as a tool to analyze 
macromolecular recognition. It developed afterwards into a method of prediction of 
the mode of association between proteins of known structure. Since 2001, the perfor-
mance of docking procedures has been assessed in blind predictions by the CAPRI 
(Critical Assessment of PRedicted Interactions) experiment. The results show that 
docking routinely yields good models of the protein-protein complexes that undergo 
only minor changes in conformation and associate as rigid bodies. In contrast,  fl exible 
recognition accompanying large conformation changes in the components remains 
dif fi cult to simulate, and structural predictions generally yield lower quality models. 
In recent years, a new challenge has been to predict af fi nity and to estimate the stabil-
ity of the complex along with its structure. Over the years, CAPRI has proved to be 
a strong incentive to develop new  fl exible docking procedures and more discrimina-
tive scoring functions, and it has provided a common ground for discussing methods 
and questions related to protein-protein recognition.  
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    5.1   Introduction 

 The speci fi c recognition between two proteins is the physical process that governs 
the construction of the macromolecular machines and assemblies which carry out 
most biological functions in cells and living organisms. Ubiquitous and essential to 
life, protein-protein recognition has in recent years become a major subject of study 
in post-genomic molecular biology, biochemistry, structural biology, and biophysics. 
When structural data are available, it can also be approached computationally, by 
docking simulations in which a protein-protein complex is assembled from the 
component structures. We relate here how protein-protein docking was attempted in 
the early 1970s, preceding small molecule docking at a time where very few pro-
teins had a known three-dimensional structure, and how it developed into a family 
of novel algorithms after 1990. Since then, docking algorithms have turned into 
structural prediction procedures, and their reliability has been tested in the CAPRI 
blind prediction experiment. An outcome of the test was that the initial model of 
recognition in which the proteins bind as rigid bodies, progressively evolved into 
one of  fl exible recognition. The new paradigm takes into account the structure 
changes that may accompany the association reaction, and offers estimates of their 
effect on the stability of the assembly that the reaction produces, and on the 
speci fi city of the recognition process.  

    5.2   An Early History of Protein Docking 

 The  fi rst attempt to model the self-assembly of two proteins concerned trypsin 
and the bovine trypsin pancreatic inhibitor (BPTI). David Blow of Cambridge, 
UK, and Robert Huber of Martinsried, Germany, respectively authors of the 
a-chymotrypsin and BPTI X-ray structures, teamed to build an atomic model of the 
trypsin/BPTI complex. Their paper (Blow et al.  1972  )  does not say how they did it, 
only that “when a model of the relevant part of the inhibitor was compared with the 
active site of a-chymotrypsin, it was evident that only one mode of binding was pos-
sible”. At the time, “model” meant a physical wire model, not one a computer could 
handle, and no atomic coordinates of the complex remain to assess its accuracy. 
Beddell et al.  (  1976  )  still used a wire model to do molecular modeling at the Wellcome 
Research Laboratories in Kent, UK. They engineered biphenyl compounds to bind at 
the DPG (2,3-diphospho-glycerate) site of hemoglobin. Some of the compounds did, 
and they had the predicted effects on oxygen binding, possibly the  fi rst success of 
structure-based drug design. While the Wellcome scientists had access to hemoglobin 
atomic coordinates from Pr. Max Perutz, their paper says that “a more accurate 
representation was needed”, and they chose to build a wire model. Their designs 
were based on interactions predicted from that model, not computation. 

 Nevertheless, Perutz’ hemoglobin coordinates had already been used to do 
molecular modeling in the computer, and more speci fi cally, to dock proteins 
together. Pr. Cyrus Levinthal of Columbia University, New York, had devised an 
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algorithm that could build a model of the sickle cell  fi ber from individual hemoglobin 
molecules (Levinthal et al.  1975  ) . Shoshana Wodak, one of Levinthal’s co-authors, 
joined me in Pr. Georges Cohen’s laboratory at the Pasteur Institute in Paris, and we 
decided together to investigate what computer simulations could tell us about pro-
tein-protein recognition. For that purpose, we designed a procedure that generated 
all the orientations of one protein relative to another, and brought the two surfaces 
into contact by translation. To gain computer time and memory space, we borrowed 
from Michael Levitt a simpli fi ed protein model that represented each amino acid 
residue by a sphere of appropriate radius (Levitt  1976  ) . We allowed a degree of 
penetration between the spheres, and estimated the quality of the  fi t by the number 
of intersubunit residue-residue contacts. Our test system was the same trypsin/BPTI 
complex as in Blow et al.  (  1972  ) , but by then, Huber’s lab had determined a X-ray 
structure of the complex (Huber et al.  1974  ) , and issued coordinates that could serve 
to assess the accuracy of the docking models. In the summer of 1976, we were given 
access to a state-of-the-art computer in Orsay, France – one that was only about 
10,000 times slower than a laptop today – during a workshop of the Centre Européen 
de Calcul Atomique et Moléculaire (CECAM). In about an hour of cpu time, our 
software (named DOCK like several others after it) generated models of the inhibitor 
 fi lling the active site of the protease in 2,300 different orientations. To our satisfac-
tion, an orientation close to Huber’s X-ray structure showed a good  fi t, but there 
were several other that achieved a similar score. In other terms, the procedure had 
produced a native-like model of the assembly, plus some false positives. We attrib-
uted the false positives to the coarse nature of our score, which took into account the 
geometric complementarity of the two molecular surfaces, but ignored their chemical 
nature and the physics of their interaction (Wodak and Janin  1978  ) . 

 Computational biology had no established status in the mid-1970s, and we had a 
dif fi cult time convincing journal editors that protein-protein docking was more than 
a futile game. Yet, Levinthal had addressed a related question, protein folding, several 
years before, and ambitious attempts were already being made to solve it in the 
computer (Levitt and Lifson  1969 ; Levitt  1976 ; Némethy and Scheraga  1977  ) . With 
rigid molecules, docking is a much simpler problem than protein folding. Whereas 
folding has thousands of degrees of freedom, docking has only six, and by restrict-
ing the search to the active site of trypsin, we had reduced that number to four, 
which had made the calculation feasible. 

 The next application of our software was to simulate the allosteric transition of 
hemoglobin. Hemoglobin is an order of magnitude larger than BPTI, but its twofold 
symmetry also reduces the search to four degrees of freedom, and the computation 
was within the reach of extant computers. It was done at the Free University, 
Brussels, in the summer of 1981, also during a CECAM workshop (Janin and Wodak 
 1981  ) . We used a much improved version of DOCK to build hemoglobin tetramers 
from alpha-beta dimers in a range of orientations that covered the T and R quater-
nary structures described by Perutz. The results showed that the allosteric transition 
from R to T could not proceed along a linear pathway, due to steric hindrance at the 
dimer-dimer interface, and it drew an alternative pathway in excellent agreement 
with the classical description of Baldwin and Chothia  (  1979  ) .  
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    5.3   Protein-Protein Docking Algorithms 

    5.3.1   Bound vs. Unbound Docking 

 The hemoglobin simulation faced even more editorial skepticism than the trypsin/
BPTI study. By the time it got published (Janin and Wodak  1985  ) , small molecule 
docking had come of age in the hands of Kuntz et al.  (  1982  ) , Goodford  (  1985  ) , and a 
few others. Soon, it became an established procedure in drug design, while protein-
protein docking remained con fi dential for over a decade. Meanwhile, computers 
became orders of magnitude faster, and crystallographers determined many new struc-
tures. The latter included a score of protease/inhibitor complexes, and the  fi rst antigen/
antibody complexes (Janin and Chothia  1990  ) . Cher fi ls et al.  (  1991  )  tested on those 
complexes the Wodak-Janin algorithm, implemented as a simulating annealing proce-
dure to make the search more ef fi cient. This allowed all six degrees of freedom to be 
explored, and most importantly, “unbound” docking to be tested for the  fi rst time. 
Unbound docking uses the atomic coordinates of the free proteins, bound docking, 
coordinates taken from the complex. Bound docking ignores the conformation changes 
that may accompany association, and it has no predictive value, since the solution 
must be known in advance. The new study yielded native-like models of all the target 
complexes, and a majority of those models scored near the top. However, there were 
many false positives, especially with the unbound proteins, and it was evident that 
other features than shape complementarity had to be taken into account to identify the 
correct docking models among all the false positives.  

    5.3.2   Rigid-Body Docking 

 The early 1990s were a period of renewed interest in protein-protein docking. 
Several new algorithms, all based on geometry and shape complementarity, were 
published almost simultaneously. Connolly  (  1986  )  had devised a procedure in which 
molecular surfaces were described by sets of discrete points; matching critical 
points (holes and pits) of two surfaces assessed their complementarity, and this 
could be used for docking. A related method of surface triangulation, independently 
developed for “computer-vision” by Pr. Haim Wolfson of Tel Aviv University in 
Israel, was implemented into a docking procedure through a very ef fi cient geometric 
hashing algorithm (Nussinov and Wolfson  1991 ; Norel et al.  1994  ) . In Berkeley, 
California, Jiang and Kim  (  1991  )  designed a “cube representation” of proteins 
speci fi cally for docking. In that model, the surface of the proteins and their interior 
volume are sampled on a cubic grid, and a docking pose is generated by matching 
surface cubes while rejecting overlaps between volume cubes. Jiang and Kim made 
a very important point: docking must be “soft” to allow for minor conformation 
changes. The cube model, like the residue sphere model of the Wodak-Janin proce-
dure, made for that softness by blurring the atomic details of the protein structures. 
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 The cubic grid representation is an essential element of the FFT correlation docking 
algorithm published soon afterwards by Katchalski-Katzir et al.  (  1992  )  of the 
Weizmann Institute in Israel. To start with, one picks an orientation of a protein rela-
tive to the other, and assigns appropriate weights to grid points of the surface and 
the interior volume of the two molecules. The correlation between the two sets of 
weights is used as a score. It may be written as a convolution product, and ef fi ciently 
computed for all translations at one time thanks to the Fast Fourier Transform (FFT) 
algorithm. Then, the orientation is changed and the calculation repeated. The method 
has been very successful, and it has bene fi ted from many developments (Vakser and 
A fl alo  1994 ; Gabb et al.  1997 ; Ritchie and Kemp  2000 ; Mandell et al.  2001 ; Heifetz 
et al.  2002 ; Chen et al.  2003a  ) . Whereas the original formulation of the algorithm 
assessed only the geometric complementarity, other molecular features can be 
encoded as weights on a cubic grid; for instance, an electrostatic interaction energy 
may be calculated by correlating the electric charges on one protein with the electric 
 fi eld created by the other protein. Electrostatics, hydrophobicity, and a number of 
other terms may be combined into a scoring function. Each of the Web sites listed 
in Table  5.1  has its own scoring function, and its own way to calculate its terms as 
FFT correlations.   

    5.3.3   Monte-Carlo and Related Docking Algorithms 

 Albeit “soft”, the FFT correlation and the geometric hashing algorithms explore 
only the six degrees of freedom of rigid-body docking. Other algorithms devel-
oped afterwards handle other variable parameters, dihedral angles for instance, in 
order to simulate side chain rotations and main chain conformation changes. They 
take a heuristic approach to the problem, instead of performing an exhaustive 
search. Monte-Carlo simulated annealing, the choice method in the 1990s, allowed 
Totrov and Abagyan  (  1994  )  to adjust side chain conformations at the same time as 
the docking search. These authors employed a detailed atomic model and a stan-
dard molecular mechanics force  fi eld, which was computationally very expensive. 
Instead, all the later docking procedures based on simulated annealing or related 
algorithms, proceed in two or more steps. The  fi rst step explores the rigid-body 
parameter space with a simpli fi ed protein model and a coarse force  fi eld, the second 
carries out a detailed re fi nement of the local minima (Fernández-Recio et al.  2002 ; 
Zacharias  2003  ) . The RosettaDock procedure (Gray et al.  2003  )  is a good exam-
ple: a  fi rst Monte-Carlo search is carried out on a low-resolution protein model 
with residue-level potentials; it identi fi es many (a thousand or more) candidate 
solutions, which are re fi ned afterwards using a full-atom model and the Rosetta 
force  fi eld. That force  fi eld, optimized on protein data, includes terms for desolva-
tion or rotamer preferences not present in standard force  fi elds. It performs very 
well in protein folding, its original application, and also in docking, at least 
when the conformation changes are of limited amplitude (Schueler-Furman 
et al.  2005  ) .  
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    5.3.4   Template-Based Docking 

 An alternative to docking is to use a template, and build a model of a protein-protein 
complex by analogy to one of known structure. When both components of two com-
plexes are close homologs with a high level of sequence identity (40% or more), 
it is straightforward to model build both the components and their assembly, but the 
method has a very limited  fi eld of application. It can be extended by accepting tem-
plates with a low level of sequence identity, or templates that have similar three-
dimensional structures irrespective of their sequences, under the assumption that the 
mode of interaction is conserved (   Lu et al.  2002 ; Sinha et al.  2010   ; Kundrotas et al. 
 2012 ). Although the limits of validity of this assumption are uncertain, genome-wide 

   Table 5.1    Web servers for protein-protein docking   

  Protein structure and benchmark sets  
 Protein Data Bank (PDB)    http://www.rcsb.org/pdb/     
 CAPRI experiment    http://capri.ebi.ac.uk/     
 Docking benchmark    http://zlab.bu.edu/zdock/benchmark.shtml     
 Structure/af fi nity benchmark    http://bmm.cancerresearchuk.

org/~bmmadmin/Af fi nity     
  FFT correlation and related docking algorithms  
 ClusPro    http://cluspro.bu.edu/login.php     
 DOT    http://www.sdsc.edu/CCMS/Papers/DOT_

sc95.html     
 FTDOCK    http://www.sbg.bio.ic.ac.uk/docking/

ftdock.html     
 GRAMM-X    http://vakser.bioinformatics.ku.edu/

resources/gramm/grammx/     
 HEX    http://www.loria.fr/~ritchied/hex/     
 MolFit    http://www.weizmann.ac.il/Chemical_

Research_Support//mol fi t/     
 ZDOCK    http://zlab.bu.edu/zdock/     
  Molecular dynamics, Monte-Carlo and related  fl exible docking algorithms  
 ATTRACT    http://www.ibpc.fr/chantal/www/ptools/     
 HADDOCK    http://www.nmr.chem.uu.nl/haddock/     
 ICM-DISCO    http://www.molsoft.com/icm_pro.html     
 RosettaDock    http://graylab.jhu.edu/docking/rosetta/     
  Geometric hashing and related  fl exible docking algorithms  
 PatchDock    http://bioinfo3d.cs.tau.ac.il/PatchDock     
 FireDock    http://bioinfo3d.cs.tau.ac.il/FireDock/     
 SymmDock    http://bioinfo3d.cs.tau.ac.il/SymmDock     
 FiberDock    http://bioinfo3d.cs.tau.ac.il/FiberDock/     
 MultiFit    http://salilab.org/multi fi t/     and   http://

bioinfo3d.cs.tau.ac.il/     
 3D-Garden    http://www.sbg.bio.ic.ac.uk/3dgarden     
 SKE-Dock    http://www.pharm.kitasato-u.ac.jp/

bmd/ fi les/SKE_DOCK.html     

http://www.rcsb.org/pdb/
http://capri.ebi.ac.uk/
http://zlab.bu.edu/zdock/benchmark.shtml
http://bmm.cancerresearchuk.org/~bmmadmin/Affinity
http://bmm.cancerresearchuk.org/~bmmadmin/Affinity
http://cluspro.bu.edu/login.php
http://www.sdsc.edu/CCMS/Papers/DOT_sc95.html
http://www.sdsc.edu/CCMS/Papers/DOT_sc95.html
http://www.sbg.bio.ic.ac.uk/docking/ftdock.html
http://www.sbg.bio.ic.ac.uk/docking/ftdock.html
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/
http://www.loria.fr/~ritchied/hex/
http://www.weizmann.ac.il/Chemical_Research_Support//molfit/
http://www.weizmann.ac.il/Chemical_Research_Support//molfit/
http://zlab.bu.edu/zdock/
http://www.ibpc.fr/chantal/www/ptools/
http://www.nmr.chem.uu.nl/haddock/
http://www.molsoft.com/icm_pro.html
http://graylab.jhu.edu/docking/rosetta/
http://bioinfo3d.cs.tau.ac.il/PatchDock
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://bioinfo3d.cs.tau.ac.il/SymmDock
http://bioinfo3d.cs.tau.ac.il/FiberDock/
http://salilab.org/multifit/
http://bioinfo3d.cs.tau.ac.il/
http://bioinfo3d.cs.tau.ac.il/
http://www.sbg.bio.ic.ac.uk/3dgarden
http://www.pharm.kitasato-u.ac.jp/bmd/files/SKE_DOCK.html
http://www.pharm.kitasato-u.ac.jp/bmd/files/SKE_DOCK.html
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libraries of model assemblies have been built in this way (Lu et al.  2003 ; Stein et al. 
 2011  ) . Templates may also be selected on the basis of the local similarity of the 
protein surfaces: two surfaces that have a similar geometry and similar physical-
chemical features may be expected to make similar interactions (Günther et al. 
 2007 ; Keskin et al.  2008  ) , in which case the PDB may already be adequate to repre-
sent the diverse architectures observed in nature (Tuncbag et al.  2008 ; Kundrotas 
et al.  2012  ) . Here again, the quality of the models remains to be assessed.   

    5.4   Assessing Docking Predictions: The CAPRI Experiment 

    5.4.1   CAPRI 

 By the turn of the century, several docking algorithms had developed into full-
 fl edged prediction procedures (see reviews by Smith and Sternberg  2002 ; Camacho 
and Vajda  2002 ; Halperin et al.  2002  ) . At that time, an entirely new  fi eld of applica-
tion opened, due to the structural genomics (or proteomics) initiatives that accom-
panied the completion of the human genome sequence. High-throughput X-ray and 
NMR studies were going to determine the structure of thousands of new proteins 
that would include the components of many binary or larger assemblies. Docking 
procedures could in principle build models of these assemblies from the component 
structures, but should we trust the results at all? The procedures had been thor-
oughly tested, but most of the unbound docking tests had been done on protease/
inhibitor or antigen/antibody complexes, the only ones for which the component 
structures were available. How would docking perform on new, possibly very different, 
systems, and how accurate would the models be? 

 These questions were discussed in Charleston, South Carolina, in June 2001, at 
a meeting on Modeling Protein Interactions in Genomes organized by Pr. Sandor 
Vajda and Ilya Vakser, and the conclusion was that a blind prediction experiment 
should be organized (Vajda et al.  2002  ) . Named CAPRI (Critical Assessment of 
PRedicted Interactions), the experiment was modeled after CASP (Critical 
Assessment of Structural Predictions), an older experiment that tests methods to 
predict a protein fold based on its amino acid sequence (Moult et al.  1995  ) . The 
targets of CAPRI would be protein-protein complexes, and the prediction start from 
component structures taken from the Protein Data Bank. The predictors would dock 
the components, and submit models to the CAPRI Website, to be assessed by com-
parison with a newly determined, but unpublished, experimental structure of the 
complex (Janin et al.  2003  ) . A blind prediction of that sort had been done once 
before, on a  b -lactamase in complex with a protein inhibitor. Six participant groups 
had submitted models of the complex that were close to the X-ray structure 
(Strynadka et al.  1996  ) . Could that performance be reedited? 

 An answer came soon after the Charleston meeting. The  fi rst round of CAPRI, 
held in the summer of 2001, had three targets, three complexes whose X-ray struc-
tures had just been determined by collaborators of mine, willing to help starting the 
experiment. Two were viral antigen proteins in complex with monoclonal antibodies, 
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the third, a bacterial protein kinase co-crystallized with its substrate, the small protein 
HPr. Fifteen predictor groups submitted a total of 193 models, and the CAPRI asses-
sors led by S. Wodak, compared them to the X-ray structures. The assessors 
found that the submissions contained good models of the two antigen/antibody 
complexes, but not of the HPr/kinase complex (Méndez et al.  2003  ) . They neverthe-
less decided that a few of the HPr/kinase models were “acceptable”: their geometry 
was poor, but most of the residues in the contact regions were correctly predicted, 
which could in principle help designing experiments. Predicting the residues in con-
tact was not a big feat in that case, since the location of the kinase active site and the 
serine residue phosphorylated on HPr were known from the literature. Moreover, 
the poor geometry of the models had an obvious origin: in the X-ray structure of the 
complex, the rotation of a  a -helix in the kinase modi fi ed the shape of the substrate 
binding site and the way it bound HPr (Fieulaine et al.  2002  ) . Thus, rigid-body 
docking was able to locate the correct epitopes on the two viral antigens, and place 
them correctly at the antibody combining sites, but it failed on HPr/kinase due to a 
conformation change, albeit one of limited amplitude.  

    5.4.2   Success and Failure in Blind Predictions 

 This pattern was repeatedly observed in later prediction rounds (Méndez et al.  2005 ; 
Lensink et al.  2007 ;    Lensink and Wodak  2010 ; Janin  2005,   2010  ) . In the 10 years 
that followed the Charleston meeting, CAPRI has had 22 rounds, with a total of 43 
targets and an average of 45 predictor groups, each submitting ten models of each 
target. In addition to protein-protein complexes, the targets have been a protein-
RNA complex and four oligomeric proteins. For each target, the predictors were 
given the coordinates of the unbound components, or of an homolog protein that 
could be used for model building, and they had 3–6 weeks to make their prediction 
and submit their models. A majority (70%) of the targets obtained good quality 
models. Almost all those that displayed only small backbone movements did, and in 
most cases, the good models came from several groups using different docking 
procedures. Figure  5.1  shows an example. Target T37, drawn here after the X-ray 
structure of Isabet et al.  (  2009  ) , is a complex between the G-protein Arf6, a member 
of the Ras family of small GTPases, and the LZ2 segment of JIP4 (JNK-interacting 
protein 4), an effector of Arf6. LZ2 was known to form a leucine zipper, and it had 
to be model built from its amino acid sequence before docking on Arf6. A standard 
leucine zipper yields a rather accurate model of its structure in the complex, while 
Arf6 undergoes little change in the interaction. Correspondingly, the submissions 
contained a number of good quality models of LZ2/Arf6, submitted by nine different 
groups (Lensink and Wodak  2010  ) .  

 On the other hand, CAPRI predictions have yielded at best “acceptable” models 
of the targets in which the backbone changes were large, or the homology models of 
poor quality. Prediction yielded no valid model at all in six cases. In two, the failure 
could be traced to misleading biochemical information rather than the structure 
itself, in the other four, to large conformation changes. Moreover, some of the targets 
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were subjected twice for prediction,  fi rst with both components unbound, then with 
the more  fl exible component in its bound conformation. The second step always 
yielded much better models; for instance, prediction of the protein/RNA complex 
failed with the unbound RNA, but there were many good models with the bound 
RNA, which has a very different conformation (Lensink and Wodak  2010  ) .   

    5.5   Flexible Docking and the Scoring Experiment 

    5.5.1   Simulating Conformation Changes and Mechanisms 
of Recognition 

 Two very important objectives of CAPRI were to stimulate the development of 
new methods, and create a forum where they could be discussed and information 
would spread within the community. The experiment succeeded on both grounds. 

  Fig. 5.1    A successful docking prediction. Target T37 was submitted for blind prediction during 
Round 16 of CAPRI, held in November 2008. The target, a complex of the small GTPase Arf6 with the 
LZ2 leucine zipper of the JIP4 effector protein, was a gift of Dr. Julie Ménétrey (Institut Curie, Paris). 
Predictors were given an unbound Arf6 structure, and the amino acid sequence of LZ2, which they 
had to model build before docking on Arf6. The  fi gure represents the X-ray structure (PDB code 
2 W83, Isabet et al.  2009  )  with Arf6 in cyan, LZ2 in  pink . The dots are the centers of mass of LZ2 
in the models submitted by the 39 predictor groups and the 11 scorer groups who participated in 
Round 16. The dots are  green  for good quality models,  blue  for “acceptable” models, and  yellow  
for incorrect models. All the models can be accessed at   http://www.ebi.ac.uk/msd-srv/capri/
round16/     (Courtesy of Dr. Marc Lensink (Lille))       

 

http://www.ebi.ac.uk/msd-srv/capri/round16/
http://www.ebi.ac.uk/msd-srv/capri/round16/
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It generated lively discussions on line through the CAPRI Website hosted by the 
European Bioinformatics Institute (Hinxton, UK), and face-to-face during assess-
ment meetings that took place at regular intervals. Moreover, CAPRI is at the ori-
gin of most of the progress seen in the last 10 years. The new scoring functions, the 
methods to model conformation changes and the  fl exible docking procedures 
developed since 2001, owe much to the experiment. Docking searches based on 
simulated annealing and molecular dynamics have been adapted to reproduce loop 
movements or the rotation of a structural domain about a pre-de fi ned hinge, with 
good results on some CAPRI targets (Janin  2005 ; Lensink et al.  2007 ; Lensink and 
Wodak  2010  ) . However, a more general solution to the problem of  fl exible docking 
is to generate conformers of the two components prior to the search, and assemble 
them pairwise (Grünberg et al.  2004 ; Bonvin  2006 ; Lesk and Sternberg  2008 ; 
Dobbins et al.  2008 ; Ritchie  2008 ; Zacharias  2010  ) . A recent, and valuable, appli-
cation of the method is implemented in the MultiFit server (Table  5.1 ); it allows 
multiple conformers generated from a X-ray structure to be  fi tted in electron 
microscopy images that have a much lower resolution, but may display signi fi cant 
conformation changes relative to the atomic model (Tjioe et al.  2011  ) . 

 The different approaches to the problem of conformation changes in docking 
correspond to different possible recognition mechanisms. Rigid-body docking mimics 
the speci fi c recognition between two proteins that bear complementary surfaces, 
ready to interact when they come into contact. Monte-Carlo searches with variable 
dihedral angles simulate an induced  fi t mechanism in which the components  fi rst 
make a low-stability, low-speci fi city contact, and then adjust their conformation to 
optimize their interaction. Docking conformers pairwise closely reproduces con-
former selection, an alternative to induced  fi t. In this mechanism, a minority of the 
molecules have the conformation that allows rigid-body recognition to start with, 
and it is the formation of a complex that causes the equilibrium to shift (Grünberg 
et al.  2004,   2006  ) .  

    5.5.2   Scoring in CAPRI 

 Docking conformers pairwise multiplies the number of searches, and this is practical 
only with a fast docking algorithm (Schneidman-Duhovny et al.  2005 ; Mashiach 
et al.  2010  ) . In addition to being computationally demanding, the method generates 
a great number of false positives, and puts a heavy load on the scoring functions. 
In recent years, CAPRI has been adapted to assess scoring separately from docking. 
The scoring part of the experiments operates in this way: after a prediction round is 
completed, the predictor groups are asked to upload a hundred or so of their models, 
which are merged into a  fi le that may contain a thousand models, issued from ten or 
more different procedures. The scorer groups download the  fi le and rank the whole 
set, to make their own ten-model submission. In several cases, target T37 of Fig.  5.1  
for instance, the scorers’ submissions contained more accurate models than the 
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predictors’ ones. These models came from the same docking searches, but the 
predictors’ procedures scored them low, whereas some of the schemes developed by 
scorer groups adequately identi fi ed them as correct (Lensink and Wodak  2010  ) . 

 A scoring function can be physical-chemical (force  fi elds, solvation energies), or 
empirical, combining terms from different origins with weights optimized on sets of 
positive and negative examples. It may include non-structural information derived 
from the comparison of homologous sequences, from point mutants or other genetic 
or biochemical experiments. However, such information is often ambiguous, and 
sometimes misleading. If external information is used to screen models during or 
after the search, it should be treated as a  fl exible restraint rather than a rigid con-
straint. The HADDOCK procedure ef fi ciently incorporates such information into a 
search algorithm that can also handle data from other sources, NMR experiments for 
instance (Dominguez et al.  2003 ; de Vries et al.  2007,   2010 ; Stratmann et al.  2011  ) .  

    5.5.3   Flexibility and the Docking Benchmark 

 Developing scoring functions is an active  fi eld of research in many  fi elds of science, 
but in docking, the main dif fi culty remains  fl exibility. The structures deposited in 
the Protein Data Bank illustrate many kinds of conformation changes, the docking 
benchmark of Weng and colleagues, also. The benchmark is a set of PDB entries 
assembled to test docking procedures. It contained only 59 complexes in its  fi rst 
version (Chen et al.  2003b  ) , but now has entries for 176 protein-protein complexes 
and their unbound components; one-third display signi fi cant backbone movements 
with root-mean-square amplitudes that range from 1.5 to 10 Å (Hwang et al.  2010 , 
and Table  5.1 ). 

 The complexes of the benchmark are implicated in all sorts of biological pro-
cesses. Antigen/antibody and enzyme/inhibitor complexes are no longer a majority. 
Signal transduction and cellular traf fi cking (exempli fi ed by Arf6 in Fig.  5.1 ) are 
well represented, and the protein-protein complexes involved these processes offer 
many examples of  fl exible recognition. Conformation changes mediate signal trans-
duction in many ways: they may change the af fi nity of a protein for a small ligand, 
another protein or DNA, enhance or inhibit a catalytic activity, the GTPase activity 
of a G-protein for instance, mask or reveal a group that governs the cellular localiza-
tion of the protein or its attachment to a membrane. Their variety is immense, com-
parable in principle to the variety of macromolecular interactions seen in nature, 
which neither the docking benchmark nor the PDB itself, are close to cover. 
Moreover, entire classes of interactions are missing: those that involve membrane 
proteins and intrinsically disordered proteins (IDP), for instance. IDP are implicated 
in many macromolecular interactions (Dunker et al.  2005,   2008 ; Tompa et al.  2009  ) , 
and they undergo disorder-to-order transitions when they interact with other compo-
nents. Simulating such transitions in the context of docking will remain a challenge 
for many years.   
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    5.6   Designing Interactions and Predicting Af fi nity 

    5.6.1   Engineering Novel Protein-Protein Interactions 

 Docking can serve other purposes than predicting structures. In Seattle, David 
Baker, who developed Rosetta, uses docking to engineer novel interactions. The 
procedure starts by selecting a pair of protein scaffold structures; a coarse-grain 
docking search identi fi es candidate complexes; they are computationally mutated at 
a few interface sites, the modeled mutant complexes are energy-re fi ned, and the top-
scoring solutions selected for cloning and expression in yeast. A  fi rst experiment 
aimed to generate a stable interaction between an ankyrin repeat protein and a set of 
37 small, structurally diverse, proteins (Karanicolas et al.  2011  ) . A second experi-
ment targeted the stem region of the  fl u virus hemagglutinin, aiming to mimic the 
way a neutralizing antibody binds to that epitope (Fleishman et al.  2011a  ) . Both 
yielded protein constructs that showed reproducible binding, and a round of in vitro 
evolution was suf fi cient to improve their af fi nity to K 

d
  values below nanomolar. 

Moreover, two co-crystal structures showed that the binding modes had been cor-
rectly modeled, although in one, the ligand was oriented 180° away from the model 
(Karanicolas et al.  2011  ) . 

 This remarkable piece of protein engineering demonstrates that rational design is 
now capable to create functional interactions de novo. However, the success rate 
was low. In the  fl u hemagglutinin experiment, computational design had culled 
some 260,000 docking models down to 88 candidate binders derived from 79 different 
protein scaffolds, but when the constructs were expressed and tested in yeast, only 
two actually bound (Fleishman et al.  2011a  ) . Nevertheless, the Rosetta force  fi eld 
had predicted about the same binding energies for the designs that failed and for the 
natural complexes of the Weng docking benchmark. To improve the success rate, a 
more accurate force  fi eld, or a more discriminative scoring function, was clearly 
required.  

    5.6.2   The CAPRI Af fi nity Prediction Experiment 

 The Seattle group decided to put the question to the CAPRI community: given the 
structure of a designed complex, can one predict whether it will be stable or not? 
And they submitted as targets of the scoring experiment a total of 108 designs, 
including two that bound, during two successive CAPRI rounds held in 2010. The 
scorers were asked to estimate the af fi nity of the designed complexes, and rank 
them along with the complexes of the docking benchmark. When the submissions 
were analyzed, none of the scorers had ranked the natural complexes signi fi cantly 
above the designs (Fleishman et al.  2011b  ) . Moreover, of the two designs that bound, 
one had been predicted to be stable by two groups, the other, by no one, a result not 
far from random. The obvious conclusion of this experiment was that the scoring 
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functions used in docking did not yield reliable binding energies. They had been 
developed to identify the correct mode of assembly of two proteins known to interact, 
not to determine whether or not they form a stable complex, and this was beyond 
their capacity. A parallel study showed a very poor correlation between experimental 
binding energies and values calculated with several scoring procedures (Kastritis 
and Bonvin  2010  ) , with the same conclusion that the latter could not predict af fi nity.  

    5.6.3   A Structure Af fi nity Benchmark 

 The binding energy of a complex, or more correctly its Gibbs free energy of disso-
ciation ΔG 

d
  derived from the equilibrium constant K 

d
 , is a convenient measure of 

af fi nity. K 
d
  is known from biophysical measurements in solution for many protein-

protein complexes that have been studied by crystallography, and a number of 
authors have attempted to derive ΔG 

d
  from these structures. The  fi rst were Horton 

and Lewis  (  1992  ) . They collected data on 16 protein-protein complexes of known 
structure (mostly protease/inhibitor complexes at that time), and found that a model 
based on just the size and chemical composition of the interface yielded ΔG 

calc
  val-

ues that were within 1 or 2 kcal.mol −1  of the measured ΔG 
exp

 . However, there was an 
exception: their model predicted a very similar af fi nity for BPTI binding to trypsin 
and trypsinogen, whereas the experimental values differed by 10 kcal.mol −1 . Horton 
and Lewis knew the reason why, and their paper discusses it. Trypsinogen, an inac-
tive precursor of trypsin, has  fl exible surface loops that become ordered when BPTI 
binds (Bode et al.  1978  ) . As a result, its af fi nity for the inhibitor is orders of magni-
tude less than trypsin, where no such change occurs, even though the two complexes 
with BPTI are nearly identical in structure. 

 Like trypsin, most of the proteases and inhibitors of the Horton-Lewis set bind as 
rigid bodies, with no major conformation change to affect their thermodynamic 
stability. Later studies of the af fi nity/structure relationship in protein-protein com-
plexes employed larger data sets and more elaborate models of ΔG 

calc
 . But as none 

took into account the structure of the free proteins, they all ignored the role of con-
formation changes, and also the large effect that experimental conditions, especially 
pH, can have on K 

d
 . Not surprisingly, the correlation between ΔG 

calc
  and ΔG 

exp
  was 

poor in these studies. In addition, errors accumulated in the structure/af fi nity sets 
that served to optimize or test the models, as each study re-used data collated by 
previous ones. Many of the experimental values in the sets were incorrect, some 
grossly so; for instance, trypsinogen/BPTI and trypsin/BPTI were given the same 
ΔG 

exp
 , a 10 kcal.mol −1  error. There was an obvious need for a validated test set, and 

in 2010, I teamed with three other groups to assemble a benchmark set of binary 
complexes that would have (a) experimental structures for both the complex and its 
components; (b) a reliable K 

d
  measured under well-de fi ned conditions. The 176 

complexes of the Weng docking benchmark satis fi ed condition (a). They were an 
obvious starting point, and we undertook to scan the biochemical literature in search 
of a K 

d
  for them. 
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 To our great satisfaction, we could locate thermodynamic data for most of the 
docking benchmark, although some complexes had to be replaced by homologs that 
also satis fi ed condition (a). The K 

d
  values, which cover a wide range from 10 −5  to 

10 −14  M, are derived from either a titration, mostly ITC (isothermal titration calorimetry), 
or from the binding kinetics (surface plasmon resonance); a few are from enzymic 
inhibition. The present version of the structure/af fi nity benchmark comprises 144 
complexes, and includes nine pairs that have very similar structures and very differ-
ent af fi nities, due to differences in conformation or in sequence. For each entry, the 
benchmark cites PDB codes for the complex and its components, the K 

d
  and ΔG 

d
  

values with the method and experimental conditions of their measurement, and the 
relevant literature references (Kastritis et al.  2011 , and Table  5.1 ).   

    5.7   Conclusion 

 The major achievement of protein-protein docking has been its contribution to our 
understanding of macromolecular interaction. Docking simulations demonstrate 
that the shape and chemical complementarity of the molecular surfaces is the major 
determinant in rigid-body recognition, which is a valid approximation in a number 
of biological systems. Then, docking has a high predictive value, con fi rmed by 
CAPRI and by experiments in which novel interactions are rationally designed 
 de novo . However, many processes of great biological importance rely on  fl exible 
recognition, in which case the molecular surfaces become complementary only as a 
result of conformation changes. The CAPRI targets that display  fl exible recognition 
have stimulated new developments in the  fi eld of docking. Albeit still be far from 
routine, methods to predict and simulate conformation changes have reached the 
stage where they can produce useful models, and this has relevance to other  fi elds. 
In structural biology, much effort is made to  fi t the atomic resolution structure of 
assembly components into lower resolution images from cryo-electron microscopy, 
or an envelope derived from small-angle X-ray scattering, while allowing the structure 
to change. This is a typical  fl exible docking problem, to which some docking algo-
rithms have already been applied. In drug design, the target proteins often make 
other interactions than the one of interest. This may induce conformation changes 
and allosteric effects that should be taken into account in the design procedure. 
Similarly, computational biologists may want to study how protein folding is 
affected by external interactions, in a homodimer for instance. Beyond the structure, 
we want to understand what governs the speci fi city of macromolecular recognition 
and the stability of protein assemblies. This implies that we should be able to model 
the thermodynamics and the mechanism of the association reaction. The recent 
attempt to predict af fi nity within the CAPRI experiment suggests that present force 
 fi elds are inadequate, and new methods must be developed. The structure/af fi nity 
benchmark assembled on this occasion should help biophysicists to correlate func-
tion to structure, and remind them that the structure may change as new interactions 
are formed.      
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   6.1   Introduction 

 When it comes to regulating protein activity, complexation mechanisms are just as 
important as ligand binding. Most proteins never exist in isolation – instead they 
serve as building blocks for more complex systems. Some proteins form multimers 
to ensure maintain spatial alignment (required e.g. for phase separation in the dual 
lipid layer and formation of hydrophilic compartments in ion channels (Unwin 
 2005 ; Jasti et al..  2007  ) ); others may require temporary binding of cofactors (e.g. 
regulation of transcription factors (   Huxford et al.  1998  ) ), or are part of complicated 
protein machinery (e.g. proton-driven rotors in ATP synthases (Boyer  1997 ; Oster 
and Wang  1999,   2003  ) ). 

    D.   Marchewka   •     M.   Banach   •     I.   Roterman-Konieczna   (*)
     Department of Bioinformatics and Telemedicine ,  Jagiellonian 
University – Medical College ,   Lazarza 16 ,  31-530   Cracow ,  Poland   
e-mail:  myroterm@cyf-kr.edu.pl  

   Faculty of Physics ,  Astronomy and Applied Computer Science, Jagiellonian University ,
  Reymonta 4 ,  30-059   Cracow ,  Poland    

    W.   Jurkowski  
     Computational Biology Group, Luxembourg Centre  for Systems 
Biomedicine ,  University of Luxembourg ,   Campus Belval 7, avenue des 
Hauts-Fourneaux ,  L-4362   Esch-Belval ,  Luxembourg    

    Chapter 6   
 Prediction of Protein-Protein Binding Interfaces       

       Damian   Marchewka   ,    Wiktor   Jurkowski   ,    Mateusz   Banach,    and    Irena 
  Roterman-Konieczna          



106 D. Marchewka et al.

 In spite of the ever-increasing quality and cost-effectiveness of experimental 
techniques,  in silico  protein interaction models remain an important tool for the 
study of biological processes which involve molecular complexation – such as sig-
naling pathways and biological clock systems (Johnson et al.  2008 ; Bass and 
Takahashi  2010 ; Duong et al.  2011 ; van Gelder et al.  2003  ) . Analysis of protein-
protein interactions may be performed on multiple levels of accuracy. On the most 
basic level it is usually suf fi cient to determine whether interaction occurs at all 
under certain conditions. This is done in order to infer the so-called protein-protein 
interaction (PPI) networks. Such networks can then be re fi ned by predicting protein 
binding interfaces (to determine their approximate steric relationships). Accurately 
modeling the 3D structure of the entire complex is the most challenging task, requir-
ing knowledge of molecular interactions on the atomic level. 

 Over the past two decades many methodologies and algorithms have been devel-
oped and applied (with varying success) on each of these three distinct levels. 

 An objective measure of the accuracy of protein complexation models is pro-
vided by the CAPRI (Critical Assessment of Predicted Interactions) challenge (see 
preceeding chapter). Similarly to CASP contestants are provided with the necessary 
input data (structures of individual monomers or amino acid sequences – if the 
structure is easy to predict). Since the goal is to determine subtle details of protein-
protein interfaces, prediction quality is dependent not only on the number of cor-
rectly modeled contact points, but also on the accuracy of atom positions within the 
interface zone. Solutions are penalized by the number of steric clashes between 
interacting chains. Successive editions of the CAPRI challenge are being organized 
on a regular basis since 2001. Numerous publications are available regarding the 
challenge itself and its most accurate prediction pipelines (Janin et al.  2003 ; Janin 
and Wodak  2007 ; Janin  2007 ,     2010a,   b ; Kastritis et al.  2011 ). 

 Docking analysis is a complex process, typically composed of three phases: 
(1) selection of interface candidates based on experimental data (or predictions) to 
focus the conformational search; (2) generation of the protein complex via rigid-
body docking; (3) ranking and scoring of results. Thus, we limit our description to 
tools most often used in these sophisticated algorithms. 

 Our study focuses on prediction of protein interfaces – a task which should enable 
us to detect protein complexation events and may also serve higher-order structure 
prediction work fl ows. Even on this basic level existing tools are incapable of identi-
fying interface residues with consistent accuracy. The varying dif fi culty of modeling 
complexation events suggests that many different binding mechanisms come into 
play and thus many different kinds of interacting residues can be observed (differing 
with respect to their speci fi city, sequence conservation, hydrophobicity, etc.) 

 This chapter presents four differing approaches to prediction of protein-protein 
binding interfaces by means of molecular docking. We will compare FOD with three 
state-of-the-art models: HADDOCK, ZDOCK and RosettaDock, each of which is an 
implementation of rigid-body grid-based docking algorithms. Besides the speci fi cs 
of formulation and parameterization of force  fi elds, the main difference between 
these three distinct programs lies in their approach to focusing the conformational 
space search. ZDOCK allows the user to select speci fi c amino acids while HADDOCK 
calls for experimental preselection of interface residues. Users of RosettaDock may 
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take advantage of the Rosetta modeling package to prede fi ne docking sites and design 
a re fi nement pipeline which consists of global and local search steps. 

 Other toolkits available on the Internet but not detailed in this chapter include 
Autodock 3 (Cosconati et al.  2010  ) , eHiTs (Zsoldos et al.  2006  ) , MOE (Feldman 
and Labute  2010  ) , FlexX (Kramer et al.  1999  ) , ClusPro (Kozakov et al.  2010  ) , 
GRAMM-X (Tovchigrechko and Vakser  2006  ) , the PatchDock and SymmDock 
(Schneidman-Duhovny et al.  2005  )  programs based on shape complementarity 
principles and symmetry restrictions, as well as Hex which bases on spherical 
 harmonic representations (Macindoe et al.  2010  )   

    6.2   Programs Description 

 The models applied are presented in alphabetic order. 

    6.2.1   Fuzzy Oil Drop Model 

 The “fuzzy oil drop” model aims to not only recognize protein complexation sites, 
but also discover the mechanisms which cause proteins to form complexes (Konieczny 
et al.  2006  ) . Having explained the premise of the model in the previous chapter we 
will now limit ourselves to a brief recapitulation of its key features. At the core of the 
model lies the assumption that proteins which undergo folding in an aqueous envi-
ronment tend to internalize hydrophobic residues while exposing hydrophilic resi-
dues on their surfaces. Entropic considerations suggest that a standalone protein 
molecule should assume a globular form as a result of interaction with water. Once 
folded, the protein possesses a clearly identi fi able hydrophobic core (hence the refer-
ence to Kauzmann’s “oil drop” concept (Kauzmann  1959  ) ), which can be modeled 
with a 3D Gauss-like hydrophobicity distribution  fi eld. Particularly good agreement 
with this model can be observed e.g. in fast-folding proteins (   Roterman et al.  2011a, 
b ), although it should be noted that most proteins exhibit certain deviations from the 
“ideal” hydrophobicity distribution. Such deviations are caused by the in fl uence of 
external factors on the folding process – this includes ligands and other protein 
molecules which form complexes with the protein in question. 

 The     Δ �H   pro fi le is a measure of the discrepancy between the expected hydropho-
bicity (given by Gauss’ distribution –    �Ht   ) and the actual (observed) hydrophobicity 
for the  i th aminoacid (or, more speci fi cally, for its effective atom, placed at the geo-
metric center of the amino acid’s side chain). Actual hydrophobicity (    �Ho   ) can be 
determined by calculating hydrophobic interactions between the amino acid and all 
of its neighbors in a 9 Å radius. According to Levitt (Levitt  1976  ) :

     Δ = −� � �
i i iH Ht Ho     
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 The value of     Δ �H   expresses irregularities in the distribution of hydrophobicity, 
which can manifest themselves as either localized de fi ciencies or excess of hydro-
phobicity. De fi ciencies are typically associated with the presence of cavities in the 
globular protein body, while excess hydrophobicity, when present on the surface, 
indicates potential complexation sites. Such sites are naturally attracted to one 
another – this interaction shields them from the entropically disadvantageous con-
tact with water, ensuring the formation of a stable complex. 

 Successful prediction of complexation sites via this mechanism is possible e.g. 
for the thioredoxin A homodimer (2VOC) with a mutated active center composed 
of mixed disul fi de dimers, resembling the enzyme-substrate reaction intermediate 
(Kouwen et al.  2008  ) . The biological role of this protein is to assist in electron trans-
port. Each monomer contains strongly hydrophobic Cys and Val residues, repre-
senting local minima of the     Δ �H   pro fi le. Both residues are exposed on the protein 
surface and therefore preferentially attract hydrophobic residues belonging to the 
complementary monomer (Fig.  6.1 ). The resulting dimer is a good example of the 
applicability of our model.  

  Fig. 6.1    Thioredoxin homodimer complex (2VOC) with a mutated active center, composed of 
mixed disul fi de dimers which resemble the enzyme-substrate reaction intermediate.  Top :     Δ �H
  pro fi le indicating residues engaged in complexation (according to PDBSum).  Bottom : 3D ribbon 
model with CPK representations of local     Δ �H   pro fi le minima (highlighted in the  top  diagram)       
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 Another example of structural accordance with the presented model is the 
transmembrane protein discussed in Zobnina and Roterman  (  2009  ) , where the 
central hypothesis of the “fuzzy oil drop” model is validated in the context of 
interaction between proteins and cellular membranes.  

    6.2.2   HADDOCK – High Ambiguity Driven Biomolecular 
DOCKing Based on Biochemical and/or Biophysical 
Information 

 HADDOCK implements algorithms for systematic search on a grid (Dominguez 
et al.  2003 ; de Vries et al.  2007  ) . Its key innovation lies in a heuristic approach 
to experimental data, including NMR data such as residual dipolar couplings and 
relaxation (   van Dijk et al.  2005a,   b,   c  ) , sequence conservation, mutagenesis, 
epitope mapping, H-D exchange or crosslinking experiments to provide distance 
restraints, diffusion anisotropy (   van Dijk et al.  2006a,   b  ) , solvated docking (van 
Dijk and Bonvin  2006  )  and  fl exible protein-DNA docking (van Dijk et al.  2006b  ) . 
If no experimental cues are available, docking is guided by randomly selected 
patches of tentatively active residues and restrained by molecular center-of-mass 
criteria. 

 Prior to running HADDOCK a set of Ambiguous Interaction Restraints (AIRs) 
has to be generated. This procedure involves distinguishing “active” and “passive” 
residues. Active residues are those which interact with the target protein while 
remaining in contact with water. Passive residues are also exposed to water and lie 
in direct proximity to active ones. The cutoff criterion is not explicit; rather, it 
acknowledges the structures of important functional groups. Determination is based 
on NMR data and requires end-user assessment. 

 HADDOCK also enables identi fi cation of protein-protein interaction candidates 
on the basis of the so-called conservative sequences. This process necessitates further 
division of residues into “active” and “passive” sets (de Vries et al.  2006  ) . If none 
of the presented approaches is feasible (e.g. due to the lack of NMR input), 
identi fi cation can proceed by way of modeling solvent-accessible areas. 

 HADDOCK computations have proven quite successful in several editions of the 
CAPRI challenge (van Dijk et al.  2005a,   b ; de Vries et al.  2007  ) .  

    6.2.3   RosettaDock 

 RosettaDock works as an extension of the Rosetta structure prediction package. 
Similarly to other docking algorithms, the  fi rst phase of the search involves sam-
pling the rigid-body conformational space with side chains represented by single 
pseudo-atoms. Docking conformations may be re fi ned in the second (full-atom) 
phase via small-scale perturbations of the complex and side chain optimization, 
employing rotamer packing and continuous minimization in order to avoid entrapment 
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in local energy minima (Lyskov and Gray  2008 ; Gray et al.  2003  ) . Results are 
ranked on the basis of residue-residue contacts and clashes, as well as the properties 
of pairwise residue-environment and residue-residue interactions derived from pre-
viously registered datasets (Lyskov and Gray  2008  ) . In the re fi nement phase the 
goal is to  fi nd a structure with the lowest possible free energy. Energy calculations 
acknowledge van der Waals forces (Gray et al.  2003  ) , orientation-dependent hydrogen 
bonding (Kortemme et al.  2003  ) , implicit Gaussian solvation (Lazaridis and Karplus 
 2000  ) , side-chain rotamer probabilities (Dunbrack and Cohen  1997  )  and electro-
static potentials (Gray et al.  2003  ) . 

 Input datasets consist of subunit (monomer) structures expressed in the PDB 
format. It is also necessary to determine a suitable starting structure, free from steric 
clashes. Based on the results of the CAPRI challenge, approximately 1,000 struc-
tures are generated for each pair of interacting proteins. The program then deter-
mines the relationship between free energy and RMS-D values for the  fi nal structure 
and for the initial conformation. Success is de fi ned as the ability to locate an area in 
the RMS-D/free energy space where both parameters are suitably low. The best 
result (lowest values of both parameters) is treated as the correct  fi nal structure. 

 RosettaDock is therefore a multistart, multiscale Monte Carlo-based modeling 
package. The end result is highly dependent on the initial structure, which – as 
already mentioned – should be provided by the user, preferably on the basis of 
experimental data (e.g. site-directed mutagenesis). In addition, RosettaDock is 
capable of exploiting structures generated by other global search-oriented software 
packages, such as ClusPro (  http://cluspro.bu.edu/login.php    ) (Kozakov et al.  2010  ) , 
GRAMM-X (  http://vakser.bioinformatics.ku.edu/resources/gramm/     grammx) 
(Tovchigrechko and Vakser  2006  ) , HEX (  http://hex.loria.fr/    ) (Macindoe et al.  2010  ) , 
PatchDock (  http://bioinfo3d.cs.tau.ac.il/PatchDock/    ) (Schneidman-Duhovny et al. 
 2005  )  and SymmDock (  http://bioinfo3d.cs.tau.ac.il/SymmDock/    ) (Schneidman-
Duhovny et al.  2005  ) . 

 RosettaDock has been notably successful in blind-prediction studies within the 
CAPRI challenge (Gray et al.  2003 ; Lensink et al.  2007  ) .  

    6.2.4   ZDOCK (  http://zdock.bu.edu/    ) 

 ZDOCK is a rigid-body simulation toolkit. The docking procedure involves geomet-
ric alignment of the surfaces of two molecules, treated as potential intermolecular 
complexation sites. The “target” molecule is rigid, while the complementary mol-
ecule is rotated around its surface using a grid with a prede fi ned density. This 
systematic search bases on Fast Fourier Transform algorithms (Wiehe et al.  2008 ; 
Mintseris et al.  2005,   2007 ; Chen and Weng  2002,   2003 ; Mintseris and Weng  2003 ; 
Li et al.  2003 ;    Chen et al.  2003a,   b,   c ; Pierce et al.  2005,   2007 ; Pierce and Weng 
 2007,   2008 ). ZDOCK applies a scoring function which acknowledges shape com-
plementarity, electrostatics and pairwise atomic potentials determined on the basis 
of known protein complexes. A separate scoring package (RDOCK) is provided, 

http://cluspro.bu.edu/login.php
http://vakser.bioinformatics.ku.edu/resources/gramm/
http://hex.loria.fr/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://bioinfo3d.cs.tau.ac.il/SymmDock/
http://zdock.bu.edu/
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enabling ZDOCK to estimate the strength of interactions through CHARMM 
force fi elds (MacKerell et al.  1998 ; Brooks et al.  2009  ) . The conformational search 
procedure implemented in ZDOCK is often applied in docking protocols which 
typically augment it with a scoring scheme. It has been successfully tested in sev-
eral editions of the CAPRI challenge (Wiehe et al.  2005,   2007 ; Chen et al.  2003a, 
  b,   c ; Mintseris et al.  2005  ) . 

 In our study ZDOCK was used with its default settings. Proteins were docked on 
a dense 6 Å grid, producing 54,000 unique alignments. In each complex the longer 
chain (receptor) was immobilized while the other chain was rotated around the recep-
tor molecule. The resulting alignments were subsequently scored using ZDOCK, 
re fl ecting surface complementarity, electrostatic energy and statistical data on atomic 
contact potentials in the interface zone. The highest ranked structures were clustered 
by applying the Root Mean Square Deviation (RMSD) distance criterion for all 
heavy atom positions. All structures with RMSD lengths of less than 10.0 Å were 
clustered together, while outliers were removed from pool. Such ranking-based clus-
tering enables relatively fast extraction of the most representative alignments.   

    6.3   Results 

 In order to validate the proposed complexation site identi fi cation method, a set of 
homodimers has been prepared by scanning the PDB database for occurrences of 
the “HOMODIMER” keyword. Structures which did not consist of exactly two 
chains, or which occurred in complexes with DNA, were exempted from analysis. 
In addition, the Needleman-Wunsch (Needleman and Wunsch  1970  )  alignment 
algorithm was applied to verify sequence similarity (identity): chains differing by 
more than 20 amino acids (through substitutions or insertions/deletions) were dis-
carded, resulting in a set of 208 acceptable homodimers. This selection was based 
upon PDB as it existed in March 2010. 

 Results produced by the above described programs were evaluated in terms of 
their accuracy, which can be expressed by four distinct ratios: TP (true positive), FP 
(false positive), TN (true negative) and FN (false negative). The study was based on 
the F-measure and MCC criteria presented in the previous chapter. 

 The “fuzzy oil drop” model identi fi es residues involved in complexation by 
searching for local maxima (i.e. de fi ciencies) and minima (i.e. excesses) of the     Δ �H
  pro fi le, as compared to the idealized 3D Gauss distribution of hydrophobicity. This 
identi fi cation is dependent on a predetermined set of thresholds (cutoff values), 
which, in our study, was pegged at 80% of the peak value (for minima and maxima 
of the pro fi le). Thus, residues whose     Δ �H   values were in excess of 80% of their 
respective peaks (or troughs), were suspected of involvement in complexation. The 
fraction of these residues which are actually involved in complexation constitutes 
the true positive (TP) ratio. Similarly, the fraction of residues which the algorithm 
suspects of involvement in complexation but which do not actually participate in 
forming complexes is de fi ned as the false positive (FP) ratio. This operation is 
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repeated for several distinct cutoff values (e.g. 80%), resulting in a set of TP/FP 
ratios, as well as the corresponding TN/FN ratios, calculated in an analogous manner. 
ROC curves may be applied to quantitative analysis of the results produced by the 
“fuzzy oil drop” model for various     Δ �H   cutoff levels (Fawcett  2006  ) . 

 Below we discuss the accuracy of results produced by various tools, listed in 
alphabetical order. 

    6.3.1   Fuzzy Oil Drop Model 

 Figure  6.2  presents a summary of results generated by the “fuzzy oil drop” model, 
in terms of F-measure and MCC criteria. Additional numerical data can be found in 
Table  6.1 . Since the MCC and F-measure values depend on the assumed cutoff 
level, all calculations assumed a threshold of 80% (meaning that residues are 
identi fi ed as participating in complexation if their corresponding     Δ �H   values are 
between 80 and 100% of peak levels).   

 The identi fi cation method based on the “fuzzy oil drop” model, when used to 
pinpoint a single complexation site, produced the following results: for     Δ �H   of 80% 
(−) – 35 and 25% on the F-measure and MCC scales respectively, and for     Δ �H   of 
80%  (+) – 37 and 30% on both scales. Due to the large number of low-ranked results 
(with an aggregate score of 0), the LOWEST category has been omitted. The 80% (-) 
and 80%(+) denotes the 80% level for local maxima and local minima respectively. 

 It should be noted that, when applying a cutoff level, the set of true positives (TP) 
usually includes all amino acids directly adjacent to the target residue, even when these 
amino acids are not directly engaged in complexation. This makes the FP biased. 

 According to the model, residues which represent local     Δ �H   pro fi le minima possess 
excess hydrophobicity compared to theoretical predictions, while     Δ �H   pro fi le minima 
correspond to hydrophobicity de fi ciencies. Thus, the former can be expected to 
seek out similarly conditioned residues on the surface of the partner molecule. 
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  Fig. 6.2    Comparison of F-measure and MCC values for the “fuzzy oil drop” model. The assumed 
cutoff level was 80% of either the highest or the lowest value of the     Δ �H   pro fi le       
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This is true e.g. for the 1TR8 homodimer, which provides a particularly good example 
of the presented mechanism (Spreter et al.  2005  ) . Figure  6.3  depicts its     Δ �H   pro fi le, 
indicating which residues are involved in complexation and presenting the corre-
sponding ROC curve plotted on the FPR/TPR graph, where the surface area bounded 
by the curve and the diagonal is appropriately large (74% of the unit triangle).  

   Table 6.1    Summary of most accurate complexation site predictions   

     Δ �H   pro fi le for     Δ �H    > 0      Δ �H   pro fi le for     Δ �H    < 0 

 PDB ID  Chain  Surface  PDB ID  Chain  Surface 

 1TR8  A  0.742  1YGA  B  0.82 
 1TR8  B  0.714  1YGA  A  0.78 
 1G8M  A  0.609  3GYZ  A  0.56 
 3CRN  A  0.573  1 G85  A  0.536 
 2ARV  A  0.550  2QM8  A  0.508 
 2R52  B  0.543  1 T09  A  0.471 
 1G8M  B  0.542  1 T09  B  0.453 
 3GYZ  A  0.527  2E1N  A  0.438 
 1HDF  B  0.511  2WCI  A  0.436 
 1HUX  B  0.467  2FJT  A  0.427 
 1HUX  A  0.457  2FJT  B  0.425 
 2A9U  B  0.449  2ARV  B  0.405 
 1 V58  A  0.447  1BFT  A  0.381 
 3FYF  A  0.442  2QM8  B  0.378 
 2A9U  A  0.431  1BFT  B  0.375 
 1FZV  A  0.430  1SD4  A  0.368 

  The ranking criterion is the surface area bounded by the ROC curve (placed above the diagonal in 
the TPR/FPR relation graph – see Fig.  6.3 ) and the corresponding diagonal  
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  Fig. 6.3        Δ �H   pro fi le of the 1TR8 homodimer, indicating residues involved in complexation ( left ). 
The graph on the  right-hand side  shows the ROC curve corresponding to pro fi le maxima (hydro-
phobicity de fi ciencies). The relatively large area bounded by this curve and the diagonal re fl ects 
excellent accordance with theoretical predictions and – correspondingly – high accuracy of results       
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 Reviewing the 3D representation of the homodimer reveals that residues which 
correspond to local     Δ �H   pro fi le maxima form a docking cavity, anchoring the part-
ner molecule (Fig.  6.4 ).  

 The 1YGA homodimer provides an example of complexation mediated by sur-
face residues with excess hydrophobicity. Contact between both monomers enables 
their surface-bound hydrophobic residues to shield one another from water, resulting 
in the formation of a stable complex. This phenomenon is illustrated in Fig.  6.5 .  

 Figure  6.6  presents a 3D view of the 1YGA homodimer, indicating which 
 residues correspond to     Δ �H   pro fi le minima and are actually involved in complex-
ation. Such residues, when present on the surface of the molecule, hint at a potential 
complexation site (Fig.  6.6 ).  

 An interesting phenomenon occurs in the 1SD6 homodimer (Safo et al.  2005 ). Here, 
one monomer exposes residues with low hydrophobicity, which, in turn, interact with 
areas of excess hydrophobicity on the surface of its partner. This homodimer ranks near 
the top of the F-measure list, both for     Δ �H   >0 and     Δ �H   <0. As it turns out, 1SD6 mono-
mers are capable of mutually compensating their deviations from the idealized hydro-
phobicity distribution, by forming a “lock-and-key-like” con fi guration (Fig.  6.7 ).  

 The list of 51 nonbonding interactions between 1SD6 monomers includes 24 
“lock-key” pairs (i.e. pairs where one residue has a positive     Δ �H   value while the 
other one corresponds to a negative value of the same pro fi le). We can therefore 
conclude that, in the case of 1SD6, complexation is dominated by mutual compen-
sation of deviations from the idealized pro fi le. Figure  6.8  further illustrates this 
situation and in 3-D presentation (Fig.  6.9 ).    

  Fig. 6.4    The 1TR8 homodimer.  Red spheres  in the A chain indicate residues which correspond to 
local     Δ �H   pro fi le maxima (local hydrophobicity de fi ciencies). In line with theoretical predictions, 
these residues are actually involved in complexation       
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    6.3.2   HADDOCK 

 HADDOCK computations were performed using the web service available at   http://
haddock.science.uu.nl/enmr/services/HADDOCK/haddockserver-easy.html    . Input 
data consisted of PDB  fi les describing “active” amino acids. The Gramm-X prepro-
cessing package (Tovchigrechko and Vakser  2006 ) was not used. HADDOCK 
works by optimizing binding energy values in a six-dimensional space (three transla-
tions + three rotations). The “passive amino acid” option was skipped. 
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  Fig. 6.6    The 1YGA homodimer.  White spheres  in the A chain indicate residues which correspond 
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residues on the molecule surface enables the model to accurately identify complexation sites       
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hydrophobicity appear to be paired with areas of low hydrophobicity of the surface of the partner 
molecule. This suspicion is further con fi rmed by analysis of the 3D representation of 1SD6       

  Fig. 6.8    Pairwise interactions in the 1SD6 homodimer. ( a ) Pairs of residues with complementary 
( mirrored ) deviations from the idealized pro fi le (positive and negative values of     Δ �H   ); (b) Pairs 
where both participating residues have identically signed     Δ �H   values. Note that interaction 
between residues with negative     Δ �H   values indicates shared hydrophobicity excess, while pairing 
of residues with positive     Δ �H   values corresponds to shared hydrophobicity de fi ciencies. Scale is 
preserved between  fi gures to enable quantitative comparisons       
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  Fig. 6.9    The 1SD6 homodimer. Local     Δ �H   pro fi le maxima ( red ) are indicated for the A chain 
( turquoise ), while local minima ( white ) are highlighted in the B chain ( salmon ). In this case, inter-
acting residues mutually compensate their respective deviations from the idealized hydrophobicity 
pro fi le       

 For each protein dimer HADDOCK generated ten possible conformations. From 
these, the top three structures were further processed to determine which residues 
form the complexation site (this step was based on custom scripts). Figure  6.10  illus-
trates the BEST and LOWEST solutions produced by HADDOCK, while Fig.  6.11  
ranks the BEST and LOWEST structures in terms of their F-measure and MCC scores. 
Of note is the high similarity of both rankings, differing only by a single item.    

    6.3.3   RosettaDock 

 The starting structure for RosettaDock was generated using Gramm-X (Protein-
Protein Docking Web Server v.1.2.0, Center for Bioinformatics of the University of 
Kansas,   http://vakser.bioinformatics.ku.edu/resources/gramm/grammx    ). This soft-
ware package applies FFT in its search for optimal structures. Input data consists of 
the PDB protein structure and the numerical positions of amino acids which belong 
to its complexation site (according to PDBsum). Gramm-X produces a ranked list 
of structures, the topmost of which was selected as input for RosettaDock. 

 RosettaDock is based on a local docking algorithm which seeks out all confor-
mations in the vicinity of a user-speci fi ed starting point. All structural translations 
are performed with a step of approximately ±3 Å in the longitudinal plane and ±8 Å 
in the lateral plane. Rotations apply a step of 8° and cover the entire 360° angle around 
the geometric centers of participating structures. A total of 1,000 independent simu-
lations were performed for random conformations (i.e. random steric adjustments). 
Results were ranked according to their total free energy and the highest ranked 
structure was selected for further processing. Its complexation site was thoroughly 
mapped (by applying the PDBsum distance criterion) using custom scripts. 
Complexation site mapping relied on the distance between individual monomers, 
with cutoff distances derived from PDBsum. 

 

http://vakser.bioinformatics.ku.edu/resources/gramm/grammx
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  Fig. 6.10    Best ( top ) and worst ( bottom ) solutions produced by HADDOCK and ranked according 
to the F-measure criterion. A, B – chain identi fi cation       

 It is worth noting that over 60% of complexes produced by ROSETTA-Dock 
achieved a score higher than 0.8 on the MCC scale, while 71% obtained a score 
higher than 0.4 on the F-measure scale (Figs.  6.12  and  6.13 ).    

    6.3.4   ZDOCK 

 The ZDOCK service deployed at   http://zdock.umassmed.edu/     can be used to 
 perform computations. Input consists of structural descriptions of two protein mol-
ecules. The user should also specify which molecule is to act as a receptor (the 
remaining molecule is treated as the ligand and subjected to dynamic docking). 
From a computational standpoint, it is advisable to select the smaller molecule as 
the ligand. Within the ligand, certain residues can be excluded from the binding site 
(this usually involves a handful of residues that are on the opposite side of where the 

 

http://zdock.umassmed.edu/
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interface is expected to be found). For a single pair of proteins with properly 
 established sets of candidate residues calculations take approximately 5 min. The 
program is capable of generating up to 2,000 different complexes, although the list 
may be restricted by the user – in our study we requested a list of 10 structures, 
ranked according to their  fi tness scores (Fig.  6.14 ).    

    6.4   Comparative Analysis 

 The goal of comparative analysis is to identify complexes which speci fi cally 
demonstrate the properties of a given computational tool and its underlying theo-
retical model. In order to highlight differences between models we have focused on 
the best and worst structures produced by each application (according to F-measure 
and MCC criteria). Table  6.2  presents a list of complexes which ranked among the 
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  Fig. 6.11    Best ( top ) and worst ( bottom ) solutions produced by HADDOCK and ranked according 
to the MCC criterion. 16 solutions are depicted for each case.  Colored bars  indicate differences 
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top 10 or bottom 10 solutions (usually scoring 0 on either the F-measure or the 
MCC scale in the latter case). A more detailed analysis of each complex is required 
to determine the reasons behind these extreme values.  

 The summary presented in Table  6.2  enables us to study the speci fi c features of 
each complexation model. Due to the fact that the hydrophobic core model is mark-
edly different from all other software packages, we will focus our analysis on the 
best and worst results produced by this model. This decision is also conditioned by 
the procedures employed by other toolkits: unlike HADDOCK, RosettaDock or 
ZDOCK, the “fuzzy oil drop” model does not generate a large number of candidate 
structures, nor does it involve clustering. Instead, it produces a single     Δ �H   pro fi le 
which it then uses to pinpoint a speci fi c complexation site. In the case of the “fuzzy 
oil drop” model, it is also possible to determine the actual causes of successes and 
failures in predicting complexation sites. For these reasons our comparative analysis 
will focus on the proteins listed in the  fi rst row and the  fi rst column of Table  6.2 . 
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 The “fuzzy oil drop” model identi fi es complexation sites as speci fi c deforma-
tions in the protein’s hydrophobic core associated with the presence of residues 
whose actual hydrophobicity values diverge from theoretical predictions. When the 
core is perturbed by more than one external molecule (for instance by a protein and 
a ligand), it becomes dif fi cult to distinguish one distortion from the other. Thus, 
accurate prediction of ligand binding and protein complexation sites depends on 
measuring the relative signi fi cance of each factor. 

 For the sample protein designated 1G8M (transferase, hydrolase – crystal struc-
ture of avian atic, a bifunctional transformylase and cyclohydrolase enzyme in purine 
biosynthesis – EC 2.1.2.3, EC 3.5.4.10) (Greasley et al  2001 ) the “fuzzy oil drop” 
model was able to correctly identify the complexation site (by locating residues 
which represent local maxima of the     Δ �H   pro fi le). However, this protein is also capable 
of binding a ligand (speci fi cally, C 

10
 H 

14
 N 

5
 O 

8
 P – Guanosine-5 ¢ -monophosphate). 

Identifying this ligand’s binding pocket would likely prove dif fi cult as the deformation 
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  Fig. 6.13    Worst solutions produced by RosettaDock, ranked according to F-measure ( top ) and 
MCC ( bottom ) criteria. Only chains A are shown       
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   Table 6.2    Comparison of correct and incorrect solutions, indicating the validity of various 
models   

 Lowest → 
 Best ↓  FOD  HADDOCK  RosettaDock  ZDOCK 

 FOD  1SD6  1BEB  1G8M 
 1 T09  1 T09  1 T09 
 2QM8  1TR8  1YGA 
 3FYF  2R52 

 HADDOCK  3SDH / LL  1QLL  1 V94 
 2QX0 / LL  2BQP  2E4U 

 2GQR  3D57 
 RosettaDock  1DVZ / LL 
 ZDOCK  1X2I 

 2FJT 
 2Q3A 
 3GWL / LL 
 3GYZ / LL 

  “LL” stands for “ large ligand ”, which, in the case of the “fuzzy oil drop” model, plays a key role 
in shaping the molecule’s hydrophobic core, outstripping the in fl uence of complexation events  
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  Fig. 6.14    Best ( top ) and worst ( bottom ) results produced by ZDOCK and ranked according to the 
MCC criterion. Only chain A is shown       
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triggered by the ligand is far less pronounced than the one caused by protein complex-
ation. It should be noted that other tools described in this chapter ran into serious 
problems when trying to model the 1G8M complex, most likely due to the relatively 
large surface area of its complexation interface (Fig.  6.15 ).  

 The set of homodimers for which the “fuzzy oil drop” model generates incorrect 
predictions includes the 2Q3A (immune system) protein (Bertini et al.  2004  ) . This 
protein does not bind any additional ligands and moreover, its hydrophobicity pro fi le 

  Fig. 6.15    The 1G8M homodimer.  Top : 3D representation, showing complexation ( dark blue ) and 
ligand binding ( yellow ) areas.  Bottom :     Δ �H   pro fi le with the corresponding residues highlighted 
(same colors as above). Protein complexation is largely mediated by residues with high     Δ �H   values, 
while the binding pocket consists of residues with average     Δ �H   values, suggesting that this pocket 
may be dif fi cult to identify by using the “fuzzy oil drop” model       
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is highly consistent with idealized values (O/T = 0.137; O/R = 0.173 – see Fig.  6.16  
for details), suggesting that complexation does not signi fi cantly distort the structure 
of each monomer’s hydrophobic core. We call this phenomenon  static complex-
ation : since the hydrophobic core is not affected, the “fuzzy oil drop” model cannot 
make accurate predictions regarding the complexation interface. Accordingly, cases 
where the presence of an external protein molecule triggers signi fi cant deformations 
in the protein’s core (such as in 1G8M) are referred to as  dynamic complexation . 
This distinction provides a strong indication that complexation mechanisms may 
take on many different forms. Active complexation appears to be an example of 
chaperone-like activity (where the complementary molecule acts as the chaperone); 
however in 2Q3A individual monomers evolve separately and develop a stable ter-
tiary structure which includes a well-ordered hydrophobic core.  

 The 1X21 protein, which is a fragment of a helix-hairpin-helix DNA binding 
domain in a larger hydrolase molecule, does not constitute a functional group on its 
own (Nishino et al.  2005  ) . Nevertheless, its structure exhibits a certain ordering of 
hydrophobicity, approximating the idealized “fuzzy oil drop” model. For this pro-
tein, O/T = 0.143 while O/R = 0.177, indicating a situation similar to 2Q3A (where 
the dimer emerges through static aggregation of two molecules without distorting 
their respective cores). For this reason, analysis of the     Δ �H   pro fi le (i.e. its minima 
and maxima) is not suf fi cient to identify the residues involved in complexation. 

 The 1DVZ protein (hormone/growth factor – human transthyretin in complex 
with o-tri fl uoromethylphenyl antranilic acid) binds a potential drug which (according 
to theoretical predictions) should help prevent the buildup of amyloidogenic plaque 
(Klabunde et al.  2000  ) . Analysis of its     Δ �H   pro fi le suggests that the presence of a 
ligand does not result in substantial structural changes in the transthyretin molecule; 
however section 69–80 diverges from the theoretical optimum (in terms of hydro-
phobicity) and introduces an element of instability which may, in turn, destabilize 
the entire molecule. Section 69–80 appears to be connected with the ability of tran-
sthyretin to attach additional molecules, facilitated by rapid structural changes. 
While somewhat speculative, this conclusion is justi fi ed: studies suggests that 
“divergent” sections frequently participate in complexation processes (Fig.  6.17 ).  

 3SDH (cooperative dimeric hemoglobin from the blood clam  Scapharca inaequi-
valvis ) is another example of a protein where the “fuzzy oil drop” does not provide 
suf fi cient data to pinpoint complexation sites (Royer  1994  ) . This protein has been 
studied both in its unliganded (deoxy) and carbon monoxide (CO) liganded states. 

 In the case of 3SDH, the presence of a large ligand (heme) dominates the activity 
of hemoglobin. Lys 96 and Phe 97 participate in two important processes: binding 
heme and facilitating intersubunit communication. The “fuzzy oil drop” model cor-
rectly singles out these residues as belonging to a local hydrophobicity maximum. 
Other residues which form the complexation interface are somewhat less pronounced 
on the     Δ �H   graph – which is why the graph itself is not suf fi cient to accurately 
model the complexation site. Figure  6.18  (top) also highlights Ile 114, Trp 135 and 
Leu 138 (white spheres), which – despite being strongly hydrophobic – generate a 
localized hydrophobicity de fi ciency, resulting from the relatively loose packing of 
residues in their region and suggesting a potential interaction site.  
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  Fig. 6.16    The 2Q3A homodimer and its hydrophobicity pro fi le.  Top : theoretical (T) and observed 
(O) values, with residues engaged in P-P interaction marked in  yellow  (residues belonging to the 
complementary monomer are marked in  pink ).  Bottom : 3D representation of the resulting homodimer, 
with the complexation interface marked in  yellow        
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 The summary of structural analysis of the proteins discussed in Table  6.2  are 
given in Table  6.3 .  

 No particular correlation can be found for characteristics of protein-protein com-
plexes as shown in Table  6.3 . The HADDOCK program was the best for complex-
ation interface characterized by the lowest number of hydrophobic residues engaged 
in complexation. 

 The “fuzzy oil drop” model identi fi es complexation sites as speci fi c deforma-
tions in the protein’s hydrophobic core associated with the presence of residues 
whose actual hydrophobicity values diverge from theoretical predictions. When the 
core is perturbed by more than one external molecule (for instance by a protein and 

  Fig. 6.17    The 1DVZ protein: 3D representation ( top ) with ligand binding residues marked in 
 yellow  and complexation interface marked in  pink . The cyan-colored fragment (69–80) corre-
sponds to the greatest divergence between the observed (O) and theoretical (T) distribution of 
hydrophobicity in the     Δ �H   pro fi le ( bottom )       
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a ligand), it becomes dif fi cult to distinguish one distortion from the other. Thus, 
accurate prediction of ligand binding and protein complexation sites depends on 
measuring the relative signi fi cance of each factor. 

 For the sample protein designated 1G8M (transferase, hydrolase – crystal structure 
of avian atic, a bifunctional transformylase and cyclohydrolase enzyme in purine bio-
synthesis – EC 2.1.2.3, EC 3.5.4.10) (Greasley et al.  2001 ) the “fuzzy oil drop” model was 
able to correctly identify the complexation site (by locating residues which represent 
local maxima of the     Δ �H   pro fi le). However, this protein is also capable of binding a 
ligand (speci fi cally, C 

10
 H 

14
 N 

5
 O 

8
 P – Guanosine-5 ¢ -monophosphate). Identifying this 

ligand’s binding pocket would likely prove dif fi cult as the deformation triggered by 

  Fig. 6.18    The 3SDH protein: 3D representation ( top ) with ligand binding residues marked in  yel-
low  and the complexation interface marked in  magenta . Ligands are given in  red . Local     Δ �H
  pro fi le maxima are marked in  yellow . All colors correspond to the  bottom  graph, which shows the 
actual     Δ �H   pro fi le for 3SDH       
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the ligand is far less pronounced than the one caused by protein complexation. It 
should be noted that other tools described in this chapter ran into serious problems 
when trying to model the 1G8M complex, most likely due to the relatively large sur-
face area of its complexation interface.  

    6.5   Summary 

 The programs discussed in this chapter have been selected to showcase various 
means of identifying protein-protein complexation sites. Such analysis cannot be 
called “blind prediction” since it relies on user-picked starting structures and potential 
zones of interest. The aim of our study was to assess the validity and accuracy of 
each algorithm for a large set of sample proteins. A secondary goal was to divide 
protein complexes into subgroups: since some proteins form rather peculiar com-
plexes, the “lock and key” abstraction is not always applicable. 

 Even when potential complexation interfaces are suggested by the user, the 
 presented tools do not always produce correct results. This is most likely due to 
de fi ciencies in their conformation space search algorithms. 

   Table 6.3    Comparison of correct and incorrect solutions, indicating the validity of 
various models   

 Lowest → 
 Best ↓  FOD  HADDOCK  RosettaDock  ZDOCK 

 FOD  101.30  71.63  71.25 
 7.88  7.70  5.40 
 5.26  3.48  5.14 

 16.53  11.16  12.88 
 HADDOCK  67.75  46.63  39.34 

 4.90  5.47  2.59 
 2.29  2.26  2.39 

 12.40  8.28  9.00 
 RosettaDock  103.51 

 15.79 
 5.26 

 15.79 
 ZDOCK  109.49 

 5.64 
 8.70 

 19.38 

  The values given in each cell of the table are as follows: averaged number of non-bonding 
contacts per residue, averaged number of H-bonds contacts per residue, averaged number 
of hydrophobic residues engaged in protein-protein interaction per residue. The values 
are calculated for proteins as shown in Table  6.2 . Values calculated according to the data 
available in PDBSum database  
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 The “fuzzy oil drop” package attempts to link the  fi nal state of the complex with 
the mechanisms which govern the folding process. We assume that an undisturbed 
molecule folding in an aqueous environment generates a regular hydrophobic core, 
as is evident in fast-folding (Roterman et al.  2011 a, b) and antifreeze proteins 
(Banach et al.  2012  ) . The presence of an external ligand (Bryliński et al.  2007a ,  b  ) , 
a partner molecule or a membrane (Zobnina and Roterman  2009  )  deforms the core 
of the emerging protein in a way which ensures its speci fi city. Note that even though 
fully folded proteins may encounter a wide variety of potential ligands in their envi-
ronment, they are usually highly speci fi c with regard to the molecules they bind 
with. Some researchers even postulate that the presence of a ligand is an essential 
factor in the polypeptide chain folding process (Brylinski et al.  2006,   2007a  ) . 
As highlighted in our analysis, the “fuzzy oil drop” model is capable of acknowl-
edging such factors and explains how proteins are conditioned to perform their 
intended biological role. This is especially important in enzymes, where localized 
deformations of the hydrophobic core seem to correspond to active sites of hydro-
lases (Prymula et al.  2011  ) . 

 Genomics-scale analysis of protein complexes suggests that, when it comes to 
determining the biological pro fi les of proteins, complexation is frequently as impor-
tant as interaction with ligands. A noteworthy presentation of current progress in 
studying protein complexation mechanisms can be found in Fleishman et al. 
 (  2011  )       
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   7.1   Introduction 

 The term e-Science describes computational and data-intensive science. It has 
become a complementary experiment paradigm alongside the traditional in vivo and 
in vitro experiment paradigms. e-Science opens new doors for scientists and with it, 
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it exposes a number of challenges such as how to organize huge datasets and 
coordinate distributed execution. For these challenges, a plethora of technologies 
and innovations have come together to enable e-Science (Foster and Kesselman 
 2006  ) . Nowadays, complex scienti fi c experiments designed following the e-Science 
paradigm are preformed using geographically distributed instruments, data and 
computing resources. The newly designed scienti fi c experiments are costly, time-
consuming, and multidisciplinary. Complex scienti fi c experiments not only require 
access to geographically distributed hardware and software resources, but also 
extensive support to foster best practices, dissemination, and re-use. 

 Recently, Scienti fi c Work fl ow Management Systems (SWMS) have become part 
of the science infrastructure in realizing e-Science, owing to their intuitive approach 
in prototyping experiments while concealing the complexity of the underlying 
middleware. SWMS are also instrumental in research collaborations since knowl-
edge about experiments and data is easily shared through systems. This paradigm of 
designing, executing and sharing experiments enables scientists to focus on problem 
solving within their domain whilst intricate knowledge about underlying resources 
and work fl ow execution is hidden behind the SWMS. In essence, SWMS strive 
to bridge the knowledge gap between computational sciences and the myriad of 
distributed computing technologies. To date, many work fl ow systems have been 
developed and vary considerably in terms of work fl ow modeling, scheduling and 
targeted resources (Chin et al.  2002 ; McClatchey and Vossen  1997  ) . The central 
component in a SWMS is the work fl ow. A work fl ow can be described as a connected 
graph which abstractly represents the  fl ow of an experiment whereby vertices 
represent the activities and the edges represent dependencies between activities. 
The graph orchestrates the execution of such activities across the needed resources 
according to the application  fl ow description. 

 New technologies such as grids and, recently, clouds allow the coordination and 
sharing of unprecedented quantities of geographically distributed computing and 
storage power by groups of trusted users within Virtual Organizations (Pang  2001  ) . 
Such environments have made it possible to design and build global distributed 
collaborations involving large numbers of scientists and resources, and make data 
and computing-intensive scienti fi c experiments feasible (Hey and Trefethen  2002  ) . 
Within the e-Science community work fl ow management systems have been adopted 
as the main approach to designing and simulating complex systems (Chin et al. 
 2002 ; McClatchey and Vossen  1997  ) . A Scienti fi c Work fl ow Management System 
explicitly models the dependencies between scienti fi c experiment processes. 

 This chapter describes a way to build a work fl ow management system for 
e-Science which provides support for the different phases of the lifecycle of a 
typical e-Science experiment. The presented results originate from the Virtual 
Laboratory for e-Science (VL-e) project, 1  which aims is to realize an e-Science 
framework where scientists from different domains can share their knowledge 
and resources, and perform domain-speci fi c research. In this project complex 

   1     www.vl-e.nl      

http://www.vl-e.nl
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applications from six scienti fi c domains have been considered: food informatics, 
medical diagnosis and imaging, biodiversity research, bioinformatics, high energy 
physics, and telescience. 

 The goal shared by all the applications developed within the VL-e project is to 
take advantage of recent achievements in building large scale computing infrastruc-
tures and information systems. Regardless of the scienti fi c domain, in terms of 
computing and information management similar requirements can be identi fi ed for 
applications such as developing models for predicting late-year bird migration 
volumes (for the purposes of ensuring airspace safety) (van Belle et al.  2007  ) , 
visualizing high resolution correlated multi-spectral images (Broersen et al.  2007  ) , 
or developing interactive visualization tools for fused functional magnetic resonance 
imaging (Blaas et al.  2007  ) . However, it is more challenging to identify, given such 
a large collaboration, common characteristics in term of methods, techniques and 
tools and to abstract support for these features and requirements into a shared frame-
work, which avoids redundancy in performing similar tasks across different e-Science 
domains by promoting exchange of resources. 

 The rest of the chapter is organized as follows: Section  7.2  presents a typical 
application use case which is used throughout the chapter to map the concepts intro-
duced to a concrete example. Section  7.3  describes the different phases composing 
the lifecycle of a complex e-Science experiment. Section  7.4  presents a survey of 
the state of art in the  fi eld of work fl ow management systems. This survey focuses 
upon three main points: design, execution, and dissemination and sharing. Section  7.5  
describes an approach to constructing an e-Science framework: it describes in detail 
the main components and tools developed to achieve this vision; speci fi cally the 
Process Flow Template (PFT) to describe the logic of the experiment, ontology- 
based tools (OWT) to automate the generation of the PFT data structure, the 
work fl ow management system (WS-VLAM) to execute work fl ows on geographically 
distributed computing and storage resources, a bus-like architecture (Work fl ow 
Bus) to allow the design of a meta-work fl ow composed of an application created in 
multiple work fl ow management systems, and,  fi nally, a service to optimize data 
sharing across work fl ows composed from web services.  

    7.2   Motivation – A Typical e-Science Application 

 Scienti fi c experimentation often involve applications which are data-intensive, 
CPU- intensive. Moreover, some applications may require access to special devices. 
They usually have similar requirements concerning the use of computing resources 
and the ability to execute legacy or third-party applications, to perform parameter 
analysis (parameter sweep), or the automation of repetitive tasks (job farming). 
Typical e-Science applications have a set of common requirements:

   on-demand access to computing resources through a uniform interface,  • 
  on-demand access to storage resources,  • 
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  the ability to execute software components written in a variety of programming • 
languages on geographically distributed computing resources,  
  access to knowledge and support for sharing.    • 

 Most of the requirements listed here concern the execution phase of an e-Science 
experiment. As science usually follows an iterative approach, the complexity of 
experiments grows over time. Early designs are aimed at developing simple proto-
types to assess news ideas, and technologies. Once scienti fi c application begin to 
mature, the design phase becomes complex and the need for access to existing 
knowledge and support for sharing is required. It then becomes important to provide 
support for the design phase by allowing users within the same domain (or even across 
multiple domains) to share expertise, reuse one another’s tools etc. To facilitate knowl-
edge transfer either within a single scienti fi c domain or across domains, design and 
dissemination support is important. This is especially true as large projects operate 
as Virtual Organizations (VO) where knowledge transfer across VOs is restricted 
according to dynamic VO access policies. To facilitate the sharing of resources, a 
common framework in which all scientists can perform their experiments is needed. 

 Throughout this chapter we use the virtual material analysis laboratory as an 
example of a typical multi-physics scienti fi c experiment. The Material Analysis of 
Complex Surface (MACS) experiments attempts to identify and determine the elements 
that comprise complex surfaces, regardless of the nature of the sample (Fig.  7.1 ). 
The approach followed in the MACS lab experiment is generic and can be easily 
applied to other application areas such as art conservation and restoration (e.g. analysis 
of binding media and organic pigments in old master paintings), biomedical science 
(e.g. identi fi cation of arteriosclerotic deposits in mice), and medical research 
(e.g. studies of trace elements in brain tissues) (Frenkel et al.  2001  ) . Like most 
scienti fi c applications, the MACS lab experiment, as can be seen in Fig.  7.1 , consists 
of three phases: preprocessing, experimentation and analysis of results.  

  The preprocessing phase  includes a number of procedures which have to be fol-
lowed to extract the sample to be used in the experiment. To reach this goal 
 scientists compare various techniques and protocols and select the most appropriate 
ones. Once the sample is produced, it has to be treated in order to ful fi ll the require-
ments of the device used in the material analysis process. It should be noted that, as 
the MACS lab is currently at its  fi rst design iteration, literature currently provides 
the main source of knowledge. 

  The experimentation process  is performed with a set of specialized hardware 
devices. Two devices are used in these experiments: The Fourier Transformed Infra- 
Red imaging spectrometer and a 4 MeV Nuclear Microprobe. The FTIR is a non- 
dispersive infrared imaging spectrometer coupled to an infrared microscope used to 
examine the infrared radiation absorbed by complex surfaces. The 4 MeV Nuclear 
Microprobe has a spatial resolution in the sub-micrometer range and is capable of 
identifying trace elements on a high-sensitivity surface. 

  The analysis of results : the outcome of the experiment process is a set of data  fi les 
containing the experiment results. This data set consists of a stack of images known 
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as a hyper-spectral data cube. A quality control process is carried out to certify that 
the generated data complies with certain standards. 

 The large amount of data produced by these devices makes the analysis phase 
longer and more time-consuming than the experiment phase itself. For example, the 
size of one single data cube can range from 16 to 100 Mbytes. Up to 20 data cubes 
can be generated each day. Thus, a set of analysis tools needs to be integrated into 
the application to facilitate the work of the scientists, e.g. correlation analysis, mul-
tivariate data analysis (PCA, pLS) and others.  

    7.3   Life-Cycle of e-Scienti fi c Experiments 

 Traditional scienti fi c methodology uses the empirical cycle as a guide for experi-
ments; e-Science is no different, but in its particular incarnation of the empirical 
cycle some phases require extra emphasis. When scienti fi c experiments are modeled 

  Fig. 7.1    The Material Analysis of Complex Surface (MACS) experiments aim at identifying the 
elements that compose complex surfaces such as paintings, biological tissues or polymer laminates. 
The MACS lab experiments can be decomposed into three phases: the pre-processing phase for the 
extraction of and preparation of samples, the experimentation phase where the sample is processed 
using special devices, and the analysis phase where the collected experimental data is analysed by 
scientists (Frenkel et al.  2001  )        
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following a work fl ow approach, the latter encode the logic of the experimentation 
processes and become an important resource to promote knowledge transfer among 
scientists. A work fl ow represents a reliably repeatable sequence of tasks composing 
an e-Science application. It describes the pattern of activity enabled by a systematic 
organization of resources (Taylor et al.  2007  ) . One aspect of e-Science in particular, 
the sharing of resources, places greater demands than usual on the experiment 
validation methodology. The reason for this is that scientists conducting these 
complex experiments often do not have the required expertise to solve all the prob-
lems facing them. It is common that they use third-party components and therefore 
need extra assurance to make sure that they are using these components in the proper 
way and these third party components are behaving as expected. There are different 
views on how the e-Science lifecycle can be de fi ned. A commonly accepted 
de fi nition is that the development of a scienti fi c experiment has different activities 
or tasks performed at different times (Jacobs and Humphrey  2004 ; Humphrey and 
Hamilton  2004  ) . These activities belong to different phases of a typical e-Science 
application lifecycle, which can be divided into four phases:  Design ,  Execution , 
 Analysis , and  Dissemination  (Fig.  7.2 ).  

  Design : an iterative process which requires discovering the resources that can be 
used, for instance through semantic search. Interoperation between the discovered 
resources needs to be established and a proper methodology associated with these 
resources needs to be considered. This problem becomes more challenging in the 
context of scienti fi c experimentation where the scientists are continuously de fi ning 
hypotheses, collecting data, running experiments, revising hypotheses, and publish-
ing results. Multidisciplinary and geographically distributed teams of scientists 
need to be able to locate, construct, execute and maintain such work fl ows (De Roure 
et al.  2007  ) . To design a successful work fl ow, modeling and composition tools are 

Design
experiment

Perform
Experiment

Analyze
Results

Disseminate
Results

Scope of e-Science

Emphasis of current SWMS user support

  Fig. 7.2    e-Science experiment phases with indications of current and desired support. The gray-
scale represents the focus of the existing work fl ow management systems: most of the support 
currently offered is associated with the execution and result analysis phases ( black bar ). 
Dissemination and design phases are less frequently supported ( gray bars )       
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not suf fi cient – we also require tools for deriving knowledge and validating models 
(Miles et al.  2007a  ) . Support for the design of scienti fi c work fl ows faces a number 
of challenges:

   semantic support for annotating and searching work fl ows,  • 
  reproducibility of results, con fi gurations, and the runtime conditions of the • 
experiments,  
  interoperability between different work fl ows when they are used in one • 
experiment.    

  Execution : most of the support provided by current SWMSs is dedicated to execu-
tion. This step of a scienti fi c experiment is concerned with the execution of tasks 
comprising the work fl ow, which can be entirely computational, but can also involve 
interaction or manual steps that have to be performed by the user. Speci fi c require-
ments from the applications include access to statistical toolkits as well as simple 
access to parallel computation. Experiment execution support also involves the 
delegation and automation of non-scienti fi c and redundant tasks to the framework 
such as the staging of software components constituting the experiment and the data 
sets needed for the experiments, the search for the appropriate and available 
computing resources, and monitoring of experiment progress (Mayer et al.  2006 ; 
Olabarriaga et al.  2007  ) . Interactive execution control is often required to allow 
scientists to steer the execution path and tune component parameters, in particular 
for the calibration phases of scienti fi c experiments where the scientist is still experi-
menting with various parameter sets. 

  Analysis : this step of the scienti fi c experimentation is the most delicate as it 
 re-quires a lot of scienti fi c knowledge which is often dif fi cult to model, and thus 
calls for interaction with and among the scientists. It focuses on checking whether 
the output of a work fl ow complies with the theory or expected results. During 
execution, monitoring progress and steering execution between different paths are 
basic human activities that control the experiment. There are several scenarios 
which re- quire collaborative control between scientists. For instance, control of 
the processes in a complex experiments requires analysis of results, which often 
represents a joint effort by several scientists. Besides, a complex experiment con-
sists of more than one work fl ow and these work fl ows might be shared and modi fi ed 
by geographically distributed scientists at the same time. As such, controlling an 
entire complex experiment may require input from all these scientists (Humphrey 
and Hamilton  2004  ) . 

  Dissemination : Traditionally, dissemination is achieved through scienti fi c publi-
cation. It consists in making the resources and work fl ows themselves available for 
use by others, providing speci fi c metadata about the circumstances in which the 
results were created (also known as provenance), as well as sharing the knowledge 
associated with the proper use of resources, and providing abstracted versions of 
successful work fl ows (Miles et al.  2007b  ) . Contemporary means of communicating 
and sharing scienti fi c results (i.e. by publishing papers) fall short of the requirements 
of modern computational sciences, as such results do not easily lend themselves to 
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veri fi cation and reuse. In order to shift focus from secondary sources (i.e. publications) 
to the actual data, algorithms, and work fl ows used in scienti fi c research, a uni fi ed 
collaborative framework has to be developed, which will enable users of various 
HPC infrastructures, data repositories and virtual laboratories to publish and directly 
reference their data, and work fl ows. Science had always a social aspect, as far as 
collaboration among scientists is considered e.g. peer-review and scholarly com-
munication. This aspect of science has led to quick adoption of new social tools 
which facilitate and accelerate the communication aspects across the scienti fi c 
community. Research expertise can be propagated to others and reinvention avoided, 
and community curation of data and methods is becoming a powerful and acceptable 
way of validation within the scienti fi c community. 

 The outcome of scienti fi c experiments as well as the methodology, lessons, and 
tools obtained can be considered as societal contributions. The publication of the 
results necessarily includes provenance data which describes experiment steps, 
execution conditions, input data, interactions, activities performed to control the 
execution, and the analysis of results (Miles et al.  2007a  ) . An environment which 
allows scientists to jointly annotate data, and compose documents is therefore 
necessary in experiments involving scientists located at various institutions 
worldwide. 

 Mapping three of the four phases of the lifecycle, as described in this section, to 
the MACS lab experiment introduced in Sect.  7.2  is straightforward. The prepro-
cessing, experimentation and analysis steps can be respectively mapped to  Design , 
 Execution , and  Analysis  phases. The  Dissemination  phase in the traditional scienti fi c 
approach is done mainly through publications in journals and participation in inter-
national conferences. With the emergence of the Web 2.0 approach, often known 
as “social web”, new ways of dissemination become possible which go beyond 
traditional publications. Published results can be more easily reproduced; tools and 
work fl ow can be shared among scientists worldwide etc. A good example of such 
scienti fi c dissemination is the myExperiment site (  http://myexperiment.org    ) which 
makes it easy to  fi nd, use and share scienti fi c work fl ows, and to build communities. 
This sharing model is  fl exible enough to support various aspects of the lifecycle 
management of scienti fi c work fl ows (De Roure et al.  2009 ; De Roure and Goble 
 2009  ) .  

    7.4   Related Work on e-Science Frameworks 

 In the last decade the  fi eld of scienti fi c work fl ow management systems and virtual 
laboratories has attracted interest of the scienti fi c community. A large number of 
research projects worldwide focus on the development of work fl ow frameworks 
which can improve the lifecycle of scienti fi c experiments. To gain insight on how 
 work fl ow support  is provided in popular SWMS, we present in this section a review 
of the state of art in the  fi eld of scienti fi c work fl ow management systems. This study 

http://myexperiment.org
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covers several well-known systems, namely ASKALON (Fahringer et al.  2005 ; Qin 
et al.  2006 ; Deelman et al.  2009  ) , GridNexus (Brown et al.  2005  ) , Grid Work fl ow 
Execution Service (GWES) (Hoheisel  2006a;     Bubak and Unger  2006 ) , ICENI 
(Mayer et al.  2006  ) , Karajan (von Laszewski and Hategan  2005  ) , Kepler (Ludäscher 
et al.  2009 ; Altintas et al.  2004 ; Buyya et al.  2000  ) , Pegasus (Callaghan et al.  2009 ; 
Deelman et al.  2009  ) , Taverna (Oinn et al.  2002  )  and Triana (Taylor  2006 ; Taylor 
et al.  2005 ; Harrison et al.  2008 ; Churches et al.  2006  ) . We review theses systems in 
light of their  Design features, Execution support and Support for Interoperability, 
and Results dissemination and information management support . 

    7.4.1   Design Features 

 Since work fl ows are intuitively depicted as graphs, it is no surprise that most 
SWMS offer a graphical work fl ow composer for building such graphs. Although 
there seems to be a consensus as to the basic notion for a work fl ow vertex being 
a computation task and an edge being a data and/or control  fl ow, different SWMS 
tend to differ on the actual graph modeling. Common differences are cyclic versus 
acyclic and stateful versus stateless graph models. SWMSs such as ASKALON, 
Taverna, Karajan model work fl ows based on Directed Acyclic Graphs (DAG). 
Since pure DAGs do not model conditional branches and loops, such systems 
augment the DAG model to include these primitive control structures. ASKALON 
and Karajan also include advanced control structures such as parallel constructs. 
Some systems such as GWES do away with DAG modeling altogether and instead 
use Petri nets. Petri nets differ from DAGs by modeling control  fl ow and, most 
importantly, model work fl ow state through the use of token transitions. 
Furthermore, Petri nets well understood properties such as deadlock and con fl ict 
can aid in model analyses and optimization. Kepler goes a step further and allows 
different types of models, which it achieves through directors. This notion of dif-
ferent Models of Computation (MoC) allows for greater  fl exibility as many other 
SWMS only allow one MoC. Common MoC in Kepler are:  Process Network, 
Data fl ow, Discrete Events, Synchronous/Reactive . It is most often the case that a 
graphical work fl ow composition is synthesized to an XML-based language, 
which facilitates sharing and reusability. Such languages include AWGL, JXPL, 
GWork fl owDL and Scu fl  used by ASKALON, GridNexus, GWES and Taverna 
respectively. 

 Scienti fi c work fl ows are collaborative in nature and hence work fl ow sharing 
becomes an important feature in an SWMS. Such collaborative features are included 
in Kepler and Taverna, which support semantic queries for components that can be 
reused in new work fl ows. Taverna also includes a browser which provides naviga-
tional capabilities over data stored in the myGrid (Stevens et al.  2003  )  information 
repository (MIR), which include experimental designs, experiment results, and 
intermediate data.  
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    7.4.2   Execution Support 

 Some of the characteristics that differentiate SWMS execution support from each 
other and from other systems include the types of resources onto which the work fl ow 
can be mapped and the method of enactment which describes the way work fl ow 
tasks are scheduled and executed. 

 A common denominator amongst supported distributed resources is the Globus 2  
grid middleware. SWMSs such as ASKALON, GWES, Karajan, Pegasus and Triana 
readily support Globus due to its widespread use within the scienti fi c community. 
Some other SWMSs such as Pegasus and Triana are not only bound to one type of 
resource but can interoperate with other middleware suites. A number of the studied 
SWMS have the ability to use web/WSRF services as work fl ow components allowing 
scientists to have access to a wide range of services which are publicly available 
such as the BioCatalogue which currently hosts around 1,600 services. 3  Service-
oriented resources are exploited through SWMS such as Kepler, Taverna, Triana, 
GridNexus and GWES. 

 Work fl ow enactment engines differ considerably between SWMSs though a 
typical engine would consist of a scheduler which interprets the work fl ow graph 
to deduce data/control  fl ow dependencies and a runtime manager which takes care 
of controlling individual tasks during runtime. ASKALON uses different schedulers 
such as Heterogeneous Earliest Finish Time (HEFT), a genetic algorithm and a 
myopic just-in-time algorithm. Similarly, GWES implements several schedulers. 
A simple scheduler is the least-used scheduler, which chooses resources that had 
not been used for the longest time. Another scheduler makes use of the Globus 
Monitoring and Discovery System (MDS) so as to make a more informed deploy-
ment decision. Karajan supports late binding, hence deferring the decision of how a 
task should be executed until the task is actually mapped to a resource. Pegasus uses 
DAGMan as its scheduler. DAGMan is a directed acyclic graph meta-scheduler for 
the Condor job scheduler. 4  Triana schedules groups of components where each 
group can be piped or parallel. Early Taverna versions (1.x) used a heavily modi fi ed 
version of the Free fl uo 5  web-service orchestration engine while later versions (2.x) 
replaced Free fl uo for a new orchestration engine. In Kepler, directors represent 
enactment engines for different MoCs. 

 Interoperability at runtime between SWMS is sometimes needed to take advan-
tage of the unique features of existing systems. Recent developments in the  fi eld and 
the adoption of service-oriented architecture standards by most systems should 
allow for interoperability. Triana takes this one step further by offering the possibility 
to publish its (sub)work fl ows as a grid/web services. Kepler pursues another 
approach which consists in wrapping the resources of other SWMSs, e.g., the 
Nimrod engine to improve its parameter sweeping support (Abramson et al.  2009  ) .  

   2   Globus Middleware:   http://www.globus.org/      
   3     http://www.biocatalogue.org/services      
   4     http://www.cs.wisc.edu/condor/dagman      
   5   FreeFluo:   http://free fl uo.sourceforge.net      

http://www.globus.org/
http://www.biocatalogue.org/services
http://www.cs.wisc.edu/condor/dagman
http://freefluo.sourceforge.net
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    7.4.3   Results Dissemination 

 Although most of the presented systems already provide visualization tools to view 
and analyze experiment results, we found limited support for sharing analysis results 
with other (future) users. Virtual Data systems used in Pegasus as well as provenance 
support in Taverna allow for sharing and reuse of experiment results, while in other 
systems collaborative sharing of experimental results has to be performed manually. 

 Kepler and ICENI increase reusability and dissemination. In Kepler a new com-
ponent is being developed and which allow adding provenance information for each 
work fl ow. This new component is attached to the work fl ow and can be used later as 
a logbook or to search for experiments. Similar developments are taking place in 
both Triana and Taverna. In ICENI a backend component called application mapper 
is used to  fi nd the speci fi c appropriate work fl ow. 

 While some support for design and dissemination exists, this support is incom-
plete especially when it comes to sharing resources. While there is no system that 
can even match all the computational requirements of the limited number of 
applications, trying to create one SWMS for all e-Science applications seems 
unfeasible. In the next section we will present our own attempts at work fl ow support 
and explain how our approach may help create a framework where sharing between 
all e-Science applications becomes practical.   

    7.5   An e-Science Virtual Laboratory 

 In this section we describe the main components composing the architecture of the 
e-Science virtual laboratory, which helps scientists to develop CPU- and data-
intensive complex applications and allow them to use a distributed and complex 
computing infrastructure. The architecture follows a service-oriented approach; the 
main components are either simple web services or WSRF compliant services. 6  
This approach has a major bene fi t that is the virtualization of the complex and 
distributed computing and storage infrastructure (Fig.  7.3 ). It also allows building 
a loosely coupled system, something that is highly required in a dynamic and non-
reliable environment such as the grid.  

    7.5.1   Process Flow Template (PFT) 

 This initial prototype of the e-Science framework introduces a two-level abstraction 
approach where the Process Flow Template helps enforce best practices and 
increases the reusability within a given domain by (Kaletas  2004 ; Afsarmanesh 

   6     http://www.oasis-open.org/committees/tchome.php?wg abbrev=wsrf      

http://www.oasis-open.org/committees/tchome.php?wg abbrev=wsrf


146 A.S.Z. Belloum et al.

et al.  2001 ; Belloum et al.  2003  ) . A PFT is de fi ned by application domain experts; 
it captures the expertise and knowledge of the experts and is meant to transfer this 
knowledge to other scientists. A PFT provides context-sensitive assistance for novice 
users performing complex studies, helping them avoid mistakes and increasing the 
ef fi ciency and accuracy of their experiments (Kaletas et al.  2002 ; Frenkel et al.  200 1). 
PFTs cover both the experiment design and the dissemination phase de fi ned in 
Sect.  7.3 . In the scope of experiment design, PFTs allow domain experts to de fi ne 
the steps of the experiments, the data structure, and the infrastructure needed to 
complete the experiment and how it should be used. PFTs can be seen as a tool to 
create templates which determine how experiments should be performed. There are 
three basic building blocks of PFTs that contain metadata on:

    • Objects , where objects can be either physical objects or bulk data in mass 
storage,  
   • Manual Operations  which are non-computational in nature and can be 
performed personally by the scientists,  
   • Executable operations  which are speci fi ed in a separate speci fi c executable 
work fl ow (outside of the PFT).    

 Using the example of the MACS lab introduced in Sect.  7.2 , we describe how 
PFTs can be applied in a real-world scenario. The PFT has been used to describe the 
complex  fl ow involved in the data analysis, in this particular case preparation of a 
sample, surface analysis, visual inspection and possibly re-analysis. A simpli fi ed 
version of such a data  fl ow is shown in Fig.  7.4 . Typical steps in a surface-analysis 
study are represented by the MACS lab PFT.   

Process Management StackData Management Stack

Network & Computing ResourcesNetwork & storage Resources

Grid Middleware: 
Process & resource management

Grid Middleware: 
Data management

WfbusWSproxyApplication 
Process Flow Templates

Web Service Interface

Shared 
Repository

Web Service Interface

Application
web service

Workflow composition 

Workflow
engines

  Fig. 7.3    The architecture of the e-science virtual laboratory developed in the VL-e project. 
A service-oriented architecture has been adopted to glue all the components needed to support 
the lifecycle of e-Science applications. The components are decomposed into two categories: 
components for data management and components for process management       
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  Fig. 7.4    The PFT of the MACS lab experiments describes the  fl ow of processes involved in data 
analysis. The hatched rectangles represent either physical objects or bulk data in mass storage. 
Hatched ovals represent operations, both executable and manual (Frenkel et al.  2001  )        

 At a later stage, less experienced users can customize a given PFT such as in the 
MACS lab example, to perform a speci fi c experiment. The user then creates an 
instance of the PFT and modi fi es some parameters, de fi nes input and output data 
sources, attaches a new application work fl ow etc. PFTs enforce best practice by 
providing to the domain expert a view of the  fl ow of a given experiment. By using 
PFTs the end users are assured of performing the right tasks at the right time. 
However, they retain the possibility to customize the PFT to suit their own situation. 
Even when not yet implemented, users should be able to combine different PFTs or 
even work on subparts of a given PFT. 

 Because PFT and the instances created by the end users are saved in application 
domain databases, they can be accessed via a simple query interface by all members 
of a Virtual organization based on the view management policy (Kaletas  2004 ; 
Afsarmanesh et al.  2001  )  (Fig.  7.5 ). In the current implementation the query inter-
face is limited to a search based on the PFT and the instance name; the idea being to 
develop this query interface to support more sophisticated queries based on semantic 
techniques. The MACS lab PFT was demonstrated at the iGrid 2002 conference 
where it was applied to the analysis of a sample (paint chip) from a painting in 
the FTIR spectrometer and subsequent analysis of the measurement data. Using the 
PFT scientists were able to customize the original PFT to collect experimental 
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information about the painting, sampling spot and device parameters. The PFT, 
together with the descriptive  fi elds, is stored in a database and can be subject to 
queries (Hendrikse et al.  2003  ) . 

 PFTs offer a clear separation between the information needed for at the design 
phase of an experiment and the information needed at the execution time. Such 
separation will reduce the amount of information the scientists have to deal with for 
large-scale experiments. A similar abstraction also exists in Pegasus (Deelman et al. 
 2004  ) . The main difference between these abstract work fl ows and PFTs is that 
Pegasus work fl ows can be made executable by mapping them to the underlying 
resources, while PFTs provide the context of the experiment. PFTs have the advan-
tage of being decoupled from the execution of the experiments and, consequently, 
can be used to point to experiments executed in different work fl ow systems.  

    7.5.2   Ontology-Based Approach 

 Experience has shown that a successful e-Science framework has to abstract the 
scientists from all information technology issues. In the  fi rst approach to PFT a 
database expert is needed to de fi ne the required underlying data structure. A more 
practical approach will be to allow domain experts to describe the PFTs at a very high 

  Fig. 7.5    This excerpt from the MACS Lab PFT shows both metadata descriptions ( white boxes ) 
and automated experiment steps executed on the distributed infrastructure ( grey boxes ). The inset 
shows an associated experiment work fl ow for DC analysis       
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level of abstraction and develop a system which automatically/semi- automatically 
creates the underlying structure. Ontology-based approaches are aiming at such 
an abstraction, allowing them to operate on the basis of custom concepts. Olingo is 
an ontology-based approach we have developed to generate the underlying data 
structures for PFTs. Olingo is developed in two  fl avors: a Web portal (Olingo Web 
Tool (OWT)) and a plugin for the Protege ontology editor. 7  

 We use an ontology-based approach because ontologies are extensible mechanisms 
typically used for describing, via human-readable text, the domain of disclosure, 
which enables common understanding among scientists and software applications. 
Although ontology provides an abstract view, it is suitable as input for the generation 
of underlying structures. Thus, to avoid both schematic and semantic heterogeneity, 
Olingo targets the generation of a number of explicit output formats for the applica-
tion cases from different scienti fi c domains. It is the link between ontologies and 
data structures. Application domain experts may use Olingo during the design phase 
to generate the data structures needed for the creation of PFTs, which will subse-
quently be applied during the execution and the analysis phase of the experiment 
by less experienced users. 

 It is evident that, in some simple and speci fi c cases, a basic model can be used by 
a proprietary generator to create the database schema that is later integrated within 
the scienti fi c application. Usually implemented in an ad-hoc fashion, through scripts or 
parser generators, this approach does not scale well for large-scale scienti fi c projects. 
OWT is a Web application that, based on an ontology, contributes to generate 
the underlying data structures for PFTs. Ontologies are extensible mechanisms 
typically used for describing, via human-readable text, the domain of disclosure, which 
enables common understanding among scientists and software applications. OWT 
targets the generation of a number of explicit output formats for the application 
cases from different scienti fi c domains. It is the link between ontologies and data 
structures. 

 Olingo produces  fi ve different output formats, including (1) relational schema 
with a data de fi nition language for relational databases, (2) Java classes providing 
the source code of data structures, (3) XML Schema with a speci fi cation for XML 
documents, (4) mapping  fi les for two different frameworks (Castor and Hibernate) 
that support persistence of Java objects.  

    7.5.3   Work fl ow Management System 

 The WS-VLAM work fl ow management system 8  is composed of a work fl ow editor 
and a work fl ow enactor. The work fl ow editor completes the PFT by providing 
support for the execution phase of an experiment. In the current implementation, 
the execution model of the work fl ow is data-driven. Work fl ow components are 

   7     http://protege.stanford.edu/      
   8     www.science.uva.nl/gvlam/wsvlam      

http://protege.stanford.edu/
http://www.science.uva.nl/gvlam/wsvlam
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scheduled on geographical and grid-enabled computational resources. When data is 
available for processing, it is passed/streamed directly to work fl ow components 
enabling concurrent execution. The engine supports enacting work fl ow components 
written in a number of programming and scripting languages (Java, C ++ , python, 
SWIG), and also allows access to RPC-style web services and work fl ows (Korkhov 
et al.  2007a,   b  ) . The system has been used to prototype a number of application 
(Inda et al.  2008 ; Zudilova-Seintra et al.  2002 ; Leguy et al.  2009  ) . Once an application 
work fl ow is designed, it can be attached to PFT and become available for scientists 
who can create multiple instances to meet their speci fi c requirements such as setting 
the different parameters and new input data sets. WS-VLAM offers not only an 
intuitive way for the creation and execution of application work fl ows, but also 
provides seamless access to the underlying complex grid-enabled infrastructure. 
WS-VLAM has the ability to (1) interact and monitor the work fl ow at runtime, 
(2) automatic redirection of the graphical output to the end-user default screen, 
(3) easily adapt/change the application work fl ow to meet user-speci fi c needs, and 
(4) run work fl ows in batch mode. 

 The  DC Analysis  work fl ow for the MACS lab experiment was one of the  fi rst 
scienti fi c work fl ow to be ported to the earlier versions of WS-VLAM 1.5. Through 
this work fl ow, scientists are able to query a database containing detailed informa-
tion about all data produced by the sample treatment process. The (raw) data sets 
corresponding to query results are retrieved and piped into an apodisation routine 
(also called a tapering function). The apodised data sets are subsequently submitted 
to a fast Fourier transform and calibration procedure. The results are piped to a data 
viewer for visualisation and a multivariate data analysis module for extraction of 
principal components (Hendrikse et al.  2003  ) .  

    7.5.4   The Work fl ow Bus 

 From the state of art study presented in Sect.  7.4  it is clear that, at least in the near 
future, a unique work fl ow management for e-Science is unlikely to emerge. All of 
the presented systems have their advantages and disadvantages; moreover, most of 
them are building small communities of users around themselves. It is evident that 
at a certain point, in order to continue to promote sharing and reusability, there will 
be no other way but to bridge these systems to allow scientists to re-assemble 
work fl ows in different systems. To achieve this goal, a meta-execution framework is 
needed for integrating different work fl ows, coordinating the execution of different 
enactors and moving data around. This approach will become more feasible once 
most of the work fl ow management systems have adopted a service-oriented 
architecture where the engine and enactors are implemented as standalone services. 
The basic idea of a work fl ow bus (Zhao et al.  2006  )  is to wrap a number of popular 
and relatively mature legacy SWMSs as federated components, and to loosely 
couple them as one meta-work fl ow system using a software bus. The work fl ow bus 
is an interactive work fl ow environment, which provides an agent-based wrapper for 
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integrating legacy work fl ows or components and for coordinating their behavior in 
a meta-work fl ow. The runtime behavior of a legacy work fl ow is modeled as a scenario 
and wrapped as an agent called a  scenario manager . The scenarios are coupled 
through a  meta-work fl ow , called a  study . At runtime, each study has an administrator 
agent (the  study manager ), which manages the organization information of  scenario 
managers . As a runtime infrastructure, the work fl ow bus provides basic services 
for interpreting and scheduling meta-work fl ows, for orchestrating plugged legacy 
work fl ow engines, for passing and distributing data between work fl ow engines, 
and for supporting user interaction with work fl ows. From the system level point of 
view, features from different systems are then aggregated and integrated as one 
meta-system. 

 In the context of the work fl ow bus, the interface of a legacy work fl ow is modeled 
as a set of ports, which have a number of properties:  read (input)  or  write (output), 
media, type , and  access . These properties indicate where the content of the port is 
hosted, and the type of the port (abstract types only have access to data references, 
while concrete types describe the location where actual data is stored). The work fl ow 
bus provides a schema to specify the interface and other meta-information related to 
the legacy work fl ow, such as access point of the original work fl ow and its execution 
requirements. The description, namely  scenario description , can be interpreted by 
the scenario manager; at runtime a scenario manager generates the port stubs, and is 
able to search for a suitable work fl ow engine according to the execution require-
ments described in the description (Zhao et al.  2007  ) . 

 One of the use cases which have motivated the development of the work fl ow bus 
is the MACS lab experiment. As described by the MACS lab PFT, this experiment 
is composed of  fi ve processes, from which only one has been designed  DC analysis  
as a Work fl ow using the WS-VLAM work fl ow management system. The remaining 
processes required features which are not provided by WS-VLAM and thus where 
developed using third-party systems. The work fl ow bus approach was then pro-
posed as a means to coordinate the execution of the entire  fl ow comprising the 
MACS lab experiment. 

 Figure  7.6  shows how the work fl ows composing the MACS Lab experiment 
which are developed in various systems can be executed through the work fl ow bus: 
 fi rst, the work fl ows are wrapped as scenarios, then the scenario manager (scenario 6) 
connects them, and allows the intermediate data to be assigned to the appropriate 
work fl ow.    

    7.5.5   The ProxyService 

 Rapid adoption of the Service Oriented Architecture has led to development of a 
huge number of web services which can be accessed remotely to perform 
scienti fi c calculations. Bioinformatics is a good example of a scienti fi c  fi eld 
which has seen an explosion of the number of available web services (Peachey 
et al.  2003  ) . Web services offer an appealing paradigm for developing scienti fi c 
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  Fig. 7.6    The work fl ow bus allow the execution of application work fl ows across multiple SWMS. 
The runtime behavior of a legacy work fl ow is modeled as a scenario. The scenarios of legacy 
work fl ows are coupled through a meta-work fl ow. At runtime, an administrator agent manages the 
delivery of information between the scenarios       

   9   Web Service Choreography Interface:   http://www.w3.org/TR/wsci/      

applications, by providing interoperability and  fl exibility in a large-scale distrib-
uted environment. Through the use of XML-based protocols (SOAP) and inter-
faces (WSDL), web services can expose the entirety or selected parts of any 
application in a language-independent fashion across heterogeneous platforms. 
Moreover, these features enable them to be combined in a work fl ow so that more 
complex operations may be achieved (Zhang et al.  2006  ) . Currently, two 
approaches apply to work fl ow implementations: Service Orchestration and 
Service Choreography. 

 In Service Orchestration the process is always controlled by a work fl ow engine, 
so all invocations (and replies) are made by (and to) that work fl ow. On the other 
hand, choreography is more collaborative, because it describes the message exchange 
among interacting, yet independent web services. 9  Regardless of the architecture 
chosen, any work fl ow implementation is faced with a data transport problem which 
can be summarized in the following way: (1) In service orchestration, all data go 
through the work fl ow engine before being delivered to a consuming web service. 
This practice not only makes data delivery inef fi cient, but also causes failures in 
work fl ow execution due to the data burden work fl ow engines have to carry. (2) Data 
transfers are made through SOAP, a protocol un fi t for large-scale data transfers 
(Daly et al.  2005  ) . Curing data through SOAP is problematic for many scienti fi c 
applications, since the success of the paradigm has caused an abundance of web 
services to be deployed. As applications started to produce more data, these services 
fail to scale with the increased data demands. (3) Third-party  fi le transfer is suitable 
for transferring large data sets, but is restricted to  fi les. This results in unnecessary 
intermediate transfers that slow down work fl ow execution and place excessive 
demands on storage resources. 
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 To address these problems we introduced ProxyWS: a web service that is able to 
access data from remote resources (GridFTP, LFC, etc.) using the Virtual Resource 
System (VRS), a Java API used by the VBrowser 10  to provide a single access 
point to grid-enabled systems. Additionally, ProxyWS is able to transport larger 
volumes of data produced by both legacy and new web service implementations. 
For ProxyWS to be able to provide better data transfers to legacy web services, it 
has to be deployed in the same Axis-based container, just like a normal web service. 
This enables clients to make proxy calls to ProxyWS instead of a legacy web service 
(Fig.  7.7 ). Consequently, ProxyWS returns a SOAP message containing a URI 
referring to the data location, which might be any remote or local data resource, as 
long as it is supported by the VRS instead of the actual data. For new implementa-
tions, ProxyWS is used as an API that can create data streams from remote data 
resources and other web services using ProxyWS. This allows web services produc-
ing large amounts of data to be connected in a data pipeline, something that could 
optimize work fl ow execution (Koulouzis et al.  2008  ) . Thus, with the introduction of 
ProxyWS we have a centralized control  fl ow with all the bene fi ts of distributed data 
 fl ow for new and legacy web services. 
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  Fig. 7.7    The ProxyWS architecture. With the use of the VRS and the VRSServer, web services 
may access data from remote locations, or other web services which helps ameliorate the data 
isolation problems of Web services used in scienti fi c work fl ows       

   10     http://www.vl-e.nl/vbrowser      

 

http://www.vl-e.nl/vbrowser


154 A.S.Z. Belloum et al.

 The ProxyWS approach has helped optimize a number of applications where the 
adoption of a service-oriented architecture has led to a decrease in overall perfor-
mance, like the  Service-Oriented Visualisation applied to medical data analysis  
(Zudilova-Seintra et al.  2002  ) , and the  indexing and Name Entry Recognition 
services  developed in Adaptive Information Disclosure project. 11  ProxyWS enables 
exposure of data-intensive applications as web services without loss of performance. 
Experiments such as MACS Lab and, more speci fi cally, the  DC analysis  work fl ow 
can thus be exposed as a set of web services which can be easily used by a wider 
scienti fi c community.   

    7.6   Summary 

 In this chapter, we discussed some of the work fl ow-related issues in e-Science. 
First, we analyzed the requirements for supporting different application domains, 
and then discussed the necessity and importance of developing a uni fi ed framework 
for e-Science. We illustrated this vision by describing the approach followed in the 
context of the VL-e Project to develop such a framework. 

 The emergence of grid environments gives scientists new ambitions to tackle 
more complex and large-scale problems, which can lead to new methodologies 
in scienti fi c research and problem solving. The core idea of e-Science is to allow 
scientists representing different domains to share resources and knowledge and to 
collaborate in their research. In this chapter, we highlighted two issues pertinent to 
developing a collaboration environment for e-science: Modeling work fl ows on the 
level of the entire scienti fi c experiment lifecycle enables knowledge transfer between 
scientists where successful experiment results and templates can be applied for new 
problems as reusable resources. 

 Our state of the art analysis showed that the development of many SWMSs are 
highly application-driven. The speci fi cs of different application domains result in dif-
ferent work fl ow models and different styles of user support, which limits the opportu-
nities for sharing and interoperability. The other lesson to be learned from the survey 
is that while practical support exists in some form for all the stages of the e-Science 
experiment work fl ow, methodological support is lacking. A simplistic approach to 
address this problem will likely fail; more advanced solutions have to be investigated 
with the aid of recent achievements in semantics, Web 2.0, and ontologies. 

 One of the conclusion of the report from the NSF/Mellon Workshop on Scienti fi c 
and Scholarly Work fl ow organized 2007 (Klingenstein et al.  2007  )  is that there will 
be no single SWMS which is usable for all e-Science experiments. The absence of 
standards in the  fi eld of SWMS seriously limits the sharing of resources between 
diverse e-Science applications across scienti fi c  fi elds and various SWMSs. 

 A potential approach to lower the interoperability problem is through the use of 
service-oriented architectures. Standards such as WSDL for publishing services 

   11     http://www.adaptivedisclosure.org      
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enable SWMS to use one another’s services. However, being able to use services 
across multiple SWMSs is just part of the solution as currently there are no common 
standards for sharing knowledge associated with the proper use of services, nor is 
there a standard for sharing executable work fl ows. In this chapter we addressed the 
issue of knowledge sharing. It is clear that, given the current state of art, knowledge 
sharing is very much integrated into or dependent upon the executable work fl ow 
description. We think that knowledge should only be loosely coupled to the system 
which generates it, and we propose PFTs as a means to achieve this goal. Through 
this loose coupling PFTs can easily be implemented on top of different SWMSs. 
Diverse e-Science applications which require different SWMS for their execution 
can, by using this construct, share knowledge about the proper use of their web/grid 
services more easily. 

    7.6.1   Prospective Usage Applications 

 The VL-e framework has been created based on requirements extracted from six 
different scienti fi c domains. In this chapter we have given an example of scienti fi c 
application developed using the VL-e framework. However, the generic aspects of 
this framework make it applicable to various scienti fi c domains including practical 
medicine (   Leguy et al.  2011 ; Inda et al.  2008 ; Koulouzis et al.  2010  ) . The computer 
aided drug design makes possible the creation of new chemical compounds which 
can work as the modi fi cators of the “target” molecules creating the complexes 
with them. The presence of the ligand – potential drug – may correct the improper 
activity of the protein which is the source of the pathological process in patients 
body. This is why the VL-e may be implemented into the practical medicine. 

 The new challenge for practical medicine is the individual therapy. The tradi-
tional diagnostics and therapy stops when particular pathology has been recognized 
and particular procedure is applied for therapy. So far there arę some clinical paths 
for the group of patients representing similar symptoms. In post-genomic era, when 
the SNP (single nucleotide polymorphism) has been recognized and identi fi ed the 
individual therapy is expected. The drug, which can work successfully in one case 
may be useless in the other due to structural changes in proteins being the results of 
SNP. This is why the individually created drugs addressed to particular “target” 
protein should be applied in therapeutic procedures. New drug design takes time. 
The structure of proteins in fl uenced by SNP should be generated and the possible 
ligand binding cavities should be recognized as well as possible protein-protein 
complexation areas. This time period should be as short as possible to make the 
therapy successful. The availability of tools (and methods) described in his book are 
the milestones in respect to these expectations. 

 The generation of mutation-modi fi ed structure of target molecule and 
identi fi cation of ligand binding cavities (protein-protein complexation) are neces-
sary for correction malfunctioning proteins in the human body. The feature of 
individual therapy is applicable to AIDS therapy. HIV virus is characteristic by its 
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very frequent mutations making its proteins unrecognizable for drugs applied in the 
therapy so far. The monitoring of its mutations and consequent structural changes 
with the procedures of new drug creation addressed against these modi fi ed proteins 
of HIV virus may signi fi cantly speed up the therapeutic processes. The computer-
based tools presented in his book when introduced to practical medicine will speed 
up signi fi cantly the therapeutic processes making them individually addresses 
against the “target” in the form as it appears in the patients body. Identi fi cation of 
ligand binding sites in proteins as well as recognition of potential protein-protein 
complexation area is the basis for individually designed therapy.       
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  PFT    (Process Flow Template) is a concept that helps to enforce best practices, 
and increase the re-usability within a given scienti fi c domain   

  VO    (Virtual Organizations), in Grid computing, refers to a dynamic set of 
individual and/or institutions de fi ned around a set of resource-sharing 
rules and conditions   

  SWMS    Scienti fi c Work fl ow Management System   
  VL-e    (Virtual Laboratory for e-Science) is a Dutch research project with 

the aim to bridge the gap between the technology push of the high 
performance networking and the Grid and the application pull of a 
wide range of scienti fi c experimental applications   

  tele-science    merges advanced solutions for remote instrumentation (via Telemi-
croscopy), distributed data computation and storage, and transparent 
access to federated databases of cell structure   

  MACS    (Material Analysis of Complex Surface) experiments try to identify 
and determine the elements that compose complex surfaces, regard-
less of the nature of the sample   

  DAG    (Directed Acyclic Graphs) is a directed graph with no directed cycles   
  MDS    (Globus Monitoring and Discovery System)is the information services 

component of the Globus Toolkit and provides information about the 
available resources on the Grid and their status   

  HEFT    (Earliest Finish Time) is equal to the Early Start Time of a given task 
plus the duration of this task   

  OWT    (Olingo Web Tool) is a tool to automate the generation of the PFT 
data structure   

  SOAP    (Simple Object Access Protocol) is a protocol speci fi cation for 
exchanging structured information in the implementation of Web 
Services in computer net- works   

  VRS    (Virtual Resource System) a Java API used which provide a single 
access point to the Grid resources   

       Glossary 
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  WSDL    (Web Service Description Language) is an XML format for 
describing network services as a set of endpoints operating on 
messages containing either document-oriented or procedure-oriented 
information   

  HPC    (High Performance Computing) uses supercomputers and computer 
clusters to solve advanced computation problems   

  CPU    (Central processing unit)the part of a computer (a microprocessor 
chip) that does most of the data processing   

  MoC    (Models of Computing) is the de fi nition of the set of allowable 
operations used in computation and their respective costs   

  MIR    myGrid information repository   
  SWIG    (Simpli fi ed Wrapper and Interface Generator)s a software development 

tool that connects programs written in C and C++ with a variety of 
high-level programming language   

  RPC    (Remote Procedure Call) is an inter-process communication that 
allows a computer program to cause a subroutine or procedure to 
execute in another address space (commonly on another computer 
on a shared network) without the programmer explicitly coding 
the details for this remote interaction   

  PCA    (Principal component analysis) involves a mathematical procedure 
that transforms a number of possibly correlated variables into a 
number of uncorrelated variables called principal components, 
related to the original variables by an orthogonal transformation   

  XML    (Extensible Markup Language) is a set of rules for encoding docu-
ments in machine-readable form   

  GridFTP    (Grid-enabled File Transport Protocol) is an extension of the 
standard File Transfer Protocol (FTP) for use with Grid computing   

  LFC    (Logical File Catalog) has been developed by LCG (http://lcg.web.
cern.ch/LCG/) to resolve problems with the EDG Replica Manager 
File Catalog   

  WSRF    (Web Service Reference Framework) is a family of OASIS-published 
speci fi cations for web services. Major contributors include the 
Globus Alliance and IBM   

  ASKALON    is a Grid application development and computing environment   
  AWGL    (Abstract Grid Work fl ow Language) for describing Grid work fl ow 

applications at a high level of abstraction   
  JXPL    is an XML-based Scripting Language for Work fl ow Execution in a 

Grid Environment   
  GWorkowDL    (Generic Work fl ow Description Language) is a generic description 

language for work fl ows in distributed environments. This software 
package contains the XML Schema as well as Java tools for creating, 
parsing, and editing GWork fl owDL documents   

  Karajan    is a work fl ow speci fi cation language and execution engine, being 
developed within the Java CoG Kit   
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  Pegasus    project encompasses a set of technologies the help work fl ow-based 
applications execute in a number of different environments including 
desktops, campus clusters, grids, and now clouds   

  Triana    is an open source problem solving environment developed at Cardiff 
University that combines an intuitive visual interface with powerful 
data analysis tools   

  Kepler    is dedicated to furthering and supporting the capabilities, use, and aware-
ness of the free and open source, scienti fi c work fl ow application   

  ICENI    (Imperial College e-Science Networked Infrastructure) is a collection 
of grid middleware used for providing and coordinating grid services for 
e-Science applications   

  VBrowser    (Virtual Resource Browser) is intended as single frontend to the Grid. 
This is the main frontend from the VL-e Toolkit and most users from 
the VL-e Toolkit will only use this Graphical User Interface to access 
their Grid resources         
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