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  Abstract   In hydroclimatic science, a hydrologic or climatic event like a  fl ood or 
rainfall is said to be extreme if its occurrence is rare or the probability of its occur-
rence is below 5%. Predicting extreme events is a dif fi cult task, and often concep-
tual models fail to perform optimally while predicting the time and frequency of 
extreme events. Due to this drawback, scientists are now opting for nature-based 
algorithms to make predictions about extreme events. The application of neural 
networks, along with the categorization ability of fuzzy logic, has been found to 
perform much better than conceptual models. The present study uses the same con-
cept to develop a model that can predict the occurrence and frequency of extreme 
events with the help of a data set categorized by the application of fuzzy logic.  

  Keywords   Extreme events  •  Neuro-fuzzy systems  •  Combinatorial data matrix      

    8.1   Introduction 

 Arti fi cial neural networks (ANNs) are a popular method of prediction and catego-
rization that mimics the signal-transmission mechanism in the human nervous sys-
tem. In such a network, layers of inputs are connected to layers of output, just as 
axons are connected to dendrites in a nerve cell. All the inputs are attached to a 
weight layer that is continually updated to attain the desired level of accuracy in 
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obtaining the targeted values of the output; this resembles the signal-transmission 
process that occurs among interconnected nerve cells. Once an input signal, like a 
change in temperature on a stove burner, is detected by receptor cells, a signal is 
transmitted to the brain for a desired response. The brain, based on its experience, 
communicates its response, which will certainly be to remove the hand from the 
cause of the change. The neural network also has a third layer besides the input and 
output layers – the hidden layer, which works as a buffer between the two main 
layers. The hidden layers are just duplicate connections of the input and output 
layers, so experience gained from repeated iterations becomes replicated. 

 Thus, with a larger number of hidden layers, the model will gain more experience 
in a single iteration. But too many hidden layers can make the iteration procedure 
lengthy and computationally extensive, which is undesirable, making the selection of the 
number of hidden layers rather confusing and complex. Various decision-making 
techniques have been implemented to  fi nd a logical solution to this problem, but so 
far, the trial-and-error method is the most widely followed in the selection of 
network topologies. 

 On the other hand, the rarity of extreme events has made predicting them 
extremely dif fi cult and complex. The accuracy of any model, whether conceptual or 
statistical, will depend on the commonality of the output variable. Neural networks 
are popular for their prediction accuracy, even in the case of complex problems, 
such methods are now widely used to predict rare events. 

 It also has been found that the accuracy of a model developed from a set of 
clustered or categorized data is more than a model created with the help of a numer-
ical data set   . Fuzzy logic is widely used for categorizing sets of data retaining the 
inherent characteristics of the data. Thus, in this study, neural networks and fuzzy 
logic were used to predict extreme events. 

    8.1.1   Prediction of Extreme Events 

 “Climate is de fi ned not simply as average temperature and precipitation but also by 
the  type ,  frequency  and  intensity  of weather events” (USEPA). Climate change 
induced by global warming has the potential to change the probability and severity 
of extremes such as heat waves, cold waves, storms,  fl oods, and droughts. 

 As reported in the Intergovernmental Panel on Climate Change Fourth Assessment 
Report (IPCC  2007  ) , the number of extreme events, especially in the tropics, has 
greatly increased in magnitude and frequency. For example, the number of heat 
waves, the area of regions affected by droughts(due to marginal decreases in pre-
cipitation and increases in evaporation), the number of heavy daily precipitation, 
and the intensity, frequency, and duration of tropical storms have increased substan-
tially since the 1950s (USEPA). 

 But predicting such events under a changing climate is complex and rather 
impossible, whereas understanding the intensity, probability, and frequency of the 
changes can help us estimate and prepare for the threats to human health, society, 
and the environment.  
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    8.1.2   Objective and Scope 

 The objective model will have the following variables as input:

    1.    Intensity of rainfall ( P )  
    2.    Probability of rainfall ( P  

p
 )  

    3.    Frequency of rainfall ( P  
f
 )  

    4.    Previous day’s evapotranspiration (ET)  
    5.    Probability of evapotranspiration (ET 

p
 )  

    6.    Frequency of evapotranspiration (ET 
f
 )  

    7.    Previous day’s humidity ( H )  
    8.    Probability of humidity ( H  

p
 )  

    9.    Frequency of humidity ( H  
f
 )  

    10.    Previous day’s wind speed ( W )  
    11.    Probability of wind speed ( W  

p
 )  

    12.    Frequency of wind speeds ( W  
f
 )  

    13.    Average of last 5 day’s rainfall ( P  
5
 )  

    14.    Average of last 5 day’s evapotranspiration (ET 
5
 )  

    15.    Average of last 5 day’s humidity ( H  
5
 )  

    16.    Average of last 5 day’s wind speed ( W  
5
 )  

    17.    Types of cloud cover ( C  
t
 )  

    18.    Amount of cloud cover ( C )  
    19.    Probability of cloud cover ( C  

p
 )  

    20.    Frequency of cloud cover ( C  
f
 )     

 There is one output variable:

    1.    Probability of rainfall ( P  
p
 )      

    8.1.3   Brief Methodology 

 The entire data set of variables will be categorized with respect to the concept 
of maximization and minimization under the fuzzy theory of categorization. 
All the categorized data will be used in predicting the category of the output 
variable. 

 The categorical data of the input variables, which can be referred to as a decision 
matrix, will be fed to the neural network model to predict the output variable. 

 The decision matrix will have all possible situations that can arise in the near 
future. Whenever the probability of an extreme event must be estimated, the data 
value of the input variables will be converted into corresponding groups and then 
may be fed to the neural network model for prediction. The predicted group will 
show the occurrence of extreme events in the desired time, space, geophysical, and 
hydroclimatic domains.   
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    8.2   Arti fi cial Neural Networks and Fuzzy Logic 

    8.2.1   Arti fi cial Neural Network 

 An ANN is a pattern identi fi cation iteration methodology that mimics the proce-
dures of the human nervous system in responding to a stimulus. The model is 
 fl exible and can be applied to any type of problem using available data sets of the 
input and output variables. Neural networks are applied in various techniques and 
follow different logic in a wide variety of  fi elds in the arts, science, and engineering. 
It is widely accepted as a simple but ef fi cient model development methodology with 
a high level of accuracy. 

 In neural networks the input layers are multiplied by a weight, and the summa-
tion of this weighted sum is converted into a function (logistic, sigmoidal, etc.) to 
estimate the output. The output is compared with the observed data set for accuracy. 
If the estimation fails to reach the desired accuracy, then the weights are updated 
according to a logic known as a training algorithm and the entire process is 
repeated. In this way, until and unless the accuracy reaches the desired level or a 
certain number of iterations are conducted, the model continues to minimize the error 
by optimization of the weights. 

 But the main distinction of neural networks with respect to nonlinear models is 
the introduction of hidden layers, which enables a model to replicate its estimation. 
Hidden layers act as a buffer between the input and output layers. When a hidden 
layer is introduced, the output becomes the hidden layer and moreover, it becomes 
the input with respect to the output layer. The estimation work is performed two or 
three times depending on the number of hidden layers. But embedding too many 
hidden layers will also increase the requirements for computational power, which is 
undesirable. Thus, selection of the topology is done in steps that are accomplished 
either by trial and error or with the help of specialized search algorithms. Methods 
for updating weights and choosing an activation function are also determined by 
trial and error. The drawbacks of a neural network lie in these trial-and-error meth-
ods, and many studies have been conducted on how to overcome these 
shortcomings.  

    8.2.2   Fuzzy Logic 

 Fuzzy logic is one of the most popular technologies for the development of decision 
support modules. The capability of fuzzy logic resembles human decision making 
with its ability to generate precision from approximations. It successfully compen-
sates the gap in engineering design methods produced by “purely mathematical 
approaches and purely logic-based approaches in system design” (Aziz and 
Parthiban  1996  ) . 

 While equations are required to model real-world behaviors, fuzzy design can 
help to include the ambiguities of real-world human language and logic. 
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 The initial applications of fuzzy theory include process control for cement kilns, 
the  fi rst fuzzy-logic-controlled subway of Sendai in northern Japan (1987), elevators 
to reduce waiting time, etc. After the initial decade of the 1980s, applications of 
fuzzy logic in different technologies increased at an alarming rate, affecting the 
things we use every day. 

 Some of the noticeable applications of fuzzy logic in essential durable goods 
include the fuzzy washing machine, which uses fuzzy logic to select the best cycle, 
the identi fi cation of the right time at the proper temperature in a fuzzy microwave, 
and a fuzzy car with automaneuvering technology. 

 Fuzzy logic was derived from the fact that most modes of human reasoning are 
approximate in nature. 

 The theory of fuzzy logic was  fi rst developed by Professor Lofti Zadeh at the 
University of California in 1965. At that time application of fuzzy logic made the 
following assumptions:

   In fuzzy logic, exact reasoning is viewed as a limiting case of approximate • 
reasoning.  
  In fuzzy logic, everything is a matter of degree.  • 
  Any logical system can be fuzzi fi ed.  • 
  In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently, • 
fuzzy constraints on a collection of variables.  
  Inference is viewed as a process of propagating elastic constraints.    • 

    8.2.2.1   Application of Fuzzy Logic 

 Fuzzy logic has been applied in various  fi elds where decision making with the help 
of linear or nonlinear conceptual or statistical models was found to be erroneous. 
For example, the control systems of the 165 MWe Fugen advanced thermal reactor 
in Tokyo, Japan was embedded with fuzzy logic so that proper decisions could be 
made by the controller without any manual interference but based on system uncer-
tainty (Iijima et al.  1995  ) . The Steam drum water level had been controlled by pro-
portional-integral control systems, but after the development of fuzzy logic, the 
water level became more effectively regulated. 

 Fuzzy logic was applied to control the demand for electric water heater power in 
such a way that the on-peak demands were shifted to the off-peak period. To achieve 
that objective, Nehrir and La Meres  (  2000  )  divided the entire distribution area into 
multiple blocks, with each block separately regulated by a fuzzy controller. The use 
of the fuzzy controller was found to be bene fi cial in achieving the objectives    through 
demand-side management (DSM). 

 In the case of a water treatment mechanism, fuzzy logical operators were used to 
model the time-variant speci fi c  fl uxes during cross fl ow micro fi ltration of several 
feed suspensions. According to the model output, it was found that fuzzy logic con-
trollers could become an ef fi cient regulator in programmable control systems for 
improved onsite operation of membrane-based liquid–solid separation (Altunkaynaka 
and Chellam  2010  ) . 
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 In 1998 fuzzy logic was used to model the advective  fl ux of Atrazine in unsaturated 
calcareous soil (Freissineta et al.  1998  )  for dealing with the imprecise estimates that 
are normally present in water and solute movement in soils. Fuzzy logic was also 
applied in the development of a strategy to shift the average power demand of residen-
tial electric water heaters by selecting a minimum temperature as the control variable 
(LaMeres et al.  1999  ) ; in estimating “environ-metrics,” i.e., the interrelations of air, 
water, and land ecosystems (   Astel  2006  ) ; in the development of a new water quality 
index based on fuzzy logic; in a literature review and hydrographic survey for the 
Ribeira de Iguape River in the southwestern part of São Paulo State, Brazil (Lermontova 
et al.  2009  ) ; in the creation of an index to evaluate surface water quality by converting 
the traditional, discontinuous classes into continuous forms, where the summed val-
ues of the available data (with respect to the latter method of classi fi cation) were 
defuzzi fi ed to estimate the actual value of the index (Lcaga  2006  ) . Benlarbi et al. 
 (  2004  )  developed an online fuzzy optimization algorithm that was used to maximize 
the drive speed and water discharge rate of the coupled centrifugal pump of a photo-
voltaic water pumping system driven by a separately excited DC motor (DCM), a 
permanent magnet synchronous motor (PMSM), or an induction motor (IM) coupled 
to a centrifugal pump. Monthly water consumption was estimated successfully by 
Yurduseva and Firat  (  2008  )  with the help of fuzzy logic with an adaptive neural network 
[Adaptive Neuro-Fuzzy Inference System (ANFIS)]. 

 Table  8.1  presents more applications of fuzzy logic for solving problems in the 
 fi eld of water research.     

    8.3   Methodology 

 The present study will try to highlight a methodology for estimating the probability 
and frequency of extreme events. As discussed earlier, due to the uncertainty 
involved in the occurrence of extreme events, it is rather complex to de fi ne the exact 
amount or occurrence of such events. But their zone of certainty can be predicted if 
the required amount of data is available. 

    8.3.1   Data Set Preparation 

 At  fi rst the parameters related to the occurrence of extreme events were identi fi ed 
based on the available studies, governmental reports, and expert opinion. In the 
selection of the input variables the latter was given the maximum weighting due to 
the experts vast  fi eld experience. The variables were then encoded into nine groups 
representing the different levels of quantity and quality. Figure  8.1  represents the 
groups in which the variables were distributed.  
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 Once the data set was categorized, all possible combinations between the 
input variables and output were generated and used to prepare a combinatorial 
data set representing all the possible scenarios that could arise for the present 
interrelationships between input and output variables. The categorization of any 
data set must be performed in such a way that the lower categories like L (Low), 
SL (Semi Low), VL (Very Low), and EL (Extremely  Low) will have values that 
are small but not rare and the higher categories must represent data possessing 
opposite characteristics.  

    8.3.2   Development of Scoring Mechanism by Fuzzy Logic 

 The scoring of the categories to rate the data was performed with the help of fuzzy 
logic’s theory of minimization. In this theory, a fuzzy matrix was prepared by 

   Table 8.1    Some applications of fuzzy logic to different water-related problems   

 Authors 
 Field of water 
research  Model objective  Success rate 

 Schulz and 
Huwe  (  1998  )  

 One-dimensional, 
steady-state water 
 fl ow in unsaturated 
zone of homoge-
neous soils 

 Describe soil water 
pressures with depth and 
calculate evapotranspira-
tion rates under 
steady-state conditions 

 Impact of different 
shapes of member-
ship functions of 
input parameters on 
resulting member-
ship functions 

 Ocampo-Duquea 
et al.  (  2006  )  

 Water quality  Assess water quality by 
developing an index 

 Successful 

 en and 
Altunkaynak, 
 (  2009  )  

 Water consumption 
rate (important 
for planning 
requirements of 
drinking water) 

 Predict water consumption 
rate using body weight, 
activity, and temperature 
of consumers 

 Classi fi cation based on 
crisp numbers was 
avoided by 
introducing fuzzy 
sets 

 Saruwatari and 
Yomota 
 (  2000  )  

 Irrigation water 
management 

 Predict irrigation water 
requirements using 
categorized data 
generated in consultation 
with various experts and 
knowledge base 

 Successful 

 Karabogaa et al. 
 (  2007  )  

 Reservoir operation  Control operation dynamics 
of spillway gates 

 Successful 

 Khalid  (  2003  )   Operation 
management 

 Temperature control of 
water bath using 
neuro-fuzzy compensa-
tor and back-propagation 
neural network 

 Successful 
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comparing each input variable with the others according to the degree of importance 
with respect to each other. The degree of importance was represented by the follow-
ing classes:

    1.    Very Important (VI)  
    2.    Important (I)  
    3.    Neither Important nor Unimportant (NIUI   )  
    4.    Unimportant (UI)  
    5.    Completely Unimportant (CUI)     

 After the input variables were rated, they were all ranked according to their importance 
in ascending order, i.e., a variable with a VI rating was ranked 1, whereas a variable 
with a CUI rating was assigned a rank of 5. 

 After ranking the variables with respect to their importance, the rankings were 
divided by the worst rank achieved by a given variable. The minimum value of the 
result from the division represents the highest importance achieved by the variable 
compared with the other variables. This minimum value was taken as the scale to 
rate the present variable. 

 All the variables were assigned a rank with respect to their individual categories 
such that a higher rank implies a higher probability and frequency of an extreme 
event and vice versa   . 

 The objective function used to represent the probability of extreme events was 
developed by summing all the scales and the respective scores based on the scale of 
the input variables and deducing the percentage of the input variable with respect to 
the total value of the scale. The percentage will be directly proportional to the prob-
ability of the extreme events. After the percentage value of the objective function 

EH 

VH 

SH 

H 

M 

L 

SL 

VL 

EL

I/O or O/P
VARIABLE

DEGREE OF OCCURENCE

  Fig. 8.1    Groups in which the data set must be encoded ( EH  highest degree of quantity or quality, 
 EL  lowest level of quantity and quality)       
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was derived, it was again categorized, where EH indicates the maximum probability 
and EL represents the opposite. 

 With the input and output variables a combinatorial data matrix was used to 
develop a neural network model with Levenberg-Marquardt as the training algo-
rithm, a logistic activation function, and an exhaustive trial-and-error method for 
identifying the optimal network topology where all the input variables were used to 
predict the category of the output. 

 The results show the probability of extreme events with respect to the given sce-
narios as represented by the categories of the input variables. The methodology can 
be replicated in any study area to determine the probability of occurrence of an 
extreme event.   

    8.4   Results and Discussion 

 Table  8.2  shows the fuzzy matrix developed for scoring the input variables with 
respect to their importance compared to the other input variables. Table  8.3  repre-
sents the neural network parameters, and Table  8.4  shows the sensitivity, speci fi city, 
and precision of the neural network output.    

 According to the performance metrics (like sensitivity, speci fi city, and preci-
sion), the model had values of 99.02, 99.98, and 99.51%, respectively, for precision, 
sensitivity, and speci fi city, which shows the model’s level of accuracy.  

    8.5   Conclusion 

 The present study represents an attempt to predict the probability of occurrence of 
extreme events with the help of 20 selected variables. The variables are encoded 
into nine categories and rated using fuzzy logic. The rated input variables were 
used to develop an objective function representing the likelihood of the extreme 
events. The function was then encoded into nine categories that were similar to 
the input categories. The categorized input and output variable was used to gener-
ate all the possible combinations of the variables and a combinatorial data matrix 
was produced. This data matrix was used to create a neural network model to 
predict the outcome of the combinations of the input variables. Once the model is 
trained to predict the chance of occurrence of extreme events for all possible sce-
narios, it can be used to predict extreme events based on the input variables in any 
given study area. Due to a lack of time, the model was not tested for real-time situ-
ations, but the authors would be interested in receiving results in real-time settings 
from the research community that might help to further improve the model’s 
ef fi ciency.      
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   Table 8.2    Fuzzy ratings of each criteria with respect to each other based on the  fi ve point fuzzy scale   

 1. 
Intensity 
of 
rainfall 
( P ) 

 2. 
Probability 
of the 
rainfall 
( P  

p
 ) 

 3. 
Frequency 
of the 
rainfall 
( P  

f
 ) 

 4. 
Previous 
day 
evapo-
transpira-
tion (ET) 

 5. 
Probability 
of the 
evapo-
transpira-
tion (ET 

p
 ) 

 6. 
Frequency 
of the 
evapo-
transpira-
tion (ET 

f
 ) 

 7. 
Previous 
day 
humidity 
( H ) 

 8. 
Probability 
of the 
humidity 
( H  

p
 ) 

 9. 
Frequency 
of the 
humidity 
( H  

f
 ) 

 1. Intensity of rainfall (P)  0  I  I  I  I  I  VI  I  I 

 2. Probability of the rainfall 
( P  

p
 ) 

 UI  0  NINU  NINU  NINU  NINU  I  NINU  NINU 

 3. Frequency of the rainfall 
( P  

f
 ) 

 UI  UI  0  NINU  NINU  NINU  I  NINU  NINU 

 4. Previous day 
evapo-transpiration 
(ET) 

 UI  NINU  NINU  0  I  I  NINU  NINU  NINU 

 5. Probability of the 
evapo-transpiration 
(ET 

p
 ) 

 UI  NINU  NINU  UI  0  I  I  I  I 

 6. Frequency of the 
evapo-transpiration 
(ET 

f
 ) 

 CUI  UI  UI  NINU  UI  0  I  I  I  

 7. Previous day humidity 
( H ) 

 CUI  UI  UI  NINU  UI  UI  0  I  I 

 8. Probability of the 
humidity ( H  

p
 ) 

 UI  NINU  NINU  NINU  UI  UI  UI  0  I 

 9. Frequency of the 
humidity ( H  

f
 ) 

 UI  NINU  NINU  NINU  UI  UI  UI  UI  0 

 10. Previous day wind 
speed ( W ) 

 UI  NINU  NINU  UI  UI  UI  UI  UI  UI 

 11. Probability of the wind 
speed ( W  

p
 ) 

 UI  NINU  NINU  UI  UI  UI  UI  UI  UI 

 12. Frequency of the wind 
speed ( W  

f
 ) 

 UI  NINU  NINU  UI  UI  UI  UI  UI  UI 

 13. Average of last  fi ve days 
rainfall ( P  

5
 ) 

 UI  NINU  NINU  UI  UI  UI  UI  UI  UI 

 14. Average of last  fi ve days 
evapo-transpiration 
(ET 

5
 ) 

 NINU  I  I  UI  UI  UI  UI  UI  UI 

 15. Average of last  fi ve days 
humidity ( H  

5
 ) 

 NINU  I  I  UI  UI  UI  UI  UI  UI 

 16. Average of last  fi ve days 
wind-speed ( W  

5
 ) 

 NINU  I  I  UI  UI  UI  UI  UI  UI 

 17. Types of cloud cover 
( C  

t
 ) 

 NINU  I  I  I  I  NINU  NINU  NINU  NINU 

 18. Amount of cloud 
cover( C ) 

 CUI  UI  UI  I  I  NINU  NINU  NINU  NINU 

 19. Probability of the cloud 
cover ( C  

p
 ) 

 UI  NINU  NINU  I  I  NINU  NINU  NINU  NINU 

 20. Frequency of the cloud 
cover ( C  

f
 ) 

 UI  NINU  NINU  I  I  NINU  NINU  NINU 
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 10. 
Previous 
day 
wind 
speed 
( W ) 

 11. 
Probability 
of the wind 
speed ( W  

p
 ) 

 12. 
Frequency 
of the 
wind 
speed ( W  

f
 ) 

 13. 
Average 
of last  fi ve 
days 
rainfall ( P  

5
 ) 

 14. 
Average 
of last  fi ve 
days evapo-
transpiration 
(ET 

5
 ) 

 15. 
Average 
of last  fi ve 
days 
humidity 
( H  

5
 ) 

 16. 
Average of 
last  fi ve 
days 
wind-speed 
( W  

5
 ) 

 17. Types 
of cloud 
cover ( C  

t
 ) 

 18. 
Amount 
of cloud 
cover( C ) 

 19. 
Probability 
of the cloud 
cover ( C  

p
 ) 

 20. 
Frequency of 
the cloud 
cover ( C  

f
 ) 

 I  I  I  I  NINU  NINU  NINU  NINU  VI  I  I 

 NINU  NINU  NINU  NINU  UI  UI  UI  UI  I  NINU  NINU 

 NINU  NINU  NINU  NINU  UI  UI  UI  UI  I  NINU  NINU 

 I  I  I  I  I  I  I  UI  UI  UI  UI 

 I  I  I  I  I  I  I  UI  UI  UI  UI 

 I  I  I  I  I  I  I  NINU  NINU  NINU  NINU 

 I  I  I  I  I  I  I  NINU  NINU  NINU  NINU 

 I  I  I  I  I  I  I  NINU  NINU  NINU  NINU 

 I  I  I  I  I  I  I  NINU  NINU  NINU  NINU 

 0  I  I  I  I  I  I  NINU  NINU  NINU  NINU 

 UI  0  I  I  I  I  I  NINU  NINU  NINU  NINU 

 UI  UI  0  I  I  I  I  NINU  NINU  NINU  NINU 

 UI  UI  UI  0  I  I  I  UI  UI  UI  UI 

 UI  UI  UI  UI  0  I  I  UI  UI  UI  UI 

 UI  UI  UI  UI  UI  0  UI  UI  UI  UI  UI 

 UI  UI  UI  UI  UI  UI  0  UI  UI  UI  UI 

 NINU  NINU  NINU  I  I  I  I  0  NINU  NINU  NINU 

 NINU  NINU  NINU  I  I  I  I  NINU  0  I  I 

 NINU  NINU  NINU  I  I  I  I  NINU  UI  0  I 

 NINU  NINU  NINU  I  I  I  I  NINU  UI  UI  0 
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