Chapter 4
Application of Artificial Neural Networks
in Short-Term Rainfall Forecasting

Mrinmoy Majumder and Rabindra Nath Barman

Abstract Short-term rainfall is important in agriculture, industry, the energy
sector, and any other water-dependent activities where profitability depends on
climatic conditions. The scarcity of reliable prediction models encouraged the
authors of the present study to develop a modeling platform using a neurogenetic
model to estimate rainfall occurrence within a short-term duration. The data on
both the quantity and the probability of occurrence of rainfall based on the previ-
ous 1-5 days were used to predict the quantity and occurrence of rainfall 1-4 days
hence. The potential of neurogenetic models to predict short-term rainfall on the
basis of such a small-scale data set was analyzed with the aim of developing a
software platform for laypeople and to help related professionals maintain the
profitability of their organization by reducing the likelihood of wastage resulting
from large-scale prediction errors, which are common with the available linear
models. The results indicate that neurogenetic models can reliably predict rainfall
1, 3, and 4 days in advance, but not 2 and 5 days, if the models are trained with a
suitable algorithm. The subpar performance of the 2- and 5-day rainfall prediction
models was attributed to the choice of training algorithms and length of time,
although the reliable prediction of rainfall even 1 day in advance warrants pursu-
ing further development of the present investigation.
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4.1 Introduction

The prediction of short-term rainfall (STR) involves the estimation of the intensity
and/or frequency of rainfall events within a span of 5 days. Rainfall impacts the
production efficiency of the essential services (like water, electricity, and gas),
agriculture, stock exchanges, and various other water-dependent industries.
Laypeople also are affected by rainfall events.

Rainfall can impact daily water supplies from the water treatment plant (WTP)
of any city because of the increase in suspended solids and pollutants in surface
water. The chemical dozing pattern must be adjusted to prevent any excess of
toxicity from affecting the quality of the treated water. If a rainfall event could be
predicted within the next 24—48 h, then compensatory measures could be taken to
maintain the quality of treated water.

Demand for electricity depends on temperature and humidity. After a rainfall
event both temperature and humidity decreases, which leads to a reduction in the
demand for electricity. Because demand is reduced, production of electricity will
need to be adjusted to prevent wastage. If the occurrence of rainfall events within a
short span of time could be predicted, then a sufficient amount of electrical energy
could be conserved; this would also reduce the release of greenhouse gases into the
atmosphere.

The demand on natural gas also varies with the frequency and intensity of
rainfall events. Because of the impact of extreme events, electrical transmission or
distribution networks can be damaged. The absence of electricity induces increased
demand on liquefied petroleum gas and compressed natural gas.

That is why there is a need for a reliable prediction model that can estimate
both probability and magnitude of rainfall at least 24—48 h before its occurrence.
The absence of a large-scale data set have decreased the availability of reliable
prediction models for solving such problems. The absence of a regular pattern in
the related parameters within such short time domain has forced modelers to apply
stochastic modeling to predict short-term rainfall patterns.

Stochastic models have fewer requirements when it comes to data but are extremely
vulnerable to uncertainty due to the unstable nature of the interrelationships of the
variables. Due to the complexity and uncertainty involved in such models, linear
methods often fail to deliver effective estimations, as can be concluded from the
references given in Table 4.1.

4.1.1 Earlier Studies on the Prediction of Short-Term Rainfall

Short-term rainfall is a popular topic of research due to its importance in industry
and the agricultural output of a country. Table 4.1 shows the application of different
types of mathematical and statistical models in the prediction of short-term rainfall.
The accuracy achieved and drawbacks identified are also explained.
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4.1.2 Neural Network for Short-Term Rainfall Prediction

The ability of neural networks to map the nonlinear and inherently complex
interrelationship between a set of input variables and an output variable is well
established and supported by many studies on different topics in science and
engineering. Table 4.2 shows the application of neural networks in solving various
types of problems. Table 4.3 presents earlier applications of neural networks, both
individually and in combination with other algorithms in predicting short-term rain-
fall with respect to different regional conditions.

4.1.3 Neurogenetic Algorithms

In the development of neural network models, network topology, weights assigned to
input variables, and the type of activation function are the three important parameters
that affect the accuracy and reliability of a neural network model. Because there are
no predetermined methodologies for identifying the optimal values of these param-
eters, various studies have applied different statistical methods, including nature-
based algorithms, to determining an ideal value for these three parameters.

When genetic algorithms are used to search for optimal values of these parame-
ters, the models are jointly referred to as neurogenetic models.

From Table 4.3 it is clear that there is a substantial lack of research studies
involving stochastic neural network models and short-term rainfall. The table also
shows that such models have already been developed to perform effectively in
predicting hourly to monthly rainfall intensities and occurrence. The table also
demonstrates that in the case of occurrence, neural networks generally prefers
categorized data rather than numerical data sets (Olsson et al. 2001).

4.1.4 Objective

The main objective of the present investigation will be to analyze the capability of
neurogenetic models in estimating short-duration rainfall patterns. The study
involves the prediction of both the quantity and occurrence probability of
rainfall within the next 5 days based on the rainfall records of the previous 5 days.
A stochastic modeling approach was used, keeping in mind the scarcity of adequate
data sets and the level of uncertainty included in such prediction problems.

4.1.5 Brief Methodology

In case of the neural network models the probability of occurrence and amount of
rainfall in the previous 5 days were considered as input variables. In total, five
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neurogenetic models were prepared, each having two submodels. The occurrence
probability and quantity of rainfall for the next 5 days were considered as
model outputs for the present study. As stated earlier, each model has two sub-
models predicting the quantity and occurrence of rainfall in different time domains
(one to five).

The models were trained with the help of a data matrix that contains every
possible combination between input and output variables if their data values are
converted into nine categories representing nine different degrees of intensity of the
variables. Table 4.4 shows the input and output variables considered for the five
different models. In Table 4.5 are shown the variables and categories into which all
are divided based on the intensity of the magnitude.

Because the data matrix contains all possible situations, the model can learn the
inherent relationship between the input and output variables for all possible combi-
nations, ensuring the reliability of the model output.

All the developed models were evaluated based on selected performance metrics
like the kappa index of agreement, precision, sensitivity, and specificity. The metrics
will help to identify the best model among the five models developed. The selection
will also indicate the range within which the functionality of the neurogenetics
models will be optimized.

4.2 Methodology

In the present investigation the objective is to identify the range within which neu-
rogenetic models will efficiently predict output with the desired level of accuracy
and reliability. At first, five neurogenetic models are prepared with the help of com-
mon model parameters. Each model has two submodels predicting the quantity and
probability of occurrence within different time domains starting from 1 to 5 days in
advance of the rainfall.

The input and output variables of all models are given in Table 4.4. Table 4.6
shows the common model parameters adopted for all the neurogenetic models so
that a uniform decision can be made.

Before the models are developed, the data to train the models are preprocessed as
described in the next section.

4.2.1 Data Preprocessing

All the neurogenetic models considered for the present study have ten input variables.
If the data of the input variables are represented as a percentage of the maximum,
then all the variables can be encoded in nine categories based on the percentage
value of the variables because categorized data were found to perform more
efficiently than normal sets. Table 4.5 shows the input variables and the nine categories
in which the data values of the variables are grouped.
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Table 4.4 Input and output variables of neurogenetic models developed

Input

Output

STRFM1
Occurrence probability of rainfall, same day (P,)

Occurrence probability of rainfall, 1 day before (P, )
Occurrence probability of rainfall, 2 days before (P,_,)
Occurrence probability of rainfall, 3 days before (P, _,)
Occurrence probability of rainfall, 4 days before (P
Quantity of rainfall, same day (Q)

Quantity of rainfall, 1 day before (Q, )

Quantity of rainfall, 2 days before (Q, )

Quantity of rainfall, 3 days before (Q, ,)

Quantity of rainfall, 4 days before (Q,_,)

STRFM2

Occurrence probability of rainfall, same day (P)

)

Occurrence probability of rainfall, 1 day before (P,_)
Occurrence probability of rainfall, 2 days before (P, _,)
Occurrence probability of rainfall, 3 days before (P _,)
Occurrence probability of rainfall, 4 days before (P
Quantity of rainfall, same day (Q,)

Quantity of rainfall, 1 day before (Q, )

Quantity of rainfall, 2 days before (Q, )

Quantity of rainfall, 3 days before (Q, ,)

Quantity of rainfall, 4 days before (Q,_,)

STRFM3

Occurrence probability of rainfall, same day (P)

r—4)

Occurrence probability of rainfall, 1 day before (P,_)
Occurrence probability of rainfall, 2 days before (P _))
Occurrence probability of rainfall, 3 days before (P _,)
Occurrence probability of rainfall, 4 days before (P
Quantity of rainfall, same day (Q)

Quantity of rainfall, 1 day before (Q, )

Quantity of rainfall, 2 days before (Q, )

Quantity of rainfall, 3 days before (Q, )

Quantity of rainfall, 4 days before (Q )

STRFM4

Occurrence probability of rainfall, same day (P)

r—4)

Occurrence probability of rainfall, 1 day before (P,_,)
Occurrence probability of rainfall, 2 days before (P, _,)
Occurrence probability of rainfall, 3 days before (P, ,)
Occurrence probability of rainfall, 4 days before (P,_,)
Quantity of rainfall, same day (Q)

Quantity of rainfall, 1 day before (Q, )

Quantity of rainfall, 2 days before (Q, )

Occurrence probability of rainfall,
1 day before (P )
Quantity of rainfall, 1 day before (Q,, )

Occurrence probability of rainfall,
2 days before (P ,)
Quantity of rainfall, 2 days before (Q

r+2)

Occurrence probability of rainfall,
3 days before (P, ,)
Quantity of rainfall, 3 days before (Q,,,)

Occurrence probability of rainfall,
4 days before (P )
Quantity of rainfall, 4 days before (Q

1+4)

(continued)
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Table 4.4 (continued)
Input Output
Quantity of rainfall, 3 days before (Q, ;)
Quantity of rainfall, 4 days before (Q )
STRFM5S
Occurrence probability of rainfall, same day (P) Occurrence probability of rainfall,
5 day before (P,,)
Occurrence probability of rainfall, 1 day before (P, ) Quantity of rainfall, 5 day before (Q,,,)

Occurrence probability of rainfall, 2 days before (P, _,)
Occurrence probability of rainfall, 3 days before (P, ,)

Occurrence probability of rainfall, 4 days before (P

Quantity of rainfall, same day (Q)
Quantity of rainfall, 1 day before (Q, )
Quantity of rainfall, 2 days before (Q )
Quantity of rainfall, 3 days before (Q, )
Quantity of rainfall, 4 days before (Q, )

Ht)

Table 4.5 Input variables and categories of neurogenetic models

Input variable

Category considered

Occurrence probability of rainfall,
1 day before (P)

Occurrence probability of rainfall,
2 days before (P )

Occurrence probability of rainfall,
3 days before (P_,)

Occurrence probability of rainfall,
4 days before (P _,)

Occurrence probability of rainfall,

5 days before (P )
Quantity of rainfall, 1 day before (Q)
Quantity of rainfall, 2 days before (Q, )
Quantity of rainfall, 3 days before (Q, )

Quantity of rainfall, 4 days before (Q, ,)

Quantity of rainfall, 5 days before (Q, )

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L), Semi Low
(SL), Very Low (VL), and Extremely Low (EL)

Extremely High (EH), Very High (VH), Semi High
(SH), High (H), Normal (N), Low (L),Semi Low
(SL), Very Low (VL), and Extremely Low (EL)
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Table 4.6 Characteristics of model parameters and adopted performance metrics

Model parameter Value
Genetic algorithm parameters

Population size 60
Number of generations 50
Crossover rate 0.80
Mutation rate 0.20
Neural network parameters

Network topology 10-8-2
Network weight 88

Training algorithm selected

Quick propagation coefficient

Learning rate

Generalization loss allowed

Correct classification rate (CCR) desired
Number of training iterations allowed
Number of retrains

Performance metrics of STRM1

Training CCR of STRM1-QP

Testing CCR of STRM1-QP

Training CCR of STRM1- CGD

Testing CCR of STRM1-CGD

Kappa index of agreement of STRM1 -QP
Precision of STRM1-QP

Sensitivity of STRM1-QP

Specificity of STRM1-QP

Kappa index of agreement of STRM1 -CGD
Precision of STRM1-CGD

Sensitivity of STRM1-CGD

Specificity of STRM1-CGD

Performance metrics of STRM2

Training CCR of STRM2- QP

Testing CCR of STRM2-QP

Training CCR of STRM2- CGD

Testing CCR of STRM2-CGD

Kappa index of agreement of STRM2 -QP
Precision of STRM2-QP

Sensitivity of STRM2-QP

Specificity of STRM2-QP

Kappa index of agreement of STRM2 -CGD
Precision of STRM2-CGD

Sensitivity of STRM2-CGD

Specificity of STRM2-CGD

Performance metrics of STRM3

Training CCR of STRM3- QP

Testing CCR of STRM3-QP

Training CCR of STRM3-CGD

Quick propagation (QP) and conjugate

gradient Descent
1.75
0.20
50.00%
98.00%
1,000,000
10

99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%
99.95%

99.95%
99.95%
90.91%
100%

99.95%
99.95%
99.95%
99.95%
94.76%
95.55%
96.04%
95.06%

99.95%
99.95%
99.95%

(continued)
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Table 4.6 (continued)

Model parameter Value
Testing CCR of STRM3-CGD 99.95%
Kappa index of agreement of STRM3 -QP 99.95%
Precision of STRM3-QP 99.95%
Sensitivity of STRM3-QP 99.95%
Specificity of STRM3-QP 99.95%
Kappa index of agreement of STRM3 -CGD 99.95%
Precision of STRM3-CGD 99.95%
Sensitivity of STRM3-CGD 99.95%
Specificity of STRM3-CGD 99.95%
Performance metrics of STRM4

Training CCR of STRM4- QP 99.95%
Testing CCR of STRM4 — QP 99.95%
Training CCR of STRM4- CGD 99.95%
Testing CCR of STRM4 — CGD 99.95%
Kappa index of agreement of STRM4 -QP 99.95%
Precision of STRM4-QP 99.95%
Sensitivity of STRM4-QP 99.95%
Specificity of STRM4-QP 99.95%
Kappa index of agreement of STRM4 -CGD 99.95%
Precision of STRM4-CGD 99.95%
Sensitivity of STRM4-CGD 99.95%
Specificity of STRM4-CGD 99.95%
Performance metrics of STRMS

Training CCR of STRMS- QP 99.95%
Testing CCR of STRMS5-QP 99.95%
Training CCR of STRMS5-CGD 99.09%
Testing CCR of STRM5-CGD 100%
Kappa index of agreement of STRMS5-QP 99.95%
Precision of STRMS5-QP 99.95%
Sensitivity of STRMS-QP 99.95%
Specificity of STRMS5-QP 99.95%
Kappa index of agreement of STRMS5-CGD 99.37%
Precision of STRMS5-CGD 99.41%
Sensitivity of STRMS5-CGD 99.44%
Specificity of STRM5-CGD 99.38%

The rule for categorizing the data values of both input and output variables are
given below:

If {

V < 15%,

Then ( V = EL,
Else,

If (

16% < V < 30%,
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Then ( V = VL,
Else,

If (

31% < V < 40%
Then ( V = SL
Else,

If (

41% < V < 50%,
Then ( V = L,
Else,

If (

51% < V < 60%,
Then ( V = N,
Else,

If (

1% < V < 70%,
Then (V = H,
Else,

If (

71% < V < 80%,
Then (V SH,
Else,

If (

81% <V < 90%,
Then ( V = VH,

Else,

V = EH )
)

)

)

)

)

)

)

)}

4.2.2 Model Training, Testing, and Validation

A combinatorial data matrix is used to train all the neurogenetic models. Quick
propagation (QP) and conjugate gradient descent (CGD) are selected as the training
algorithms. Performance metrics like the kappa index of agreement, precision,
sensitivity, and specificity were used to select the best model from among the five
models considered.
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4.3 Results and Discussion

As explained in the previous section, Table 4.6 shows the values of the model
parameters selected for this study. The models’ performance metrics are also shown
in the table.

The results from the performance metrics indicate that, except for STRM2-CGD
and STRMS5-CGD, all the models performed satisfactorily. Because the models
were validated using a small set of data randomly selected from the training data set,
the metrics results were found to be near 100. Even then, also the kappa index of
agreement, precision, sensitivity, and specificity for STRM2-CGD was found to be
94.76, 95.55, 96.04, and 95.06%, respectively, whereas the same for model STRM5-
CGD were determined to be equal to 99.37, 99.41, 99.44, and 99.38%, although the
STRMS5-CGD model when compared to STRM2-CGD was concluded to be prefer-
able to the latter.

4.4 Conclusion

The present investigation tried to estimate short-term rainfall using neurogenetic
models and 1-5-days lagged rainfall data. In total, five models were prepared pre-
dicting both the occurrence and magnitude of next five days. The network topology
of the models was selected using a genetic algorithm, and both QP and CGD were
selected for training. The data set of the input and output variables was converted
into nine categories, each representing a different level of magnitude and probabil-
ity. According to the model results, it was found that only the 2- and 5-day rainfall
prediction models trained with a CGD algorithm did not perform on par with the
other models. This subpar performance can be attributed to the incompatibility of
the CGD algorithm and the length of the time domain. If the prediction is made
using real-life data of a study area, then the actual reasons for the subpar perfor-
mance of the STRM2-CGD and STRMS5-CGD can be properly analyzed. This
approach of predicting short-term rainfall may help to predict extreme events even
if data availability is scarce.
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