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  Abstract   Short-term rainfall is important in agriculture, industry, the energy 
 sector, and any other water-dependent activities where pro fi tability depends on 
climatic conditions. The scarcity of reliable prediction models encouraged the 
authors of the present study to develop a modeling platform using a neurogenetic 
model to estimate rainfall occurrence within a short-term duration. The data on 
both the quantity and the probability of occurrence of rainfall based on the previ-
ous 1–5 days were used to predict the quantity and occurrence of rainfall 1–4 days 
hence. The potential of neurogenetic models to predict short-term rainfall on the 
basis of such a small-scale data set was analyzed with the aim of developing a 
software platform for laypeople and to help related professionals maintain the 
pro fi tability of their organization by reducing the likelihood of wastage resulting 
from large-scale prediction errors, which are common with the available linear 
models. The results indicate that neurogenetic models can reliably predict rainfall 
1, 3, and 4 days in advance, but not 2 and 5 days, if the models are trained with a 
suitable algorithm. The subpar performance of the 2- and 5-day rainfall prediction 
models was attributed to the choice of training algorithms and length of time, 
although the reliable prediction of rainfall even 1 day in advance warrants pursu-
ing further development of the present investigation.      
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    4.1   Introduction    

 The prediction of short-term rainfall (STR) involves the estimation of the intensity 
and/or frequency of rainfall events within a span of 5 days. Rainfall impacts the 
production ef fi ciency of the essential services (like water, electricity, and gas), 
agriculture, stock exchanges, and various other water-dependent industries. 
Laypeople also are affected by rainfall events. 

 Rainfall can impact daily water supplies from the water treatment plant (WTP) 
of any city because of the increase in suspended solids and pollutants in surface 
water. The chemical dozing pattern    must be adjusted to prevent any excess of 
toxicity from affecting the quality of the treated water. If a rainfall event could be 
predicted within the next 24–48 h, then compensatory measures could be taken to 
maintain the quality of treated water. 

 Demand for electricity depends on temperature and humidity. After a rainfall 
event both temperature and humidity decreases, which leads to a reduction in the 
demand for electricity. Because demand is reduced, production of electricity will 
need to be adjusted to prevent wastage. If the occurrence of rainfall events within a 
short span of time could be predicted, then a suf fi cient amount of electrical energy 
could be conserved; this would also reduce the release of greenhouse gases into the 
atmosphere. 

 The demand on natural gas also varies with the frequency and intensity of 
rainfall events. Because of the impact of extreme events, electrical transmission or 
distribution networks can be damaged. The absence of electricity induces increased 
demand on lique fi ed petroleum gas and compressed natural gas   . 

 That is why there is a need for a reliable prediction model that can estimate 
both probability and magnitude of rainfall at least 24–48 h before its occurrence. 
The absence of a large-scale data set have decreased the availability of reliable 
prediction models for solving such problems. The absence    of a regular pattern in 
the related parameters within such short time domain has forced modelers to apply 
stochastic modeling to predict short-term rainfall patterns. 

 Stochastic models have fewer requirements when it comes to data but are extremely 
vulnerable to uncertainty due to the unstable nature of the interrelationships of the 
variables. Due to the complexity and uncertainty involved in such models, linear 
methods often fail to deliver effective estimations, as can be concluded from the 
references given in Table  4.1 .  

    4.1.1   Earlier Studies on the Prediction of Short-Term Rainfall 

 Short-term rainfall is a popular topic of research due to its importance in industry 
and the agricultural output of a country. Table  4.1  shows the application of different 
types of mathematical and statistical models in the prediction of short-term rainfall. 
The accuracy achieved and drawbacks identi fi ed are also explained.  
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    4.1.2   Neural Network for Short-Term Rainfall Prediction 

 The ability of neural networks to map the nonlinear and inherently complex 
interrelationship between a set of input variables and an output variable is well 
established and supported by many studies on different topics in science and 
engineering. Table  4.2  shows the application of neural networks in solving various 
types of problems. Table  4.3  presents earlier applications of neural networks, both 
individually and in combination with other algorithms in predicting short-term rain-
fall with respect to different regional conditions.   

    4.1.3   Neurogenetic Algorithms 

 In the development of neural network models, network topology, weights assigned to 
input variables, and the type of activation function are the three important parameters 
that affect the accuracy and reliability of a neural network model. Because there are 
no predetermined methodologies for identifying the optimal values of these param-
eters, various studies have applied different statistical methods, including nature-
based algorithms, to determining an ideal value for these three parameters.  

 When genetic algorithms are used to search for optimal values of these parame-
ters, the models are jointly referred to as neurogenetic models. 

 From Table  4.3  it is clear that there is a substantial lack of research studies 
involving stochastic neural network models and short-term rainfall. The table also 
shows that such models have already been developed to perform effectively in 
predicting hourly to monthly rainfall intensities and occurrence. The table also 
demonstrates that in the case of occurrence, neural networks generally prefers 
   categorized data rather than numerical data sets (Olsson et al.  2001  ) .  

    4.1.4   Objective 

 The main objective of the present investigation will be to analyze the capability of 
neurogenetic models in estimating short-duration rainfall patterns. The study 
involves the prediction of both the quantity and occurrence probability of 
rainfall within the next 5 days based on the rainfall records of the previous 5 days. 
A stochastic modeling approach was used, keeping in mind the scarcity of adequate 
data sets and the level of uncertainty included in such prediction problems.  

    4.1.5   Brief Methodology 

 In case of the neural network models the probability of occurrence and amount of 
rainfall in the previous 5 days were considered as input variables. In total,  fi ve 
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neurogenetic models were prepared, each having two submodels. The occurrence 
probability and quantity of rainfall for the next 5 days were considered as 
model outputs for the present study. As stated earlier, each model has two sub-
models predicting the quantity and occurrence of rainfall in different time domains 
(one to  fi ve). 

 The models were trained with the help of a data matrix that contains every 
possible combination between input and output variables if their data values are 
converted into nine categories representing nine different degrees of intensity of the 
variables. Table  4.4  shows the input and output variables considered for the  fi ve 
different models. In Table  4.5  are shown the variables and categories into which all 
are divided based on the intensity of the magnitude.  

 Because the data matrix contains all possible situations, the model can learn the 
inherent relationship between the input and output variables for all possible combi-
nations, ensuring the reliability of the model output. 

 All the developed models were evaluated based on selected performance metrics 
like the kappa index of agreement, precision, sensitivity, and speci fi city. The metrics 
will help to identify the best model among the  fi ve models developed. The selection 
will also indicate the range within which the functionality of the neurogenetics 
models will be optimized.   

    4.2   Methodology 

 In the present investigation the objective is to identify the range within which neu-
rogenetic models will ef fi ciently predict output with the desired level of accuracy 
and reliability. At  fi rst,  fi ve neurogenetic models are prepared with the help of com-
mon model parameters. Each model has two submodels predicting the quantity and 
probability of occurrence within different time domains starting from 1 to 5 days in 
advance of the rainfall. 

 The input and output variables of all models are given in Table  4.4 . Table  4.6  
shows the common model parameters adopted for all the neurogenetic models so 
that a uniform decision can be made. 

 Before the models are developed, the data to train the models are preprocessed as 
described in the next section. 

    4.2.1   Data Preprocessing 

 All the neurogenetic models considered for the present study have ten input variables. 
If the data of the input variables are represented as a percentage of the maximum, 
then all the variables can be encoded in nine categories based on the percentage 
value of the variables because categorized data were found to perform more 
ef fi ciently than normal sets. Table  4.5  shows the input variables and the nine categories 
in which the data values of the variables are grouped.  
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   Table 4.4    Input and output variables of neurogenetic models developed   

 Input  Output 

 STRFM1 
 Occurrence probability of rainfall, same day ( P  

 t 
 )  Occurrence probability of rainfall, 

1 day before ( P  
 t +1

 ) 
 Occurrence probability of rainfall, 1 day before ( P  

 t −1
 )  Quantity of rainfall, 1 day before ( Q  

 t +1
 ) 

 Occurrence probability of rainfall, 2 days before ( P  
 t −2

 ) 
 Occurrence probability of rainfall, 3 days before ( P  

 t −3
 ) 

 Occurrence probability of rainfall, 4 days before ( P  
 t −4

 ) 
 Quantity of rainfall, same day ( Q  

 t 
 ) 

 Quantity of rainfall, 1 day before ( Q  
 t −1

 ) 
 Quantity of rainfall, 2 days before ( Q  

 t −2
 ) 

 Quantity of rainfall, 3 days before ( Q  
 t −3

 ) 
 Quantity of rainfall, 4 days before ( Q  

 t −4
 ) 

 STRFM2 
 Occurrence probability of rainfall, same day ( P  

 t 
 )  Occurrence probability of rainfall, 

2 days before ( P  
 t +2

 ) 
 Occurrence probability of rainfall, 1 day before ( P  

 t −1
 )  Quantity of rainfall, 2 days before ( Q  

 t +2
 ) 

 Occurrence probability of rainfall, 2 days before ( P  
 t −2

 ) 
 Occurrence probability of rainfall, 3 days before ( P  

 t −3
 ) 

 Occurrence probability of rainfall, 4 days before ( P  
 t −4

 ) 
 Quantity of rainfall, same day ( Q  

 t 
 ) 

 Quantity of rainfall, 1 day before ( Q  
 t −1

 ) 
 Quantity of rainfall, 2 days before ( Q  

 t −2
 ) 

 Quantity of rainfall, 3 days before ( Q  
 t −3

 ) 
 Quantity of rainfall, 4 days before ( Q  

 t −4
 ) 

 STRFM3 
 Occurrence probability of rainfall, same day ( P  

 t 
 )  Occurrence probability of rainfall, 

3 days before ( P  
 t +3

 ) 
 Occurrence probability of rainfall, 1 day before ( P  

 t −1
 )  Quantity of rainfall, 3 days before ( Q  

 t +3
 ) 

 Occurrence probability of rainfall, 2 days before ( P  
 t −2

 ) 
 Occurrence probability of rainfall, 3 days before ( P  

 t −3
 ) 

 Occurrence probability of rainfall, 4 days before ( P  
 t −4

 ) 
 Quantity of rainfall, same day ( Q  

 t 
 ) 

 Quantity of rainfall, 1 day before ( Q  
 t −1

 ) 
 Quantity of rainfall, 2 days before ( Q  

 t −2
 ) 

 Quantity of rainfall, 3 days before ( Q  
 t −3

 ) 
 Quantity of rainfall, 4 days before ( Q  

 t −4
 ) 

 STRFM4 
 Occurrence probability of rainfall, same day ( P  

 t 
 )  Occurrence probability of rainfall, 

4 days before ( P  
 t +4

 ) 
 Occurrence probability of rainfall, 1 day before ( P  

 t −1
 )  Quantity of rainfall, 4 days before ( Q  

 t +4
 ) 

 Occurrence probability of rainfall, 2 days before ( P  
 t −2

 ) 
 Occurrence probability of rainfall, 3 days before ( P  

 t −3
 ) 

 Occurrence probability of rainfall, 4 days before ( P  
 t −4

 ) 
 Quantity of rainfall, same day ( Q  

 t 
 ) 

 Quantity of rainfall, 1 day before ( Q  
 t −1

 ) 
 Quantity of rainfall, 2 days before ( Q  

 t −2
 ) 

(continued)
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Table 4.4 (continued)

 Input  Output 

 Quantity of rainfall, 3 days before ( Q  
 t −3

 ) 
 Quantity of rainfall, 4 days before ( Q  

 t −4
 ) 

 STRFM5 
 Occurrence probability of rainfall, same day ( P  

 t 
 )  Occurrence probability of rainfall, 

5 day before ( P  
 t +5

 ) 
 Occurrence probability of rainfall, 1 day before ( P  

 t −1
 )  Quantity of rainfall, 5 day before ( Q  

 t +5
 ) 

 Occurrence probability of rainfall, 2 days before ( P  
 t −2

 ) 
 Occurrence probability of rainfall, 3 days before ( P  

 t −3
 ) 

 Occurrence probability of rainfall, 4 days before ( P  
 t −4

 ) 
 Quantity of rainfall, same day ( Q  

 t 
 ) 

 Quantity of rainfall, 1 day before ( Q  
 t −1

 ) 
 Quantity of rainfall, 2 days before ( Q  

 t −2
 ) 

 Quantity of rainfall, 3 days before ( Q  
 t −3

 ) 
 Quantity of rainfall, 4 days before ( Q  

 t −4
 ) 

   Table 4.5    Input variables and categories of neurogenetic models   

 Input variable  Category considered 

 Occurrence probability of rainfall, 
1 day before ( P  

 t 
 ) 

 Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Occurrence probability of rainfall, 
2 days before ( P  

 t −1
 ) 

 Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Occurrence probability of rainfall, 
3 days before ( P  

 t −2
 ) 

 Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Occurrence probability of rainfall, 
4 days before ( P  

 t −3
 ) 

 Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Occurrence probability of rainfall, 
5 days before ( P  

 t −4
 ) 

 Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Quantity of rainfall, 1 day before ( Q  
 t 
 )  Extremely High (EH), Very High (VH), Semi High 

(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Quantity of rainfall, 2 days before ( Q  
 t −1

 )  Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Quantity of rainfall, 3 days before ( Q  
 t −2

 )  Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Quantity of rainfall, 4 days before ( Q  
 t −3

 )  Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L), Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 

 Quantity of rainfall, 5 days before ( Q  
 t −4

 )  Extremely High (EH), Very High (VH), Semi High 
(SH), High (H), Normal (N), Low (L),Semi Low 
(SL), Very Low (VL), and Extremely Low (EL) 
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(continued)

   Table 4.6    Characteristics of model parameters and adopted performance metrics   

 Model parameter  Value 

 Genetic algorithm parameters 
 Population size  60 
 Number of generations  50 
 Crossover rate  0.80 
 Mutation rate  0.20 
 Neural network parameters 
 Network topology  10-8-2 
 Network weight  88 
 Training algorithm selected  Quick propagation (QP) and conjugate 

gradient Descent 
 Quick propagation coef fi cient  1.75 
 Learning rate  0.20 
 Generalization loss allowed  50.00% 
 Correct classi fi cation rate (CCR) desired  98.00% 
 Number of training iterations allowed  1,000,000 
 Number of retrains  10 
 Performance metrics of STRM1 
 Training CCR of STRM1-QP  99.95% 
 Testing CCR of STRM1-QP  99.95% 
 Training CCR of STRM1- CGD  99.95% 
 Testing CCR of STRM1-CGD  99.95% 
 Kappa index of agreement of STRM1 -QP  99.95% 
 Precision of STRM1-QP  99.95% 
 Sensitivity of STRM1-QP  99.95% 
 Speci fi city of STRM1-QP  99.95% 
 Kappa index of agreement of STRM1 -CGD  99.95% 
 Precision of STRM1-CGD  99.95% 
 Sensitivity of STRM1-CGD  99.95% 
 Speci fi city of STRM1-CGD  99.95% 
 Performance metrics of STRM2 
 Training CCR of STRM2- QP  99.95% 
 Testing CCR of STRM2-QP  99.95% 
 Training CCR of STRM2- CGD  90.91% 
 Testing CCR of STRM2-CGD  100% 
 Kappa index of agreement of STRM2 -QP  99.95% 
 Precision of STRM2-QP  99.95% 
 Sensitivity of STRM2-QP  99.95% 
 Speci fi city of STRM2-QP  99.95% 
 Kappa index of agreement of STRM2 -CGD  94.76% 
 Precision of STRM2-CGD  95.55% 
 Sensitivity of STRM2-CGD  96.04% 
 Speci fi city of STRM2-CGD  95.06% 
 Performance metrics of STRM3 
 Training CCR of STRM3- QP  99.95% 
 Testing CCR of STRM3-QP  99.95% 
 Training CCR of STRM3-CGD  99.95% 
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Table 4.6 (continued)

 The rule for categorizing the data values of both input and output variables are 
given below: 

  If {     
  V < 15%,  
  Then ( V = EL,  
  Else,  
  If (  
  16% < V < 30%,  

 Model parameter  Value 

 Testing CCR of STRM3-CGD  99.95% 
 Kappa index of agreement of STRM3 -QP  99.95% 
 Precision of STRM3-QP  99.95% 
 Sensitivity of STRM3-QP  99.95% 
 Speci fi city of STRM3-QP  99.95% 
 Kappa index of agreement of STRM3 -CGD  99.95% 
 Precision of STRM3-CGD  99.95% 
 Sensitivity of STRM3-CGD  99.95% 
 Speci fi city of STRM3-CGD  99.95% 
 Performance metrics of STRM4 
 Training CCR of STRM4- QP  99.95% 
 Testing CCR of STRM4 – QP  99.95% 
 Training CCR of STRM4- CGD  99.95% 
 Testing CCR of STRM4 – CGD  99.95% 
 Kappa index of agreement of STRM4 -QP  99.95% 
 Precision of STRM4-QP  99.95% 
 Sensitivity of STRM4-QP  99.95% 
 Speci fi city of STRM4-QP  99.95% 
 Kappa index of agreement of STRM4 -CGD  99.95% 
 Precision of STRM4-CGD  99.95% 
 Sensitivity of STRM4-CGD  99.95% 
 Speci fi city of STRM4-CGD  99.95% 
 Performance metrics of STRM5 
 Training CCR of STRM5- QP  99.95% 
 Testing CCR of STRM5-QP  99.95% 
 Training CCR of STRM5-CGD  99.09% 
 Testing CCR of STRM5-CGD  100% 
 Kappa index of agreement of STRM5-QP  99.95% 
 Precision of STRM5-QP  99.95% 
 Sensitivity of STRM5-QP  99.95% 
 Speci fi city of STRM5-QP  99.95% 
 Kappa index of agreement of STRM5-CGD  99.37% 
 Precision of STRM5-CGD  99.41% 
 Sensitivity of STRM5-CGD  99.44% 
 Speci fi city of STRM5-CGD  99.38% 
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  Then ( V = VL,  
  Else,  
  If (  
  31% < V < 40%  
  Then ( V = SL  
  Else,  
  If (  
  41% < V < 50%,  
  Then ( V = L,  
  Else,  
  If (  
  51% < V < 60%,  
  Then ( V = N,  
  Else,  
  If (  
  61% < V < 70%,  
  Then (V = H,  
  Else,  
  If (  
  71% < V < 80%,  
  Then (V = SH,  
  Else,  
  If (  
  81% < V < 90%,  
  Then ( V = VH,  
  Else,  
  V = EH )  
  )  
  )  
  )  
  )  
  )  
  )  
  )  
  )}   

    4.2.2   Model Training, Testing, and Validation 

 A combinatorial data matrix is used to train all the neurogenetic models. Quick 
propagation (QP) and conjugate gradient descent (CGD) are selected as the training 
algorithms. Performance metrics like the kappa index of agreement, precision, 
sensitivity, and speci fi city were used to select the best model from among the  fi ve 
models considered.   
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    4.3   Results and Discussion 

 As explained in the previous section, Table  4.6  shows the values of the model 
parameters selected for this study. The models’ performance metrics are also shown 
in the table.  

 The results from the performance metrics indicate that, except for STRM2-CGD 
and STRM5-CGD, all the models performed satisfactorily. Because the models 
were validated using a small set of data randomly selected from the training data set, 
the metrics results were found to be near 100. Even then, also the kappa index of 
agreement, precision, sensitivity, and speci fi city for STRM2-CGD was found to be 
94.76, 95.55, 96.04, and 95.06%, respectively, whereas the same for model STRM5-
CGD were determined to be equal to 99.37, 99.41, 99.44, and 99.38%, although the 
STRM5-CGD model when compared to STRM2-CGD was concluded to be prefer-
able to the latter.  

    4.4   Conclusion 

 The present investigation tried to estimate short-term rainfall using neurogenetic 
models and 1–5-days lagged rainfall data. In total,  fi ve models were prepared pre-
dicting both the occurrence and magnitude of next fi ve days. The network topology 
of the models was selected using a genetic algorithm, and both QP and CGD were 
selected for training. The data set of the input and output variables was converted 
into nine categories, each representing a different level of magnitude and probabil-
ity. According to the model results, it was found that only the 2- and 5-day rainfall 
prediction models trained with a CGD algorithm did not perform on par with the 
other models. This subpar performance can be attributed to the incompatibility of 
the CGD algorithm and the length of the time domain. If the prediction is made 
using real-life data of a study area, then the actual reasons for the subpar perfor-
mance of the STRM2-CGD and STRM5-CGD can be properly analyzed. This 
approach of predicting short-term rainfall may help to predict extreme events even 
if data availability is scarce.      
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